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Gene expression is an intrinsically noisy process, typically, producing mRNAs and proteins in
bursts. An important description of such stochastic processes can be done in terms of the Mean
First Passage Time (MFPT), i.e., the time taken by mRNAs/proteins to reach a particular threshold.
We study the role of burstiness on MFPT and obtain an analytical expression for different models of
transcriptional and translational bursts. Our analytical results and numerical simulations confirm
that MFPT monotonically decreases with burstiness.

I. INTRODUCTION

The phenomenon of gene expression is an inherently stochastic process generating fluctuating
number of copies of mRNAs and proteins by the processes of transcription and translation re-
spectively. The number of mRNAs and proteins has a wide range of cell-to-cell variability and
these fluctuations are important to understand [1–6]. However, in spite of the random fluctua-
tions the transfer of genetic information over generations or synthesis of proteins to cater to the
demand of the cell is done with amazing effectiveness. The cell must adapt to an appropriate
strategy to control the noise levels to ensure effective functioning of the cellular mechanisms. An
important observation in single cell experiments has been that mRNAs and proteins are produced
in bursts [7, 8] as opposed to Poisson statistics expected from a typical birth-death process[9].
Bursty transcriptional dynamics invited new ideas to model the stochastic dynamics, namely,
two-state or ON-OFF model[10], two-stage model[5, 11], three-stage model[5], time-dependent
rate models[12] with goals to quantify the experimental findings. It is to be noted that transcrip-
tional bursting is mainly seen in eukaryotes and mammalian cells [13] and such bursty mRNA
dynamics can be explained by a simple ON-OFF mechanism [10]. On the other hand, in the
two-stage model only the protein dynamics can be bursty and such translational bursts are typ-
ical of prokaryotes [1, 13, 14]. The three-stage model [15] is more general, capable of exhibiting
both transcriptional (mRNA) as well as translational (protein) bursts but transcriptional bursts
is believed to be of more biological relevance [13]. While the models had been largely successful
in explaining the steady state behaviour it is also important to ask the question whether tran-
scriptional burst is an efficient strategy for a cell? There had been a few attempts to establish
that the bursty mRNA dynamics efficiently encodes information transfer [16] and possibly be
favoured from a thermodynamical perspective[17]. In this paper we explore the consequences of
burstiness on the transient dynamics and theoretically investigate the Mean First Passage Time
behaviour.

The first passage time is an useful quantification of stochastic physical processes [18]. The
first passage time in the phenomenon of gene expression can be defined as the time taken by
mRNA or protein to reach a particular threshold for the first time. Since the processes involved
are stochastic, one is rather interested in the probability distribution of these times or the first
moment i.e., Mean First Passage Time (MFPT). In the context of gene expression, a typical
situation in a cell may demand a critical number of proteins to be synthesized and the average
time to reach that number is important. The role of bursty dynamics on MFPT thus becomes a
meaningful quantity to analyze and has attracted some attention in recent past. The theoretical
description of gene expression has been closely related to queuing theory [19] and related quanti-
ties like waiting time distributions has been shown to determine the transcriptional dynamics of
ON-OFF model [20]. It has also been shown that lysis time in bacteriophage can be formulated
as FPT, a measure that an organism possibly uses for robustness to cellular noise [21]. In a very
relevant simulation based study on genetic switches, MFPT to switch between states has been
found to be exponentially sensitive to parameters of gene regulation, like burstiness in mRNA
and protein [22]. However, an exact calculation of MFPT even in simple scenarios is often dif-
ficult and a progress in that direction can be useful to gain insight into the gene regulatory
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mechanisms.
Recent studies on λ-Phage [23, 24] and HIV virus [24–26] have established that biological fate

selection is stochastic in nature and the crucial decisions like the switching from active to inac-
tive state of the virus are driven by noise in the gene expression. A large number of biologically
important systems exhibit similar transition from productive to unproductive states, for exam-
ple, viral latency of human immunodeficiency virus(HIV)-1[27, 28], latency of herpes simplex
virus (HSV, subfamily-α) in infected neurons[29, 30], latency in Kaposi’s sarcoma-associated
herpesvirus (KSHV)[31, 32], viral latency in cytomegalovirus infection in the lung[33]. Interest-
ingly the decision to switch between the active to inactive states depends on the time for the
protein levels to reach a threshold necessitating to formulate the stochastic process as a first
passage time problem [21]. Moreover, the first passage time statistics depends on the bursty
dynamics of the protein expression levels and has been experimentally observed (matched with
stochastic simulations) [27].

In this paper, we investigate MFPT for different models of stochastic gene expression that
exhibit burstiness. We analytically solve the Langevin dynamics and obtain the probability
distribution function, subsequently, we derive the MFPT as a function of the degree of burstiness.
We find that with the increase in bursty behaviour the MFPT decreases enabling a cell to
reach a target threshold faster. Intuitively this can be understood as mRNA/protein level or
fluctuations increase it is more likely that a desired threshold is quickly reached. We compute
the variance of the FPT and show that it also decreases monotonically with burstiness. We will
provide an exact calculation for different models of gene expression and also verify our findings
by numerical simulation of the stochastic dynamics. The paper is organized as follows: in Section
II, we study the two-state or the ON-OFF model and outline the method to solve the propagator
corresponding to the Langevin dynamics and hence analytically derive the MFPT as a function
of mRNA (transcriptional) burstiness; in Section III, we study the two-stage model and obtain
MFPT analytically as a function of protein (translational) burstiness; in Section IV, we analyse
MFPT of proteins in the three-stage model with respect to transcriptional burstiness followed
by a discussion in Section V.

II. ON-OFF MODEL

The experimental observation of transcriptional bursts can be effectively modelled by an ON-
OFF mechanism of the promoter activity [7, 10]. Changes in chromatin architecture, chromatin
remodelling [3], is mainly responsible for the transition of the promoter activity from an ac-
tive(ON) state to an inactive(OFF) state. The binding sites may be accessible (inaccessible) in
the ON (OFF) state to the transcriptional factors leading to transcription (no transcription). A
schematic representation of the ON-OFF model is shown in the Fig.(1)(a) involving the following
first order reaction mechanism:

DOFF
kon−−→ DON

DON

koff−−−→ DOFF

DON
k1−−→ DON + M

M
k2−−→ ∅ (1)

where DON and DOFF are the active and the inactive states of the promoter and kon and koff
are activation and inactivation rate constants, respectively. The transcription takes place with
a rate k1 producing mRNA (M) which degrades at a rate k2. The stochastic transcriptional
dynamics can be cast as a master equation and it is possible to obtain the exact analytical
expressions for the mean and variance of mRNAs, the steady state Fano factor is given by [10]:

(σ2
m)s
Ms

= 1 +
k1koff

(koff + kon)(koff + kon + k2)
. (2)

It is easy to see that koff > 0 implies Fano factor > 1 characterizing transcriptional bursts
and the steady-state mRNA probability distribution is non-Poissonian. The mRNA burst-size
is typically denoted by a parameter bm = k1/koff quantifying the average number mRNAs
created between the ON and OFF state of the promoter. It is also sometimes referred to as
transcriptional efficiency [34]. The variation of the steady state Fano factor with the burst-size
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FIG. 1: (a) A schematic representation of ON-OFF model. (b)Steady state distribution obtained using

Gillespie Algorithm averaged over 106 realizations for kon = 3.0, k2 = 0.3, k1 = 20.0, koff = 3.1 and

fitted with the steady state PDF p(M) as obtained in Eq.(22). (c) Variation of Fano factor with burst size

bm = k1/koff .

bm is shown in Fig.(1)(c). It has been shown that the experimental mRNA expression data shows
better agreement with respect to koff modulation [16]. Hence in this study we will vary burst
size (bm) by tuning koff and the mean mRNA production k1 is held fixed. Burstiness can also
be characterized by burst frequency (kon). But it has been experimentally demonstrated that
typical expression levels with respect to the variation of the burst frequency is less pronounced
[28, 35].

A. The Exact mRNA Propagator from Langevin Dynamics

Let us write the Langevin dynamics corresponding to the ON-OFF model assuming that the
number of expressed mRNAs is large. It must be noted that we will be only dealing with
intrinsic noise which mainly arises due to fluctuations induced by the stochastic activation and
deactivation of the active promoter (D) and production and degradation of the mRNA molecules
(M). The Langevin equations are

dD

dt
= kon − (kon + koff )D + ηD(t)

dM

dt
= k1D − k2M + ηM (t). (3)

The intrinsic fluctuations of this system is modelled by white noise η having the properties:

〈ηi(t)〉 = 0

〈ηi(t)ηi(t+ τ)〉 = λiδ(τ) (4)

where i = D or M . An essential feature of this system that the noise strengths λi are independent
of the state variables D and M . The expression for noise magnitude of DNA and mRNA are
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λd = 2kon koff/k
′ and λm = 2k1 kon/k

′ where k′ = kon+koff . A detailed derivation of the noise
strengths is provided in Appendix A and in [36–38]. Note that in steady state the mean number
of active promoter is Ds = kon/k

′ while the mean number of mRNAs is Ms = k1kon/k2k
′.

Without any loss of generality we can assume that the initial number of active DNA molecules
D0 = 1.0. If the promoter stays for longer period in active state (assuming promoter kinetics
to be slow), a large number of mRNAs will be synthesized in quick succession i.e., the mRNA
dynamics is bursty and can be quantified by the burst parameter(size) bm = k1/koff .

We are interested in computing the propagator p(M, t|M0), the probability of having M mR-
NAs at time t given that the initial number of mRNA was M0. We start by introducing new
variables q = (D −Ds)/

√
λD and v = (M −Ms)/

√
λM and plugging these in Eq.(3) we obtain

the rescaled Langevin equations [39]:

q̇(t) = −k′q(t) + ξD(t)

v̇(t) = −k2v(t) + kqq(t) + ξM (t) (5)

where kq = k1
√
λD/λM and ξi(i = D or M) is scale-free noise. Representing the fluctuations as

a vector u(t)
T

= (q(t), v(t)) the system of equations Eqs.(5) can be recast in matrix form:

u̇(t) = −Υ · u(t) + Ξ(t) (6)

where the drift term has

Υ =
(

k′ 0
−kq k2

)
(7)

and the noise is represented by ΞT (t) = (ξD(t), ξM (t)). Let ρ(q, v, t) be the joint probability
distribution function which now satisfies the Fokker-Planck Equation (FPE)

∂ρ

∂t
=

2∑
i,j=1

{
Υij

∂

∂ui
(uj ρ) +Dij

∂2ρ

∂uiuj

}
(8)

where the diffusion matrix D in our problem is of the form

D =
1

2

(
1 0
0 1

)
. (9)

We seek the conditional PDF ρ(q, v, t|q0, v0) which is the solution of Eq.(8) for the initial
condition ρ(q, v, 0) = δ(v−v0)δ(q−q0) and the natural boundary conditions ρ(q, v, t)→ 0 as |q| →
∞ and |v| → ∞. The solution of Eq.(8) will be bivariate Gaussian and can be obtained following
[40, 41]. Here we will briefly outline the procedure and introduce the relevant parameters.

Let us write u = (q, v) in terms of the fluctuations δu = (δq, δv) and the conditional mean
ū = (q̄, v̄):

u = δu + ū (10)

and for sharp u0 = (q0, v0) the mean can be written as

ū(t) = G(t)u0 (11)

where we have introduced the Matrix Green function [40, 41]

G(t) = exp(−Υt) =

(
e−k

′t 0
kq(e

−k2t−e−k′t)
k′−k2

e−k2t

)
. (12)

The covariance matrix can be defined in terms of the Green function:

σ(t) =

[
σ11(t) σ12(t)
σ21(t) σ22(t)

]
= 2

∫ t

0

G(t′)DGT(t′)dt′ (13)
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and the covariance matrix elements are given by:

σ11(t) =
1

2k′

[
1− e−2k

′t
]

σ12(t) = σ21(t) = C1

[ 1

k′ + k2
[1− e−(k2+k′)t]− 1

2k′
[1− e−2k

′t]
]

(14)

σ22(t) = C2
1

[ 1

2k′
[1− e−2k

′t] +
1

2k2
[1− e−2k2t]− 2

k′ + k2
[1− e−(k

′+k2)t]
]

+
1

2k2
[1− e−2k2t]

where we have defined C1 = kq/(k
′ − k2). Finally, the formal solution of FPE given in Eq.(8) is

a bivariate Gaussian having the following form:

ρ(u, t|u0) =
1

2π
√

∆(t)
exp

[
− 1

2
δu(t)

T S δu(t)
]

(15)

where S(t) is the inverse of the covariance matrix:

σ(t)−1 = S(t) =

[
S11 S12

S21 S22

]
=

1

∆(t)

[
σ22 −σ12
−σ12 σ11

]
(16)

and the determinant ∆(t) = det(σ(t)) = σ11σ22 − σ2
12.

Noting that δu = u− ū the solution in Eq.(15) can be equivalently written as:

ρ(q, v, t|q0, v0) =
1

2π
√

∆(t)
exp

[
−
{1

2
S11(t)(δq)2 + S12(t)(δq)(δv) +

1

2
S22(t)(δv)2

}]
. (17)

Integrating Eq.(17) with respect to q will yield the marginal probability distribution p(v, t)
which is nothing but conditional PDF of the rescaled mRNA (v), which has the form:

p(v, t) =

∫ ∞
−∞

dqρ(q, v, t) =
1√

2πσ22
exp (− (v − v̄)2

2 σ22
). (18)

Introducing the burst size bm = k1/koff and φ = k2/koff the variance can be written as

σ22(t) =
bm

[
(k′ − k2)2 − k2k′(e−k

′t − e−k2t)2 − (k2e
−k′t − k′e−k2t)2

]
2k′φ(1 + kon/koff + φ)(k′ − k2)2

+
1− e−2k2t

2k2
. (19)

Now, we can convert this expression into the actual mRNA propagator, p(M, t|M0), by multi-
plying it by the Jacobian of the transformation (i.e., dv/dM = 1/

√
λM ) and writing v and v̄ in

terms of M and M0. Upon substitution we obtain the p(M, t|M0) as:

p(M, t|M0) =
1√

2πσ2
m(t)

exp
{
− (M − M̄(t))2

2σ2
m(t)

}
(20)

M̄ = bm

[ (D0 −Ds)(e
−k2t − e−k′t)

(1 + kon

koff
− φ)

− kon
φ k′

(e−k2t − 1)
]

+M0e
−k2t (21)

and the mRNA variance is σ2
m(t) = λMσ22(t). The detailed procedure to compute the mean

and the variance is given in Appendix B.

B. Steady state PDF

In the steady state M̄(t) → M̄s, σ
2
m(t) → (σ2

m)s the probability distribution function (PDF)
in Eq.(20) becomes:

p(M) =
1√

2π(σ2
m)s

exp
(
− (M −Ms)

2

2 (σ2
m)s

)
. (22)
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FIG. 2: (a)MFPT for ON-OFF model plotted as a function of burst size (bm = k1/koff ). Mean Inversion

(Black), Propagator Integration (Red), analytical T̃m (Cyan) Eq.(26), Euler-Maruyama method (Blue)

and Gillespie algorithms (Green) and (b) Variance of FPT for the ON-OFF model have been plotted for

two threshold values Mc = 5 and 10. Other parameter values are set at kon = 3.0, k1 = 20.0, k2 = 0.3. (c)

Probability distribution of FPT for different bm = 1, 2, 5 and 10 given Mc = 10(other parameters are same

as (a) and (b)). The EM simulations are done with time-step of 10−3. In Gillespie simulations we average

over 104 realizations.

The steady state Fano factor is now given by:

(σ2
m)s
Ms

= 1 +
k1 koff

k′ (k′ + k2)
(23)

substituting k′ = kon + koff we recover the exact expression Eq.(2).

C. Mean First Passage Time for ON-OFF model

Equipped with the propagator obtained in the previous section we can now estimate the
mean first passage time taken by mRNAs to reach a threshold Mc starting from an initial
number M0. The probability that at time t mRNA numbers are such that 0 ≤ M ≤ Mc is

G(M0, t) =
∫Mc

0
p(M, t|M0)dM . Again, if the duration for which mRNAs are in [0,Mc] is T ,

Prob(T ≥ t) =
∫Mc

0
p(M, t|M0)dM = G(M0, t). Following Gardiner[42], MFPT can be defined

as

Tm = −
∫ ∞
0

t ∂tG(M0, t)dt =

∫ ∞
0

G(M0, t)dt. (24)

We numerically evaluate the double integral using Mathematica and plot MFPT versus burst
parameter bm as shown in Fig.(2) (Propagator Integration). However, it is not possible to evaluate
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the integral in closed form, hence, the dependence of MFPT on other parameters can only be
numerically established.

Alternatively, having obtained the exact time dependence of the mean mRNA in Eq.(21) and
setting M̄ = Mc and initial M0 = 0 we can solve Tm algebraically from:

Mc = bm

[ (D0 −Ds)(e
−k2Tm − e−k′Tm)

(1 + kon

koff
− φ)

− kon
φk′

(e−k2Tm − 1)
]
. (25)

MFPT thus obtained is also shown in Fig.(2) (Mean Inversion).
It is now possible to obtain an analytical expression for MFPT with the assumptions kon � k2

and koff � k2. k2 being the degradation rate of mRNAs this is a reasonable assumption and

allows us to ignore φ = k2/koff and e−k
′Tm . We thus have a simplified expression of MFPT

T̃m =
−1

k2
log
[ Mc/bm −Ds/φ

koff/k′ − kon/k2
× k′

koff

]
. (26)

Note that large koff implies low burstiness (bm) and in this regime the agreement of T̃m is
good with the above methods. We have also estimated MFPT from simulating the stochastic
dynamics by Gillespie algorithm [43, 44] and numerically integrating the Langevin equations
by Euler-Maruyama algorithm [45, 46]. All the estimates are shown in Fig.(2)(a) for different
choices of threshold Mc.

D. Variance of FPT for ON-OFF model

It is also very interesting to explore the dependence of other moments of the FPT distribution
on transcriptional burst size (bm). The other moments[42] of the FPT can be expressed as

〈(Tm)n〉 =

∫ ∞
0

tn−1G(M0, t)dt. (27)

Using this definition, the variance of the FPT can be given as

(σT )2 = 〈(Tm)2〉 − 〈Tm〉2 (28)

and enumeration of this yields us the theoretical curve for (σT )2 in Fig.(2)(b). We also show the
numerical results obtained by Gillespie and E-M algorithm. Moreover, we numerically obtain
the FPT distribution for different transcriptional burst sizes(bm = 1, 2, 5 and 10) given a fixed
threshold value(Mc = 10) and have been shown in Fig.(2)(c).

III. TWO-STAGE MODEL

Now, we analyze the two-stage model, where, transcription is followed by translation [1, 5, 6,
47]. In this model mRNA statistics is Poissonian while the number of proteins produced from a
single mRNA can be bursty. This feature of translational bursting is the major cause of noise
in prokaryotes [13, 14]. The schematic given in Fig.(3)(a) shows that the mRNA molecules (M)
are first transcribed from a double stranded DNA template at a rate k1 and proteins (P ) are
created at a translation rate k3. mRNAs and proteins degrade with rate constants k2 and k4,
respectively. The two-stage dynamics can be described by the Langevin equations

dM

dt
= k1 − k2M + ηM (t)

dP

dt
= k3M − k4P + ηP (t). (29)

The noise statistics are same as in Eq.(4) except that i = M or P . The noise magnitude for
mRNA and protein are λM = 2k1 and λP = 2k1k3/k2. A detailed derivation of λi is given
in Appendix A and in [11]. We introduce the protein burst size bp = k3/k2, which essentially
measures the average number of protein produced in one transcript of mRNA. This burstiness
can be thought of as a measure of enhancement of transcriptional noise by translation. The
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(a) (b)

FIG. 3: (a) Schematic representation of two-stage model (b) Steady state histogram obtained for the
parameter values k1 = 0.1, k2 = 0.1, k3 = 0.1, k4 = 0.002 using Gillespie Algorithm averaged over 104

realizations and fitted with the steady state PDF p(P ) as obtained in Eq.(31)

rescaled Langevin equations for the two-stage model [39] can be written as:

q̇(t) = −k2q(t) + ξM (t)

v̇(t) = −k4v(t) + kqq(t) + ξP (t) (30)

where q = (M−Ms)/
√
λM , v = (P−Ps)/

√
λP and kq = k3

√
λM/λP . We see that the structure of

coupled equations Eqs.(30) is exactly same as Eqs.(5). Hence, following the approach mentioned
in the previous section will give the protein propagator p(P, t|P0) similar to the mRNA propagator
in Eq.(20):

p(P, t|P0) =
1√

2πσ2
p(t)

exp
{
− (P − P̄ (t))2

2σ2
p(t)

}
(31)

with mean protein

P̄ (t) = bp

[ (M0 −Ms)(e
−k4t − e−k2t)

(1− ϕ)
+
k1
k4

(1− e−k4t)
]

+ P0e
−k4t (32)

and variance

σ2
p(t) = λP

[bp[(k2 − k4)2 − k4k2(e−k2t − e−k4t)2 − (k4e
−k2t − k2e−k4t)2

]
2k4(1 + ϕ)(k2 − k4)2

+
1− e−2k4t

2k4

]
(33)

where ϕ = k4/k2 is typically a small quantity as mRNA is more unstable than protein in most
of the biological systems.

A. Transient Dynamics and Steady State

It is interesting to study the transient dynamics of the two-stage model. We plot the Fano
factor for different choice of ϕ. For ϕ → 0, we recover the results as obtained by Thattai et. al
[1] and in this limit we obtain the transient Fano factor:

σ2
p(t)

P̄ (t)
= (1 + bp)

(1− e−2k4t

1− e−k4t

)
(34)

For small times and large b the σ2
P (t)/P̄ (t) ∼= 2b which is almost double of the steady state value.
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FIG. 4: Transient Fano factor for two-stage model for constant protein degradation rate k4 = 1/3600.

The protein burst parameter bp = 20 and transcription rate k1 = 0.01. For different degradation rate of

mRNA, k2 = 1/120, 1/24, and 10, 000 correspond to ϕ = 1/30, 1/150 and 2× 10−8 ≈ 0.
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(c)

FIG. 5: (a) MFPT for two-stage model shown as a function of protein burst size (bp = k3/k2). Mean

Inversion (Black), Propagator Integration (Red), Analytical T̃p (Cyan) Eq.(38), Euler-Maruyama method

(Blue) and Gillespie algorithm (Green) (b) Variance of FPT for the two-stage model have been plotted

for two threshold values Pc = 20 and 40. Other parameters were set at k1 = 1.0, k3 = 1.0, k4 = 0.02. (c)

Probability distribution of FPT for different bp = 1, 2 and 10 given Pc = 40(other parameters are same as

(a) and (b)). The EM simulations are done with time-step of 10−3. In Gillespie simulations we average

over 104 realizations.
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Again taking the steady state limit first, the Fano factor assumes the value

(σ2
p)s

P̄s
= 1 +

k3
(k2 + k4)

= 1 +
bp

1 + ϕ
(35)

which matches exactly with the expression obtained by Thattai et al. [1] by solving the Master
Equation describing the two-stage model. Also , for the case when k2 � k4, i.e. ϕ→ 0 the Fano
factor reduces to

(σ2
p)s

Ps
≈ 1 + bp. (36)

Fig.(4) shows the time-dependent behaviour of Fano factor obtained from the exact analytical ex-
pressions of the mean and the variance for different small values of ϕ. Moreover, Eqs.(34),(35)and
(36) confirm that we can easily obtain the previously known results [1] as limiting cases from our
analytical expression of the propagator which we will now use to calculate transient quantities
like moments of FPT.

B. Moments of First Passage Time for Two-stage model

As shown for ON-OFF model, it is possible to estimate the MFPT for two-stage model from
Eq.(31) by propagator integration and alternatively by mean inversion by setting P̄ = Pc and
initial M0 = P0 = 0 and algebraically solving Tp from:

Pc = bp

[ (M0 −Ms)(e
−k4Tp − e−k2Tp)

(1− ϕ)
+
k1
k4

(1− e−k4Tp)
]

(37)

Numerical estimates using Mathematica is shown in Fig.(5)(a) for different values of bp. It must
be noted that bp values were changed by varying rate constant k2. One can get a closed form
expression for MFPT under the assumption ϕ� 1 :

T̃p =
−1

k4
log
[k2(k1bp − Pck4)

bpk1(k2 + k4)

]
(38)

which is in good agreement with numerical estimates for low burst size (bp). Similar results are
also obtained by A.Singh et. al. [48] for the case of stable proteins (k4 = 0). Our approach is
more general and for the case of low burst size and k4 → 0 we easily obtain

T̃p =
−1

k4

[
log(

k2
k2 + k4

) + log
(

1− Pc · k4
k1 · bp

)]
≈ Pc

k1bp

in agreement with Eq. 18 of A.Singh et. al. [48].
The theoretical curve for the variance of the FPT for this model is obtained by evaluating

Eq.(28) but now for proteins and compared with the stochastic simulations as shown in Fig.(5)(b).
Also, the FPT distribution for two-stage model for a fixed cut-off(Pc = 40) is obtained numeri-
cally using Euler-Maruyama algorithm for different translational burst sizes(bp = 1, 2 and 10) in
Fig.(5)(c).
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IV. THREE-STAGE MODEL

  

(a) (b)

FIG. 6: (a)Schematic representation of three-stage model (b) Steady state histogram obtained for the
parameter values kon = 0.5, koff = 0.01, k1 = 1.0, k2 = 0.1, k3 = 1.2, k4 = 0.05 using Gillespie Algorithm

averaged over 104 realizations and fitted with the steady state PDF p(P ) as obtained in Eq.(C-34)

Three-stage model is the most realistic among all stochastic gene expression models as it takes into
account all the features(promoter transition, transcription and translation) and have successfully repro-
duced the single-gene expression data of eukaryotes and mammalians[2–4, 35, 49]. Three-stage model
captures both transcriptional as well as translational bursting but we will focus on quantifying the effect
of transcriptional bursting which is of more biological importance [13]. The schematic representation
of the model is shown in Fig.(6)(a) and can be modelled by a master equation which has been solved
analytically [5]. An equivalent Langevin description of the three-stage model[50] can be given as

dD

dt
= kon − (kon + koff )D + ηD(t)

dM

dt
= k1D − k2M + ηM (t)

dP

dt
= k3M − k4P + ηP (t). (39)

The intrinsic fluctuations of this system are modelled by white noise terms(η) having the following
properties:

〈ηi(t)〉 = 0

〈ηi(t)ηi(t+ τ)〉 = λiδ(τ) (40)

where λi are noise magnitudes for i = D,M,P . λD and λM are of the same form as in ON-OFF model
and λP = 2k3k1kon/k2k

′ [see Appendix A].
Applying the formalism developed for the previous models we can write the rescaled Langevin equa-

tions as

q̇(t) = −k′q(t) + ξD(t)

v̇(t) = −k2v(t) + kqq(t) + ξM (t)

ẏ(t) = −k4y(t) + kvv(t) + ξP (t) (41)

where

q =
(D −Ds)√

λD
= (D − kon/k′)/

√
λD

v = (M −Ms)/
√
λM = (M − k1kon/k2k′)/

√
λM

y = (P − Ps)/
√
λP = (P − k1k3kon/k2k4k′)/

√
λP (42)

are the rescaled parameters for DNA, mRNA and protein respectively. Also, kq = k1
√
λD/λM and

kv = k3
√
λM/λP . Representing the fluctuations as a vector u(t)T = (q(t), v(t), y(t)) the system of

equations Eqs.(41) can be recast in matrix form:

u̇(t) = −Υ · u(t) + Ξ(t) (43)
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where the drift term is Υ =

 k′ 0 0
−kq k2 0

0 −kv k4

 and the noise is represented by Ξ(t) =

ξD(t)
ξM (t)
ξP (t)

. Let

ρ(q, v, y, t|q0, v0, y0) be the joint probability distribution function which now satisfies the Fokker-Planck
Equation (FPE) having the same form as Eq.(8) except for the fact that index i and j run till 3. Also,
diffusion matrix D = I/2, where I is a 3× 3 identity matrix. Similarly the matrix Green function can be
written as

G(t) = exp(−Υt) =


e−k

′t 0 0

kq
(e−k2t−e−k′t)

k′−k2
e−k2t 0

G31 kv
(e−k4t−e−k2t)

k2−k4
e−k4t

 (44)

where

G31 = kqkv
{(k2 − k4)e−k

′t + (k4 − k′)e−k2t + (k′ − k2)e−k4t}
(k2 − k4)(k2 − k′)(k4 − k′)

.

A. Moments of FPT for Three-stage Model

We write the fluctuations in the rescaled variables as in Eq.(10) for the three-stage model where
ū(t) = G(t)u0, δuT = (δq, δv, δy) and uT0 = (q0, v0, y0). The covariance matrix, σ(t), is given by
Eq.(13) and its elements are given explicitly in Appendix [Eq.(C-33)]. The formal solution of FPE is a
multivariate Gaussian distribution having the following form:

ρ(u, t|u0) =
1√

(2π)3∆(t)
exp

[
− 1

2
δu(t)T S δu(t)

]
(45)

We used Mathematica to calculate the determinant, ∆, and the inverse, S(t) = σ−1(t). We integrate
out q and v from ρ(q, v, y, t|q0, v0, y0) and converted ρ(y, t|y0) to p(P, t|P0)) and finally got the exact
propagator p(P, t|P0). The final form of the propagator is not shown here for brevity and is given
in Appendix[(Eq.(C-34))]. In the steady state limit p(P, t|P0) is in agreement with the steady state
histogram obtained using Gillespie algorithm and have been shown in Fig.(6)(b). MFPT is calculated
using Eq.(24) and the theoretical curve(propagator integration) is obtained. Similarly, variance, σ2

T , is
computed using Eq.(28) and both MFPT and variance (of FPT) behaviour with transcriptional burst
size(bm) for two protein cutoffs (Pc = 75 and 50) are shown in Fig.(7)(a) and (b) respectively along
with the stochastic simulation results. The ratio of standard deviation of FPT, σT , to the MFPT
(T ), i.e., coefficient of variation(CV) is calculated and plotted with bm in Fig.(7)(c). Lastly, we show
the FPT distribution for different transcriptional burst size (bm = 2.0, 2.5, 5, 10) for a fixed protein
threshold(Pc = 75) in Fig.(7)(d).

V. CONCLUSION

In this paper we obtain a complete statistical description of stochastic bursty gene expression models
starting from a Langevin description. The Langevin approach is strictly valid when the number of
relevant molecules (mRNA or protein) per cell are present in large numbers. Applying Langevin approach
for ON-OFF model is an idealisation as the number of mRNAs in a cell are typically small in number.
However, we have used the ON-OFF model as a test problem to demonstrate an exact formalism to derive
the propagator with which MFPT can be calculated. Since the number of copies of proteins are typically
present in large numbers it is convenient to work with Langevin equations and obtaining the exact
probability distributions is straightforward for two-stage and three-stage models. Our analytical results
match the steady state behaviour obtained from an equivalent master equation approach for ON-OFF
and two-stage models as well as three-stage model. The ON-OFF model exhibits bursty dynamics such
that the mRNA Fano factor varies non-monotonically with respect to burstiness. Since mRNA burstiness
bm ∝ 1/koff , for small bm gene is mostly in OFF state therefore transcribing less with less fluctuations
i.e., Fano factor ≈ 1. Again, in the limit of high burstiness transcription increases manifold such that
Fano factor → 1. The MFPT, on the other hand, always decreases monotonically with burstiness.
In the regime of low burstiness, where fluctuations and mean are of same order, the yield reaches a
threshold at larger times as compared to that when fluctuations are appreciable. Again, in the limit of
high burstiness, frequent transcriptions raise the basal level lowering the MFPT even further. We also
observe similar behaviour for the variance computed from the first passage time distribution, as burst
parameter is increased the spread in the FPT fluctuations decreases. We can conclude that burstiness
not only enables mRNAs/proteins to reach a threshold faster but also with more reliability. This feature
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(a) (b)

(c)
(d)

FIG. 7: MFPT for three-stage model shown as a function of transcriptional burst size (bm = k1/koff ).
Propagator Integration (blue), EM-method (red) and Gillespie algorithm(Green). (b) Variance of FPT
as function of bm for the three-stage model have been plotted for two threshold values Pc = 50 and 75.

(c) Coefficient of variation (CV) is plotted as function of bm. The EM simulations are done with

time-step of 10−3. In Gillespie simulations we average over 104 realizations. (d) Probability distribution
of FPT for different bm = 2, 2.5, 5 and 10 given Pc = 75. Other parameters were set at kon = 0.5, k1 = 1.0,

k2 = 0.2, k3 = 1.2, k4 = 0.05.

is common across all the three models we have studied showing either transcriptional or translational
bursts. Our exact calculation confirms this conjecture and is supported by extensive numerical estimation
of the moments of the FPT from the time-dependent PDF.

In real biological systems quantities like MFPT can throw light into the underlying cellular mecha-
nisms. The transcriptional efficiency and timing mechanism of a cell can be related as had been studied
in lysis time variation of λ−Phage [21]. Lysis time has been framed as first passage time problem and
MFPT was defined as the time taken by holin (lysis protein) levels to reach a critical cut-off accordingly
deciding the active-inactive state of the virus. Moreover, in the case of active viral replication of HIV
protein Tat it has been observed that large (small) burst size results in productive (unproductive) viral
replication [28, 35]. The source of noise and the effects of transcriptional burstiness on viral latency can
be understood as a first passage time problem in the associated protein expression levels. The analytical
and numerical method presented in this work can be extended to similar small gene regulatory motifs
and help us to precisely understand how burstiness can control the timing mechanism of a cell.
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APPENDIX

A. DERIVATION OF NOISE MAGNITUDES

ON-OFF Model

The system of Langevin equations for ON-OFF model can be written as

Ḋ = konD0 − koffD + ηD(t)

Ṁ = k1D − k2M + ηM (t) (A-1)

where D +D0 = 1 and stochastic variables ηD and ηM , satisfy the following conditions

〈ηi(t)〉 = 0

〈ηi(t)ηi(t+ τ)〉 = λiδ(τ) (i = D,M). (A-2)

We will derive the exact expressions for λd and λm. Let us consider our system to be very close to
the steady state, 〈D〉 = kon/k

′ and 〈M〉 = k1kon/k2k
′, and we assume a time interval δt which is

so small that at most only a single reaction can happen, then ηiδt = +1, 0,−1. Let us define the
probability that DNA count changes by an amount j and mRNA number changes by an amount k as
P (j, k) = P(ηDδt = j, ηMδt = k). From (A-1), one can have

P (+1, 0) = kon〈D0〉δt
P (−1, 0) = koff 〈D〉δt
P (0,+1) = k1〈D〉δt (A-3)

P (0,−1) = k2〈M〉δt
P (0, 0) = 1− (kon〈D0〉δt+ koff 〈D〉δt+ k1〈D〉δt+ k2〈M〉δt)

and all other P (j, k) = 0. These probabilities can be used to calculate the first moment

〈ηDδt〉 = (+1)× kon〈D0〉δt+ (−1)× koff 〈D〉δt
+(0)× (1− (kon〈D0〉δt+ koff 〈D〉δt+ k1〈D〉δt+ k2〈M〉δt))
= 0

〈ηMδt〉 = 0

The second moment can be calculated as

〈η2Dδt2〉 = (+1)2 × kon〈D0〉δt+ (−1)2 × koff 〈D〉δt = 2 koff 〈D〉δt
〈η2Mδt2〉 = (+1)2 × k1〈D〉δt+ (−1)2 × k2〈M〉δt = 2k2〈M〉δt
〈ηDηM 〉 = 0.

Assuming that the steady state values are large enough, then the fluctuations away from steady state
values will also be very small in comparison for all time. In this scenario, the probability conditions
will be approximately obeyed for all δt time intervals and as a result, ηi(t1) will be uncorrelated with
ηi(t2) where |t2− t1| > δt. So, we use delta function to describe the lack of correlation for different time
(t1 6= t2). Finally, we obtain the following properties:

〈ηD〉 = 〈ηM 〉 = 0 (A-4)

〈ηD(t1)ηD(t2)〉 = 2 koff 〈D〉δ(t1 − t2) = λDδ(t1 − t2) (A-5)

〈ηM (t1)ηM (t2)〉 = 2 k2〈M〉δ(t1 − t2) = λMδ(t1 − t2) (A-6)

〈ηD(t1)ηM (t2)〉 = 0. (A-7)

Thus, λd = 2koffkon/k
′ and λm = 2k1kon/k

′.
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Two-stage Model

We derive the noise magnitude for Two-stage model using Ozbudak et.al [11] approach for which
system of Langevin equations is written as

dM

dt
= k1 − k2M + ηM (t)

dP

dt
= k3M − k4P + ηP (t). (A-8)

Noise statistics for this model is

〈ηi(t)〉 = 0

〈ηi(t)ηi(t+ τ)〉 = λiδ(τ) (A-9)

where i = M or P . λi are the noise magnitudes and will be chosen such that they give results consistent
with the steady state Poisson distribution. In the steady state mRNA number is Ms = k1/k2. If we set
M = Ms + δM and expand near steady state, we will get

d

dt
(δM) + k2δM = ηM . (A-10)

Applying Fourier transform (f(t) =
∫

1
2π
e−iωtf(ω)dω) we obtain

δM(ω)
(
− iω + k2

)
= ηM (ω). (A-11)

Taking complex conjugate and ensemble-average we get

〈|δM(ω)|2〉 =
λM

ω2 + k22
. (A-12)

Here the correlation function is CM (τ) = 〈δM(t)δM(t+ τ)〉t and power spectrum is given as SM (ω) =
〈|δM(ω)|2〉. Therefore, applying Wiener-Khinchin theorem (correlation function is itself the Fourier
transform of the power spectrum), yields

CM (τ) =

∫
dω

2π
e−iωτSM (ω). (A-13)

Autocorrelation function at steady state will be a special case of the Eq.(A-13) and is given by

CM (τ = 0) = 〈δM2〉 =

∫
dω

2π
SM (ω). (A-14)

Therefore, the steady state fluctuations can be expressed as

〈δM2〉 =
1

2π

∫
dω

λM
ω2 + k22

=
λM
2k2

. (A-15)

Since mRNA production is a one-step process having Poisson distribution, mean and variance must be
equal which implies 〈δM2〉 = Ms resulting in λM = 2k1. As protein production can also be thought
as Poisson distribution for fixed number of mRNAs, so applying the above procedure we will get λP =
2k1k3/k2.

Three-stage Model

The system of Langevin equations for the three-stage model is given as

dD

dt
= kon − (kon + koff )D + ηD(t)

dM

dt
= k1D − k2M + ηM (t)

dP

dt
= k3M − k4P + ηP (t) (A-16)

where noise properties for ηi is same as the Eq.(A-2) except that now i = D,M and P . λD = 2koffkon/k
′

and λM = 2k1kon/k
′ has been already derived before. Using the same approach as mentioned for two-

state model, one can define probability P (j, k, l) = P(ηDδt = j, ηMδt = k, ηP δt = l) where j, k and l are
the amount of change in DNA, mRNA and protein count respectively. Following the similar procedure
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we will get λP = 2k3k1kon/k2k
′.

B. DERIVATION OF CONDITIONAL MEAN AND COVARIANCE MATRIX

We derive the conditional mean and the covariance matrix in terms of the Green’s function using the
approach shown in Risken [41]. Matrix equation for the rescaled parameters of ON-OFF model is:

u̇(t) = −Υ · u(t) + Ξ(t) (B-17)

where u(t)T = (q(t), v(t)), ΞT (t) = (ξD(t), ξM (t)) and

Υ =
(

k′ 0
−kq k2

)
.

We can define L = (d/dt + Υ) as the linear operator which by the definition of Green’s
function(G0(t, t′)) must satisfy

LG0(t, t′) = δ(t− t′). (B-18)

Matrix equation can be written in terms of linear operator L as

Lu(t) = Ξ(t).

For t 6= t′, we will have LG0(t, t′) = 0. Defining τ = t− t′ we can write

LG0ij(τ, 0) = 0⇒ LG0ij(τ) = 0 (B-19)

as L is time-translation invariant.
Let uhi (t) be the homogeneous solution of Eq.(B-17), which implies Luhi (t) = 0. From Eq.(B-19) we
have,

LG0ij(τ) = 0⇒ LG0ij(t) = 0
[
∵
d

dt
=

d

dτ
× dτ

dt
=

d

dτ

]
. (B-20)

Therefore, solution for homogeneous part can be written as uhi (t) = G0ij(t). Sharp initial conditions for
this problem are given as (q0, v0) = u0 i.e., uhi (0) = u0i. This implies

uhi (t) = Gij(t)u0j where Gij(0) = δij . (B-21)

This Green’s function must satisfy the matrix equation

Ġij + γikGkj = 0

⇒ G(t) = exp(−Υt) (B-22)

where Gij and γij are the elements of the matrix G(t) and Υ.
For the inhomogeneous solution, we will use the method of variation of the parameters. We make an

ansatz

uinhi (t) = Gij(t)cj(t). (B-23)

Differentiating Eq.(B-23) with respect to time, and plugging it in Eq.(B-17), we get(
Ġij(t) + γikGkj(t)

)
cj(t) +Gij(t)ċj(t) = ξi(t).

Using Eq.(B-22), we get

Gij(t)ċj(t) = ξi(t). (B-24)

Eq.(B-22) also implies that G−1(t) = G(−t) and G(t)G−1(t′) = G(t)G(−t′) = G(t− t′).
Finally, the inhomogeneous solution can be obtained as

uinh(t) = G(t)

∫ t

0

G−1(t′)Ξ(t′)dt′ =

∫ t

0

G(t)G−1(t′)Ξ(t′)dt′

=

∫ t

0

G(t− t′)Ξ(t)dt′. (B-25)
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In terms of matrix elements, we can write

uinhi (t) =

∫ t

0

Gij(t− t′)ξj(t′)dt′

= −
∫ 0

t

Gij(p)ξj(t− p)dp

=

∫ t

0

Gij(p)ξj(t− p)dp

=

∫ t

0

Gij(t
′)ξj(t− t′)dt′. (B-26)

where p = t− t′, dp = −dt′. Thus, the general solution with the initial condition is given by

ui(t) = uhi (t) + uinhi (t)

= Gij(t)u0j +

∫ t

0

Gij(t
′)ξj(t− t′)dt′. (B-27)

Calculation of Moments

Using the scale properties of the noise 〈ξi(t)〉 = 0 and 〈ξi(t)ξj(t′)〉 = δ(t− t′) we obtain the first two
moments as follows:

1. The conditional mean (first moment) is given by

ū(t) = 〈ui(t)〉 = Gij(t)u0j = G(t)u0

⇒ ū(t) = G(t)u0. (B-28)

2. The covariance matrix elements (second moment) are

σij(t) = σji(t) = 〈[ui(t)− 〈ui(t)〉][uj(t)− 〈uj(t)〉]〉

=

∫ t

0

∫ t

0

Gik(t′1)Gjs(t
′
2)〈ξk(t− t′1)ξs(t− t′2)〉dt′1dt′2

=

∫ t

0

∫ t

0

Gik(t′1)Gjs(t
′
2)δ(t′2 − t′1)dt′1dt

′
2

=

∫ t

0

Gik(t′)Gjs(t
′)dt′. (B-29)

Thus, the covariance matrix can be written as

σ(t) =

∫ t

0

G(t′)GT (t′)dt′. (B-30)

If we define

D =
1

2

(
1 0
0 1

)
as the diffusion matrix, then, in terms of diffusion matrix, the covariance matrix will be formulated
as

σ(t) = 2

∫ t

0

G(t′) · D · GT (t′)dt′. (B-31)

C. EXACT PROPAGATOR FOR THREE-STAGE MODEL

The covariance matrix elements for three-stage model is defined by the formula:

σ(t) =

∫ t

0

G(t′)GT (t′)dt′ =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 (C-32)
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The elements of block matrix,

[
σ11 σ12

σ21 σ22

]
are same as the covariance matrix elements Eq.(14) derived

for ON-OFF model. Other non-trivial elements are given below

σ31(t) = σ13(t) =
kqkv

(k2 − k4)(k2 − k′)(k′ − k4)

[(k4 − k2
2k′

)
(1− e−2k′t) +

(k2 − k′
k4 + k′

)
(1− e−(k4+k

′)t)

+
(k′ − k4
k′ + k2

)
(1− e−(k′+k2)t)

]
σ32(t) = σ23(t) =

k2qkv

(k2 − k′)2(k2 − k4)(k4 − k′)

[
(k2 − k4){ 1

2k′
(1− e−2k′t)− 1

k2 + k′
(1− e−(k2+k

′)t)}

+(k4 − k′){
1

k′ + k2
(1− e−(k′+k2)t)− 1

2k2
(1− e−2k2t)}

+(k′ − k2){ 1

(k′ + k4)t
(1− e−(k′+k4)t)− 1

(k2 + k4)
(1− e−(k2+k4)t)}

]
+

kv
k2 − k4

[ 1

(k2 + k4)
(1− e−(k2+k4)t)− 1

2k2
(1− e−2k2t)

]

σ33(t) =
k2q · k2v

(k2 − k4)2 · (k′ − k2)2 · (k4 − k′)2
[ (k2 − k4)2

2k′
(1− e−2k′t) +

(k′ − k2)2

2k4
(1− e−2k4t)

+
(k4 − k′)2

2k2
(1− e−2k2t) + 2{ (k2 − k4)(k′ − k2)

k4 + k′
(1− e−(k4+k

′)t) +
(k′ − k2)(k4 − k′)

k2 + k4
(1− e−(k2+k4)t)

+
(k4 − k′)(k2 − k4)

k′ + k2
(1− e−(k′+k2)t)}

]
+

k2v
(k2 − k4)2

[ 1

2k4
(1− e−2k4t) +

1

2k2
(1− e−2k2t)− 2

k2 + k4
(1− e−(k2+k4)t)

]
+

1

2k4
(1− e−2k4t).

(C-33)

Using Mathematica, σ−1(t) = S(t) was calculated and substituted in the final form of propagator given
below

p(P, t|P0) =
1√

8 π ∆ A (−A′) λP
exp

(−B′2
4A′

+ C′
)

(C-34)

where

∆ = det (σ(t))

A =
S11

2

A′ =
1

2

(S2
12

S11
− S22

)
B′ =

(S12S13

S11
− S23

)
δy

C′ =
(S2

13

S11
− S33

)
δy2

δy = y(t)− ȳ(t)

ȳ(t) = G31q0 + kv
(e−k4t − e−k2t)

k2 − k4
v0 + y0e

−k4t

q0 =
D0 −Ds√

λD

v0 =
M0 −Ms√

λM

y0 =
P0 − Ps√

λP
.

For this calculation, we have chosen D0 = 1.0 and M0 = P0 = 0.
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