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Abstract

Autonomous vehicles rely on the accurate estimation of their pose, speed
and direction of travel to perform basic navigation tasks. Although GPSs
are very useful, they have some drawbacks in urban applications that affect
their accuracy. Visual odometry is an alternative or complementary method
because provides the ego motion of the vehicle with enough accuracy and uses
a sensor already available in some vehicles for other tasks, so no extra sensor
is needed. In this paper, a new method is proposed that detects and tracks
features available on the surface of the ground, due to the texture of the road
or street and road markings. This way it is assured only static points are
taking into account in order to obtain the relative movement between im-
ages. A Kalman filter improves the estimations and the Ackermann steering
restriction is applied so the vehicle follows a constrained trajectory, which
improves the camera displacement estimation obtain from a PnP algorithm.
Some results in real urban environments are shown in order to demonstrate
the good performance of the algorithm. They show the method is able to
estimate the linear and angular speeds of the vehicle with high accuracy as
well as its ability to follow the real trajectory drove by the vehicle along long
paths within a minimum error.
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1. Introduction

Vehicle localization is a fundamental task in autonomous vehicle naviga-
tion. It relies on accurate estimation of pose, speed and direction of travel
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to achieve basic tasks including mapping, obstacles avoidance and path fol-
lowing. Nowadays, many autonomous vehicles rely on GPS-based systems
for estimating their ego motion. Although GPSs are very useful, they have
some drawbacks. The price of the equipment is still high for the centimeter
accuracy needed for autonomous applications. Moreover, above all for urban
applications, the shortcomings of the GPSs are clearer because there are some
situations that affect their accuracy. For example, there may not be a direct
line of sight to one or several satellites because of the presence of a building
or a tree canopy. The urban canyon effect is very frequent within cities due
to building heights. Finally, the vehicle has not available the GPS signal for
an important task as driving along tunnels. Other sensors available are low-
cost IMUs; however, although they are fast, they have a measurement bias
and therefore need frequent corrections. Several solutions can be proposed
to solve this problem, such as the use of maps or odometry provided by the
vehicle wheels. The first one needs a continuous updating of the maps to be
useful and the second lacks enough precision for several applications. That is
why another sensor is needed and here is where digital cameras can play an
important role. On one hand because, as it will be shown, they are useful for
obtaining the vehicle’s ego motion and, on the other hand, because nowadays
they are already used for other tasks such as pedestrian, traffic sign or road
lane detection [1], accordingly it is a sensor that can be applied for multiple
assignments. Visual Odometry (VO) estimates the ego motion of a camera
or a set of cameras mounted on a vehicle using only the visual information
provided by it or them. The term is related to the wheel odometry used in
robotics and was formulated in 2004 by Nister [2]. Usually, VO algorithms
have three steps:

1. Detect features or points of interest (POI) in every image and match
the ones found in two consecutive ones.

2. Find and remove the wrong matches.

3. Estimate the relative movement of the cameras.

This can be done using monocular or stereo cameras and assuming pla-
nar or non-planar motion models. A tutorial on VO can be found in [3]
[4]. In [5] a stereo system is presented, where it estimates the rigid body
motion that best describes the transformation among the sets of 3D points
acquired in consecutive frames. Optical flow and stereo disparity are com-
puted to minimize the re-projection error of tracked feature points. Instead
of performing this task using only consecutive frames, they use the whole
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history of the tracked features to compute the motion of the camera. The
camera motion is estimated in [6] using a quaternion and RANSAC [7] for
outlier removal and a Two-stage Local Binocular Bundle Adjustment for
optimizing the results. In [8] the rotation and translation between consecu-
tive poses are obtained, minimizing the distance of the correspondent point
projections. They take into account that farther 3D points have higher un-
certainty, RANSAC for outliers and they constrain pose estimation taking
temporal flow into account. A persistent map containing 3D landmarks local-
ized in a global frame is presented in [9]. They automatically distinguish some
frames, used to update the landmark map, which serves for ego-localization.
The other frames are used to track the landmarks and to localize the camera
with respect to the map. In [10], they apply some monocular techniques to
stereo visual odometry system. The features are detected using FAST [11],
described with BRIEF [12] and tracked during the image sequence. A P3P
algorithm is used for the pose estimation and local bundle adjustment is used
for result refinement. Other sensors, like lasers, has been used in [13][14][15].
In [16], the authors combine visual and lidar odometry. Visual odometry is
useful to estimate the ego-motion and as a help to register point clouds from
a scanning lidar, which refines the motion estimation.

Urban environments are highly dynamic, so the case of a static scene
cannot be assumed. Moreover, these surroundings are highly cluttered with
frequent occlusions. Consequently, there are some specific difficulties any
method has to face:

• The detected POI can belong to moving objects and, as a consequence,
the camera motion estimation would be erroneous if they are used for
obtaining the camera displacement.

• Due to ego motion and occlusions, some detected POI in an image are
not detected in the next one, and vice versa, but this can lead to an
erroneous matching and, again, to an erroneous motion estimation.

The novelty of the proposed algorithm is related to the previous difficul-
ties. This paper is an extended version of the one presented at the Second
Iberian Robotics Conference, Robot2015, in Lisbon, Portugal [17]. Here, a
more detail explanation of the algorithm is presented as well as the experi-
ments, which number has been increased. The overall of the algorithm can be
seen in Fig.1. Due to the two difficulties for urban environments mentioned
before, in this proposal, points of interests belonging to the road are going
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Figure 1: Different reference axes used in the algorithm (best view in color)

to be detected and matched, as they belong to the static part of the scene.
In order to do so, first, the road ahead of the vehicle, which is assumed flat
up to 20 meters, is obtained. Unlike other approaches that assume that only
the yaw angle changes, estimations of the camera roll, pitch and height are
obtained for every image. This way the extrinsic parameters of the stereo
camera for every image are found. As the road is flat and the pose and
orientation of the cameras are known, any virtual image of the road can be
obtained. In this case, a virtual bird-view image, perpendicular to the road,
where the features are going to be detected, is created. The POI are detected
due to the texture of the road or street and to the presence of road markings
available on the surface of the ground. Matching the features of two consec-
utive images, the relative movement of the vehicles is found. A Kalman filter
improves the estimations and the Ackermann steering restriction is applied
so the vehicle follows a constrained trajectory.

The rest of the paper describes the algorithm. The features are going
to be detected in a virtual bird-view image. In order to do this, section 2
explains how the extrinsic parameters of the stereo camera are obtained for
every image. Section 3 explains how the features are matched and the relative
movement of consecutive images is found. The Kalman filter is explained in
section 4 and the results in real driving situations are shown in section 5.
Finally, the conclusions are presented.

The results are based on sequences of the KITTI Vision Benchmark Suite
[18][19]. The stereo cameras for this benchmark were placed on the vehicle
roof and parallel to the ground. Because of the camera placement, the mini-
mum distance that the cameras capture is a bit far for this method, 6 meters.
Because the presented algorithm looks for features on the road, the cameras
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are not placed on the best place, on the vehicle’s wind-shield and looking
at the road. Another limitation is the resolution, 1344 by 391 pixels, so the
images are a bit narrow. But as the sequences have a very good ground truth
obtained from a centimeter GPS, they are very useful to show if the method
is valid or not. Others specification of the cameras are the stereo baseline is
60 cm and the frame rate is 10 Hz.

2. Continuous Extrinsic Parameters Estimation

The first step of the algorithm is to find the extrinsic parameters of the
stereo camera. Other approaches find the initial position of the cameras and
assume that only the yaw angle changes. Although this is valid for several
domains, it is not practical in urban applications due to the change in the
extrinsic parameters because of the vehicle movements, the effect of the shock
absorbers and the presence of uneven road surfaces. The road is assumed to
be flat up to a near distance, 20 m., and the plane of the road is found. From
the plane coefficients, the values of the pitch and roll angles and the height of
the camera are obtained. Besides the application for visual odometry, finding
the plane is also useful for other tasks of the vehicle as obstacle and driveable
area detection.

2.1. Obtaining the 3D Point Cloud

As shown in Fig.2, the changes in illumination inside the images, the lack
of texture in many objects and the presence of repetitive patterns in others
are the three main problems in order to obtain 3D points from stereo images
taken in urban environments. Accordingly, stereo local methods, although
being fast, are not reliable enough and at least a semi-global method has to
be used. A popular one in vehicle applications, which is used here, is [20].
Not all the provided 3D points are needed, as the information is going to
be used to detect the plane of the road in front of the vehicle. So, from all
the points in the 3D cloud, only those points between a minimum, 6 m., a
maximum distance, 20 m., and within a certain width, 12 m., are taken into
account. Moreover, they are normalized within a grid. So, a regular grid in
the 3D space is created over the input 3D point cloud data and for each voxel
all the points in it are approximated with their centroid. This way, although
there are much more points per square meter in the nearest distances, there
is not a bias towards them when the road plane is obtained.
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(a)

(b)

(c)

Figure 2: Stereo images. (a) Left and (b) right images (c) disparity images

2.2. Stereo Extrinsic Parameters

As, can be see in Fig 1, the relationship between road, Pr, and image, Pc,
coordinates is defined by a rotation matrix, Rcr, and translation vector, Tcr:

Pr = RcrPc + Tcr (1)

If θ is the yaw, ψ the roll and φ the pitch of the camera, one of the
Tait-Bryan matrices is:

Rcr =

 CθCψ SθSφ− CθSψCφ SθCφ+ CθSψSφ
Sψ CψCφ −CψSφ

−SθCψ CθSφ+ SθSψCφ CθCφ− SθSψSφ

 (2)

As the pixels belonging to the road have nil height and any yaw angle,
equation (2) can be simplified to:xr0

zr

 =

Cψ −SψCφ SψSφ
Sψ CψCφ −CψSφ
0 Sφ Cφ

xcyc
zc

+

0
h
0

 (3)

6



So, the plane equation is:

Sψxc + CψCφyc − CψSφzc + h = 0 (4)

The road in front of the vehicle is assumed to be flat and is defined by
the plane:

axc + byc + czc + d = 0 (5)

From the point cloud, the plane of the road is obtained with the Sample
Consensus Model Perpendicular Plane method so the algorithm detects a
plane perpendicular to an axis, in this case the vertical axis, within a maxi-
mum specified angular deviation [21]. Thus, the roll, pitch and height of the
camera are calculated from the obtained plane:

ψ = asin(a)
φ = atan(−c

b
)

h = d
(6)

(a)

(b)

Figure 3: Extrinsic parameters for two KITTI sequences (a) camera height (b) pitch and
roll angles (best view in color)

The results from two sequences are shown in Fig. 3. In them the effect
of the vehicle shock-absorbers is seen as well as some errors like the one in
the 714th image of sequence 6. In Table 1, the median values for height,
pitch and roll angles are shown. The nominal height of the camera is 1.65
m., which is very close to the median values. Unfortunately, there is no
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Table 1: Median values for camera height, pitch and roll angles

Sequence Height (m) Pitch (◦ ) Roll (◦ )
3 -1.609 -0.418 0.335
4 -1,637 -1.020 0.441
6 -1.647 -1.112 0.258
7 -1.648 -1.091 0.384
10 -1.650 -1.094 -0.011

information about any pitch and roll offsets in the KITTI web page, where
no ground truth is provided for these parameters.

2.3. Virtual Camera

A virtual camera with the same intrinsic parameters, K, as the stereo
system is used in order to ”acquire” the image where the features on the
road are going to be detected (Fig. 1). This camera is looking perpendicular
to the road and captures a defined area of it: the same area that it has
been used for the road plane detection, 14 x 12 m. In order to obtain the
homography, which relates both images, the relationship between virtual
camera coordinates, pvc, and camera coordinates, pc, is needed. The pin-hole
model is:

pc = KPc (7)

and from equation (1)

Pr = RcrK
−1pc + Tcr (8)

pc = KR−1
cr (Pr − Tcr) (9)

Similarly, the virtual camera,vc:

pvc = KR−1
vcr(Pr − Tvcr) (10)

Therefore, the homography, H, is obtained using the projection on both
images, obtained from equations (9) and (10), of four points on the road. In
this application the four corners of the road perceived by the virtual camera.
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pvc = Hpc (11)

Some examples can be seen in Fig. 4, where the camera image and the
corresponding bird-view image are shown.

(a)

(b)

Figure 4: Birdview images. (a) Original images captured by the stereo camera (b) Bird-
view images (rotated for better view)

3. Feature Detection and Matching

3.1. Road Features Detection

6000 SIFT features [22] are detected on the bird-view images. As a spatial
uniform distribution of features is desired, the bird-view image is divided into
8x8 sub-images and an equal number of features is looked for in every sub-
image. Some features correspond to textured areas of the road, but others
are related to the projection of objects like cars, pedestrians, buildings, etc.
Hence, whether the points belong to the ground, or not, has to be checked.
From equation (11) the corresponding pixel (u v), in the disparity image, of
the feature, in the bird-view image, can be obtained:

pc = (u v)t = H−1pvc (12)
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Knowing the image coordinates, the disparity image, ImaDisp, and the
intrinsic parameters, it is possible to obtain the real 3D coordinates of that
point:

disp = ImaDisp(u, v) (13)

zc = f
D

disp
(14)

xc = zc(u− u0)/f (15)

yc = zc(v − v0)/f (16)

where f is the focal length, D the stereo baseline, and (u0, v0) the image
center. Finally, the distance to the plane detected before is obtained:

dist = |axc + byc + czc + d| (17)

If it is less than a threshold the feature belongs to a point on the ground and
is kept, otherwise it is rejected. In Fig. 5, some examples can be seen. Green
points represent features that belong to the road plane, the red ones do not
belong to it and the white ones represent features where there is no stereo
information available. The images show one of the advantages of detecting
the features in the virtual bird-view image instead of using the real image.
The features could have been detected in one of the stereo images and, using
the disparity information and the plane equation, check if they belong to the
ground or not. But they had not been uniformly 3D distributed but 2D, so
more features close to the vehicle would have been taking into account and a
bias would have been obtained. In Fig. 5 images, it can be seen the features
are more grouped at farther distances.

3.2. First outlier removal by a speed filter

The features are detected for every image and a matching between fea-
tures of two consecutive images is done. Many errors can be expected from
the matching as many features are being taken into account and the road
surface has a minimum texture to detect them and not much information
for their description. Although the algorithm for detecting the vehicles dis-
placement can deal with outliers, it will work better and faster if there are as
minimum errors as possible. Therefore a previous filter is done now where:
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Figure 5: Road features detection (best view in color)

• Those matched features whose module is higher than a threshold, 130
km/h, are rejected since the vehicle is not allowed to drive over that
speed.

• From the rest, the median of their module is obtained and all the
matched features with a speed below 75% and higher than 125% of the
median are also not taken into account.

3.3. Camera Displacement

With the 3D information of the features belonging to the ground we could
try to find the best rotation and translation according to the matches. This
approach has the shortcoming that any error, although small, in the ho-
mography would produce a big error at the farthest points. That is why
the projection of the features in the 2D images are going to be used. So,
the camera displacement is obtained using a Perspective-n-Point (PnP) al-
gorithm [23][24]. It estimates the camera displacement given a set of 3D
points, Pc2, and their corresponding image projections, pc1. It minimizes
the re-projection error, that is, the sum of squared distances between the
observed projections, pc1, and the projected 3D points, Pc2:

pc1 = K(R|T )Pc2 (18)

RANSAC is used, in the implementation of the algorithm, in order to
be robust against outliers. In Fig. 6, all the matched features between
consecutive images can be seen. In blue are the ones discarded by the first
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Figure 6: Matched features. In blue are the ones discharged by the first filter and in green
the ones whose displacement is given by the algorithm and in red the ones considered as
outliers (best view in color)

filter, in green the ones whose displacement is given by the algorithm and in
red the ones considered as outliers.

From equation (18) the rotation and translation between the two camera
poses are obtained. But if some dynamic restriction is going to be applied,
the rotation and translation of the rear wheel axis is needed. The relation-
ship between wheel, Pw, and image, Pc, coordinates is defined by a rotation
matrix, Rcw, and a translation vector, Tcw:

Pw = RcwPc + Tcw (19)

At time 2, the displacement of the camera between both positions is ob-
tained and from the previous equation and equation (7) the rotation, Rw,
and translation, Tw, between the wheel’s center at both times are obtained:

Pw1 = RwPw2 + Tw1 (20)

Tw = (I −RcwRR
−1
cw )Tcw +RcwT (21)

Rw = RcwRR
−1
cw (22)

From equation (2) the three angles, pitch, roll and yaw, are:

ψ = asin(Rw(1, 0))

φ = atan

(
−Rw(1, 2)

Rw(1, 1)

)
(23)

θ = atan2

(
−Rw(2, 0)

cosψ
,
−Rw(0, 0))

cosψ

)
12



(a) (b)

Figure 7: Errors for linear and angular speeds (a) from the ground-truth (b) from the
sensor

4. Kalman Filter

4.1. Kalman equations

The state vector is formed by five variables [vk ωk żk ψ̇k φ̇k], where vk and
ωk are the linear and angular speed, żk is the vertical speed and ψ̇k and φ̇k
the roll and yaw speed at instant k. The model applied here assume the
linear and angular speeds are constant between consecutive images and the
pitch, roll and height speeds are nil.

vk = vk−1 + r1

ωk = ωk−1 + r2

żk = 0 + r3

ψ̇k = 0 + r4

φ̇k = 0 + r5

(24)

where r1 to r5 are the white noises whose variances have to be estimated.
In order to do so, the information of the ground-truth provided by the KITTI
database is used. The error made when the model equations (24) are used
instead of the GPS information is obtained and the variances calculated. In
order to obtain the sensor noise, a similar process is done using the output
of (21) and (23) in some parts of several sequences where the sensor provides
good results. The error plot for two sequences can be seen in Fig. 7 where on
the left column, the linear and angular speed errors obtain from the ground-
truth are shown and on the right column the errors obtain from the sensor
are shown.
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The measurements are obtained from the values calculated from (21) and
(23):

v̂k =

√
Tx,w∗Tx,w+Tz,w∗Tz,w

∆t

ω̂k = θ
∆t

̂̇zk = Ty,w
∆t

̂̇ψ = ψ
∆t

̂̇φ = φ
∆t

(25)

The prediction is compared with the measurements and if the Normalized
Innovation Squared is greater than a threshold, it means the sensor measure-
ments are wrong, so the prediction is used as the new state. If not, the filter
is updated.

4.2. Ackerman Constraint

Due to the Ackerman steering, the vehicle trajectory is a circumference
(Fig. 8), so some cinematic restrictions can be applied. What is the relation-
ship between the rotation and translation obtained from the camera and the
vehicle movement? Applying trigonometric rules, it can be deduced that is:

T =

(
ρsin(θ/2)
ρ cos(θ/2)

)
(26)

when ρ is the displacement. So, after applying the Kalman filter, where the
linear and angular speeds are calculated, the displacement and yaw increment
are obtained:

ρ = vk∆t
θ = ωk∆t

(27)

Finally, the camera displacement is obtained from (26).

5. Results

Several results have been obtained in order to test the ideas presented
in this paper. In order to check how good the speed estimation is, the
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Figure 8: Ackerman constraints

Root Mean Square Error (RMSE) has been obtained for five sequences. The
formula is:

RMSE =

√∑n
i=1(f(i)− fgt(i))2

n
(28)

where f(i) is the value of the linear or angular speed obtained from the
Kalman Filter, fgt(i) is the same information from the ground truth and n
the number of images in the sequences. The results can be seen in Table 2.
The errors are between 15 and 34 cm/s for the linear speed and between 9
and 38 10−3 rad/s for the angular speed. Graphical results can be seen in
Fig. 9a and 9b where the ground-truth, the output of the Kalman filter and
the result of the PnP algorithm are shown. It shows how the filter follows
the real speed and yaw of the vehicle despite the occasional errors of the
measurements.

In order to check if the proposed method is able to follow the real trajec-
tory of the vehicle, in Table 3 the final errors for five sequences are shown.
There are some trajectories, like sequence 3 and 4 formed by a few hun-
dred images and around half a kilometer length. Others have more than one
thousand images and the vehicle drove more than one kilometer like during
sequence 6. The percentage errors are below 1% in all the sequences except
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Table 2: RMSE errors for linear and angular speeds

Sequence Num. Ima. Linear speed (m/s) Angular speed (rad/s)
3 800 0.181 0.024
4 270 0.151 0.009
6 1100 0.301 0.027
7 1100 0.337 0.038
10 1200 0.271 0.015

Table 3: Trajectory errors

Seq. Dist. (m) Error (m) Error (%) Error (deg) Error (deg/m)
3 558.9 3.5 0.6 1.58 0.0028
4 393.6 3.2 0.8 0.61 0,0016
6 1229.4 8.7 0.7 2.0 0,0016
7 694.4 8.8 1.3 9,16 0.0074
10 917.8 7.7 0.8 0.74 0.0008

sequence 7 where is 1.3%. Good results are obtained for the angular error
too. The worst is, again, sequence 7 with an error of 0.0074 deg/m but the
others are much lower. The plot of the five trajectories is shown in Fig. 10.
It shows the system estimates the real path followed by the vehicle with good
accuracy.

6. Conclusions

A new method for VO using stereo vision is proposed, which detects
and tracks features available on the surface of the ground. This way, it is
assured only static points are taking into account in order to obtain the
relative movement between images. The use of a a virtual bird-image assure
an uniform 3D distribution of the features. A Kalman filter improves the
estimations and the Ackermann steering restrictions is applied so the vehicle
follows a constrained trajectory. The results in real urban environments show
the algorithm is able to estimate the linear and angular speeds of the vehicle
with high accuracy. Although VO is different than SLAM (Simultaneous
Localization And Mapping), the results show its ability to follow the real
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(a) Linear Speed profile (b) Angular speed profile

Figure 9: Angular speed profile (best view in color)

trajectory drove by the vehicle along long paths with a minimum linear and
angular error.
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