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 

Abstract—A large number of color filter arrays (CFAs), 

periodic or aperiodic, have been proposed. To reconstruct images 

from all different CFAs and compare their imaging quality, a 

universal demosaicking method is needed. This paper proposes a 

new universal demosaicking method based on inter-pixel 

chrominance capture and optimal demosaicking transformation. 

It skips the commonly used step to estimate the luminance 

component at each pixel, and thus avoids the associated 

estimation error. Instead, we directly use the acquired CFA color 

intensity at each pixel as an input component. Two independent 

chrominance components are estimated at each pixel based on the 

inter-pixel chrominance in the window, which is captured with the 

difference of CFA color values between the pixel of interest and its 

neighbors. Two mechanisms are employed for the accurate 

estimation: distance-related and edge-sensing weighting to reflect 

the confidence levels of the inter-pixel chrominance components, 

and pseudoinverse-based estimation from the components in a 

window. Then from the acquired CFA color component and two 

estimated chrominance components, the three primary colors are 

reconstructed by a linear color transform, which is optimized for 

the least transform error. Our experiments show that the 

proposed method is much better than other published universal 

demosaicking methods.  

 
Index Terms—Demosaicking, color filter array, linear 

combination, matrix pseudo-inverse 

 

I. INTRODUCTION 

LMOST every modern camera, video camera, machine 

vision system and scanner has a mosaicked color filter 

array (CFA) fabricated on top of the light sensors to capture 

color images. CFA measures the energy of only one color light 

at each pixel, and a technique known as “demosaicking” is then 

used to reconstruct all three primary colors for each pixel, such 

as red, green and blue [10,21,33,34]. For high-quality image 

formation, we need both an optimal CFA and an optimal 

associated demosaicking method.  
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Except for some random CFAs, a two-dimensional CFA 

usually comprises a plurality of a minimal repeating pattern 

tiled to cover the entire array of image sensors. Different 

minimal repeating CFA patterns characterize different periodic 

CFAs. The first CFA design was inspired by the human retinal 

mosaic and is named after its inventor, Bryce E. Bayer of 

Eastman Kodak [3]. Bayer CFA uses the minimal repeating 

pattern of size 2×2 with 1 red, 1 blue and 2 green pixels, and it 

is the most popular CFA on consumer digital cameras. 

Alternatives include the CYGM filter (cyan, yellow, green, 

magenta) of Kodak [12], the RGBE filter (red, green, blue, 

emerald) of Sony [32] and the 45-degree rotated Bayer filter 

known as SuperCCD of Fujifilm [29], whose minimal repeating 

patterns are all of size 2×2. The recent trends in commercial 

CFA designs are to increase the sensitivity to light by using 

panchromatic pixels (or white pixels) [15,28,31] and to provide 

better resistance to color moiré patterns by using less-regular or 

random pixel arrangements [30,37].  

Periodic CFAs were found to have elegant representations in 

the frequency domain by using the symbolic discrete Fourier 

transform (DFT), in which there is one luminance component at 

zero frequency multiplexed with a few chrominance 

components at high frequencies [2,7,11,16,17,35,36,38]. Based 

on such representations, the analysis, design and demosaicking 

of CFAs become easier and more accurate. In comparison, a 

random CFA helps minimize the moiré artifacts and remove the 

anti-aliasing filter in camera, using which actually reduces 

spatial resolution [30]. However, a random CFA cannot be 

periodically generated, its corresponding DFT version does not 

have so obvious and simple chrominance components, and we 

cannot directly and efficiently use the demosaicking methods 

specialized for periodic CFAs. 

The demosaicking methods for periodic CFAs are relatively 

well investigated and better optimized, e.g. for Bayer CFA 

[7,38], but for random CFAs a good demosaicking method has 

not been fully and systematically explored yet. Generally a 

specific demosaicking method is specialized for a particular 

CFA pattern, which is not applicable to other CFAs. It would be 

very beneficial to have a universal demosaicking method 

applicable to all CFAs, periodic or aperiodic, regular or 

irregular, uniform or nonuniform. A well-performed universal 

method also provides an important platform for comparison 

between different CFAs and to give feedbacks in designing new 

CFAs. The ultimate aim of this paper is to design an optimal 

method for universal demosaicking of all CFAs. 

Before summarizing the previous universal demosaicking 

methods, we first introduce the three aspects of information that 

can be exploited to make demosaicking better: spatial 

correlation, spectral correlation and edge information (or 
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spatial discontinuity). a) Except for a small number of edge 

pixels, most areas of natural images are smooth, or spatially 

highly correlated. As the color values are very similar within a 

small homogeneous region in an image, such spatial correlation 

helps greatly in demosaicking [24]. Spatial correlation can be 

explored by spatial filtering which uses more information from 

closer pixels or spatial transformations such as the discrete 

Fourier transform and the discrete wavelet transform. b) 

Spectral dependency/correlation has also been frequently 

exploited for better demosaicking [10,21,26,43]. The 

highly-correlated spectra of illuminance and reflectance in the 

natural world lead to high correlation between different color 

planes of an image. As a result, chrominance is highly 

band-limited and chrominance interpolation is more accurate 

than direct individual color interpolation for demosaicking. c) 

Edges or contours are significant in human vision since, due to 

the visual characteristics of the Mach band effect, the human 

vision system is very sensitive to the high spatial frequency 

information in images. Consequently, the demosaicking error 

around edges is easily noticeable and annoying. As edges may 

appear anywhere in any direction in an image and have various 

forms, sharp or soft, strong or weak, long or short, flush or 

jagged, continuous or fragmental, an edge-sensitive 

demosaicking method needs to be adaptive and non-linear. In 

summary, a good demosaicking method should exploit both the 

spatial and the spectral correlations of a color image and should 

also consider the discontinuity in the image, such as the edge 

information [1,5,9, 13,18,20,22,27,39-45].  

A big number of demosaicking methods have been created 

for a few specific CFAs, but few of such methods may be 

adaptable to other CFAs. For universal demosaicking methods 

that can be used for all CFAs, so far, only a few have been 

proposed and most of the methods are still for periodic CFAs. 

The first universal demosaicking method was presented by 

Lukac and Plataniotis [19], which first estimates the missing 

pixel colors for the most populated color (green), then finds the 

other missing colors with the weighted mean chrominance in a 

neighborhood, and finally updates the estimated missing colors 

with the weighted mean chrominance as a post-processing. The 

method uses the absolute difference of pixel values of the same 

color as the structural information for the weights, which makes 

the method nonlinear and image-dependent. Menon and 

Calvagno solved the demosaicking problem by a Tikhonov 

regularized optimization [20]. It estimates all the three primary 

colors at each pixel directly from the acquired CFA-filtered 

pixel values. The regularization was realized by imposing three 

smoothness constraints, involving individual color channels, 

chrominance and horizontal and vertical edges. Condat 

proposed an approach to minimize a variational functional 

under the constraint of consistency and implemented an 

iterative method to maximize the smoothness by minimizing 

the high-frequency energy of luminance and chrominance 

components [6]. Gu et al published another iterative method by 

using filterbank transforms [8]. Generally the iterativeness 

makes a method take longer time to converge and mostly 

slower than direct methods, and the convergence speed is also 

highly dependent on the initial estimate, although this becomes 

less a problem as better and faster methods being proposed in 

the field. Condat later proposed a generic proximal algorithm 

for faster optimization [50], but it is still iterative and the image 

quality is not improved substantially. Hore and Ziou in [14] 

added an edge-sensing mechanism to the universal method in 

[19] and unanimously improved the demosaicking performance 

with all the seven uniform CFAs they tested. Another universal 

demosaicking was proposed by Singh and Singh [48], which is 

non-iterative and using space-variant filters for random CFAs. 

The method is based on the generalized inverse of the matrix 

for CFA sampling relations of primary colors. To make the 

method perform better, it employs some nonlinear image 

enhancement methods, but the improvement seems to be 

limited. Later, they better optimized the linear part of the 

method but only for regular patterns [23] because it is based on 

the frequency domain representations [11]. The methods based 

on transforms generally implicitly take CFAs as being regular 

and uniform, and the methods with the discrete Fourier 

transform are generally applied to regular, uniform and periodic 

CFAs, since the discrete Fourier transform generally does not 

map irregular, nonuniform or aperiodic signals into impulses at 

some frequency points, which makes very difficult to represent 

and analyze CFAs in the frequency domain, not so easy as for 

the periodic CFAs as shown in [11]. A recent publication is for 

a small class of CFAs with quincuncial white pixels [46]. It 

utilizes the most populated and more accurately interpolated 

white pixel channel to improve the channels of the primary 

colors that we eventually need. Anyway, it is not a universal 

demosaicking method that can be applied to all CFAs.  

Based on the above brief analysis of the previous work, we 

know that a universal demosaicking method could work better 

if it is in the spatial domain and interpolates the chrominance 

from neighbor pixels. We developed a novel non-iterative 

universal method based on accurate chrominance estimation in 

the spatial domain and the optimal demosaicking color 

transformation. We do not estimate the luminance or any 

individual color planes for color reconstruction; and the pixel 

values measured by a CFA are used instead to avoid the 

estimation error of the luminance component. Two 

chrominance components at each pixel are estimated with the 

inter-pixel chrominance in a window, which is captured by the 

color difference between the adjacent neighbors. Inter-pixel 

chrominance components are weighted with respect to distance 

and edge, and then optimally combined for the target 

chrominance directions. The linear demosaicking color 

transformation is also optimized for the least error to 

reconstruct the three primary colors from the chrominance and 

CFA color at each pixel. The comparison between our method 

and other two universal demosaicking methods is highly 

favorable with a few CFA patterns, the Bayer CFA [3], the 

Kodak’s CFA2.0 [15], Fuji X-Trans [30], Sony RGBW [31], a 

random CFA [37] and a high-light sensitivity RGBW CFA 

proposed previously by us [25]. For brevity of notation, we 

refer to our adaptive chrominance-based universal 

demosaicking method as ACUDe. 

The rest of this paper is organized as follows. Section II first 

gives an overview of the proposed method, whose six main 
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steps are described in detail in Sections III to VI, The 

demosaicking results are presented in Section VII. Finally, 

Section VIII concludes the paper.  

 

II. OVERVIEW OF THE PROPOSED METHOD 

A. The idea 

In the CIE colorimetry system, a color visible to human 

vision can be represented with three primary colors, such as 

red, green and blue (RGB) in the additive color space for light 

color mixture, or cyan, magenta and yellow (CMY) in the 

subtractive space for pigment color mixture. Accordingly, we 

can decompose an incident image and CFA coefficients with 

three primary colors. Suppose that the CFA color coefficients at 

pixel       are                                
               or simply            if there is no 

ambiguity. Similarly the incident image can be represented as 

                                             or 

          . The acquired pixel values with the CFA can be 

expressed as the dot product of their corresponding 

three-dimensional vectors:                      

                                        , or 

       . Assume that all the coefficients,              are 

in the range of      , then the CFA response should reach its 

highest      to the highest incident white light (fully 

saturated white                ), so we have       
 .  

The difference of two CFA responses         is the 

so-called color chrominance. Similarly it can be expressed with 

three primary colors as       
               , 

where              
 
. The chrominance should be zero if 

     , so this always holds:            . Vector 

   can be seen as the hue or direction of the chrominance, and 

    as its saturation or amplitude in the direction. With a 

different set of coefficients for the vector,              
 
 

we can have the chrominance in another direction:       
  

             , where           . The vectors 

   and    are in 3D and always satisfies the equations 

  
             and   

            , so the intrinsic 

dimension of chrominance is two. 

With one CFA response and two chrominance at a pixel, we 

can formulate their linear relations in a matrix form:  

 

  
   
   

   

  

  
 

  
 

   
 
 
 
   

   
      
      

   
 
 
 
  (1) 

or by using a multiplexing matrix T:  

 

  
   
   

     
 
 
 
  (2) 

Since a fully saturated white point                 should 

be mapped into a fully saturated CFA response      and zero 

chrominance components,       and      , the following 

equation holds: 

                    (3) 

The matrix T is invertible if the two chrominance directions 

are independent of each other, or the rank of the two 

chrominance rows in T is 2. Then we can reconstruct the three 

primary color components by matrix inverse:  

 
 
 
 
       

  
   
   

  (4) 

We can use a demosaicking matrix D to represent this 

inverse transform matrix    , which can be found 

mathematically as in [11]:  

      

 
 
 
 
 
 
  

       

         

       

         

 
       
         

       
         

 
       

         

       

          
 
 
 
 
 
 

 (5) 

To reconstruct the three primary colors, three components 

       and     are needed. For     previous methods typically 

first estimate a general luminance component for the whole 

image [2,7,11,35,36,38], that is, a component of   
       

                                   with the same 

coefficients            for all pixels. One example is to use [0, 

1, 0] as the coefficients to estimate the green channel of the 

whole image first. In comparison, our method does not need 

this intermediate estimation step and uses directly the measured 

CFA response instead. By skipping the step of estimating 

luminance/green channel, our method introduces less error in 

demosaicking and can lead to better results.  

In summary, our idea is briefly outlined as follows: With a 

specific CFA color       , we can find the optimal 

demosaicking matrix D, and then the two target chrominance 

directions,         and        , are given in the multiplexing 

matrix T, which is the inverse of D. With         as the 

measured CFA response, we only need estimate two 

chrominance components,          and         , i.e. two 

chrominance amplitudes in the two target chrominance 

directions for each pixel in our proposed method. Finally, we 

use the demosaicking matrix to transform the three components 

back to the three primary colors.  

B. The method 

The method comprises three phases. The first phase is to find 

the optimal demosaicking transform matrix and the 

corresponding chrominance directions for a given CFA color. 

The second phase concerns generating two sets of weights used 

to combine inter-pixel chrominance in a window centered at a 

pixel for the estimation towards the target chrominance 

directions. The third phase uses the weights generated in the 

second phase to estimate the two chrominance amplitudes and 

then reconstructs the primary colors with Eq. (4). The three 

phases are further divided into six steps, which we describe 

briefly below, and their details are presented in the following 

Sections. 

Phase 1: To find the optimal transformation (1 step):  

Step 1) For a given CFA color, we find the optimal 

demosaicking transform matrix    by minimizing the 2-norm 
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of the matrix D in Eq. (5). Then we can further find the 

multiplexing matrix T as in Eq (1) by matrix inverse, and the 

two lower rows in T,   
  and   

 , are the corresponding target 

chrominance directions, which are needed in the next phase 

(Step 2-4), and the demosaicking matrix is used in the last step 

(Step 6). This step is only related to the CFA colors, so it can be 

done offline and in advance. More details are given in Section 

VI.  

Phase 2: Weight generation, divided into three steps (Fig. 1):  

Step 2) Inter-pixel chrominance capture: A chrominance at 

each pixel can be calculated with two color measurements, but 

we have only one color measurement         at each pixel in 

the CFA-filtered image. As measurements of different colors 

can be found in the neighborhood of the pixel, we use the 

difference to compute inter-pixel chrominance. Such 

inter-pixel chrominance is only a rough estimate of the 

chrominance at a pixel, but we can combine the inter-pixel 

chrominance in a bigger neighborhood or a window for more 

accurate estimation of the two chrominance components in the 

target directions by using the following two steps. If we stack 

CFA colors in a matrix   , similar to the matrix representations 

in [20], this step to capture the differences of colors is 

equivalent to multiplying a differentiation matrix   to  , 

resulting in    . Details are given in Section III.  

Step 3) Weighting: All the captured inter-pixel chrominance 

components in a window can contribute to the chrominance at 

its central pixel, but with different weights. One approach to 

obtain these weights is with a 2D distance-related function: the 

closer to the central pixel, the higher the weights. With such 

fixed distance-related weights only, this proposed method is a 

linear universal demosaicking method. Another approach is to 

generate edge-sensitive weights, adaptively with low weights 

for pixels crossing an edge and high weights for pixels in a 

homogeneous area. These weights are image-dependent and 

nonlinear, and make the whole method nonlinear and adaptive. 

Our method combines these two sets of weights as a two-pass 

algorithm. We first use only the distance-related weighting to 

obtain an initial estimate, which is then used to find the 

edge-sensing weights for adaptive demosaicking. Representing 

these weights as a diagonal matrix, this step is equivalent to a 

matrix multiplication:      . See Section IV. 

Step 4) Linear combination: The directions of the inter-pixel 

chrominance are usually different from that of the target 

chrominance    and   , and we need to combine them towards 

the target chrominance directions. One way is to find a vector   

for the linear combination. This vector is usually not unique, 

and we find it by using the pseudo-inverse of the matrix 

constructed from the inter-pixel chrominance. The matrix 

representation of this combination is   
    

          
   . See Section V.  

Phase 3: Demosaicking by weighted sum in two steps (See 

Fig. 2):  

Step 5) Chrominance estimation: For each pixel, two 

chrominance components     and     are estimated by 

weighting over the acquired CFA-filtered image    with the 

chrominance weights generated in Phase 2,    .and    . See the 

last part of Section V.  

Step 6) Demosaicking transformation: This is done by 

transforming from              to three primary colors 

        with Eq. (4), by using the demosaicking matrix    

obtained in Step 1. It is similar to that in the previously 

published paper [11], but the transform matrix   is better 

optimized for the least demosaicking transform error (in Step 

1). See Section VI.  

 

Fig. 1. Phase 2: Weight generation 

 

 

Fig. 2. Phase 3: Demosaicking 

 

III. INTER-PIXEL CHROMINANCE CAPTURE 

Two independent chrominance components are needed at 

each pixel to reconstruct its three colors, but a CFA-filtered 

image provides only one color        at each pixel       . So 

we can only estimate the chrominance at a pixel by using its 

neighboring pixels             , where         are the 

offsets to the pixel, such as       , and               . 

Therefore, we have to capture the inter-pixel chrominance, 

which is measured as the difference between a CFA-filtered 

pixel and its adjacent nearest neighbors:  

                                    

                                          
                       (6) 

If the image is smooth enough at       , or we have 

                     then we can have a very rough 

estimate for the “at-pixel” chrominance         from the 

inter-pixel chrominance:  

                                             

                         (7) 

where                                  is the 

difference of CFA colors, which is independent of the image 

and can be obtained off-line with CFA colors only. Eq. (7) is 

meaningful only if the two CFA pixel colors are different, 

                   , otherwise it is equal to zero and 

Inter-pixel chrominance capture (GF)

Confidence Weighting (W)

Linear combination (x1, x2)

CFA (F)

Weights for chrominance estimation (h1, h2))
ˆ,ˆ( 21 hh

CFA-filtered image (Cf)

Chrominance estimation (Ch1, Ch2)

Demosaicking transformation (D)

Demosaicked image (R,G,B)
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does not contribute to the chrominance estimation. 

We list the formulae of the CFA color difference and the 

inter-pixel chrominance amplitude below such that we can see 

the relationship between them is the same:  

 
                                   

                                
  (8) 

Because of the existence of noise and edges in images, the 

inter-pixel chrominance calculated with Eq. (7) is usually not 

very accurate. More accurate at-pixel chrominance can be 

obtained by linearly combining such inaccurate inter-pixel 

chrominance at a number of pixels,            , in a 

bigger neighborhood or a window,        . The estimation 

method can be represented as a weighted sum model in the 

window: 

                           

        

                   

(9) 

If the image around the pixel is smooth and the weights are 

properly chosen, the estimation can be further approximated as:  

                           

        

                           

                     

        

                           
(10) 

Then, we can have an equation for the target chrominance 

direction, which is related to the CFA colors only:  

                          

        

                  

(11) 

Reversely, if we can find proper weights for Eq. (11) with 

CFA colors to make the target chrominance directions, we can 

then use Eq. (8) and Eq. (9) to estimate the chrominance 

amplitudes with the acquired CFA-filtered image, which will 

be given in the next two sections.  

To better formulate our method, we use an     matrix F to 

represent the CFA colors            of all the pixels in the 

window centered at pixel       , where 3 columns are for 

three primary colors and N is the number of pixels in the 

window,        . Each CFA pixel with color            
corresponds to one row in F as                   Then all 

the inter-pixel chrominance directions relative to all the 

        nearest neighbors for all the pixels in the window 

                 can be represented by a stacked matrix 

  multiplied to F, or    . Each row of   corresponds to one 

inter-pixel chrominance direction and has only two non-zero 

elements:    at the position of the center pixel           
and 1 at the position of its nearest neighbor           
     . Multiplying this row to   gives the inter-pixel 

chrominance                  as the difference between 

the CFA color at pixel           and that of its         
nearest neighbor. So   is a very sparse matrix with most of the 

elements equal to 0 and the nonzero elements equal to -1 or 1. 

Such a matrix representation is similar to that in [20]. 

For a rectangular grid of image pixels, if the window size is 

   , then     . If each pixel has M adjacent nearest 

neighbors, the number of rows of   and the number of weights 

   can be     if a border extension is applied to the window 

by border pixel duplication, or can be             

without a border extension (where a border extension is needed 

only on the borders of the image). 

By multiplying G to F, we can capture all the inter-pixel 

chrominance directions in the window. Comparing Eqs. 

(8,9,11), we know that, if we use a vector of all CFA-filtered 

pixel values in the window to replace F, we can actually 

capture all the inter-pixel chrominance amplitudes in the 

corresponding directions in the window.   

 

IV. CONFIDENCE WEIGHTING 

The inter-pixel chrominance components are captured with 

neighbor CFA pixels, and all the components in the window 

can be used for the linear combination towards the target 

chrominance directions. However, some inter-pixel 

chrominance components with higher confidence levels can 

contribute more to the target than others, or less otherwise. This 

is achieved by weighting. Considering the confidence levels of 

the captured inter-pixel chrominance, the weighting involves 

two aspects of information: (a) distance-related: the closer, the 

higher; (b) edge-related: the smoother, the higher.  

A. Distance-related weights 

It has been shown in [2,10] that the chrominance information 

in color images is mostly of very low spatial frequency, and 

statistically distributes in a diamond-shaped region 

symmetrically around frequency 0. So the chrominance 

information changes infrequently in the spatial domain and can 

be reasonably estimated from inter-pixel chrominance. For the 

inter-pixel chrominance, the closer to the pixel of interest, the 

more similar to the at-pixel chrominance. Therefore, inter-pixel 

chrominance components closer to the pixel of interest, at 

which we wish to estimate the target chrominance, should be 

given higher weights.  

One way to assign such distance-related weights is to use a 

function of only the distance        between the weighted 

point           and the central pixel of interest      , 

ignoring the directions that the inter-pixel chrominance is 

captured         :  
                                    (12) 

The distance function        can be a p-norm distance 

including Euclidean distance (2-norm) :  

                          
 

 (13) 

The weighting function      can be a Gaussian function, a 

raised cosine function, or a function like a low-pass filter, such 

as Dubois’s piecewise-linear filter [7]. The weighting with a 

Gaussian function is:  

           
  

   
  , (14) 
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where    is a positive constant for the cut-off distance, 

         is the distance function. Our experiment shows that 

the performance of different weighting functions is similar but 

the piecewise linear function is more flexible to generate 

weights.  

Such distance-related weighting is independent of images, so 

the method is linear if no further adaptive weighting is applied.  

B. Edge-sensing weights 

If there is an edge near the pixel of interest, the inter-pixel 

chrominance estimated across the edge is not so reliable as 

those estimated along the edge or away from edges in a smooth 

neighborhood. For those inter-pixel chrominance across an 

edge, the confidence level should be lower than the others. 

Considering the confidence level of the captured inter-pixel 

chrominance, we introduce edge-sensing weights to relate 

weights to edges. Such weighting is image-dependent, thus the 

corresponding demosaicking method is adaptive and nonlinear.  

To give appropriate edge-sensing weights, we need find the 

edges in the color mosaicked image first. This is mostly done 

with the luminance image, which is not immediately ready to 

use. However, we can have an initial rough estimate without 

using edge-related weights for the color image         or the 

luminance        . This rough estimation is actually linear 

universal demosaicking with distance-related weighting only.  

At every pixel      , to find the edge-sensing weight applied 

to the captured inter-pixel chrominance,              , we 

can estimate all the directional gradients from the pixel to all its 

neighbor pixels:  

                                   (15) 

The mean edge energy at each pixel can be estimated as:  

        
 

      
              

     

 (16) 

where        is the number of the neighbor pixels at      .  
Then the weights for all the neighbor pixels at each pixel of 

interest can be roughly estimated as     , where  

              
             

        
 (17) 

Considering the estimation error and the sensitivity to noise, 

we use the following piecewise function for the edge-related 

weights:  

               

                   
      
     
     

         

  (18) 

where                  
      ,        , 

         and            are three cut-off numbers. 

To our experience, these numbers can be typically:        , 

    , and      if    .  

The above weighting is similar to bilateral filtering [49], but 

with a different similarity function which is measured only with 

the luminance values of the neighbors. The distance-related 

weights can be taken the same as the closeness function in 

bilateral filtering.  

Without causing ambiguity, we can use one function to 

represent both distance-related and edge-sensing weights:  

                                           (19) 

If the matrix form is used, weighting to all the inter-pixel 

chrominance in a window can be represented by diagonal 

matrices,  , with the corresponding weights as its diagonal 

elements. Weighting the captured inter-pixel chrominance is 

equivalent to multiplying the weighting matrix to GF.  

 

V. LINEAR COMBINATION FOR CHROMINANCE ESTIMATION  

The captured inter-pixel chrominance directions are mostly 

not the same as the target chrominance directions that we need, 

but they may still contribute to the target if the direction is not 

perpendicular to. To make the maximum use of the inter-pixel 

chrominance, we can apply a linear combination to all the 

inter-pixel chrominance directions in a window to find the 

target direction. To this end, we have to answer one question: 

How much can an inter-pixel chrominance component be used 

for the target chrominance? Or practically the question can be: 

How to find the coefficients for the linear combination, which 

also takes into account the distance- or edge-based weighting as 

described in Section IV? We use the mathematical equations to 

find the solution by the matrix inverse.  

In a window centered at pixel      , computing all the 

inter-pixel chrominance directions is equivalent to    , as 

explained in Section III. Applying weights to all the 

components of     can be formulated as      . 

If the linear combination coefficients for the weighted 

inter-pixel chrominance are represented by an unknown row 

vector   
 , for the target chrominance component       

  
             , we can have a system of equations for 

the target chrominance direction:  

  
               

        (20) 

Generally we have           as there are three primary 

colors and               as the intrinsic dimension of 

chrominance is 2. In case that there are only 2 colors of pixels in 

the window, we have           and              , 

then it is impossible to find two independent chrominance 

components. To fix this problem, we need a bigger window to 

include three colors of pixels. If weights are unfortunately 0 at 

some pixels, which rarely happens, we may also have 

             , and in such a case we can correct it with 

small nonzero weights.  

For the system of matrix equation (20) is under-determined, 

the solution is not unique. To reduce the estimation error, a 

solution with the minimum norm would be the best. In this 

paper, the unknown vector   
  is found by the Moore-Penrose 

pseudo-inverse of the coefficient matrices for the minimum 

norm least squares solution:  

  
                      (21) 

If we concatenate all the weights for all the CFA colors in the 

window around pixel       and put into a row vector    
 , we 

can re-write Eq. (11) in matrix form as follows:  

  
                

    (22) 

Comparing Eq.(20) and Eq.(22), we can find the weights    
  

by multiplying all together the matrices of the coefficients   
 , 
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the weights   and the matrix   for inter-pixel chrominance :  

   
    

                              (23) 

Similarly, we can find the weights in the second target 

chrominance direction       
               :  

   
    

                              (24) 

These two weight vectors for the two target chrominance 

directions can also be put into one matrix equation and found 

simultaneously:  

 
   
 

   
 
   

      
      

               (25) 

Relating Eq.(25) to Eqs.(8,9,11), we can see that, as a result, 

   
  and    

  are the vector version of the weights for 

chrominance estimation at pixel       in the window, 

             and             ,        . By weighted sum 

over the CFA-filtered image with such chrominance weights, as 

given in Eq. (9), we can obtain two estimated chrominance 

components at pixel      ,     and    , which are the two 

chrominance amplitudes in the two target chrominance 

directions at the pixel of interest:  

 
                                     

                                     

  (26) 

 

VI. DEMOSAICKING TRANSFORMATION 

At each pixel, having estimated two chrominance 

components,     and    , together with the acquired image 

color value,   , we can use the optimal demosaicking transform 

obtained in Step 1 to find the three primary colors, as shown in 

Eq. (4). This is Step 6 in Phase 3 of our method. 

In the following we first present Step 1 in Phase 1: to find the 

optimal demosaicking transformation matrix   for a given 

CFA color and its inverse       as the forward multiplexing 

matrix, with which we can have the corresponding optimal 

target chrominance directions for the given CFA color and then 

use for the estimation of two independent chrominance 

components.  

Similar to that in [11], the optimal demosaicking transform 

matrix should have the least norm,              . If the 

mean square error is minimized for demosaicking, then the 

2-norm of D should be minimized.  

As in Section II-A, we assume the coefficients, 

             are all in the range of      . Without loss of 

generality, we suppose all the elements of the chrominance 

direction vectors are in       . If we have      , we can 

find the optimal D for the minimum 2-norm:  

   

 
 
 
 
  

 

   
 

  
 

   
 

      
 
 
 
 

  

   
    
 

   

 

   
  

 

  

 (27) 

Similar to that in [11], we can find the optimal matrices for 

other cases of CFA colors         by a column permutation in 

the multiplexing matrix T, so Eq. (5) and Eq. (27) do not lose 

generality.  

In Table I, we list the optimal demosaicking transform 

matrices and the corresponding multiplexing matrices for CFA 

colors, red (R), green (G), blue (B), cyan (C), magenta (M), 

yellow (Y) and panchromatic or white (W), among which all 

the three matrices for CFA white pixels are equally optimal in 

terms of 2-norm but which is better in practice depends on the 

CFA pattern.  

 

VII. EXPERIMENTS 

For the experimental evaluation of our method, we use the 

Kodak dataset (Kodak lossless true color image suite, 

http://r0k.us/graphics/kodak/) and the IMAX dataset [33,45] 

for CFA imaging and demosaicking comparison. The Kodak 

dataset contains 24 color images of size 768×512, and IMAX 

has 18 500×500 color images cropped from 8 2310×1814 

high-resolution images. The latter looks less smooth and more 

saturated, and has lower spectral correlation [40,42]. The tested 

CFA patterns are Bayer CFA [3], the Kodak’s CFA2.0 [15], 

Fuji X-Trans [30], Sony RGBW [31], a random CFA [37] and a 

TABLE I 

THE OPTIMAL DEMOSAICKING MATRICES AND THE CORRESPONDING 

MULTIPLEXING MATRICES FOR DIFFERENT CFA COLORS 

CFA color 
Optimal demosaicking 

matrix (D*) 

Multiplexing matrix 

(     ) 

Red (R)  
   
    
    

   
   
    
    

  

Green (G)  
   
   
   

   
   
    
    

  

Blue (B)  
   
    
   

   
   
    
    

  

Cyan (C) 

 
 
 
 
 
   

  
 

 
 

 
 

 
  
 
 
 
 

 

 
 
 
 
  

 

 

 

 
    

  
 

 
 
 

  
 
 
 
 

 

Magenta (M) 

 
 
 
 
  

 

 
 

   

  
 

 
  
 
 
 
 

 

 
 
 
 
 
 

 
 

 

 
    

 
 

 
  

 

  
 
 
 
 

 

Yellow (Y) 

 
 
 
 
  

 

 
 

  
 

 
 

    
 
 
 
 

 

 
 
 
 
 
 

 

 

 
 

    

 
 

 
 
 

 
  
 
 
 
 

 

White (W) 

 
 
 
 
 
  

 

 
 
 

 

  
 

 

  
 

 
 
 

  
 
 
 
 
 

 

 
 
 
 
 
 

 

 

 

 

 
    

 
 

 
  

 

  
 
 
 
 

 

White (W) 

 
 
 
 
 
   

 

 

  
 

 
 
 

 

 
 

 
 
 

  
 
 
 
 
 

 

 
 
 
 
 
 

 

 

 

 

 
    

  
 

 
 
 

  
 
 
 
 

 

White (W) 
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5×5 RGBW CFA proposed by us previously [25], as shown in 

Fig. 3. The other universal demosaicking methods compared to 

our proposed ACUDe are Condat’s generic variational 

approach [6] and Menon & Calvagno's regularized approach 

(RAD) [20].  

We test the performance in two cases: noise-free and CFA 

images corrupted with additive Gaussian white noise of 

standard deviation 5. We measure color PSNR and CIE LAB 

error between the demosaicked images and the original images 

for objective comparison, and the results are intercomparable 

with those published in other publications with the same 

dataset.  

 
R G R G R G R G G B G G R G G B G R B G B R G R

G B G B G B G B R G R B G B R G B G R B R G B G

R G R G R G R G G B G G R G G B R B G R G B R B

G B G B G B G B G R G G B G G R B G R B R G B G

R G R G R G R G B G B R G R B G G R B G B R G R

G B G B G B G B G R G G B G G R R B G R G B R B

R G R G R G R G G B G G R G G B G R B G B R G R

G B G B G B G B R G R B G B R G B G R B R G B G

W B W G W B W G W B W G W B W G W R B W G W R B

B W G W B W G W R W G W R W G W W G W R B W G W

W G W R W G W R W G W B W G W B R B W G W R B W

G W R W G W R W G W R W G W R W G W R B W G W R

W B W G W B W G W B W G W B W G B W G W R B W G

B W G W B W G W R W G W R W G W W R B W G W R B

W G W R W G W R W G W B W G W B W G W R B W G W

G W R W G W R W G W R W G W R W R B W G W R B W

Kodak's CFA2.0 Sony RGBW Our RGBW (40%W)

Bayer CFA Fuji X-Trans Random CFA (Condat)

Fig. 3.  The tested CFA patterns 
 

As for our experience, the window size for the weighting can 

be 9-13 pixels in diameter, and for rectangular uniform CFA 

patterns, the size can be from 9×9 to 13×13. For a window of 

             , n pixels from the image border are 

excluded from calculation of the demosaicking error.  

For the solution of Condat’s method is unique [6], the 

method always converges to the same point no matter what the 

initial estimate is. So we use our non-adaptive demosaicking 

estimate for the initial input, which makes the convergence 

much faster, and it is easier for us to find the optimal parameter 

µ used in the method, with which the performance is better than 

those published. Menon & Calvagno's RAD [20] only works 

for periodic CFAs, thus we only used the first 36×36 

sub-pattern of the random CFA for the experiments. Compared 

to the performance in [20], our results with RAD are a little 

better because we used a bigger window size to match our 

experimental configuration for fair comparison.  

The averages of the demosaicking results are listed in Table 

II and III for noise-free and Table IV and V for with noise. For 

space limitations, we only present the results of our noise-free 

experiments for individual test images in Table VI to IX. Please 

use the link given at the end of this section for more details 

about all our experiments.  

The tables for the noise-free experiments with Kodak dataset 

show that in average our proposed method outperforms 

Condat’s method by 1.4dB in color PSNR (or 3.34 in color 

MSE) and by 0.31 in CIE LAB error and outperforms Menon & 

TABLE II 

DEMOSAICKING PERFORMANCE COMPARISON IN COLOR PSNR 

DATASET CFA 

CONDAT’S 

GENERIC 

METHOD [6] 

MENON & 

CALVAGNO'S 

RAD [20] 

OURS 

(ACUDE) 

Kodak 

Bayer CFA 38.60 39.95 40.84 

Fuji X-Trans 38.25 38.83 39.54 

Random CFA 39.19 39.72 40.10 

Kodak CFA2.0 37.29 37.88 38.70 

Sony RGBW 36.59 37.19 38.10 

Our RGBW 37.88 38.44 38.93 

IMAX 

Bayer CFA 35.28 36.05 36.38 

Fuji X-Trans 34.85 35.39 35.99 

Random CFA 34.36 35.99 36.25 

Kodak CFA2.0 34.19 34.61 35.15 

Sony RGBW 33.90 34.46 34.87 

Our RGBW 35.02 35.53 36.21 

 

TABLE III 

DEMOSAICKING PERFORMANCE COMPARISON IN CIE LAB ERROR 

DATASET CFA 

CONDAT’S 

GENERIC 

METHOD [6] 

MENON & 

CALVAGNO'S 

RAD [20] 

OURS 

(ACUDE) 

Kodak 

Bayer CFA 1.515 1.320 1.186 

Fuji X-Trans 1.714 1.569 1.437 

Random CFA 1.527 1.413 1.341 

Kodak CFA2.0 2.146 1.949 1.764 

Sony RGBW 2.279 2.056 1.861 

Our RGBW 1.925 1.780 1.652 

IMAX 

Bayer CFA 3.621 3.269 3.150 

Fuji X-Trans 3.869 3.558 3.276 

Random CFA 4.036 3.373 3.198 

Kodak CFA2.0 4.764 4.404 3.868 

Sony RGBW 4.827 4.427 3.976 

Our RGBW 4.222 3.935 3.467 

 

TABLE IV 

DEMOSAICKING PERFORMANCE COMPARISON IN COLOR PSNR 

WITH ADDITIVE NOISE OF STANDARD DEVIATION 5 

DATASET CFA 

CONDAT’S 

GENERIC 

METHOD [6] 

MENON & 

CALVAGNO'S 

RAD [20] 

OURS 

(ACUDE) 

Kodak 

Bayer CFA 33.09 33.44 33.49 

Fuji X-Trans 32.86 33.14 33.11 

Random CFA 33.19 33.43 33.38 

Kodak CFA2.0 32.23 32.20 32.52 

Sony RGBW 32.08 32.14 32.49 

Our RGBW 32.65 32.93 32.86 

IMAX 

Bayer CFA 32.18 32.43 32.41 

Fuji X-Trans 31.83 32.07 32.26 

Random CFA 31.73 32.47 32.60 

Kodak CFA2.0 30.55 30.73 31.04 

Sony RGBW 30.59 30.79 31.14 

Our RGBW 31.42 31.58 32.06 

 

TABLE V 

DEMOSAICKING PERFORMANCE COMPARISON IN CIE LAB ERROR 

WITH ADDITIVE NOISE OF STANDARD DEVIATION 5 

DATASET CFA 

CONDAT’S 

GENERIC 

METHOD [6] 

MENON & 

CALVAGNO'S 

RAD [20] 

OURS 

(ACUDE) 

Kodak 

Bayer CFA 2.767 2.695 2.513 

Fuji X-Trans 2.894 2.807 2.628 

Random CFA 2.766 2.696 2.571 

Kodak CFA2.0 3.364 3.552 3.093 

Sony RGBW 3.365 3.479 3.007 

Our RGBW 3.066 3.012 2.849 

IMAX 

Bayer CFA 6.720 6.072 5.811 

Fuji X-Trans 6.891 6.247 5.729 

Random CFA 6.926 6.125 5.654 

Kodak CFA2.0 8.859 7.733 6.971 

Sony RGBW 8.663 7.661 6.688 

Our RGBW 7.722 7.004 6.115 
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Calvagno's RAD by 0.7dB in color PSNR (or 1.60 in color 

MSE) and 0.14 in CIE LAB error, respectively. With IMAX 

dataset, the performance is similar: Ours does averagely 1.2dB 

higher than Condat’s and 0.47dB better than RAD in CPSNR 

(or CMSE 6.63 and 2.63 less), and CIE LAB error average is 

0.73 and 0.34 better than Condat’s and RAD, respectively. We 

can see that our new demosaicking method performs the best in 

average and the best for most of the test images in both datasets 

among the three demosaicking methods.  

If we compare the results with those state-of-the-art methods 

presented in other publications for demosaicking Bayer CFA, 

e.g. [18,22], we can see that our demosaicking performance is 

even better than many demosaicking methods that are specially 

designed for Bayer CFA. For this purpose, we also include the 

results with Kodak dataset in [22] into Table VI and VII. It 

shows that our method performs very similar to that in [22], and 

better than those methods compared therein.  

Parts of image 19 (lighthouse) in the Kodak dataset are given 

in Fig. 4. For the figure, the original is shown at the top, and the 

other 6 rows are for the 6 CFAs and the 3 columns for the 3 

universal methods. The images show that our proposed method 

gives the least false color and zipper effect.  

The experiments with additive noise, as the averages shown 

in Table IV and V, tell that in terms of CPSNR our method 

performs better than Condat’s and close to RAD for both 

datasets, but in terms of LAB error, ours is unanimously the 

best.  

In addition, if we compare the performance between CFAs, 

we can see that among all the six tested CFAs the Bayer CFA 

objectively does the best for noise-free experiments, but the 

random CFA does the best subjectively and in most of the noisy 

cases. For the CFAs with 40% or above white pixels, Kodak 

CFA2.0, Sony RGBW and our RGBW patterns, ours does the 

best and the demosaicked image quality is even comparable to 

the random CFA for all the three demosaicking methods.  

The computational complexity of our method in the 

demosaicking phase is equivalent to two image filtering 

processes for the two chrominance components plus a 3D color 

space transformation. In the weight generation phase, the 

weights can be generated off-line, but the adaptive weights can 

only be done on-line and it involves a matrix pseudo-inverse at 

each pixel, which is not so efficient. However, the overall 

processing speed of our method is the same for all CFAs.  

More details of the experimental results and all the images 

demosaicked with all the three demosaicking methods from 

CFA images simulated with all the six CFA patterns presented 

in this paper and a few other CFAs are available on web at 

http://www.eecs.qmul.ac.uk/~phao/CFA/acude/.  

 

VIII. CONCLUSION 

In this paper, we proposed an adaptive chrominance-based 

universal demosaicking method (ACUDe), which outperforms 

two other universal demosaicking methods, and its 

performance with Bayer CFA is even better than many 

demosaicking methods that are specially designed for Bayer 

CFA. ACUDe reduces demosaicking error by avoiding the 

commonly used step to estimate a luminance component at a 

pixel. The main error of ACUDe comes from the target 

chrominance estimation, but the error can be further reduced by 

using an edge-sensing weighting mechanism and the optimal 

demosaicking transformation, which minimize the error 

transferred from the estimated target chrominance to the 

primary color space.  

The regularization approaches [20] minimize the error 

between the acquired CFA image and the simulated CFA image 

from the demosaicked, so it can better reduce the noise mixed 

into the CFA image. With ACUDe and Condat’s generic 

method [6], this mixed noise is not reduced but retained: the 

demosaicked image gives a simulated CFA image exactly the 

same as the acquired CFA image. In future, further research is 

needed to make our method more robust to noise.  

The implementation of the proposed method can be faster, 

especially with some specialized hardware for fast matrix 

pseudo-inverse. This is also worth further investigation.  

Although the proposed method is for the three primary color 

system, the demosaicking idea, the universal method and the 

theory can all be applied to multispectral imaging with 

multispectral filter arrays [47] by using a different primary 

color system.  

 

ACKNOWLEDGMENT 

The authors would like to thank Dr Laurent Condat, Dr 

Menon and Dr Calvagno for providing their codes for our 

experiments, and also wish to thank all the anonymous 

reviewers for their constructive comments, with which we 

could make the paper more complete and clearer.  

 

REFERENCES 

[1] J.E. Adams, and J.F. Hamilton, "Adaptive color plane interpolation in 

single sensor color electronic camera", US Patent 5 652 621, 1997. 

[2] D. Alleysson, S. Susstrunk, and J. Herault, "Linear demosaicing inspired 

by the human visual system", IEEE Transactions on Image Processing, 

vol. 14, no. 4, pp. 439-449, April 2005.  

[3] B. E. Bayer, "Color imaging array", US Patent 3 971 065, 1976. 

[4] A. Ben-Israel, and T.N.E. Greville, "Generalized Inverses: Theory and 

Applications", CMS Books in Mathematics, Springer, 2003. 

[5] K.-H. Chung, and Y.-H. Chan, "Color demosaicing using variance of 

color differences", IEEE Transactions on Image Processing, vol. 15, no. 

10, p. 2944-2955, October 2006. 

[6] L. Condat, "A generic variational approach for demosaicking from an 

arbitrary color filter array", IEEE International Conference on Image 

Processing (ICIP), Cairo, Egypt, Nov 7-10, 2009, pp. 1625-8. 

[7] E. Dubois. "Frequency-domain methods for demosaicking of Bayer 

sampled colour images", IEEE Signal Processing Letters, vol. 12, no. 12, 

pp. 847-850, 2005.  

[8] J. Gu, P. J. Wolfe, and K. Hirakawa, "Filterbank-based universal 

demosaicking", IEEE International Conference on Image Processing 

(ICIP), Hong Kong, Sept 26-29, 2010, pp.1981-4.  

[9] B. K. Gunturk, Y. Altunbasak, and R. M. Mersereau, "Color plane 

interpolation using alternating projections", IEEE Transactions on Image 

Processing, vol. 11, no. 9, pp. 997–1013, September 2002. 

[10] B. K. Gunturk, J. Glotzbach, Y. Altunbask, R. W. Schafer, and R. M. 

Mersereau, "Demosaicking: color filter array interpolation", IEEE Signal 

Processing Magazine, vol. 22, no. 1, pp. 44–54, January 2005. 

[11] P. Hao, Y. Li, Z. Lin, and E. Dubois, "A geometric method for optimal 

design of color filter arrays", IEEE Transactions on Image Processing, 

vol. 20, no. 3, pp. 709-722, March 2011. 



>   TIP-13850-2015.R1      Universal Demosaicking of Color Filter Arrays    < 

 

10 

[12] J.F. Hamilton, J.E. Adams, and D.M. Orlicki, "Particular pattern of pixels 

for a color filter array which is used to derive luminanance and 

chrominance values", US Patent 6 330 029 B1, Dec. 2001. 

[13] K. Hirakawa, and T. W. Parks, "Adaptive homogeneity-directed 

demosaicing algorithm", IEEE Transactions on Image Processing, vol. 

14, no. 3, pp. 360-369, March 2005.  

[14] A. Hore, and D. Ziou, "An Edge-Sensing Generic Demosaicing 

Algorithm with Application to Image Resampling", IEEE Transactions 

on Image Processing, vol. 20, no. 11, pp. 3136-3150, November 2011.  

[15] T. Kijima, H. Nakamura, J. Compton, and J. Hamilton, "Image sensor 

with improved light sensitivity", US Patent 20070268533, 22 Nov 2007.  

[16] Y. Li, P. Hao, and Z. Lin, "The Frequency Structure Matrix: A 

Representation of Color Filter Arrays", International Journal of Imaging 

Systems and Technology, vol. 21, no. 1, pp. 101-106, 2011. 

[17] Y. Li, P. Hao, and Z. Lin, "Color Filter Arrays: Representation and 

Analysis", Research Report, Dept of Computer Science, Queen Mary, 

University of London, RR-08-04, ISSN 1470-5559, May 2008. 

[18] N.-X. Lian, L. Chang, Y.-P. Tan, and V. Zagorodnov, "Adaptive Filtering 

for Color Filter Array Demosaicking", IEEE Transactions on Image 

Processing, vol. 16, no. 10, pp. 2515-2525, October 2007.  

[19] R. Lukac, K.N. Plataniotis, "Universal demosaicking for imaging 

pipelines with a RGB color filter array", Pattern Recognition, vol. 38, pp. 

2208–2212, 2005. 

[20] D. Menon, and G. Calvagno, "Regularization approaches to 

demosaicking", IEEE Transactions on Image Processing, vol. 18, no. 10, 

pp. 2209-2210, October 2009. 

[21] D. Menon, and G. Calvagno, "Color image demosaicking: An overview", 

Signal Processing: Image Communication, vol. 26, no. 8-9, pp. 518-533, 

October 2011. 

[22] I. Pekkucuksen, and Y. Altunbasak, "Multiscale Gradients-Based Color 

Filter Array Interpolation", IEEE Transactions on Image Processing, vol. 

22, no. 1, pp. 157-165, Jan. 2013. 

[23] M. Singh, and T. Singh, "Linear universal demosaicking of regular 

pattern color filter arrays", IEEE International Conference on Acoustics, 

Speech, and Signal Processing (ICASSP), Kyoto, Japan, March 25-30, 

2012, pp. 1277-80.  

[24]  H.J. Trussell and R.E. Hartwig, "Mathematics for demosaicking", IEEE 

Transactions on Image Processing, vol. 3, no. 11, pp. 485–492, April 

2002. 

[25] J. Wang, C. Zhang, and P. Hao, "New Color Filter Arrays of High Light 

Sensitivity and High Demosaicking Performance", IEEE International 

Conference on Image Processing (ICIP), Brussels, Belgium, Sept 11-14, 

2011, pp. 3153-6.  

[26] M. Wang, and T. Blu, "Generalized YUV interpolation of CFA images", 

International Conference on Image Processing (ICIP), Hong Kong, Sept 

26-29, 2010, pp. 1909-12.  

[27] L. Zhang, and X. Wu, "Color Demosaicking via directional linear 

minimum mean square-error estimation", IEEE Transactions on Image 

Processing, vol. 14, no. 12, pp. 2167-2178, December 2005. 

[28] M. Kumar, E. Morales, J. Adams, and W. Hao, "New digital camera 

sensor architecture for low light imaging", IEEE International 

Conference on Image Processing (ICIP), Cairo, Egypt, Nov 7-10, 2009, 

pp. 2681-4. 

[29] [Online] Digital Photography Review, "New honeycomb "Super CCD" 

from FujiFilm", DPReview, 20 October 1999. Available: 

http://www.dpreview.com/news/9910/99102003superccd.asp  

[30] [Online] Fujifilm X-Pro1, "X-Trans CMOS", 2012, available: 

http://fujifilm-x.com/x-pro1/en/about/sensor/index.html 

[31] [Online] Sony Image Sensor Business Presentation, Semiconductor 

Business Meeting, Aug 30, 2011, available: 

http://image-sensors-world.blogspot.co.uk/2011/09/sony-image-sensor-b

usiness-presentation.html 

[32] [Online] Sony Press Release, "Realization of natural color reproduction in 

digital still cameras, closer to the natural sight perception of the human 

eye", 16 July 2003. Available: 

http://www.sonynet/SonyInfo/News/Press/200307/03-029E/. 

[33] X. Li, B. Gunturk, and L. Zhang, "Image demosaicing: A systematic 

survey", Proceedings of SPIE, vol. 6822, pp. 68221J:1–15, January 2008. 

[34] O. Losson, and E. Dinet, "From the sensor to color images", in Digital 

Color: Acquisition, Perception, Coding and Rendering, C. 

Fernandez-Maloigne, F. Robert-Inacio, and L. Macaire (ed.), Wiley, 

2012, pp.149-185. 

[35] K. Hirakawa, and P.J. Wolfe, "Spatio-spectral color filter array design for 

optimal image recovery", IEEE Transactions on Image Processing, vol. 

17, no. 10, pp. 1876-1890, October 2008. 

[36] L. Condat, "A new color filter array with optimal properties for noiseless 

and noisy color image acquisition", IEEE Transactions on Image 

Processing, vol. 20, no. 8, pp. 2200-2210, August 2011. 

[37] L. Condat, "Color filter array design using random patterns with blue 

noise chromatic spectra", Image and Vision Computing, vol. 28, no. 8, pp. 

1196–1202, August 2010. 

[38] B. Leung, G. Jeon, and E. Dubois, "Least-squares luma-chroma 

demultiplexing algorithm for Bayer demosaicking", IEEE Transactions 

on Image Processing, vol. 20, no. 7, pp. 1885-1894, July 2011. 

[39] S. Ferradans, M. Bertalmio, and V. Caselles, "Geometry-based 

demosaicking", IEEE Transactions on Image Processing, vol. 18, no. 3, 

pp.665-670, March 2009.  

[40] A. Buades, B. Coll, J.-M. Morel, and C. Sbert, "Self-similarity driven 

color demosaicking", IEEE Transactions on Image Processing, vol. 18, 

no. 6, pp. 1192-1202, June 2009.  

[41] J.S.J. Li, and S. Randhawa, "Color filter array demosaicking using 

high-order interpolation techniques with a weighted median filter for 

sharp color edge preservation", IEEE Transactions on Image Processing, 

vol. 18, no. 9, pp. 1946-1957, Sept 2009. 

[42] F. Zhang, X. Wu, X. Yang, W. Zhang, and D. Zhang, "Robust color 

demosaicking with adaptation to varying spectral correlations", IEEE 

Transactions on Image Processing, vol. 18, no. 12, pp. 2706-2717, 

December 2009.  

[43] C. Kim, H. Oh, D. Yoo, and M. Kang, "Region adaptive color 

demosaicing algorithm using color constancy", EURASIP Journal on 

Advances in Signal Processing, vol. 2010, pp. 1-18, April 2010. 

[44] K.-H. Chung, and Y.-H. Chan, "Low-complexity color demosaicing 

algorithm based on integrated gradients", Journal of Electronic Imaging, 

vol. 19, no. 2, pp. 021104:1-15, June 2010. 

[45] L. Zhang, X. Wu, A. Buades, and X. Li, "Color demosaicking by local 

directional interpolation and non-local adaptive thresholding", Journal of 

Electronic Imaging, vol. 20, no. 2, pp. 023016:1-16, April 2011. 

[46] S.W. Park, and M.G. Kang, "Channel correlated refinement for color 

interpolation with quincuncial patterns containing the white channel", 

Digital Signal Processing, vol. 23, no. 5, pp. 1363-1389, September 2013. 

[47] L. Miao, and H. Qi, "The design and evaluation of a generic method for 

generating mosaicked multispectral filter arrays", IEEE Transactions on 

Image Processing, vol. 15, no. 9, pp. 2780-2791, September 2006  

[48] T. Singh, and M. Singh, "Disregarding spectral overlap - A unified 

approach for demosaicking, compressive sensing and color filter array 

design", IEEE International Conference on Image Processing (ICIP), 

Brussels, Belgium, Sept 11-14, 2011, pp.3161-4.  

[49] C. Tomasi, and R. Manduchi, "Bilateral filtering for gray and color 

images", International Conference on Computer Vision (ICCV), 

Bombay, India, Jan 4-7, 1998, pp. 839-846. 

[50] L. Condat, "A Generic Proximal Algorithm for Convex Optimization - 

Application to Total Variation Minimization", IEEE Signal Proc. Letters, 

vol. 21, no. 8, pp. 1054-1057, August 2014. 

 

 

 

Chao Zhang (M'06) received the Ph.D. degree in 

electrical engineering from Beijing Jiaotong University, 

Beijing, China, in 1995. 

 He was a Post-Doctoral Research Fellow with the 

National Laboratory on Machine Perception, Peking 

University, Beijing, from 1995 to 1997. He has been an 

Associate Professor with the Key Laboratory of 

Machine Perception, School of Electronics Engineering 

and Computer Science, Peking University, since 1997. 

His current research interests include image processing, 

statistical pattern recognition, and visual recognition. 

 

 

Yan Li received the B.Sc. degree from Nanchang 

University in 2004 and the M.Sc. degree from Peking 

University in 2007, both in electrical engineering. He 

received the Ph.D. degree from Delft University of 

Technology in 2013. His Ph.D. dissertation is on 

multi-scale pattern recognition with applications in 

image segmentation and classification. Since then he 

has been working in Lely Technologies as a R&D 

researcher, developing autonomous agriculture robots. 

 



>   TIP-13850-2015.R1      Universal Demosaicking of Color Filter Arrays    < 

 

11 

Jue Wang received the B.Sc. degree in computer 

science from Jilin University in 2009 and the M.Sc. 

degree in intelligent science from Peking University in 

2012, and currently is a PhD candidate in software 

engineering at Peking University. Her research interests 

are on algorithms of color imaging, demosaicing and 

video analysis, such as intrusion detection and crowd 

density estimation, which have been applied in 

intelligent video monitoring system for modern 

railways in China.  

 

Pengwei Hao (M'98) received the B.Sc. degree in 

computer science and the M.Sc. degree in computer 

graphics from Northwestern Polytechnical University, 

Xi'An, China, in 1988 and 1994, respectively. He 

received the Ph.D. degree in image processing from the 

Institute of Remote Sensing Applications, Chinese 

Academy of Sciences, Beijing, China, in 1997. 

 From 1997 to 1999 he was a Lecturer and was 

promoted to an Associate Professor in 1999 with the 

Center for Information Science, Peking University, Beijing, China. Since 2002, 

he has been a Lecturer at Queen Mary, University of London, UK. He was a 

Visiting Scientist with the Centre for Vision, Speech, and Signal Processing, 

University of Surrey, UK, in 2000, a Visiting Researcher with the School of 

Information Technology and Engineering (SITE), University of Ottawa, 

Canada, in 2008 and a Courtesy Associate Professor with the Department of 

Electrical \& Computer Engineering, University of Florida, USA, in 2009. His 

research interests include data and image coding, signal sampling and 

reconstruction, integer transforms, and color imaging.  

 

 

 



>   TIP-13850-2015.R1      Universal Demosaicking of Color Filter Arrays    < 

 

12 

 

TABLE VI 

NOISE-FREE DEMOSAICKING PERFORMANCE COMPARISON IN COLOR PSNR WITH KODAK DATASET 

CFA pattern: BAYER CFA FUJI X-TRANS RANDOM CFA KODAK CFA2.0 SONY RGBW OUR RGBW 

Demosaic 

     image 
[22] [6] [20] OURS [6] [20] OURS [6] [20] OURS [6] [20] OURS [6] [20] OURS [6] [20] OURS 

1 39.87 37.02 38.32 39.56 37.50 37.21 38.42 38.75 38.56 39.33 36.73 36.99 38.09 35.57 34.95 36.98 37.18 36.94 37.96 

2 41.77 39.04 39.99 41.48 38.83 39.26 40.24 39.66 39.91 40.69 38.13 38.35 39.55 37.25 37.95 38.80 38.59 38.97 39.69 

3 43.72 40.77 42.63 42.99 39.89 41.22 41.65 40.72 41.86 42.24 39.20 39.83 41.10 38.12 40.12 40.10 38.66 40.06 40.34 

4 41.13 40.15 41.14 41.24 39.27 39.99 39.85 40.20 40.77 40.58 38.07 38.61 38.71 37.22 38.40 37.82 38.71 39.52 39.20 

5 39.05 36.94 38.44 38.89 35.35 36.42 36.75 36.35 37.39 37.25 33.71 34.82 35.24 32.90 34.75 34.56 34.83 35.93 36.07 

6 41.38 38.00 39.86 41.28 38.35 38.72 39.97 39.60 40.00 40.59 37.61 38.18 38.96 37.01 36.46 38.56 38.47 38.59 39.37 

7 43.51 41.33 43.04 43.51 40.36 41.31 41.76 41.31 42.07 42.33 38.75 39.40 40.31 38.06 39.52 39.71 39.69 40.73 40.98 

8 37.56 33.03 35.93 37.83 35.23 35.38 37.38 36.62 36.83 38.22 34.39 34.89 37.05 33.43 31.85 36.62 35.39 35.49 37.12 

9 43.96 40.89 42.58 43.82 40.77 41.40 42.49 41.69 42.22 43.02 39.57 40.11 41.49 38.98 39.58 41.11 40.41 41.12 41.96 

10 43.20 41.70 42.67 43.26 40.85 41.54 42.06 41.66 42.39 42.66 39.52 40.19 41.02 39.41 40.23 40.73 39.42 40.57 40.71 

11 41.36 38.61 39.84 41.10 38.22 38.63 39.61 39.34 39.66 40.22 37.18 37.72 38.71 36.58 36.90 38.18 38.03 38.31 39.02 

12 44.45 41.98 43.64 44.32 42.07 42.54 43.22 43.14 43.60 43.97 41.27 41.51 42.55 40.35 40.49 41.79 41.70 42.30 42.82 

13 36.00 34.77 34.61 35.78 33.16 33.18 34.18 34.04 34.12 34.72 32.60 32.87 33.67 32.03 32.35 32.98 33.05 32.91 33.80 

14 37.97 34.55 36.50 37.28 34.13 35.38 35.57 35.09 36.16 36.05 32.73 33.81 34.26 32.03 33.80 33.59 33.55 34.80 34.52 

15 40.30 39.42 40.04 40.15 38.32 38.92 38.79 39.26 39.77 39.59 37.51 37.92 38.13 36.94 37.76 37.52 37.85 38.37 38.28 

16 44.86 40.91 43.40 44.93 41.86 42.15 43.49 43.23 43.46 44.06 41.32 41.65 42.63 40.42 39.47 42.21 41.59 41.66 42.62 

17 42.32 41.15 41.62 42.34 39.97 40.46 41.08 40.54 41.12 41.32 39.39 40.04 40.55 38.73 39.83 40.15 39.79 40.32 40.70 

18 38.22 36.96 37.29 38.08 35.79 36.17 36.68 36.36 36.71 36.98 34.94 35.49 35.88 34.70 35.51 35.39 35.59 35.94 36.30 

19 42.17 37.94 40.16 41.72 39.33 39.61 40.90 40.38 40.62 41.49 38.37 39.05 40.28 37.59 36.76 39.78 39.44 39.54 40.58 

20 42.16 40.04 41.08 42.05 39.25 40.01 40.87 40.10 40.78 41.37 38.48 39.15 40.32 37.93 39.08 39.80 38.68 39.43 40.32 

21 40.31 38.21 39.25 40.33 38.14 38.33 39.29 39.05 39.31 39.80 36.81 37.58 38.18 36.38 36.32 37.81 38.06 38.20 38.85 

22 39.05 37.26 38.46 39.03 37.02 37.75 37.89 37.59 38.28 38.36 36.06 36.79 37.08 35.52 36.31 36.59 36.89 37.59 37.58 

23 44.02 41.16 42.89 43.65 40.60 41.71 42.02 41.60 42.45 42.38 38.92 39.74 40.45 38.13 40.01 39.70 39.99 41.20 41.15 

24 35.69 34.63 35.32 35.62 33.82 34.57 34.88 34.32 35.18 35.13 33.58 34.38 34.51 32.97 34.13 33.84 33.50 34.13 34.50 

Avg. 41.00 38.60 39.95 40.84 38.25 38.83 39.54 39.19 39.72 40.10 37.29 37.88 38.70 36.59 37.19 38.10 37.88 38.44 38.93 

 

TABLE VII 

NOISE-FREE DEMOSAICKING PERFORMANCE COMPARISON IN CIE LAB ERROR WITH KODAK DATASET  

CFA 

pattern: 
BAYER CFA FUJI X-TRANS RANDOM CFA KODAK CFA2.0 SONY RGBW OUR RGBW 

Demosaic 

     image 
[22] [6] [20] OURS [6] [20] OURS [6] [20] OURS [6] [20] OURS [6] [20] OURS [6] [20] OURS 

1 1.274 1.750 1.561 1.325 1.857 1.881 1.632 1.612 1.622 1.480 2.247 2.145 1.895 2.476 2.572 2.075 2.118 2.147 1.921 

2 1.323 1.957 1.663 1.374 2.035 1.814 1.599 1.837 1.689 1.547 2.442 2.200 1.876 2.720 2.278 2.037 2.245 2.018 1.826 

3 0.782 1.125 0.870 0.829 1.269 1.001 0.945 1.127 0.923 0.885 1.472 1.271 1.094 1.607 1.210 1.161 1.511 1.209 1.160 

4 1.096 1.209 1.136 1.096 1.410 1.334 1.324 1.338 1.286 1.289 1.823 1.739 1.686 1.951 1.772 1.829 1.677 1.583 1.589 

5 1.729 2.406 1.939 1.784 3.061 2.550 2.351 2.687 2.269 2.218 4.178 3.490 3.167 4.527 3.537 3.367 3.500 2.953 2.739 

6 0.931 1.305 1.107 0.945 1.405 1.340 1.168 1.203 1.151 1.067 1.725 1.578 1.477 1.805 1.817 1.532 1.555 1.532 1.393 

7 0.907 1.190 0.975 0.913 1.364 1.189 1.094 1.202 1.073 1.000 1.778 1.653 1.384 1.916 1.613 1.452 1.545 1.356 1.232 

8 1.393 2.118 1.728 1.379 2.039 2.009 1.593 1.768 1.736 1.471 2.484 2.404 1.867 2.639 2.958 1.924 2.238 2.222 1.835 

9 0.689 0.926 0.776 0.697 1.006 0.906 0.810 0.931 0.850 0.777 1.245 1.152 0.989 1.297 1.196 1.016 1.125 1.011 0.920 

10 0.724 0.816 0.777 0.724 0.933 0.902 0.837 0.880 0.848 0.801 1.203 1.162 1.034 1.227 1.172 1.062 1.089 1.038 0.965 

11 1.132 1.607 1.382 1.180 1.752 1.640 1.428 1.520 1.446 1.321 2.184 2.016 1.750 2.294 2.211 1.817 1.916 1.850 1.634 

12 0.558 0.683 0.615 0.569 0.737 0.716 0.661 0.672 0.651 0.619 0.865 0.873 0.775 0.939 0.930 0.827 0.846 0.814 0.757 

13 2.177 2.556 2.542 2.234 3.277 3.156 2.868 2.844 2.752 2.583 4.001 3.687 3.430 4.187 3.881 3.666 3.584 3.541 3.227 

14 1.501 2.703 1.832 1.607 2.966 2.147 1.985 2.560 1.919 1.858 3.805 2.785 2.569 4.082 2.850 2.729 3.345 2.501 2.396 

15 1.248 1.446 1.350 1.290 1.659 1.554 1.521 1.592 1.507 1.486 2.127 2.035 1.903 2.226 2.019 1.998 1.936 1.816 1.777 

16 0.789 1.092 0.907 0.789 1.106 1.072 0.946 0.960 0.939 0.881 1.300 1.249 1.150 1.372 1.465 1.186 1.270 1.272 1.153 

17 1.206 1.348 1.297 1.203 1.588 1.510 1.415 1.482 1.414 1.364 1.897 1.792 1.672 1.960 1.811 1.705 1.721 1.648 1.559 

18 2.020 2.389 2.136 2.033 2.912 2.624 2.560 2.578 2.363 2.355 3.684 3.261 3.165 3.888 3.318 3.349 3.210 2.906 2.839 

19 1.027 1.372 1.217 1.045 1.494 1.432 1.274 1.312 1.271 1.174 1.812 1.663 1.507 1.939 1.892 1.588 1.591 1.563 1.413 

20 0.868 1.093 0.976 0.883 1.266 1.144 1.035 1.131 1.027 0.952 1.519 1.383 1.203 1.587 1.387 1.254 1.431 1.295 1.158 

21 1.121 1.374 1.284 1.126 1.547 1.516 1.362 1.375 1.349 1.273 2.021 1.857 1.728 2.067 1.996 1.776 1.703 1.694 1.566 

22 1.305 1.439 1.331 1.299 1.625 1.551 1.553 1.486 1.420 1.426 2.082 1.990 1.906 2.185 2.039 2.006 1.826 1.734 1.732 

23 0.826 0.963 0.871 0.843 1.070 0.993 0.981 0.971 0.918 0.923 1.356 1.344 1.207 1.449 1.280 1.281 1.197 1.098 1.095 

24 1.274 1.487 1.400 1.289 1.760 1.675 1.554 1.582 1.495 1.444 2.252 2.037 1.907 2.354 2.132 2.031 2.012 1.921 1.765 

Avg. 1.162 1.515 1.320 1.186 1.714 1.569 1.437 1.527 1.413 1.341 2.146 1.949 1.764 2.279 2.056 1.861 1.925 1.780 1.652 
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TABLE VIII 

NOISE-FREE DEMOSAICKING PERFORMANCE COMPARISON IN COLOR PSNR WITH IMAX DATASET 

CFA pattern: BAYER CFA FUJI X-TRANS RANDOM CFA KODAK CFA2.0 SONY RGBW OUR RGBW 

Demosaic 

     image 
[6] [20] OURS [6] [20] OURS [6] [20] OURS [6] [20] OURS [6] [20] OURS [6] [20] OURS 

1 28.33 28.78 29.13 28.01 28.34 28.98 28.15 28.88 29.24 27.46 27.73 28.55 27.34 27.67 28.43 28.14 28.51 29.32 

2 33.96 34.60 35.03 33.79 34.09 34.76 33.65 34.66 35.18 33.49 33.79 34.64 33.15 33.60 34.29 33.84 34.16 34.95 

3 31.47 32.12 32.76 30.51 31.22 32.34 30.86 31.77 32.77 29.89 30.44 31.07 29.25 30.10 30.73 30.72 31.36 32.38 

4 34.46 36.46 37.10 33.61 35.31 37.20 32.96 36.39 37.45 33.40 34.69 35.55 33.07 34.45 35.11 34.80 36.04 37.63 

5 33.28 33.82 34.35 33.02 33.38 33.95 32.62 34.07 34.07 32.11 32.33 33.07 32.08 32.41 33.05 33.21 33.56 34.37 

6 37.14 38.16 38.12 36.74 37.28 37.13 36.46 38.43 37.42 35.78 35.97 36.09 35.82 36.16 35.77 36.91 37.50 37.39 

7 34.68 34.54 35.24 34.48 34.24 34.99 33.90 34.44 35.70 33.24 33.11 33.52 32.54 32.50 33.55 34.36 34.01 35.21 

8 36.45 37.12 37.65 35.96 36.39 37.05 36.19 36.94 37.52 35.16 35.73 35.47 34.47 35.29 35.02 36.02 36.45 36.91 

9 36.14 37.23 37.79 35.56 36.40 37.05 35.07 37.24 37.25 34.92 35.58 36.18 34.61 35.43 35.74 35.87 36.71 37.49 

10 38.07 38.80 38.87 37.37 38.02 38.43 36.81 38.82 38.80 36.97 37.47 37.81 36.69 37.33 37.37 37.66 38.34 38.90 

11 38.82 39.32 39.31 38.21 38.63 38.81 37.55 39.12 39.15 37.17 37.45 37.95 37.05 37.39 37.83 38.35 38.80 39.34 

12 37.08 38.38 38.68 36.62 37.51 38.49 35.40 37.64 38.33 35.89 36.54 37.52 35.36 36.43 37.23 36.38 37.20 38.17 

13 39.64 40.50 40.93 39.68 40.00 40.61 37.27 40.73 40.99 39.27 39.52 40.57 39.10 39.41 40.37 39.99 40.29 41.22 

14 37.86 38.31 38.89 37.59 37.91 38.50 36.63 38.48 38.63 37.62 37.87 38.56 37.10 37.69 38.12 37.80 38.21 38.66 

15 38.46 38.80 39.19 38.00 38.29 38.74 37.13 38.84 38.90 37.30 37.54 37.98 37.18 37.50 37.78 38.24 38.56 39.09 

16 32.65 33.54 33.44 32.22 33.06 33.17 31.82 33.08 32.75 30.95 31.54 31.92 30.83 31.58 31.63 31.78 32.60 32.78 

17 33.10 33.79 33.36 32.11 32.65 32.38 32.57 33.69 32.77 31.47 31.87 31.67 31.53 31.97 31.27 32.35 33.06 32.75 

18 33.43 34.61 35.06 33.90 34.31 35.22 33.40 34.58 35.49 33.36 33.76 34.64 32.95 33.33 34.44 33.98 34.20 35.27 

Avg. 35.28 36.05 36.38 34.85 35.39 35.99 34.36 35.99 36.25 34.19 34.61 35.15 33.90 34.46 34.87 35.02 35.53 36.21 

 

TABLE IX 

NOISE-FREE DEMOSAICKING PERFORMANCE COMPARISON IN CIE LAB ERROR WITH IMAX DATASET 

CFA pattern: BAYER CFA FUJI X-TRANS RANDOM CFA KODAK CFA2.0 SONY RGBW OUR RGBW 

Demosaic 

     image 
[6] [20] OURS [6] [20] OURS [6] [20] OURS [6] [20] OURS [6] [20] OURS [6] [20] OURS 

1 5.803 5.418 5.221 6.232 5.857 5.290 6.027 5.453 5.023 7.473 7.075 6.145 7.521 7.083 6.190 6.574 6.295 5.453 

2 4.356 4.151 3.869 4.526 4.412 4.048 4.753 4.342 4.075 5.448 5.252 4.562 5.556 5.326 4.699 5.226 5.090 4.473 

3 4.561 3.946 3.624 5.162 4.457 3.752 4.980 4.166 3.604 6.359 5.532 4.657 6.741 5.671 4.875 5.565 4.910 4.018 

4 1.689 1.330 1.202 1.778 1.533 1.196 2.250 1.371 1.153 2.082 1.876 1.504 2.134 1.912 1.594 1.743 1.604 1.221 

5 2.691 2.547 2.388 2.827 2.745 2.535 3.110 2.612 2.529 3.523 3.439 3.079 3.521 3.411 3.090 3.067 3.017 2.697 

6 2.343 2.193 2.198 2.500 2.420 2.383 2.690 2.257 2.324 3.081 3.049 2.830 3.068 3.003 2.919 2.787 2.693 2.548 

7 3.030 3.046 2.754 3.173 3.241 2.991 3.462 3.203 2.863 4.080 4.122 3.760 4.276 4.318 3.719 3.484 3.621 3.165 

8 4.716 4.425 4.147 4.905 4.696 4.318 4.840 4.553 4.224 5.943 5.599 4.929 6.021 5.659 5.025 5.338 5.153 4.532 

9 3.310 2.895 2.604 3.430 3.100 2.775 3.699 2.916 2.775 4.425 3.908 3.290 4.502 3.925 3.426 3.790 3.410 2.918 

10 3.152 2.907 2.838 3.349 3.133 2.984 3.712 3.001 2.960 4.144 3.887 3.486 4.169 3.901 3.608 3.690 3.465 3.154 

11 3.895 3.457 3.518 4.200 3.786 3.636 4.301 3.434 3.361 5.147 4.696 4.143 5.103 4.652 4.220 4.397 4.022 3.594 

12 2.312 2.060 1.947 2.511 2.314 2.036 2.930 2.244 2.020 2.933 2.748 2.297 3.080 2.776 2.371 2.669 2.509 2.148 

13 1.471 1.355 1.312 1.463 1.444 1.376 1.907 1.351 1.308 1.645 1.631 1.479 1.671 1.654 1.505 1.544 1.533 1.396 

14 2.654 2.579 2.442 2.746 2.710 2.569 3.125 2.660 2.608 3.192 3.162 2.873 3.260 3.190 2.974 3.079 3.036 2.830 

15 3.260 3.141 2.884 3.354 3.284 3.081 3.753 3.179 3.128 4.270 4.200 3.629 4.275 4.191 3.690 3.689 3.635 3.274 

16 6.352 4.826 5.228 7.127 5.456 5.151 6.383 4.864 4.695 8.616 6.872 6.101 8.593 6.809 6.391 7.398 5.893 5.216 

17 5.532 4.968 4.982 6.156 5.544 5.325 6.455 5.427 5.589 8.210 7.483 6.785 8.084 7.330 7.098 7.311 6.568 6.056 

18 4.046 3.606 3.548 4.205 3.909 3.515 4.272 3.685 3.320 5.184 4.744 4.081 5.313 4.867 4.170 4.644 4.370 3.706 

Avg. 3.621 3.269 3.150 3.869 3.558 3.276 4.036 3.373 3.198 4.764 4.404 3.868 4.827 4.427 3.976 4.222 3.935 3.467 
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Figure 4. Part of image 19 (top: original) of the Kodak dataset simulated with 6 CFAs (from the second to bottom row: Bayer 

CFA, Fuji X-Trans, Random CFA, Kodak CFA2.0, Sony RGBW, and our RGBW) and demosaicked with 3 universal methods 

(from left to right column: Condat’s generic variational method [6], Menon & Calvagno's RAD [20], and our ACUDe) 
 


