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Summary

Antigen-specific multifunctional T cells that secrete interferon-c, interleu-

kin-2 and tumour necrosis factor-a simultaneously after activation are

important for the control of many infections. It is unclear if these CD8+

T cells are at an early or late stage of differentiation and whether telomere

erosion restricts their replicative capacity. We developed a multi-parame-

ter flow cytometric method for investigating the relationship between dif-

ferentiation (CD45RA and CD27 surface phenotype), function (cytokine

production) and replicative capacity (telomere length) in individual cyto-

megalovirus (CMV) antigen-specific CD8+ T cells. This involves surface

and intracellular cell staining coupled to fluorescence in situ hybridization

to detect telomeres (flow-FISH). The end-stage/senescent

CD8+ CD45RA+ CD27� T-cell subset increases significantly during ageing

and this is exaggerated in CMV immune-responsive subjects. However,

these end-stage cells do not have the shortest telomeres, implicating addi-

tional non-telomere-related mechanisms in inducing their senescence. The

telomere lengths in total and CMV (NLV)-specific CD8+ T cells in all four

subsets defined by CD45RA and CD27 expression were significantly

shorter in old compared with young individuals in both a Caucasian and

an Asian cohort. Following stimulation by anti-CD3 or NLV peptide, sim-

ilar proportions of triple-cytokine-producing cells are found in CD8+ T

cells at all stages of differentiation in both age groups. Furthermore, these

multi-functional cells had intermediate telomere lengths compared with

cells producing only one or two cytokines after activation. Therefore, glo-

bal and CMV (NLV)-specific CD8+ T cells that secrete interferon-c, inter-

leukin-2 and tumour necrosis factor-a are at an intermediate stage of

differentiation and are not restricted by excessive telomere erosion.

Keywords: CD8+ T cells; cytomegalovirus; multi-functional; senescence;

telomere.

Introduction

The importance of T cells that have the ability to

secrete interferon-c (IFN-c), interleukin-2 (IL-2) and

tumour necrosis factor-a (TNF-a) simultaneously after

activation in controlling HIV, hepatitis C virus and

Mycobacterium tuberculosis infections in humans has

been described previously.1–5 The maintenance of

immunity during persistent or chronic antigenic chal-

lenge requires the continuous proliferation of antigen-

specific T cells.6 Indeed, long-term non-progressing HIV

patients demonstrate vigorous T-cell proliferative

responses that are inversely correlated with viral load.7

Therefore, repeated episodes of proliferation and also

the quality of the response in terms of cytokine produc-

tion are both required for successful control of

infections. One caveat is that continuous proliferation

induces growth arrest or replicative senescence that is

Abbreviations: CMV, cytomegalovirus; FISH, fluorescence in situ hybridization; IFN, interferon; IL, interleukin; MFI, median
fluorescence intensity; PBMC, peripheral blood mononuclear cells; TNF, tumour necrosis factor; TRF, Telomere restriction
fragmentation
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induced by the loss of telomeres.8 However, it is not

known whether multifunctional CD8+ T cells have

restricted proliferative capacity. The principal aim of

this study was to investigate the relationship between

cytokine production, cellular differentiation (determined

by surface markers) and telomere erosion in individual

cytomegalovirus (CMV) (NLV epitope)-specific cells.

Telomeres are repeating hexameric sequences of nucleo-

tides at the ends of chromosomes that provide genomic sta-

bility but shorten with each cell replication.9 Eventually, a

critically short length is reached and this induces growth

arrest.8 Telomere erosion can be mitigated by induction of

the enzyme telomerase in certain cells, which replenishes

telomeric repeats at the ends of chromosomes and so

extends proliferative lifespan. However, repeated antigenic

stimulation of T cells results in loss of telomerase function,

telomere erosion and replicative senescence.10 Previous

studies have shown that CMV-specific CD4+ T cells have

short telomeres when compared with Epstein–Barr, herpes
simplex and varicella-zoster virus-specific populations in

the same individuals and these cells have reduced capacity

to proliferate in culture.6,11 This indicates that chronic

CMV infection may restrict the proliferative capacity of T

cells; however, it is not clear whether CMV-specific CD8+

T cells that have short telomeres also have restricted capac-

ity to secrete cytokines.

Telomere length can be assessed by measuring telomere

restriction fragments (TRF) after restriction enzyme

digestion of DNA and by quantitative PCR (Q-FISH);

however, these techniques are labour intensive, display

variation between batches and require large amounts of

DNA and previous subset isolation.12 Combining flow

cytometry with fluorescence in situ hybridization (flow-

FISH) provides a quick and reliable technique to analyse

telomere length coupled with surface and intracellular

parameters in different cell populations from a single

small sample.13,14 We refined a flow-FISH technique that

was described previously6,15,16 to investigate telomere

length, surface phenotype and cytokine production in

individual CD8+ T cells. We found that CMV-specific

CD8+ T cells that secrete IFN-c, IL-2 and TNF-a simulta-

neously are at an intermediate stage of differentiation as

determined by surface phenotype and telomere length.

Therefore, multi-functional CMV (NLV epitope)-specific

CD8+ T cells are not restricted by replicative senescence.

Materials and methods

Blood sample collection and peripheral blood mononuclear
cell isolation

Written informed consent was obtained and whole blood

was collected in standard heparinized tubes from healthy vol-

unteers. The study was approved by the Local Research Eth-

ics Committee of the Royal Free and University College

Medical School and the Singaporean National University

Institutional Review Board. Donors did not have any co-

morbidity, were not on any immunosuppressive drugs, and

retained physical mobility and lifestyle independence. Periph-

eral blood mononuclear cells (PBMC) were isolated using Fi-

coll–Hypaque (Amersham Biosciences, Chalfont St Giles,

Buckinghamshire, UK) and either analysed immediately or

cyropreserved in 10% DMSO/fetal calf serum (FCS). Where

stratified by age, young donors were between 18 and 40 years

and old donors were 65 years of age and over.

Determination of donor CMV status, CD8+ T-cell
phenotyping, HLA-A2 typing and identification of
tetramer-positive participants

The CMV status of donors was obtained by the overnight

stimulation of fresh PBMC with CMV viral lysate and iden-

tification of IFN-c production by CD4+ T cells [as

described below; using CD4 conjugated with phycoery-

thrin-Cy7 (PE-Cy7), allophycocyanin (APC) or PE and

IFN-c conjugated with FITC or V450]. Previous data

showed that there was total concordance between IFN-c+

responses and seropositivity obtained from IgG serology

obtained from the diagnostic laboratory of University Col-

lege London Hospital. CD8+ T-cell phenotyping was

achieved by incubating PBMC with CD8-peridinin chloro-

phyll protein (PerCP), CD8-FITC, CD27-FITC, CD27-PE,

and CD45RA-APC (all from BD Biosciences, Oxford, UK).

HLA typing was achieved by staining PBMC with HLA A2-

PE (AbD Serotec, Kidlington, Oxfordshire, UK). Tetramer

staining was conducted on HLA-matched CMV-responding

donor PBMC for 20 min at 37° with HLA-A*0201
(NLVPMVATV) CMVpp65-specific tetramers, prior to

antibody staining. Samples were acquired on a BD FACS

Calibur of LSRII and analysed using FLOWJO software.

Global and NLV-specific T-cell stimulation

The PBMC were cultured overnight in RPMI-1640 medium

supplemented with 10% FCS, 100 U/ml penicillin,

100 mg/ml streptomycin and 2 mM L-glutamine at 37° in a

humidified 5% CO2 incubator. Cells were either left

untreated or stimulated with 0�5 lg/ml of anti-CD3 anti-

body (purified OKT3) or 1 lg/ml NLV peptide (Proim-

mune, Oxford, UK) in the presence of recombinant human

(rh) IL-2 (5 ng/ml) (R&D Systems, Abingdon, Oxford-

shire, UK). After 2 hr, 5 lg/ml brefeldin A was added to

each sample.

Multi-colour flow-FISH analysis of global, MHC-class I
tetramer-positive and cytokine-positive T-cell populations

We previously developed a modified version of the three-

colour flow cytometry-FISH (flow-FISH)15,17 that used

the heat-stable fluorochromes, Brilliant Violet- and Qdot
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nanocrystal-conjugated antibodies (BV and Q, respec-

tively). This allowed simultaneous T-cell subset and anti-

gen-specific or cytokine analysis in combination with

telomere length measurement, so removing the need to

pre-isolate cell populations. First, PBMC were either incu-

bated with biotinylated -CD8, -CD28 or -CD45RA, or

directly conjugated HLA-A*0201 restricted (NLV)

CMVpp65 specific MHC-I tetramer before washing with

PBS. Subsequently, cells were incubated for 15 min with

streptavidin-conjugated Q800 or Cy3, fixable blue live–
dead cell stain (Invitrogen, Inchinnan, Paisley, UK) and

simultaneously stained with directly conjugated extracel-

lular antibodies: FITC-CD8, -CD27 or -CD45RA; Q565-

CD8; Q705-CD8; BV711-CD8, BV421-CD19; BV605-

CD45RA; Q605-CD45RA; BD Horizon V500-CD27;

BUV395-CD3 and BV786-CD27. For cytokine analysis,

cell preparations were also fixed and permeabilized using

Caltag Fix/perm buffers following the manufacturer’s

instructions. The intracellular antibodies (FITC-IL-2,

BV605-IFN-c and BV421-TNF-a) were added during the

permeabilization step. Samples were then washed in PBS,

fixed in 1 mM BS3 (30 min on ice, Thermo Scientific UK,

Loughborough, UK) and quenched with 50 mM Tris–HCl

in PBS (pH 7�2, 20 min, room temperature). Cells were

then washed twice; first in PBS, and then in hybridization

buffer (70% deionized formamide, 28�5 mM Tris–HCl pH

7.2, 1�4% BSA and 0�2M NaCl). Subsequently the samples

were re-suspended in hybridization buffer and split

between two or three new tubes (duplicates or replicates),

incubated with 0�75 lg/ml of the PNA TelC-Cy5 probe

(Panagene, Daejeon, South Korea) and heated for 10 min

at 82°. Samples were then rapidly cooled on ice and left

to hybridize for 1 hr at room temperature in the dark.

Lastly, samples were washed twice in post-hybridization

buffer (70% deionized formamide, 14�25 mM Tris–HCl

pH 7.2, 0�14% BSA, 0�2M NaCl, 0�14% Tween-20) and

twice in 2% BSA/PBS before acquisition on either the BD

FACS Calibur or LSRII using CELLQUEST software or BD

FACS DIVA software, respectively. Cryopreserved PBMC

with known telomere fluorescence or QuantumTM Cy5TM

Molecules of Equivalent Soluble Fluorochrome (MESF)

beads (Bangs Laboratories, Fishers, Indianapolis, IN) were

acquired alongside samples to ensure standardization of

FACS machine set up. Qdots were purchased from Life

Technologies (Paisley, UK), BVs from BioLegend (Lon-

don, UK) or BD Biosciences and, unless stated otherwise,

all other antibodies were purchased from BD Biosciences.

All other reagents were purchased from Sigma-Aldrich

(Dorset, UK) unless stated.

Construction of the flow-FISH standard curve using Quan-
tumTM Cy5TM MESF beads to determine telomere length

The QuantumTM Cy5TM MESF standard curve was con-

structed using nine samples stored in liquid nitrogen.

These samples had known telomere length (as determined

by TRF analysis) and were used previously to construct a

standard curve based on median fluorescence intensity

(MFI) of the telomere signal.17,18 Extracellular and intra-

cellular Flow-FISH were performed, so that separate stan-

dard curves could be created for each procedure, and the

samples were acquired on a BD LSRII simultaneously

with QuantumTM Cy5TM MESF beads. The QuantumTM

Cy5TM MESF beads standardize the Cy5 fluorescence of a

sample by converting the MFI into a Molecules of Equiv-

alent Soluble Fluorochrome unit (MESF) value. For both

the extracellular and intracellular procedures, the MESF

value for the telomere probe of each sample was plotted

against the TRF kbp value and standard curves were gen-

erated using EXCEL (Fig. 2e shows the extracellular MESF

standard curve). In subsequent analysis the MFI of the

telomere probe was converted into an MESF value and

then into kbp using the constructed MESF standard

curves. Use of the MESF standard curves allows accurate

calculation of kbp from flow-FISH samples over time and

between multiple instruments.

Statistics

Statistical analysis was performed using either GRAPHPAD

PRISM v6 (GraphPad Software, San Diego, CA) or IBM

SPSS Statistics 20 (Armonk, NY). Data are presented as

mean and P < 0�05 was considered significant.

Results

CD45RA re-expressing T cells increase with age and/
or CMV infection

CD8+ T cells can be divided into four subpopulations

based on the expression of CD45RA and CD27.19,20 The

frequency of each subpopulation as a percentage of the

total CD8 compartment was recorded for all donors

(Fig. 1). In total, 125 healthy donors aged between 22

and 95 years were analysed, with 73% of participants

demonstrating a CMV response, which is consistent with

other reports.21 A line of best fit was generated for both

the CMV responders and CMV non-responder groups by

linear regression analysis and the correlation was assessed

by Pearson and Spearman rank (GraphPad Prism) for

each CD8+ T-cell subpopulation (Fig. 1b). We found that

the frequency of CD45RA+ CD27+ cells significantly

decreased with age in both groups (Fig. 1b; both

P < 0.0001), whereas the frequencies of CD45RA� CD27+

T cells only decreased in CMV responders (P < 0.05).

CD45RA� CD27� T-cell frequencies were only found to

increase with age in the CMV non-responding group

(P < 0.05), whereas both groups had greater

CD45RA+ CD27� T-cell frequencies with age (CMV

responders; P < 0.0001 and non-responders; P < 0.01).
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However, this analysis does not take into account the

individual contribution of ageing and CMV infection in

the accumulation of CD8+ CD45RA+ CD27� T cells.

To investigate this, data were further analysed by per-

forming multiple linear regression analysis (see Support-

ing information, Table S1). A highly significant

relationship existed between the decrease in

CD45RA+ CD27+ T cells and increase in the

CD45RA+ CD27� T-cell population with either age or

CMV response as independent factors (all values of P <
0�0001). These results are consistent with previous reports

that used combination of different markers including

CCR7 or CD11a and CD45RA22 or CD45RA and CD2823

to discriminate between the four cell subsets.

Heat stability of quantum dot nanoparticle (Qdot),
brilliant violet (BV) and brilliant ultra violet (BUV)
fluorescent polymers relative to organic
fluorochromes

One of the main aims of the current work was to adapt

the Flow-FISH technique to enable multiple parameter

analysis of telomere length together with surface pheno-

type and cytokine production in small cell samples. As

the detection of telomeres by this method requires heat-

ing of the sample to 82° for 10 min in hybridization

solution, we first assessed the heat stability of antibody

conjugates. As can be seen in Fig. 2(a–c), the Qdots and

BV conjugates tested all maintained a useable signal fol-

lowing the hybridization step compared with non-

hybridized samples. The organic fluorochromes PE,

PerCP and APC do not survive the treatment while

FITC, Cy3 and Cy5 are relatively resistant (data not

shown). It is of note that some antibodies are less toler-

ant of the hybridization process regardless of the repor-

ter dye-conjugate. For example, an anti-CD28 signal was

only detectable by using biotinylated-anti-CD28 followed

by Q800- or Cy3-streptavidin conjugate, and was not

detected when using a FITC directly conjugated anti-

body.

Construction of kbp standard curve using QuantumTM

Cy5TM MESF beads

To calculate the telomere length in kbp when using

multi-coloured flow-FISH, a standard curve was con-

structed on a BD LSRII using cyropreserved PBMC with

known telomere lengths and QuantumTM Cy5TM MESF

beads similar to previous work.17,24 The correlation

between MESF value and telomere kbp (as determined by

TRF) was R2 = 0.9189 (Fig. 2d). The MESF standard

curve correlation was greater than the previously used

MFI standard curve, which was created on the FACS Cal-

ibur using control samples to standardize MFI and corre-

lating kbp length to sample MFI (Fig. 2e, R2 = 0.7569).

Using the nine samples that had been used to set up both
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Figure 1. Composition of CD8+ T-cell com-

partment across the age range. Phenotypic

analysis of CD45RA/CD27 expression on

young, middle aged and old CD8+ T cells.

Peripheral blood mononuclear cells stained for

CD8, CD45RA and CD27 were analysed by

flow cytometry. Representative pseudocolour

plots for each age group are shown. Age in

years is shown (a). Frequencies of each of the

CD45RA/CD27 populations within total CD8+

T cells are represented in correlation to the age

of the donors (b). Line of best fits for the cyto-

megalovirus (CMV) non-responders and CMV

responders groups were generated by linear

regression and the correlation assessed by Pear-

son and Spearman rank (GRAPHPAD PRISM).
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the Calibur/MFI and MESF standard curves, we tested the

comparability of the two standard curves by comparing

the linear correlation of the kbp as determined by TRF to

those gained by the Calibur/MFI curve and the MESF

curve (Fig. 2f). Statistical analyses demonstrated that

there was no difference between the slope or intercept of

the two linear correlations (F = 0�456, P = 0�343 and

F = 0�456, P = 0�510, respectively). Results gained using

either the Calibur/MFI standard curve or MESF standard

curve were therefore comparable. Hence, for all multi-

parameter experiments (more than four parameters), the

MFI of the Cy5 signal of a cell population was converted

to an MESF value using the QuantumTM Cy5TM MESF

beads software (QUICKCAL, Bangs Laboratories), and this

MESF value was then inserted into the following equa-

tions taken from the MESF standard curves: extracellular

protocol; kbp = (MESF+680)/7804 and intracellular pro-

tocol; kbp = (MESF + 1773)/7046. As the QuantumTM

Cy5TM MESF beads standardize the telomere Cy5 signal

across time and different machines, when using the

QuantumTM Cy5TM MESF beads and 0�75 lg/ml of the

PNA TelC-Cy5 probe per sample, these linear equations

Q800Q705Q605BV605BV421

APCPerCPCy3PEFITC

Q605FITCPerCP

Post-hybridization:

0

20

40

60

80

100

120

C
y3

Q
80

0

F
IT

C

P
E

Q
70

5

Q
60

5

B
V

60
5

B
V

42
1

A
P

C

P
er

C
P

%
 P

os
iti

vi
ty

 r
et

ai
ne

d
P

os
t-

hy
br

id
iz

at
io

n

0·3

Q605FITCPerCP

Pre-hybridization:

Pre-hybridization Post-hybridization

Telomere TRF (kbp)

2

4

6

8

Telomere TRF (kbp)

50

100

150

200

M
F

I

M
E

S
F

(x
10

4 )

T
el

om
er

e 
(k

bp
)

Comparison of slopes

F = 0·965, P = 0·343

Comparison of intercepts

F = 0·456, P = 0·510

Calibur/MFI std curve

MESF std curve

R2 = 0·7569

P < 0·0001

R2 = 0·9189

P < 0·0001

Telomere TRF (kbp)

26·7 31·8 29·2

26·5 26·5

4 5 6 7 8 94 6 8 10 12

4 6 8 10

2

4

6

8

10

(a) (b)

(c) (d)

(f)

(e)
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b, closed histogram) for a selection of traditional organic fluorochromes versus Brilliant Violet (BV) and Qdot (Q) conjugated antibodies. Bar

chart showing percentage of original signal retained post-hybridization (c). Representative examples of three experiments. Cryopreserved samples,

which had a known telomere length as previously examined by Southern blot analysis of telomeric restriction fraction (TRF), were used to con-

struct standard curves for future determination of telomere length of cells by Flow-FISH using either MFI on a BD FACS Calibur (d) or Cy5

MESF on a BD FACS LSRII (e). Lines of best fit and 95% CI were generated using linear regression and the correlations with TRF were assessed

by Pearson and Spearman rank (PRISM v6). The accuracy of the Flow-FISH techniques in measuring kbp was assessed by plotting the calculated

telomere kbp of the nine participants used in both methods (MFI and MESF flow-FISH) compared with the actual kbp gained by TRF (f). The

slope and y intercept of the two linear correlations (one for each method) generated by PRISM were compared.
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may be used by researchers in different laboratories to

calculate telomere kbp.

Senescent CD45RA+ CD27� CD8+ T cells have
relatively long telomeres

Using a four-colour flow-FISH protocol, we first mea-

sured the telomere length in different CD8+ T-cell sub-

sets that were defined using CD45RA and CD27

antibodies in a mixed Caucasian and Asian (majority

Chinese or Indian Singaporeans) cohort. The Asian vol-

unteers were recruited from and investigated in Singa-

pore, whereas most of the Caucasian data were collected

in London, UK. The samples were acquired on either a

FACS Calibur alongside two control samples or a Fort-

essa FACS Scan or LSRII alongside the QuantumTM Cy5TM

MESF beads to standardize the telomere signals. The

FACS Calibur MFI was directly converted to kbp using

the Calibur/MFI standard curve whereas the MESF telo-

mere values were calculated using the QUICKCAL software

and then converted to kbp using the MESF standard

curve. CD45RA+ CD27+ cells had the longest telomere

length in both young and old adults (Fig. 3a, representa-

tive FACs plots and Fig. 3b, cumulative data). The end-

stage CD45RA+ CD27� T-cell subset that exhibits multi-

ple characteristics of senescent cells25 did not have the

shortest telomere lengths, suggesting that telomere-inde-

pendent mechanisms regulated the senescence in these

cells. Telomere lengths in all four subsets were signifi-

cantly shorter in the old compared with the young indi-

viduals (Fig. 3b).

To determine whether different ethnicity had an influ-

ence on the observations, we investigated the Caucasian

and Asian cohorts separately and compared telomere

lengths within the CD45RA/CD27 CD8+ T-cell subsets

(see Supporting information, Fig. S1). We found that the

telomeres in the T cells of the Singapore cohort were

shorter overall than in the samples from London

(P < 0�05), nevertheless we observed the same trend in

telomere lengths in both groups where CD45RA+ CD27+

cells had the longest while CD45RA� CD27� cells had

the shortest telomeres (see Supporting information,

Fig. S1a, b). Furthermore, the CD45RA+ CD27� subset

did not have the shortest telomeres in either cohort, sug-

gesting the involvement of other mechanisms in inducing

the senescence characteristics of these cells.25

We also investigated the telomere lengths in CD8+ T

cells defined by their relative expression of CD28 and

CD45RA (European cohort; see Supporting information,

Fig. S1c, d). Similar results were obtained compared with

using CD27 and CD45RA to distinguish between the

cells; all the CD8+ T-cell subsets had shorter telomeres in

the old compared with the young individuals and the

CD45RA+ CD28� population in both age groups did not

have extremely short telomeres.

Cytomegalovirus seropositivity has an impact on the

differentiation state of CD8+ T cells during ageing

(Fig. 1) and a previous report showed that chronic CMV

infection also reduced the telomere length of the CD8+

T-cell pool.26 We therefore stratified young and old indi-

viduals on the basis of their CMV status and investigated

telomere length in the four CD45RA/CD27 defined sub-

sets. In young subjects, CMV infection induced a reduc-

tion of telomere length in each CD45RA/CD27 defined

subset (Fig. 3c). A similar trend was observed in old indi-

viduals but the difference in telomere length in the sub-

sets between CMV-positive and CMV-negative subjects

was not significant. We also investigated the telomere

lengths in CMV (NLV)-specific CD8+ T cells in young

and old individuals (Fig. 4). The telomere lengths of these

cells were shorter in old compared with young individuals

and this difference was observed in each of the respective

CD45RA/CD27 defined subsets (Fig. 4b). The telomere

length of each NLV-specific T-cell subset was also signifi-

cantly shorter than the corresponding global CD8+ T-cell

subset (data not shown). The CD45RA+ CD27+ NLV-spe-

cific CD8+ T cells had very short telomeres, indicating

that these cells had undergone extensive proliferative

activity in vivo and that these cells cannot be considered

to be a naive population.

Multi-cytokine-producing CD8+ T cells have
intermediate telomere lengths

We next investigated the relationship between telomere

length, cell phenotype and capacity to secrete none, one

or multiple cytokines simultaneously after CD3/IL-2 acti-

vation. To do this we measured telomere length in T cells

stained for surface CD8/CD45RA/CD27 markers and

intracellular accumulation of IL-2, IFN-c and TNF-a after

activation (Fig. 5). Despite the fact that older individuals

have significantly shorter telomere lengths within each

cytokine-producing population compared with the young

(Fig. 5c, all P < 0.05 except the IL-2/IFN population,

which generally contained very few cells), we found that

the proportions of each cytokine-producing population

responding to CD3/IL-2 stimulation were similar or

higher in old individuals (Fig. 5b). Of the cells that

secreted cytokines, the populations that secreted IFN-c
alone, TNF-a alone or both cytokines simultaneously

were the most abundant in both age groups (Fig. 5b).

There were a relatively low number of CD8+ T cells in

young and old subjects that secreted all three cytokines.

In both young and old individuals, the IL-2/IFN-c/TNF-a
multi-functional cells had intermediate telomere lengths

relative to the other cytokine-producing cells within each

age group, respectively (Fig. 5c). We next investigated

whether there was any relationship between the differenti-

ation state of the cells defined by relative CD45RA and

CD27 expression and their ability to secrete one or more
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cytokines. The cells that secreted only IL-2 in young and

old subjects were found mainly in the less differentiated

CD45RA+ CD27+ and CD45RA� CD27+ populations

(Fig. 5d, left panel). Only a few CD8+ T cells secreted all

three cytokines in the CD45RA+ CD27+ subset; however,

these multifunctional cells were found in all of the other

CD45RA/CD27 defined populations in both age groups

(Fig. 5d, middle panel). This, together with their relative

telomere length, suggested that the IL-2/IFN-c/TNF-a
multi-functional cells were at an intermediate stage of dif-

ferentiation. In contrast, cells that secreted IFN-c and

TNF-a simultaneously were mainly found in the highly

differentiated CD45RA� CD27� and CD45RA+ CD27�

T-cell subsets (Fig. 5d, right panel). Therefore, multifunc-

tional cells are at an intermediate stage of differentiation

and are present at equal frequency in both young and old

subjects.

Multi-cytokine producing CMV (NLV)-specific CD8+

T cells have intermediate telomere lengths

We next examined the cytokine production relative to

telomere length within the CMV (NLV)-specific CD8+

T cells in young and old subjects (gating strategy in
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Fig. 6a) and found that the observations paralleled

those of the total CD8 population. There were relatively

low numbers of cells that secrete all three cytokines

within the CD8+ T-cell population after activation with

NLV peptide in both age groups; however, there were

higher proportions of these cells in the older subjects

(P < 0�05; Fig. 6b). The CMV (NLV)-specific CD8+ T

cells, regardless of their capacity to secrete cytokines,

had shorter telomeres in the old compared with the

young subjects (Fig. 6c). There were no significant dif-

ferences between the telomere lengths of the CMV-spe-

cific CD8+ T cells that secreted all three cytokines

compared with the other populations and these cells

had an intermediate CD45RA/CD27 defined surface dif-

ferentiation phenotype compared with those that

secreted IL-2 alone or IFN-c and TNF-a simulta-

neously. Collectively our results show that multi-func-

tional CD8+ T cells, including those that are specific

for CMV (NLV), have an intermediate differentiation

phenotype and that their proliferative capacity is unli-

kely to be restricted by excessive telomere erosion.

Discussion

The impact of telomere erosion on age-related disease and

loss of immune function has been a topic of wide interest.

To fully understand the impact of telomere biology on

health during aging more accessible and sophisticated

methods to assess telomere lengths are required. The cur-

rent work demonstrates the potential application of multi-

coloured flow-FISH to rapidly and reliably determine telo-

mere length, functionality and phenotypic markers within

specific cell populations from small cellular samples. Such

in-depth telomere analysis may prove a helpful tool in the

clinical settings of adoptive cellular immunotherapy, vac-

cination and diagnostics. The two most compelling corre-

lates for successful responses to adoptive cellular

immunotherapy in metastatic cancer trials are often the

number of cells transferred and an early state of cellular

differentiation.27 Indeed, transferring lymphocytes with

longer telomere lengths results in enhanced cell survival

and improved clinical responses in patients with meta-

static melanoma, suggesting that the proliferative potential

of the cells is important in improving treatment.28,29 Leu-

cocyte telomere length has been negatively correlated with

increased infection, reduced vaccine responses, cardiovas-

cular and inflammatory disease, and mortality.8,30–33 It is

not clear whether the cells with short telomeres exacerbate

disease directly or whether telomere shortening in leuco-

cytes is a biomarker for another process such as chronic

inflammation; however, the use of the technology we

describe will help to unravel these processes.
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The importance of a multifunctional T-cell immune

response to induce appropriate immunity and clear infec-

tions has been described in humans.1–4 In addition, the

capacity of T cells to proliferate upon antigen challenge is

also essential to increase the number of antigen-specific

cells after immune stimulation, e.g. after vaccination.34

However, telomere erosion restricts the proliferative

capacity of T cells that are activated repeatedly,35–37 sug-

gesting that telomere erosion may restrict the persistence

of antigen-specific T cells. To date it is not known if the

cells that have the shortest telomeres are the ones that are

the most multi-functional and this could be one reason

why immunity declines during ageing.38 In this study we

demonstrate that multi-functional IL-2/IFN-c/TNF-a-pro-
ducing cells both within global and a CMV-specific CD8+

T-cell populations have intermediate telomere length rela-

tive to cells that produce only one or two cytokines after

activation, indicating that they are not restricted by telo-

mere erosion. We showed previously that the quality of a

response to CMV (NLV epitope) in older subjects may be

compromised by the fact that these cells may have lower

T-cell receptor avidity39 and we are currently investigating

the relationship between multifunctional responses,

telomere erosion and TCR avidity in individual antigen-

specific CD8+ T cells.

It is unclear how naive T cells are maintained through-

out life because the thymus involutes and thymic output

of precursors declines considerably during ageing.40–42

Our observation that CD45RA+ CD27+ T cells that are

considered to be naive have significantly shorter telomeres

in old humans indicates that they have undergone exten-

sive proliferation.42 As T-cell receptor activation leads to

a loss of CD45RA expression while cytokine-driven

homeostatic proliferation does not,11,39,43–45 the reduced

telomeres in total CD8 as well as CMV (NLV)-specific

CD45RA+ CD27+ CD8+ T cells in older humans suggests

that proliferation is involved in the homeostatic mainte-

nance of these cells.

An interesting finding is that the CD45RA+ CD27�

CD8+ T cells, that have been shown to have multiple

features of a senescent population including restricted

proliferative activity18,25 did not have the shortest telo-

meres in either the global or CMV (NLV)-specific CD8+

T cells. This observation was seen in a Caucasian and an

Asian cohort within the CD8+ T-cell population defined

as CD45RA+ CD27�, within the CD45RA+ CD28� CD8+

T-cell population in a Caucasian cohort, and also applies

to CD45RA+ CD27� populations within the CD4 com-

partment.18 The relative long telomeres of

CD45RA+ CD27� cells suggest that alternative telomere-

independent mechanisms are involved that induce their

lack of proliferation and other senescence characteristics.

Recent data by our group found that the p38 mitogen-

activated protein kinase signalling pathway is highly

active in CD45RA+ CD27� T cells and this indicates a

reversible inhibition of proliferation and telomerase

activity in this population.18,25 This pathway can be trig-

gered by DNA damage, reactive oxygen species, cellular

stress and other factors independently of telomere ero-

sion.41,46 Therefore, although telomere erosion may be a

useful biomarker for immune competence and ageing

within T cells, other mechanisms are also involved in

inducing senescence characteristics that restrict their pro-

liferative lifespan.

In conclusion, we have developed a multi-parameter

flow cytometric method that enables the analysis of sur-

face phenotype, cytokine production and telomere

length in individual leucocytes. Through standardization

with QuantumTM Cy5TM MESF beads, the results from

different laboratories using different flow cytometers can

be compared directly. This method will facilitate the use

of telomere attrition as a biomarker in longitudinal

studies and clinical trials. Our results show multiple

cytokine secreting cells are at an intermediate stage of

differentiation and are not restricted by excessive telo-

mere erosion.
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