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3School of Economics and Finance, Queen Mary, University of London, e-mail: e.guerre@qmul.ac.uk

4School of Economics and Finance, Queen Mary, University of London, e-mail: s.lazarova@qmul.ac.uk



Abstract

A new test is proposed for the weak white noise null hypothesis.

The test is based on a new automatic selection of the order for a

Box-Pierce (1970) test statistic or the test statistic of Hong (1996).

The heteroskedasticity and autocorrelation-consistent (HAC) critical

values from Lee (2007) are used, allowing for estimation of the error

term. The data-driven order selection is tailored to detect a new

class of alternatives with autocorrelation coefficients which can be

o(n−1/2) provided there is sufficiently many of such coefficients. A

simulation experiment illustrates the good statistical properties of the

test both under the weak white noise null and the alternative.

JEL Classification: Primary C12; Secondary C32.

Keywords: Weak white noise hypothesis; HAC Inference; Auto-

matic nonparametric tests; Adaptive rate-optimality.
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1. Introduction

Testing for white noise is important in many econometric contexts. Ignoring autocorrelation

of the error terms in a linear regression model can lead to erroneous confidence intervals and

tests. Correlation of residuals from an ARMA model or of the squared residuals from an

ARCH model can indicate an improper choice of the order. Investigation of autocorrelation

function is also a popular diagnostic tool in macroeconomics and finance, see e.g. Durlauf

(1991) and Campbell, Lo and Craig MacKinlay (1997). Earliest tests of the white noise

hypothesis were based on confidence intervals for autocorrelation coefficients as described by

Fan and Yao (2005). See also Xiao and Wu (2011) who have recently derived the asymptotic

distribution of the maximum standardized sample covariance of weak white noise, that is an

stationary process which is uncorrelated but possibly dependent. A second approach was

established by Grenander and Rosenblatt (1952) who extended goodness-of-fit tests such as

Kolmogorov and Cramér-von Mises tests to tests of white noise hypothesis. Grenander and

Rosenblatt (1952) has been refined by Durlauf (1991), Anderson (1993) and Deo (2000).

Delgado, Hidalgo and Velasco (2005) have studied a modified test statistic to be used with

residuals. Shao (2011a) has recently extended this setup to cover the weak white noise null

hypothesis. A third approach, pioneered by Box and Pierce (1970), is based on the sum

of squared sample autocorrelation coefficients up to a given order p. Delgado and Velasco

(2012), Francq, Roy and Zakoian (2005), Kuan and Lee (2006) and Lobato (2001) have

considered the weak white noise hypothesis. The case where p grows with the sample size n

has been considered by Hong (1996) in a strong white noise setup and recently extended to

the weak white noise null hypothesis by Shao (2011b) and Xiao and Wu (2011).

This paper contributes to the literature by proposing a data-driven choice p̂ of the order p

used in a Box-Pierce type statistic for a test of the weak white noise null hypothesis. Under

this null, p̂ tends to 1 in probability so that the null limit behavior of the test statistic is

driven by the first-order sample autocovariance. It is shown that the test can be implemented
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using robust critical values of Lee (2007) who extends the work of Lobato (2001) for the case

of observed variables and of Kuan and Lee (2006) for the case of residuals. The general

framework of Lee (2007) includes as a specific case standardization using steep origin kernels

proposed by Phillips, Sun and Jin (2006) which can improve the power of the resulting test.

Under the alternative, the data-driven p̂ can be as large as necessary.

An appealing feature of Cramér-von Mises type of tests is the ability to detect Pitman local

directional alternatives converging to the null with the parametric rate n−1/2. This contrasts

with detection results for Box-Pierce type test by Hong (1996) which is only consistent

under slower rates of convergence for local alternatives defined through the spectral density

function. The conclusions of Hong (1996) suggest that Cramér-von Mises tests are more

powerful than Box-Pierce tests. One of the contributions of the present paper is to point out

that this ranking of two types of tests is not universal and there exist classes of alternatives

against which Box-Pierce tests are more powerful than Cramér-von Mises tests.

We illustrate this point using a new class of alternatives defined through the autocovariance

function. The new class of alternatives formalizes the idea that small autocorrelation coeffi-

cients of magnitude ρn can be detected provided that there are sufficiently many coefficients

present at smaller lags. An important finding of the paper is that detection is still possible

for very small ρn, namely for ρn = o
(
n−1/2

)
. As described in Section 4, this type of alterna-

tives includes moving average processes with a significant long term multiplier but o
(
n−1/2

)
impulse response coefficients. Such processes therefore correspond to a macroeconomic sce-

nario where short term policies have no significant effects whereas long term policies may

have an impact. For such alternatives, the conditional expectation of the present given the

past gives o
(
n−1/2

)
weights to each lagged observations. Therefore this process is hard to

predict since it is very close to a martingale difference process. These alternatives can be of

interest in finance where arbitrage could forbid strong deviations from martingale difference.
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Why such alternatives can be detected by Box-Pierce tests can be intuitively explained

as follows. Let R̂j and Rj be respectively the sample and population covariance at lag j.

Following Hong (1996), Shao (2011b) and Xiao and Wu (2011), the nonrobust critical region

of the Box-Pierce test of order pn →∞ is

n
∑pn

j=1

(
R̂2
j/R̂

2
0 − 1

)
(2pn)1/2

≥ cα, (1.1)

where cα is a standard normal critical value. Arguing as Shao (2011b, Theorem 2.2) suggests

that

n
∑pn

j=1

(
R̂2
j/R̂

2
0 − 1

)
(2pn)1/2

=
n
∑pn

j=1R
2
j/R

2
0

(2pn)1/2
+OP (1) . (1.2)

(1.2) suggests that the Box-Pierce test is consistent provided
(
n/ (2pn)1/2

)∑pn
j=1 R

2
j/R

2
0 is

large enough. Let Nn be the number of correlation coefficients R2
j/R

2
0 ≥ ρ2

n for j ∈ [1, pn],

so that
(
n/ (2pn)1/2

)∑pn
j=1R

2
j/R

2
0 ≥ nNnρ

2
n/ (2pn)1/2. The Box-Pierce test is consistent if

n1/2

(
Nn

p
1/2
n

)1/2

ρn →∞, (1.3)

a condition which allows for ρn = o
(
n−1/2

)
provided there are enough correlation coefficients

larger than ρn, that is, Nn/p
1/2
n → ∞, which holds in particular when the exact order of

Nn is pn. In other words, summing squared sample correlations in the Box-Pierce statistic

allows us to detect very small population correlations provided they are not too sparse and

are concentrated at lags smaller than pn. As shown in this paper, such alternatives are not

detected by Cramér-von Mises tests.

An important limitation of the critical region (1.1) is the use of an ad hoc order pn. Many

authors consider a deterministic pn such that pn →∞. This choice of order is inadequate for

detecting alternatives with correlations at low lags: taking pn = 30 for instance is unlikely to

give a test with power against popular AR(1) or MA(1) alternatives on samples of moderate

size. Conversely, taking a fixed pn is not suitable for detecting higher order alternatives.
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The need to properly address the tuning of a smoothing parameter with a role similar

to pn has spurred the development of data-driven approaches for various nonparametric

testing problems. The so-called adaptive approach, focuses on data-driven tests which detect

alternatives in a smoothness class converging to the null at the fastest possible rate given

that the smoothness class is unknown to the test user. See in particular Fan (1996), Spokoiny

(1996), Horowitz and Spokoiny (2001), Guerre and Lavergne (2005), Guay and Guerre (2006)

and Chen and Gao (2007) for various nonparametric models and related null hypotheses of

theoretical or practical relevance. Golubev, Nussbaum and Zhou (2010) has proved Le

Cam equivalence of Gaussian time series with spectral densities in a Besov space with the

continuous-time Gaussian white noise model considered in Spokoiny (1996). This result is

limited to Gaussian time series and is not useful in practice since it does not deliver ready-

to-apply white noise tests. In fact, most of the data-driven choices of pn proposed in the

white noise testing literature are not adaptive rate-optimal. As an exception, Fan and Yao

(2005) extend the work of Fan (1996), outlining but not analyzing a data-driven test which

is based on the maximum of a set of standardized Box-Pierce statistics, see also Golubev et

al. (2010).

A popular data-driven method of choosing the order is the selection procedure proposed

by Newey and West (1994) in the context of long run variance estimation. See, among

other, the simulation section of Hong and Lee (2005). This selection procedure is however

difficult to justify theoretically. Newey and West selection method, although being optimal

for long-run variance estimation, does not produce a rate-optimal test because the optimal

order for testing differs from the optimal order for estimation, see e.g. Guerre and Lavergne

(2002) and the references therein. Escanciano and Lobato (2009) study a data-driven choice

of order based on an AIC/BIC criterion which is suitable for estimation but is not adaptive

rate-optimal for tests of the white noise hypothesis. This contrasts with the new data-driven

tests proposed here.
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The paper is organized as follows. Section 2 describes the penalty approach leading to the

data-driven order p̂ and the construction of the rejection region of the test. Section 3 studies

the statistical properties of the test under the general weak white noise null hypothesis and

under the new class of alternatives mentioned above. It illustrates the importance of the

choice of a suitable penalty both under the null and the alternative. Section 4 states our

adaptive rate-optimality results and compares the new test with the Cramér-von Mises test

of Deo (2000), the data-driven test of Escanciano and Lobato (2009) and the maximum test

of Xiao and Wu (2011). Section 5 reports a simulation experiment that proposes a calibration

of the penalty term and compares our automatic test with other data-driven tests, including

tests of Deo (2000) or Escanciano and Lobato (2009) and a test that uses the Newey and

West (1994) plug-in order selection procedure. Section 6 concludes. Proofs can be found in

the supplementary material.

2. Construction of the test and choice of the critical values

Consider a variable ut, t = 1, ..., n, which is either directly observed or defined as the error

of a parametric model m(Xt; θ) = ut with some observed covariate Xt. In the later case ut is

not observed but can be estimated using the residuals ût = ut(θ̂) where θ̂ is an estimator of θ.

We are interested in testing that ut is uncorrelated. Suppose {ut} is a stationary process with

zero mean and covariance function Rj = Cov(ut, ut+j). The null and alternative hypotheses

are then

H0 : Rj = 0 for all j 6= 0 versus H1 : Rj 6= 0 for some j 6= 0.

A natural estimator of the covariance is R̂j =
∑n−|j|

t=1 ûtût+|j|/n, j = 0,±1, . . . ,±(n − 1),

which uses the residuals as if they were the true error terms. Given the kernel spectral

density estimator

f̂n(λ; p) =
1

2π

∞∑
j=−∞

K

(
|j|
p

)
R̂j exp (−ijλ) , K (0) = 1 and

∫ ∞
0

K (x) dx = 1,
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where the support of K is [0, 1], Hong (1996) has proposed a test statistic

Ŝp = nπ

∫ π

−π

∣∣∣∣∣f̂n(λ; p)− R̂0

2π

∣∣∣∣∣
2

dλ = n

n−1∑
j=1

K2

(
j

p

)
R̂2
j . (2.1)

For the uniform kernel K(t) = I(t ∈ [0, 1]) and up to a division by R̂2
0, Ŝp is the Box-Pierce

statistic B̂P p/R̂
2
0 = n

∑p
j=1 R̂

2
j/R̂

2
0. Large values of Ŝp indicate evidence against the null.

Under certain weak dependence conditions on the weak white noise {ut} and for p = pn →∞

growing with a suitable rate, Shao (2011b) shows that
((
Ŝp − Ŝ1

)
/R2

0 − E∆(p)
)
/V∆(p)

converges to a standard normal where

E∆(p) =
n−1∑
j=1

(
1− j

n

)(
K2

(
j

p

)
−K2 (j)

)
,

V 2
∆(p) = 2

n−1∑
j=1

(
1− j

n

)2(
K2

(
j

p

)
−K2 (j)

)2

,

and we shall use accordingly E∆(p) and V 2
∆(p) as a standardization for

(
Ŝp − Ŝ1

)
/R2

0. In

this notation, the subscript “∆” indicates difference Ŝp − Ŝ1. For the Box-Pierce statistic,

E∆(p) = (p− 1) (1 +O (p/n)) and V 2
∆(p) = 2 (p− 1) (1 +O (p/n)) and these approximations

remain valid for other kernels up to a multiplicative constant. We propose to select p̂ as the

smallest integer number maximizing the penalized statistic,

p̂ = arg max
p∈[1,pn]

(
Ŝp

R̂2
0

− E (p)− γnV∆(p)

)

= arg max
p∈[1,pn]

(
Ŝp − Ŝ1

R̂2
0

− E∆(p)− γnV∆(p)

)
, (2.2)

where E(p) =
∑n−1

j=1 (1− j/n)K2 (j/p) and pn ≤ n − 1. This penalization procedure is

similar to penalization proposed by Guay and Guerre (2006) or Guerre and Lavergne (2005).

It differs from the penalization used in the AIC or BIC procedures which use a higher penalty

term γnE (p) in place of E (p)+γnV∆(p). Escanciano and Lobato (2009) similarly use penalty

term γ̂nE (p) for p in a bounded finite set.
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The intuition for p̂ is as follows. Note first that (2.2) uses the difference Ŝp − Ŝ1. The idea

here is that the test should be based on Ŝ1 unless Ŝp − Ŝ1 is large enough for some p. Since

the criterion maximized in (2.2) is equal to 0 for p = 1, p̂ differs from 1 whenever there is a

p such that
(
Ŝp − Ŝ1

)
/R̂2

0 − E∆(p)− γnV∆(p) > 0 or equivalently

(
Ŝp − Ŝ1

)
/R̂2

0 − E∆(p)

V∆(p)
> γn, (2.3)

an inequality which, in view of the asymptotic normality established by Shao (2011b) under

the null, has the flavour of a one-sided significance test using a critical value γn. Such a

construction suggests that the data-driven statistic Ŝp̂ better captures higher order covari-

ances than Ŝ1. Therefore, rejecting the null when Ŝp̂ ≥ z should give a more powerful test

than the test Ŝ1 ≥ z based on Ŝ1 and the same critical value z as recommended below. See

(3.8) in Theorem 4 for a more formal statement. Why the chosen p̂ should have certain

optimality properties can be seen by viewing (2.2) as a bias variance trade-off. Theorem 2.2

in Shao (2011b) suggests that
(
Ŝp − Ŝ1

)
/R̂2

0 − E∆(p) is an estimator of n
∑∞

j=2R
2
j with a

bias n
∑∞

j=p+1R
2
j and a standard deviation V∆(p). Hence (2.2) choses a p which maximizes

−n
∑∞

j=p+1 R
2
j − γnV∆(p) and therefore achieves the so called bias variance trade-off, lead-

ing to a data-driven test statistic Ŝp̂ = Ŝ1 + Ŝp̂ − Ŝ1 with the best potential to detect an

alternative.

Under H0, it is expected that p̂ = 1 with a high probability provided γn is large enough

since all the Ŝp − Ŝ1 estimate 0. Since Ŝp̂ = Ŝ1 + oP (1) under the null, the critical values of

the test can be taken to be the same as the critical values of the test based upon the simple

statistic Ŝ1. A HAC-robust standardization of Ŝ1 is given in Lee (2007). In the case where

ut is observed, an inconsistent “estimator” of the long run variance of
∑n−1

t=1 utut+1/(n− 1)
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is, for a kernel k (·), kij = k (|i− j| /n) and ϕi =
∑i−1

t=1

(
utut+1 − R̂1

)
/n1/2,

Γ̃1 =
n−1∑
i=1

n−1∑
j=1

((kij − ki,j+1)− (ki+1,j − ki+1,j+1))ϕiϕj.

For residuals ût, let θ̂i be the estimator θ̂ computed with the first i observations and estimate

ϕi recursively by ϕ̂i =
∑i−1

t=1

(
ut

(
θ̂i

)
ut+1

(
θ̂i

)
− R̂1

)
/n1/2. Let

Γ̂1 =
n−1∑
i=1

n−1∑
j=1

((kij − ki,j+1)− (ki+1,j − ki+1,j+1)) ϕ̂iϕ̂j.

It follows from Lee (2007) that the limit distribution of nR̂1/Γ̃1 when ut is observed and of

nR̂1/Γ̂1 when ut is is estimated by residuals ût is, assuming that k (·) is twice continuously

differentiable

W 2 (1)

−
∫ 1

0

∫ 1

0
k′′ (r − s) (W (r)− rW (1)) (W (s)− sW (1)) drds

(2.4)

where W is a standard Brownian motion. Let zL (α) be be the (1− α)th quantile of (2.4).

The critical values and rejection region of the test are

ẑL(α) = K2 (1) Γ̃1zL (α) , (2.5)

ẑKL(α) = K2 (1) Γ̂1zL (α) , (2.6)

Ŝp̂ ≥ ẑ(α) where ẑ(α) =

 ẑL(α) for observed {ut} ,

ẑKL(α) for residuals {ût} .
(2.7)

We also consider a modified version of the test which employs a standardization of the sample

covariances as used by Deo (2000) or Escanciano and Lobato (2009),

Ŝ∗p = n
n−1∑
j=1

K2

(
j

p

)(
R̂j

τ̂j

)2

where τ̂ 2
j =

1

n− j

n−j∑
t=1

û2
t û

2
t+j −

(
n

n− j
R̂j

)2

. (2.8)

The sample variance τ̂ 2
j is an estimator of τ 2

j = Var (utut+j) which, for observed ut, is the

asymptotic variance of n1/2
(
R̂j −Rj

)
in the case of uncorrelated utut+j or for martingale
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difference. The corresponding data-driven order p and critical values are

p̂∗ = arg max
p∈[1,pn]

(
Ŝ∗p − E (p)− γnV∆(p)

)
, (2.9)

ẑ∗(α) =
ẑ(α)

τ̂ 2
1

. (2.10)

While the test (2.7) is studied in Theorems 1 and 2, the test with rejection region Ŝ∗p̂∗ ≥ ẑ∗(α)

is studied in Theorem 3.

Let us now turn to notations and our main assumptions. In what follows, an � bn means

that the sequences {an} and {bn} have the same order, i.e. that an/bn and bn/an are both

O (1). For a real random variable Z and a positive real number a, ‖Z‖a = E1/a [|Z|a].

Consider first the case of observed ut. When studying the performance of the test under

the alternative, we consider a sequence {ut,n} of stationary alternatives with autocovari-

ance coefficients {Rj,n}. This means that for each given n, the process {ut,n, t ∈ N} is

stationary. This type of sequences includes for instance local MA (∞) alternatives ut,n =

εt +
∑∞

i=1 ai,nεt−i where ai,n → 0 when n grows. Further, for residuals ût = ut

(
θ̂
)

, we

assume that
√
n
(
θ̂ − θn

)
is asymptotically centered with θn is a pseudo-true value and set

ut (θn) = ut,n. For the sake of brevity, {ut,n} and {Rj,n} are abbreviated to {ut} and {Rj}

in the rest of the paper but we maintain the dependence with respect to n when stating our

main assumptions. Under the null and the alternative, we follow Shao (2011b), Xiao and

Wu (2011), and restrict ourselves to stationary processes satisfying a moment contraction

condition by Wu (2005). We assume that ut,n = Fn (. . . , et−1, et) for some measurable F ,

where et, t = −∞, . . . ,+∞, are i.i.d. (univariate or vector) random variables. Consider an

independent copy {e′t} of {et} and define

uτt,n = Fn (. . . , eτ−1, e
′
τ , eτ+1, . . . , et−1, et) τ ≤ t ≤ n,

where eτ is changed to e′τ . Assume that for some a > 0 and for all j ≥ 0,

∥∥ut,n − ut−jt,n

∥∥
a
≤ δa (j) where δa (j)→ 0 when j →∞,
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a condition meaning that shocks cannot have a long run impact. A fast decrease of δa (j) also

ensures that ut = ut,n becomes independent of ut−j when j grows as the α-mixing assumption

used in Francq et al. (2005) or Delgado and Velasco (2012). Shao (2011b) assumes that δa (j)

decreases at an exponential rate, a condition which is satisfied by many linear and nonlinear

time series models, including threshold, stochastic volatility, bilinear or GARCH models, see

Shao (2011b), Wu (2005, 2007) and the references therein. Our main assumptions are given

below.

Assumption K (Kernel). The kernel function K (·) in (2.1) from R+ to [0,∞) is non-

increasing, bounded away from 0 on [0, 1/2] and continuous differentiable over its support

[0, 1]. The kernel k (·) used for the critical values is twice continuously differentiable over its

compact support.

Assumption R (Regularity). Under H0 and H1, supt ‖ut,n‖12a < C0R
1/2
0,n for some a > 1

and, for some b > 0, δ12a (j) ≤ C1j
−7−b. Moreover 1/C2 ≤ R0,n ≤ C2, and

maxj∈[1,pn] R
2
0,n/Var (ut,nut+j,n) ≤ C3.

Assumption P (Order p). The maximal order pn diverges faster than some power of n with

pn = o(n1/(2(1+3/a))) as n→∞, where a > 1 is the same constant as in Assumption R above.

The penalty sequence γn satisfies γn > 0, γn →∞ and γn = o
(
n1/4

)
as n→∞.

Assumption M (Model). The processes {ut,n}, the model m(Xt; θ) = ut and the estimators{
θ̂t

}
satisfy the following conditions:

(i) There is a sequence {θn}, with θn = θ0 for all n under H0, such that
n1/2

(
θ̂[ns] − θn

)′
, n−1/2

[ns]∑
t=1

(ut,nut−1,n − E [ut,nut−1,n])

′ , s ∈ [0, 1]

 (2.11)

D[0,1]-converges in distribution to a Brownian motion with a full rank covariance matrix.
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(ii) The residual function admits a second order expansion ut (θ) = ut,n + (θ − θn)′u
(1)
t,n +

(θ − θn)′ u
(2)
t,n (θ − θn) + rt,n (θ) where, for any C > 0,

sup
t∈[1,n]

sup
θ;‖θ−θn‖≤Cn−1/2

|rt,n (θ)| = oP

(
1

n

)
(2.12)

and, for each n, {ut,n, u(1)
t,n, u

(2)
t,n} is a stationary process with E1/2

[
‖at‖2] ≤ C4, {at} being

successively
{
u

(1)
t,n

}
,
{
u

(2)
t,n

} {
u2
t,n

}
,
{
ut,nu

(1)
t,n

}
,
{
u

(1)
t,nu

(1)′

t,n

}
,
{
ut,nu

(2)
t,n

}
, and where∑∞

j=−∞ E
[∥∥∥u(1)

t−j,nut,n

∥∥∥2
]
≤ C5, supj∈Z E

[∥∥∥n−1/2
∑n

t=j+1

(
u

(1)
t−j,nut,n − E[u

(1)
t−j,nut,n]

)∥∥∥2
]
≤

C6, supj∈Z E
[∥∥∥u(1)

t,nut,nu
2
t−j,n

∥∥∥] ≤ C7, and

supj∈Z E
[∥∥∥n−1/2

∑n
t=j+1

(
u

(1)
t,nut,nu

2
t−j,n − E[u

(1)
t,nut,nu

2
t−j,n]

)∥∥∥2
]
≤ C8.

The compact sets [0, 1/2] and [0, 1] in Assumption K are somehow arbitrary and can be

replaced by any nested compact intervals. Note however that Assumption K forbids the

use of the Daniell kernel K (x) = sin (x) /x due to the nonincreasing function and bounded

support conditions.

Assumption R imposes a polynomial decay on the coefficients δ12a (j), a condition which

is weaker than the exponential rate assumed in Shao (2011b). Note that in Assumption P

the order of pn can come closer to n1/2 when a is high, that is when ut has finite moments

of higher order. Under Assumption R, {ut,n} must have finite moments of order twelve at

least. This is mostly needed for a proof of Theorem 1 below based on Lindeberg substitution

method, see Pollard (2002, p. 179), which uses moment bounds as the Cauchy-Schwarz

inequality E
[(
u2
tu

2
t+j

)3
]
≤ E [u12

t ]. Since implementing the proposed data-driven tests with

a large pn would in principle allow us to detect a wider class of alternatives, Assumption

P, which plays an important role under the null in our proofs, may be too restrictive. Our

simulation experiments indeed suggest that Assumption P can be weakened when focusing

on white noise processes of practical relevance since the order pn � n gives good results for

various white noise processes of practical interest. On the other hand, choosing a smaller pn
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still gives a good power, see comments on Table 5 at the end of the simulation experiments

section.

When {ut} is observed, Assumption M is equivalent to Assumption 1 of Lobato (2001)

and the FCLT for n−1/2
∑[ns]

t=1 (utut−1 − E [utut−1]) is a consequence of Assumption R and

the FCLT of Wu (2007). Assumption M is easily verified for simple linear models and OLS

estimation where u
(2)
t,n and rt,n can be set to 0. Assumption M-(i) is a shortened version of

Assumptions B1 and A2 of Kuan and Lee (2006) who employ a standard linear expansion

n1/2
(
θ̂ − θn

)
= n−1/2

∑n
t=1 `t + oP (1) to show that (2.11) satisfies a functional central limit

theorem (FCLT) called for in M-(i). The FCLT is mostly used under H0 to show that

P
(
Ŝ1 ≥ ẑ (α)

)
→ α and P

(
Ŝ∗1 ≥ ẑ∗ (α)

)
→ α in the case of residuals. The full-rank FCLT

condition in Assumption M-(i) implies certain restrictions. For example, for a correctly

specified AR(1) modelXt−θXt−1 = ut, the case of θ = 0 is ruled out, a value of the parameter

which would in principle be excluded when considering such an AR(1) specification. Theorem

4 at the end of the next section explains how to overcome this issue with an alternative choice

of critical values when Assumption M-(i) is too restrictive. The next section describes some

suitable theoretical requirements for the penalty sequence γn while the simulation section

proposes a calibration of γn which gives good results for various white noise processes and

alternatives.

3. Asymptotic level and consistency

An important issue in the construction of the test (2.7) is the choice of the penalty sequence.

Choosing γn large enough implies that p̂ stays close to 1 and so the test statistic Ŝp̂ remains

close to Ŝ1. Hence, on the one hand, using large γn ensures that the level of the test is close

to its nominal size. On the other hand, a large γn may substantially limit the power of the

test since the statistic Ŝp̂ would not differ from Ŝ1. The trade-off between size and power is

addressed by Theorem 1 and Theorem 2.
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Consider first the properties of the test under the null hypothesis. The following theorem

gives a lower bound for γn which ensures that p̂ = 1 asymptotically so that the test is

asymptotically of level α.

Theorem 1. Let Assumptions K , M, P and R hold. If the penalty sequence {γn, n ≥ 1}

satisfies

γn ≥ (1 + ε) (2 ln lnn)1/2 for some ε > 0, (3.1)

then under H0, limn→∞ P (p̂ = 1) = 1 and the test (2.7) is asymptotically of level α.

Under the null hypothesis, the selected order p̂ is asymptotically equal to 1. It follows that

Ŝp̂ = Ŝ1+oP (1) and that critical values (2.5) or (2.6) guarantee that the test is asymptotically

of level α. A key result is therefore that limn→∞ P (p̂ = 1) = 1 holds under various white noise

models and observed ut or residuals ût. That the estimation has no impact asymptotically

follows from (3.1) which imposes γn →∞. When θ̂ is
√
n-consistent, estimating the residuals

gives test statistics satisfying

Ŝp = n

p∑
j=1

(
1

n

n−j∑
t=1

utut+j

)2

+OP (1)

uniformly in p. The fact that the remainder term OP (1) is negligible compared to γn is a

crucial element in showing that the asymptotic behavior of p̂ is not affected by the estimation

under the null. The divergence of γn is also important to account for the fact that the

standardization E∆ (p) and V∆ (p) are only valid when p → ∞ since γn → ∞ imposes that

either p̂ = 1 or p̂ diverges because (2.3) cannot hold for finite p > 1. Compared to the

existing adaptive results of Horowitz and Spokoiny (2001), Guerre and Lavergne (2005),

Guay and Guerre (2006) or Chen and Gao (2007), an important technical contribution of

our paper is that Theorem 1 holds without assuming that the set of admissible p is a power

set {aj, j ∈ N}, a > 1.
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Another important finding is that the penalty sequence γn can diverge with the low order

(ln lnn)1/2 allowed by (3.1). This contrasts with the larger order lnn used in the BIC

selection procedure and in the corresponding data-driven tests. In view of the potential

negative impact of a large γn on the power of the test, it is worth asking if the lower bound

(3.1) can be improved, that is if P (p̂ = 1) → 1 would be ensured for even lower values of

penalty term γn. The proof suggests that this is not the case. The main argument is based

on expression

P (p̂ 6= 1) = P

 max
p∈[2,pn]


(
Ŝp − Ŝ1

)
/R̂2

0 − E∆(p)

V∆(p)

 ≥ γn

 (3.2)

for the probability of not selecting 1. It can be seen from the proof of Theorem 1 that, for

the Box-Pierce version of the test, the right-hand side of (3.2) asymptotically behaves like

the maximum of standardized partial sums whose exact order is (2 ln lnn)1/2, see (B.38) in

the Supplementary Material. Hence the bound (3.1) is optimal to achieve P (p̂ = 1)→ 1.

Let us now turn to the detection properties of the test. Recall that the covariance of

the alternative may depend on the sample size so that Rj = Rj,n may go to 0 when n

increases. The new class of alternatives is defined similarly to (1.3) in the introduction

section. Consider first a sequence ρn → 0 and a lag order Pn. An important indicator for

detection of alternatives is the number of correlations above ρn,

Nn = Nn (Pn, ρn) = # {|Rj/R0| ≥ ρn, 1 ≤ j ≤ Pn} . (3.3)

The next theorem gives a detection condition on Nn, Pn and ρn.

Theorem 2. Suppose Assumptions K, M, R and P hold. There exists a constant κ∗ > 0

such that the test (2.7) is consistent against all alternatives {ut} satisfying, for some ρn > 0

and Pn ∈ [1, pn/2],

n1/2

(
Nn

γnP
1/2
n

)1/2

ρn ≥ κ∗. (3.4)
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Condition (3.4) is similar to the detection condition (1.3) required for consistency of the

Box-Pierce test (1.1). However a key difference between the two conditions is that while in

(1.3) the lag order pn is assumed known and is used in the construction of the test statistic,

in (3.4) the lag order Pn in (3.4) is unknown. This illustrates the adaptive capability of the

new test. A second important difference between (1.3) and (3.4) is that the latter involves

penalty sequence γn. For given Pn and Nn detection condition (3.4) admits rate ρ∗n satisfying

ρ∗n �
1

n1/2

(
γnP

1/2
n

Nn

)1/2

. (3.5)

Rate ρ∗n in (3.5) deteriorates with the penalty sequence. Condition (3.4) thus demonstrates

the potential negative impact of the penalty sequence on the power of the test. This impact

can also be seen from proof of Theorem 2 which uses the fact that the test (2.7) rejects the

null whenever

Ŝp − R̂2
0E (p)

R̂2
0V∆ (p)

≥ γn +
ẑ (α)

R̂2
0V∆ (p)

for some p ∈ [2, pn] . (3.6)

For the alternatives for which (3.6) only holds for p→∞ so that V∆ (p)→∞, (3.6) suggests

that γn may be more important than the critical value ẑ (α) regarding detection.

Two special cases of (3.5) are worth mentioning. First, the situation where limn→∞ γnP
1/2
n /Nn =

0 is of special interest since (3.5) shows that the test can detect correlation coefficients con-

verging to 0 at a rate that is faster than the parametric rate n−1/2. The best possible rate

in this case is ρ∗n � γ
1/2
n /

(
nP

1/2
n

)1/2

which is achieved for “saturated” alternatives with

Nn � Pn. Second, a less favorable case corresponds to more sparse correlation coefficients

satisfying limn→∞ γnP
1/2
n /Nn = ∞. In this case (3.5) does not allow for correlation coeffi-

cients converging to 0 at the rate of n−1/2. This case has been covered by Donoho and Jin

(2004) for a theoretical model where a known number Pn of independent Gaussian variables

with mean n (Rj/R0)2 and variance 1 is observed. These authors show that in such a setup

the best possible detection rate is ρn = (lnn/n)1/2, a rate which is achieved by the maximum

white noise test of Xiao and Wu (2011). This suggests that our test may not be optimal
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when limn→∞ γnP
1/2
n /Nn = ∞. However, it is shown in Proposition 1 in Section 4 below

that the test of Xiao and Wu (2011), unlike our test, does not detect moderately sparse

alternatives satisfying (3.5) with limn→∞ γnP
1/2
n /Nn = 0 and γn � (2 ln lnn)1/2.

We conclude this section with two extensions of our main results. The first extension shows

that the test derived from (2.8) and (2.9) has similar properties as the test (2.7).

Theorem 3. Suppose Assumptions K, M, R and P hold. Then P (p̂∗ = 1) → 1 under H0

and the test which rejects the null when Ŝ∗p̂∗ ≥ ẑ∗ (α) is asymptotically of level α. It also

detects the alternatives satisfying (3.4) in Theorem 2 for a large enough κ∗.

The second extension is useful in the case of residuals when the full-rank FCLT condition

in Assumption M-(i) is too restrictive so that the critical value ẑKL (α) in (2.6) cannot

be used. Suppose that an additional test statistic T̂n with critical values t̂n (α) satisfying

limn→∞ P
(
T̂n ≥ t̂n (α)

)
= α under the null is available. Consider the critical value

ĉ∗n (α) = Ŝ∗1 − T̂n + t̂n (α) . (3.7)

Theorem 4. Suppose that Assumptions K, R and P hold, as Assumption M-(ii) with

√
n
(
θ̂ − θn

)
= OP (1) where the deterministic sequence {θn} is such that θn = θ0 for all

n under H0. Suppose also that (A0) limn→∞ P
(
T̂n ≥ t̂n (α)

)
= α under H0 and (A1)

ĉn (α) ≤ OP (γn) under the considered alternative. Then the test which rejects the null when

Ŝ∗p̂∗ ≥ ĉn (α) is asymptotically of level α and detects the alternatives satisfying the condition

(3.4) of Theorem 2 for a sufficiently large κ∗. Moreover and even if (A1) does not hold, we

have under the alternative and for any sample size n,

P
(
Ŝ∗p̂∗ ≥ ĉn (α)

)
≥ P

(
T̂n ≥ t̂n (α)

)
. (3.8)

Condition (A1), which allows for ĉn (α)
P→−∞, means, when t̂n (α) = OP (1) as usual, that

T̂n diverges at least as fast as Ŝ∗1 or that both lack power against the considered alternative
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and are OP (1). The bound (3.8) means that the data-driven test is at least as powerful

than the test based on T̂n. As a consequence of (3.8), the test Ŝ∗p̂∗ ≥ ẑ∗ (α) is as least as

powerful as Ŝ∗1 ≥ ẑ∗ (α), ẑ∗ (α) as in (2.10). The use of the critical value (3.7) can give a

data-driven test whose power properties can be tailored to be optimal against some specific

alternatives by a proper choice of a corresponding optimal T̂n. Examples of test statistic T̂n

which does not require Assumption M-(i) can be found in Delgado and Velasco (2012) and

Francq et al. (2005). Delgado and Velasco (2012) propose a Box-Pierce statistic corrected

for estimation with an elegant general approach and some parametric optimality properties

under Gaussianity whereas Francq et al. (2005) is more specific to ARMA specifications.

4. Adaptive rate-optimality and comparisons with other tests

While Theorem 1 gives the lower bound (3.1) of order (2 ln lnn)1/2 for the penalty sequence

γn that is necessary to ensure that the test is asymptotically of level α, Theorem 2 suggests

that increasing γn can impair the power of the test. Hence a good compromise for the choice

of the penalty sequence suitable both under H0 and H1 is γn � (2 ln lnn)1/2. Once this

choice is made one may ask if the resulting test is the best possible in the sense that there

is no other test that can detect alternatives satisfying a condition less restrictive than (3.4),

when κ∗ = κn → 0 is allowed. The absence of a better test is the so called adaptive rate-

optimality. The next theorem establishes adaptive rate-optimality for alternatives satisfying

limn→∞ γnP
1/2
n /Nn = 0.1

Theorem 5. Let ut be observed. For any sequence κn → 0, there exists a sequence of

alternatives {ut} such that, for some Pn ∈ [1, pn] and ρn > 0 with

ρn ≥
κn
n1/2

(
(2 ln lnn)1/2 P

1/2
n

Nn

)1/2

, lim
n→∞

(2 ln lnn)1/2 P
1/2
n

Nn

= 0,

1As discussed when introducing approximation (3.5), the test (2.7) is not optimal for detection of sparse

alternatives with limn→∞ γnP
1/2
n /Nn =∞ which are not considered here.
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such that the other assumptions of Theorem 2 are satisfied, but that cannot be detected by

any possible asymptotically α-level test.

Hence, when γn � (2 ln lnn)1/2, it is not possible to improve on the detection condition

(3.4) and the rate ρ∗n in (3.5) is optimal. We now give an example of alternatives which are

detected by the test (2.7) but not by other popular tests. Consider the following high-order

moving average process,

ut = ut,n = εt +
νγ

1/2
n

n1/2P
1/4
n

Pn∑
k=1

ψkεt−k,

Pn∑
k=1

ψ2
k = O(Pn), lim

n→∞
Pn =∞, (4.1)

where {εt} is a strong white noise with variance σ2, ν is a scaling constant and γn �

(2 ln lnn)1/2. This alternative has moving average coefficients of order γ
1/2
n /

(
n1/2P

1/4
n

)
=

o
(
n−1/2

)
provided Pn diverges at a polynomial rate. Hence short term shocks have statisti-

cally negligible impact. However when ψk = 1 for all k, the long term multiplier of (4.1) is

equal to ν
(
γnP

3/2
n /n

)1/2

which is of larger order than n−1/2. The following lemma describes

the covariance function and conditional expectation of the alternative (4.1).

Lemma 1. If Pn = o((n/γn)2/3) and limn→∞ (γn/n) = 0 then the alternative {ut} in (4.1)

satisfies R0 = σ2
(

1 +O
(
γnP

1/2
n /n

))
and, uniformly in j ∈ [1, Pn],

Rj =
νγ

1/2
n

n1/2P
1/4
n

ψjσ
2 + o

(
γ

1/2
n

n1/2P
1/4
n

)
.

Moreover

E [ut|ut−k, k ≥ 1] =
νγ

1/2
n

n1/2P
1/4
n

Pn∑
k=1

ψkut−k +OP

(
γnPn
n

)
.

Hence a distinctive feature of the alternative (4.1) when max1≤k≤Pn |ψk| = O (1) is that

maxj≥1 |Rj| = o
(
n−1/2

)
provided Pn/γ

2
n → ∞. The expression of E [ut|ut−k, k ≥ 1] reveals

that ut can be very difficult to forecast since the coefficients of the lagged variables are

all o
(
n−1/2

)
provided Pn = o

(
n1/2/γn

)
. This suggests that such a process will be seen in
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practice as a martingale difference when using standard statistical tools. This may be a

relevant example of alternatives in economical or financial contexts where arbitrage occurs.

We show in Proposition 1 below that the new tests detect these alternatives but that this

is not the case for three tests based on the following test statistics,

Wn = bn

(
n1/2 max

j∈[1,Jn]

∣∣∣∣∣R̂j

τ̂j

∣∣∣∣∣− bn
)
, where bn = (2 ln Jn − ln ln Jn − ln (4π))1/2 , (4.2)

CvMn =
n

π2

Jn∑
j=1

R̂2
j

j2τ̂ 2
j

, (4.3)

ELn = B̂P
∗
p̂∗EL

, p̂∗EL = arg max
p∈[1,Jn]

{
B̂P

∗
p − γ̂∗ELp

}
where (4.4)

γ̂∗EL =

 lnn if n1/2 maxj∈[1,Jn]

∣∣∣ R̂j

τ̂j

∣∣∣ ≤ (2.4 lnn)1/2 ,

2 otherwise.

Statistic Wn in (4.2) is studied in Xiao and Wu (2011) who show that Wn asymptotically

has an extreme value distribution. The statistic CvMn in (4.3), due to Deo (2000) for

observed ut, is a version of the Cramér-von Mises test of Durlauf (1991) partially corrected

for heteroskedasticity. Test statistic ELn has been introduced by Escanciano and Lobato

(2009) for observed ut and a fixed Jn. As in our test, the order p̂∗EL selected by Escanciano

and Lobato (2009) is asymptotically equal to 1 under H0 and similar critical values can

be used. To show that tests (4.2)–(4.4) do not detect alternatives with small correlation

coefficients, it is sufficient to consider a Gaussian null hypothesis G0 under which {ut}

is a Gaussian white noise process {εt} with variance σ2 against an alternative G1 under

which {ut} is given by (4.1) with Gaussian i.i.d. {εt},
∑Pn

k=1 ψ
2
k = O(Pn), max1≤k≤Pn |ψk| =

O (1) , min1≤k≤Pn |ψkσ2| ≥ 1, ν > 0, γn and Pn → ∞ with γn/P
1/2
n = o (1/ lnn) and Pn =

O
(

(n/γn)1/14
)
≤ pn/2 and γn � (2 ln lnn)1/2 satisfies (3.1). We assume that Jn = O

(
n1/2

)
.

Proposition 1. Let ut be observed. Suppose that Assumptions K and P hold. For ν large

enough, the alternative G1 as above satisfies (3.4) and
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(i) the test (2.7) and its Ŝ∗p̂∗ version consistently detect G1. By contrast,

(ii) statistics Wn, CvMn and ELn have the same asymptotic distribution under G0 and G1

and the corresponding tests are therefore not consistent.

Proposition 1-(ii) implies that tests based on Wn, CvMn or ELn are not adaptive rate-

optimal. Let R̂0,j/τ̂0,j and R̂1,j/τ̂1,j be the standardized sample covariance computed under

G0 and G1 respectively. It is established in the proof of Proposition 1 that

max
j∈[1,Jn]

∣∣∣∣∣R̂0,j

τ̂0,j

− R̂1,j

τ̂1,j

∣∣∣∣∣ = oP

(
1

(n log n)1/2

)
, (4.5)

which implies that tests based on Wn and CvMn are not consistent. The case of ELn test is

a bit more involved but, due to its penalty scheme, this test statistic is asymptotically equal

to B̂P
∗
1 under the null and the alternative so that it cannot detect G1 by (4.5).

5. Simulation experiments

Our simulation experiments aim to propose a valid penalty sequence γn to be tested under

various strong and weak white noise processes and under various alternatives. Since prelim-

inary experiments have shown that the test statistic Ŝp̂ may yield an oversized test for some

practically relevant white noise processes, we consider the test based on Ŝ∗p̂∗ as in (2.8) and

(2.9). To investigate the impact of choosing a large pn latter on we allow for all possible

orders, setting pn = n − 1. We consider two kernels. The first is K (t) = I (t ∈ [0, 1]) which

gives the Box-Pierce statistic so that the corresponding tests are labelled BP . The second

uses the Parzen kernel

k(t) =


1− 6t2 + 6|t|3, |t| ≤ 1/2,

2(1− |t|)3, 1/2 < |t| ≤ 1,

0 otherwise.

However since k (1) = 0 which would give a meaningless Ŝ∗1 = 0, we change k (t) into

K (t) = k (t/2) /k (1/2) and label the corresponding tests as Parz. The critical values (2.10)
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ẑ∗ (α), see also (2.5) and (2.6), use a power Parzen kernel k (t) = k32 (t), where the exponent

32 is has been proposed by Lee (2007) whose simulations show that such a choice ensures that

the test with rejection region nR̂2
1 ≥ ẑ∗ (α) has good power properties. We consider 10%, 5%

and 1% significance levels. A preliminary simulation experiment with 100, 000 replications

gives that the corresponding quantiles zL (α) of (2.4) used in ẑ∗ (α) are approximately 3.73,

5.58 and 10.97 respectively, which are in line with the critical values tabulated by Phillips

et al. (2006, Table 6).

The first experiment analyzes the sensitivity of the test to the penalty term and aims to

calibrate the proportionality constant for the penalty sequence. The experiment investigates

the behavior of the test under the null for γn = γ (2 ln ln (n− 2))1/2 where the proportionality

coefficient γ ranges from 2.8 to 3.8. The process ut is a white noise with the standard

normal distribution. The next table reports the simulated levels for 50, 000 replications and

the percentage % {p̂∗ 6= 1} of simulation draws for which p̂∗ 6= 1, an important indicator in

deciding whether a difference between nominal and observed levels is due to a too small γn

or improper critical values. In Table 1, ‘*’ indicates an oversized test, i.e. such that the null

of a level smaller than the nominal size is rejected at 1% level by the one-sided test using

the simulated level.

[INSERT TABLE 1 HERE]

A threshold value for the BP test is γ = 3.4 which ensures that the observed sizes are close

to the nominal sizes for n = 1, 000. The Parz test is slightly less oversized. Both tests have

very similar value of % {p̂∗ 6= 1}, well below 1% for γ = 3.4. In the remaining simulation

experiments γ = 3.4 is used.

We introduce some benchmark tests. We compare our BP and Parz tests with the data-

driven test EL based on the statistic ELn in (4.4) with Jn = n − 1 and the critical values

of Lee (2007) in (2.10). We also consider the Newey-West data-driven order p̂IMSE used by
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Hong and Lee (2005) and the test statistic

p̂IMSE =
(

1 ∨ Ĉ1/5 (f)
)
n1/5, where Ĉ (f) =

144
∑n−1

j=−(n−1) k (j/p̃) j4R̂2
j/τ̂

2
j

0.539285
∑n−1

j=−(n−1) k (j/p̃) R̂2
j/τ̂

2
j

,

IMSE =

∑p̂IMSE

j=1 k2 (j/p̂IMSE)
{
R̂2
j/τ̂

2
j −

(
1− j

n

)}
(

2
∑p̂IMSE

j=1 k4 (j/p̂IMSE)
(
1− j

n

)2
)1/2

,

where k (·) is the Parzen kernel and τ̂ 2
j is defined as in (2.8). In the definition of p̂IMSE, p̃

is a pilot bandwidth that is set to p̃ = 4(n/100)4/25. Note that Ĉ (f) remains potentially

stochastic under the null so that the null limit distribution of IMSE may differ from the

standard normal distribution valid for deterministic pn → ∞. We however follow common

practice and use standard normal critical values for the IMSE test. The last benchmark

test, CvM , is based on Deo’s (2000) Cramér-von Mises statistic CvMn in (4.3) and uses the

critical values tabulated by Anderson and Darling (1952).

The first comparison under H0 is based on i.i.d. {ut} with the following distributions:

standard normal (‘Nor’ in Table 2), Student with three degrees of freedom (‘Stud’), and

centered chi square with one degree of freedom (‘Chi’). The Student distribution is used

to test the sensitivity of our test to the lack of higher-order moments while the chi square

distribution can reveal sensitivity to skewness.

[INSERT TABLE 2 HERE]

As in Table 1, the size of the Parz test is slightly better than the size of the BP test but

both perform well here, although BP is slightly oversized under the ‘Chi’ white noise. The

EL and IMSE are generally oversized with strong size distortions for ‘Chi’. The CvM test

performs well except for the ‘Chi’ experiment.

The next experiment considers observed weak white noise ut or residuals ût. Two condi-

tional heteroskedastic martingale difference processes are examined. The first is a GARCH(1,1)
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process with ut = stζt and s2
t = 0.001 + 0.90s2

t−1 + 0.05u2
t−1 where ζt are i.i.d. stan-

dard normal innovations. The second process is an ARCH(1) process with ut = stζt and

s2
t = 0.001+0.9u2

t−1. Due to the ARCH coefficient larger than
√

1/3 = 0.577, E [u4
t ] =∞ and

the tests are, in principle, not expected to behave well in this experiment. The next three

processes are uncorrelated but are not martingale differences, so that the CvM test is not

expected to have a correct size and is only reported here as a benchmark. The first, labelled

‘Bilinear’ in Table 3 below, is a bilinear model ut = ζt + 0.9ζt−1ut−2. The second, labelled

‘No-MDS’, is given by ut = ζt−1ζt−2 (1 + ζt−2 + ζt) and has been examined by Lobato (2001).

The third, ‘All-Pass’, is an All-Pass ARMA(1,1) process examined by Lobato, Nankervis and

Savin (2002), ut − 0.5ut−1 = ζt − ζt−1/0.5, where ζt i.i.d. and have the Student distribution

with 9 degrees of freedom. Since the root of the MA part is the inverse of the AR root, the

resulting process is uncorrelated but the ut are dependent due to non-Gaussian ζt. Finally,

experiment ‘ARRes’ examines residuals from the AR (1) yt = 0.8yt−1 + ut, ût = yt − θ̂yt−1,

θ̂ =
∑n−1

t=0 ytyt+1/
∑n−1

t=0 y
2
t . The BP , Parz and EL tests are all adapted to the estimation

effect thanks to the use of the critical values ẑ∗ (α) of (2.10). The critical values of the IMSE

and CvM do not account for estimation of residuals and the corresponding tests should be

not be expected to have a correct level under ‘ARRes’.

[INSERT TABLE 3 HERE]

The performance of the BP and Parz tests is very good with levels that are not oversized

in general. However the BP and Parz tests can be undersized, see the case of ‘ARCH(1)’.

But even in this case the value of % {p̂∗ 6= 1} remains very small suggesting that the size

distortion is due to the critical values of Lee (2007).2 The behavior of the EL test is more

erratic, with levels that can be either oversized, as in the case of ‘GARCH(1,1)’, ‘All Pass’

2This is confirmed by a not reported simulation experiment which shows that using standard chi-squared

critical values give good results.
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and ‘ARRes’, or undersized. The IMSE test can also be severely oversized. The CvM

behaves well for ‘GARCH(1,1)’ and ‘ARCH(1)’ but, as expected, is severely size distorted

in the other cases.

We now consider H1. In what follows, the critical values of the EL and IMSE tests are

adjusted to achieve the desired level under normality. A first set of fixed alternatives is

considered, MA1: ut = εt + 0.05εt−1, AR1: ut = 0.05ut−1 + εt, MA4: εt + 0.2εt−4 and

AR6: ut = 0.3ut−6 + εt with i.i.d. standard normal innovations εt and n = 200, 1, 000 is

considered. The CvM test is expected to perform better for these alternatives, especially

‘AR1’ and ‘MA1’. In Tables 4 and 5, p̂∗ and sp̂∗ are the simulation mean and standard

deviation of p̂∗. These statistics are useful for assessing the impact of pn on the power since

large p̂∗ or sp̂∗ suggests that decreasing pn can decrease the power.

[INSERT TABLE 4 HERE]

The low-lag ‘AR1’ and ‘MA1’ experiments have very similar characteristics with powers of

the tests for α = 10% increasing from 17%− 18% for n = 200 to 43%− 47% for n = 1, 000.

The data-driven tests all exhibit a surprisingly high p̂∗ or sp̂∗ . The BP , Parz and EL seem

to be outperformed by the IMSE and CvM tests. For the higher-order experiments ‘MA4’

and ‘AR6’ and n = 1, 000, the BP , Parz and EL tests clearly outperform their competitors

with power close or equal to 100%. For n = 200, the EL test outperforms its competitors

with BP as a second-best. The high values of p̂∗ and sp̂∗ for the BP and Parz tests illustrate

the fact that p̂∗ is suitable for testing but not as an estimator of the order of an AR or MA

process.

The second experiment under H1 examines, for n = 200, the power of the 5% level BP and

Parz tests against Hρ : ut = vt−ρvt−1, ρ ∈ [0, 1/2], under the nine scenarios of Tables 2 and

3. For example, under ‘GARCH(1,1)’ vt = stζt and s2
t = 0.001 + 0.90s2

t−1 + 0.05v2
t−1 where

ζt are i.i.d. standard normal innovations while, under ‘ARRes’, the vt are i.i.d. N (0, 1)
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and ut = vt − ρvt−1 is estimated from the AR(1) model Xt = 0.8Xt−1 + ut. We do not

consider the other tests to avoid undesirable size correction effects, but we compare BP and

Parz with M̃EP32
n test of Lee (2007) which rejects the null when nR̂2

1 ≥ ẑ (α) where ẑ (α)

is defined in (2.7), and an α level test which rejects the null when nR̂2
1 ≥ c (α), where the

infeasible c (α), dependent of the white noise process under consideration, is computed from

10, 000 preliminary replications. Since the latter is locally optimal under Gaussianity, it is

labelled LOT . Figure 1 reports the nine power graphs corresponding to each white noise

experiments.

[INSERT FIGURE 1 HERE]

Except for white noise processes such as ‘NoMDS’ for which the new tests are undersized,

the power of the four tests are quite similar in the vicinity of ρ = 0, suggesting that our

data-driven tests are, for processes close to Gaussianity, not far from being locally optimal

as LOT . The global performance of all tests deteriorate for nonlinear white noise processes

as ‘ARCH(1)’, for which LOT has a very low power compared to its competitors BP , Parz

and M̃EP32
n . Parz dominates its competitors for such white noise processes. As expected

from (3.8), Parz and BP perform as well as or better than M̃EP32
n which is less powerful

than Parz for heteroskedastic noises the ‘Bilinear’, ‘ARCH(1)’, ‘GARCH(1,1)’ or ‘NoMDS’.

The third experiment under H1 considers a second set of alternatives given by randomized

“small correlation” processes defined in (4.1),

ut = εt +
(2.5× γn)1/2

n1/2P 1/4

P∑
k=1

ψk,bεt−k, ψk,b
i.i.d.∼ N (0, 1) . (5.1)

In this setting b is the simulation index, b = 1, ..., 10, 000. New moving average coefficients

{ψk,b} are drawn for each simulation. Randomizing the moving average coefficients allows

us to explore various shapes of the correlation function. The noise {εt} is independent of

the moving average coefficients {ψk,b} and is drawn randomly from the standard normal

distribution. Since
∑P

k=1 ψ
2
k,b = P (1 + oP (1)) when P tends to infinity, the covariances of
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(5.1) can be o
(
n−1/2

)
as shown in Lemma 1. We consider two scenarios. In the experiment

‘LOW’, P is set to 15 for n = 200 and to 75 when n = 1, 000. The experiment ‘HIGH’

doubles the order P , so P = 30 for n = 200 and P = 150 for n = 1, 000. The next table

reports simulation results.

[INSERT TABLE 5 HERE]

The BP test outperforms its competitors and Parz comes as a second-best. The EL test

achieves power similar to that of the BP test only in the LOW experiment when P = 15 and

n = 200. The power of the IMSE and CvM tests decreases with the sample size while the

power of the other tests increases, showing the importance of a proper data-driven choice

of the order. The high values of p̂∗Parz may suggest that the Parz test would be negatively

affected by choosing a lower value of pn. However setting pn = 3
[
(n/2)1/2

]
instead of

pn = n−1 as done in an experiment not reported does not really affect the power of the BP

test.

6. Concluding remarks

The paper proposes an automatic test for the weak white noise null hypothesis for observed

variables or residuals from a parametric model. The test is based on a new data-driven order

selection procedure applied to the Box-Pierce (1970) test statistic. The critical region uses

robust critical values of Lee (2007) which can account for estimation of residuals. An impor-

tant theoretical finding is that the new test can detect alternatives with small autocorrelation

coefficients of order ρn = o
(
n−1/2

)
where n is the sample size, provided that the number of

autocorrelation coefficients at moderate lags is large enough. The proposed test is shown to

be adaptive rate-optimal against this class of alternatives. The paper gives examples of mov-

ing average alternatives with small autocorrelation coefficients of order o
(
n−1/2

)
which are

detected by the new test but not by tests previously proposed by Deo (2000), Escanciano
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and Lobato (2009) or Xiao and Wu (2011). These alternatives correspond to a plausible

macroeconomic scenario where a temporary shock has no significant impact whereas perma-

nent shocks may cause significant changes. They can also be of interest in finance where

arbitrage should rule out strong deviations from the difference of martingale hypothesis,

since these alternatives generate conditional expectation given the past of these alterna-

tives with order oP
(
n−1/2

)
. A simulation experiment has shown that the new test can cope

with various weak types of white noise processes including the ARCH or GARCH processes

popular in empirical finance. The simulation experiment has also confirmed good power

properties of the test regarding detection of standard AR(1) and MA(1) alternatives when

the noise is highly nonlinear, for instance in the case of the ARCH(1) process considered in

the experiment.
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Supplementary Material A: proofs of main results

This section contains the proofs of the results of Section 3. In what follows, a tilde super-

script, as in

S̃p = n

p∑
j=1

K2

(
j

p

)
R̃2
j where R̃j =

1

n

n−|j|∑
t=1

utut+|j|. (A.1)

indicates that the variables ut are observed. This also leads to define

τ̃j =
1

n

n−|j|∑
t=1

u2
tu

2
t+|j|, z̃L (α) = ẑL (α) , z̃∗L (α) = ẑ∗L (α) ,

but we keep the notation p̂. C and C ′ are constants that may vary from line to line but

only depend on the constants of the assumptions. Notation [·] is used for the integer part

of a real number and a ∨ b = max (a, b), a ∧ b = min (a, b). Let ut−jt = ut−jt,n be a copy of

ut = Fn (. . . , et−1, et) obtained by changing et−j, et−j−1, . . . into e′t−j, e
′
t−j−1, . . .. Then the

condition
∥∥ut − ut−jt

∥∥
a
≤ δa (j) ensures that

∥∥ut − ut−jt

∥∥
a
≤ Θa (j) where Θa (j) =

∞∑
i=j

δa (j) . (A.2)

We first state some intermediary results that are used in the proofs of our main results. These

intermediary results are proven in a section called “Supplementary Material B”. Lemma A.2

gives the order of standardization terms E(p), E∆(p) and V∆(p). Propositions A.1 and A.2

deal with the impact of the estimation of θ. Proposition A.3 is used to study the asymptotic

null behavior of the test and to show that P (p̂ = 1)→ 1 in Theorem 1. Proposition A.3 deals

with observed variables or residuals thanks to Propositions A.1 and A.2. Propositions A.4

and A.5 are the key tools for our consistency result, Theorem 2. They dealt with observed

variables but are combined with Propositions A.1 and A.2 to deal with estimation errors in

the proof of Theorem 2.

Lemma A.2. Suppose Assumption K holds and that pn/n ≤ 1/2. (i) There exists a constant

C > 1 such that, for q = 1, 2 and for any 1 ≤ p ≤ pn, p
C
≤
∑n−1

j=1

(
1− j

n

)q
K2q

(
j
p

)
≤



2

Cp, p
C
≤
∑n−1

j=1 K
2q
(
j
p

)
≤ Cp, V 2

∆(p) ≤ Cp, and E∆(p) ≤
∑n−1

j=1

(
K2
(
j
p

)
−K2 (j)

)
≤

Cp1/2V∆(p); (ii) Under Assumption P, for all n and all p ∈ [1, pn], V∆(p) ≥ C(p− 1)1/2 and

E∆(p) ≥ 0.

Lemma A.3. Suppose Assumptions K, M and R hold. Then the rejection regions S̃1 ≥

z̃L (α), S̃∗1 ≥ z̃∗L (α), Ŝ1 ≥ ẑKL (α) and Ŝ∗1 ≥ ẑ∗KL (α) are asymptotically of level α. Moreover,

under H1, ẑL (α), z̃∗L (α), ẑKL (α) and ẑ∗KL (α) are all OP (1).

Lemma A.4. Under Assumption R, sup0≤j≤n−1 Var
(
R̃j

)
≤ C

n
.

Proposition A.1. Suppose Assumptions M, P and R hold. Then maxj∈[0,pn]

∣∣∣R̂j − R̃j

∣∣∣ =

OP
(
n−1/2

)
, maxp∈[0,n−1] n

∑p
j=1

(
R̂j − R̃j

)2

= OP (1), and

max
j∈[0,n−1]

∣∣∣∣R̃j −
(

1− j

n

)
Rj,n

∣∣∣∣ = OP

((
log n

n

)1/2
)
,

max
j∈[0,pn]

∣∣∣R̂j −Rj,n

∣∣∣ = OP

((
log n

n

)1/2
)
,

max
j∈[0,n−1]

(
1− j

n

) ∣∣τ̃ 2
j − τ 2

j,n

∣∣ = OP

((
log n

n

)1/2
)
,

max
j∈[0,pn]

∣∣τ̂ 2
j − τ 2

j,n

∣∣ = OP

((
log n

n

)1/2
)
.

Proposition A.2. Let Assumptions K, M, P and R hold. Let S̃p be as in (A.1). Then

max
p∈[2,pn]

|
(
Ŝp − Ŝ1

)
−
(
S̃p − S̃1

)
|

1 +
(
n
∑p

j=1 R
2
j,n

)1/2
= OP (1)

and for any pn = O(n1/2), Ŝpn − S̃pn = OP

(
1 +

(
n
∑pn

j=1R
2
j,n

)1/2
)
.

Proposition A.3. Suppose Assumptions K, M, P and R hold and that H0 is true. Then

(3.1) ensures that

lim
n→∞

P

(
max
p∈[2,pn]

(Ŝp − Ŝ1)/R̂2
0 − E∆(p)

V∆(p)
≥ γn

)
= 0.
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Proposition A.4. Under Assumptions K, P and R, there are some C,C ′ > 0 such that for

n large enough and uniformly in p ∈ [1, pn],

E
[
S̃p

]
−R2

0,nE (p) ≥ Cn

p/2∑
j=1

R2
j,n − C ′R2

0,n,

E

[
n−1∑
j=1

K

(
j

p

)
R̃2
j

τ 2
j,n

]
− E (p) ≥ Cn

p/2∑
j=1

(
Rj,n

R0,n

)2

− C ′.

Proposition A.5. Under Assumptions K, P and R, there is a constant C > 0 such that for

n large enough and uniformly in p ∈ [1, pn],

Var
(
S̃p

)
≤ C

(
n

p∑
j=1

R2
j,n + p

)
,

Var

(
n−1∑
j=1

K

(
j

p

)
R̃2
j

τ 2
j,n

)
≤ C

(
n

p∑
j=1

R2
j,n

R2
0,n

+ p

)
.

A.1. Proof of Theorem 1. (3.2), (3.1) and Proposition A.3 give that limn→∞ P(p̂ 6= 1) = 0.

Hence Ŝp̂ = Ŝ1+oP (1) and Lemma A.3, which ensures that the retained critical value satisfies

P
(
Ŝ1 ≥ ẑ (α)

)
→ α, yield that the test (2.7) is asymptotically of level α. �

A.2. Proof of Theorem 2. The definition (2.2) of p̂ gives, for any p ∈ [1, pn],

Ŝp̂ = arg max
p∈[1,pn]

{
Ŝp − R̂2

0E (p)− γnR̂2
0V∆ (p)

}
+ R̂2

0E (p̂) + γnR̂
2
0V∆ (p̂)

≥ Ŝp − R̂2
0E (p)− γnR̂2

0V∆ (p) .

Note that this bound implies (3.6). Since the critical value ẑ (α) in (2.7) is bounded underH1

by Lemma A.3, it is sufficient to find a pn ∈ [1, pn] such that Ŝpn−R̂2
0E (pn)−γnR̂2

0V∆ (pn)
P→

+∞. Let pn = 2Pn where Pn is as in (3.4). Set

R2
n =

Pn∑
j=1

(
Rj,n

R0,n

)2

.
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The detection condition (3.4) gives

nR2
n ≥ nρ2

n

Pn∑
j=1

I

{(
Rj,n

R0,n

)2

≥ ρ2
n

}
= nNnρ

2
n ≥

κ2
∗γnp

1/2
n

21/2
→∞, (A.3)

with a constant κ∗ which can be chosen as large as needed. Lemmas A.2, A.4, Assumption P

which ensures Pn = o
(
n1/2

)
and γn = o

(
n1/4

)
, and Proposition A.1 for the case of residuals

yield that

Ŝpn − R̂2
0E (pn)− γnR̂2

0V∆ (pn)

= S̃pn +OP
(
1 + n1/2R0,nRn

)
−R2

0,nE (pn)− γnR2
0,nV∆ (pn) +OP

(
pn + γnp

1/2
n

n1/2

)

≥ S̃pn +OP
(
1 + n1/2R0,nRn

)
−R2

0,nE (pn)− CγnR2
0,np

1/2
n .

Now the Chebyshev inequality, Propositions A.4 and A.5, give

S̃pn = E
[
S̃pn

]
+OP

(
Var1/2

(
S̃pn

))
≥ R2

0,nE (pn) + C ′R2
0,nnR2

n +OP
(
p1/2
n + n1/2Rn

)
.

Hence substituting gives, since nR2
n →∞ by (A.3),

Ŝpn − R̂2
0E (pn)− γnR̂2

0V∆ (pn) ≥ C ′R2
0,nnR2

n (1 + oP (1))− CγnR2
0,np

1/2
n (1 + oP (1)) .

Since Assumption R ensures that R2
0,n stays bounded away from 0, (A.3) gives that Ŝpn −

R̂2
0E (pn)− γnR̂2

0V∆ (pn)
P→ +∞ as requested provided κ2

∗ > C ′/C. �

A.3. Proof of Theorem 3. Consider first the null hypothesis. As seen from the proof of

Theorem 1, it suffices to show that

lim
n→∞

P

(
max
p∈[2,pn]

(Ŝ∗p − Ŝ∗1)− E∆(p)

V∆(p)
≥ γn

)
= 0,
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a statement which implies that p̂∗ = 1+oP (1) so that Lemma A.3 implies that the conclusion

of Theorem 1 holds for the test based upon Ŝ∗p̂∗ . Since |Rj,n| ≤ ‖ut,n‖2

∥∥ut,n − ut−jt,n

∥∥
2

and

E
[
u2
t−j,nu

2
t−j,n

]
= E

[(
ut−jt,n

)2
u2
t−j,n

]
+ E

[(
u2
t,n −

(
ut−jt,n

)2
)
u2
t−j,n

]
= R2

0,n + E
[(
ut,n − ut−jt,n

) (
ut,n + ut−jt,n

)
u2
t−j,n

]
,

(A.2) shows ∣∣τ 2
j,n −R2

0,n

∣∣ ≤ C ‖ut,n‖3
8 Θ2 (j) ≤ Cj−6 (A.4)

for all j ≥ 1. Now Lemmas A.2 and A.4, Assumptions K, P and R, and Proposition A.1 give

max
p∈[2,pn]

∣∣∣(Ŝ∗p − Ŝ∗1)− (Ŝp − Ŝ1)/R̂2
0

∣∣∣
V∆(p)

≤ C max
p∈[1,pn]

∣∣∣Ŝ∗p − Ŝp/R̂2
0

∣∣∣
p1/2

≤ C max
p∈[1,pn]

n

p1/2

p∑
j=1

(
R̂j

R̂0

)2{∣∣∣∣∣ τ̂ 2
j

R̂2
0

−
τ 2
j,n

R2
0,n

∣∣∣∣∣+

∣∣∣∣ τ 2
j,n

R2
0,n

− 1

∣∣∣∣
}

≤ Cnp1/2
n OP

((
log n

n

)3/2
)

+OP (1)n

pn∑
j=1

R̂2
j

j6

= oP (1) +OP

 pn∑
j=1

Var
(
n1/2R̂j

)
j6

 = OP (1) .

Hence (3.1) and Proposition A.3

P

(
max
p∈[2,pn]

(Ŝ∗p − Ŝ∗1)− E∆(p)

V∆(p)
≥ γn

)

= P

(
max
p∈[2,pn]

(Ŝp − Ŝ1)/R̂2
0 − E∆(p)

V∆(p)
+OP (1) ≥ γn

)

≤ P

(
max
p∈[2,pn]

(Ŝp − Ŝ1)/R̂2
0 − E∆(p)

V∆(p)
≥
(

1 +
ε

2

)
(2 ln lnn)1/2

)
+ o (1)

=o (1) ,

which gives the desired result under H0.
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Consider now Theorem 2 and H1. Define

ŜFp = n

p∑
j=1

K2

(
j

p

)
R̂2
j

τ 2
j,n

, S̃Fp = n

p∑
j=1

K2

(
j

p

)
R̃2
j

τ 2
j,n

.

Let Pn be as in (3.4) and define pn = 2Pn and Rn as in the proof of Theorem 2. Then

Assumptions K and R, Propositions A.1 and A.2

∣∣∣Ŝ∗pn − ŜFpn∣∣∣ ≤ Cn

pn∑
j=1

R̂2
j

τ 2
j,n

∣∣∣∣τ 2
j,n

τ̂ 2
j

− 1

∣∣∣∣ = OP

((
log n

n

)1/2
)
ŠFpn ,∣∣∣ŜFpn − S̃Fpn∣∣∣ ≤ C

∣∣∣Ŝpn − S̃pn∣∣∣ = OP
(
n1/2Rn

)
.

Hence, for observed variables or residuals,

Ŝ∗pn =

(
1 +OP

((
log n

n

)1/2
))

S̃Fpn +OP
(
n1/2Rn

)
The proof now follows the steps of the one of Theorem 2 based on the order above, Proposition

A.4 and A.5, and Lemma A.4 which gives E
[
S̃Fpn

]
≤ C (pn + nR2

n). Hence, since pn =

o
(

(log n/n)1/2
)

,

Ŝ∗p̂∗ = arg max
p∈[1,pn]

{
Ŝ∗p − E (p)− γnV∆ (p)

}
+ E (p̂∗) + γnV∆ (p̂∗)

≥ Ŝ∗pn − E (pn)− Cγnp1/2
n

=

(
1 +OP

((
log n

n

)1/2
))(

E
[
S̃Fpn

]
+ Var1/2

(
S̃Fpn

))
− E (pn)− Cγnp1/2

n

= C ′R2
0,nnR2

n − CγnR2
0,np

1/2
n +OP

(
p1/2
n + n1/2Rn +

(
log n

n

)1/2 (
pn + nR2

n

))

= C ′R2
0,nnR2

n (1 + oP (1))− CγnR2
0,np

1/2
n (1 + oP (1))

P→ +∞

provided κ∗ is large enough. �



7

A.4. Proof of Theorem 4. Since P (p̂∗ = 1)→ 1 under H0, condition (A0) and (3.7) give

lim
n→∞

P
(
Ŝ∗p̂∗ ≥ ĉ∗n (α)

)
= lim

n→∞
P
(
Ŝ∗1 ≥ ĉ∗n (α)

)
= lim

n→∞
P
(
Ŝ∗1 ≥ Ŝ∗1 − T̂n + t̂n (α)

)
= lim

n→∞
P
(
T̂n ≥ t̂n (α)

)
= α,

so that the test of interest is asymptotically of level α. Let us now consider the alternative.

Arguing as in the proof of Theorems 2 and 3 under condition (A1) shows that the test with

critical value ĉn (α) detects the alternatives (3.4) provided κ∗ is taken large enough. Consider

now (3.8). The definition of (2.9) gives, since E∆ (p̂∗) + γnV∆(p̂∗) ≥ 0 under Assumption K,

Ŝ∗p̂∗ = max
p∈[1,pn]

(
Ŝ∗p − E∆ (p)− γnV∆(p)

)
+ E∆ (p̂∗) + γnV∆(p̂∗)

≥ Ŝ∗1 − E∆ (1)− γnV∆(1) = Ŝ∗1 .

Hence, by (3.7)

P
(
Ŝ∗p̂∗ ≥ ĉn (α)

)
≥ P

(
Ŝ∗1 ≥ ĉn (α)

)
= P

(
Ŝ∗1 ≥ Ŝ∗1 − T̂n + t̂n (α)

)
= P

(
T̂n ≥ t̂n (α)

)
,

which is (3.8). �

A.5. Proof of Theorem 5. We first introduce a set of alternatives. Let f (·) denote the

spectral density of a centered Gaussian stationary process {ut} .with covariance coefficients

Rj. Define a Hölder class of processes as

Hölder (L) =

{
{ut} : 1/3 ≤ inf

λ∈[−π,π]
f (λ) ≤ sup

λ∈[−π,π]

f (λ) ≤ 3, sup
λ∈[−π,π]

|f ′ (λ)| ≤ L,
∞∑
j=0

|Rj| ≤ L

}
.

The next Lemma describes a family of alternatives which satisfies Assumption R uniformly

for prescribed constants and a given δa (j) .

Lemma A.5. Consider a centered stationary Gaussian process {ut} with spectral density

function f (λ) = exp (g (λ)) / (2π), where

g (λ) = 2ρ

p∑
k=1

bk cos (kλ) , bk = −1, 0, 1. (A.5)
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If p ≥ 1 and ρ ≥ 0 are such that p2ρ ≤ ε ≤ 1/6 then there is some constant L > 0, inde-

pendent of ε, p, ρ and b = (bk, k ∈ [1, p]), such that (i) |R0 − 1| ≤ 6ρε and |Rj − ρbj| ≤ 6ρε

for j ∈ [1, p]; (ii) |Rj| ≤ 3ρ (2ε)` for all j in [`p+ 1, (`+ 1) p) and all ` ≥ 1; (iii) {ut} is in

Hölder(L); (iv) Suppose that ρ2
n = ρ2

n(p) = 2κ2
n (2 log log n)1/2 /

(
np1/2

)
for some κn > 0 and

bounded away from infinity, and that p ∈ [1, Pn] with Pn = o

((
n/ (κ2

n log log n)
1/2
)1/14

)
.

Then the associated family of processes {ut (b, p) ; b ∈ {−1, 0, 1}p , p ∈ [1, Pn]} satisfies As-

sumption R for any a > 0 and a δa (j) = O
(
j−7−1/4

)
.

Proof of Lemma A.5. Rewrite g as g (λ) = ρ
∑p

k=−p bk exp (ikλ), b0 = 0, bk = b−k = b|k|.

Since exp (x) =
∑∞

m=0 x
m/m! uniformly over any compact set and maxλ |g (λ)| ≤ 2pρ ≤ 2ε ≤

1/3, we have

Rj =

∫ π

−π
exp (−ijλ) f (λ) dλ =

1

2π

∞∑
m=0

1

m!

∫ π

−π
exp (−ijλ) (g (λ))m dλ. (A.6)

For m > 0, since
∫ π
−π exp (−ijλ) dλ = 2π if j = 0 and 0 if j 6= 0,

1

2π

∫ π

−π
exp (−ijλ) (g (λ))m dλ

=
ρm

2π

∑
(k1,...,km)∈Km

bk1 × · · · × bkm
∫ π

−π
exp (i (k1 + . . .+ km − j)λ) dλ

= ρm
∑

(k1,...,km)∈Km(j)

bk1 × · · · × bkm , (A.7)

where Km is the set of m-tuples with entries in [−p, p] \ {0} so that #Km = (2p)m and

Km (j) contains m-tuples in Km for which k1 + · · ·+ km = j so that #Km(j) ≤ (2p)m−1.

Proof of (i). Part (i) is a consequence of (A.6), (A.7) and inequality 2pρ ≤ 2ε < 1 which to-

gether imply that for j ∈ [0, p], |Rj − I (j = 0)− ρbj| ≤ ρ
∑∞

m=2
(2pρ)m−1

m!
≤ 2pρ2

∑∞
m=0

1
m!
≤

2eρε < 6ρε.

Proof of (ii). Let `p+ 1 ≤ j > (`+ 1) p. Observe that Km (j) is an empty set when m ≤ `.

Hence it follows from (A.6) and (A.7) that |Rj| ≤
∣∣∣ 1

2π

∑∞
m=`+1

1
m!

∫ π
−π exp (−ijλ) (g (λ))m dλ

∣∣∣ ≤
ρ
∑∞

m=`+1
(2pρ)m−1

m!
≤ ρ (2ε)` e.
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Proof of (iii). Observe that |g (λ)| ≤ 2ρp ≤ 2ε ≤ 1/3 and that therefore

1/3 < 1− 1/3 < exp (−1/3) ≤ f (λ) ≤ exp (1/3) ≤ e ≤ 3 for all λ ∈ [−π, π] .

Parts (i), (ii) and 0 ≤ ρ ≤ ε < 1/6, pρ ≤ 1/6 yield that, for L large enough,

∞∑
j=0

|Rj| ≤ R0 +

p∑
j=1

|Rj|+
∞∑
`=1

(`+1)p∑
j=`p+1

|Rj| ≤ 1 + 6ρε+ (1 + 6ε) pρ+ 3
∞∑
`=1

(`+ 1) pρ (2ε)`

≤ 1 + 1 + 1 + 1 +
∞∑
`=1

(`+ 1) (2ε)` ≤ L.

Since f ′ (λ) = g′ (λ) f (λ) with g′ (λ) = −2ρ
∑p

k=1 bkk sin (kλ), we have supλ∈[−π,π] |f ′ (λ)| ≤

3× 2p2ρ ≤ 1.

Proof of (iv). Let ut = εt+
∑∞

j=1 ψjεt−j be the Wold decomposition of the process. Brillinger

(2001) and
∫ π
−π log f (λ) exp (ijλ) dλ/2π = ρbj gives

ψj =

∫ π
−π exp (ρ

∑p
k=1 bk exp (−ikλ)) exp (ijλ) dλ∫ π

−π exp (ρ
∑p

k=1 bk exp (−ikλ)) dλ
,

Var (εt) =

∣∣∣∣∣ 1

2π

∫ π

−π
exp

(
ρ

p∑
k=1

bk exp (−ikλ)

)
dλ

∣∣∣∣∣
2

.

Arguing as in (i) and (ii) with an expansion as in (A.6) give Var (εt) = 1, |ψj − ρbj| ≤ Cρε

for j ∈ [1, p] and |ψj| ≤ Cρ (2ε)` for all j ∈ [`p+ 1, (`+ 1) p) and all ` ≥ 1. Gaussianity,

the choice of ρ in (iv) with the restriction on Pn and Wu (2005) give, for any a > 1,

δ12a (j) ≤ Ca |ψj| ≤ Caj
−7−1/4. That the other conditions of Assumption R hold uniformly

in p ∈ [1, Pn] follows from (i) and (ii). �

We will now define a family Fn of correlated Gaussian alternatives. We first introduce

some notation. Consider γ̃n = (2 ln lnn)1/2 and P ′ = {2j, j = 1, . . . , Jn}, 2Jn = Pn =

o
(
pn ∧ (n/γ̃n)1/14

)
so that P ′ ⊂ [1, pn] for n large enough. Define also

ρ2
n(p) = 2

κ2
nγ̃n

np1/2
, ρ̃n(p) = 2ρ2

n(p) εn = P 2
nρn(Pn) =

(γ̃n)1/2 κnP
7/4
n

n1/2
= o (1) . (A.8)
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Since p2ρn(p) ≤ εn for all p ∈ P ′, εn plays the role of the real number ε of Lemma A.5 and

we assume from now on that n is so large that εn ≤ 1/6. Consider the following log-spectral

density functions:

g (λ; b, p) = 2ρ̃n(p)
∑

k∈[p,2p)

bk cos (kλ) , b = (b1, . . . , bPn) ∈ {−1, 1}Pn , p ∈ P ′.

Functions g are of the form specified in (A.5). Let W be a symmetric standard Brownian

motion process. Consider a centered stationary Gaussian processes

ut,n (b, p) =
1

(2π)1/2

∫ π

−π
exp

(
g (λ; b, p)

2

)
exp (itλ) dW (λ) .

Observe that ut,n (0, p) does not depend on p and is a Gaussian white noise process with

variance 1. Let {Rj,n (b, p)} denote the covariance function of ut,n (b, p). The family Fn of

Gaussian processes can now be defined as

Fn =
{
{ut,n (b, p)} , b ∈ {−1, 1}Pn , p ∈ P ′

}
.

Lemma A.5 implies that all sequences {ut,n} in Fn satisfies Assumption R and that Fn ⊂Hölder(L).

We now study the asymptotic behavior of the stochastic covariance sequence {Rj,n (B,P )}.

Let Nn (b, p) be as in (3.3), that is

Nn (b, p) = Nn ({ut,n (b, p)} , p, ρn (p)) = #

{∣∣∣∣Rj,n (b, p)

R0,n (b, p)

∣∣∣∣ ≥ ρn (p) , j ∈ [1, p]

}
.

Lemma A.5-(i,ii) and (A.8) gives that Nn (b, p) = p/2 for n large enough and uniformly in

p = 2j ∈ P ′, so that ρ2
n(p) = 2κ2

nγ̃n/
(
np1/2

)
= κ2

nγ̃np
1/2/ (nNn (b, p)). Hence the sequences

{ut,n} in Fn satisfies condition (i) in Theorem 5. Therefore the Theorem will be proved

if we show that supTn min{ut,n}∈Fn P (Tn = 0) ≤ α + o (1), where supTn is a supremum over

asymptotically α-level tests. Since the equivalence result of Golubev et al. (2010) holds over

Fn ⊂Hölder(L) this is equivalent to show that supTn min{Un}∈Fn Q (Tn = 0) ≤ α + o (1), Q
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being the distribution of the continuous time regression model

dUn (λ; b, p) = g (λ; b, p) dλ+ 2π1/2dW (λ)

n1/2
, λ ∈ [−π, π] ,

where W (·) is a Brownian motion over λ ∈ [−π, π]. This can be done as in Spokoiny (1996,

Proof of Theorem 2.3) by bounding supTn min{Un}∈Fn Q (Tn = 0) with a Bayes risk, based on

the choice of a uniform distribution for p and a Bernoulli one for b. �

A.6. Proof of Lemma 1. The first approximation R0,n = σ2
(

1 +O
(
γnP

1/2
n /n

))
follows

easily from the definition (4.1) of the alternative. To show that the second approximation is

valid, note that for j = 1, ..., Pn,

Rj,n =
νγ

1/2
n

n1/2P
1/4
n

ψjσ
2 +

(
νγ

1/2
n

n1/2P
1/4
n

)2

(ψj+1ψ1 + · · ·+ ψPnψPn−j)σ
2.

By the Cauchy-Schwarz inequality, |ψj+1ψ1 + · · ·+ ψPnψPn−j| ≤
∑Pn

k=1 ψ
2
k = O(Pn) for all

j = 1, ..., Pn, hence, uniformly in j = 1, ..., Pn,

Rj,n =
νγ

1/2
n

n1/2P
1/4
n

ψjσ
2 +O

(
γnP

1/2
n

n

)
=

νγ
1/2
n

n1/2P
1/4
n

ψjσ
2 + o

(
γ

1/2
n

n1/2P
1/4
n

)

since Pn = o((n/γn)2/3).

For the expression of E [ut|ut−k, k ≥ 1], observe that (4.1) gives, for n large enough,

E [ut|ut−k, k ≥ 1] =
νγ

1/2
n

n1/2P
1/4
n

Pn∑
k=1

ψkεt−k

=
νγ

1/2
n

n1/2P
1/4
n

Pn∑
k=1

ψk

(
ut−k −

νγ
1/2
n

n1/2P
1/4
n

Pn∑
j=1

ψjεt−k−j

)

=
νγ

1/2
n

n1/2P
1/4
n

Pn∑
k=1

ψkut−k −
ν2γn

nP
1/2
n

Pn∑
k=1

ψk

Pn∑
j=1

ψjεt−k−j.
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Now, since {εt} is a strong white noise and
∑Pn

k=1 ψ
2
k = O (Pn),

ν2γn

nP
1/2
n

Pn∑
k=1

ψk

Pn∑
j=1

ψjεt−k−j =
ν2γn

nP
1/2
n

2Pn∑
`=2

max(Pn,`−1)∑
k=1

ψkψ`−k

 εt−`

= OP


 γ2

n

n2Pn

2Pn∑
`=2

max(Pn,`−1)∑
k=1

ψkψ`−k

21/2


= OP


γ2

n

(∑Pn

k=1 ψ
2
k

)2

n2


1/2
 = OP

(
γnPn
n

)
,

which ends the proof of the Lemma. �

A.7. Proof of Proposition 1. Let us now check consistency of the test (2.7) under the

assumption that mink∈[1,Pn] |ψkσ2| ≥ 1. Define ρn = (ν/2) γ
1/2
n /

(
n1/2P

1/4
n

)
. Lemma 1

implies that Nn = Pn (1 + o(1)) for such a ρn, which therefore satisfies

ρn = (1 + o (1)) (ν/2)
(
γnP

1/2
n /Nn

)1/2
/n1/2,

so that (3.4) asymptotically holds provided ν ≥ 3κ∗ and the test is consistent if 1 ≤ Pn ≤

pn/2 by Theorem 2 provided the considered alternatives satisfies Assumption R. Wu (2005)

gives that the alternative (4.1) satisfies for any a > 0,

δ12a (j) ≤ Ca
νγ

1/2
n

n1/2P
1/4
n

|σψj| for all j ∈ [1, Pn] , δ12a (j) = 0 for all j > Pn.

Hence the condition Pn = O
(

(n/γn)1/14
)

gives that δ12a (j) ≤ Cj−7−1/4 since the |σψj| are

bounded away from infinity. Moreover Gaussianity ensures that

‖ut,n − εt‖12a ≤ Caσ

(
ν2γn

nP
1/2
n

Pn∑
k=1

ψ2
k

)1/2

= O

(
νγ

1/2
n P

1/4
n

n1/2

)
= o (1) ,

which gives Var (ut,n) = σ2 + o (1) and maxj∈[1,n] Var2 (ut,n) /Var (ut,nut+j,n) = 1 + o (1) so

that Assumption R holds. This ends the proof of Proposition 1-(i).
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Consider now the other tests in Proposition 1-(ii). Define R̃1,j =
∑n−j

t=1 ut,nut+j,n/n, R̃0,j =∑n−j
t=1 εtεt+j/n, τ̃ 2

1,j =
∑n−j

t=1 u
2
t,nu

2
t+j,n/ (n− j)−nR̃2

1,j/ (n− j) and τ̃ 2
0,j =

∑n−j
t=1 ε

2
t ε

2
t+j/ (n− j)−

nR̃2
0,j/ (n− j). Define also ηt = ηt,n = ν

∑∞
k=1 ψkεt−k, setting ψk = 0 for k > Pn, so that

ut,n = εt + γ
1/2
n ηt/

(
n1/2P

1/4
n

)
. We have

∣∣∣R̃j − R̃0,j

∣∣∣ ≤ γ
1/2
n

n3/2P
1/4
n

∣∣∣∣∣
n−j∑
t=1

ηtεt+j

∣∣∣∣∣+
γ

1/2
n

n3/2P
1/4
n

∣∣∣∣∣
n−j∑
t=1

εtηt+j

∣∣∣∣∣+
γn

n2P
1/2
n

∣∣∣∣∣
n−j∑
t=1

ηtηt+j

∣∣∣∣∣ .
The Burkholder inequality gives, for any a > 1,

∥∥∥∥∥ γ
1/2
n

n3/2P
1/4
n

n−j∑
t=1

ηtεt+j

∥∥∥∥∥
a

≤ C
γ

1/2
n (n− j)1/2

n3/2P
1/4
n

‖ηt‖a ≤ C
γ

1/2
n P

1/4
n

n
,

∥∥∥∥∥ γ
1/2
n

n3/2P
1/4
n

n−j∑
t=1

(
εtηt+j − ψjε2

t

)∥∥∥∥∥
a

≤

∥∥∥∥∥ γ
1/2
n

n3/2P
1/4
n

n−j∑
t=1

εt

(
j−1∑
k=0

ψjεt+j−k

)∥∥∥∥∥
a

+

∥∥∥∥∥ γ
1/2
n

n3/2P
1/4
n

n−j∑
t=1

(
∞∑

k=j+1

ψjεt+j−k

)
εt

∥∥∥∥∥
a

≤ C
γ

1/2
n P

1/4
n

n
,

∥∥∥∥∥ γ
1/2
n

n3/2P
1/4
n

n−j∑
t=1

(
ε2
t − σ2

)∥∥∥∥∥
a

≤ C
γ

1/2
n

nP
1/4
n

,

∥∥∥∥∥ γn

n2P
1/2
n

n∑
t=1

η2
t

∥∥∥∥∥
a

≤ γn

nP
1/2
n

≤ C
γnP

1/2
n

n
,

for all j. Note also that
∣∣∣∑n−j

t=1 ηtηt+j

∣∣∣ ≤∑n
t=1 η

2
t and the Markov inequality give for a large

enough, since γnP
1/2
n = o(n1/4)

max
j∈[1,n]

∣∣∣R̃1,j − R̃0,j

∣∣∣a = OP

(
max
j∈[1,n]

∣∣∣R̃1,j − R̃0,j

∣∣∣a)

= OP

(
n∑
j=1

∥∥∥∥∥ γ
1/2
n

n3/2P
1/4
n

n−j∑
t=1

ηtεt+j +

n−j∑
t=1

εtηt+j

∥∥∥∥∥
a

a

+

∥∥∥∥∥ γn

n2P
1/2
n

n∑
t=1

η2
t

∥∥∥∥∥
a

a

)

= OP

(
n

(
γ

1/2
n P

1/4
n

n

)a

+

(
γnP

1/2
n

n

)a)
= oP

(
1

n7a/8−1
+

1

n3a/4

)

= oP

(
1

(n log n)a/2

)
.
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Hence

max
j∈[1,n]

∣∣∣R̃1,j − R̃0,j

∣∣∣ = oP

(
1

(n log n)1/2

)
. (A.9)

Arguing similarly for the τ̃ 2
k,j give, since Jn = O

(
n1/2

)

max
j∈[1,Jn]

∣∣τ̃ 2
1,j − τ̃ 2

0,j

∣∣ = oP

(
1

(n log n)1/2

)
, max
j∈[1,Jn]

∣∣τ̃ 2
0,j − σ4

∣∣ = OP

(
log1/2 n

n1/2

)
, (A.10)

where the latter is from Proposition A.1. Note that (A.9) and (A.10) gives (4.5). Let Wk,n,

CvMk,n, ELk,n be the statistic computed under Gk, k = 0, 1, i.e. with R̃0,j/τ̃0,j and R̃1,j/τ̃1,j.

Note that (A.9) and (A.10) gives W1,n = W0,n + oP (1). (4.5) and Proposition A.1 give

|CvM1,n − CvM0,n| ≤
2

π2

Jn∑
j=1

n
∣∣∣(R̃1,j/τ̃1,j + R̃0,j/τ̃0,j

)(
R̃1,j/τ̃1,j − R̃0,j/τ̃0,j

)∣∣∣
j2

≤ 2 max
j∈[1,Jn]

∣∣∣n1/2R̃0,j

∣∣∣
τ̃0,j

× max
j∈[1,Jn]

∣∣∣∣∣n1/2

(
R̃1,j

τ̃1,j

− R̃0,j

τ̃0,j

)∣∣∣∣∣ 2

π2

Jn∑
j=1

1

j2

+ max
j∈[1,Jn]

n

(
R̃1,j

τ̃1,j

− R̃0,j

τ̃0,j

)2
2

π2

Jn∑
j=1

1

j2

= n1/2OP

((
log n

n

)1/2
)
n1/2oP

(
1

(n log n)1/2

)
+ noP

(
1

n log n

)
= oP (1) ,

Hence CvM1,n = CvM0,n + oP (1). For ELn, W1,n = W0,n + oP (1) and Xiao and Wu (2011)

gives that maxj∈[1,Jn]

∣∣∣R̃k,j/τ̃k,j

∣∣∣ ≤ (2 lnn)1/2 (1 + oP (1)) for k = 0, 1 so that P (γ̂∗EL = lnn)→

1 under G0 and G1.We now show that P (p̂∗EL = 1)→ 1 under G0. Propositions A.4 and A.5,
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(A.10) give

P
(
p̃∗0,EL 6= 1

)
= P

(
max
p∈[2,Jn]

B̃P
∗
0,p − B̃P

∗
0,1

p− 1
> lnn

)
+ o (1)

= P

(
(1 + oP (1)) max

p∈[2,Jn]

n
∑p

j=2 R̃
2
0,j/σ

4

p− 1
> lnn

)
+ o (1)

= P

(
n
∑p

j=2 R̃
2
0,j/σ

4

p− 1
>

1

2
lnn for some p ∈ [2, Jn]

)
+ o (1)

≤
Jn∑
p=2

P

n∑p
j=2

(
R̃2

0,j/σ
4 − E

[
R̃2

0,j/σ
4
])

p− 1
>

1

2
lnn−

n
∑p

j=2 E
[
R̃2

0,j/σ
4
]

p− 1

+ o (1)

≤
Jn∑
p=2

Var

(
n
∑p

j=2(R̃2
0,j/σ

4−E[R̃2
0,j/σ

4])
p−1

)
(

1
2

lnn− 1
p−1

∑p
j=2 (1− j/n)

)2 + o (1)

≤ C

log2 n

Jn∑
p=2

1

p− 1
+ o (1) = O

(
1

log n

)
+ o (1) = o (1) .

Now, observe that Proposition A.1 and (4.5) give

max
p∈[2,Jn]

∣∣∣∣∣B̃P
∗
0,p − B̃P

∗
0,1

p− 1
−
B̃P

∗
1,p − B̃P

∗
1,1

p− 1

∣∣∣∣∣ ≤ max
p∈[2,Jn]

∣∣∣∣∣∣
n
∑p

j=2

(
R̃2

0,j/τ̃
2
0,j − R̃2

1,j/τ̃
2
1,j

)
p− 1

∣∣∣∣∣∣
≤ 2 max

p∈[2,Jn]

∣∣∣∣∣n1/2 R̃0,j

τ̃0,j

∣∣∣∣∣× max
p∈[2,Jn]

∣∣∣∣∣n1/2

(
R̃0,j

τ̃0,j

− R̃1,j

τ̃1,j

)∣∣∣∣∣+

(
max
p∈[2,Jn]

∣∣∣∣∣n1/2

(
R̃0,j

τ̃0,j

− R̃1,j

τ̃1,j

)∣∣∣∣∣
)2

= n1/2OP

((
log n

n

)1/2
)
n1/2oP

(
1

(n log n)1/2

)
+ noP

(
1

n log n

)
= oP (1) .

This, since arguing as in the bound above gives maxp∈[2,Jn]

∣∣∣(B̃P ∗0,p − B̃P ∗0,1) / (p− 1)
∣∣∣ =

OP

(
log1/2 n

)
, implies that maxp∈[2,Jn]

∣∣∣(B̃P ∗1,p − B̃P ∗1,1) / (p− 1)
∣∣∣ ≤ log n with a probability

tending to 1 and then P (p̂∗EL = 1) → 1 under G1. Hence (4.5) gives that EL1,n = B̃P
∗
1,1 +

oP (1) = B̃P
∗
0,1 + oP (1) = EL0,n + oP (1), so that ELn converges in distribution to a Chi

square one with one degree of freedom under G0 and G1. �
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Supplementary Material B: Proofs of intermediary results

The proofs also use the notion of cumulants, see for example Brillinger (2001, p. 19) or

Xiao and Wu (2011) for a definition. Let

Cum
(
ut1,n , . . . , utq,n

)
= Γn(t1, . . . , tq)

stands for the qth cumulants of {ut,n}. The next theorem on cumulant summability is

Theorem 21 in Xiao and Wu (2011). These authors do not formally consider sequences

{ut,n} but the following result is a straightforward extension of Xiao and Wu (2011).

Theorem B.1 (Xiao and Wu (2011)). Suppose {ut,n} is stationary for each n, with

sup
n
‖ut,n‖q+1 <∞ and sup

n

∥∥ut,n − ut−jt,n

∥∥
q
≤ δq (j) where

∞∑
j=0

jq−2δq (j) <∞.

Then there is a C which only depends on supn ‖ut,n‖q+1 and
∑∞

j=0 j
q−2δq (j) such that

∞∑
t2,...,tq=−∞

|Γn(0, t2, . . . , tq)| ≤ C.

In what follows, we drop subscript n in expressions like ut,n, Rj,n, Γn (·) and θn when there

is no ambiguity. We denote

Kjp = K2

(
j

p

)
−K2 (j) and K1n(p) =

n−1∑
j=1

Kjp. (B.1)

B.1. Proof of Lemma A.2. (i) The first three bounds of the lemma follow directly from

Assumption K which implies that K2 (j/p) ≥ K2 (j) for all j and I(x ∈ [0, 1/2])/C ≤

K2q(x) ≤ CI(x ∈ [0, 1]) for some C > 0. The Cauchy-Schwarz inequality implies that for any

p ∈ [1, n/2], E∆(p) =
∑n−1

j=1

(
1− j

n

)
Kjp ≤ K1n(p) ≤ p1/2

(∑n−1
j=1 k

2
j (p)

)1/2

≤ Cp1/2V∆(p),

which is the last bound in (i). (ii) Write p = 1 + ν. Since p ≤ pn ≤ n/2, the support of K (·)
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is [0, 1] and K (·) is a decreasing function, we have

V 2
∆(p) ≥ 1

2
× 2

p∑
j=2

K2

(
j

p

)
≥

ν∑
j=1

K2

(
1 + j

1 + ν

)
≥

ν∑
j=1

∫ j+1

j

K2

(
1 + x

1 + ν

)
dx

=

∫ ν+1

1

K2

(
1 + x

1 + ν

)
dx = ν

∫ 1

0

K2

(
2 + zν

1 + ν

)
dz.

The map ν 7−→ (2 + zν) / (1 + ν), z ∈ [0, 1), is decreasing. Hence, for ν ≥ 2, V 2
∆(p) ≥

ν
∫ 1/2

0
K2
(

2+2z
3

)
dz ≥ C (p− 1). Now V 2

∆(2) ≥ 2
(
K2
(

1
2

)
−K2 (1)

)2
> 0 gives the desired

result for V∆(p). Since K is nonincreasing, p 7−→ E∆(p) is non decreasing and E∆(p) ≥ 0

for all p ∈ P . �

B.2. Proof of Lemma A.3. Under H0, The proof repeats the steps of Lee (2007), Lobato

(2001) and Kuan and Lee (2006) using the joint FCLT of Assumption M. The joint FCLT

of Assumption M gives that the critical values are OP (1) under H1. �

B.3. Proof of Lemma A.4. Equation (5.3.21) in Priestley (1981) and Theorem B.1 gives

uniformly in j,

Var
(
R̃j

)
=

1

n

n−j−1∑
j1=−n+j+1

(
1− |j1|+ j

n

)(
R2
j1

+Rj1+jRj1−j + Γ (0, j1, j, j1 + j)
)

≤ 2

n

2n∑
j1=−2n

R2
j1

+
1

n

+∞∑
j2,j3,j4=−∞

|Γ (0, j2, j3, j4)|

≤ 4

n

∞∑
j=0

R2
j +

1

n

+∞∑
j2,j3,j4=−∞

|Γ (0, j2, j3, j4)| < C.�

B.4. Proof of Proposition A.1. For the sake of brevity we assume that θ is unidimen-

sional. That

max
j∈[0,n−1]

∣∣∣∣R̃j −
(

1− j

n

)
Rj,n

∣∣∣∣ = OP

((
log n

n

)1/2
)
,

max
j∈[0,n−1]

(
1− j

n

) ∣∣τ̃ 2
j − τ 2

j,n

∣∣ = OP

((
log n

n

)1/2
)
,
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follow from Xiao and Wu (2011, Theorem 2). Note that these authors do not consider

stationary sequences {ut,n} but their arguments carry over under Assumption R. Hence it

suffices to study maxj∈[0,pn]

∣∣∣R̂j − R̃j

∣∣∣ and maxj∈[0,pn]

∣∣τ̂ 2
j − τ̃ 2

j

∣∣ since pn/n = o
(
n−1/2

)
under

Assumption P. We then now show that maxj∈[0,pn]

∣∣∣R̂j − R̃j

∣∣∣ = OP
(
n−1/2

)
. Let et = ût− ut,

so that

R̂j =
1

n

n−j∑
t=1

(ut + et) (ut+j + et+j) = R̃j +
1

n

n−j∑
t=1

(utet+j + etut+j) +
1

n

n−j∑
t=1

etet+j

with, by the Cauchy-Schwarz inequality,
∣∣∣∑n−j

t=1 etet+j

∣∣∣ /n ≤∑n
t=1 e

2
t/n and, under Assump-

tion M, for r̂t = rt

(
θ̂
)

,

1

n

n−j∑
t=1

utet+j =
(
θ̂ − θ

) 1

n

n−j∑
t=1

utu
(1)
t+j +

1

2

(
θ̂ − θ

)2 1

n

n−j∑
t=1

utu
(2)
t+j +

1

n

n−j∑
t=1

ut̂rt+j.

Now, observe that Assumption M gives θ̂ − θ = OP
(
n−1/2

)
, maxt∈[1,n] |̂rt| = oP (1/n) and

1

n

n∑
t=1

e2
t ≤ 3

(
θ̂ − θ

)2 1

n

n∑
t=1

(
u

(1)
t

)2

+
3

4

(
θ̂ − θ

)4 1

n

n∑
t=1

(
u

(1)
t

)2

+
3

n

n∑
t=1

|̂rt| = OP

(
1

n

)
,

max
j∈[1,n]

∣∣∣∣∣ 1n
n−j∑
t=1

(ut̂rt+j + ut+j r̂t)

∣∣∣∣∣ ≤ 2 maxt∈[1,n] |̂rt|
n

n−j∑
t=1

|ut| = oP

(
1

n

)
.

This gives, uniformly in j ∈ [1, n]

∣∣∣R̂j − R̃j

∣∣∣ ≤ ∣∣∣θ̂ − θ∣∣∣ ∣∣∣E [utu(1)
t+j + ut+ju

(1)
t

]∣∣∣
+
∣∣∣θ̂ − θ∣∣∣ ∣∣∣∣∣ 1n

n−j∑
t=1

(
utu

(1)
t+j + ut+ju

(1)
t − E

[
utu

(1)
t+j + ut+ju

(1)
t

])∣∣∣∣∣+OP

(
1

n

)
. (B.2)

It also follows from Assumption M and pn = o
(
n1/2

)
that

∣∣∣θ̂ − θ∣∣∣maxj∈[1,n]

∣∣∣E [utu(1)
t+j + ut+ju

(1)
t

]∣∣∣ =

OP
(
1/n1/2

)
, n
(
θ̂ − θ

)2∑∞
j=0 E2

[
utu

(1)
t+j + ut+ju

(1)
t

]
= OP (1), and for At (j) = utu

(1)
t+j +
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ut+ju
(1)
t − E

[
utu

(1)
t+j + ut+ju

(1)
t

]
∣∣∣θ̂ − θ∣∣∣ max

j∈[0,pn]

∣∣∣∣∣ 1n
n−j∑
t=1

At (j)

∣∣∣∣∣ ≤ OP

(
1

n1/2

) pn∑
j=0

∣∣∣∣∣ 1n
n−j∑
t=1

At (j)

∣∣∣∣∣
= OP

(
1

n

)
OP

 pn∑
j=0

E1/2

( 1

n1/2

n−j∑
t=1

At (j)

)2


= OP

(
1

n

)
OP

pn max
j∈[0,pn]

( 1

n1/2

n−j∑
t=1

At (j)

)2
 = OP

(
1

n1/2

)
,

n
n−1∑
j=0

(
θ̂ − θ

)2
(

1

n

n−j∑
t=1

At (j)

)2

= OP (1)
1

n
OP

n−1∑
j=0

E

( 1

n1/2

n−j∑
t=1

At (j)

)2


= OP (1)
1

n
OP

n max
j∈[0,n]

E

( 1

n1/2

n−j∑
t=1

At (j)

)2
 = OP (1) .

This gives maxj∈[0,pn]

∣∣∣R̂j − R̃j

∣∣∣ = OP
(
n−1/2

)
and maxp∈[0,n−1] n

∑p
j=1

(
R̂j − R̃j

)2

= OP (1).

The study of maxj∈[0,pn]

∣∣τ̂ 2
j − τ̃ 2

j

∣∣ is similar. �

B.5. Proof of Proposition A.2. For the sake of brevity we assume that θ is unidimen-

sional. Since R̂2
j−R̃2

j =
(
R̂j − R̃j

)2

+2R̃j

(
R̂j − R̃j

)
, Proposition A.2 is a direct consequence

of Proposition A.1 and Lemma B.1 below.

Lemma B.1. Assume that Assumptions K, M, P and R hold. Then

max
p∈[2,pn]

∣∣∣n∑n−1
j=1 (K2(j/p)−K2(j)) R̃j

(
R̂j − R̃j

)∣∣∣(
1 + n

∑p
j=1R

2
j

)1/2
= OP (1)

and n
∑n−1

j=1 K
2(j/pn)R̃j

(
R̂j − R̃j

)
= OP

((
1 + n

∑pn
j=1R

2
j

)1/2
)

for any pn = O(n1/2).
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Proof of Lemma B.1. We just prove the first equality since the proof of the second is very

similar. Define Rj = E
[
R̃j

]
= (1− j/n)Rj. We have

∣∣∣∣∣n
n−1∑
j=1

KjpR̃j

(
R̂j − R̃j

)∣∣∣∣∣ ≤ Cn(p) +Dn(p), where

Cn(p) =

∣∣∣∣∣n
n−1∑
j=1

KjpRj

(
R̂j − R̃j

)∣∣∣∣∣ ,
Dn(p) =

∣∣∣∣∣n
n−1∑
j=1

Kjp

(
R̃j −Rj

)(
R̂j − R̃j

)∣∣∣∣∣ .
The Cauchy-Schwarz inequality and Assumption K gives

Cn(p) ≤ C

(
n

p∑
j=1

R2
j

)1/2(
n

p∑
j=1

(
R̂j − R̃j

)2
)1/2

.

Hence Proposition A.1 yields that maxp∈[2,pn] |Cn(p)/
(
n
∑p

j=1R
2
j

)1/2

| = OP (1). For Dn(p),

Assumptions K, M, (B.2) and r̂t = rt

(
θ̂
)

give

max
p∈[2,pn]

Dn(p) ≤ OP(n−1/2)

(
max
p∈[2,pn]

D1n(p) + max
p∈[2,pn]

D2n(p)

)
+OP(n−1) max

p∈[2,pn]
D3n(p)

+

(
1

n

n∑
t=1

e2
t + 2

maxt∈[1,n] |rt|
n

n∑
t=1

|ut|

)
max
p∈[2,pn]

D4n(p),

where D1n(p) = n
∑p

j=1

∣∣∣R̃j −Rj

∣∣∣ ∣∣∣E [utu(1)
t+j + ut+ju

(1)
t

]∣∣∣,
D2n(p) = n

p∑
j=1

∣∣∣R̃j −Rj

∣∣∣ ∣∣∣∣∣ 1n
n−j∑
t=1

(
utu

(1)
t+j + ut+ju

(1)
t − E

[
utu

(1)
t+j + ut+ju

(1)
t

])∣∣∣∣∣ ,
D3n(p) = n

p∑
j=1

∣∣∣R̃j −Rj

∣∣∣ ∣∣∣∣∣ 1n
n−j∑
t=1

(
utu

(2)
t+j + ut+ju

(2)
t

)∣∣∣∣∣ ,
D4n(p) = n

p∑
j=1

∣∣∣R̃j −Rj

∣∣∣ .
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By Assumption K and M and by Lemma A.4, we have

E
[

max
p∈[2,pn]

D1n(p)

]
≤ Cn

pn∑
j=1

Var1/2
(
R̃j

) ∣∣∣E [utu(1)
t+j + ut+ju

(1)
t

]∣∣∣ ≤ Cn1/2,

E
[

max
p∈[2,pn]

D2n(p)

]
≤ Cn1/2

pn∑
j=1

Var1/2
(
R̃j

)

× E1/2

∣∣∣∣∣ 1

n1/2

n∑
t=1

(
utu

(1)
t+j + ut+ju

(1)
t − E

[
utu

(1)
t+j + ut+ju

(1)
t

])∣∣∣∣∣
2


≤ Cpn,

E
[

max
p∈[2,pn]

D3n(p)

]
≤ Cn

pn∑
j=1

Var1/2
(
R̃j

)
E1/2

∣∣∣∣∣ 1n
n∑
t=1

(
utu

(2)
t+j + ut+ju

(2)
t

)∣∣∣∣∣
2
 ≤ Cpnn

1/2,

E
[

max
p∈[2,pn]

D4n(p)

]
≤ Cn

pn∑
j=1

E
[∣∣∣R̃j −Rj

∣∣∣] ≤ Cn

pn∑
j=1

Var1/2
(
R̃j

)
≤ Cn1/2pn.

The Markov inequality gives us the stochastic orders of magnitude of the four maxima in the

bound for maxp∈[2,pn] Dn(p). Since pn = O
(
n1/2

)
by Assumption P, maxt∈[1,n] |̂rt| = oP (1/n)

and n−1
∑n

t=1 e
2
t = OP(n−1) by Assumption M, we have maxp∈[2,pn] |Dn(p)| = OP

(
1 + pn

n1/2

)
=

OP (1). This together with maxp∈[2,pn] |Cn(p)/
(
n
∑p

j=1 R
2
j

)1/2

| = OP (1) shows that the

Lemma is proved. �

B.6. Proof of Proposition A.3. The proof of Proposition A.3 is long and divided in three

steps. In the two first steps, we focus on observed variables. In the first step, we approximate

the sample covariance R̃j by a martingale counterpart
∑n

t=1Djt/n, j ∈ [1, pn], as in Shao

(2011b), see the notations below and Lemmas B.2, B.3. and B.4. The second step deals

with the deviation probability of

n
∑p

j=1

(
1
n

∑n
t=j+1Djt

)2

(K2 (j/p)−K2 (1))− σ4E∆ (p)

σ4V∆ (p)
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which is approximated with some Gaussian counterparts through the Lindeberg technique,

see Lemma B.5. The third step concludes and explicitly deals with the case of residuals

thanks to Propositions A.1 and A.2.

Let us now introduce additional notations. Let Fk be the sigma field generated by ek, ek−1, . . ..

Define Pt [Z] = E [Z |Ft ]−E [Z |Ft−1 ]. Wu (2007, Proposition 3) establishes that ‖Pt [ut+k]‖a ≤

δa (k) and Shao (2011b) has shown that

‖P0 [ukuk−j]‖a ≤ 2 ‖uk‖2a (δ2a (k) + δ2a (k − j) I (j ≤ k)) , (B.3)

which is smaller than 4 ‖uk‖2a δ2a (k − j) when j ≤ k. Define now the vector of martingale

difference Dt =
[
D1t, . . . , Dpnt

]′
with

Djt =
∞∑
k=t

Pt [ukuk−j]

which converges a.s. and satisfies E [Djt |Ft−1 ] = 0, maxj E [|Djt|a] <∞, provided ‖ut‖2a <

∞ and
∑∞

k=0 δ2a (k) < ∞. Consider the martingale Mj = Mjn =
∑n

t=j+1Djt which is an

approximation of R̃j. Shao (Lemma A.1, 2011b) gives under Assumption R and for any

a ∈ [1, 6a], (
E

1
a

[∣∣∣∣∣
n∑

t=j+1

utut−j −Mj

∣∣∣∣∣
a])2

≤ C. (B.4)

We shall also use a p-dependent version of Dt, denoted Dt−p+1

t , with entries

Dt−p+1

jt = E [Djt |et, . . . , et−p+1 ] =
∞∑
k=t

P′t [ukuk−j] , where (B.5)

P′t [Z] = Pt−p+1
t [Z] = E [Z |et, . . . , et−p+1 ]− E [Z |et−1, . . . , et−p+1 ] .

Arguing as in Shao (2011b, Lemma A.2-(iii)) gives

∥∥Djt −Dt−p+1

jt

∥∥
a
≤ C ‖ut‖2a Θ2a (p−j) , for all j ∈ [1, p] . (B.6)
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B.6.1. Martingale approximation and preliminary lemmas. An important property of Dt and

Dt−p+1

t is as follows.

Lemma B.2. Suppose Assumption K and R hold. Let Kjp be as in (B.1). Then for any

p ≤ p, t, and any s ≤ t− p,
∥∥∥∑p

j=1KjpDjsD
t−p+1

jt

∥∥∥
3a
≤ Cp1/2.

Proof of Lemma B.2. We have

∥∥∥∥∥
p∑
j=1

KjpDjsD
t−p+1
jt

∥∥∥∥∥
3a

=

∥∥∥∥∥
p∑
j=1

Kjp

∞∑
k1=0

Ps [us+k1us+k1−j]
∞∑
k2=0

P′t [ut+k2ut+k2−j]

∥∥∥∥∥
3a

≤

∥∥∥∥∥
p∑
j=1

Kjp

j−1∑
k1=0

Ps [us+k1us+k1−j]

j−1∑
k2=0

P′t [ut+k2ut+k2−j]

∥∥∥∥∥
3a

(B.7)

+

∥∥∥∥∥
p∑
j=1

Kjp

j−1∑
k1=0

Ps [us+k1us+k1−j]
∞∑
k2=j

P′t [ut+k2ut+k2−j]

∥∥∥∥∥
3a

(B.8)

+

∥∥∥∥∥
p∑
j=1

Kjp

∞∑
k1=j

Ps [us+k1us+k1−j]

j−1∑
k2=0

P′t [ut+k2ut+k2−j]

∥∥∥∥∥
3a

(B.9)

+

∥∥∥∥∥
p∑
j=1

Kjp

∞∑
k1=j

Ps [us+k1us+k1−j]
∞∑
k2=j

P′t [ut+k2ut+k2−j]

∥∥∥∥∥
3a

. (B.10)

We have for (B.7)

(B.7) =

∥∥∥∥∥
p∑
j=1

Kjp

p−1∑
k1=0

I (k1 < j)us+k1−jPs [us+k1 ]

p−1∑
k2=0

I (k2 < j)ut+k2−jP
′
t [ut+k2 ]

∥∥∥∥∥
3a

=

∥∥∥∥∥
p−1∑
k1=0

p−1∑
k2=0

(
p−1∑

j=k1∨k2

Kjpus+k1−jut+k2−j

)
Ps [us+k1 ] P

′
t [ut+k2 ]

∥∥∥∥∥
3a

≤
p−1∑
k1=0

p−1∑
k2=0

∥∥∥∥∥
p−1∑

j=k1∨k2

Kjpus+k1−jut+k2−j

∥∥∥∥∥
6a

δ12a (k1) δ12a (k2) ,
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using ‖P′t [ut+k2 ]‖12a ≤ ‖Pt [ut+k2 ]‖12a = δ12a (k2). Now (B.4) and the Burkholder inequality

give

∥∥∥∥∥
p−1∑

j=k1∨k2

Kjpus+k1−jut+k2−j

∥∥∥∥∥
6a

≤

∥∥∥∥∥
p−1∑

j=k1∨k2

KjpDt+k2−j,t−s+k2−k1

∥∥∥∥∥
6a

+

∥∥∥∥∥
p−1∑

j=k1∨k2

Kjp (us+k1−jut+k2−j −Dt+k2−j,t−s+k2−k1)

∥∥∥∥∥
6a

≤ Cp1/2.

Hence (B.7) is smaller than Cp1/2. For (B.8), we have since {us+k1−j, j ∈ [1, k1]} and

{P′t [ut+k2ut+k2−j] , j ∈ [1, k1] , k2 ≥ 0} are independent,

(B.8) =

∥∥∥∥∥
p−1∑
k1=0

∞∑
k2=0

(
p−1∑
j=k1

Kjpus+k1−jP
′
t [ut+k2+jut+k2 ]

)
Ps [us+k1 ]

∥∥∥∥∥
3a

≤
p−1∑
k1=0

∞∑
k2=0

∥∥∥∥∥
p−1∑
j=k1

Kjpus+k1−jP
′
t [ut+k2+jut+k2 ]

∥∥∥∥∥
6a

δ6a (k1) .

Let dt =
∑∞

k=t Pt [uk] be the martingale difference approximation of ut, see Wu (2007).

Now, since {us+k1−j, ds+k1−j,j ∈ [1, k1]} and {P′t [ut+k2ut+k2−j] , j ∈ [1, k1] , k2 ≥ 0} are inde-

pendent, arguing as in the proof of Theorem 1 in Wu (2007), (B.4) and the Burkholder

inequality give

∥∥∥∥∥
p−1∑
j=k1

Kjpus+k1−jP
′
t [ut+k2+jut+k2 ]

∥∥∥∥∥
2

6a

≤ 2

∥∥∥∥∥
p−1∑
j=k1

Kjpds+k1−jP
′
t [ut+k2+jut+k2 ]

∥∥∥∥∥
2

6a

+ 2

∥∥∥∥∥
p−1∑
j=k1

Kjp (us+k1−j − dt) P′t [ut+k2+jut+k2 ]

∥∥∥∥∥
2

6a

≤ C

∥∥∥∥∥
p−1∑
j=k1

Kjpd
2
s+k1−j (P′t [ut+k2+jut+k2 ])

2

∥∥∥∥∥
3a

+ C ‖P′t [ut+k2+jut+k2 ]‖
2

6a ≤ Ck1δ
2
6a (k2) .

Hence Assumption R gives (B.8)≤
∑p−1

k1=0

∑∞
k2=0 k1δ

2
6a (k2) δ6a (k1) ≤ C.
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For (B.9), observe first that (B.4) gives

(B.9) =

∥∥∥∥∥
∞∑
k1=0

p−1∑
k2=0

p∑
j=1

KjpI (j ≤ k1) Ps [us+k1us+k1−j] I (k2 < j) P′t [ut+k2ut+k2−j]

∥∥∥∥∥
3a

≤
∞∑
k1=0

p−1∑
k2=0

p∑
j=k2

I (j ≤ k1) δ6a (k1 − j) ‖P′t [ut+k2ut+k2−j]‖6a

≤

(
∞∑
k1=0

δ6a (k1)

)
×

p−1∑
k2=0

p∑
j=k2

‖P′t [ut+k2ut+k2−j]‖6a .

Since utt+k2−j is independent of et, . . . , et−p+1 and Pt [ut+k2 ],

‖P′t [ut+k2ut+k2−j]‖6a ≤

∥∥∥∥∥∥E [utt+k2−jPt [ut+k2 ] |et, . . . , et−p+1

]︸ ︷︷ ︸
0

∥∥∥∥∥∥
6a

+
∥∥E [(ut+k2−j − utt+k2−j)Pt [ut+k2 ] |et, . . . , et−p+1

]∥∥
6a

≤
∥∥ut+k2−j − utt+k2−j∥∥12a

‖Pt [ut+k2 ]‖12a ≤ Θ12a (k2 − j) δ12a (k2) . (B.11)

Substituting gives that (B.9)≤ C
∑p−1

k2=0

∑p
j=k2

Θ12a (k2 − j) δ12a (k2) ≤ C.

For (B.10), (B.3) and (B.11) give

(B.10) ≤ C

p∑
j=1

(
∞∑
k1=j

‖Ps [us+k1us+k1−j]‖6a

)
∞∑
k2=j

‖P′t [ut+k2ut+k2−j]‖6a

≤ C

p∑
j=1

(
∞∑
k1=j

δ6a (k1 − j)

)
∞∑
k2=j

Θ12a (k2 − j) δ12a (k2) ≤ C.

Hence substituting gives
∥∥∥∑p

j=1KjpDjsD
t−p+1
jt

∥∥∥
3a
≤ Cp1/2. �

We now define a suitable sequence of Gaussian vector. Let 2pn ≤ ` ≤ 3pn be an integer

number. Consider a sequence of independent centered Gaussian vectors ηt =
[
η1t, . . . , ηpnt

]′
with

E [ηj1tηj2t] = E
[
Dt−`+1

j1t
Dt−`+1

j2t

]
. (B.12)

We shall also assume that {ηt} and {et} are independent.
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Lemma B.3. Let {ηt} be as in (B.12) and suppose Assumption R holds. Then for all

p ∈ [1, pn] and t, s ∈ [1, n],

∑
j1 6=j2∈[1,pn]

|Cov (ηj1t, ηj2t)| ≤ C and

pn∑
j=1

∣∣Var (ηjt)− σ4
∣∣ ≤ C,

∣∣∣∣∣
p∑
j=1

(
1− j

n

)
Kjp

(
Var (ηjt)− σ4

)∣∣∣∣∣ ≤ C,

∣∣∣∣∣∣
(

2

p∑
j=1

(
1− j

n

)2

K2
jp Var2 (ηjt)

)1/2

− σ4V∆ (p)

∣∣∣∣∣∣ ≤ C,

Var

(
1

p1/2

p∑
j=1

KjpDjsηjt |Ds

)
≤ C

p

p∑
j=1

K2
jpD

2
js.

Proof of Lemma B.3. (B.4) gives for all j1, j2,

Cov (Dj1t, Dj2t) = lim
n→∞

Cov

(∑n
t=j1+1 utut−j1

(n− j1)1/2
,

∑n
t=j2+1 utut−j2

(n− j2)1/2

)
=

∞∑
k=−∞

E [u0uj1ukuk+j2 ] ,

see also Lemma A.2 in Shao (2011b), provided
∑∞

k=−∞ |E [u0uj1ukuk+j2 ]| < ∞ as shown

below. (B.6) and (B.12) give

max
j1,j2∈[0,pn]

∣∣∣∣∣Cov (ηj1t, ηj2t)−
∞∑

k=−∞

E [u0uj1ukuk+j2 ]

∣∣∣∣∣ ≤ CΘ12a (pn) . (B.13)

Now relation between cumulants and moments in Brillinger (2001) and Theorem B.1 gives

absolute summability of the 4th moments. Hence Θ12a (pn) = O(p−6
n ) gives the first bound

of the Lemma. For the second and the third bound, observe that under the null

∣∣∣∣∣
∞∑

k=−∞

E [u0ujukuk+j]− σ4

∣∣∣∣∣ ≤ ∣∣E [u2
0u

2
j

]
− E

[
u2

0

]
E
[
u2
j

]∣∣+ 2

∣∣∣∣∣
∞∑
k=1

E [u0ujukuk+j]

∣∣∣∣∣ .



27∣∣E [u2
0u

2
j

]
− E [u2

0]E
[
u2
j

]∣∣ ≤ CΘ12a (j) = O (j−6) and absolute summability of the 4th mo-

ments gives the second bound. This also gives the fourth one since∣∣∣∣∣∣
(

2

p∑
j=1

(
1− j

n

)2

K2
jp Var2 (ηjt)

)1/2

− σ4V∆ (p)

∣∣∣∣∣∣
≤

(
2

p∑
j=1

(
1− j

n

)2

K2
jp

(
Var (ηjt)− σ4

)2

)1/2

≤ 21/2

∣∣∣∣∣
p∑
j=1

(
1− j

n

)
Kjp

(
Var (ηjt)− σ4

)∣∣∣∣∣ ≤ C.

For the last one, observe first that

∑
1≤j1<j2≤pn

|Cov (ηj1t, ηj2t)|
2 ≤

 ∑
1≤j1<j2≤pn

|Cov (ηj1t, ηj2t)|

2

<∞

by Theorem B.1 since the 2th cumulants are the covariance. This gives, for any z =[
z1, . . . , zpn

]′
,

Var (z′η) = z′E [ηη′] z ≤
pn∑
j=1

Var (ηjt) z
2
j + 2

∑
1≤j1<j2≤pn

|Cov (ηj1t, ηj2t)| |zj1| |zj2|

≤ Czz′ + 2

 ∑
1≤j1<j2≤pn

|Cov (ηj1t, ηj2t)|
2

1/2 ∑
1≤j1<j2≤pn

z2
j1
z2
j2

1/2

≤ Cz′z.

Hence Var
(∑p

j=1 KjpDjsηjt |Ds

)
≤ C

(∑p
j=1 K

2
jpD

2
js

)1/2

since {Dt} and {ηt} are indepen-

dent. �

B.6.2. The deviation probability of the maximum of Proposition A.3. The proof is based on a

smooth approximation of the maximum of real numbers x1, . . . , xpn . Consider an increasing

and three times continuously differentiable real function f with

lim
x→−∞

f (x) = 1, f (x) = x for x ≥ 2, max
i=1,2,3

sup
x

∣∣f (i) (x)
∣∣ <∞. (B.14)
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Let e = en → ∞ with ln (pn) /e = o(1). Then maxp∈[1,pn] {f (xp)} ≤
(∑pn

p=1 f
e (xp)

)1/e

≤

p1/e
n maxp∈[1,pn] {f (xp)} gives that

(
pn∑
p=1

f e (xp)

)1/e

=

(
1 +O

(
ln pn
e

))
max
p∈[1,pn]

{f (xp)} . (B.15)

We will first find a suitable approximation for the distribution of

M =

(
pn∑
p=1

f e (šp)

)1/e

where Šp = n

p∑
j=1

Kjp

(
Mjn

n

)2

, šp =
Šp − σ4E∆(p)

σ4V∆(p)
. (B.16)

Define, for η =
[
η1, . . . , ηpn

]′
and x ∈ [0, 1],

Mjt (x; η) =
t−1∑

s=j+1

Djs + xηj +
n∑

s=t+1

ηjs, Rjt (x; η) =
Mjt (x; η)

n

špt (x; η) =
n
∑p

j=1 KjpR
2
jt (x; η)− σ4E∆(p)

σ4V∆ (p)
, Σt (x; η) = f (špt (x; η)) ,

Mt (x; η) =

(
pn∑
p=1

Σe
t (x; η)

) 1
e

, Mt (η) =Mt (1; η) , (B.17)

and

š
(1)
pt (x; η) =

dšpt (x; η)

dx
=

2
∑p

j=1 Kjp

(∑t−1
s=j+1Djs + xηj +

∑n
s=t+1 ηjs

)
ηj

nσ4V∆ (p)
,

š
(2)
pt (x; η) =

d2
ptš (x; η)

dx2
=

2
∑p

j=1 Kjpη
2
j

nσ4V∆ (p)
,

Σ
(1)
pt (x; η) = f (1) (špt (x; η)) š

(1)
pt (x; η) ,

Σ
(2)
pt (x; η) = f (2) (špt (x; η))

(
š

(1)
pt (x; η)

)2

+ f (1) (špt (x; η)) š
(2)
pt (x; η) ,

Σ
(3)
pt (x; η) = f (3) (špt (x; η))

(
š

(1)
pt (x; η)

)3

+ 3f (2) (špt (x; η)) š
(1)
pt (x; η) š

(2)
pt (x; η) .

We first bound the moments of Σ
(1)
pt (x; η), Σ

(2)
pt (x; η) and Σ

(3)
pt (x; η) when η is set to Dt or

ηt.
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Lemma B.4. Under Assumption R and if pn = O
(
n1/2

)
, we have uniformly in p ∈ [1, pn],

x ∈ [0, 1] and t = 1, . . . , n,

max
{∥∥∥Σ

(1)
pt (x;Dt)

∥∥∥
3a
,
∥∥∥Σ

(1)
pt (x; ηt)

∥∥∥
3a

}
≤ C

n1/2
, (B.18)

max

{∥∥∥Σ
(2)
pt (x;Dt)

∥∥∥
3a/2

,
∥∥∥Σ

(2)
pt (x; ηt)

∥∥∥
3a/2

}
≤ Cp1/2

n
, (B.19)

max
{∥∥∥Σ

(3)
pt (x;Dt)

∥∥∥
a
,
∥∥∥Σ

(3)
pt (x; ηt)

∥∥∥
a

}
≤ Cp1/2

n3/2
. (B.20)

Proof of Lemma B.4. (B.14) gives

∣∣∣Σ(1)
pt (x; η)

∣∣∣ ≤ C
∣∣∣š(1)
pt (x; η)

∣∣∣ , ∣∣∣Σ(2)
pt (x; η)

∣∣∣ ≤ C

((
š

(1)
pt (x; η)

)2

+
∣∣∣š(2)
pt (x; η)

∣∣∣) ,∣∣∣Σ(3)
pt (x; η)

∣∣∣ ≤ C
∣∣∣š(1)
pt (x; η)

∣∣∣ ((š(1)
pt (x; η)

)2

+
∣∣∣š(2)
pt (x; η)

∣∣∣) . (B.21)

(B.21) shows that the lemma directly follows from

max
{∥∥∥š(1)

pt (x;Dt)
∥∥∥

3a
,
∥∥∥š(1)

pt (x; ηt)
∥∥∥

3a

}
≤ C

n1/2
, (B.22)

max

{∥∥∥š(2)
pt (x;Dt)

∥∥∥
3a/2

,
∥∥∥š(2)

pt (x; ηt)
∥∥∥

3a/2

}
≤ Cp1/2

n
. (B.23)

(B.23) directly follow from the triangular inequality. For (B.22), we first bound
∥∥∥š(1)

pt (x;Dt)
∥∥∥

3a
.

We have

∥∥∥š(1)
pt (x;Dt)

∥∥∥
3a
≤ C

∥∥∥∥∥∥
∑t−1

s=1

(∑p
j=1KjpDjsDjt

)
np1/2

∥∥∥∥∥∥
3a

(B.24)

+ C

∥∥∥∥∥
∑p

j=1KjpD
2
jt

np1/2

∥∥∥∥∥
3a

+ C

∥∥∥∥∥∥
∑n

s=t+1

(∑p
j=1 KjpDjtηjs

)
np1/2

∥∥∥∥∥∥
3a

. (B.25)
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We have, for the first item (B.24)

(B.24) ≤

∥∥∥∥∥
∑p

j=1 Djt

∑t−p
s=1KjpDjs

np1/2

∥∥∥∥∥
3a

+

∥∥∥∥∥
∑t−1

s=t−p+1Djt

∑p
j=1KjpDjs

np1/2

∥∥∥∥∥
3a

≤

∥∥∥∥∥
∑p

j=1 Djt

∑t−p
s=1KjpDjs

np1/2

∥∥∥∥∥
3a

+
1

np1/2

p∑
j=1

‖KjpDjt‖6a

∥∥∥∥∥
t−1∑

s=t−p+1

Djs

∥∥∥∥∥
6a

≤

∥∥∥∥∥
∑t−p

s=1 Kjp

∑p
j=1DjtDjs

np1/2

∥∥∥∥∥
3a

+
Cp1/2p1/2

n
,

where p ≥ p and by the Burkholder inequality. Now let D̃jt = Dt−p+1
jt be as in (B.5). Since∑p

j=1 KjpDjsD̃jt is a martingale difference given et, . . . , et−p+1, (B.6), the Burkholder and

triangular inequalities, Lemma B.2 give

∥∥∥∥∥
∑p

j=1

∑t−p
s=1 KjpDjsDjt

np1/2

∥∥∥∥∥
3a

≤

∥∥∥∥∥
∑t−p

s=1

∑p
j=1KjpDjsD̃jt

np1/2

∥∥∥∥∥
3a

+
1

np1/2

p∑
j=1

|Kjp|

∥∥∥∥∥
t−p∑
s=1

Djs

∥∥∥∥∥
6a

∥∥∥Djt − D̃jt

∥∥∥
6a

≤ C

np1/2

 t−p∑
s=1

∥∥∥∥∥
p∑
j=1

KjpDjsD̃jt

∥∥∥∥∥
2

3a

1/2

+ C
Θ6a (p− p)

p1/2

≤ C

np1/2
(|t− p| p)1/2 + C

Θ6a (p− p)
p1/2

≤ C

(
1

n1/2
+

Θ6a (p− p)
p1/2

)
.

Hence substituting gives

∥∥∥∥∥∥
∑t−1

s=1

(∑p
j=1KjpDjsDjt

)
np1/2

∥∥∥∥∥∥
3a

≤ C

(
1

n1/2
+
p1/2p1/2

n
+

Θ6a (p− p)
p1/2

)
. (B.26)
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For the first item in (B.25), (B.23) gives a bound C/n1/2. For the second item in (B.25),

conditional Gaussianity of the
{∑p

j=1 KjpDjtηjs

}
and Lemma B.3 give∥∥∥∥∥∥

∑n
s=t+1

(∑p
j=1KjpDjtηjs

)
np1/2

∥∥∥∥∥∥
3a

≤ C

np1/2

∥∥∥∥∥∥
{

n∑
s=t+1

(
p∑
j=1

K2
jpD

2
jt

)}1/2
∥∥∥∥∥∥

3a

≤ C

np1/2

∥∥∥∥∥
n∑

s=t+1

(
p∑
j=1

K2
jpD

2
jt

)∥∥∥∥∥
1/2

3a/2

≤ C

np1/2

(
n∑

s=t+1

p∑
j=1

K2
jp ‖Djt‖2

3a

)1/2

≤ C

np1/2
((n− t) p)1/2 ≤ C

n1/2
.

Substituting the two last bounds in (B.25) and (B.26) in (B.24) shows that

max
{∥∥∥š(1)

pt (x;Dt)
∥∥∥

3a
,
∥∥∥š(1)

pt (x; ηt)
∥∥∥

3a

}
≤ C

(
1

n1/2
+
p1/2p1/2

n
+

Θ6a (p− p)
p1/2

)
. (B.27)

Observe that Θ6a (p− p) ≤ C (p− p)−11/2 by Assumption R. Consider now

p = max

(
2p,

(
n

p

) 1
6

)
≥ 2p,

which is such that, since p ∈ [1, pn] with pn = O
(
n1/2

)
,

If

(
n

p

) 1
6

≥ 2p,
(p− p)−11/2

p1/2
� p1/2p1/2

n
≤ p

n
≤ 1

n5/6
≤ 1

n1/2
,

If

(
n

p

) 1
6

< 2p⇔
( n

26

) 1
7
< p,

Θ6a (p− p)
p1/2

≤ Cp−6 ≤ C

n1/2
,
p1/2p1/2

n
≤ pn

n
≤ C

n1/2
.

Hence (B.27) gives (B.22). �

Let I (·) be a three times differentiable real function and define for Mt (η) as in (B.17),

It (η) = Itn (η) = I (Mt (η)) , It (x; η) = I (xη) , I(j)
t (x; η) =

djtI (x; η)

djx
, j = 1, 2.

Observe that I (M) = I (Mn (Dn)) = In (Dn), It (Dt) = It+1 (ηt+1), and that I (M1 (η1))

= I1 (η1) is a function of the Gaussian vectors η1, . . . , ηn only.
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Lemma B.5. LetM andM1 (η1) be as in (B.16) and (B.17). Consider a real function I (·)

which may depend on n and three times continuously differentiable with maxj=1,2,3 supx
∣∣I(j) (x)

∣∣ ≤
C. Then under Assumptions P, R and if e = O

(
p1/(2a)
n

)
,

|E [I (M)− I (M1 (η1))]| ≤ C

(
p1+3/a
n

n1/2
+

1

p1−1/a
n

)
.

Proof of Lemma B.5. The proof of the Lemma works by changing Dn into ηn, Dn−1 into

ηn−1 and so on, the so called Lindeberg technique described in Pollard (2002, p.179). This

amounts to decompose I (M)− I (Mn (ηn)) into the following sum of differences,

I (M)− I (Mn (ηn))

= In (Dn)− In−1 (Dn−1) + In−1 (Dn−1)− In−2 (Dn−2) + · · ·+ I1 (D1)− I1 (η1)

= In (Dn)− In (ηn) + In−1 (Dn−1)− In−1 (ηn−1) + · · ·+ I1 (D1)− I1 (η1) .

Since It(η) = It(1; η) and It(0; η) = It(0), a third-order Taylor expansion around η = 0 with

integral remainder gives

[It(Dt)− It(ηt)] = E
[
I(1)
t (0;Dt)− I(1)

t (0; ηt)
]

+
1

2
E
[
I(2)
t (0;Dt)− I(2)

t (0; ηt)
]

+
1

2

∫ 1

0

(1− x)2E
[
I(3)
t (x;Dt)− I(3)

t (x; ηt)
]
dx.

Since {Dt} is a sequence of martingale difference, E
[
I(1)
t (0;Dt)− I(1)

t (0; ηt)
]

= 0 due to the

expression of I(1)
t (0; η) given above. Hence

|E [I (M)]− E [I (M1 (η1))]| ≤ 1

2

∣∣∣∣∣
n∑
t=1

E
[
I(2)
t (0;Dt)− I(2)

t (0; ηt)
]∣∣∣∣∣ (B.28)

+
1

2

∫ 1

0

(1− x)2

{
n∑
t=1

∣∣∣E [I(3)
t (x;Dt)− I(3)

t (x; ηt)
]∣∣∣} dx. (B.29)
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We now compute the differentials I(j)
t (x; η), j = 1, 2, 3. We have

I(1)
t (x; η) = I ′ (Mt (x; η))M(1)

t (x; η) ,

I(2)
t (x; η) = I

′′
(Mt (x; η))

(
M(1)

t (x; η)
)2

+ I ′ (Mt (x; η))M(2)
t (x; η) ,

I(3)
t (x; η) = I

′′′
(Mt (x; η))

(
M(1)

t (x; η)
)3

+ 3I
′′

(Mt (x; η))M(1)
t (x; η)M(2)

t (x; η)

+ I ′ (Mt (x; η))M(3)
t (x; η) .

We compute the differentials of Mt. We have

M(1)
t (x; η) =

(
pn∑
p=1

Σe
pt (x; η)

)1/e−1 pn∑
p=1

Σe−1
pt (x; η) Σ

(1)
pt (x; η)

=M1−e
t (x; η)

pn∑
p=1

Σe−1
pt (x; η) Σ

(1)
pt (x; η) ,

M(2)
t (x; η) =M(2)

1t (x; η) +M(2)
2t (x; η) +M(2)

3t (x; η) ,

M(3) (x; η) =M(3)
1t (x; η) + · · ·+M(3)

6t (x; η) ,



34

where, dropping the variables x, η for notational convenience

M(2)
1t =

(
1

e
− 1

)
M1−2e

t

(
pn∑
p=1

Σe−1
pt Σ

(1)
pt

)2

,

M(2)
2t =M1−e

t

pn∑
p=1

Σe−1
pt Σ

(2)
pt ,

M(2)
3t = (e− 1)M1−e

t

pn∑
p=1

Σe−2
pt

(
Σ

(1)
pt

)2

,

M(3)
1t =

(
1

e
− 1

)(
1

e
− 2

)
M1−3e

t

(
pn∑
p=1

Σe−1
pt Σ

(1)
pt

)3

,

M(3)
2t = 3

(
1

e
− 1

)
M1−2e

t

pn∑
p=1

Σe−1
pt Σ

(1)
pt

pn∑
p=1

Σe−1
pt Σ

(2)
pt ,

M(3)
3t = 3

(
1

e
− 1

)
(e− 1)M1−2e

t

pn∑
p=1

Σe−1
pt Σ

(1)
pt

pn∑
p=1

Σe−2
pt

(
Σ

(1)
pt

)2

,

M(3)
4t = (3e− 1)M1−e

t

pn∑
p=1

Σe−2
pt Σ

(2)
pt Σ

(1)
pt ,

M(3)
5t = (e− 1) (e− 2)M1−e

t

pn∑
p=1

Σe−2
pt

(
Σ

(1)
pt

)3

,

M(3)
6t =M1−e

t

pn∑
p=1

Σe−1
pt Σ

(3)
pt .

The third-order item(B.29). Since

1

2

∫ 1

0

(1− x)2

{
n∑
t=1

∣∣∣E [I(3)
t (x;Dt)− I(3)

t (x; ηt)
]∣∣∣} dx

≤ 1

2

∫ 1

0

(1− x)2

{
n∑
t=1

(∣∣∣E [I(3)
t (x;Dt)

]∣∣∣+
∣∣∣E [I(3)

t (x; ηt)
]∣∣∣)} dx,
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it is sufficient to bound
∑n

t=1

∣∣∣E [I(3)
t (x)

]∣∣∣ independently of x where I(3)
t (x) stands for

I(3)
t (x; ηt) or I(3)

t (x;Dt). We have, dropping dependence w.r.t. to x for ease of notation,

n∑
t=1

∣∣∣E [I(3)
t

]∣∣∣ ≤ C
n∑
t=1

{
E
[∣∣∣M(1)

t

∣∣∣3]+ E
[∣∣∣M(1)

t M
(2)
1t

∣∣∣]+ E
[∣∣∣M(1)

t M
(2)
2t

∣∣∣]}

+ C
n∑
t=1

{
E
[∣∣∣M(1)

t M
(2)
3t

∣∣∣]+
6∑
j=1

E
[∣∣∣M(3)

jt

∣∣∣]} .

We now study the ten items above.

(1)
∑n

t=1 E
[∣∣∣M(1)

t

∣∣∣3]. We have for a, a ≥ 1 with 1/a = 1− 1/a,

E
[∣∣∣M(1)

t

∣∣∣3] = E

∣∣∣∣∣M1−e
t

pn∑
p=1

Σe−1
pt Σ

(1)
pt

∣∣∣∣∣
3


≤
pn∑

p1,p2,p3=1

E
[∣∣∣M3(1−e)

t Σe−1
p1t

Σe−1
p2t

Σe−1
p3t

Σ
(1)
p1tΣ

(1)
p2tΣ

(1)
p3t

∣∣∣]

≤ max
p,t

∥∥∥Σ
(1)
pt

∥∥∥3

3a

pn∑
p1,p2,p3=1

E1/a

[∣∣∣M3(1−e)
t Σe−1

p1t
Σe−1
p2t

Σe−1
p3t

∣∣∣a]

≤ C

n3/2

pn∑
p1,p2,p3=1

E1/a

[∣∣∣M3(1−e)
t Σe−1

p1t
Σe−1
p2t

Σe−1
p3t

∣∣∣a] ,
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by (B.18) for all x ∈ [0, 1]. Now, since t 7→ t1/a, t 7→ t1−1/e are concave and
∑pn

p=1 t
a
p ≤(∑pn

p=1 tp

)a
, the definition of Mt gives

pn∑
p1,p2,p3=1

E1/a

[∣∣∣M3(1−e)
t Σe−1

p1t
Σe−1
p2t

Σe−1
p3t

∣∣∣a]

= p3
n ×

1

p3
n

pn∑
p1,p2,p3=1

E1/a

[∣∣∣M3(1−e)
t Σe−1

p1t
Σe−1
p2t

Σe−1
p3t

∣∣∣a]

≤ p3
n

(
1

p3
n

E

[
pn∑

p1,p2,p3=1

M3a(1−e)
t Σ

ae(1−1/e)
p1t Σ

ae(1−1/e)
p2t Σ

ae(1−1/e)
p3t

])1/a

= p3
n

E

( pn∑
p=1

Σe
pt

)−3a(1−1/e)(
1

pn

pn∑
p=1

Σ
ae(1−1/e)
pt

)3
1/a

≤ p3
n

E

( pn∑
p=1

Σae
pt

)−3(1−1/e)(
1

pn

pn∑
p=1

Σae
pt

)3(1−1/e)
1/a

≤ p3(1−1/a)+3/(ea)
n ≤ Cp3/a

n ,

uniformly w.r.t. to t since (ln pn) /e = o(1). Hence for all x ∈ [0, 1]

n∑
t=1

E
[∣∣∣M(1)

t

∣∣∣3] ≤ C
p3/a
n

n1/2
. (B.30)

(2)
∑n

t=1 E
[∣∣∣M(1)

t M
(2)
1t

∣∣∣]. We have, since Mt ≥ 1,

E
[∣∣∣M(1)

t

∣∣∣ ∣∣∣M(2)
1t

∣∣∣] ≤ CE

M2−3e
t

∣∣∣∣∣
pn∑
p=2

Σe−1
pt Σ

(1)
pt

∣∣∣∣∣
3
 ≤ CE

M3−3e
t

∣∣∣∣∣
pn∑
p=2

Σe−1
pt Σ

(1)
pt

∣∣∣∣∣
3


≤ CE
[∣∣∣M(1)

t

∣∣∣3] ,
for all t, such that

∑n
t=1 E

[∣∣∣M(1)
t

∣∣∣2 ∣∣∣M(2)
1t

∣∣∣] ≤ C
∑n

t=1 E
[∣∣∣M(1)

t

∣∣∣3]. Hence a bound similar

to (B.30) holds.
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(3)
∑n

t=1 E
[∣∣∣M(1)

t M
(2)
2t

∣∣∣]. Let a > 1 be such that 1/a = 1− 1/a. Arguing as for (1) with

(B.18) and (B.19),

E
[∣∣∣M(1)

t M
(2)
1t

∣∣∣] ≤ C

pn∑
p1,p2=1

E
[
M2(1−e)

t

∣∣∣Σe−1
p1t

Σe−1
p2t

Σ
(1)
p1tΣ

(2)
p2t

∣∣∣]

≤ C max
p,t

{∥∥∥Σ
(1)
pt

∥∥∥
3a

∥∥∥Σ
(2)
pt

∥∥∥
3a/2

} pn∑
p1,p2=1

E1/a

[∣∣∣M2(1−e)
t Σe−1

p1t
Σe−1
p2t

∣∣∣a]

≤ C
p1/2
n

n3/2
× p2

n × E1/a

( pn∑
p=1

Σe
pt

)−2a(1−1/e)(
1

pn

pn∑
p=1

Σ
ea(1−1/e)
pt

)2


≤ C
p1/2
n

n3/2
× p2

n × E1/a

( pn∑
p=1

Σ
ea(1−1/e)
pt

)−2(
1

pn

pn∑
p=1

Σ
ea(1−1/e)
pt

)2


= C
p1/2
n

n3/2
× p2

n × p−2/a
n = C

p
1
2

(1+4/a)
n

n3/2
.

Hence, uniformly w.r.t. x ∈ [0, 1],

n∑
t=1

E
[∣∣∣M(1)

t M
(2)
2t

∣∣∣] ≤ C
p

1
2

(1+4/a)
n

n1/2
. (B.31)

(4)
∑n

t=1 E
[∣∣∣M(1)

t M
(2)
3t

∣∣∣]. Proceeding as (1) and (3) gives, since infp,t Σpt ≥ 1,

E
[∣∣∣M(1)

t M
(2)
3t

∣∣∣] ≤ Ce

pn∑
p1,p2=1

E
[
M2(1−e)

t

∣∣∣∣Σe−1
p1t

Σe−1
p2t

Σ
(1)
p1t

(
Σ

(1)
p2t

)2
∣∣∣∣] ≤ C

ep2/a
n

n3/2
≤ C

p3/a
n

n3/2
,

provided e = O(p1/a
n ). Hence

∑n
t=1 E

[∣∣∣M(1)
t M

(2)
3t

∣∣∣] can be bounded as in (B.30).

(5)
∑n

t=1 E
[∣∣∣M(3)

1t

∣∣∣] can be bounded as in (B.30) since Mt ≥ 1 gives E
[∣∣∣M(3)

1t

∣∣∣] ≤
CE

[
M3(1−e)

t

∣∣∣∑pn
p=2 Σe−1

pt Σ
(1)
pt

∣∣∣3] .
(6)

∑n
t=1 E

[∣∣∣M(3)
2t

∣∣∣]. Arguing as in (3) gives that
∑n

t=1 E
[∣∣∣M(3)

2t

∣∣∣] can be bounded as in

(B.31).



38

(7)
∑n

t=1 E
[∣∣∣M(3)

3t

∣∣∣]. Arguing as in (4) shows that this item is negligible compared to

(B.30).

(8)
∑n

t=1 E
[∣∣∣M(3)

4t

∣∣∣]. Let a > 1 be such that 1/a = 1− 1/a. We have, since infp,t Σpt ≥ 1,

E
[∣∣∣M(3)

4t

∣∣∣] ≤ CeE

[
M1−e

t

pn∑
p=1

∣∣∣Σe−2
pt Σ

(2)
pt Σ

(1)
pt

∣∣∣] ≤ Ce

pn∑
p=po

E1/a
[(
M1−e

t Σe−1
pt

)a] ∥∥∥Σ
(2)
pt

∥∥∥
3a/2

∥∥∥Σ
(1)
pt

∥∥∥
3a

≤ C
ep1/2

n p1−1/a
n

n3/2
≤ C

p
1
2

(1+4/a)
n

n3/2
,

provided e = O
(
p1/a
n

)
. This gives a bound similar to (B.31) for

∑n
t=1 E

[∣∣∣M(3)
4t

∣∣∣].
(9)

∑n
t=1 E

[∣∣∣M(3)
5t

∣∣∣] can be bounded as in (B.30) provided e = O(p1/(2a)
n ).

(10)
∑n

t=1 E
[∣∣∣M(3)

6t

∣∣∣] can be bounded as in (B.31).

Hence, collecting the dominant bounds (B.30) and (B.31) in (1)-(10) gives

1

2

∫ 1

0

(1− x)2

{
n∑
t=1

∣∣∣E [I(3)
t (x;Dt)− I(3)

t (x; ηt)
]∣∣∣} dx ≤ C

p
3
a
n + p

1
2

(1+4/a)
n

n1/2
≤ C

(
p

1+ 4
a

n

n

) 1
2

.

(B.32)

The second-order term (B.28). Note that I(2)
t (0; η) = η′Atη where At depends upon

D1, . . . , Dt−1 and ηt+1, . . . , ηn. In the standard Lindeberg method, {Dt, t ∈ [1, n]} and {ηt, t ∈ [1, n]}

are both independent variables with identical mean and variance, so that the second order

term, which writes as a sum of items E [D′tAtDt] − E [η′tAtηt], is equal to 0 in this simpler

case. However this does not hold in our case. In this step, the second order term is dealt

with by removing from I(2)
t (0; η) a block

∑p
j=1 Kjp

∑t−1
s=t−`Djs and by changing the Djt into

Dt−`+1
jt = E [Djt |et, . . . , et−`+1 ].

Observe that I(2)
t (0; η) = I(2)

1t (0; η) + I(2)
2t (0; η) + I(2)

3t (0; η) + I(2)
4t (0; η) with, dropping the

dependence upon 0 and η,
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I(2)
1t =

(
1

e
− 1

)
I

(1)
tnM1−2e

t

(
pn∑
p=1

Σe−1
pt Σ

(1)
pt

)2

, I
(1)
tn = I ′ (Mt) ,

I(2)
2t = I

(1)
tnM1−e

t

pn∑
p=1

Σe−1
pt Σ

(2)
pt , I(2)

3t = (e− 1) I
(1)
tnM1−e

t

pn∑
p=1

Σe−1
pt

(
Σ

(1)
pt

)2

,

I(2)
4t = I

′′
(Mt)

(
M1−e

t

pn∑
p=1

Σe−1
pt Σ

(1)
pt

)2

.

Observe Mt (0;Dt) = Mt (0; ηt) and Σpt (0;Dt) = Σpt (0; ηt) and that these quantities do

not depend upon ηt or Dt. We shall first focus on I(2)
1t . Let ` ≥ 2pn be an integer number.

Define, for y ∈ [0, 1],

Spt (y; η) =
2
∑p

j=1Kjp

(∑t−`−1
s=j+1 Djs + y

∑t−1
s=t−`Djs +

∑n
s=t+1 ηjs

)
ηj

nσ4V∆ (p)
,

Spt (y) = Spt

(
y; yDt + (1− y)Dt−`+1

t

)
,

Tpt (y; η) = š
(2)
pt (y; η) =

2
∑p

j=1Kjpη
2
j

nσ4V∆ (p)
, Tpt (y) = Tpt

(
y; yDt + (1− y)Dt−`+1

t

)
,
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which are such that Spt (1; η) = š
(1)
pt (0; η), Spt (1) = š

(1)
pt (0;Dt), Tpt (1) = š

(2)
pt (0;Dt). Define

also

Mjt (y) =
t−`−1∑
s=j+1

Djs + y

t−1∑
s=t−`

Djs +
n∑

s=t+1

ηjs, Rjt (y) =
Mjt (y)

n
,

spt (y) =
n
∑p

j=1KjpR
2
jt (y)− σ4E∆(p)

σ4V∆ (p)
, Σpt (y) = f (spt (y)) ,

Σ̃
(1)
pt (y; η) = f (1) (spt (y))Spt (y; η) ,

Σ̃
(2)
pt (y; η) = f (1) (spt (y))Tpt (y; η) + f (2) (spt (y)) (Spt (y; η))2 ,

Σ̃
(1)
pt (y) = Σ̃

(1)
pt

(
y; yDt + (1− y)Dt−`+1

t

)
,

Σ̃
(2)
pt (y; η) = Σ̃

(2)
pt

(
y; yDt + (1− y)Dt−`+1

t

)
,

Mt (y) =

(
pn∑
p=1

Σe
pt (y)

) 1
e

, I
(1)
tn (y) = I ′ (Mt (y)) ,

and the counterpart of I(2)
1t (0; ηt) and I(2)

1t (0;Dt) as

It (y; η) =

(
1

e
− 1

)
I

(1)
tn (y)M1−2e

t (y)

(
pn∑
p=1

Σe−1
pt (y) Σ̃

(1)
pt (y; η)

)2

,

It (y) = It
(
y; yDt + (1− y)Dt−`+1

t

)
.

Observe that I(2)
1t (0; ηt) = It (1; ηt) and I(2)

1t (0;Dt) = It (1). Hence E
[
I(2)

1t (0;Dt)− I(2)
1t (0; ηt)

]
=

E [It (1)− It (1; ηt)] and

E
[
I(2)

1t (0;Dt)− I(2)
1t (0; ηt)

]
= E [It (0)− It (0; ηt)] (B.33)

+

∫ 1

0

E
[
I

(1)
t (y)− I

(1)
t (y; ηt)

]
dy, (B.34)

where I
(1)
t (y) = dIt (y) /dy and I

(1)
t (y; ηt) = dIt (y; ηt) /dy.



41

We first consider the integral item
∫ 1

0

∣∣∣E [I(1)
t (y)

]∣∣∣ dy from (B.34) and first compute I
(1)
1t (y).

Define

S
(1)
pt (y) =

dSpt (y)

dy
=

2
∑p

j=1 Kjp

(∑t−1
s=t−`Djs

) (
yDjt + (1− y)Dt−`+1

jt

)
nσ4V∆ (p)

+
2
∑p

j=1Kjp

(∑t−`−1
s=j+1Djs + y

∑t−1
s=t−`Djs +

∑n
s=t+1 ηjs

) (
Dt−`+1
jt −Djt

)
nσ4V∆ (p)

,

T
(1)
pt (y) =

dTpt (y)

dy
=

4
∑p

j=1Kjp

(
yDjt + (1− y)Dt−`+1

jt

) (
Djt −Dt−`+1

jt

)
nσ4V∆ (p)

,

s
(1)
pt (y) =

dspt (y)

dy
=

2
∑p

j=1KjpMjt (y)
∑t−1

s=t−`Djs

nσ4V∆ (p)
,

Σ̃
(1,1)
pt (y) =

dΣ̃
(1)
pt (y)

dy
= f (2) (spt (y)) s

(1)
pt (y)Spt (y) + f (1) (spt (y))S

(1)
pt (y) ,

Σ̃
(2,1)
pt (y) =

dΣ̃
(2)
pt (y)

dy
= f (2) (spt (y)) s

(1)
pt (y)Tpt (y) + f (1) (spt (y))T

(1)
pt (y)

+ f (3) (spt (y)) s
(1)
pt (y) (Spt (y))2 + 2f (2) (spt (y))Spt (y)S

(1)
pt (y) ,

I
(2)
tn (y) = I ′′ (Mt (y)) ,

and

I
(1)
1t (y) =

(
1

e
− 1

)
I

(2)
tn (y)M2−3e

t (y)

(
pn∑
p=1

Σe−1
pt (y) Σ̃

(1)
pt (y)

)2 pn∑
p=1

Σe−1
pt (y) Σ

(1)
pt (y) ,

I
(1)
2t (y) =

(
1

e
− 1

)(
1

e
− 2

)
I

(1)
tn (y)M1−3e

t (y)

(
pn∑
p=1

Σe−1
pt (y) Σ̃

(1)
pt (y)

)2 pn∑
p=1

Σe−1
pt (y) Σ

(1)
pt (y) ,

I
(1)
3t (y) = 2

(
1

e
− 1

)
(e− 1) I

(1)
tn (y)M1−2e

t (y)

(
pn∑
p=1

Σe−1
pt (y) Σ̃

(1)
pt (y)

)(
pn∑
p=1

Σe−2
pt (y)

(
Σ

(1)
pt (y)

)2
)
,

I
(1)
4t (y) = 2

(
1

e
− 1

)
I

(1)
tn (y)M1−2e

t (y)

(
pn∑
p=1

Σe−1
pt (y) Σ̃

(1)
pt (y)

)(
pn∑
p=1

Σe−1
pt (y) Σ̃

(1,1)
pt (y)

)
.
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To bound the moments of Σ̃
(1)
pt (y), Σ̃

(1,1)
pt (y) and Σ

(1)
pt (y), consider first ‖Spt (y)‖3a,

∥∥∥S(1)
pt (y)

∥∥∥
3a

and
∥∥∥s(1)

pt (y)
∥∥∥

3a
. For ‖Spt (y)‖3a and

∥∥∥S(1)
pt (y)

∥∥∥
3a

, (B.18), the Burkholder inequality, (B.6)

pn = O
(
n1/2

)
, 2pn ≤ ` ≤ 3pn and Θ6a (`− pn) ≤ Cp−1

n give

‖Spt (y)‖3a

≤

∥∥∥∥∥∥
2
∑p

j=1Kjp

(∑t−`−1
s=j+1 Djs + y

∑t−1
s=t−`Djs +

∑n
s=t+1 ηjs

)
Djt

nσ4V∆ (p)

∥∥∥∥∥∥
3a

+ 2 |1− y|
p∑
j=1

|Kjp|
nσ4V∆ (p)

∥∥∥∥∥
(
t−`−1∑
s=j+1

Djs + y

t−1∑
s=t−`

Djs +
n∑

s=t+1

ηjs

)∥∥∥∥∥
6a

∥∥Djt −Dt−`+1
jt

∥∥
6a

≤ C

(
1

n1/2
+
pn
n

+

(
pn
n

)1/2

Θ6a (`− pn)

)
≤ C

n1/2
,

∥∥∥S(1)
pt (y)

∥∥∥
3a

≤

∥∥∥∥∥2
∑p

j=1 Kjp

(∑t−1
s=t−`Djs

)
Djt

nσ4V∆ (p)

∥∥∥∥∥
3a

+ 2 |1− y|
p∑
j=1

|Kjp|
nσ4V∆ (p)

∥∥∥∥∥
t−1∑
s=t−`

Djs

∥∥∥∥∥
6a

∥∥Djt −Dt−`+1
jt

∥∥
6a

+ 2

p∑
j=1

|Kjp|
nσ4V∆ (p)

∥∥∥∥∥
t−`−1∑
s=j+1

Djs + y

t−1∑
s=t−`

Djs +
n∑

s=t+1

ηjs

∥∥∥∥∥
6a

∥∥Djt −Dt−`+1
jt

∥∥
6a

≤ C

(
`1/2

n
+
`1/2p1/2

n

n
Θ6a (`− pn) +

(
pn
n

)1/2

Θ6a (`− pn)

)

≤ C

(
p1/2
n

n
+

1

(npn)1/2

)
,

‖Tpt (y)‖3a ≤ C
p1/2
n

n
,
∥∥∥T(1)

pt (y)
∥∥∥

3a
≤ C

npn
.
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For
∥∥∥s(1)

pt (y)
∥∥∥

3a
(B.18), pn = O

(
n1/2

)
and the Burkholder inequality give

∥∥∥s(1)
pt (y)

∥∥∥
3a

≤

∥∥∥∥∥2
t−1∑

s1=t−`

p∑
j=1

Kjp

nσ4V∆ (p)

(
t−`−1∑
s2=j+1

Djs2

)
Djs1

∥∥∥∥∥
3a

+

∥∥∥∥∥2
∑p

j=1Kjp

(∑t−1
s=t−`Djs

)2

nσ4V∆ (p)

∥∥∥∥∥
3a

+

∥∥∥∥∥2
∑p

j=1Kjp

(∑t−1
s=t−`Djs

) (∑n
s=t+1 ηjs

)
nσ4V∆ (p)

∥∥∥∥∥
3a

≤ C

 t−1∑
s1=t−`

∥∥∥∥∥
p∑
j=1

Kjp

nσ4V∆ (p)

(
t−`−1∑
s2=j+1

Djs2

)
Djs1

∥∥∥∥∥
2

3a

1/2

+ C

p∑
j=1

|Kjp|
nσ4V∆ (p)

∥∥∥∥∥
t−1∑
s=t−`

Djs

∥∥∥∥∥
2

6a

+ C

∥∥∥∥∥∥∥
(∑p

j=1 K
2
jp

(∑t−1
s=t−`Djs

)2
)1/2

(np)1/2

∥∥∥∥∥∥∥
3a

≤ C

(
`1/2

(
1

n1/2
+
pn
n

)
+
p1/2
n `

n
+
`1/2

n1/2

)
≤ C

(
pn
n

)1/2

.

These bounds and (B.14) give, uniformly in y, p and t,

∥∥∥Σ̃
(1)
pt (y)

∥∥∥
3a
≤ C

n1/2
,
∥∥∥Σ(1)

pt (y)
∥∥∥

3a
≤ C

(
pn
n

)1/2

,

∥∥∥Σ̃
(1,1)
pt (y)

∥∥∥
3a/2
≤ C

(
p1/2
n

n
+

(
pn
n

)3/2

+
p1/2
n

n3/2
+

1

np1/2
n

)
≤ C

p1/2
n

n
.

Now, arguing as for the study of (B.29), e = O
(
p1/a
n

)
give uniformly in p, t and y,

E
[∣∣∣I(1)

1t (y)
∣∣∣]+ E

[∣∣∣I(1)
2t (y)

∣∣∣]+ E
[∣∣∣I(1)

4t (y)
∣∣∣] ≤ C

p1/2+3/a
n

n3/2
, E

[∣∣∣I(1)
3t (y)

∣∣∣] ≤ C
p1+3/a
n

n3/2
.

It then follows
∑n

t=1

∫ 1

0

∣∣∣E [I(1)
t (y)

]∣∣∣ dy ≤ Cp1+3/a
n /n1/2. Since

∑n
t=1

∫ 1

0

∣∣∣E [I(1)
t (y; ηt)

]∣∣∣ dy
satisfies a similar bound, we have for (B.34),

n∑
t=1

∣∣∣∣∫ 1

0

E
[
I

(1)
t (y)− I

(1)
t (y; ηt)

]
dy

∣∣∣∣ ≤ C
p1+3/a
n

n1/2
.
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Consider now (B.33). Since Dt−`+1
jt and ηt are independent of the J

(1)
tn (0), M1−2e

t (0) and

Σpt (0), we have using (B.12),

E [It (0)− It (0; ηt)]

=
4

n
E
[(

1

e
− 1

)
J

(1)
tn (0)M1−2e

t (0)

p∑
p1,p2=1

Σe−1
p1t

(0) Σe−1
p2t

(0) f
(
Σe−1
p1t

(0)
)
f
(
Σe−1
p2t

(0)
) p1∑
j1=1

p2∑
j2=1

(
E
[
Dt−`+1
j1t

Dt−`+1
j2t

]
− E [ηj1tηj2t]

)
Kj1p1

(∑t−`+1
s1=j1+1 Dj1s1 +

∑n
s1=t−` ηj1s1

)
n1/2σ4V∆ (p1)

Kj2p2

(∑t−`+1
s2=j2+1Dj2s2 +

∑n
s2=t−` ηj2s2

)
n1/2σ4V∆ (p2)


= 0.

Hence (B.33) and (B.34) give∣∣∣∣∣
n∑
t=1

E
[
I(2)

1t (0;Dt)− I(2)
1t (0; ηt)

]∣∣∣∣∣ ≤ C
p1+3/a
n

n1/2
.

To study
∣∣∣E [I(2)

2t (0;Dt)− I(2)
2t (0; ηt)

]∣∣∣, observe that, uniformly with respect to p, t and y,

max

(∥∥∥Σ̃
(2)
pt (y)

∥∥∥
3a/2

,
∥∥∥Σ̃

(2)
pt (y; ηt)

∥∥∥
3a/2

)
≤ C

p1/2
n

n
,

max
(∥∥∥Σ̃

(2,1)
pt (y)

∥∥∥
a
,
∥∥∥Σ̃

(2,1)
pt (y; ηt)

∥∥∥
a

)
≤ C

(
pn
n3/2

+
1

npn

)
.

Arguing as for
∑n

t=1 E
[
I(2)

1t (0;Dt)− I(2)
1t (0; ηt)

]
gives

∣∣∣∑n
t=1 E

[
I(2)

2t (0;Dt)− I(2)
2t (0; ηt)

]∣∣∣ ≤
C
(
p
1+2/a
n

n1/2 + p
1/a
n

pn

)
, and provided e = O

(
p1/(2a)
n

)
∣∣∣∣∣
n∑
t=1

E
[
I(2)

3t (0;Dt)− I(2)
3t (0; ηt)

]∣∣∣∣∣+

∣∣∣∣∣
n∑
t=1

E
[
I(2)

4t (0;Dt)− I(2)
4t (0; ηt)

]∣∣∣∣∣ ≤ C
p1+3/a
n

n1/2
.

It then follows ∣∣∣∣∣
n∑
t=1

E
[
I(2)
t (0;Dt)− I(2)

t (0; ηt)
]∣∣∣∣∣ ≤ C

(
p1+3/a
n

n1/2
+

1

p1−1/a
n

)
. (B.35)

Substituting (B.32), (B.35) in (B.29), (B.28) shows that the Lemma is proved. �
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B.6.3. End of the proof of Proposition A.3. The rest of the proof is divided in 3 steps.

Step 1: Martingale approximation. Let S̃p and Šp be as in (A.1) and (B.16) respec-

tively. Let a = 4a/3. The Cauchy-Schwarz inequality gives

∣∣∣Šp − S̃p∣∣∣ =

p∑
j=1

(
Kjp

1

n1/2

∣∣∣∣∣Mjn −
n∑

t=j+1

utut−j

∣∣∣∣∣× 1

n1/2

∣∣∣∣∣Mjn +
n∑

t=j+1

utut−j

∣∣∣∣∣
)

≤ C

 p∑
j=1

1

n

(
Mjn −

n∑
t=j+1

utut−j

)2
1/2 p∑

j=1

1

n

(
Mjn +

n∑
t=j+1

utut−j

)2
1/2

.

Hence

∥∥∥Šp − S̃p∥∥∥
a/2

≤ CE
1
a


 p∑

j=1

1

n

(
Mjn −

n∑
t=j+1

utut−j

)2
 a

2

E
1
a


 p∑

j=1

1

n

(
Mjn +

n∑
t=j+1

utut−j

)2
 a

2

 .

Observe now that (B.4) gives

E
1
a


 p∑

j=1

1

n

(
Mjn −

n∑
t=j+1

utut−j

)2
 a

2


≤

(
1

n

p∑
j=1

E
2
a

[∣∣∣∣∣Mjn −
n∑

t=j+1

utut−j

∣∣∣∣∣
a])1/2

≤ C
(p
n

)1/2

.
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Since the Burkholder inequality and maxj E [|Djt|a] < ∞ give maxj∈[1,pn] E1/a [|Mjn|a] ≤

Cn1/2, we also have

E
1
a


 p∑

j=1

1

n

(
Mjn +

n∑
t=j+1

utut−j

)2
 a

2


≤

 1

n

p∑
j=1

(
E

1
a

[∣∣∣∣∣Mjn +
n∑

t=j+1

utut−j

∣∣∣∣∣
a])2

1/2

≤

 1

n

p∑
j=1

(
2E

1
a [|Mjn|a] + E

1
a

[∣∣∣∣∣
n∑

t=j+1

utut−j −Mjn

∣∣∣∣∣
a])2

1/2

≤
(
p(Cn1/2 + C)2

n

)1/2

≤ Cp1/2.

It then follows that
∥∥∥Šp − S̃p∥∥∥

a/2
≤ Cp/n1/2 and them maxp∈[1,pn] E

[∣∣∣(Šp − S̃p) /p1/2
∣∣∣a/2] ≤

C (pn/n)a/4. Hence the Markov inequality gives

P

(
max
p∈[1,pn]

∣∣∣∣∣ Šp − S̃pp1/2

∣∣∣∣∣ ≥ t

)
≤

pn∑
p=1

P

(∣∣∣∣∣ Šp − S̃pp1/2

∣∣∣∣∣ ≥ t

)

≤ pn
ta/2

max
p∈[1,pn]

E

∣∣∣∣∣ Šp − S̃pp1/2

∣∣∣∣∣
a
2

 ≤ C

ta/2

(
p

1+ 4
a

n

n

)a/4

,

and pn = o
(
n1/(2(1+4/a))

)
gives

max
p∈[1,pn]

∣∣∣∣∣ Šp − S̃pp1/2

∣∣∣∣∣ = oP(1). (B.36)

Step 2: some Gaussian approximations. Let γ′n = γn (1 + ε/2) / (1 + ε). (3.1) gives

γn ≥ γ′n ≥ γ̃n = (2 ln ln pn)1/2 (1 + ε/3). Consider a three times continuously differentiable

function ι (x) with maxj=1,2,3 supx
∣∣ι(3) (x)

∣∣ < ∞ and I (x ≥ 0) ≤ ι (x) ≤ I (x ≥ −ε). Let

I (x) = ι (x− γ′n). Let šp be as in (B.16). Then Lemma B.5 with e = p1/(2a)
n , (B.14) and
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(B.16), and Assumption R give

P
(

max
p∈[2,pn]

{šp} ≥ γ′n

)
≤ P (M≥ γ′n) ≤ E [I (M)]

≤ E [I (M1 (η1))] + o (1) ≤ P (M1 (η1) ≥ γ′n − ε) + o (1) .

We now look for a more explicit expression for the RHS. Recall thatM1 (η1) =
(∑pn

p=1 f
e (šp1 (1; η1))

)1/e

.

Consider Ω (p) = [ω1, . . . , ωp]
′ where the ωp’s are i.i.d. standard normal variables,

K (p) = Diag ((1− j/n)Kjp, j = 1, . . . , p) ,

Cη (p) = [Cov (ηj1t, ηj2t) , j1, j2 = 1, . . . , p] ,

Vη (p) = C1/2
η (p)K (p) C1/2

η (p) ,

and Dη (p) = Diag ((1− j/n)Kjp Var (ηjt) , j = 1, . . . , p) the p× p diagonal matrix obtained

from the diagonal entries of Vη (p). Then the šp1 (1; η1), p = 1, . . . , pn, have the same joint

distribution than

s̃p =
Ω (p)′ Vη (p) Ω (p)− σ4E∆ (p)

σ4V∆ (p)
, p = 1, . . . , pn,

so that M1 (η1) and M̃ =
(∑pn

p=1 f
e (s̃p)

)1/e

have the same distribution, and then

P
(

max
p∈[2,pn]

{šp} ≥ γ′n

)
≤ P

(
M̃ ≥ γ′n − ε

)
+ o (1) .

Define now

s̄p =
Ω (p)′Dη (p) Ω (p)− σ4E∆ (p)

σ4V∆ (p)
=

∑p
j=1

(
1− j

n

)
Kjp Var (ηjt)ω

2
j − σ4E∆ (p)

σ4V∆ (p)
.
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Then for all p = 1, . . . , pn,

|s̃p − s̄p| =
∣∣∣∣Ω (p)′ (Vη (p)−Dη (p)) Ω (p)

σ4V∆ (p)

∣∣∣∣
≤ C

∑
1≤j1 6=j2≤p

∣∣∣∣∣Cov

((
1− j1

n

)1/2

K
1/2
j1p
ηj1t,

(
1− j2

n

)1/2

K
1/2
j2p
ηj2t

)∣∣∣∣∣ |ωj1 | |ωj2|
≤ C

∑
1≤j1 6=j2≤pn

|Cov (ηj1t, ηj2t)| |ωj1| |ωj2| = OP (1) ,

by Lemma B.3. Hence since f (x) ≤ 2 ∨ x by (B.14) and using (B.15),

M̃ ≤
(

1 +O

(
lnn

p1/(2a)
n

))
max
p∈[2,pn]

{2 ∨ s̃p} ≤
(

1 +O

(
lnn

p1/(2a)
n

))
2 ∨ max

p∈[2,pn]
{s̃p}

≤
(

1 +O

(
lnn

n1/8a

))
max
p∈[2,pn]

{s̄p}+OP (1) .

Define now

V∆ (p) =

(
2

p∑
j=1

K2
jp

)1/2

, sp =

∑p
j=1Kjp

(
ω2
j − 1

)
V∆ (p)

,

which is such that

|s̄p − sp| ≤ |e1p|+ |e2p| where

e1p =

(
σ4V∆ (p)

σ4V∆ (p)
− 1

)
σ4sp,

e2p =

∑p
j=1

{(
1− j

n

)
Var (ηjt)− σ4

}
Kjpω

2
j − σ4

∑p
j=1

j
n
Kjp

σ4V∆ (p)
.

Since K ′ (·) is continuous on [0, 1], the Weierstrass Theorem implies it can be uniformly

approximated with a sequence of polynomial function. Hence (B.1), Assumption K and the

LIL for weighted sums in Li and Tomkins (1996) gives that

lim sup
p→∞

|V∆ (p) sp|
p1/2 (2 ln ln p)1/2

≤
(

2

∫
K4 (t) dt

)1/2

, almost surely.
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Since, under Assumption K, V∆ (p) /p1/2 →
(
2
∫
K4 (t) dt

)1/2
by convergence of Riemann

sums, this gives

sup
p∈[2,pn]

|sp| ≤ (2 ln ln pn)1/2 (1 + oP (1)) . (B.37)

Observe also that Lemma A.2-(ii), pn = o
(
n1/2

)
, and Assumption K give uniformly in

p ∈ [1, pn]

∣∣∣∣V∆ (p)

V∆ (p)
− 1

∣∣∣∣ ≤ C

(
1

p

p∑
j=1

j2

n2
K2
jp

)1/2

= o

(
1

n1/2

)
.

Hence

max
p∈[2,pn]

|e1p| = oP

((
2 ln ln pn

n

)1/2
)

= oP (1) .

Now, for maxp∈[2,pn] |e2p|, we have by Lemmas A.2-(ii) and B.3, pn = o
(
n1/2

)
, and Assumption

K,

max
p∈[2,pn]

|e2p| ≤ C

{
pn∑
j=1

∣∣Var (ηjt)− σ4
∣∣ω2

j +
1

n

pn∑
j=1

jω2
j +

p3/2
n

n

}
= OP (1)+OP

(
p2
n

n

)
= OP (1) .

Hence maxp∈[2,pn] |s̄p − sp| = OP (1) and substituting in the bounds for P
(
maxp∈[2,pn] {šp} ≥ γ′n

)
and M̃ above gives, by (3.1), γ′n = γn (1 + ε/2) / (1 + ε), γ′n ≥ (2 ln ln pn)1/2 (1 + ε/3) and

(B.37)

P
(

max
p∈[2,pn]

{šp} ≥ γ′n

)
= P

((
1 +O

(
lnn

n1/8a

))
max
p∈[2,pn]

{sp}+OP (1) ≥ γ′n − ε
)

+ o (1)

≤ P
(

max
p∈[2,pn]

{sp} ≥ (2 ln ln pn)1/2 (1 + ε/3)

)
+ o (1)

= o (1) . (B.38)
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Step 3: Conclusion. Propositions A.2 and A.1, Lemma A.2 and pn = O
(
n1/2

)
, the

expression of Šp and šp in (B.16) and (B.36) gives

max
p∈[2,pn]

(
Ŝp − Ŝ1

)
/R̂2

0 − E∆ (p)

V∆ (p)
= max

p∈[2,pn]

(
Ŝp − Ŝ1

)
− R̂2

0E∆ (p)

R̂2
0V∆ (p)

= (1 + oP (1)) max
p∈[2,pn]

(
S̃p − S̃1

)
−R2

0E∆ (p)

R2
0V∆ (p)

+OP

(
1 + p1/2

n

(
R̂2

0 −R2
0

))
= (1 + oP (1)) max

p∈[2,pn]
{šp}+OP (1) .

Hence (B.38) gives, since γn − γ′n → +∞,

P

 max
p∈[2,pn]

(
Ŝp − Ŝ1

)
/R̂2

0 − E∆ (p)

V∆ (p)
≥ γn

 ≤ P
(

max
p∈[2,pn]

{šp} ≥ γ′n

)
+ o (1) = o (1) .

This ends the proof of the Proposition. �

B.7. Proof of Propositions A.4 and A.5. When studying the mean and variance of S̃p,

we make use of Theorem 2.3.2 in Brillinger (2001) which implies in particular that, for any

real zero-mean random variables Z1, . . . , Z4,

Var (Z1Z2, Z3Z4) = Var(Z1, Z3) Var(Z2, Z4) + Var(Z1, Z4) Var(Z2, Z3)

+ Cum (Z1, Z2, Z3, Z4) . (B.39)

Note that Assumption R and Theorem B.1 imply that

sup
n,q∈[2,8]

∞∑
t2,...,tq=−∞

|Γn (0, t2, . . . , tq)| <∞. (B.40)

B.7.1. Proof of Proposition A.4. (B.39) yields

E
[
R̃2
j

]
=

1

n2

n−j∑
t1,t2=1

E [ut1ut1+jut2ut2+j]

=
1

n2

n−j∑
t1,t2=1

(
R2
j +R2

t2−t1 +Rt2−t1+jRt2−t1−j + Γ (0, j, t2 − t1, t2 − t1 + j)
)
,
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where

n−j∑
t1,t2=1

R2
t2−t1 = (n− j)R2

0 + 2

n−j−1∑
`=1

(n− j − `)R2
` ,

n−j∑
t1,t2=1

Rt2−t1+jRt2−t1−j = (n− j)R2
j + 2

n−j−1∑
`=1

(n− j − `)R`+jR`−j,

n−j∑
t1,t2=1

Γ (0, j, t2 − t1, t2 − t1 + j) =

n−j−1∑
`=−n+j+1

(n− j − |`|) Γ (0, j, `, `+ j) .

Set kj = K2 (j/p) to prove the first equality and kj = K2 (j/p) /τ 2
j for the second. Note that

Assumptions K and R give, in both case, maxj∈[1,n−1] kj ≤ C and kj ≥ CI (j ≤ p/2). The

equalities above give

E

[
n−1∑
j=1

kjR̃
2
j

]
−R2

0

n−1∑
j=1

(
1− j

n

)
kj

= n
n−1∑
j=1

((
1− j

n

)2

+
1

n

(
1− j

n

))
kjR

2
j (B.41)

+ 2
n−1∑
j=1

kj

n−j−1∑
`=1

(
1− j + `

n

)(
R2
` +R`+jR`−j

)
+

n−1∑
j=1

kj

n−j−1∑
`=−n+j+1

(
1− j + |`|

n

)
Γ (0, j, `, `+ j) .

We start with the item R2
0

∑n−1
j=1

(
1− j

n

)
kj, which is equal to R2

0E (p) when kj = K2 (j/p),

that is when proving the first equality. When kj = K2 (j/p) /τ 2
j , (A.4) gives, under Assump-

tions K and R, ∣∣∣∣∣R2
0

n−1∑
j=1

(
1− j

n

)
kj − E (p)

∣∣∣∣∣ ≤ C

p∑
j=1

∣∣τ 2
j −R2

0

∣∣ ≤ C
∞∑
j=1

j−6

so that R2
0

∑n−1
j=1 (1− j/n) kj ≥ E (p)− C ′.

Let us now turn to the other items. The lower boundkj ≥ CI(j ≤ p/2) gives that (B.41)

is larger than Cn
∑p/2

j=1 R
2
j . To bound the remaining terms in (B.41), we note that by
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Assumptions K, R and (B.40),∣∣∣∣∣
n−1∑
j=1

kj

n−j−1∑
`=1

(
1− j + `

n

)
R2
`

∣∣∣∣∣ ≤ C
n−1∑
j=1

I(j ≤ p)×
∞∑
j=1

R2
j ≤ Cp

∞∑
j=1

R2
j = o(n)

∞∑
j=1

R2
j ,

∣∣∣∣∣
n−1∑
j=1

kj

n−j−1∑
`=1

(
1− j + `

n

)
R`+jR`−j

∣∣∣∣∣ ≤ C

+∞∑
j=1

+∞∑
`=1

|R`+jR`−j| ≤ C

(
∞∑
j=0

|Rj|

)2

≤ C,

∣∣∣∣∣
n−1∑
j=1

kj

n−j−1∑
`=−n+j+1

(
1− j + `

n

)
Γ (0, j, `, `+ j)

∣∣∣∣∣ ≤ C
∞∑

t2,t3,t4=−∞

|Γ(0, t2, t3, t4)| ≤ C

uniformly with respect to p ∈ [1, pn]. Substituting these bounds in the equality above

establishes the proposition. �

B.7.2. Proof of Proposition A.5. Let f be the spectral density of the alternative. Using

(B.40), we obtain

sup
λ∈[−π,π]

|f (λ)| ≤ C and
∞∑
j=1

R2
j ≤ C (B.42)

because supλ∈[−π,π] |f (λ)| ≤
(
|R0|+ 2

∑∞
j=1 |Rj|

)
/(2π) and

∑∞
j=1R

2
j ≤

(∑∞
j=1 |Rj|

)2

. We

recall that R̃j =
∑n−j

t=1 utut+j/n and define Rj = E
[
R̃j

]
= (1− j/n)Rj. Set kj = K2 (j/p) to

prove the first equality and kj = K2 (j/p) /τ 2
j for the second. Note that Assumptions K and

R give, in both case, kj ≤ CI (j ≤ p). To avoid notation burdens, redefine S̃p as
∑n−1

j=1 kjR̃
2
j .

Define Dj = R̃j − Rj. We have E [Dj] = 0 and S̃p = n
∑n−1

j=1 kjR
2

j + 2n
∑n−1

j=1 kjRjDj +

n
∑n−1

j=1 kjD
2
j . The inequality (a+ b)2 ≤ 2a2 + 2b2 implies that

Var
(
S̃p

)
≤ 4 Var

(
n
n−1∑
j=1

kjRjR̃j

)
+ 2 Var

(
n
n−1∑
j=1

kjD
2
j

)
. (B.43)

By identity (B.39),

Var

(
n

n−1∑
j=1

kjRjR̃j

)
=

n−1∑
j1,j2=1

kj1kj2Rj1Rj2

n−j1∑
t1=1

n−j2∑
t2=1

Cov (ut1ut1+j1 , ut2ut2+j2) ≤ V1 +K1
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with

V1 =

∣∣∣∣∣
n−1∑

j1,j2=1

kj1kj2Rj1Rj2

n−j1∑
t1=1

n−j2∑
t2=1

(Rt2−t1Rt2−t1+j2−j1 +Rt2−t1−j1Rt2−t1+j2)

∣∣∣∣∣ ,
K1 =

∣∣∣∣∣
n−1∑

j1,j2=1

kj1kj2Rj1Rj2

n−j1∑
t1=1

n−j2∑
t2=1

Γ (t1, t1 + j1, t2, t2 + j2)

∣∣∣∣∣ .

The second term on the right of (B.43) is, up to a multiplicative constant, equal to

Var

(
n
n−1∑
j=1

kjD
2
j

)
= n2

n−1∑
j1,j2=1

kj1kj2 Cov
(
D2
j1
, D2

j2

)
.

Applying (B.39) twice we obtain

Cov
(
D2
j1
, D2

j2

)
=

1

n4

n−j1∑
t1,t2=1

n−j2∑
t3,t4=1

Cov

[
2∏
q=1

(
utqutq+j1 − E[utqutq+j1 ]

)
,

4∏
q=3

(
utqutq+j2 − E[utqutq+j2 ]

)]

=
1

n4

n−j1∑
t1,t2=1

n−j2∑
t3,t4=1

[Cov (ut1ut1+j1 , ut3ut3+j2) Cov (ut2ut2+j1 , ut4ut4+j2)

+ Cov (ut1ut1+j1 , ut4ut4+j2) Cov (ut2ut2+j1 , ut3ut3+j2)]

+
1

n4

n−j1∑
t1,t2=1

n−j2∑
t3,t4=1

Cum (ut1ut1+j1 , ut2ut2+j1 , ut3ut3+j2 , ut4ut4+j2)

=
2

n4

(
n−j1∑
t1=1

n−j2∑
t2=1

(Rt2−t1Rt2−t1+j2−j1 +Rt2−t1−j1Rt2−t1+j2 + Γ(t1, t1 + j1, t2, t2 + j2))

)2

+
1

n4

n−j1∑
t1,t2=1

n−j2∑
t3,t4=1

Cum (ut1ut1+j1 , ut2ut2+j1 , ut3ut3+j2 , ut4ut4+j2) .
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Since (a+ b+ c)2 ≤ 3(a2 + b2 + c2), we can write Var
(
n
∑n−1

j=1 kjD
2
j

)
≤ 6V2 +K2 + 6K ′2 with

V2 =
1

n2

n−1∑
j1,j2=1

kj1kj2

(n−j1∑
t1=1

n−j2∑
t2=1

Rt2−t1Rt2−t1+j2−j1

)2

+

(
n−j1∑
t1=1

n−j2∑
t2=1

Rt2−t1−j1Rt2−t1+j2

)2
 ,

K2 =

∣∣∣∣∣ 1

n2

n−1∑
j1,j2=1

kj1kj2

n−j1∑
t1,t2=1

n−j2∑
t3,t4=1

Cum (ut1ut1+j1 , ut2ut2+j1 , ut3ut3+j2 , ut4ut4+j2)

∣∣∣∣∣ ,
K ′2 =

1

n2

n−1∑
j1,j2=1

kj1kj2

(
n−j1∑
t1=1

n−j2∑
t2=1

Γ (t1, t1 + j1, t2, t2 + j2)

)2

,

Substituting in (B.43) shows that the proposition holds if the following inequalities hold:

V1 ≤ Cn

p∑
j=1

R2
j , V2 ≤ Cp, K1 ≤ C, K ′2 ≤ C, K2 ≤ C

p2

n
.

We establish these inequalities in five steps.

Step 1: bound for V1. We note that |Rj| ≤ |Rj| and that under Assumption K, 0 ≤ kj ≤ C

for all j. Using a covariance spectral representation Rj =
∫ π
−π exp(±ijλ)f(λ)dλ, the Cauchy-

Schwarz inequality and (B.42), we obtain by Assumption K

∣∣∣∣∣
n−1∑

j1,j2=1

kj1kj2Rj1Rj2

n−j1∑
t1=1

n−j2∑
t2=1

Rt2−t1Rt2−t1+j2−j1

∣∣∣∣∣
=

∫ π

−π

∫ π

−π

∣∣∣∣∣
n−1∑
j=1

kjRj

n−j∑
t=1

eitλ1ei(t+j)λ2

∣∣∣∣∣
2

f(λ1)f(λ2)dλ1dλ2

≤

(
sup

λ∈[−π,π]

|f(λ)|

)2 ∫ π

−π

∫ π

−π

n−1∑
j1,j2=1

kj1Rj1kj2Rj2

n−j1∑
t1=1

n−j2∑
t2=1

eit1λ1ei(t1+j1)λ2e−it2λ1e−i(t2+j2)λ2dλ1dλ2

≤ C
n−1∑
j=1

(n− j)k2
jR

2

j ≤ Cn

p∑
j=1

R2
j ,



55∣∣∣∣∣
n−1∑

j1,j2=1

kj1kj2Rj1Rj2

n−j1∑
t1=1

n−j2∑
t2=1

Rt2−t1−j1Rt2−t1+j2

∣∣∣∣∣
=

∣∣∣∣∣
∫ π

−π

∫ π

−π

n−1∑
j1=1

kj1Rj1

n−j1∑
t1=1

e−i(t1+j1)λ1e−it1λ2 ×
n−1∑
j2=1

kj2Rj2

n−j2∑
t2=1

eit2λ1ei(t2+j2)f(λ1)f(λ2)dλ1dλ2

∣∣∣∣∣
≤
∫ π

−π

∫ π

−π

∣∣∣∣∣
n−1∑
j=1

kjRj

n−j∑
t=1

eitλ1ei(t+j)λ2

∣∣∣∣∣
2

f(λ1)f(λ2)dλ1dλ2 ≤ Cn

p∑
j=1

R2
j

This establishes the bound for V1.

Step 2: bound for V2. We define t2 = t1 + t′2, j2 = j1 + j′2. By Assumption K and by (B.40),

1

n2

n−1∑
j1,j2=1

kj1kj2

(
n−j1∑
t1=1

n−j2∑
t2=1

Rt2−t1Rt2−t1−j1+j2

)2

≤ C

n2

n−1∑
j1=1

K2(j1/p)
∞∑

j2′=−∞

(
n

+∞∑
t2′=−∞

|Rt2′Rt2′+j2′|

)2

≤ Cp×

(
∞∑

j2,t1,t2=−∞

|Rt1Rt1+j2Rt2Rt2+j2 |

)
≤ Cp

(
∞∑

t=−∞

|Rt|

)4

≤ Cp,

1

n2

n−1∑
j1,j2=1

kj1kj2

(
n−j1∑
t1=1

n−j2∑
t2=1

Rt2−t1−j1Rt2−t1+j2

)2

≤ C

n2

n−1∑
j1=1

K2(j1/p)
∞∑

j2′=−∞

(
n

+∞∑
t2′=−∞

|Rt2′−j1Rt2′+j1+j2′|

)2

≤ Cp

∞∑
j′2,t1,t2=−∞

∣∣Rt1−j1Rt1+j1+j′2
Rt2−j1Rt2+j1+j′2

∣∣ ≤ Cp

∞∑
j,t1,t2=−∞

|Rt1Rt1+jRt2Rt2+j|

≤ Cp

(
∞∑

t=−∞

|Rt|

)4

≤ Cp,

therefore V2 ≤ Cp.

Step 3: bound for K1. Define t2 = t1 + t. Assumption K, and (B.40) yield

K1 ≤ C

p∑
j1,j2=1

∞∑
t=−∞

|Γ(0, j1, t, t+ j2)| ≤
∞∑

t1,t2,t3=−∞

|Γ(0, t1, t2, t3)| .
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Step 4: bound for K ′2. (B.40) gives

K ′2 ≤
1

n2

n−1∑
j1,j2=1

kj1kj2

(
n−j1∑
t1=1

n−j2∑
t2=1

|Γ (0, j1, t2 − t1, t2 − t1 + j2)|

)2

≤ C
+∞∑

j1,j2=1

(
∞∑

t=−∞

|Γ(0, j1, t, t+ j2)|

)2

= C
+∞∑

j1,j2=1

∞∑
t1,t2=−∞

|Γ(0, j1, t1, t1 + j2)Γ(0, j1, t2, t2 + j2)|

≤ C

(
∞∑

t2,t3,t4=−∞

|Γ(0, t2, t3, t4)|

)2

≤ C.

Step 5: bound for K2. Bounding K2 requires additional notation. First set t5 = t1 + j1,

t6 = t2 + j1, t7 = t3 + j2 and t8 = t4 + j2, and note that t5, . . . , t8 depend upon t1, . . . , t4

and j1, j2 only. For a partition B = {B`, ` = 1, . . . , dB} of {1, . . . , 8}, define dB = CardB,

ΓB(t1, . . . , t8) =
∏dB

`=1 Cum
(
utq , q ∈ B`

)
, and recall that Cum(ut) = Eut = 0. Then the

largest dB yielding a non-vanishing ΓB is dB = 4. When dB = 4, B is a pairwise partition

of {1, . . . , 8} so that ΓB is a product of covariances. Let B be the set of indecomposable

partitions of the two-way table

1 5

2 6

3 7

4 8

,

see Brillinger (2001, p. 20) for a definition. Then according to Brillinger (2001, Theorem

2.3.2),

Cum (ut1ut1+j1 , ut2ut2+j1 , ut3ut3+j2 , ut4ut4+j2)

=
∑
B∈B

ΓB(t1, . . . , t8) =
∑

B∈B,dB≤3

ΓB(t1, . . . , t8) +
∑

B∈B,dB=4

ΓB(t1, . . . , t8).
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Some properties of partitions in B are as follows. Call {1, 5}, {2, 6}, {3, 7} and {4, 8}

fundamental pairs and say that a B1 in a partition B breaks the pair {1, 5} if {1, 5} is not a

subset of B1. Then partitions B ∈ B are such that each B` ∈ B must break a fundamental

pair. Note that fundamental pairs play a symmetric role. Since tq+4 − tq is j1 or j2 with

vanishing kj1 or kj2 if j1 or j2 is larger than p, the indexes tq and tq+4 of a fundamental

pair also play a symmetric role in the computations below. We now discuss the contribution

to K2 of partitions of {1, . . . , 8} according to the possible values 1, . . . , 4 of dB. Due to

symmetry, we only consider representative partitions for each case.

Under Assumption K and (B.40), the case dB = 1 gives a contribution to K2 bounded by∣∣∣∣∣ 1

n2

n−1∑
j1,j2=1

kj1kj2

n−j1∑
t1,t2=1

n−j2∑
t3,t4=1

Γ (t1, . . . , t8)

∣∣∣∣∣ ≤ C

n2

n∑
t1,...,t8=−n

|Γ (0, t2 − t1, . . . , t8 − t1)|

≤ C

n

∞∑
t′2,...,t

′
8=−∞

|Γ (0, t′2, . . . , t
′
8)| ≤ C

n
.

The case dB = 2 corresponds to {CardB1,CardB2} being {2, 6}, {3, 5} or {4, 4}. These

cases are very similar and we limit ourselves to {2, 6} and B1 = {1, 2}. The corresponding

contribution to K2 is bounded by∣∣∣∣∣ 1

n2

n−1∑
j1,j2=1

kj1kj2

n−j1∑
t1,t2=1

n−j2∑
t3,t4=1

ΓB (t1, . . . , t8)

∣∣∣∣∣ ≤ C

n2

n∑
t1,...,t8=−n

|Γ (0, t2 − t1) Γ (t3 − t1, . . . , t8 − t1)|

≤ C

n

n∑
t′2,...,t

′
8=−n

|Γ (0, t′2) Γ (t′3, . . . , t
′
8)| ≤ C

n

n∑
t=−n

|Rt|
n∑

t′3,...,t
′
8=−n

|Γ (0, t′4 − t′3, . . . , t′8 − t′3)|

C

∞∑
t=−∞

|Rt|
∞∑

t2,...,t6=−∞

|Γ (0, t2, . . . , t6)| ≤ C,

by Assumption K and (B.40).

The case dB = 3 corresponds to {CardB1,CardB2,CardB3} being {2, 2, 4} or {2, 3, 3}.

We start with CardB1 = 2, CardB2 = 2 and CardB3 = 4. The discussion concerns the

number of fundamental pair broken by B3. Note that the situation where B3 breaks only
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3 or 1 fundamental pair is impossible. The case where B3 does not break any fundamental

pairs corresponds to partitions that are not indecomposable, so that the only possible cases

are those where B3 breaks 4 or 2 fundamental pairs.

• B3 breaks 4 fundamental pairs. Consider B3 = {1, 2, 3, 4}, B2 = {5, 6} and B3 =

{7, 8}. The corresponding contribution to K2 is bounded by∣∣∣∣∣ 1

n2

n−1∑
j1,j2=1

kj1kj2

n−j1∑
t1,t2=1

n−j2∑
t3,t4=1

ΓB (t1, . . . , t8)

∣∣∣∣∣
=

∣∣∣∣∣ 1

n2

n−1∑
j1,j2=1

kj1kj2

n−j1∑
t1,t2=1

n−j2∑
t3,t4=1

Γ (0, t2 − t1, t3 − t1, t4 − t1)Rt2−t1Rt4−t3

∣∣∣∣∣
≤ C

p2

n
sup
j
|Rj|2

∞∑
t2,t3,t4=−∞

|Γ (0, t2, t3, t4)| ≤ C
p2

n

by Assumption K and (B.40).

• B3 breaks 2 fundamental pairs. Take B3 = {1, 2, 3, 5}, B2 = {4, 6} and B1 = {7, 8}.

The change of variables t2 = t′2 + t1, t3 = t′3 + t1 and t4 = t′4 + t3 shows that

contribution to K2 is bounded by∣∣∣∣∣ 1

n2

n−1∑
j1,j2=1

kj1kj2

n−j1∑
t1,t2=1

n−j2∑
t3,t4=1

ΓB (t1, . . . , t8)

∣∣∣∣∣
=

∣∣∣∣∣ 1

n2

n−1∑
j1,j2=1

kj1kj2

n−j1∑
t1,t2=1

n−j2∑
t3,t4=1

Γ (0, t2 − t1, t3 − t1, j1)Rt4−t2−j1Rt4−t3

∣∣∣∣∣
≤ C

n

n−1∑
j2=1

K2(j2/p)
∞∑

t′2,t
′
3,j1=−∞

|Γ (0, t′2, t
′
3, j1)|

+∞∑
t′4=−∞

∣∣Rt′4

∣∣× sup
j
|Rj| ≤ C

p

n
.

under Assumption K and (B.40).

We now turn to the case CardB3 = CardB2 = 3 and CardB1 = 2. Observe that B3 or

B2 must break 3 or 1 fundamental pair. The discussion now concerns the fundamental pairs

which are simultaneously broken by B3 and B2. Note that B3 and B2 cannot break the

same 3 fundamental pairs because if it did, B1 would be given by the remaining fundamental
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pair in which case B1 cannot communicate with B2 or B3, a fact that would contradict the

requirement that the partition {B1, B2, B3} is indecomposable.

• B3 and B2 break 3 fundamental pairs, 2 of which are the same. Take B3 = {1, 2, 3},

B2 = {4, 5, 6} and B1 = {7, 8}. Using change of variables t2 = t1 + t′2, t3 = t1 + t′3

and t4 = t3 + t′4, we can see that under Assumption K and (B.40) the contribution

to K2 of this case is bounded by∣∣∣∣∣ 1

n2

n−1∑
j1,j2=1

kj1kj2

n−j1∑
t1,t2=1

n−j2∑
t3,t4=1

ΓB (t1, . . . , t8)

∣∣∣∣∣
=

∣∣∣∣∣ 1

n2

n−1∑
j1,j2=1

kj1kj2

n−j1∑
t1,t2=1

n−j2∑
t3,t4=1

Γ (0, t2 − t1, t3 − t1) Γ (0, t1 − t4 + j1, t2 − t4 + j1)Rt4−t3

∣∣∣∣∣
≤ C

n

n−1∑
j1,j2=1

K2(j1/p)K
2(j2/p) sup

t2,t3

|Γ(0, t2, t3)|
∞∑

t′2,t
′
3=−∞

|Γ (0, t′2, t
′
3)|

+∞∑
t′4=−∞

∣∣Rt′4

∣∣ ≤ C
p2

n

Note that the case where B3 and B2 break 3 fundamental pairs with less than one

in common is impossible.

The next case assumes that B2 breaks only 1 fundamental pair, which is also necessarily

broken by B3 since B2 must contain the remaining unbroken pair.

• B3 breaks 3 fundamental pairs and B2 breaks only 1 pair. Take B3 = {1, 2, 3},

B2 = {4, 5, 8} and B3 = {6, 7} and consider a change of variables t2 = t1 + t′2,

t3 = t1 + t′3 and t4 = t1 + j1− t′4. Under Assumption K and (B.40), the contribution

of this term to K2 is bounded by∣∣∣∣∣ 1

n2

n−1∑
j1,j2=1

kj1kj2

n−j1∑
t1,t2=1

n−j2∑
t3,t4=1

ΓB (t1, . . . , t8)

∣∣∣∣∣
=

∣∣∣∣∣ 1

n2

n−1∑
j1,j2=1

kj1kj2

n−j1∑
t1,t2=1

n−j2∑
t3,t4=1

Γ (0, t2 − t1, t3 − t1) Γ (t1 − t4 + j1, 0, j2)Rt3−t2+j2−j1

∣∣∣∣∣
≤
C supj |Rj|

n

n−1∑
j1

K2(j1/p)
∞∑

t′2,t
′
3=−∞

|Γ(0, t′2, t
′
3)|

∞∑
t′4,j2=−∞

|Γ (t′4, 0, j2)| ≤ C
p

n
.
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• B3 and B2 break only 1 pair. Note that B3 and B2 cannot break the same pair

because B1 must be the remaining pair and cannot communicate, so that the par-

tition is not indecomposable. Hence all the partitions in this case are similar to

B3 = {1, 2, 5}, B2 = {3, 4, 8}, B1 = {6, 7}. The change of variable t2 = t1 + t′2,

t3 = −j2 + t2 + j1 + t′3 and t4 = t3 − t′4 yields a contribution to K2 bounded by∣∣∣∣∣ 1

n2

n−1∑
j1,j2=1

kj1kj2

n−j1∑
t1,t2=1

n−j2∑
t3,t4=1

ΓB (t1, . . . , t8)

∣∣∣∣∣
=

∣∣∣∣∣ 1

n2

n−1∑
j1,j2=1

kj1kj2

n−j1∑
t1,t2=1

n−j2∑
t3,t4=1

Γ (0, t2 − t1, j1) Γ (t3 − t4, 0, j2)Rt3−t2+j2−j1

∣∣∣∣∣
≤ C

∞∑
j1,t′2=−∞

|Γ(0, t′2, j1)|
∞∑

j2,t′4=−∞

|Γ(t4, 0, j2)|
∞∑

t′3=−∞

∣∣Rt′3

∣∣ ≤ C.�
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