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Abstract
A new test is proposed for the weak white noise null hypothesis.
The test is based on a new automatic selection of the order for a
Box-Pierce (1970) test statistic or the test statistic of Hong (1996).
The heteroskedasticity and autocorrelation-consistent (HAC) critical
values from Lee (2007) are used, allowing for estimation of the error
term. The data-driven order selection is tailored to detect a new
class of alternatives with autocorrelation coefficients which can be
o(n_l/ 2) provided there is sufficiently many of such coefficients. A
simulation experiment illustrates the good statistical properties of the

test both under the weak white noise null and the alternative.

JEL  Classification: Primary C12; Secondary  (C32.
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1. INTRODUCTION

Testing for white noise is important in many econometric contexts. Ignoring autocorrelation
of the error terms in a linear regression model can lead to erroneous confidence intervals and
tests. Correlation of residuals from an ARMA model or of the squared residuals from an
ARCH model can indicate an improper choice of the order. Investigation of autocorrelation
function is also a popular diagnostic tool in macroeconomics and finance, see e.g. Durlauf
(1991) and Campbell, Lo and Craig MacKinlay (1997). Earliest tests of the white noise
hypothesis were based on confidence intervals for autocorrelation coefficients as described by
Fan and Yao (2005). See also Xiao and Wu (2011) who have recently derived the asymptotic
distribution of the maximum standardized sample covariance of weak white noise, that is an
stationary process which is uncorrelated but possibly dependent. A second approach was
established by Grenander and Rosenblatt (1952) who extended goodness-of-fit tests such as
Kolmogorov and Cramér-von Mises tests to tests of white noise hypothesis. Grenander and
Rosenblatt (1952) has been refined by Durlauf (1991), Anderson (1993) and Deo (2000).
Delgado, Hidalgo and Velasco (2005) have studied a modified test statistic to be used with
residuals. Shao (2011a) has recently extended this setup to cover the weak white noise null
hypothesis. A third approach, pioneered by Box and Pierce (1970), is based on the sum
of squared sample autocorrelation coefficients up to a given order p. Delgado and Velasco
(2012), Francq, Roy and Zakoian (2005), Kuan and Lee (2006) and Lobato (2001) have
considered the weak white noise hypothesis. The case where p grows with the sample size n
has been considered by Hong (1996) in a strong white noise setup and recently extended to
the weak white noise null hypothesis by Shao (2011b) and Xiao and Wu (2011).

This paper contributes to the literature by proposing a data-driven choice p of the order p
used in a Box-Pierce type statistic for a test of the weak white noise null hypothesis. Under
this null, p tends to 1 in probability so that the null limit behavior of the test statistic is

driven by the first-order sample autocovariance. It is shown that the test can be implemented
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using robust critical values of Lee (2007) who extends the work of Lobato (2001) for the case
of observed variables and of Kuan and Lee (2006) for the case of residuals. The general
framework of Lee (2007) includes as a specific case standardization using steep origin kernels
proposed by Phillips, Sun and Jin (2006) which can improve the power of the resulting test.
Under the alternative, the data-driven p can be as large as necessary.

An appealing feature of Cramér-von Mises type of tests is the ability to detect Pitman local

1/2 " This contrasts

directional alternatives converging to the null with the parametric rate n~
with detection results for Box-Pierce type test by Hong (1996) which is only consistent
under slower rates of convergence for local alternatives defined through the spectral density
function. The conclusions of Hong (1996) suggest that Cramér-von Mises tests are more
powerful than Box-Pierce tests. One of the contributions of the present paper is to point out
that this ranking of two types of tests is not universal and there exist classes of alternatives
against which Box-Pierce tests are more powerful than Cramér-von Mises tests.

We illustrate this point using a new class of alternatives defined through the autocovariance
function. The new class of alternatives formalizes the idea that small autocorrelation coeffi-
cients of magnitude p,, can be detected provided that there are sufficiently many coefficients
present at smaller lags. An important finding of the paper is that detection is still possible
for very small p,,, namely for p,, = o (n‘l/ 2). As described in Section , this type of alterna-
tives includes moving average processes with a significant long term multiplier but o (n_l/ 2)
impulse response coefficients. Such processes therefore correspond to a macroeconomic sce-
nario where short term policies have no significant effects whereas long term policies may
have an impact. For such alternatives, the conditional expectation of the present given the
past gives o (n‘l/ 2) weights to each lagged observations. Therefore this process is hard to

predict since it is very close to a martingale difference process. These alternatives can be of

interest in finance where arbitrage could forbid strong deviations from martingale difference.
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Why such alternatives can be detected by Box-Pierce tests can be intuitively explained
as follows. Let ]SLJ» and R; be respectively the sample and population covariance at lag j.
Following Hong (1996), Shao (2011b) and Xiao and Wu (2011), the nonrobust critical region
of the Box-Pierce test of order p, — oo is
nyn (B2 - 1)
(2p,)"?

where ¢, is a standard normal critical value. Arguing as Shao (2011b, Theorem 2.2) suggests

> o, (1.1)

that

ny (R/RE=1)  ny m2/R2
- — S+ 0p (1), (1.2)
(2pn) (2pn)

1) suggests that the Box-Pierce test is consistent provided (n/ (Qpn)1/2> ?L R?/Rg is

large enough. Let N, be the number of correlation coefficients R?/Rg > p2 for j € [1, py],

so that (n/ (2pn)1/2> " R3/R§ > nN,p/ (2p,)"%. The Box-Pierce test is consistent if

N 1/2
nl/2 (1_/”2) Pn — 00, (1.3)
Pn

a condition which allows for p, = o (n_l/ 2) provided there are enough correlation coefficients
larger than p,, that is, N,/ p,ll/ G 0o, which holds in particular when the exact order of
N, is p,. In other words, summing squared sample correlations in the Box-Pierce statistic
allows us to detect very small population correlations provided they are not too sparse and
are concentrated at lags smaller than p,. As shown in this paper, such alternatives are not
detected by Cramér-von Mises tests.

An important limitation of the critical region (|1.1]) is the use of an ad hoc order p,,. Many
authors consider a deterministic p, such that p, — oo. This choice of order is inadequate for
detecting alternatives with correlations at low lags: taking p,, = 30 for instance is unlikely to

give a test with power against popular AR(1) or M A(1) alternatives on samples of moderate

size. Conversely, taking a fixed p, is not suitable for detecting higher order alternatives.
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The need to properly address the tuning of a smoothing parameter with a role similar
to p, has spurred the development of data-driven approaches for various nonparametric
testing problems. The so-called adaptive approach, focuses on data-driven tests which detect
alternatives in a smoothness class converging to the null at the fastest possible rate given
that the smoothness class is unknown to the test user. See in particular Fan (1996), Spokoiny
(1996), Horowitz and Spokoiny (2001), Guerre and Lavergne (2005), Guay and Guerre (2006)
and Chen and Gao (2007) for various nonparametric models and related null hypotheses of
theoretical or practical relevance. Golubev, Nussbaum and Zhou (2010) has proved Le
Cam equivalence of Gaussian time series with spectral densities in a Besov space with the
continuous-time Gaussian white noise model considered in Spokoiny (1996). This result is
limited to Gaussian time series and is not useful in practice since it does not deliver ready-
to-apply white noise tests. In fact, most of the data-driven choices of p, proposed in the
white noise testing literature are not adaptive rate-optimal. As an exception, Fan and Yao
(2005) extend the work of Fan (1996), outlining but not analyzing a data-driven test which
is based on the maximum of a set of standardized Box-Pierce statistics, see also Golubev et
al. (2010).

A popular data-driven method of choosing the order is the selection procedure proposed
by Newey and West (1994) in the context of long run variance estimation. See, among
other, the simulation section of Hong and Lee (2005). This selection procedure is however
difficult to justify theoretically. Newey and West selection method, although being optimal
for long-run variance estimation, does not produce a rate-optimal test because the optimal
order for testing differs from the optimal order for estimation, see e.g. Guerre and Lavergne
(2002) and the references therein. Escanciano and Lobato (2009) study a data-driven choice
of order based on an AIC/BIC criterion which is suitable for estimation but is not adaptive
rate-optimal for tests of the white noise hypothesis. This contrasts with the new data-driven

tests proposed here.



5

The paper is organized as follows. Section [2| describes the penalty approach leading to the
data-driven order p and the construction of the rejection region of the test. Section |3|studies
the statistical properties of the test under the general weak white noise null hypothesis and
under the new class of alternatives mentioned above. It illustrates the importance of the
choice of a suitable penalty both under the null and the alternative. Section [4] states our
adaptive rate-optimality results and compares the new test with the Cramér-von Mises test
of Deo (2000), the data-driven test of Escanciano and Lobato (2009) and the maximum test
of Xiao and Wu (2011). Sectionreports a simulation experiment that proposes a calibration
of the penalty term and compares our automatic test with other data-driven tests, including
tests of Deo (2000) or Escanciano and Lobato (2009) and a test that uses the Newey and
West (1994) plug-in order selection procedure. Section [6] concludes. Proofs can be found in

the supplementary material.

2. CONSTRUCTION OF THE TEST AND CHOICE OF THE CRITICAL VALUES

Consider a variable u;, t = 1, ...,n, which is either directly observed or defined as the error
of a parametric model m(Xy; 0) = u; with some observed covariate X;. In the later case u; is
not observed but can be estimated using the residuals u; = ut(é\) where @ is an estimator of 6.
We are interested in testing that w, is uncorrelated. Suppose {u,} is a stationary process with
zero mean and covariance function R; = Cov(ut, u4;). The null and alternative hypotheses

are then

Ho: R;=0forall j #0 Versus Hi: R; # 0 for some j # 0.

~

A natural estimator of the covariance is R; = Zf;l‘j‘ Upligypy/m, § = 0,£1L,...,£(n — 1),
which uses the residuals as if they were the true error terms. Given the kernel spectral
density estimator

R 1 o . R 00

fa(Xsp) = by Z K (%) R;exp (—ij)), K(0)=1 and /0 K (z)dr =1,

j=—o0
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where the support of K is [0, 1], Hong (1996) has proposed a test statistic

T 2 n—1 .
g :mr/ AA=nS K2 (l) R2. 2.1
P . ; p 9 ( )

For the uniform kernel K (t) = I(t € [0,1]) and up to a division by RZ, S, is the Box-Picrce

s Ry
fn()\ap> - %

statistic BP,/R2 = ny’_, Ef /RZ. Large values of S, indicate evidence against the null.
Under certain weak dependence conditions on the weak white noise {u,} and for p = p, — oo
growing with a suitable rate, Shao (2011b) shows that <(§p - §1> /R% — EA(p)> /Va(p)
converges to a standard normal where

Ealp) = Z (1-2) (= (2) - w2).

Vi) = 22 (-2) (e (2)-w0).

and we shall use accordingly Ea(p) and VZ(p) as a standardization for <§p - §1> /R%. In
this notation, the subscript “A” indicates difference §p — §1. For the Box-Pierce statistic,
Ea(p)=(p—1)(1+O(p/n))and VZ(p) =2(p —1) (1 + O (p/n)) and these approximations
remain valid for other kernels up to a multiplicative constant. We propose to select p as the

smallest integer number maximizing the penalized statistic,

_ S,
P = arg max (Tp — E(p) - %VA(Z?)>

pE[1,,,] R%
S,— S
= arg max P L EA(p) - ’YnVA(p) ) (2-2)
PE(1,p,] R?

where E(p) = Z;:ll (1—4/n)K*(j/p) and p, < n — 1. This penalization procedure is
similar to penalization proposed by Guay and Guerre (2006) or Guerre and Lavergne (2005).
It differs from the penalization used in the AIC or BIC procedures which use a higher penalty
term 7y, E' (p) in place of E (p)+7,Va(p). Escanciano and Lobato (2009) similarly use penalty

term 7, E (p) for p in a bounded finite set.
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The intuition for p is as follows. Note first that 1' uses the difference §p — §1. The idea
here is that the test should be based on §1 unless §p - §1 is large enough for some p. Since
the criterion maximized in (2.2)) is equal to 0 for p = 1, p differs from 1 whenever there is a

p such that (gp - §1> /R2 — Ex(p) — vVa(p) > 0 or equivalently

(5,—5:) /R — Batp)
Va(p)

> Yy, (2.3)

an inequality which, in view of the asymptotic normality established by Shao (2011b) under
the null, has the flavour of a one-sided significance test using a critical value ,. Such a
construction suggests that the data-driven statistic :9\5 better captures higher order covari-
ances than §1. Therefore, rejecting the null when §5 > z should give a more powerful test
than the test §1 > z based on §1 and the same critical value z as recommended below. See
(3.8) in Theorem [4] for a more formal statement. Why the chosen p should have certain
optimality properties can be seen by viewing as a bias variance trade-off. Theorem 2.2
in Shao (2011b) suggests that (:S';, — §1> /R — EA(p) is an estimator of ny 2, R with a
bias n Z;’;p 1 R? and a standard deviation Va(p). Hence 1) choses a p which maximizes
-n Z;’ip . RJQ- — 7, Va(p) and therefore achieves the so called bias variance trade-off, lead-
ing to a data-driven test statistic §5 =S+ :9\5 — S, with the best potential to detect an
alternative.

Under Hy, it is expected that p = 1 with a high probability provided -, is large enough
since all the §p — §1 estimate 0. Since §ﬁ = §1 + op (1) under the null, the critical values of
the test can be taken to be the same as the critical values of the test based upon the simple
statistic 5;. A HAC-robust standardization of S is given in Lee (2007). In the case where

. . . . . -1
u; is observed, an inconsistent “estimator” of the long run variance of Y 1| w1 /(n — 1)
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is, for a kernel k (), ki; = k (|i — j| /n) and @; = S0 1 (ututﬂ — ﬁl) /n/%

I = ((kij = kijy1) — (kir1y — Kiv1e1)) wipy-

For residuals u,, let é\ be the estimator 0 computed with the first ¢ observations and estimate
@; recursively by @; = Zt 1 (ut < ) Upy (9) R1> /2. Let

n—1 n—1

T, = Z Z ((kij = Kijr1) = (kiv1g — kiv1,441)) Pid;-

i=1 j=1
It follows from Lee (2007) that the limit distribution of nR, / I'; when u, is observed and of
nfil / fl when wu; is is estimated by residuals 4, is, assuming that & (-) is twice continuously
differentiable

W2 (1)
— LR (e — ) (W (r) — rW (1)) (W (5) — sW (1)) drds

(2.4)

where W is a standard Brownian motion. Let z (o) be be the (1 — a)th quantile of ([2.4)).

The critical values and rejection region of the test are

Zi(a) = K* (1) Tz (a) (2.5)
Zxnle) = K2 (1) T2 (o), (2.6)

~

~ zr(« for observed {u;},

5> %(a) where Z(a) = () e} (2.7)
Zip(a) for residuals {u;} .

We also consider a modified version of the test which employs a standardization of the sample

covariances as used by Deo (2000) or Escanciano and Lobato (2009),

n—1 . = 2 2
~ R; ~
S*=n K? <Z> i where 7 7' ﬁ2ﬂ2 (—R) ) 2.8
P Z D 7 n —j t Uiy — ] J (2.8)

The sample variance 77

is an estimator of Tf = Var (ususy;) which, for observed w,, is the

asymptotic variance of n'/? <§] — Rj> in the case of uncorrelated usu;,; or for martingale



difference. The corresponding data-driven order p and critical values are

pF = argpg[llzgi] (Sp —E(p) - %VA<p)) ; (2.9)
~ (@)
Z(a) = —~. (2.10)
Ti

While the test (2.7)) is studied in Theorems|l|and , the test with rejection region :S'\} > 2" («)
is studied in Theorem [l

Let us now turn to notations and our main assumptions. In what follows, a, < b, means
that the sequences {a,} and {b,} have the same order, i.e. that a,/b, and b,/a, are both
O(1). For a real random variable Z and a positive real number a, ||Z]|, = EY*[|Z]|"].
Consider first the case of observed u;. When studying the performance of the test under
the alternative, we consider a sequence {u;,} of stationary alternatives with autocovari-
ance coefficients {R;,}. This means that for each given n, the process {u;,,t € N} is
stationary. This type of sequences includes for instance local M A (oo) alternatives u;, =
gt + > ooy GinEr—i where a;, — 0 when n grows. Further, for residuals u; = (@\), we
assume that /n ((/9\ — 6n> is asymptotically centered with 6,, is a pseudo-true value and set
ug (0,) = up,. For the sake of brevity, {u;,} and {R;,} are abbreviated to {u;} and {R;}
in the rest of the paper but we maintain the dependence with respect to n when stating our
main assumptions. Under the null and the alternative, we follow Shao (2011b), Xiao and
Wu (2011), and restrict ourselves to stationary processes satisfying a moment contraction
condition by Wu (2005). We assume that u;, = F, (..., e_1,€;) for some measurable F,
where ¢;, t = —o0, ..., 400, are i.i.d. (univariate or vector) random variables. Consider an
independent copy {e,} of {e;} and define

ul, =F, (.. er 1,€ €41, .., €01,6) T <t<n,

where e, is changed to €/. Assume that for some a > 0 and for all j > 0,
< 04 (J) where 6, (j) — 0 when j — oo,

t—j
Uty — Uy ||,
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a condition meaning that shocks cannot have a long run impact. A fast decrease of d, (j) also
ensures that u; = u;, becomes independent of u;_; when j grows as the a-mixing assumption
used in Francq et al. (2005) or Delgado and Velasco (2012). Shao (2011b) assumes that d, ()
decreases at an exponential rate, a condition which is satisfied by many linear and nonlinear
time series models, including threshold, stochastic volatility, bilinear or GARCH models, see
Shao (2011b), Wu (2005, 2007) and the references therein. Our main assumptions are given

below.

Assumption K (Kernel). The kernel function K (-) in from RT to [0,00) is non-
increasing, bounded away from 0 on [0,1/2] and continuous differentiable over its support
[0,1]. The kernel k (-) used for the critical values is twice continuously differentiable over its

compact support.

Assumption R (Regularity). Under Ho and Hi, sup, ||us 19, < C’OR(I),/,E for some a > 1
and, for some b > 0, 812, (§) < C157770. Moreover 1/Cy < Ry, < Co, and

maxje ] R,/ Var (v ntisjn) < Cs.

Assumption P (Order p). The mazimal order p,, diverges faster than some power of n with
P, = o(n/CU+3/0)) g5 n — oo, where a > 1 is the same constant as in Assumption above.

The penalty sequence v, satisfies v, >0, v, — 00 and v, = 0 (n1/4) as n — oo.

Assumption M (Model). The processes {us,}, the model m(Xy; 0) = u; and the estimators
{@} satisfy the following conditions:
(i) There is a sequence {0y}, with 6, = 6y for all n under Hy, such that

[ns] '

R /
n'/? (9[%} — 9n> n /2 Z (Ut ptti—1n — E[ugpue—1,]) | ,s€[0,1] (2.11)

t=1

Do 1y-converges in distribution to a Brownian motion with a full rank covariance matriz.
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(i1) The residual function admits a second order expansion u; (6) = uz, + (0 — 6,,) utn +

60— Qn)'ugi (0 —0,,) + v, (0) where, for any C > 0,

1
sup sup [ti (0)] = op (ﬁ) (2.12)

te[1,n] 6;]|0—6,||<Cn—1/2

and, for each n, {utn,uig,utn} is a stationary process with EY/? [||at|| | < Cu, {a:} being

successively {um} {utn} {um} {umuﬁl} {uglgu% }, {utnug}, and where

I 2 2
Z;Z_OOE ‘ Uﬁl)j nUtn < Cs, SUPjEZE {H”_W Z?:j—l—l (ugl—)j,nut,n - ]E[uzgl_)j,nut,nD ] <
Cs, sup;ez E [ } < (%, and

(1)
2
n-1/2 Z?=j+1 (uﬁiut nUZ in E[uglgutnuf_m])H } < (k.

Uy Ut Tlut —jmn

sup;ez E

1

The compact sets [0,1/2] and [0,1] in Assumption [K| are somehow arbitrary and can be
replaced by any nested compact intervals. Note however that Assumption [K] forbids the
use of the Daniell kernel K () = sin (z) /= due to the nonincreasing function and bounded
support conditions.

Assumption @ imposes a polynomial decay on the coefficients 19, (j), a condition which
is weaker than the exponential rate assumed in Shao (2011b). Note that in Assumption
the order of p, can come closer to n'/? when a is high, that is when u, has finite moments
of higher order. Under Assumption @, {ut,,} must have finite moments of order twelve at
least. This is mostly needed for a proof of Theorem [1| below based on Lindeberg substitution
method, see Pollard (2002, p. 179), which uses moment bounds as the Cauchy-Schwarz
inequality E [(ufu? H)S} < E [u;?]. Since implementing the proposed data-driven tests with
a large p,, would in principle allow us to detect a wider class of alternatives, Assumption
[Pl which plays an important role under the null in our proofs, may be too restrictive. Our
simulation experiments indeed suggest that Assumption [P can be weakened when focusing
on white noise processes of practical relevance since the order p,, < n gives good results for

various white noise processes of practical interest. On the other hand, choosing a smaller p,,
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still gives a good power, see comments on Table 5 at the end of the simulation experiments
section.

When {u;} is observed, Assumption |M| is equivalent to Assumption 1 of Lobato (2001)
and the FCLT for n~1/2 Lfl] (uguy—1 — E [uguy—q]) is a consequence of Assumption @ and
the FCLT of Wu (2007). Assumption |M|is easily verified for simple linear models and OLS
estimation where u\>) and t;, can be set to 0. Assumption (1) is a shortened version of

t,n

Assumptions Bl and A2 of Kuan and Lee (2006) who employ a standard linear expansion

nl/? (5— 9n> =n"Y23" 4+ op (1) to show that (2.11)) satisfies a functional central limit

theorem (FCLT) called for in [M}(i). The FCLT is mostly used under H, to show that
P <§1 > 3(04)) — o and P (3\1" > z* (oz)) — « in the case of residuals. The full-rank FCLT
condition in Assumption (1) implies certain restrictions. For example, for a correctly
specified AR(1) model X;—0X; 1 = w;, the case of § = 0 is ruled out, a value of the parameter
which would in principle be excluded when considering such an AR(1) specification. Theorem
at the end of the next section explains how to overcome this issue with an alternative choice
of critical values when Assumption [M}(i) is too restrictive. The next section describes some
suitable theoretical requirements for the penalty sequence v, while the simulation section
proposes a calibration of 7, which gives good results for various white noise processes and

alternatives.

3. ASYMPTOTIC LEVEL AND CONSISTENCY

An important issue in the construction of the test is the choice of the penalty sequence.
Choosing , large enough implies that p stays close to 1 and so the test statistic §,3 remains
close to §1. Hence, on the one hand, using large v, ensures that the level of the test is close
to its nominal size. On the other hand, a large 7, may substantially limit the power of the
test since the statistic §ﬁ would not differ from S;. The trade-off between size and power is

addressed by Theorem [I] and Theorem [2]



13
Consider first the properties of the test under the null hypothesis. The following theorem
gives a lower bound for =, which ensures that p = 1 asymptotically so that the test is

asymptotically of level a.

Theorem 1. Let Assumptions @ , @ E and @ hold. If the penalty sequence {7y,,n > 1}

satisfies

Yo > (14¢€) (2Inlnn)""?  for some € > 0, (3.1)

then under Ho, lim,, .. P (p = 1) = 1 and the test is asymptotically of level av.

Under the null hypothesis, the selected order p is asymptotically equal to 1. It follows that
:SY\]; = S5 +op (1) and that critical values or guarantee that the test is asymptotically
of level .. A key result is therefore that lim,, ., P (p = 1) = 1 holds under various white noise
models and observed wu; or residuals u;. That the estimation has no impact asymptotically
follows from which imposes v,, — co. When fis V/n-consistent, estimating the residuals

gives test statistics satisfying

P n—j 2
§p = n; (% ;ututﬂ-) + Op (1)

uniformly in p. The fact that the remainder term Op (1) is negligible compared to 7, is a
crucial element in showing that the asymptotic behavior of p is not affected by the estimation
under the null. The divergence of ~, is also important to account for the fact that the
standardization Fa (p) and Va (p) are only valid when p — oo since 7, — oo imposes that
either p = 1 or p diverges because cannot hold for finite p > 1. Compared to the
existing adaptive results of Horowitz and Spokoiny (2001), Guerre and Lavergne (2005),
Guay and Guerre (2006) or Chen and Gao (2007), an important technical contribution of

our paper is that Theorem [I| holds without assuming that the set of admissible p is a power

set {a/,j € N}, a > 1.
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Another important finding is that the penalty sequence ~, can diverge with the low order
(Inlnn)"? allowed by . This contrasts with the larger order Inn used in the BIC
selection procedure and in the corresponding data-driven tests. In view of the potential
negative impact of a large v, on the power of the test, it is worth asking if the lower bound
(3.1) can be improved, that is if P(p=1) — 1 would be ensured for even lower values of
penalty term ~,. The proof suggests that this is not the case. The main argument is based

on expression

P(H#A1) =P (5 =5) /R - B> > (3.2)
P7Y=5\ eena) Va(p) = '

for the probability of not selecting 1. It can be seen from the proof of Theorem (1] that, for
the Box-Pierce version of the test, the right-hand side of asymptotically behaves like
the maximum of standardized partial sums whose exact order is (2Inlnn)"?, see (B.38) in
the Supplementary Material. Hence the bound is optimal to achieve P(p=1) — 1.
Let us now turn to the detection properties of the test. Recall that the covariance of
the alternative may depend on the sample size so that R; = R;, may go to 0 when n
increases. The new class of alternatives is defined similarly to in the introduction
section. Consider first a sequence p, — 0 and a lag order P,. An important indicator for

detection of alternatives is the number of correlations above p,,
Nn:Nn(Pnapn):#{|Rj/R0| >pn, 1<j7< P} (3.3)

The next theorem gives a detection condition on N,,, P, and p,.

Theorem 2. Suppose Assumptions [K|, [M| [R] and [A hold. There exists a constant k. > 0

such that the test is consistent against all alternatives {us} satisfying, for some p, >0

N 1/2

2 [N >

n Pn > K. (3.4)
(%Pﬁ/ 2)

and P, € [1,p,,/2],
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Condition is similar to the detection condition (|1.3)) required for consistency of the
Box-Pierce test . However a key difference between the two conditions is that while in
the lag order p, is assumed known and is used in the construction of the test statistic,
in the lag order P, in (3.4) is unknown. This illustrates the adaptive capability of the
new test. A second important difference between and is that the latter involves

penalty sequence ,. For given P, and N,, detection condition (3.4)) admits rate p! satisfying

1/2
1 [~ P?
n N,

Rate pf in (3.5)) deteriorates with the penalty sequence. Condition (3.4)) thus demonstrates

the potential negative impact of the penalty sequence on the power of the test. This impact
can also be seen from proof of Theorem [2 which uses the fact that the test (2.7)) rejects the
null whenever
S, — R2E Z(«
p/\2 0 <p)2’yn—|—/\2()
R§Va (p) R§Va (p)
For the alternatives for which (3.6|) only holds for p — oo so that Va (p) — oo, (3.6) suggests

for some p € [2,D,] (3.6)

that 7, may be more important than the critical value z () regarding detection.
Two special cases of 1} are worth mentioning. First, the situation where lim,, %Pé/ 2 /N, =
0 is of special interest since ({3.5)) shows that the test can detect correlation coefficients con-

-1/2

verging to 0 at a rate that is faster than the parametric rate n="/=. The best possible rate

in this case is p; < 771/ 2 / (nPﬁ/ 2) 2 which is achieved for “saturated” alternatives with
N, =< P,. Second, a less favorable case corresponds to more sparse correlation coefficients
satisfying lim,, %pnl/ 2 /N,, = co. In this case does not allow for correlation coeffi-
cients converging to 0 at the rate of n='/2. This case has been covered by Donoho and Jin
(2004) for a theoretical model where a known number P, of independent Gaussian variables
with mean n (R;/R,)” and variance 1 is observed. These authors show that in such a setup

the best possible detection rate is p, = (Inn/n)"/?, a rate which is achieved by the maximum

white noise test of Xiao and Wu (2011). This suggests that our test may not be optimal
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when lim,,_, o %Pé/ 2 /N, = oo. However, it is shown in Proposition (1| in Section {4| below
that the test of Xiao and Wu (2011), unlike our test, does not detect moderately sparse
alternatives satisfying with lim,,_, fynPﬁ/ 2 /N, =0 and v, < (2Inln n)l/ 2,

We conclude this section with two extensions of our main results. The first extension shows

that the test derived from ({2.8)) and (2.9) has similar properties as the test (2.7)).

Theorem 3. Suppose Assumptions [K| [M] [R| and [P hold. Then P (p* = 1) — 1 under Ho
and the test which rejects the null when §;§ > Z* () is asymptotically of level o. It also

detects the alternatives satisfying in Theorem @for a large enough K.

The second extension is useful in the case of residuals when the full-rank FCLT condition
in Assumption [M}(i) is too restrictive so that the critical value Zxy (a) in (2.6) cannot
be used. Suppose that an additional test statistic 7}, with critical values %, (a) satisfying

lim,, oo P (fn > 1, (a)) = « under the null is available. Consider the critical value

() =8 =T, +t, (a). (3.7)

n

Theorem 4. Suppose that Assumptions K, R and P hold, as Assumption M-(ii) with
NLD <§— Gn) = Op (1) where the deterministic sequence {0} is such that 6,, = 6y for all
n under Hy. Suppose also that (A0) lim, ., P <fn > 1, (a)> = « under Hy and (A1)
¢y () < Op (7vn) under the considered alternative. Then the test which rejects the null when
§;\k > ¢, (@) is asymptotically of level o and detects the alternatives satisfying the condition
of Theorem@for a sufficiently large k.. Moreover and even if (A1) does not hold, we

have under the alternative and for any sample size n,
P (@;; >, (a)) >P (fn >7, <a)) . (3.8)

Condition (A1), which allows for ¢, («) % — o0, means, when 7, (o) = Op (1) as usual, that

T, diverges at least as fast as §f or that both lack power against the considered alternative
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and are Op (1). The bound means that the data-driven test is at least as powerful
than the test based on T,. As a consequence of , the test %i > Z* (a) is as least as
powerful as S¥ > 7* (a), 2* (@) as in . The use of the critical value can give a
data-driven test whose power properties can be tailored to be optimal against some specific
alternatives by a proper choice of a corresponding optimal fn Examples of test statistic fn
which does not require Assumption M} (i) can be found in Delgado and Velasco (2012) and
Francq et al. (2005). Delgado and Velasco (2012) propose a Box-Pierce statistic corrected
for estimation with an elegant general approach and some parametric optimality properties

under Gaussianity whereas Francq et al. (2005) is more specific to ARMA specifications.

4. ADAPTIVE RATE-OPTIMALITY AND COMPARISONS WITH OTHER TESTS

While Theorem (1| gives the lower bound of order (21nln n)l/ % for the penalty sequence
v, that is necessary to ensure that the test is asymptotically of level «, Theorem [2| suggests
that increasing v, can impair the power of the test. Hence a good compromise for the choice
of the penalty sequence suitable both under Hy and H; is v, = (2lnlnn)"? Once this
choice is made one may ask if the resulting test is the best possible in the sense that there
is no other test that can detect alternatives satisfying a condition less restrictive than ((3.4)),
when k, = k, — 0 is allowed. The absence of a better test is the so called adaptive rate-

optimality. The next theorem establishes adaptive rate-optimality for alternatives satisfying

Theorem 5. Let u; be observed. For any sequence k, — 0, there exists a sequence of

alternatives {u;} such that, for some P, € [1,p,] and p, > 0 with

1/2
Fon, ((21nlnn)1/2 Pi/2> /

(2Inlnn)"? Py

Jim N, =0,

TAs discussed when introducing approximation GD the test 1) is not optimal for detection of sparse

alternatives with lim, .o Vn %/ 2 /N, = oo which are not considered here.
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such that the other assumptions of Theorem |4 are satisfied, but that cannot be detected by

any possible asymptotically a-level test.

Y ?_ it is not possible to improve on the detection condition

Hence, when v, =< (2Inlnn)
(3.4) and the rate p} in (3.5]) is optimal. We now give an example of alternatives which are
detected by the test (2.7) but not by other popular tests. Consider the following high-order

moving average process,

/2 Pa Pn
— — Vin 2 . i
Ut = Uy = E¢ T 1/2P1/4Z¢k5t ks kz:;@/hg = 0(P,), nlg{)lopn = 00, (4.1)

where {¢,;} is a strong white noise with variance o2,

v is a scaling constant and -, =
(2Inln n)l/ ?. This alternative has moving average coefficients of order fy}/ 2 / <n1/ 2pY/ 4> =
0 (n_l/ 2) provided P, diverges at a polynomial rate. Hence short term shocks have statisti-
cally negligible impact. However when 1, = 1 for all k, the long term multiplier of is

1/2

1/2
equal to v ('ynPg’/ 2 / n) which is of larger order than n="/. The following lemma describes

the covariance function and conditional expectation of the alternative (4.1)).

Lemma 1. If P, = o((n/7,)¥?) and lim,_,s (7n/n) = 0 then the alternative {u,} in
satisfies Ry = o2 <1 +0 (”ynP%/z/n>> and, uniformly in j € [1, P,],

1/2 1/2
R, = Yn — o _n
T p2pl/t 7 n1/2p$/4 '
Moreover
y71/2 Py P
E [wfue—, k > 1] = 1/2P1/4 Zd)kut k + Op ( n ) .

Hence a distinctive feature of the alternative (4.1)) when maxj<x<p, [x| = O (1) is that
max;>1 |R;| = o (n~'/?) provided P,/y? — oco. The expression of E [u¢|u;_, k > 1] reveals
that u; can be very difficult to forecast since the coefficients of the lagged variables are

all o (n=/2) provided P, = o0 (n'/?/,). This suggests that such a process will be seen in
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practice as a martingale difference when using standard statistical tools. This may be a
relevant example of alternatives in economical or financial contexts where arbitrage occurs.
We show in Proposition [1| below that the new tests detect these alternatives but that this

is not the case for three tests based on the following test statistics,

—

W, = b, <n1/2 max i - bn> . where b, = (2InJ, — Inln J, — In (47))"?,  (4.2)
JE[1,Jn] Tj
Jn D2
n Rj
CUMn = F Z ‘W’ (4'3)
j=17
EL,=BPs . Ppp= argpg[lﬁﬁ] {BPp - ﬁng} where (4.4)

if nl/2 4 i)
Inn if n*/“ max;ep, g, >

< (241nn)"?,

TV\EL =
2 otherwise.

Statistic W, in is studied in Xiao and Wu (2011) who show that W, asymptotically
has an extreme value distribution. The statistic CvM,, in (4.3), due to Deo (2000) for
observed u, is a version of the Cramér-von Mises test of Durlauf (1991) partially corrected
for heteroskedasticity. Test statistic F L, has been introduced by Escanciano and Lobato
(2009) for observed u; and a fixed J,. As in our test, the order p};; selected by Escanciano
and Lobato (2009) is asymptotically equal to 1 under H, and similar critical values can
be used. To show that tests (4.2)-(4.4) do not detect alternatives with small correlation
coefficients, it is sufficient to consider a Gaussian null hypothesis Gy under which {u;}
is a Gaussian white noise process {e;} with variance ¢? against an alternative G; under
which {u;} is given by with Gaussian i.i.d. {g,}, Y0, 2 = O(P,), maxi<p<p, || =
O (1), minycpep, [¥r0?| > 1, v > 0, 7, and P, — oo with v,/Pr/> = 0(1/Inn) and P, =
@) <(n/%)1/14> <7p,/2 and 7, = (2Inlnn)"? satisfies . We assume that J,, = O (n!/?).

Proposition 1. Let u; be observed. Suppose that Assumptions [K| and [P hold. For v large
enough, the alternative G1 as above satisfies and
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(i) the test and its 55; version consistently detect G,. By contrast,
(i) statistics W,,, CvM,, and EL, have the same asymptotic distribution under Gy and G,

and the corresponding tests are therefore not consistent.

Proposition (ii) implies that tests based on W,,, CvM, or EL, are not adaptive rate-
optimal. Let Ry ;/7y, and Ry /71 be the standardized sample covariance computed under

G and G respectively. It is established in the proof of Proposition [1| that

Ry; R, 1
max | =2 — =| = op 7z | (4.5)
JEMJIA | Toj Ty (nlogn)"

which implies that tests based on W,, and CvM,, are not consistent. The case of F'L,, test is

a bit more involved but, due to its penalty scheme, this test statistic is asymptotically equal

to EI\DT under the null and the alternative so that it cannot detect G} by 1}

5. SIMULATION EXPERIMENTS

Our simulation experiments aim to propose a valid penalty sequence v, to be tested under
various strong and weak white noise processes and under various alternatives. Since prelim-
inary experiments have shown that the test statistic §ﬁ may yield an oversized test for some
practically relevant white noise processes, we consider the test based on §§ as in and
(2.9). To investigate the impact of choosing a large p,, latter on we allow for all possible
orders, setting p,, = n — 1. We consider two kernels. The first is K (t) = I (¢ € [0, 1]) which
gives the Box-Pierce statistic so that the corresponding tests are labelled BP. The second

uses the Parzen kernel

1—6t2+6|t2, |t <1/2,

k(t) =4 201 - [¢])?, 12 <t] <1,
0 otherwise.
However since k(1) = 0 which would give a meaningless S; = 0, we change k() into

K (t) = k(t/2) /k(1/2) and label the corresponding tests as Parz. The critical values (2.10))
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Z* (a), see also and (2.6), use a power Parzen kernel k (t) = k* (¢), where the exponent
32 is has been proposed by Lee (2007) whose simulations show that such a choice ensures that
the test with rejection region nﬁ% > Z* () has good power properties. We consider 10%, 5%
and 1% significance levels. A preliminary simulation experiment with 100,000 replications
gives that the corresponding quantiles z;, () of used in z* («) are approximately 3.73,
5.58 and 10.97 respectively, which are in line with the critical values tabulated by Phillips
et al. (2006, Table 6).

The first experiment analyzes the sensitivity of the test to the penalty term and aims to
calibrate the proportionality constant for the penalty sequence. The experiment investigates
the behavior of the test under the null for 7, = v (2Inln (n — 2))1/ % where the proportionality
coefficient v ranges from 2.8 to 3.8. The process u; is a white noise with the standard
normal distribution. The next table reports the simulated levels for 50, 000 replications and
the percentage % {p* # 1} of simulation draws for which p* # 1, an important indicator in
deciding whether a difference between nominal and observed levels is due to a too small 7,
or improper critical values. In Table 1, ‘*’" indicates an oversized test, i.e. such that the null
of a level smaller than the nominal size is rejected at 1% level by the one-sided test using

the simulated level.

[INSERT TABLE 1 HERE]

A threshold value for the BP test is v = 3.4 which ensures that the observed sizes are close
to the nominal sizes for n = 1,000. The Parz test is slightly less oversized. Both tests have
very similar value of % {p* # 1}, well below 1% for v = 3.4. In the remaining simulation
experiments v = 3.4 is used.

We introduce some benchmark tests. We compare our BP and Parz tests with the data-
driven test E'L based on the statistic £'L,, in with J, = n — 1 and the critical values
of Lee (2007) in . We also consider the Newey-West data-driven order priyrsr used by
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Hong and Lee (2005) and the test statistic

R N 14457k (5/p) jAR2 /72
ﬁ[MSE — (1 v 01/5 (f)) n1/5, Where C (f) _ Z]—(;l_ll) (j/@] ]/\/2 ]AQ,
0.539285 > """ 4 k (4/P) R2/7;

SRR (3 Frarse) { B2/72 - (1- 1)}
. o 9 1/2 ’
(2 SRS KA (§/Pruse) (1 - 2) )

where k () is the Parzen kernel and 7/:]-2 is defined as in (2.8). In the definition of prase, P

IMSE =

is a pilot bandwidth that is set to p = 4(n/100)¥%. Note that C (f) remains potentially
stochastic under the null so that the null limit distribution of IMSFE may differ from the
standard normal distribution valid for deterministic p, — oo. We however follow common
practice and use standard normal critical values for the IMSE test. The last benchmark
test, CvM, is based on Deo’s (2000) Cramér-von Mises statistic CvM,, in (4.3) and uses the
critical values tabulated by Anderson and Darling (1952).

The first comparison under H, is based on ii.d. {u;} with the following distributions:
standard normal (‘Nor’ in Table 2), Student with three degrees of freedom (‘Stud’), and
centered chi square with one degree of freedom (‘Chi’). The Student distribution is used
to test the sensitivity of our test to the lack of higher-order moments while the chi square

distribution can reveal sensitivity to skewness.
[INSERT TABLE 2 HERE]

As in Table 1, the size of the Parz test is slightly better than the size of the BP test but
both perform well here, although BP is slightly oversized under the ‘Chi’ white noise. The
EL and IMSE are generally oversized with strong size distortions for ‘Chi’. The CvM test
performs well except for the ‘Chi’ experiment.

The next experiment considers observed weak white noise u; or residuals #;. Two condi-

tional heteroskedastic martingale difference processes are examined. The first isa GARCH(1,1)
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process with u; = s,{; and s? = 0.001 + 0.90s? ; + 0.05u? ; where (; are ii.d. stan-
dard normal innovations. The second process is an ARCH(1) process with u; = s,(; and
52 = 0.0014+0.9u7_,. Due to the ARCH coefficient larger than 1/1/3 = 0.577, E [u}] = oo and
the tests are, in principle, not expected to behave well in this experiment. The next three
processes are uncorrelated but are not martingale differences, so that the CvM test is not
expected to have a correct size and is only reported here as a benchmark. The first, labelled
‘Bilinear’ in Table 3 below, is a bilinear model u; = (; + 0.9(;_1u;_2. The second, labelled
‘No-MDS’, is given by u; = (;—1(;—2 (1 + (;—2 + (;) and has been examined by Lobato (2001).
The third, ‘All-Pass’, is an All-Pass ARMA(1,1) process examined by Lobato, Nankervis and
Savin (2002), u; — 0.5us—1 = (; — (;—1/0.5, where (; i.i.d. and have the Student distribution
with 9 degrees of freedom. Since the root of the M A part is the inverse of the AR root, the
resulting process is uncorrelated but the u; are dependent due to non-Gaussian (;. Finally,
experiment ‘ARRes’ examines residuals from the AR (1) y; = 0.8y;—1 + wy, Uy = y; — %H,
0= Z?;ol YeYis1/ Z?;Ol y?2. The BP, Parz and EL tests are all adapted to the estimation
effect thanks to the use of the critical values z* () of (2.10)). The critical values of the IM SE
and CvM do not account for estimation of residuals and the corresponding tests should be

not be expected to have a correct level under ‘ARRes’.
[INSERT TABLE 3 HERE]

The performance of the BP and Parz tests is very good with levels that are not oversized
in general. However the BP and Parz tests can be undersized, see the case of ‘ARCH(1)’.
But even in this case the value of % {p* # 1} remains very small suggesting that the size
distortion is due to the critical values of Lee (2007)E| The behavior of the 'L test is more

erratic, with levels that can be either oversized, as in the case of ‘GARCH(1,1)’, ‘All Pass’

2This is confirmed by a not reported simulation experiment which shows that using standard chi-squared

critical values give good results.
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and ‘ARRes’, or undersized. The IMSFE test can also be severely oversized. The CvM
behaves well for ‘GARCH(1,1)" and ‘ARCH(1)’ but, as expected, is severely size distorted
in the other cases.

We now consider H;. In what follows, the critical values of the EFLand IMSE tests are
adjusted to achieve the desired level under normality. A first set of fixed alternatives is
considered, MAl: w; = ¢; + 0.05¢,_1, AR1: u; = 0.05u4_1 + &¢, MA4: ¢, + 0.2¢,_4 and
AR6: u; = 0.3uy_g + &; with i.i.d. standard normal innovations ¢; and n = 200, 1,000 is
considered. The CvM test is expected to perform better for these alternatives, especially
‘AR1’ and ‘M A1’. In Tables 4 and 5, p* and sp« are the simulation mean and standard
deviation of p*. These statistics are useful for assessing the impact of p,, on the power since

large p* or sp+ suggests that decreasing p,, can decrease the power.
[INSERT TABLE 4 HERE]

The low-lag ‘AR1’ and ‘M A1’ experiments have very similar characteristics with powers of
the tests for a = 10% increasing from 17% — 18% for n = 200 to 43% — 47% for n = 1,000.
The data-driven tests all exhibit a surprisingly high p* or sp«. The BP, Parz and E'L seem
to be outperformed by the IMSE and CvM tests. For the higher-order experiments ‘M A4’
and ‘AR6" and n = 1,000, the BP, Parz and EL tests clearly outperform their competitors
with power close or equal to 100%. For n = 200, the EL test outperforms its competitors
with BP as a second-best. The high values of p* and sz for the BP and Parz tests illustrate
the fact that p* is suitable for testing but not as an estimator of the order of an AR or M A
process.

The second experiment under H; examines, for n = 200, the power of the 5% level BP and
Parz tests against H, : u; = vy — pvi_1, p € [0,1/2], under the nine scenarios of Tables 2 and
3. For example, under ‘GARCH(1,1)" v; = s;(; and s? = 0.001 + 0.90s?_, + 0.0502 | where

¢; are i.i.d. standard normal innovations while, under ‘ARRes’, the v, are i.i.d. N (0,1)
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and u; = v, — pv,_q is estimated from the AR(1) model X; = 0.8X; 1 + uw;. We do not
consider the other tests to avoid undesirable size correction effects, but we compare BP and
Parz with MEP32 test of Lee (2007) which rejects the null when nk? > 7 (o) where 2 (a)
is defined in , and an « level test which rejects the null when nﬁ% > ¢(a), where the
infeasible ¢ («), dependent of the white noise process under consideration, is computed from
10,000 preliminary replications. Since the latter is locally optimal under Gaussianity, it is
labelled LOT. Figure 1 reports the nine power graphs corresponding to each white noise

experiments.

[INSERT FIGURE 1 HERE]

Except for white noise processes such as ‘NoMDS’ for which the new tests are undersized,
the power of the four tests are quite similar in the vicinity of p = 0, suggesting that our
data-driven tests are, for processes close to Gaussianity, not far from being locally optimal
as LOT'. The global performance of all tests deteriorate for nonlinear white noise processes
as ‘ARCH(1)’, for which LOT has a very low power compared to its competitors BP, Parz
and MEP32 Parz dominates its competitors for such white noise processes. As expected
from 7 Parz and BP perform as well as or better than MEP32 which is less powerful
than Parz for heteroskedastic noises the ‘Bilinear’, ‘ARCH(1)’, ‘GARCH(1,1)’ or ‘NoMDS’.

The third experiment under H; considers a second set of alternatives given by randomized

“small correlation” processes defined in (4.1),

P
(2.5 % 7,)"? iid.
SIS Z Yk bEt—k, Yry ~ N(0,1). (5.1)

k=1

Uy = E¢ +

In this setting b is the simulation index, b = 1,...,10,000. New moving average coefficients
{trp} are drawn for each simulation. Randomizing the moving average coefficients allows
us to explore various shapes of the correlation function. The noise {;} is independent of
the moving average coefficients {ty;} and is drawn randomly from the standard normal

distribution. Since Y°F_ 42, = P (14 op (1)) when P tends to infinity, the covariances of
k=1 Ykb y
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1D can be o (n‘l/ 2) as shown in Lemma (1, We consider two scenarios. In the experiment
‘LOW’, P is set to 15 for n = 200 and to 75 when n = 1,000. The experiment ‘HIGH’
doubles the order P, so P = 30 for n = 200 and P = 150 for n = 1,000. The next table

reports simulation results.
[INSERT TABLE 5 HERE]

The BP test outperforms its competitors and Parz comes as a second-best. The EL test
achieves power similar to that of the BP test only in the LOW experiment when P = 15 and
n = 200. The power of the IMSE and CvM tests decreases with the sample size while the
power of the other tests increases, showing the importance of a proper data-driven choice
of the order. The high values of ?PW may suggest that the Parz test would be negatively
affected by choosing a lower value of p,. However setting p,, = 3 [(n/Q)l/ 2} instead of

P, = n—1 as done in an experiment not reported does not really affect the power of the BP

test.

6. CONCLUDING REMARKS

The paper proposes an automatic test for the weak white noise null hypothesis for observed
variables or residuals from a parametric model. The test is based on a new data-driven order
selection procedure applied to the Box-Pierce (1970) test statistic. The critical region uses
robust critical values of Lee (2007) which can account for estimation of residuals. An impor-
tant theoretical finding is that the new test can detect alternatives with small autocorrelation
coefficients of order p, = o (n‘l/ 2) where n is the sample size, provided that the number of
autocorrelation coefficients at moderate lags is large enough. The proposed test is shown to
be adaptive rate-optimal against this class of alternatives. The paper gives examples of mov-
ing average alternatives with small autocorrelation coefficients of order o (n_l/ 2) which are

detected by the new test but not by tests previously proposed by Deo (2000), Escanciano
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and Lobato (2009) or Xiao and Wu (2011). These alternatives correspond to a plausible
macroeconomic scenario where a temporary shock has no significant impact whereas perma-
nent shocks may cause significant changes. They can also be of interest in finance where
arbitrage should rule out strong deviations from the difference of martingale hypothesis,
since these alternatives generate conditional expectation given the past of these alterna-
tives with order op (nil/ 2). A simulation experiment has shown that the new test can cope
with various weak types of white noise processes including the ARCH or GARCH processes
popular in empirical finance. The simulation experiment has also confirmed good power
properties of the test regarding detection of standard AR(1) and M A(1) alternatives when
the noise is highly nonlinear, for instance in the case of the ARC'H(1) process considered in

the experiment.
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SUPPLEMENTARY MATERIAL A: PROOFS OF MAIN RESULTS

This section contains the proofs of the results of Section 3. In what follows, a tilde super-

script, as in

P . n—lj|
Sp=n E K? (}—9) R? where R;= - E UpUpp - (A1)
7j=1 t=1

indicates that the variables u; are observed. This also leads to define

n—|jl

- 1 ~ ~ ~
= D utuiyys (@) =7Zp(a), Z(a)=7Z(a),
t=1

but we keep the notation p. C and C’ are constants that may vary from line to line but

only depend on the constants of the assumptions. Notation [-] is used for the integer part

of a real number and a V b = max (a,b), a A b = min (a,b). Let @, 7 = ﬂﬁj be a copy of
uy = F, (..., e;1, ) obtained by changing e; j, €;; 1, ... into e;_;, ¢;_; 4, .... Then the
condition ||u; — ul ™’ Ha < 0, (j) ensures that
Jue =37, < ©a (j) where O, (j) = 64 () - (A.2)
i=j

We first state some intermediary results that are used in the proofs of our main results. These
intermediary results are proven in a section called “Supplementary Material B”. Lemmal[A.2]
gives the order of standardization terms F(p), Ea(p) and Va(p). Propositions and
deal with the impact of the estimation of . Proposition is used to study the asymptotic
null behavior of the test and to show that P (p = 1) — 1 in Theorem|1| Proposition deals
with observed variables or residuals thanks to Propositions and [A.2] Propositions
and are the key tools for our consistency result, Theorem [2 They dealt with observed
variables but are combined with Propositions and to deal with estimation errors in

the proof of Theorem [2]

Lemma A.2. Suppose Assumption[K holds and that p,,/n < 1/2. (i) There exists a constant

C > 1 such that, for ¢ = 1,2 and for any 1 < p < p,, & < Z;:ll (1- %)qKQQ (%) <



2

Cp, & < Y5 K2 (1) < Cp, VE(p) < Cp, and Balp) < X5 (K2 (1) - K2(j)) <
Cp'?Va(p); (i) Under Assumptz’on@ for alln and all p € [1,7,], Va(p) > C(p—1)"/? and

Lemma A.3. Suppose Assumptions @ @ and @ hold. Then the rejection regions S >
7 (), St > 7 (@), S1 > 2k () and St > 75, (a) are asymptotically of level o. Moreover,
under Hy, zp (o), Z} (a), Zrr (@) and Zi;p, (o) are all Op (1).

Lemma A.4. Under Assumption SUPo<j<p—1 Var (Rj> < %

Proposition A.1. Suppose Assumptions @ B

Op (n™Y2), max,epon— 1]7”&2] 1<R R) =0p(1 ), and

~ j 1
n(-2Jal-o ()"

max
j€[0,n—1]

max
JE[0,P,]

' 1
max (1—i) |3’f—7’n‘—0p (ogn
j€[0,n—1] n n

R;— Rj,

— Op

Op

max |7‘ —Tn‘—

7€[0,P,]
Proposition A.2. Let Assumptions @ @ @ and hold. Let §p be as in . Then

: \ <§p—§1> - (gp_f;;) | = Op (1)
pel2p] (n P R]%n)

~ ~ 1/2
a’nd fOT any pn = O(n1/2)7 Spn - Spn = OP (1 + (n le Rin) ) ’

Proposition A.3. Suppose Assumptions [K|, [M|, [ and [R] hold and that Ho is true. Then
ensures that

n—oo  \ pe2,5,] Va(p)

& avm
lim P ( max (Sp = 5)/ T — Ea(p) > %) =0.
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Proposition A.4. Under Assumptions K| [F and[R], there are some C,C’" > 0 such that for
n large enough and uniformly in p € [1,p,],

p/2

E [@,} ~R2,E(p) > an R, —C'R:

0,n
2
) o

Proposition A.5. Under Assumptions|K|, [A and[R], there is a constant C' > 0 such that for

p/2
) > an (

2[5 ()

7’L

n large enough and uniformly in p € [1,7,],

p
Var (§p) <C (nZan +p> ;
=1
n—1 . 2 p 2
7\ B; R;
Var (ZK<Z_?) 7—3_71,) <C (n;Rgn ) )

J=1

A.l. Proof of Theorem|1] (3.2)), (3.1) and Proposition[A.3|give that lim, .., P(p # 1) = 0.
Hence §I; — Si+op (1) and Lemma , which ensures that the retained critical value satisfies

P (§1 > 2(04)) — «, yield that the test 1} is asymptotically of level «. O

A.2. Proof of Theorem [2 The definition (2.2)) of p gives, for any p € [1,7,],
Sp = arg max {8, ~ RE (1)~ RVa () | + BE () + 7,55V (7

> S, — R2E (p) — 1 R2Va ().

Note that this bound implies (3.6)). Since the critical value Z'(«) in (2.7]) is bounded under #,

by Lemma|A.3} it is sufficient to find a p,, € [1,7,,] such that §pn — R2E (pn) =1 R2Va (pn) 5
+00. Let p, = 2P, where P, is as in (3.4)). Set

Py 2
R=Y ()

J=1
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The detection condition (3.4]) gives

1/2

P, 2
nR2 > np; E I { (ﬁ) > Pi} = nNppl > “olz — o9, (A.3)
j=1 "

with a constant , which can be chosen as large as needed. Lemmas[A.2] [A.4] Assumption
which ensures P, = o (n'/?) and ~, = o (n'/*), and Proposition for the case of residuals

yield that

‘§Pn - ﬁSE (pn) - ’Yn/RSVA (pn)

el 1/2
= Spn + Op (1 + nl/QRo,an) - RanE (pn) — %RS,HVA (pn> + Op (M)

nl/2

> S, + Op (1+n'?Ry,R,.) — RE,E (pn) — CyR2,01/>.

Now the Chebyshev inequality, Propositions [A.4] and give

Sp

n

—E [S},} +Op (Varl/2 (@,)) > R2E (pn) + C'R2,nR2 + Op (p/2 + n'°R,) |
Hence substituting gives, since nR? — oo by (A.3)),

§pn — EgE (pn) — %PZSVA (pn) > C"RgvnnRi (14+o0p (1)) — C'%Ranp}/z (I+o0p(1)).

Since Assumption @ ensures that Ran stays bounded away from 0, (A.3|) gives that gpn —

}A%(%E (pn) — %}A%%VA (pn) 5 oo as requested provided k2 > C'/C. OJ

A.3. Proof of Theorem Consider first the null hypothesis. As seen from the proof of

Theorem [1], it suffices to show that

(S5 — S
lim P| max —2 > | =0,
n—oo (pG[?,pn] VA (p) =7



5
a statement which implies that p* = 1+op (1) so that Lemma implies that the conclusion

of Theorem [1 holds for the test based upon S%.. Since [Rj,| < [lugully ||uen — a7 ||, and
B[} ,uf ) =B (@) wi ] + B [ (e, - @)) ui ]
= R}, +E [(urn — T, (e +000) ui )] s
(A3) shows
172, = RS, < Cllugnlly ©2 () < C5° (A.4)

for all 7 > 1. Now Lemmas and [A.4] Assumptions[K] [P]and [R] and Proposition give

(55— 80— (8, - S/Ry| o S/ B
pelopy] Va(p) pelip)  p2
ﬁ 7' T2 T2
<C — = ST 21
pg[llafl p1/2 (R > { Rg,n R%,n ‘}
Pn Eg
< Cnp)/*Op (( ) >+OP(1>an_g
j=1
Pn Var 1/2R>
)+ Op =0Op (1)
Hence and Proposmon A
(S5 — Si) — Ea(p)
P | max —2Z Z Tn
<p€[2,pn] Va (p) =7
(S, = 81)/ B3 — Es(p)
=P max Op (1) >,
(pe[2p] Va(p) =7
(S, — 8)/ B3 — Es(p) 12
<P > 1+ 21Inl +o(1
N (pg[IQa;i] Va(p) - ( )( ninn) "

which gives the desired result under H,.



Consider now Theorem [2] and ;. Define
e L\ B R
S;:nZK2(l)TTJ, —HZK2( ) —L
] n

Let P, be as in (3.4) and define p, = 2P, and R, as in the proof of Theorem . Then
Assumptions [K] and [R], Propositions [A.1] and [A.2]

R /\* Pn AQ 7_2 logn 1/2 -
* J J,n
S —SXxI< 2?5_1‘:019 ( - ) S,
j=1 " J
SP*;L - S]:l — Pn Spn - O[P) (nl/znn) .

Hence, for observed variables or residuals,

~ logn\ /2 =~
S;n:<1+0p(< - ) )>5;+0P(n1/27zn)

The proof now follows the steps of the one of Theorem [2]based on the order above, Proposition

A.4 and |A.5] and Lemma |A.4| which gives E [51‘3‘;] < C(pn, +nR2%). Hence, since p, =
o ((logn/n)'"?),

Sy = arg max 18]~ B () = 7Va (0) } + £ (57) +73.Vs (7)

p€E[L,p

= (1 + Op ((10571)1/2)) (IE [§;;] + Var!/? <§;’;)) — E(py) — Cympl/?
C

'R} RS — Cy R ,py/? + O (pi/ 2 pM2R, + ( Og”) (pn +nR2)

n

= C"Rg’nnRi (14+o0p (1)) — C'%Rg np}f (I1+o0p(1)) RGN

provided k, is large enough. O
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A.4. Proof of Theorem [4 Since P (p* = 1) — 1 under H,, condition (A0) and (3.7) give

lim P (§N > (a)) — lim P (§; >z (a)) — lim P (3; > S T, +7, (oz))

n—o0 n—o0

— lim P (fn >7, (a)) —a,

n—o0

so that the test of interest is asymptotically of level a. Let us now consider the alternative.
Arguing as in the proof of Theorems [2| and [3| under condition (A1) shows that the test with
critical value ¢, («) detects the alternatives provided k, is taken large enough. Consider
now (3.8). The definition of gives, since Ea (p*) +7,Va(p*) > 0 under Assumption [K]

Hence, by ({3.7))

P(é\; zma)) >P(§;zan(a)) :P(§;z§;—fn+?n<a)) :]P’<An2tAn(a)>,

which is (3.8)). O

A.5. Proof of Theorem [5, We first introduce a set of alternatives. Let f(-) denote the

spectral density of a centered Gaussian stationary process {u;} .with covariance coefficients

R;. Define a Holder class of processes as

Holder (L) = {{ut}: 1/3< i[nf ]f (A< sup f(A)<3, sup [N <L, Y R < L} :
€l—mm AE[—m,7] AE[—7,7] =0

The next Lemma describes a family of alternatives which satisfies Assumption [R] uniformly

for prescribed constants and a given J, (j) .

Lemma A.5. Consider a centered stationary Gaussian process {u;} with spectral density

function f(\) =exp(g(N))/(27), where

p
g(\) =2p) bycos(kX), by = —1,0,1. (A.5)

k=1
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If p>1 and p > 0 are such that p?p < € < 1/6 then there is some constant L > 0, inde-
pendent of €, p, p and b = (b, k € [1,p]), such that (i) |Ry — 1| < 6pe and |R; — pb;| < 6pe
for j € [1,p); (ii) |R;| < 3p(2€)" for all j in [lp+1,(£+1)p) and all £ > 1; (iii) {u;} is in
Halder(L); (iv) Suppose that p = p2(p) = 2x2 (2loglogn)"/? / (np*/?) for some k, >0 and
bounded away from infinity, and that p € [1, P,] with P, = o ((n/ (k2 loglog n)1/2> 1/14).
Then the associated family of processes {u; (b,p);b € {—1,0,1}" ,p € [1, P,]} satisfies As-
sumptionfor any a >0 and a 6, (j) = O (771/*).

Proof of Lemma Rewrite g as g (\) = p)_j__, brexp (ikA), by = 0, by, = b_y, = byy.

Since exp (x) = >~ 2™ /m! uniformly over any compact set and maxy |g (A)] < 2pp < 2e <

1/3, we have

—T

i g Il =1 (7 y m
R= [Ceounimi= 3> o [en i gopnan (a0
m=0 Y7
For m > 0, since ["_exp (—ijA)dA =27 if j =0 and 0 if j # 0,
L[ exp (<) (g ()™ dA
% - eXp Z] g
S bklx-~-xbkm/ exp (i (k1 + ...+ km — §) A) dA
=" > be, X -+ X by, | (A7)

where K, is the set of m-tuples with entries in [—p,p| \ {0} so that #K,, = (2p)™ and

K., (j) contains m-tuples in K, for which k; + - - - + k,, = j so that #K,,(j) < (2p)™ .
Proof of (i). Part (i) is a consequence of (A.6), and inequality 2pp < 2¢ < 1 which to-

gether imply that for j € [0,p], |R; —I(j = 0) — pb;| < p Yoo, @O < opp?ye |1 <

2epe < Gpe.

Proof of (ii). Let fp+1 < j > (£+ 1) p. Observe that K,, (j) is an empty set when m < /.

Hence it follows from ((A.6)) and (A.7) that |R;| < |5 > L [T exp (—ijA) (g (A)"dA| <

2 m=0+1 m!
0o (2pp)m71 ¢
szze-ﬂ pouy] <p (25) €.




Proof of (iii). Observe that |g (\)] < 2pp < 2e < 1/3 and that therefore
1/3<1—-1/3<exp(—1/3) < f(A) <exp(1l/3)<e<3 for all A € [—7, 7).

Parts (i), (ii) and 0 < p < e < 1/6, pp < 1/6 yield that, for L large enough,

o0 p co (L+1)p 00
STIRISRo+ ) IR+ Y [Ri| <1+6pe+ (1+6€)pp+3>_ (£+1)pp(26)
7=0 7=1 {=1 j=lp+1 /=1

S14+141414) (£+1)(20) <L
/=1

Since f/(A) = ¢/ () £ (A) with ¢/ (\) = —2p S0, biksin (kA), we have supye_r |/ (V)] <
3 x 2p%p < 1.

Proof of (iv). Let u; = e;+3 7, ¥&;—; be the Wold decomposition of the process. Brillinger
(2001) and [" log f (A) exp (ijA) dA/2m = pb; gives

S exp (p Yoy b exp (—ikA)) exp (ij ) dA

w' = T . )
’ I exp (p 220, by exp (—ik))) dX
1 [ P ’
Var (g,) = %/_ﬁ exp (p;bk exp(—ikA)) dA

Arguing as in (i) and (ii) with an expansion as in give Var (g;) = 1, [¢; — pbj| < Cpe
for j € [1,p] and |¢);] < Cp(26) for all j € [lp+1,(¢+1)p) and all £ > 1. Gaussianity,
the choice of p in (iv) with the restriction on P, and Wu (2005) give, for any a > 1,
6124 (7) < Culby] < Coji~ ™14 That the other conditions of Assumption [R| hold uniformly
in p € [1, P,] follows from (i) and (ii). O

We will now define a family F, of correlated Gaussian alternatives. We first introduce
some notation. Consider 3, = (2Inlnn)"? and P/ = {29, j=1,...,J,}, 2/» = P, =

0 (]_on A (n/%)”“‘) so that P" C [1,p,] for n large enough. Define also

(fin)lm HHPTZM

2~
K Yn -
T PalD) = 2000) e = Ploa(P) = T —0(1). (AS)

np'/2’

Pn(p) =
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Since p*p,(p) < €, for all p € P’, €, plays the role of the real number ¢ of Lemma and
we assume from now on that n is so large that €, < 1/6. Consider the following log-spectral

density functions:

g(Aib,p) =2p,(p) Y brcos(kN), b= (bi,....bp,) €{-1,1}", peP.
’fE[JO?p)

Functions g are of the form specified in (A.5)). Let W be a symmetric standard Brownian

motion process. Consider a centered stationary Gaussian processes

1 7rex 9(Xib,p) exp (i
um(b,p)_(%)lm/_ﬂ p( : ) b () IV ().

Observe that u;, (0,p) does not depend on p and is a Gaussian white noise process with
variance 1. Let {R;, (b,p)} denote the covariance function of wu;, (b,p). The family F,, of

Gaussian processes can now be defined as

Fo={{un 00)} b e {-1,1}" pe P},

Lemmaimplies that all sequences {u,, } in F,, satisfies Assumption@ and that F,, CHoélder(L).
We now study the asymptotic behavior of the stochastic covariance sequence {R;,, (B, P)}.
Let N, (b,p) be as in (3.3)), that is

Rj,n (b7 p)

N, (b,p) = N, ({ttem (b, )}, 0, pn (D)) = # {‘m

‘an(p), j€ [Lp]}-

Lemma [A.5}(i,ii) and gives that N, (b,p) = p/2 for n large enough and uniformly in
p =2 € P so that p2(p) = 2627,/ (np"/?) = k279,p"/%/ (nN,, (b, p)). Hence the sequences
{ut,,} in F, satisfies condition (i) in Theorem Therefore the Theorem will be proved
if we show that sup; ming,, yer, P (7, = 0) < a4 o(1), where sup;, is a supremum over
asymptotically a-level tests. Since the equivalence result of Golubev et al. (2010) holds over

F, CHolder(L) this is equivalent to show that sup; ming, ez, Q (7, =0) < a+o0(1), Q
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being the distribution of the continuous time regression model

12 W (A)

ni/2 =’

dUy, (A;b,p) = g (A;b,p) dA + 27 A€ [-m, 7],

where W (+) is a Brownian motion over A € [—m, 7]. This can be done as in Spokoiny (1996,
Proof of Theorem 2.3) by bounding sup;, mingy,jer, Q (75, = 0) with a Bayes risk, based on

the choice of a uniform distribution for p and a Bernoulli one for b. O

A.6. Proof of Lemma . The first approximation Ry, = o> (1 +0 <%pnl/ 2 / n)) follows
easily from the definition (4.1]) of the alternative. To show that the second approximation is

valid, note that for j =1,..., P,,

u’yl/Z 71/2 2
. e n . 2 n . . . . . 2
R;n nl/2ph/t TS (nl/zP,i/‘l) (Y4191 + +¥pp,-) 0

By the Cauchy-Schwarz inequality, |¢j11¢01 + - -+ ¥p,¥p,—j| < Zk Ui = O(R,) for all

7 =1,..., P,, hence, uniformly in j =1, ..., P,,

R 1/%1/2 LA Pﬁ/z _ l/%lz/Q b;o? + 0 L/Q
M 2 pl/ i7 n ni/2pt/at nl/2pi/t

since P, = o((n/v,)*?).

For the expression of E [u;|u;_x, k > 1], observe that (4.1)) gives, for n large enough,

e b
E [ug|ue—p, k > 1] 1/2P,1/4 Z¢k5t k
V%%ﬂ P, VV}/Q P,
1/2131/4 Zw’“ ( 1/2p1/4 Zwﬂgt k J)

1/2 P,

- 53;1/4 Zwkut E— 1/2 ZWZ%& k—j-
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Now, since {&,} is a strong white noise and 31", ¢? = O (P,),

2P, max(Pp,l—1)

1/2/7/12 Z¢k2¢35t k— ]:ﬂz Z Vrthe—k | €t

1/2
n Pn/gQ

9 2P, max(Pp,l—1)

=0p | | -2 Z Vit

2
n?pP,
" op=2

n2

o 72 (T w£)2 (% pn>

which ends the proof of the Lemma. 0

A.7. Proof of Proposition . Let us now check consistency of the test (2.7) under the
assumption that mingep p, [¢x0?| > 1. Define p, = (v/2)/*/ <n1/2pﬁ/4>. Lemma

implies that N,, = P, (1 + o(1)) for such a p,,, which therefore satisfies

pn = (14 0(1)) (v/2) (WP /N) 2 02,

so that (3.4 asymptotically holds provided v > 3x* and the test is consistent if 1 < P, <
Dn/2 by Theorem [2 provided the considered alternatives satisfies Assumption Rl Wu (2005)

gives that the alternative (4.1]) satisfies for any a > 0,

yvf,l/ 2

512& (]) S Canl/Q—[)nl/4 |O'¢j| for all] - [1,Pn] , (512(1 (]) =0 for aﬂj > Pn

Hence the condition P, = O ((n/’yn) > gives that 819, (j) < Cj~7"1/* since the |ov);| are

bounded away from infinity. Moreover Gaussianity ensures that
1/2 1/2 51/4
V Tn Vyn P,
HUt,n_f’:tha = < 7_}/2 Zwk> IO (T) IO(1)7
which gives Var (u;,,) = 0 + 0 (1) and max;ep , Var® (ug,) / Var (ugatierjn) = 1+ 0(1) so
that Assumption [R] holds. This ends the proof of Proposition [1}(i)
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Consider now the other tests in Proposition (ii). Define ﬁl,j = Z?:_f Up Uit jn /M, EOJ =
Z;:f 5t5t+j/n= T = Zt 1 ut nut+],n/( )_n}%g/ (n —j) and %g,j = Z? fgg@gﬂ/ (n—j)—
nﬁaj/ (n —j). Define also n; = nyn = v> oo YrEi—g, setting ¢, = 0 for k > P,, so that
U = & + 771/27715/ (nl/zpﬁ/ll). We have

1/2 n—j 1/2 n—j n—j
~ ~ Yn Tn Tn
Rj— Roj| < ——7 MEt+5| + ————7a EtNi+j| T ——73 NNt -
o Bl < G [ g [ |+ 3 e
The Burkholder inequality gives, for any a > 1,
1/2 n—j 1/2 \1/2 1/2 pl/4
s | <Ol < 0P
3/2P n3/2pn n
71/2 n—j 1/2 —J -
n 2
1/4 Z (5t77t+j - wjgt) < 1 Z (Z Yyt k)
n3/2Pn/ — . 3/2p 3/2 pl/4 — —
1/2 n—j 1/2 p1/4
Tn P,
3/2131/4 Z ( Z Virj— k) & < CT’
n k=j+1
/2 n—j 1/2 1/2
n 2 2 In TnPn
_— g — 0O <C , n |l < <C ,
' n3/2P7~1/4 pa ( t ) ) nP1/4 | 2P5/2 Z t nP 1/2 n

< 3", n? and the Markov inequality give for a large

)

for all j. Note also that ‘Z;:f NNt

enough, since v, Pr/? = o(n!/4)

Ri; — R, Ri; — Ry,

max

. Op (max

jelln] JE[L,n]

n 1/2 n—j
— Tn 2
=Op (Z 3/2P1/4 Zﬁtétﬂ + Z EtNi+j —n2pnl/2 tz_l: My

1/2 pl1/4 1/2
Yo' " Py, Y P 1 1
o (s (R (V) (s
1
=op| ———= | -
: (nlogn)*/?

)




14
Hence

Ri; — R,

max
JE[n]

1

Arguing similarly for the ?Z,j give, since J,, = O (nl/ 2)

- 1 logl/2 n
max ?f’j — T&j} =op | ———5 max ng — 04} = Op —7 | (A.10)
JE[L,Jn] ( ) " GE[1Jn] n

where the latter is from Proposition [A.1] Note that (A.9) and (A.10) gives (.5). Let Wy,

CvMy,,,, ELy, be the statistic computed under Gy, k =0, 1, i.e. with }N%o?j/?o’j and }N%ljj/ﬁj.

Note that (A.9) and (A.10) gives Wy, = Wy, + op (1). (4.5) and Proposition give

9 In ‘ <§1,j/?1,j + éO,j/%],j) <§1,j/7§1,j - éo,j/?o,]) ’
|CoMy,, — CoMo,| < =5
™

y2
Jj=1 J
1/2p ~
n / Ro’j 1/2 le
< 2 max — x max |n'/? [ =L — k) — E —
J€E[1,Jn] 70,5 JE[1,Jn] T1,j TOJ ™

1,j
+ max n ~—J — — g —
JE,Jn] T1,j 7_03 m

logn 1/2 1 1
=n'20p n2op | ——— | + nop =op (1),
n (nlog n)1/2 nlogn

Hence CvM,,, = CvM,y,, + op (1). For EL,, Wi, = Wy, + op (1) and Xiao and Wu (2011)
Ry s/
1 under Gy and G1.We now show that P (p},; = 1) — 1 under Gy. Propositions and [A.F]

< (2Inn)""? (1 + op (1)) for k = 0, 1 so that P (73, = Inn) —

gives that max;e, s,



15

(A.10) give

P (oL #1) =P ( max Op__ = > lnn) +0(1)

PE[2,Jn] p—1

DPE[2,Jn] P — 1

=P ((1—1—0]1» (1)) max >lnn> +o0(1)

nSP _R2 /ot q
—IP’< =204/ >—1nnf0rsomep€[2,]n]>+0(1)

p—1 5
3 - ];:2 <R(2)7j/04 e [Rgaj/04]> 1 n Z?zz E [R(z),j/a‘l}
< P > —Inn— o)
p—1 5 —
p=2
5, Var ("25—2(ﬁé,j;c:“l—fﬁ[ﬁaj/gq))
S 2 +o0 (]_)
p=2 (% Inn — L3720, (1— j/n))
C In 1
) h=0 1)=o(1).
_1Og2nngp_1+0() <logn>+0() o(1)

Now, observe that Proposition and (4.5)) give

BP, - BP,, BP.,-BP,, ny, (R3,/7, — B, /7)

max — max
PE[2,7n] p—1 p—1 T pE(2,Jn] p—1
R Ry, R Ry R \|\
< 2 max 2227« max |n'/? # — # + [ max |n'/? # — #
PE[2,Jn] 70,5 PE(2, 5] 70,5 T1,j PE(2,Jn] 70,5 T1,j

logn 1/2 1 1
=n'20p n'2op | ——— | + nop =op(l).
n (nlog n)l/2 nlogn

This, since arguing as in the bound above gives maxp¢s, s,] ‘(/B\]gap — EI/DZJ> /(p— 1)‘ =
Op <10g1/2 n>, implies that max,e2, 1, ‘ <§ﬁ?p — Eﬁ:» /(p— 1)) < log n with a probability
tending to 1 and then P (p};;, = 1) — 1 under G;. Hence gives that EL,,, = E]JDL +
op (1) = /573;’1 +op (1) = ELy, + op (1), so that EL, converges in distribution to a Chi

square one with one degree of freedom under Gy and G}. O
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SUPPLEMENTARY MATERIAL B: PROOFS OF INTERMEDIARY RESULTS

The proofs also use the notion of cumulants, see for example Brillinger (2001, p. 19) or

Xiao and Wu (2011) for a definition. Let
Cum (utl’n, . ,th,n) =1 (t, .., 1)

stands for the ¢th cumulants of {u:,}. The next theorem on cumulant summability is
Theorem 21 in Xiao and Wu (2011). These authors do not formally consider sequences

{ut,,} but the following result is a straightforward extension of Xiao and Wu (2011).

Theorem B.1 (Xiao and Wu (2011)). Suppose {u;,,} is stationary for each n, with
sup ||Ut7an+1 < oo and sup Hutn — u,tf;leq < 0,4 (j) where qu_géq (j) < 0.
n n j=0
Then there is a C which only depends on sup,, ||[ugnll,,, and 3 72, 79726, (j) such that

> Tu(0ta,.. 1)) <C.

In what follows, we drop subscript n in expressions like u;,,, Rjn, I';, () and 6,, when there

is no ambiguity. We denote

n—1

K, = K* (1) —K*(j) and  Kp(p)=) K. (B.1)

p s

B.1. Proof of Lemma |A.2| (i) The first three bounds of the lemma follow directly from
Assumption [K| which implies that K2 (j/p) > K?(j) for all j and I(z € [0,1/2])/C <
K*(x) < Cl(z € [0, 1]) for some C' > 0. The Cauchy-Schwarz inequality implies that for any
p e [Ln/2), Bap) = Smt (1 - 2) Ky < Kualp) < 02 (S0 820) T < Op2val0).

which is the last bound in (i). (ii) Write p = 1+ v. Since p < p,, < n/2, the support of K (-)
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is [0,1] and K (-) is a decreasing function, we have
1+ [t 14z
tp)>=x2) K° K? > / K? d
sz s ()= S ()25 e (1)

v 1 2
:/ K2( +$) dr =v / K2< +ZV> dz.
1 1+v 0 1+v

The map v — (2+zv) /(1 +v), z € [0,1), is decreasing. Hence, for v > 2, VZ(p) >

v [P K2 (322) dz > C(p—1). Now VA(2) > 2 (K2 (1) — K*(1))* > 0 gives the desired
result for Va(p). Since K is nonincreasing, p — Ea(p) is non decreasing and Ea(p) > 0

for all p € P. O

B.2. Proof of Lemma . Under Hg, The proof repeats the steps of Lee (2007), Lobato
(2001) and Kuan and Lee (2006) using the joint FCLT of Assumption M| The joint FCLT

of Assumption [M] gives that the critical values are Op (1) under #;. O

B.3. Proof of Lemma Equation (5.3.21) in Priestley (1981) and Theorem gives

uniformly in 7,

B == o
Var (Rj) == > (1 _ |31|+j> (R + Ry, ;R +T (0, j1,j, 1 + )

Ji=—n+j+1 n
+o0
g— Z R —I—— Z IT°(0, j2, 73, Ja)|
Jl —2n 327j37j4:foo

—+o00

4 & 1 L
S EZRJZ + E Z ’F<O7j27]37.74)| <cg
=0

J2,J3,J4=—00
B.4. Proof of Proposition For the sake of brevity we assume that # is unidimen-

sional. That

je[ovnfl]

AN logn\"/?
max [(1-—= |7-. —TAn‘:O]P, =l 7
j€[0,n—1] n)'’ s n
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follow from Xiao and Wu (2011, Theorem 2). Note that these authors do not consider
stationary sequences {u;,} but their arguments carry over under Assumption @ Hence it

122 22 winee T _ —1/2
and max;ejop | |Tj T ‘ since p,,/n = o (n ) under

suffices to study max;ejop | ‘ﬁj - éj

Assumption We then now show that max;ejop,) |R; — Rj| = Op (n"/?). Let e, = @ — uy,

so that
R 1 n—j _ 1 n—j
Rj = E - (Ut + Gt) (ut-i-j + et—i-j) = Rj + E tzl (ut€t+j + etut-i-j) + E Z €€t

/n <37 e?/n and, under Assump-

with, by the Cauchy-Schwarz inequality, ‘ZZ{ et j

tion M| for t; = t; (é\),
1 n—j . . 21 n—j ) 1 n—j R
ﬁ Z Uty = < ) Z U Eﬁ] <9 — 9) E Z Utung)j + ﬁ Z Uty j-
t=1 t=1 t=1

Now, observe that Assumption [M| gives 6 — 6 = Op (n='2), maxye(1,n) [t = op (1/n) and

1 o= ~ N2 g 3/ NI/ )2 3xmpe 1
aoct<3(0-0) D3 (ul) + 3 (0-0) T (w) + T RI=0 (7).
t=1 t=1 t=1 t=1
1< N 2 max;c n [t = 1
max - (urtsj + urgt)| < el [ Z|Ut| = op (_)
jeltn] [N = n — n

This gives, uniformly in j € [1,n]

o ) <ol et ]
> S e (1) e 1
* ‘6 B 9‘ n Z <“tut+y T Uy — B [Ututﬂ + Ut jUy D + Op (n> (B.2)

It also follows from Assumptionand P, = o (n'/?) that ‘é\— 9‘ max; e n |E [utu&)j + utﬂ-ugl)] ‘ =

N 2
Op (1/nY?), n <9 — 9) > o B [utugfj —i—utﬂ-ugl)] = Op(1), and for A, (j) = utuﬁ] +
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utﬂug ) [utugj + utﬂugl)}

max
J€[0,p,,]

1 D 1 ’
= Op (E) Op | Y _E? (mzAt<
=0 t=1

o

1

1 n—1 1 n—j 2

t=1

S|

: 2
1 Z’” ,
O[P n]l’él[a)’;]E <m - At (])) = O[p (1) .

This gives max;cjop, ]

~ ~ \ 2
= Op (n_1/2) and maXpe[o,n—1] n2§:1 (Rj — R]> = Op (1)

The study of max;ejop | |7' —T; ‘ is similar. U

B.5. Proof of Proposition For the sake of brevity we assume that 6 is unidimen-

o~ N2~ e~
sional. Since R} —R; = <Rj — Rj> +2R; (Rj — Rj>, Proposition|A.2|is a direct consequence

of Proposition and Lemma below.
Lemma B.1. Assume that Assumptions K], [M, [} and [R] hold. Then
n S (K2Gi/p) — K2G) By (R, - Ry)
pax 172
pe[ 7pn} <1 + n2§:1 R?)

= Op (1)

and ny_ i, ! KQ(j/pn)éj <§] - ﬁj) Op ((1 +ny it R2> v > for any p, = O(n'/?).
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Proof of Lemma We just prove the first equality since the proof of the second is very

similar. Define R; = E [Ej} = (1—j/n)R;. We have

n - K]pﬁj (ﬁj - §j> < Cn(p) + Dy (p), where
j=1
Ch(p) = RSKJ‘pRJ‘ <§J }N%J) ;
j=1
Du) = 0> (R~ ) (R, - )
j=1

The Cauchy-Schwarz inequality and Assumption [K] gives

» 1/2 P 2
cw=c(ism) (13 (5-n))

1/2

1/2
Hence Proposition |A.1| yields that maxpcp25,|Cn(p)/ (n - R?) | = Op (1). For D,(p),

Assumptions , @, B.2) and T, = v, (9) give

max D, (p) < Op(n~/?) ( max Dj,(p) + max Dgn(p)> + Op(n™") max Ds,(p)

PE[2,p,,] PE[2,p,,] PE(2,p,,] PE[2,p,,]

J IR maxye ) |t -
+ | — e +2—MMmm—— U max Dy, (p),
(n; ! n ;' | | g, Dan o)

where Dy, (p) =n %, R; — R, ‘IE [utugfj + utﬂ-ugl)] :
SIFE TR YAt 1) o) 1)
Dy,(p) =n 21 R; — R; n ; <Utut+j + upju; - — E [“tutﬂ‘ T U5 Uy ]) .
‘]: =
Ss SIS @ @)
Dsn(p) = n Z Rj — R, n Z (Utut+j + Ugq Uy ) 5
p ~ J—
Din(p) =n > |R; — R,
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By Assumption [K] and [M] and by Lemma [A 4] we have

Pn
E { max Dln(p)] < C’nZVa,rl/2 <Rj> E [utugj + utﬂu%l)} ‘ < Cn'/?,
p -
Jj=1

€[2,p,,]

Pn
E | max Ds, < Cn'/? Var'/? (ﬁ)
|, Do) < On' 3 vart (R
2

x E/?

1 &/ G 1 1 1
ni/2 2 (utu%ﬁj g —E [utugﬁj + gy )D
t=1

< CDy,

2

3

1
- Z (utugr)j + utﬂ-u?)) < Cp,n'’?

t=1

Pn
E | max Ds, <Cn Var'/? (E) E!/?
Le[2,pn] ’ (p)} N Z !

j=1

P,
E [ max D4n(p)} < C’nZ]E HEJ — R,
j=1

PE[2,P,]

} < C’ni;\/arl/2 <}§]> < C’nl/Qg_?n.

The Markov inequality gives us the stochastic orders of magnitude of the four maxima in the

bound for max,ep25,] Dn(p). Since p, = O (n'/?) by Assumption , maxe(1,,) [t:| = op (1/n)

andn™' >0 e? = Op(n™t) by Assumption we have maxpep 3, |Dn(p)| = Op <1 + %) =
1/2

Op (1). This together with max,cp 5 1|Cn(p)/ <n - R?) | = Op(1) shows that the

Lemma is proved. 0

B.6. Proof of Proposition The proof of Proposition is long and divided in three
steps. In the two first steps, we focus on observed variables. In the first step, we approximate
the sample covariance éj by a martingale counterpart » , , Dj/n, j € [1,7,], as in Shao
(2011b), see the notations below and Lemmas , and . The second step deals
with the deviation probability of

T2, (FS00 Da) (K2 (i/p) — K2 (1))~ 0" Ea ()
o'V (p)




22
which is approximated with some Gaussian counterparts through the Lindeberg technique,
see Lemma The third step concludes and explicitly deals with the case of residuals

thanks to Propositions and [A.2]

Let us now introduce additional notations. Let Fj be the sigma field generated by ey, ex_1, . . ..

Define P, [Z] = E [Z |F]—E [Z |Fi-1]. Wu (2007, Proposition 3) establishes that || Py [u x|, <

a —

o (k) and Shao (2011b) has shown that
1Po [urur—lll, < 2 [z (920 (K) + 020 (k = ) L(G < k), (B.3)

which is smaller than 4 ||ul|,, d2, (k — 7) when j < k. Define now the vector of martingale

difference D, = [Du, cee Dpnt}/ with

Djy=> P, [ugu_j]
k=t

which converges a.s. and satisfies E [D;; |F;—1] = 0, max; E[|D;;|*] < oo, provided ||ut|,, <
0o and Y77 0z (k) < co. Consider the martingale M; = M;, = > )" .| Dj; which is an

approximation of ﬁj. Shao (Lemma A.1, 2011b) gives under Assumption @ and for any

(Ei D <C. (B.4)

We shall also use a p-dependent version of Dy, denoted D, **' with entries

a €[1,6al,

n
E UgUp—5 — Mj

t=j+1

D" =E[Djles, ..., erpr1] = Z P [upug—;], where (B.5)
k=t
P, [Z =P " Z]=E[Zles, ... erpi1] —E[Z]ei 1, s erpia]-
Arguing as in Shao (2011b, Lemma A.2-(iii)) gives

HDjt _ D;;p“Ha < O]9y O20 (p—3), forall j € [1,p]. (B.6)
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B.6.1. Martingale approzimation and preliminary lemmas. An important property of D; and

D; """ is as follows.

Lemma B.2. Suppose Assumption [{] and @ hold. Let Kj, be as in . Then for any

p§p7t; Cmdcmysﬁt—li';

p ). t-ptl
j=1 KJPDJSDjt

Proof of Lemma [B.2l We have

IN

We have for (B.7))

(B.7)

p—

p—1
<2
k1=0

=0 ko

1 p—

2

=0 ko=

p—

1

=0

P
—p+1
Z ijDjsD;t P

3a

k1=0

ki1=j

k1=j

k1=0

1

0

p—1
( Z iju8+k1jut+k2j> PS [u8+7€1] P:f [utJer]

J=k1Vka
p—1

> KptiprjUiiks
j=k1Vka

P 0o
Y Ky > P [tk k]
=1
E E P us+k1us+k1 ]]

k1=0
p j—1 [ele}

!

Y K Y P fteik tarkag] D Pl Uk, Urr,]
7=1 k1=0

P Jj—1

E E P, us+k1us+k1 —Jj E :P Utk Ut+ko— ]]
J=1

p
Jj=1

00 00
KJP Z PS [u8+k1us+k1*j] Z P:f [ut+k2ut+k’2*j]

6a

S Cpl/Z.
3a

[e.o]

!/
§ Py [ty Wty 5]
k=0

j—1

Z Pfg [t 4k Utk 7j]

ko=0

ka=j

k2=0

ko=j

p—1

ko=0

512(1 (kl) 512@ (k2) )

3a

3a

3a

3a

3a

p
S K Y Tk < 5) taiky P [usin] D Tlka < 5) wrn,— P (e,

Jj=1

3a

3a
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using || P} [tiiry ]|l 10y < 1Pt [Witks] |19, = 0124 (k2). Now (B.4]) and the Burkholder inequality

give

p—1
Y Ktk — Uk Y KjyDiiky—ji—sthots
j=k1Vka 6a J=k1Vkz 6a
p—1
1/2
+ E K (Wsy—jUtty—j — Ditry—jtsibo—ty)|| < Cp'72.
j:k1Vk2 6a

Hence (B.7) is smaller than Cp'/2. For (B.8), we have since {uix,_j,j € [1,k]} and

{P} [wtskoUtihy—j] , 7 € [1, k1], ke > 0} are independent,

(B.8) =

Ty (z []) P fuvse ]

k:l 0k2 0 J k’l

3a
p—1 oo p—1
!/
<> E 11D Kiptasky P} [tk jtieins) || ea (k1) -
k1=0 k2=0 ||j=k1 6a

Let dy = > .-, P;[ug] be the martingale difference approximation of u;, see Wu (2007).
Now, since {Usir,—j, dstiy—j.J € [1, k1]} and {P} [wsrnytitno—i],J € [1, k1], k2 > 0} are inde-
pendent, arguing as in the proof of Theorem 1 in Wu (2007), (B.4) and the Burkholder

inequality give

2

/
E Kjptsiiy P [ty Uesn,]

Jj=k1 6a
-~ 2 -1 2
<2 Z Kjpdsihy P [Weihyjtiesns ]| +2 Z Kijp sk —j — di) Py [y s jUis ]
j=k1 6a Jj=k1 6a
2 2
<C Z Kjpd i (P [ ko)) ||+ C P [ternojtierin] g, < Chidg, (k)
Jj=k1 3a

Hence Assumption I gives < Zkl 0 2naeo K106, (K2) 0ga (K1) < C.
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For (B.9), observe first that (B.4)) gives

o p-1 p

=122 D0 DKl < k) Py [usiny 5] T (ko < 5) P} [y tr ]

kl OkQ 0 ] 1 3a
co p—1 p
< Z SN TG < k) Soa (k1 — 3) 1P [k ]l
=0 ko=0 j=kso
[e’) p—1 p
< <Z 964 (/ﬁ)> X Z Z 1P [tk k5] g -
k1=0 ko=0 j=ko
Since E€+k2—j is independent of e, ..., e,_p11 and Py [ugy,),
P} [Ut+k2ut+k2—j]“6a < EE [ﬂi+k2—jpt [Utiry] lEts - - - et—p+1]
‘0, 6a
+ HE [(quz—j - ﬂi-i—kz—j) Py [ugsn,] e .- 6t—p+1] HGa
< ko5 = Tring—j| g0 1P [k 100 < Or20 (ko = 7) G124 (R2) - (B.11)
Substituting gives that (B.9)< CZ o Zj ey 124 (ko — ) 6124 (ko) < C.
For (B-10), (B3) and (B11) give
p e e} o0
" < CZ (Z HPS [us+k1us+k1—j]”6a) Z HP:S [Ut+k2ut+k2—j]”6a
Jj=1 \ki1=j ko=j
p e e} 0
< CZ (Z d6a (k1 —j)> Z O12q (k2 — J) 0124 (k2) < C.
=1 \ki=j ha=j
Hence substituting gives ‘)Z§:1 ijDjsD;t_pJrl < Cp'/2. O
3a

We now define a suitable sequence of Gaussian vector. Let 2p, < ¢ < 3p, be an integer

number. Consider a sequence of independent centered Gaussian vectors 7, = [mt, o ,Tfnt}/
with
E [mjuenye) = E [D, 7 D3] (B.12)

We shall also assume that {n;} and {e;} are independent.
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Lemma B.3. Let {n} be as in and suppose Assumption |R| holds. Then for all
p € [L,p,] andt, s € [1,n],

Pn

Z |Cov (N2, Mjpt)| < C and Z |Var (n;;) — o*| < C,

J17#52€[1,8,,] j=1

p J

(1 1)y vt

j=1 "

P j 2 1/2
<2.Zl (1-2) v <nﬁ>> AUl
J:

1 Zp K C& 5
Var( 1/2 J’ijsnjt|Ds> < — E ijDjS,
p j=1 p =

Proof of Lemma [B.3] (B.4) gives for all ji, jo,

Cov (Dj,¢, Dj,) = lim Cov

n—oo

Z?:‘ 41 WtUt—j Z?: +1 UtUg—j =
( (njl— j1)1/2 : (nh— j2)1/2 -] = Z E [uous urug,]
k=—00

see also Lemma A.2 in Shao (2011b), provided > "> _ |E[ugu;j, upusij,])| < oo as shown

below. (B.6|) and (B.12)) give

[e.9]

Cov (Mjut Mjot) — Y, B (ot w43

k=—00

< 00124 (Py) - (B.13)

max
J1,J2€[0,p,,]

Now relation between cumulants and moments in Brillinger (2001) and Theorem [B.1] gives
absolute summability of the 4th moments. Hence ©19, (p,,) = O(p,,°) gives the first bound

of the Lemma. For the second and the third bound, observe that under the null

k=—o0

o
Z E [uoujugg;]
k=1
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|E [udu?] —E[ud]E [u?]| < COw4(j) = O(j~°) and absolute summability of the 4th mo-

ments gives the second bound. This also gives the fourth one since

P i 2 1/2
(2 (1 — ;) Kfp Var? (77jt)> —o*Va (p)
=1

< <2 p (1 - %)ZK;p (Var (1) —04)2) "

Jj=1

> (1-2) Ky (Vi o)

j=1

< 2172 <C.

For the last one, observe first that

> 1Cov (e ma) | < > [Cov (i) | < o0

1<51<j2<p, 1<51<y2<p,,

by Theorem since the 2th cumulants are the covariance. This gives, for any z =

[Zl, ey Zﬁn}/,

Pn
Var (') = ZE ]2 <) Var(npe) 25 +2 Y |Cov (1,0, mjao)| 251 |2

Jj=1 1<51<j2<p,,
1/2 1/2
/ 2 2 2
<Oz +2 § |Cov (1,45 Mjat)| E : 25 %
1<51<52<p,, 1<51<j2<p,,

< C?z.

1/2
Hence Var <Z§:1 K;,D;55 |Ds> < (J( - KJZPDJZS) since {D,} and {5} are indepen-
dent. 0

B.6.2. The deviation probability of the mazimum of Proposition[A.3. The proof is based on a
smooth approximation of the maximum of real numbers z1,...,z5 . Consider an increasing

and three times continuously differentiable real function f with

lim f(z)=1, f(z)=uxforz>2, max sup }f(i) (z)] < 0. (B.14)

T—r—00
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_ 1/e
Let e = e, — oo with In(p,) /e = o(1). Then max,cpp {f (zp)} < ( I (:cp))

1_971/ “maxpen p, 1f (7p)} gives that

(g fe (atp)> e ) (1 +0 (1115”)) max {f (z,)}. (B.15)

PE[L,p,,]

IA

We will first find a suitable approximation for the distribution of

P 1/e » ) .
_ ~ e s & ‘ M, . Sp — N (p)
- <p;f (sp)) where S, = nZij ( - ) . 8= V) (B.16)

Jj=1

Define, for n = [n,... ,npn}/ and z € [0, 1],

Mjq (z;1m)
gt X 77 Z Djs+x7]]+ Z nj57 ]t X, 77) ]tT

s=j+1 s=t+1

n Z?:l ijR?t (z;m) — a*Ea(p)
o*Va (p) ’

t§pt (.T, 77) =

= (Zn: % (z; 7])) ;o Mi(n) =M, (L), (B.17)
and

t—1 n
5 (2:7) = dép (2;m) 2 Z?ﬂ Kjp <Zs:j+1 Djs+ani+3 njs) M5
pt ) -

de no*Va (p) ’
5(2) (.T ) _ d?oté <x7 77) 2 Z ]pn]
pt 51 dx? na4VA( )

20 (@3m) = £O (3, (25m)) 8% (@3m),

£ (25m) = 1 3pe (i) (559 (im)) "+ £ (5 (i) 8 ().
£ (eim) = 1 (30 (i) (359 im)) + 32 (e ) 80 (i) &8 ().

We first bound the moments of Z}%) (z;m), E](j) (x;7m) and Ez(,?t’) (z;m) when 7 is set to Dy or

M-
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Lemma B.4. Under Assumption and if p,, = O (nl/z), we have uniformly in p € [1,p,],
xe[0,1] andt=1,...,n,

C
max{‘ Z;P (z; Dy) 0y’ 22) (@3 m) Sa} < FSVCE (B.18)
1/2
@ . @ . Cp
max{’ E1!715 (vat) 3a/2> Eplt (:Uant) 3a/2} < n <B19)
Cp1/2
max{’ 2 (2 D) |2 (asm) } < (B.20)

Proof of Lemma [B.4] (B.14) gives

2
Ty (fv;n)’ <Clsy (@), S (w;n)) <C <(5$) (w;n)) + |35 (w;n)D ,
(1 (1 2 e
5 | < € s | (8 @)+ |52 o). (B.21)
(B.21]) shows that the lemma directly follows from
max{ 5 (z; Dy) 5O (2ymy) } < ¢ (B.22)
pt ’ 3(1’ pt ’ 30 — n1/2a
1/2
@ (. @ (. Cp
max{ o (23 Dy) 202’ Sy (w3m1) 3a/2} < — (B.23)

[\

s (23 Dy)

B.23)) directly follow from the triangular inequality. For (B.22), we first bound

3a‘

We have

Zi;ll ( ?:1 ijDjsDjt>

1) (..
Spt (CC, Dt) 30 S C np1/2 (B24)
3a
C Z§:1 ijD_jzt EZ:tJrl (Z;;:l ijDthjs> B.25
+ np1/2 ., np1/2 ( . )

3a



30

We have, for the first item ([B.24)

o t—1
B.24]) < §:1 Dj, Zs:pl KjpDjs Zs:t—pﬂ Dje ];:1 KipDjs
(B.24) < /2 + npl/?
3a 3a
>0y Di o KD Ly 3
= 5= S
< J Y5 +—1/QZ||KJPDth6a Z Djs
p np'/= 4
34 =1 s=t—p+1 6a
ZE Kjp §=1 DjiDjs Cp'/?pt/?
< 1/2 T
np 5 n

where p > p and by the Burkholder inequality. Now let ﬁjt = Dt.t_ijl be as in (B.5)). Since

J

Z;’Zl ijDjsﬁjt is a martingale difference given e, ..., e;—py1, (B.6]), the Burkholder and

triangular inequalities, Lemma give

H > Y KDy Dy

1/2
np 3a
S Y KDy Dy 1 < — ~
: ‘ np'/? Jr71101/22:”(”" 2_Di HDﬁ_Dﬁ 6a
3a j=1 s=1 6a
1/2
t—p || p 2
C n ®6a (p - p)
< o7 | 22 ||22 KiwDisDie O
s=1 || j=1 3a
. 1/2 @6(1 (p _p) 1 @60, (p _p)
< npl/? (It =plp)"™ +C S <C iz T e '

Hence substituting gives

(B.26)

t—1 D
D1 ( i=1 ijDjsDjt> cof L, p'/?p!/? L Osa (P —p)
npl/2 = iz n e :

3a
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For the first item in (B.25)), (B.23)) gives a bound C/n'/2. For the second item in (B.25),

conditional Gaussianity of the {Z?:l K jijtnjs} and Lemma [B.3| give

D et < =1 ijDjtT]js>

npl/?
3a
o n » 1/2 o n » 1/2
2 M2 2 12
= np1/2 { Z <Z ijDjt)} < np1/2 Z (Z ijDﬁ)
s=t+1 \ j=1 30 s=t+1 \j=1 3a/2

1/2
C (L . .
= > 2 K |!Djt\|§a> < - <

1/2
n
s=t+1 j=1 p

Substituting the two last bounds in (B.25) and (B.26]) in (B.24]) shows that
1 p'2p'? O(p—p)
max{ Sa} <C (n1/2 + " + Y . (B.27)
Observe that Og, (p —p) < C(p — p)*ll/2 by Assumption @ Consider now

p = max <2p, (2> 6) > 2p,
D

which is such that, since p € [1,p,] with p, = O (n'/?),

525) (@5 Dy)

(1
85 ()

3a

& —11/2 1/241/2
6 —_
i (") oy oD T R R L1
D pl/2 n n = ns/6 = pi/2
1
n\® ny 7 Oa (P — p) s_ C p/»'* _p, _C
”(ﬁ <wme(5) <n =TSOt <o
Hence (B27) gives (B22). 0

Let I () be a three times differentiable real function and define for M, (1) as in (B.17)),

T () = T () = LMy (). Ta(wm) =Z(am). 20 (@) = ZEE0 5oy

Observe that I (M) = I (M, (D,)) = I, (Dy), Z; (Dt) = Zi+1 (41), and that I (M (m1))

=7, (m) is a function of the Gaussian vectors 7y, ..., 7, only.
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Lemma B.5. Let M and My (m1) be as in (B.16) and (B.17). Consider a real function I (-)

which may depend on n and three times continuously differentiable with max;—; 2 3 sup,, ‘](j) (:1:)| <

C. Then under Assumptions IE and if e = O (}_9711/(2“)),

pLtd/e
muuo—fmammn<c( L1 )

nl/2 —1-1/a
n

Proof of Lemma [B.5] The proof of the Lemma works by changing D,, into ,,, D, into
Mn—1 and so on, the so called Lindeberg technique described in Pollard (2002, p.179). This

amounts to decompose I (M) — I (M,, (n,)) into the following sum of differences,

I (M) =1 (M, (m))
=1, (Dn) —Zn (anl) +Zn1 (anl) —Zn 2 (Dn72) +-+ 1 (Dl) -1 (771)

=7, D,)—Z, () + Zn-1 (Dp—1) = L1 1) + -+ 2y (Dy) — Iy () -

Since Z;(n) = Z:(1;n) and Z,(0; n) = Z;(0), a third-order Taylor expansion around n = 0 with

integral remainder gives

Z.D) ~ Tn)) = E [70(0; D) — (05,

1 1!
+5E 27 (0: D) - T (0im)] + 5 / (1 - 2B |7 (@: D) = 7% (w;m) | do.
0

Since {D;} is a sequence of martingale difference, E [It(l)([); Dy) — It(l)(O; nt)} = 0 due to the

expression of It(l) (0;7m) given above. Hence

Xn: E [IEQ)(O; Dy) = 12(0; m)] (B.28)

t=1

+ %/ (1—2) {Z )E [ (z; Dy) 1(3)(:1:; 77,:)] ’} dzx. (B.29)

[E 7 (M)] ~ E[T (M, ()] < 3




We now compute the differentials It(j ) (z;m), j =1,2,3. We have

) () = I' (M (5m)) MY (i),
T (ein) = I (Mo () (MO (i) 4+ T (M () ME ()

1"

I (wym) = I (M, (2:7)) (Mﬁl) (z; 77))3 + 317 (M, (2:) MY (25) M) (51)

+ I (M (23)) M (am) .

We compute the differentials of M;. We have

p=1

(i) Y 8o () B (25m)

1

P Vel 3,
M (z5m) = ( xe, <x;n>> > st (w5m) S (25m)
p=1
Pn
= ./\/l%_(i T

p
MP () = M () + MG (23m) + M) (2;m),

M® (z;0) = ME (0) + -+ M) (2;m),

33
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where, dropping the variables x, n for notational convenience

2

Mﬁt_( )Ml 26(226 Doy ) :

Pn
MG =M= st

p=1

Py )
M = (=M > o2 (50
p=1

_ 3
1 1 e (NS e
= (1-1) (L -2)war ()

p=1

p'll
MY =3 (7 -1) M- PR 1>Zze 152,
1
3) _ 1—2e 61(1)
M3t—3(g—1)(e—1)./\/lt Zz i Zz ( )

p=1

MP = (3e — 1) M}~ 6226 250,

p=1
Pn 3
ME = (e =1 (e—2) MY 52 (2))
p=1
Dn
Mg = My s e,
p=1

The third-order item(B.29)). Since

5 [0 {Z E 2% D)~ ()| } dr
<3 [0t { S (o] |+ [ ] par

t=1



it is sufficient to bound Y},

E (27

It(3) (x;m;) or It( )(a:'; Dy). We have, dropping dependence w.r.t. to x for ease of notation,

S [e[r?)] <03 e [jm
cexfa .]}.

We now study the ten items above.

3
1) > E UM%D } We have for a, @ > 1 with 1/a =1 —1/a,

3

E UMPH —E ‘Mtl 622@ 1y

Dy,
1 e e e e 1
Z E HMt )Epltl Epzt1 Z105151 21(91121(?2)1521(73)15

p1,p2,p3=1

]

Z ]El/a |:‘Mt 3(1—e) ye— 12;2t127633t1

pit
ik

IN

|

Pl ,p2,p3=1

C P,

§ 1/a 3(1—e)ye—1ye—1lyre—1

= n3/2 E UMt Zplt Epzt Zpst
P1,p2,p3=1

35

independently of 2 where Z” (x) stands for
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by (B.18) for all x € [0,1]. Now, since t + /% t s t'~1/¢ are concave and 3 P % <

p=1"p —
<Z§gl tp> , the definition of M, gives

Pn

Z ]El/ﬁ |:’Mt (1— E)Ee 126 126 1

pit “pat “pst

|

:pi — Z El/a |:‘M3(1 eze Iye—Tyre—1

p1t “pat “pst

p1,p2,p3=1

|

" p1,p2,p3=1

1/a
— 1 3a(l1—e) ael 1/e)ae(l—1/e)ae(l—1/e
Spi( L Z M ( plt /)ng /)Epglg /)
1,p2,p3=1
e —3a(1—1/e) 3 1/a
=7, |E (ZZ;) ( Zza“ Ve)
L p:1
—3(1-1/e) B 3(1—1/e) 1/a
1 n
S ]—Di E Zae Eae
(Z ) )
< p 3(1-1/a)+3/(ea) < C—B/a
uniformly w.r.t. to ¢ since (Inp,) /e = o(1). Hence for all z € [0, 1]
n =3/a
oIk Py
S E UMt } < b (B.30)
t=1
(2) > E HME“M@ } We have, since M; > 1,
= 3 7, 3
E HMgl)‘ ‘Mg) ] < CE M2 3e Zze 12(1) < CE M?—Se 222;121(?1)
p=2 p=2
3
<CE UM%” ] ,

for all ¢, such that > | E UMEI)

to (B.30]) holds.

2
2
M

3
} . Hence a bound similar

} <Oy E UMS)
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(3) X B | MM
B19) and (B19),

] Let @ > 1 be such that 1/a =1 — 1/a. Arguing as for (1) with

2(1 e) [ye—1ye—151(1) §(2)
HM ] < C Z [ 2?11? Emt Epltzmt }
p1,p2=1
Dn
(1) (2 1/a (1—e)ye—1ve 1
SOH}D%X{’EW 3a S 3a/2} Z B UMt St Emt
p1,p2=1

r, —2a(1-1/e) =
=1/2 , \a Pn 1 Pn a(l-1/e)
§0n3/2 X P X E lept ﬁ_z

p=1 |
I_?i/2 -2 1/a ea(l—1/e) 1 o ea(l—1/e) :
< 0B 7t zz 135z
1
_1/2 _1(1+4/a)
o n 2/a __ Pn
_Cn3/2 Xanpn =C n3/2
Hence, uniformly w.r.t. € [0, 1],
n ﬁ%(l-‘rll/a)
1 2 n
S E HM§ M| < ot (B.31)
t=1
(4) >0, H/\/l(l)/\/lm } Proceeding as (1) and (3) gives, since inf,; ¥,; > 1,
(1) @ S 2(1-0) |yre—t5oe-15(1) (52(1))? P _ D
E HMt MPl|<ce S E {Mt e T mi (S5) H <0 < ob
p1,p2=1

provided e = O(pY/%). Hence Y ), HMt 2

} can be bounded as in (B.30)).

] can be bounded as in (B.30) since M; > 1 gives E HM%‘?} <

1

]. Arguing as in (3) gives that > E HMS)

(5) S B[ |MEY
3(1—e D, e— 1
CE {Mﬁ |S2P, mer el

} can be bounded as in

(6) Yi B || M)
(B-31).
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(1) S E (M)
(B-30).

]. Arguing as in (4) shows that this item is negligible compared to

(8) YL E [| M5

} . Let @ > 1 be such that 1/@ = 1 — 1/a. We have, since inf,; ¥,; > 1,

Dn, _
E||MP|] < CeB | Ml s e sy <OeZE1/“ [ /2‘2;? 3
p=1 P=Do ¢ ¢
1
pl/2pi-l/a —5(1+4/a)
Py, Pn
<C n3/2 =C 32’
provided e = O (p/*). This gives a bound similar to (B.31)) for Y; | E H./\/lg) ]
9) > E HME;? } can be bounded as in (B.30) provided e = O(p}/ ?%)).
(10) >0 E HMSZ) } can be bounded as in (B.31)).
Hence, collecting the dominant bounds (B.30)) and ( in (1)-(10) gives
5(1+4/a) _1+4 3
1 Dr + Dn Dn °
2/ (1-z) {Z’E[ (; Dy) It<3>(x;77t)”}dxgcl—/2 gc( - ) :
(B.32)

The second-order term 1D Note that It(z)(O; n) = n'Ayn where A; depends upon
Dy,...,Dyqand nyyq, ..., 0. In the standard Lindeberg method, { Dy, t € [1,n]} and {n,, ¢t € [1,n]}
are both independent variables with identical mean and variance, so that the second order
term, which writes as a sum of items E [D;A,;D,] — E [n; A, is equal to 0 in this simpler
case. However this does not hold in our case. In this step, the second order term is dealt
with by removing from It(Q)(O; n) a block Z?ﬂ ZS +¢ Djs and by changing the Dj; into
D;;EH =E[Dj et ..., e—e41]

Observe that Z{2(0; 1) = Z2(0;m) + Z3 (05 1) + T3 (0: ) + Z(0; ) with, dropping the

dependence upon 0 and 7,
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2
z'g) _ ( ) [(1)M1 2e (Z Ee 12(1 ) ’ It(:b) 7 (Mt),

Ppn Pn 2
19— M S, T (e 0 A S s (20
p=1 p=1
2

Pn
2 " —e e—
¥ = 1" (M,) (Mi Zzptlzé?>

p=1

Observe M, (0; D;) = M, (0;1;) and X, (0; D) = X, (0;7;) and that these quantities do
not depend upon 7, or D;. We shall first focus on Ig). Let ¢ > 2p,, be an integer number.
Define, for y € [0, 1],

t—0—1 n
2 Z§:1 Kjp (Zs=j+1 js Ty Zs —ioDis + 2 i 77]‘8) M5
notVa (p) 7

Gpi (y) = Gy (y;yDy + (1 — y) DI

22 ]pn]
n04VA( )

Syt (y5m) =

Ty (y51) = 35 (y31) = Tt (y) = St (y;y D1 + (1 — y) DAY
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which are such that &, (1;7) = 35 (0;7), &, (1) = 55 (0; Dy), T, (1) = 52(0; D;). Define

also

= M, (y)
Z D]5—|—y Z D]s"" Z Mjs» ]t = JTL ,
s=j+1 s=t—/{ s=t+1
ny ) KpR% (y) — 0 Ea(p)

Spt (y) = ’ 0_4‘J/A (p) ’ Ept (y) = f (Spt (y)) )

S0 i) = £ (8,0 (9)) St (y5m) |
SO (yim) = FD (80 (1) Ty (w3 1) + 1P (50 (1)) (S (1))
S5 () =S5 (yyDe + (1 y) DY),

S (y;n) = 3% (y;yDy + (1 —y) DY)

and the counterpart of Il(f) (0;7;) and IS) (0; Dy) as
2
~ 1 €
Jt(y;n)=<g—1>~’m( )9, ( (ZE yn)) ;
Ji(y) =Ty (?/§ yD; + (1 —y) DE_ZH) :

Observe that Iﬁ) (0;m¢) = T3¢ (1;m¢) and ZS) (0; Dy) =J;(1). Hence E [Ig) (0; Dy) — Iﬁ) (0; Wt)] =
E [jt (1) - jt (1, 7]t>] and

E T (0; D) = T8 (03| = E[3,(0) = 3, (0;)] (B.33)

1
s B3 ] an @3
0

where 3§1) (y) = dJ, (y) /dy and SEI) (y;me) = d3: (y;me) /dy.
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We first consider the integral item fol ’E [ng) (y)] ‘ dy from (B.34) and first compute 3$}’ ().

Define
& () = dSy (y) _ 2 S Ky (i Dys) (yDje + (1 —y) D)
pt dy notVa (p)
2 Z;}:l ij (Zi;i:rll Djs +y Zi;i—é Djs + Z::t—i-l 77]'8) (ljj'rt_ZJr1 - Djt)
+ notVa (p) ’
30 () = W) _ A0 Ky (yDje + (1 —y) D) (Dje — D)
e )= dy notVa (p) ’
W () = dsp (y) 230 KMy (y) Y2, Dy
pt \Y) = dy notVa (p) ’
" di(P
St () = 2 = 0 5 1)1 () 800+ 1 (50 ) 61 (1),
S(2.1) A0 () (1) 0 (1)
Zth’ (y) = d—y = [ (sp () Spt (¥) Tt (y) + [ (5 (1)) ‘Ipt (v)
+ 1D (s (1)) 8% (1) (S ) + 2@ (86 (1) Gt () &Y (y)
32 (y) = 1" (M, (),
and
] Py 23,
9 () = (g - 1) 30 () 0 (y) (Z =5t () S <y>> DS W (),
p=1 p=1
35 (y) = (1 - 1) (1 2) 3 () I () (Z =5t () S <y>) DS W ),
p=1 p=1
Pn Pn
Iy () =2 (1 - 1) (e = 1) 34 () 20 (y) (Z S5 () 55 <y>> (Z =t () (W <y>)2> ,
p=1 p=1
7 (y) =2 (1 - 1) 30 () 0 (1) (Z =5t () Sy <y>> (Z S5t () S <y>>
p=1 p=1
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6(1)

pt

) y)” . For ||6, (y)|l5, and HGS) (y)H , (B.18)), the Burkholder inequality,
3a 3a
P, = O (n'/?), 2p,, < € < 3p, and O, ({ —p,) < CP,* give

To bound the moments of iﬁ) (v), ig’l) (y) and ES) (y), consider first || S, (v)

||3a7

1St (W) 3,

t—t—1 n
235 Ky (Zs:j—H js T Y Zs e Dis + 2o njs) Dit
= notVa (p)

3a

2|1 —
2l y|zn04v =j+1 s=t—¢ s=t+1

A C
<C (m + g + (E) O¢a (ﬁ pn) —/

6a

|siy (y)H
QZJ K (Zts_i eDJ'S) Djq

U4VA( ) 34
+2|1 -y |ZTLO'4V Js HDJt_Dt Hl”ﬁa

| t—0—1
—|—2Zn04vm Z D]s+y Z D]5+ Z ,'7]5 HDjt_D;t_“JHGa

A
s=j+1 s=t—{ s=t+1 6a
01/ 51/2 12 7\ /2

S < @6a (ﬁ — ﬁn) + (%) @6(1 (f - ﬁn))
<C

=1 /2
nﬁn ” A

P’
1T Wl < P2, |20 )], <

3a

<
=

t—0—1
(Z Dty S Dt 3 ms) 1Dy — Do),

)|

B.6

a
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For

ssi (y)H?M B.18), p, = O (n'/?) and the Burkholder inequality give

_ 2
2 Z?:l ij (Zizi—e DjS)
notV (p)

p t—0—1
Z ZHU4VA (Z Djsz) js1

s1=t—¢ j=1 sp=j+1

2 Z?:l Kip (szt—e DjS) (Z::t—i-l 773'8)
7”L0'4VA (p)

3a 3a

3a

p
St (%00,

Jj=1 so=j+1

1
1 2 /2 2

<c| >

s1=t—¢

_ 2 1/2
(T 2, (2, D))

1/2

3a

+C

(np)

1 ﬁ ﬁl/Qg 61/2 ]—9 1/2
1/2 Pn n Pn
SC(@ (—n1/2+n)—|— n +—1/2 <C n .

These bounds and (B.14]) give, uniformly in y, p and ¢,

_ o\ 172
§C<&) ,
3a n
=1/2 = \3/2 =1/2 1 =1/2
N(lzl) n & n n
0l <0 (B0 (5) " s k) <2

Now, arguing as for the study of 1) e=0 ( 1/ “) give uniformly in p, t and y,

< e

3a n1/2’

>4 (y)

—1+3/a

»1/243/a H

n3z

E|

~(1 ~(1)
Jgt) (?J)H +E [ Jgt

W]+ w] <= % )] < 0%

n32

It then follows Y}, fol

[~§1) ”dy < Op1+3/a/n1/2 Since Zt . fo ‘E |:~(1) y nt ”dy
satisfies a similar bound, we have for ,

n

D

t=1

—1+3/a

1
[ B[ 0= ) ] < P
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Consider now (B.33). Since D;t_“l and 7, are independent of the 3;1) (0), ;¢ (0) and

3,: (0), we have using (B.12)),

E[3:(0) = T; (0;5m1)]

4 1
=-E|(=--1 0) M2 (0

2| (- 1) 0 0)

p1 P2
Z 2plt Zf)gtl (0) f (Z;f (0) Ezztl Z Z DjltHlD;gtHl} E [77j1t77j2t]>
p1,p2=1 J1=172=1
Kjlpl (Zi:i—;l_u Dj1s1 + Z;:t—é 77]&51) szm (Zgﬁ;lﬂ Dj252 + ZZQ:t_e 773'252)
1254V, (pl) nl/2g4V, (pz)

=0.

Hence and (| give

n @) @) #1+3/a
ZE |:Ilt (0; D) — Iy (0377::)} < C#'
t=1

To study ‘E [Ié?) (0; Dy) — Ié?) (0; m)]

max (

max (Higl) (y)

, observe that, uniformly with respect to p, t and v,

=1/2
) <
3a/2 n

1
a) s¢ (n3/2 n]_)n) '

Arguing as for Zt 1 [ 7® (0; Dy) — I}?) (0; 77,:)] gives ‘Z?:l E [Ié?) (0; Dy) — Iéf) (0; nt)] ‘ <

_ /a _1/a
c (p:jg + B i ) and provided e = O (py/ )

2% () H

3a/2

(2,1
' (

Y ne)

a

n n »1+3/a
2 2 2 2 n
ZE[Iét)(O;Dt)—Iét)(O;m)} + ZE[IL)(O; Dt)_Izit)(();nt)} =05
t=1 t=1
It then follows
g [7® & ARG
> E |7 (0; D) - 7 (0m)] <c< v +]31_1/a). (B.35)
t=1 n

Substituting (B.32)), (B.35)) in (B.29), (B.28) shows that the Lemma is proved. O
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B.6.3. End of the proof of Proposition[A.3. The rest of the proof is divided in 3 steps.

Step 1: Martingale approximation. Let S and S be as in and - ) respec-
tively. Let a = 4a/3. The Cauchy-Schwarz inequality gives

Sp — - Z ( w12 M;n — Z Upt—j| X —75 | Mjn + Z Uplhy—j )
J=1 t=j+1 t=j+1
2\ 1/2 o\ 1/2
p 1 n p 1 n
<C ZE (Mjn - Z Ut%—j) ZE (Mjn + Z utut_j)
j=1 t=j+1 7j=1 t=j+1
Hence
S,— S
P P 02
[ P 2\ P q n 2\ 2
S C]E% Z— ( Z UtUp— ]) I["‘j«i Z— (M]n + Z ututj)
j=1 n t=j4+1 j=1 n =j+1

Observe now that (B.4]) gives
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Since the Burkholder inequality and max; E[[D;|"] < oo give maxjepp  EV*[|M;,]"] <
Cn'/?, we also have

VAN
S|+
i}
/N
=

=1 t=j+1
i o\ 172
1< 1 a 1 n
S 2E« [|M;,|"] + E= Z upuy—j — My
Jj=1 t=j+1
1/2 2\ 1/2
< (p(Cn +C) ) < C’pl/2.
n
« ~ . ~ a/2
It then follows that ’ S, — S, o < Cp/n'/? and them maxpepp, | E U (Sp — Sp> /p1/2’ } <

C (p,/ n)a/ . Hence the Markov inequality gives

— S, I S, — 8
]P) p p t < ]P) p p > t
(pglaf P2 T ) - p; pvro T
8 4 a/4
= 102 peho P72 =z \ g, 7
and p, = o (nl/(2(1+4/“))) gives
Sp — gp
= 1). B.36
pellp,)| pY/? or(l) (B-36)

Step 2: some Gaussian approximations. Let v, = 7, (1 +¢€/2) /(1 +¢€). (3.1) gives
Yo =7, > F, = (2Inlnp,)"? (1 +¢/3). Consider a three times continuously differentiable
function ¢ (z) with max;_;23sup, [ ()| < oo and I(z > 0) < ¢(z) < I(z > —¢). Let

T(x) =1(x—1.). Let 5, be as in (B.16). Then Lemma with e = pL/9) (B.14) and
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(B.16)), and Assumption [R] give

PE[2,D,

P ( max] {5,} > ’Y;l) <P(M>n,) <E[Z(M)]

SE[Z(My(m))] +0(1) SP(My(m) =7, —€) +o(1).

_ 1/e
We now look for a more explicit expression for the RHS. Recall that M (1) = ( P F (B (1 771))> :

Consider 2 (p) = [wy, .. .,w,] where the w,’s are i.i.d. standard normal variables,

K (p) = Diag ((1 — j/n) Kjp,j=1,....p),
C77 (p) = [COV (njltanjzt) 7j17j2 - ]-7 s 7p] )

V, (p) =C* (p) K (p) Ci/* (p),

and D, (p) = Diag ((1 — j/n) K;, Var (n;;),j = 1,...,p) the p x p diagonal matrix obtained
from the diagonal entries of V, (p). Then the 3, (1;7m1), p = 1,...,D,, have the same joint

distribution than

;20 V() Q(p) —o"'Ea (p)
’ o'V (p) ’

p = ]'7 A 7?7’17
v 19 ~ 1/e . . .
so that My (n;) and M = ( o fe (sp)> have the same distribution, and then

P(max {5,} 27;) S]P(MZ’Y;-E) +o(1).
PE[2,P,]

Define now

Q(p) Dy () 2 (p) — 0B (p) _ 251 (1= ) Ky Var (nje) wF — 0" Ex ()
a*Va (p) a*Va (p) '

Sp:
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Then for allp=1,...,Dp,,

|§p - gpl =

' Q(p) (Vy (p) = Dy (p) 2 (p) ‘

o'Va (p)
j 1/2 j 1/2
1 1/2 2 1/2
<C Z Cov ((1 — E) Kjl/p Mjrts (1 - E) Kyz/p 77321%)
1<j1#j2<p

<C Z ’COV (njn‘/’njzt)‘ ‘w]d‘ ‘w]é‘ =Op (1) )

1<51#52<D,,

‘wh‘ ‘ng‘

by Lemma [B.3] Hence since f(z) <2V z by (B.14) and using (B.15),

—~ Inn Inn
M < (1+O (W)>pg[12a;<]{2\/sp} < (1+O (p @ )>) 2\/pg[12a;i {5,}

< (Ho(j—/”)) max {5,} + O (1).

PE(2,p,,]

Define now

p 1/2 p K. 2 -1
= (22 K;p) 9 Sp = ZJ:I \/JA (( d ) )
7j=1

)

which is such that

|3p — sp| < |21p| + |82p| where

o'Va (p) 4
v (i =)

1;:1{(1—%)Var(r]jt)—a‘l}ijw?—a‘l P JK

ey = J=1n
i a*Va (p)

Since K’ (-) is continuous on [0, 1], the Weierstrass Theorem implies it can be uniformly
approximated with a sequence of polynomial function. Hence (B.1]), Assumption K| and the

LIL for weighted sums in Li and Tomkins (1996) gives that

Vv
lim sup Va (1) 1 7 < ( / K*( dt) , almost surely.
p—00 p1/2 (2 In lnp
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Since, under Assumption [K I Va (p) [p? — (2 [ K*(t)dt) 2 1y convergence of Riemann

sums, this gives

sup |s,| < (2InInp,)"* (1 +op (1)). (B.37)

PE[2,D,]

n

Observe also that Lemma (ii), P, = o(n'/?), and Assumption [K| give uniformly in

pe(1,p,]

Hence

Now, for maxyej23,] [¢2p|, we have by Lemmas(ii) and , D, =0 (nl/ 2), and Assumption
KL

Pn 3/2 =2
max |eqp| <C{Z|Var njt) 4|w + — ij +pn }:Op(1)+01p> (%) =0p(1).

il
pE(2 =

Hence max,ep5,] |5, — sp| = Op (1) and substituting in the bounds for P (max,epp 5.1 {55} > 75)
and M above gives, by (3.1)), Vo= (14€¢/2)/(1+¢€), 7. > 2Inlnp,)"* (1 +¢/3) and
B37)

P(max {sp}>%) :p((uo(hf/ga)) max {s,} + Oz (1 )>7;—6) +o(1)

PE(2,p,,] PE[2,P,,]

<P ( max {s,} > (2Inlnp,)"* (1 —|—€/3)) +o0(1)

PE(2,p,,]

=o(1). (B.38)
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Step 3: Conclusion. Propositions and , Lemma and p, = O (nl/ 2), the

expression of S, and 3, in (B.16) and (B.36) gives

(5,—5:) /B — Ba () (5,-5) - B3Ea (0)
max = Imax =
PE[2.P,] Va (p) PE[2.5) R2Va (p)
(§p - §1) — R2Ex (p)

=(14+op(1 a
(1+0p (1)) max, R2Va (p)

+ Op (1 +pL/? (ﬁg — R§>>
= (1+op (1)) max {3,}+ Op(1).
PE[2,p,,]

Hence (B.38)) gives, since ~,, — v/, — 400,

(5, - %) /B3~ Ea (o)

P | max >, | <P max {3,} >, ] +o(l)=0(1).
PE[2,P,] Va (p) =l = (pe[lpn]{ 2R ) M) )
This ends the proof of the Proposition. 0J

B.7. Proof of Propositions |A.4| and |A.5|. When studying the mean and variance of §p,

we make use of Theorem 2.3.2 in Brillinger (2001) which implies in particular that, for any

real zero-mean random variables 21, ..., Zy,

Var (ZIZQ, ZgZ4) = Var(Zl, Zg) Var(Z2, Z4) + V&I‘(Zl, Z4) Var(Zg, Z3)

+ Cum (Zl, ZQ, Zg, Z4) . <B39)

Note that Assumption [R] and Theorem imply that

sup Z T (0, tg, ..., t,)| < . (B.40)
ma€28] 4, =0

B.7.1. Proof of Proposition [A.] (B.39) yields

n—j

~ 1
2] _
E |:Rj] =3 E I [ty ey Uy Uiy 4]
t1,to=1
n—j

1 . .
= ﬁ Z (RJ2 + Ri*tl + Rf2—t1+th2—t1—j +I (07]7t2 - t17t2 -t + ])) y

t1,t2=1
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where

n—j—1

Z R, =(n—j)R:+2 Z (n—j—0R2,

ty,to=1

)
X

n—j n—j—1

Z Riyoty4jRiy—ts—j = (n — J)R2 +2 (n—J—=ORej Ry,

t1,t2=1 1

Q,

~
I

n—j n—j—1
Y o TOgt—tita—ti+j)= > (n—i—U)T(0,5,6,(+7).
t1,ta=1 b=—n+j+1

Set k; = K* (j/p) to prove the first equality and k; = K (j/p) /77 for the second. Note that
Assumptions [K| and [R] give, in both case, maxjcpi,,—1k; < C and k; > CI(j < p/2). The

equalities above give

:nil<(1—%)2+i(1—;)>k32 (B.41)

n—1 n—j—1 .
j+1¢ . .
+ij Z (1— n’ |>r(o,;,e,£+j).

j=1  f=—ntj+1

We start with the item R 7~ ( L) k;, which is equal to RZE (p) when k; = K?(j/p),
that is when proving the first equality. When k; = K (j/p) /77, gives, under Assump-
tions [K] and [R],

n—1 .
RS (1—%) k- E
j=1

so that R3 "7\ (1—j/n)k; > E (p) — C".

p 0o
)| <C | Rl <0y i
j=1 j=1

Let us now turn to the other items. The lower boundk; > CI(j < p/2) gives that (B.41))

is larger than Cn Z?fl RJQ». To bound the remaining terms in (B.41]), we note that by
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Assumptions , and ,
n—1 n—j—1

Jj+e
S kY (1 —~ T) R}

j=1 =1

n—1 00 00 00
SO MG =P x ) 1= Cp) I =o(m) ) I,
7j=1 J=1 7=1

Jj=1

n—1 n—j—1 +€
Sk Z (1—‘7—> Res;Ro;

Jj=1 =

+00 400 2
<oy Smanel <o (L) <c

7j=1 ¢=1

<C Y D0ty tst)| < C

t2,t3,04=—00

n—1 n—j—1 oy
j=1

l=—n+j+1

uniformly with respect to p € [1,p,]. Substituting these bounds in the equality above

establishes the proposition. [l

B.7.2. Proof of Proposition[A.5 Let f be the spectral density of the alternative. Using
(B.40]), we obtain

sup |f(A)]<C and ZR? <C (B.42)

AE[—m,7] j=1

because supye( v [ )] < (1Rol + 2555, |R) /(20) and 532, B2 < (S, 1R,]) . We
recall that Ej = S" Ty ;/n and define R; = [EJ] = (1—j/n)R;. Set k; = K*(j/p) to
prove the first equality and k; = K (j/p) /77 for the second. Note that Assumptions [K] K and
@ give, in both case, k; < CI(j < p). To avoid notation burdens, redefine S as y o) Lk R2
Define D; = R; — R;. We have E[D;] = 0 and S, = n Y07} R, + 20372 k;R,D; +

ny i ' k;D2. The inequality (a + b)? < 2a? + 2b? implies that

n—1 n—1
Var (S, ) < 4Var (nZk R R ) +2 Var <n2ij§> . (B.43)
j=1

7j=1

By identity (B.39),

n—1 n—ji n—j2

n—1
ar (nz kjEjRj) = Z kjlkaﬁjlﬁh Z Z Cov (Ut1ut1+j1v ut2ut2+j2) <Vi+ K
j=1

jl,j2:1 t1:1 t2:1
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with

n—1 n—ji n—jz
Vi = Z kjl kale Rjz Z Z (Rt2*t1Rt2*t1+j2*j1 + Rt2*t1*jl Rt2*t1+j2) )
J1,j2=1 t1=1 t2=1
n—1 n—ji n—jz
K, = Z kj kj,Rj Rj, Z Z [ (t,t1 + ji, ta, ta + J2)
J1,j2=1 t1=1 t2=1

The second term on the right of (B.43]) is, up to a multiplicative constant, equal to

J?

n—1 n—1
Var (n Y k;D} | =n> > kjkj, Cov (D}, D2).
j=1

J1,52=1

Applying (B.39) twice we obtain

Cov (D2, D3)

Jr?
1 n—ji  m—j2 2 4
- m Cov H (utquthFjl - E[utquthrjl]) ) H (thuther - E[utqutq+j2])
t1,ta=113,t4=1 g=1 q=3

n—ji  n—j2
1
= E : E [COV (ut1ut1+j1 ) utsut3+j2) Cov (ut2ut2+j17 ut4ut4+j2)
t1,t2=11t3,t4=1

+ Cov (ut1 Uty +515 ut4ut4+j2) Cov (ut2ut2+j1’ utsuta—i-jQ)]
n—ji  n—j2
1

+ﬁ Z Z Cum (U, Uty 4y 5 Uty Uty 5 Wty Ut 4 Uty Uty +)
t1,ta=113,t4=1

n—ji1 n—jz
2

= A Z Z (Riy—t, Riy—ty4jo—jn + Rig—ty—jy Riy—ty 440 + Dt 11 + 1, 82, 2 + J2))

t1=1 to=1
n—ji  n—j2
1
nd

+ n § , § Cum (utl Uty +j1 5 Uto Uto+jy 5 UtsUts+jas ut4ut4+j2> .
t1,t2=113,t4=1
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Since (a+b+c¢)? < 3(a*+b* +¢?), we can write Var (n Z;L:_ll k;jDJ2-> < 6Va+ Ky + 6K} with

1 n—1 n—ji n—jsz n—ji n—jz 2
Va = ﬁ kjlkjé § , E Rt2—t1Rt2—t1+j2—j1 § E th —t1 Jlth —t1+j2 )

J1,J2=1 t1=1 ta=1 t1=1 ta=1

n—ji  n—j2
K; = E k]l k]2 E § Cum ut1ut1+J1’ Uty Uty4jy 5 Utz Utz+ja- ut4ut4+J2) )
Ji,j2=1 t1,t2=113,64=1
1 n—1 n—ji1 n—ja 2
! . .
Ky =— E kj, Ky E E Lt t+ gistata +42) |
n2
Ji,j2=1 t1=1 to=1

Substituting in (B.43]) shows that the proposition holds if the following inequalities hold:

p 2
M<On) R, V<Cp Ki<C Kj<C, K <ob
n

J=1

We establish these inequalities in five steps.
Step 1: bound for V;. We note that |R;| < |R;| and that under Assumption , 0<k; <C
for all j. Using a covariance spectral representation R; = [7_exp(+ijA) f(A)dA, the Cauchy-

Schwarz inequality and (B.42), we obtain by Assumption

n—ji n—jz
§ , k]lkJ2RJ1RJ2 E , E Rt2 tht2 t1+j2—J1
J1,j2=1 t1=1 ta=1

n—1

Zk R, Z i1 G i(t+7) A2

f()\l)f(/\2)d)\1d/\2

-1

n—jin—j2
g ( sup > / / Z kjlﬁjlkhﬁjz Z Z eitl/\lei(tﬁ_jl))\Qe_itQ)\le_i(t2+j2))\2d>\1d)\2

)\E[—ﬂ',ﬂ'] J1,J2=1 t1=1 to=1

-1
Zn—j k2R <C’nz
=1 j=1
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-1 n—ji n—jz
Jl RJ2 Z Z Rt2 t1 JlRt2 t1+j2
t1=1 to=1
T n—1 n—ji n—j2
‘ / / D kR, Y eritihigmine o Z ki Ry, > eit2ei(2492) £(Ap) f(Ag)dArds
- Jj1=1 t1=1 Jj2=1 to=1
T [n—1 n—j 2 p
< / D kiR el f(0) f(A2)dMdAy < Cn Y RS
TS =1 t=1 j=1

This establishes the bound for V.
Step 2: bound for Va. We define ty = t; +th, jo = j1 +j3. By Assumption [K]and by (B.40),

1 n—1 n—ji n—jaz 2
ﬁ kj1 ka E § RtQ—tl th—h —J1+j2

J1,J2=1 ti=1 ta=1
C n—1 9) +o0 2
S ﬁ Z KQ(]l/p) Z (n Z |Rt2/Rt2/+j2/|>
J1=1 jal=—00 tol=—00

0 00 4
S Cp X ( Z ’Rtht1+j2Rt2Rt2+j2|> S Cp ( Z |Rt|> S Cp7

J2,t1,ta=—00 t=—00

1 n—1 n—ji n—jz 2
S b (S X Rt

J1,J2=1 t1=1 ta=1

n—1 e’} +o0 2

C |

<SRG 3 (0 3 W)
J1=1 Jal=—00 tol=—00

o0 o0

<Cp Y. |Bu—iRuiiriy R Ruriisy| < > IRy Ry iR, Ryl

Jh b1 ta=—00 Jyt1,ta=—00

0o 4
<Cp < > !Rt|> < Cp,
t=—o0

therefore Vo < Cp.

Step 3: bound for Ki. Define ty = t; +t. Assumption , and (B.40) yield

o0

P o0
Ky <O Y Y 00t t+g)l <Y D0t ta )]

J1,j2=1t=—00 t1,t2,t3=—00



56

Step 4: bound for K. (B.40) gives

o 2
n—1 n—jin—j2
1 . )
K, < 2 E kj kj, ( E E ’F(0711,t2—t1>t2—t1+]2)\>

J1,J2=1 t1=1 to=1

400 00 2
<c Y (Z |F<o,j1,t,t+j2)l>

J1,J2=1 t=—o00

+00 00
=C Z Z 10, j1, t, b1 + 52)1(0, jis o, ta + J))

J1,j2=111,t2=—00
o 2
<C ( > \F(o,tQ,tg,tm) <C.
to,t3,t4=—00
Step 5: bound for K,. Bounding K, requires additional notation. First set t5 = ¢ + j1,
tg = 1o —|—j1, ty = 13 +]2 and tg = 14 ‘|—j2, and note that t5,...,1s depend upon ti,...,ts
and ji, jo only. For a partition B = {B,,¢ = 1,...,dg} of {1,...,8}, define dgp = Card B,
Cp(ty,... ts) = ?=B1 Cum (utq,q S Bg), and recall that Cum(u;) = Fu; = 0. Then the
largest dp yielding a non-vanishing I'g is dg = 4. When dg = 4, B is a pairwise partition
of {1,...,8} so that I'p is a product of covariances. Let B be the set of indecomposable

partitions of the two-way table

w
N

see Brillinger (2001, p. 20) for a definition. Then according to Brillinger (2001, Theorem
2.3.2),

Cum (Ut1 Uty 451y Utg Utg+i1 5 Uts Ut 5o Uty ut4+j2)

= Tplts,....ts)= > Tplti,....ts)+ > Tpltr,....t).

BeB BeB,dp<3 BeB,dp=4
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Some properties of partitions in B are as follows. Call {1,5}, {2,6}, {3,7} and {4,8}
fundamental pairs and say that a By in a partition B breaks the pair {1,5} if {1,5} is not a
subset of By. Then partitions B € B are such that each B, € B must break a fundamental
pair. Note that fundamental pairs play a symmetric role. Since t,44 — t, is j; or jo with
vanishing k;, or kj, if j; or jp is larger than p, the indexes ¢, and ¢,14 of a fundamental
pair also play a symmetric role in the computations below. We now discuss the contribution
to Ky of partitions of {1,...,8} according to the possible values 1,...,4 of dg. Due to
symmetry, we only consider representative partitions for each case.

Under Assumption |K| and (B.40|), the case dg = 1 gives a contribution to K5 bounded by

n—ji  n—j2 n
C
) E kji ki, E E (ti,ts)| < — E 00,2 —t1,...,ts — t1)]
n Ji,j2=1 t1,t2=11t3,t4=1 n t1,...,ts=—n
C = C’

th,.. th=—00
The case dg = 2 corresponds to {Card By, Card By} being {2,6}, {3,5} or {4,4}. These
cases are very similar and we limit ourselves to {2,6} and B; = {1,2}. The corresponding

contribution to K5 is bounded by

n—ji  n—j2 n
C
Z kj, ks, Z Z Up(ti,... ts) Sﬁ Z L0, 82 —=t1) T (ts — b1, ... ts — 1))
Ji,j2=1 t1,t2=113,t4=1 t1,...,ts=—n
< O . F O / F / / < O . R . F O / / !/ /
S DR RAL AR ST T S MR/ ]
th,..tg=—"n t=—n th,..tg=—"n
CY R D D0t k) <C,
t=—00 ta,...,tg=—00

by Assumption [K| and (B.40)).

The case dg = 3 corresponds to {Card By, Card By, Card B3} being {2,2,4} or {2,3,3}.
We start with Card B; = 2, Card B, = 2 and Card B3 = 4. The discussion concerns the

number of fundamental pair broken by Bs. Note that the situation where B breaks only
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3 or 1 fundamental pair is impossible. The case where Bs does not break any fundamental
pairs corresponds to partitions that are not indecomposable, so that the only possible cases

are those where B3 breaks 4 or 2 fundamental pairs.

e Bj breaks 4 fundamental pairs. Consider By = {1,2,3,4}, By = {5,6} and B; =
{7,8}. The corresponding contribution to K is bounded by

n—ji  n—jz

Z kiki, Y Y Tp(t,... ts)

J1,52=1 t1,t2=113,t4=1

n—ji  n—jz

n—1
1
ﬁ Z kjlka Z Z F (OJ t2 - t17t3 - t17t4 - tl) Rtg—tht4—t3

J1,j2=1 ty,to=1t3,t4=1

2 o 2

p 2 p

< (C— R E I'(0,tq,t3,t4)| < C—
> nSLJ%P| il [T (0, t2, t3,ta)| < n

to,ts,ta=—00
by Assumption [K| and .
e Bj breaks 2 fundamental pairs. Take By = {1,2,3,5}, By = {4,6} and B; = {7,8}.
The change of variables ty = t, + t1, t3 = t§ + t; and t4 = t) + t3 shows that
contribution to K5 is bounded by

n—ji  n—j2

n2 Z kiki, Y Y Tp(ti,....ts)

J1,j2=1 t1,ta=113,t4=1

n—ji n—j2

Z kj kj, Z Z (0,82 = t1,t3 — t1, J1) Rey—to—jy Ryt

Ji,J2=1 t1,to=113,t4=1
C n—1 00
< o ZK2(j2/p) Z T (0,5, 5, 71)| Z ‘Rtl X sup|R | < C—,
J2=1 tl27tévj1:_°° t4:—oo

under Assumption [K|and .
We now turn to the case Card By = Card By = 3 and Card B; = 2. Observe that B3 or
By must break 3 or 1 fundamental pair. The discussion now concerns the fundamental pairs
which are simultaneously broken by B3 and Bs;. Note that B3 and By cannot break the

same 3 fundamental pairs because if it did, B; would be given by the remaining fundamental
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pair in which case B; cannot communicate with By or Bs, a fact that would contradict the

requirement that the partition {Bj, By, B3} is indecomposable.

e Bj and By break 3 fundamental pairs, 2 of which are the same. Take By = {1,2,3},
By = {4,5,6} and By = {7,8}. Using change of variables ty = t; + t}, t3 = t; + t}
and ty = t3 + ), we can see that under Assumption K| and (B.40) the contribution

to Ky of this case is bounded by

n—ji  n—j2

n2 Z kiki, Y Y To(t,... ts)

J1,52=1 t1,to=113,t4=1

n—ji  n—j2

n2 Z kiki, Y Y T(0ty—ty ts — )T (0,ty — ty+ ji,ta — ta + j1) Reysy

Jj1,j2=1 t1,to=1t3,t4=1
C n—1 00 Too p2
<= D0 KGR G/p)sup D0t 1)) D7 P08, 8)] D [Ru| <O
T2 o th ty=—o0 ty=—o00

Note that the case where Bs and By break 3 fundamental pairs with less than one

in common is impossible.

The next case assumes that By breaks only 1 fundamental pair, which is also necessarily

broken by Bj since Bs; must contain the remaining unbroken pair.

e B3 breaks 3 fundamental pairs and B, breaks only 1 pair. Take Bs = {1,2,3},
By = {4,5,8} and B3 = {6,7} and consider a change of variables ty = t; + t},
ts =t; +t5 and t4 = t1 + 51 — t),. Under Assumption [K|and (B.40)), the contribution

of this term to K5 is bounded by

n—ji  n—jz2

n2 Z kiki, > Y Tp(t,....ts)

J1,52=1 t1,ta=113,t4=1

n—ji  n—j2

ng Z Rk, > Y T(0.ta—tr,ts — t1) T (81 — ta+ 1,0, 52) Rus—tojojs

J1,j2=1 ty,t2=113,t4=1

Csupj |R;| «— > =

1oy / . P
ZK2 .] /p Z ‘F(07t27t3)‘ Z |F (t4,0,j2)| S CE

th ,th=—00 t),ja=—00
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e B3 and B, break only 1 pair. Note that B3 and B, cannot break the same pair
because B; must be the remaining pair and cannot communicate, so that the par-
tition is not indecomposable. Hence all the partitions in this case are similar to
Bs = {1,2,5}, By = {3,4,8}, By = {6,7}. The change of variable t, = t; + t,

ty = —jo +to + j1 + ¢4 and t4 = t3 — t} yields a contribution to K5 bounded by

n—ji  n—ja

n2 Z kiki, Y Y Tu(ti,... ts)

J1,j2=1 t1,to=1t3,t4=1

n—ji  n—j2

n2 Z kj kj, Z Z I'(0,ta = t1, 1) I' (85 — 4,0, j2) Reg—to1jo—jy

J1,j2=1 t1,to=11t3,ta=1
00 o
<c Z POt > Pt 0,32)] Y [Ry| < 0O
j1,th=—00 J2,t)=—00 ty=—00
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