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the approach to examine conditional symmetry by deriving conditions under which our tests are

applicable to residuals from semiparametric models with a (sufficiently smooth) nonparametric link

function. The latter setting is general enough to entertain as a particular case a unknown symmetry

point, which we duely estimate by the sample median. The conditions we derive ensure that the

resulting estimation error is asymptotically negligible. Simulations show that the asymptotic tests

perform well even in very small samples, entailing better size and power properties than some of

the existing symmetry tests.
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1 Introduction

Symmetry and conditional symmetry play an important role in numerous situations. Conditional

symmetry is part of the stochastic restrictions on unobservable errors used in semiparametric mod-

eling. See, for instance, Powell (1994) for further discussion and references. It also implies constant

conditional mean and median, and aids in the identification of models that can be symmetrized in

their error terms. Further, adaptive estimation sometimes relies on the assumption of conditional

symmetry. Bickel (1982) shows that, under conditional symmetry of the error term, it is possible

to estimate adaptively the slope coefficients in linear regression models. Newey (1988) builds an

adaptive estimator based on the generalized method of moments under the assumption of condi-

tional symmetry. In macroeconomics, the symmetry of innovations also plays an important role

(Campbell and Hentschel, 1992). Determining whether positive and negative shocks are equiprob-

able has crucial economic policy implications. In finance, knowing whether returns and risk factors

exhibit symmetry may help in the choice of an adequate risk measure for the portfolio and risk

management (Gouriéroux, Laurent and Scaillet, 2000). These few examples illustrate the relevance

of contriving consistent tests of symmetry and conditional symmetry.

There are a number of nonparametric tests available in the literature. Fan and Gencay (1993)

and Ahmad and Li (1997) propose a nonparametric test of symmetry based on Ahmad and van Belle

(1974) affinity measure between two probability density functions. Fan and Gencay (1995) extend

their result to deal with linear regression residuals, but fall into the same problem of requiring an

arbitrary constant to avoid asymptotic degeneracy of the test statistic. Zheng (1998) derives tests

of conditional symmetry by checking whether the conditional cumulative distribution function

satisfies the restrictions imposed by symmetry. Bai and Ng (2001) show how to test whether

residuals of nonlinear time-series models are symmetric, whereas Fan and Ullah (1999) propose a

test of symmetry for weakly dependent data by gauging the closeness between f(u) and f(−u),

where f is the stationary distribution of the process {Xt, t > 0}. More recently, Delgado and

Escanciano (2007) propose a test for conditional symmetry based on empirical processes within a

dynamic context.

Our testing strategy is somewhat different. Symmetry around zero implies that the shape of

the density function to the right of the origin is a mirror image of the shape to the left of the origin.
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Using the nonnegative data to estimate the density of the right part and the absolute value of the

nonpositive data to estimate the density of the left part, we then check whether symmetry holds

by looking at the closeness of these two probability density functions. To handle density functions

whose supports are bounded from below, we rely on asymmetric kernels (Chen, 2000; Scaillet, 2004).

These estimators are nonnegative, boundary-bias free, and achieve the optimal rate of convergence

for the mean integrated error. Further, as opposed to the previous tests that use fixed kernels, our

testing procedures do not require the continuity of the derivatives of the density function at the

origin. Bouezmarni and Scaillet (2005) analyze the convergence of the asymmetric kernel estimator

when the density is unbounded at the origin. Recent empirical applications of asymmetric kernel

density estimators in economics and finance include Fernandes and Grammig (2005), Hagmann and

Scaillet (2007), and Gustafsson, Hagmann, Nielsen and Scaillet (2009). These papers also report

Monte Carlo results showing the nice finite-sample properties of asymmetric kernel estimation and

testing.

We develop the asymptotic theory for the above tests considering both vanishing and fixed

bandwidths. In the first case, we show that the integrated squared difference between the density

estimates of the positive and the absolute value of the nonpositive data is a V-statistic. The

asymptotic distribution is driven by a degenerate U-statistic that weakly converges to a Gaussian

distribution with zero mean. The additional term that marks the difference between the V-statistic

and the corresponding U-statistic gives way to the asymptotic bias in the limiting distribution of

the V-statistic. We construct symmetry tests based on both V- and U-statistics within the context

of vanishing bandwidths. In turn, our tests with fixed bandwidth rest on the V-statistic, weakly

converging to a weighted sum of chi-squared random variables as in Anderson, Hall and Titterington

(1994) and Fan (1998). Finally, we extend our approach to examine conditional symmetry by

deriving conditions under which our tests are nuisance parameter free and hence applicable to

residuals. This is important because we do not know in practice whether the symmetry point

is indeed at the origin. The conditions are mild, allowing us to test the symmetry of residuals

resulting even from semiparametric models that feature a (sufficiently smooth) nonparametric link

function. This setup not only nests the case of a unknown symmetry point, but is also somewhat

more general than the parametric settings that Zheng (1998), Bai and Ng (2001) and Lambert,

3



Laurent and Veredas (2012) consider for testing conditional symmetry.

We investigate through Monte Carlo simulations the performance of our conditional symmetry

tests in small samples. In particular, we consider the gamma-kernel tests with vanishing bandwidths

resulting from both V- and U-statistics. The latter has the advantage of avoiding the estimation

of the asymptotic bias of the V-statistic. The results are encouraging, with the test based on

the U-statistic improving considerably on the test rooted in the V-statistic. In stark contrast to

many nonparametric tests, empirical size is very close to nominal size in most situations, even

for sample sizes as small as 50 observations. This is particularly impressive in view that splitting

the data into positive and negative values actually reduces the effective sample size by half. In

addition, our tests also entail excellent power against a wide array of asymmetric distributions.

Our methodology easily outperforms Zheng (1998) conditional symmetry test, whereas it competes

well with the nonparametric tests put forth by Bai and Ng (2001) for sample sizes of at least 100

observations. This holds despite the fact that the latter tests display faster rates of convergence.

The outline for the remainder of the paper is as follows. Sections 2 and 3 derive the tests of

symmetry and conditional symmetry, respectively. In particular, we show that our test statistic

weakly converges to a standard normal distribution if the smoothing parameter shrinks to zero as

the sample size grows. On the other hand, our test statistic weakly converges to an infinite sum of

weighted chi-square variables for a fixed smoothing parameter. Section 4 reports some Monte carlo

experiments addressing size and power in small samples. We focus on the nonparametric test of

conditional symmetry based on a gamma kernel with a vanishing bandwidth. Section 5 offers some

concluding remarks, whereas the Appendix collects the assumptions and technical proofs.

2 Testing symmetry

We check whether symmetry holds by looking at the closeness of the probability density distribu-

tions of the positive values and negative values. More formally, we derive a test statistic from the

`2-distance with respect to the Lebesgue measure:

I =

∫ ∞
0

[f(u)− g(u)]2 du

=

∫ ∞
0

f(u) dF (u) +

∫ ∞
0

g(u) dG(u)− 2

∫ ∞
0

f(u)g(u) du, (1)
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where f and g are the density functions to the right and to the left of the origin, respectively. We

impose without any loss of generality that the symmetry point is at the origin.1 The integrated

square distance that we adopt is convenient because it entails a consistent test, since it is always

nonnegative, and takes value zero if and only if the null hypothesis holds, namely H0 : f(u) =

g(u) almost everywhere. Bickel and Rosenblatt (1973), Aı̈t-Sahalia, Bickel and Stoker (2001) and

Aı̈t-Sahalia, Fan and Peng (2009) rely on similar squared distance measures, though one could

alternatively employ entropic pseudo-distance measures (Robinson, 1991; Hong and White, 2004).

From a random sample of N observations, it is straightforward to estimate the unknown density

functions f and g using asymmetric kernel estimators. We first split the sample into a subsample

with the nonnegative values {Xi; i = 1, . . . , n1} and another subsample with the absolute values

{Yi; i = 1, . . . , n2 = N −n1} of the negative observations of the original sample. Next, we estimate

the densities of X and Y using asymmetric kernels, so as to avoid the boundary bias that plagues

fixed-kernel density estimation. For ease of exposition, we start with the simplifying assumption

that n = n1 = n2 = N/2, so that

f̂(u) =
1

n

n∑
i=1

Ku(Xi, b) and ĝ(u) =
1

n

n∑
i=1

Ku(Yi, b),

where Ku(·, ·) is either the gamma kernel as in Chen (2000) or the (reciprocal) inverse Gaussian

kernel as in Scaillet (2004), and b is a bandwidth tuning the amount of smoothing.

Let
∫

denote the integral over the support [0,∞). A sample analog of (1) is

In =

∫
f̂(u) dFn(u) +

∫
ĝ(u) dGn(u)−

∫
f̂(u) dGn(u)−

∫
ĝ(u) dFn(u),

where Fn(·) and Gn(·) are the empirical distribution functions based on the sample data {Xi, i =

1, . . . , n} and {Yi, i = 1, . . . , n}, respectively. Using the fact that∫
M(u) dFn(u) =

1

n

n∑
j=1

M(Xj) and

∫
M(u) dGn(u) =

1

n

n∑
j=1

M(Yj),

1 It is without any loss of generality only because we show in Section 3 that estimating the symmetry point by
means of the sample median entails no asymptotic impact in the limiting distribution of the test statistic.
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and omitting the dependence of K on the bandwidth, it follows that

In =
1

n2

n∑
i=1

n∑
j=1

[
KXj (Xi) +KYj (Yi)−KYj (Xi)−KXj (Yi)

]

=
1

n2

n∑
i=1

[
KXi(Xi) +KYi(Yi)−KYi(Xi)−KXi(Yi)

]
+

1

n2

∑
1≤i 6=j≤n

[
KXj (Xi) +KYj (Yi)−KYj (Xi)−KXj (Yi)

]
≡ I1n + I2n.

It turns out that I1n is a bias term, contributing only to the mean of the asymptotic distribution

of the test statistic (see Lemma A3 in the Appendix). This means that I2n drives the limiting

distribution of In and hence it requires the application of a suitable central limit theorem. We

first show that I2n is a degenerate U-statistics by observing that I2n ≡ 1
n2

∑
i<j Hn(Zi, Zj), where

Hn(Zi, Zj) ≡ hn(Zi, Zj) + hn(Zj , Zi) with Zi = (Xi, Yi) and hn(Zi, Zj) ≡ KXj (Xi) + KYj (Yi) −

KYj (Xi)−KXj (Yi). Note that Hn(Zi, Zj) is symmetric in Zi and Zj , and that E
[
Hn(Zi, Zj)

∣∣Zi] =

0 under the null. Accordingly, we may apply Koroljuk and Borovskich (1994) central limit theorem

to show that if, for some k > 1,

E
[
Mk
n(Z1, Z2)

]
+ n1−kE

[
H2k
n (Z1, Z2)

]
{E [H2

n(Z1, Z2)]}k
→ 0, (2)

where Mn(Z1, Z2) = E[Hn(Z1, Z3)Hn(Z2, Z3)], I2n is asymptotically normal with mean zero and

variance 1
2n2 E

[
H2
n(Z1, Z2)

]
. The latter reduces under the null to 2E

[
X−τ/2 f(X)

]
, with τ = 1 for

the gamma and reciprocal inverse Gaussian kernels and τ = 3 for the inverse Gaussian kernel (see

Lemma A4 in the Appendix). We must choose the rate at which the bandwidth converges to zero

so as to ensure that condition (2) holds. In particular, Fernandes and Monteiro (2005) show that it

suffices to consider a bandwidth b of order o
(
n−4/9

)
if one restricts attention to the gamma kernel

(see Lemma A5 in the Appendix for more details). The next result documents the asymptotic

theory for the n = n1 = n2 case. As noted in the Appendix, it follows trivially from Lemmata A3

to A5 and the Slutsky theorem under some mild assumptions.

Proposition 1: Assume that the bandwidth b is of order o
(
n−4/9

)
and that f and g are twice

continuously differentiable, such that
∫ [
x3 f ′′(x)

]2
dx and

∫ [
x3 g′′(x)

]2
dx are finite. Under the
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null H0, it follows that

(i) (n b1/4 In − b−1/4 µ̂1)/σ̂
d−→ N(0, 1)

(ii) n b1/4 I2n/σ̂
d−→ N(0, 1),

where µ̂1 is any consistent estimator of µ1 ≡ E(I1n) satisfying |µ̂1 − µ1| = op(b
1/4) and σ̂2 is any

consistent estimator of the asymptotic variance σ20 ≡ 2π−1/2 E
{
X−τ/2

[
f(X) + g(X)

]}
.

Imposing the null hypothesis yields σ20 ≡ 4π−1/2 E
[
X−τ/2 f(X)

]
. We now turn our attention to

the general case in which the number of observations differs in the two subsamples (i.e., n1 6= n2).

A sample analog of (1) then is

In1,n2 =
1

n21

n1∑
i=1

n1∑
j=1

KXj (Xi) +
1

n22

n2∑
i=1

n2∑
j=1

KYj (Yi)

− 1

n1n2

n1∑
i=1

n2∑
j=1

KYj (Xi)−
1

n1n2

n2∑
i=1

n1∑
j=1

KXj (Yi)

= I1n1,n2 + I2n1,n2 ,

with I1n1,n2 and I2n1,n2 respectively analogous to I1n and I2n. The differences in the summation

indexes does not affect the limiting distribution since the underlying U-statistic remains degenerate.

Further, to establish asymptotic results for n1 →∞, it suffices to assume that λn ≡ n1/n2 → λ in

the limit, where 0 < λ <∞ is a constant. In addition, the null of symmetry actually implies that

λ = 1 and so the asymptotic distribution does not change under the null.

Proposition 2: Assume the conditions in Proposition 1 hold. Under the null hypothesis, both

(n1 b
1/4 In1,n2 − b−1/4 µ̂1)/σ̂ and n1 b

1/4 I2n1,n2/σ̂ weakly converge to a standard Gaussian distribu-

tion.

We derive Propositions 1 and 2 under the assumption that the smoothing parameter vanishes

asymptotically. It is well known that asymptotic kernel-based tests are quite sensitive to the

choice of the smoothing parameter; see e.g. Scaillet (2007) and the references therein. Thus, we

state the corresponding asymptotic results for the fixed smoothing parameter case in the next two

propositions. The limiting distribution follows readily from the results by Anderson et al. (1994) and

Fan (1998). Since the asymmetric kernels are bounded, absolutely integrable and admit nonsingular

Fourier transforms, the regularity conditions of Anderson et al. (1994) are automatically met.
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Proposition 3: Under the null H0, n In
d−→
∑∞

k=1wkZ
2
k and n1 In1,n2

d−→
∑∞

k=1wk
(
Z1k − λ1/2Z2k

)2
as the sample sizes grow, where Z1, Z2, . . . , Z11, Z12, . . . , Z21, Z22, . . . are independent standard nor-

mal random variables, and the weights wk are the eigenvalues corresponding to an orthogonal ex-

pansion in the eigenfunctions of the kernel Hn with respect to f .

Finding asymptotic-valid critical values requires the derivation of an infinite number of eigen-

values as the solution of integral equations. Accordingly, there are very few instances in which

Proposition 3 yields feasible asymptotic-valid critical values. This means that, in general, we must

rely on resampling methods as in Fan (1998) and Scaillet (2007).

We next study the asymptotic power of the above tests against a sequence of local alternatives

H(n)
1 . For simplicity, we entertain only the case in which n = n1 = n2. In particular, we assume

that H(n)
1 : g(y) = f(y)+ εn h(y), with h satisfying

∫
h(y)dy = 0 and 0 <

∫
h2(y)dy <∞. The next

result considers how our tests behave according to the rate at which the perturbation εn converges

to zero.

Proposition 4: Let Ẑn denote either (n b1/4 In−b−1/4 µ̂1)/σ̂ or n b1/4 I2n/σ̂. Under the conditions

in Proposition 1, it follows under the local alternative H(n)
1 that, for any two-sided standard normal

quantile zα,

Pr
(
|Ẑn| > zα

)
=


1, if εn/b

2 →∞
1− βα, if εn/b

2 → c

0, if εn/b
2 → 0

for some 0 < βα = βα(c, h) < 1, with c constant.

This means that our tests have asymptotic power against local alternatives of the form H(n)
1 : g(y) =

f(y) + εn h(y) as long as εn converges to zero at the same rate or faster than b2. In particular, this

implies consistency against fixed alternatives (i.e., εn = 1 regardless of the sample size). Indeed,

under H1 : g(y) = f(y) + h(y), our tests reject the null hypothesis with probability approaching

one as the sample size grows without bound.

3 Conditional symmetry tests

In this section, we show how to extend our results to deal with tests for conditional symmetry of

V1 ∈ R given V2 ∈ Rq within a semiparametric context. Given a parameter space Θ1 and a function
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ξ1 : Rq × Θ1 → R, it suffices to check whether the conditional density function of V1 given V2

is symmetric around ξ1(V2; θ
0
1) for some θ01 ∈ Θ1. This is equivalent to test whether there exists

θ01 ∈ Θ1 such that the conditional density of V = V1 − ξ1
(
V2; θ

0
1

)
given V2 is symmetric around

zero.

To avoid the estimation of conditional densities (see the excellent discussion in Delgado and

Escanciano, 2007), we assume that there exists a parameter space Θ2 and a function ξ2 : Rq+1 ×

Θ2 → R such that the marginal distribution of U = ξ2
(
V, V2; θ

0
2

)
is symmetric around zero for some

θ02 ∈ Θ2. Given the dependence of V (and hence of U) on the parameter vector θ1, it is convenient

to summarize our semiparametric setup by considering a suitable parameter space Θ and function

ξ : Rq+1 × Θ → R such that the marginal density of U = ξ (V1, V2; θ0) is symmetric around zero

for some θ0 ∈ Θ. This setup is well in line with Zheng (1998) and Bai and Ng (2001), for instance.

We next propose a two-step procedure in which we estimate ξ(·, ·; θ) in the first step and then

check whether the marginal density of Û = ξ̂(V1, V2; θ̂) is symmetric around zero in the second

step. We believe that this approach is general enough in that we do not assume a particular

functional form for ξ and hence it dwells in a semiparametric setting. It thus remains to derive the

conditions under which the first-step estimation of (ξ, θ) does not affect the limiting distributions

in Propositions 1 to 3, that is to say, the conditions under which the test is nuisance parameter

free. The next result shows that this amounts to establishing the rate at which (ξ̂, θ̂) converges

to (ξ, θ0) in the first step. As a by-product, we prove the consistency of the asymmetric kernel

estimator of the derivative of the density function in Lemma A6 used for the proof of Proposition

5 in the Appendix.

Proposition 5: The symmetry tests in Propositions 1 to 3 are nuisance parameter free as long as

(ξ̂, θ̂) converges to (ξ, θ0) at a rate no slower than n4/9.

The choice of the semiparametric estimation method obviously depends on the problem under

consideration, though the unknown function ξ should have enough derivatives if one hopes to find

a nonparametric estimator θ̂ that meets the above convergence rate. For instance, if θ̂ converges at

Stone (1982) optimal global rate, then it would suffice to require ξ to have at least 4 derivatives.

See also Shen and Wong (1994) and Shen (1997) for a more general discussion based on sieve
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estimation.

4 Monte Carlo study

Propositions 1 to 5 establish results of asymptotic nature. Typically there exists a large discrep-

ancy between the empirical and nominal sizes of kernel-based tests. This reveals that asymptotic

normality does not always provide much information about the finite-sample distribution of non-

parametric test statistics. Also, it is well known that the performance of nonparametric tests in

finite samples is sometimes very sensitive to the bandwidth choice (Fan, 1995).

We thus investigate in what follows how our nonparametric test of conditional symmetry fairs

in small samples. We carry out Monte Carlo simulations to assess the size and power features for

sample sizes of 50, 100, 200, and 400 observations. We draw 1,000 replications from both symmetric

and asymmetric distributions and then evaluate our testing procedure using the asymptotic 5% and

10% critical values. For simplicity, we consider only tests using a gamma kernel with a vanishing

bandwidth.

We generate the data as follows. Let yt = 1 + xt + et, where et and xt denote two independent

random variables. The regressor xt is standard normal, whereas the error term et may come from

different symmetric and asymmetric distributions according to the particular specification. The null

hypothesis of interest corresponds to the conditional symmetry of yt given xt, which essentially boils

down to testing the least-squares residuals êt for symmetry once we impose the linear regression

structure. To ensure fair comparison between the different distributions, we standardize the least-

squares residuals before running the nonparametric test in Proposition 2. The asymptotic critical

values come from a standard normal distribution given that Proposition 5 ensures that the test is

nuisance parameter free.

For comparison purposes, we employ exactly the same distributions as in Zheng (1998) to study

the size and power of our testing procedures. Among the symmetric distributions, we sample et from

the standard normal, t-student with 10 degrees of freedom, and two symmetric lambda distributions,

whereas we consider four asymmetric lambda distributions to assess power. The lambda distribution

family nests a wide array of symmetric and asymmetric distributions by defining the inverse of the

cumulative distribution as F−1(u) = λ1+[uλ3−(1−u)λ4 ]/λ2. The interesting feature of the lambda
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family of distributions is that it covers a broad spectrum of skewness and kurtosis values. This

is particularly important for applications in economics and finance. Table 1 lists the parameter

vectors of all distributions and their corresponding skewness and kurtosis. We take the parameter

values for all distributions from Zheng (1998). The parameter values are somewhat different in

Bai and Ng (2001) essentially because they normalize λ1 to zero. However, the resulting lambda

distributions have similar, if not the same, skewness and kurtosis. The second symmetric lambda

distribution in Table 1 is equivalent to their second symmetric lambda distribution, whereas A1,

A2, and A4 correspond to their last three asymmetric lambda distributions. This allows for direct

comparison with the Monte carlo results by Zheng (1998) and Bai and Ng (2001).

In the context of nonparametric testing, the choice of the kernel bandwidth normally plays

a major role in the finite-sample properties of the test. There is an extensive literature on the

optimal selection of the smoothing parameter (Silverman, 1986). To maximize power, we employ

two different bandwidths, one for the estimation of the distribution of the nonnegative data and one

for the estimation of the distribution of the absolute value of the nonpositive data. In both instances,

we select the gamma-kernel bandwidths by means of a generalized cross-validation criterion. In view

that the latter should yield a bandwidth of order O(n
−2/5
j ) for asymmetric kernels (Bouezmarni

and Rombouts, 2010), we multiply the resulting bandwidth by n
−2/45
j / lnnj so as to ensure that

bj = o(n
−4/9
j ) for j = 1, 2. Further analysis shows however that test results are not very sensitive

to variations in the bandwidth (namely, either dividing or multiplying the resulting bandwidth by

two). Monte Carlo results reported in other studies related to asymmetric kernels also show that

weak sensitivity.

Table 2 reports the finite-sample performance of the gamma-kernel test based on In. It exhibits

very little size distortions at the 5% and 10% levels for the standard normal and t-distributions.

In contrast, there is significant size distortions for the symmetric lambda distributions, especially

for the specification with negative excess kurtosis. This is consistent with most nonparametric

symmetry tests in the literature, whose size depends heavily on kurtosis (Randles, Fligner, Policello

and Wolf, 1980). As for statistical power, the results are also promising. In line with the asymptotic

theory, power increases with the sample size. It is also very stable across the different asymmetric

lambda distributions we consider. Moreover, our test seems not only to entail more power than
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Zheng (1998), but also to stack up well with the nonparametric tests by Fan and Gencay (1995)

and Bai and Ng (2001) for sample sizes with at least 200 observations. This is very encouraging

not only because the latter tests have faster rates of convergence, but also because splitting the

data into negative and positive values actually reduces the effective sample size by half.

Table 3 documents the size and power properties of a variant of the test that hinges on degenerate

U-statistic I2n. The idea is to avoid estimating the asymptotic bias of In due to I1n, which is

likely to be the source of the size distortions for the lambda distributions S3 and S4. The results

indeed show a huge improvement. Size ameliorates for every distribution, with distortions shrinking

substantially for the leptokurtic distribution S4. In particular, the difference between nominal and

empirical size remains significant only for the platykurtic lambda distribution S3. This is in contrast

to the extant nonparametric tests, whose size deteriorates with excess kurtosis as well. This is very

reassuring given that it is uncommon, if not rare, to encounter data in economics and finance

with negative excess kurtosis. Power also improves a lot especially for the smaller samples, with

improvements of about 50% for n = 50 and n = 100. As a result, our nonparametric test starts

comparing well with Bai and Ng (2001) test of conditional symmetry even for the samples of 100

observations. Moreover, adjusting power for size should also work in our favor given that our test

displays less size distortion in the presence of high kurtosis.

5 Conclusion

This paper develops tests of symmetry using asymmetric kernels. The idea is to take benefit from

the shape of the density function to the right of the symmetry point being a mirror image of the

shape to the left. We thus gauge the closeness between density functions of the positive data and of

the absolute value of the nonpositive data. We employ asymmetric kernels not only because they

are nonnegative and free of boundary bias, but also because they usually entail tests with better

finite-sample properties than fixed kernels (Fernandes and Grammig, 2005). One interesting feature

of our tests is that they do not require the continuity of the derivatives of the density function at

the symmetry point. Further, we also derive the conditions under which our tests are nuisance

parameter free. It turns out that the conditions are mild in that we may apply our symmetry test

to residuals from semiparametric models with a (sufficiently smooth) nonparametric link function.
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This is important because it allows us to test for conditional symmetry in a setting somewhat more

general than in Fan and Gencay (1995), Zheng (1998), and Bai and Ng (2001).

We spell out the asymptotic theory considering both fixed and vanishing bandwidths. In the

first case, we document that the corresponding V-statistic weakly converges to a weighted sum of

chi-squared random variables as in Anderson et al. (1994). As for the latter, we show that the

test statistic we propose is a V-statistic, whose asymptotic normality is driven by a degenerate

U-statistic with zero mean. Monte Carlo simulations reveal that symmetry tests based on the U-

statistic outperform the tests based on the V-statistic most likely because they avoid the estimation

of the asymptotic bias term. Their performance is also very promising relative to the extant tests

in the literature. We find little size distortions for symmetric distributions with nonnegative excess

kurtosis even for sample sizes as small as 50 observations. In addition, our test entails excellent

power against asymmetric lambda distributions. The power is actually very robust in that it does

not vary much with the parameter values we consider. All in all, employing asymmetric kernels

pays off dearly as our tests entail clearly more power than Zheng (1998). Our testing procedures

are also competitive relative to Bai and Ng (2001) nonparametric tests, even though the latter tests

display faster rates of convergence. This is particularly impressive in view that splitting the data

into positive and negative values actually reduces our effective sample size by half.
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Appendix

We start by stating the assumptions we require on (Z1, . . . , Zn), f and g; and then collect some

intermediate results in a sequence of technical lemmata. Lemmata A1 and A2 group the main

identities we use throughout the Appendix, whereas Lemmata A3 to A5 establish some intermediate

results we employ in the proof of Proposition 1. Finally, Lemma A6 gives the consistency of the

asymmetric kernel estimator of the derivative of the density function we require in the proof of

Proposition 5.

Assumptions

(IID) The random variables Z1, . . . , Zn are independent and identically distributed.

(BD) Densities f and g are (a.e.) bounded with bounded derivatives.

(NM) Random variables X and Y satisfy E[X−τ/2] and E[Y −τ/2] are bounded, where τ ≥ 1.

Assumptions (IID) and (BD) are standard in the literature and require no further explanation.

Assumption (NM) requires existence of negative moments. Khuri and Casella (2002) discuss

conditions under which the latter holds for τ = 2. A simple modification of their result leads to

the following necessary and sufficient condition:

lim
c→0+

∫ b

a
x−τ/2 f(x) dx = 0, with c > b > a > 0.

A simpler, but stronger, condition is to require that there exist a > 0 and α > 0 such that for any

0 < x < a, f(x) < αxτ/2. It then follows directly from (BD) that E[f(X)2] is bounded and from

both (BD) and (NM) that E[f(X)X−τ/2] is also bounded. The next result requires these negative

moment conditions.

Lemma A1: Let X and Y denote independent random variables with bounded, differentiable

density functions f and g, respectively. Assume g(x) = f(x) + εnh(x) for some real-valued function

h satisfying
∫
h(x) dx = 0 and 0 <

∫
h(x)2 dx <∞. Let (X1, X2) and (Y1, Y2) denote independent

copies of X and Y , respectively. It then follows that:

(a) E [Kv(X)] = f(v) +O(b) and E [Kv(Y )] = g(v) +O(b), for any fixed v > 0.
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(b) E [KY (X)] = E [g(X)] +O(b), E [KX(Y )] = E [g(X)] +O(b), E [KX1(X2)] = E [f(X)] +O(b),

and E [KY1(Y2)] = E [g(X)] +O(εn + b).

(c) E
[
K2
Y (X)

]
= (4πb)−1/2E

[
X−τ/2g(X)

]
, E
[
K2
X(Y )

]
= (4πb)−1/2E

[
X−τ/2g(X)

]
, E
[
K2
X1

(X2)
]

=

(4πb)−1/2E
[
X−τ/2f(X)

]
, and E

[
K2
Y1

(Y2)
]

= (4πb)−1/2E
[
X−τ/2g(X)

]
+O(εnb

−1/2).

(d) E [KX1(X2)KX1(Y )] = E [f(X)g(X)]+O(b) = E
[
f2(X)

]
+O(εn+b) and E [KY1(Y2)KY1(X)] =

E
[
g2(X)

]
+O(b).

(e) E [KX1(X2)KY (X2)] = 1
2 E
[
g2(X)

]
+{1+o(1)} and E [KY1(Y2)KX(Y2)] = 1

2 E [f(X)g(X)] {1+

o(1)} = 1
2 E
[
f2(X)

]
{1 + o(1)}+O(εn).

(f) E [KY (X1)KX1(X2)] = E [f(X)g(X)]+O(b) = E [KX1(Y )KX2(X1)] and E [KX(Y1)KY1(Y2)] =

E
[
g(X)2

]
+O(b) = E [KY1(X)KY2(Y1)].

Proof: We derive the results only for the gamma kernel, though it is straightforward to consider

the inverse Gaussian and reciprocal inverse Gaussian kernels as well. Note that, in most results,

we employ the following identities: E [f(Y )] = E [g(X)] = E [f(X)] + εnE [h(X)] and E [g(Y )] =

E [g(X)] + εnE [h(Y )].

(a) Denote ζ a gamma random variable with parameters v/b+ 1 and b (and so with mean v + b).

The result follows by noting that E [Kv(X)] = E [f(ζ)] = f(v)+[f ′(v)+O(1)]E [ζ − v] = f(v)+O(b)

provided that f ′(x) = ∂f(x)/∂x is bounded.

(b) Given that E [KX(Y )] = EY {E [Ku(X)|Y = u]}, applying the previous identities yield the

result.

(c) It follows from Chen (2000) and Scaillet (2004) that

E [KY (X)]2 =

∫ ∫
K2
y (x) f(x) dx dG(y)

=
1

2
√
π b

∫
x
−τ/2
2 [f(x2) +O(b)] dG(y)

=
1

2
√
π b

E
[
Y −τ/2f(Y )

]
,

where τ = 1 for the gamma and reciprocal inverse Gaussian kernels and τ = 3 for the inverse

Gaussian kernel.
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(d) As X1 and X2 are independent copies of X,

E [KX1(X2)KX1(Y )] = E [E [Ku(X2)|X1 = u]E [Ku(Y )|X1 = u]]

= E [(f(X) +O(b)) (g(X) +O(b))]

= E [g(X)f(X)] +O(b)

= E
[
f(X)2

]
+ εnE [f(X)h(X)] +O(b).

The corresponding result for Y follows similarly.

(e) For the gamma kernel, it suffices to apply Fernandes and Monteiro (2005) Lemma A.4 to see

that

E [KX2(X1)KY (X1)] =

∫ ∫ ∫
Kx2(x1)Ky2(x1) dF (x1) dF (x2) dG(y)

=

∫ ∫ ∫
Bb(x2, y)K(x2+y)/b+1,b/2(x1) dF (x1) dF (x2) dG(y)

=

∫ ∫
Bb(x2, y)

[∫
f(x1) dK(x2+y2)/b+1,b/2(x1)

]
dF (x2) dG(y)

=

∫ ∫
Bb(x2, y)

[
f

(
x2 + y

2

)
+O(b)

]
dF (x2) dG(y)

= 1
2
E
[
f(Y )2

]
{1 + o(1)}

= 1
2

{
E
[
f(X)2

]
+ εnE [f(X)h(X)]

}
{1 + o(1)} ,

where

Bb(x2, y2) =
Γ[(x2 + y2)/b+ 1]

Γ(x2/b+ 1) Γ(y2/b+ 1)

b−1

2(x2+y2)/b+1
.

The same holds true for the two other asymmetric kernels as well as for the second part relating

to Y .

(f) The first identity results from

E [KY (X1)KX1(X2)] =

∫ ∫ [∫
f(x2)Kx2(x1) dx2

]
Ky(x1)f(x1) dx1g(y)dy

=

∫ ∫
[f(x1) +O(b)]Ky(x1)f(x1) dx1g(y)dy

= E
[
f2(Y )

]
+O(b)

= E [f(X)g(X)] +O(b).

The remaining identities follow along the same line as above, completing the proof. �

16



Lemma A2: Let X and Y have bounded density functions f and g on [0,∞), respectively. It then

follows that Λb = E [KX(Y )KY (X)] = 1
2
√
π b

EX
[
X−τ/2g(X)

]
.

Proof: In the following, we derive the result only for the gamma kernel, though it is straight-

forward to consider the inverse Gaussian and reciprocal inverse Gaussian kernels. The Stirling

approximation states that

Γ(x+ 1) =
√

2π xx+
1
2 exp(−x),

which implies that

Λb =
1

2 b π

∫ ∞
0

∫ ∞
0

(x/y)
y−x
b
f(x) g(y)
√
x y

dx dy.

We then split the integral over y into four pieces, giving way to

Λb =
1

2 b π

∫ ∞
0

[∫ (1−t)x

0
+

∫ x

(1−t)x
+

∫ (1+t)x

x
+

∫ ∞
(1+t)x

]
(x/y)

y−x
b
f(x) g(y)
√
x y

dy dx

= Λ
(1)
b + Λ

(2)
b + Λ

(3)
b + Λ

(4)
b ,

with 0 < t < 1. We next compute coincident upper and inferior bounds for each one of the above

nonnegative terms, so as to obtain the result. These bounds depend on the fact that

exp

[
−(y − x)2

x b

]
≤ (x/y)

y−x
b ≤ exp

[
−(y − x)2

x b
+

(y − x)3

2x2 b

]
, if y > x,

whereas

exp

[
−(y − x)2

x b
+

(y − x)3

2 y2 b

]
≤ (x/y)

y−x
b ≤ exp

[
−(y − x)2

x b

]
, if y < x.

It then follows that

Λ
(1)
b =

1

2 b π

∫ ∞
0

∫ (1−t)x

0
(x/y)

y−x
b
f(x) g(y)
√
x y

dy dx

≤ 1

2 b π

∫ ∞
0

∫ (1−t)x

0
exp

[
−(y − x)2

x b

]
f(x) g(y)
√
x y

dy dx,

whence we substitute for z = y−x√
x b

yielding

Λ
(1)
b ≤

1

2π
√
b

∫ ∞
0

∫ −t√x/b
−
√
x/b

e−z
2 f(x) g(x+ z

√
x b)√

x+ z
√
x b

dz dx = 0,

as b→ 0, by Lebesgue dominated convergence theorem. This ultimately means that Λ
(1)
b = 0 given

that it is nonnegative. We now turn our attention to the second term for which we derive the
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following upper limit:

Λ
(2)
b =

1

2 b π

∫ ∞
0

∫ x

(1−t)x
(x/y)

y−x
b
f(x) g(y)
√
x y

dy dx

≤ 1

2 b π

∫ ∞
0

∫ x

(1−t)x
exp

[
−(y − x)2

x b

]
f(x) g(y)
√
x y

dy dx

=
1

2π
√
b

∫ ∞
0

∫ 0

−t
√
x/b

e−z
2 f(x) g(x+ z

√
x b)√

x+ z
√
x b

dz dx

=
1

4
√
π b

E
[
X−1/2 g(X)

]
,

where the last equality holds by Lebesgue dominated convergence theorem (as b → 0) and by the

fact that
∫∞
0 e−z

2
dz =

√
π/2. As for the inferior bound, observe that

Λ
(2)
b ≥

1

2 b π

∫ ∞
0

∫ x

(1−t)x
exp

{
−(y − x)2

x b

[
1− (y − x)x

2y2

]}
f(x) g(y)
√
x y

dy dx

≥ 1

2 b π

∫ ∞
0

∫ x

(1−t)x
exp

[
−(y − x)2

x b
(1 + ξ)

]
f(x) g(y)
√
x y

dy dx,

where ξ = (1− t)−2 t/2. Substituting for z = (y − x)
√

1+ξ
x b then results in

Λ
(2)
b ≥

1

2π
√
b

∫ ∞
0

∫ 0

−t
√

1+ξ
x b

e−z
2 f(x) g(x+ z

√
x b/(1 + ξ))√

x+ z
√
x b/(1 + ξ)

√
1 + ξ

dz dx

=
1

4
√
π b

E
[
X−1/2 g(X)

]
(1 + ξ)−1/2.

It then suffices to let t shrink to zero to appreciate that

lim inf
b→0

b−1/2 Λ
(2)
b ≥

1

4
√
π

E
[
X−1/2 g(X)

]
,

and hence Λ
(2)
b = 1

4
√
π b

E
[
X−1/2 g(X)

]
since the upper and lower limits are equal. Applying the

same argument to Λ
(3)
b and Λ

(4)
b shows that they coincide with Λ

(2)
b and Λ

(1)
b , respectively. This

means that Λb = Λ
(2)
b + Λ

(3)
b = 1

2
√
π b

E
[
X−1/2 g(X)

]
, which completes the proof. �

Lemma A3: Under the null H0, I1n is such that E(I1n) = 2(2πb)−1/2 n−1 E(X−τ/2) +O(n−1) and

Var(I1n) = O(b−1n−3), respectively.

Proof: We derive the result only for the gamma kernel, but we can apply the same method to

the (reciprocal) inverse Gaussian kernel. For the gamma kernel, one can derive using the Stirling
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approximation that Ku(u) = (2πbu)−1/2. Hence

E[I1n] = n−1(2πb)−1/2E
[
X−1/2 + Y −1/2

]
− n−1E [g(X) + f(Y )] +O(bn−1)

= n−12(2πb)−1/2E
[
X−1/2

]
+ n−12(2πb)−1/2εn

{∫
h(x)x−1/2dx

}
− n−12E[g(X)] +O(bn−1)

= n−12(2πb)−1/2E
[
X−1/2

]
+O

(
n−1(1 + b−1/2εn)

)
.

To calculate the variance of I1n, set l(Z,Z) = [KX(X)+KY (Y )]− [KX(Y )+KY (X)] and write

In = n−2
∑

i hn(Zi, Zi).

E[I1n]2 = n−4
n∑
i=1

E [hn(Zi, Zi)]
2 + n−4

∑
i 6=j

E [hn(Zi, Zi)hn(Zj , Zj)]

= n−3E
[
h2n(Z,Z)

]
+ n−2E2 [hn(Z,Z)]

= n−3E
[
h2n(Z,Z)

]
+ E2 [I1n]

= O(n−3b−1) + E2 [I1n] .

The last line follows by writing

E
[
hn(Z,Z)2

]
= E

[
(KX(X) +KY (Y ))2

]
+ E

[
(KX(Y ) +KY (X))2

]
− 2E [(KX(X) +KY (Y ))(KX(Y ) +KY (X))]

= E
[
K2
X(X)

]
+ E

[
K2
Y (Y )

]
+ 2E [KX(X)]E [KY (Y )]

+ E
[
K2
X(Y )

]
+ E

[
K2
Y (X)

]
+ 2E [KY (X)KX(Y )]

− 2E [KX(X)KX(Y )] + 2E [KY (Y )KY (X)]

− 2E [KX(X)KY (X)] + 2E [KY (Y )KX(Y )]

= O(b−1),

where the last line follows by Lemmata A1 and A2, and the Stirling approximation. Note that we

implicitly require E [X−τ + Y −τ ] <∞. This means that

Var(I1n) = E [I1n]2 − E2 [I1n]

= O(b−1n−3),

proving the result. �

Lemma A4: Assume that f and g are bounded density functions on [0,∞). Under the null H0,

the variance of I2n is Var(I2n) = n−2 b−1/2 π−1/2 E
{
X−τ/2

[
f(X) + g(X)

]}
.
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Proof: It follows from Lemma A1 that the expected value of I2n is O(εn). To compute the

asymptotic variance of I2n, observe that

E [Hn(Z1, Z2)]
2 = E [hn(Z1, Z2) + hn(Z2, Z1)]

2

= E [hn(Z1, Z2)]
2 + E [hn(Z2, Z1)]

2 + 2 E [hn(Z1, Z2)hn(Z2, Z1)]

= 2 E [hn(Z1, Z2)]
2 + 2 E [hn(Z1, Z2)hn(Z2, Z1)] , (3)

because both Z1 and Z2 are distributed with density f(x)g(y). The squared-term in the righthand

side of (3) decomposes into

E [hn(Z1, Z2)]
2 = E [KX2(X1) +KY2(Y1)−KX2(Y1)−KY2(X1)]

2

= E [KX2(X1)]
2 + E [KY2(Y1)]

2 + E [KX2(Y1)]
2 + E [KY2(X1)]

2

+ 2 E [KX2(X1)KY2(Y1)] + 2 E [KX2(Y1)KY2(X1)]

− 2 E [KX2(X1)KY2(X1)]− 2 E [KX2(Y1)KY2(Y1)]

− 2 E [KX2(X1)KX2(Y1)]− 2 E [KY2(Y1)KY2(X1)] .

Applying Lemmata A1 and A2, we conclude that,

E [hn(Z1, Z2)]
2 =

2√
π b

E
[
X−τ/2f(X)

]
+O(n−2b−1/2εn).

Now, it remains to bound the cross-term in (3), which under the null reads

E [hn(Z1, Z2)hn(Z2, Z1)] = E [KX1(X2)KX2(X1)] + E [KY1(Y2)KY2(Y1)]

+ 2E [KX1(X2)]E [KY1(Y2)]

+ 2E [KX(Y )KY (X)] + 2E [KX(Y )]E [KY (X)]

− 2E [KX1(X2)KX2(Y )]− 2E [KY (X2)KX2(X1)]

− 2E [KY1(Y2)KY2(X)]− 2E [KX(Y2)KY2(Y1)] .

We bound the right-hand side using Lemmata A1 and A2. It then ensues that,

Var(I2n) = 2n−2 b−1/2 π−1/2 E
{
X−τ/2

[
f(X) + g(X)

]}
+O

(
n−2b−1/2εn

)
,

completing the proof. �

Lemma A5: Let An =
∫

[f̂(x)− f(x)]2 dx. Assume also that the bandwidth b is of order o(n−4/9)

and that f is twice continuously differentiable and such that
∫

[x3 f ′′(x)]2 dx < ∞. It then follows
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that nb1/4An − b−1/4

2
√
π
E(X−τ/2)

d−→ N(0, σ2f ), where σ2f ≡ (2π)−1/2E[X−τ/2 f(X)].

Proof: It readily follows along the same lines as in the proof of Theorem 1.1 in Fernandes and

Monteiro (2005). �

Lemma A6: Let the random sample (X1, . . . , Xn) have a bounded density function f on [0,∞).

Suppose that limx→∞K
′
u(x, b) f ′(x) = 0, where K ′u(x, b) and f ′(x) are the first derivatives with

respect to x, and that the bandwidth is such that b → 0 and n b3/2 → ∞. It then follows that∥∥∥f̂ ′(u)− f ′(u)
∥∥∥ = Op

(
n−1/2 b−3/4

)
, where f̂ ′(u) = 1

n

∑n
i=1

∂
∂u Ku(Xi, b).

Proof: In the following, we derive the result only for the gamma kernel, though it is straightforward

to consider the inverse Gaussian and reciprocal inverse Gaussian kernels. We first observe that

∂

∂u
Ku(x, b) = Ku(x, b)

ln(x/b)− ψ(u/b+ 1)

b
,

where ψ(·) is the digamma function, i.e., the logarithmic derivative of the gamma function (Abramowitz

and Stegun, 1972, pp. 258-259). It then ensues that

f̂ ′(u) =
1

n

n∑
i=1

∂

∂u
Ku(Xi, b)

=
1

n

n∑
i=1

Ku(Xi, b)
ln(Xi/b)− ψ(u/b+ 1)

b
.

Taking expectations then yields

E
[
f̂ ′(u)

]
=

1

n

n∑
i=1

E
[
Ku(Xi, b)

ln(Xi/b)− ψ(u/b+ 1)

b

]
= b−1

∫ ∞
0

Ku(x1, b)
[

ln(x1/b)− ψ(u/b+ 1)
]
f(x1) dx1.

The digamma function satisfies

ψ(z + 1) = ln z +
1

2z
−
∞∑
j=1

B2j

2jz2j
,

where B2j are the Bernoulli numbers (Abramowitz and Stegun, 1972, pp. 804-806), and so

E
[
f̂ ′(u)

]
= b−1

∫ ∞
0

Ku(x1, b)
[

ln(x1/b)− ln(u/b)− b/(2u) +O
(
b2
) ]
f(x1) dx1

= b−1
∫ ∞
0

Ku(x1, b) ln(x1/u) f(x1) dx1

−
∫ ∞
0

Ku(x1, b) f(x1) dx1 {1/(2u) +O(b)}

= b−1 Eζ
[
h̃(ζ)

]
− Eζ [f(ζ)] {1/(2u) +O(b)},
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where h̃(ζ) ≡ ln(ζ/u) f(ζ) and ζ has a gamma distribution G(u/b + 1, b), with mean u + b and

variance (u+ b)b. A third-order Taylor expansion then yields

Eζ
[
h̃(ζ)

]
= h̃(u) + b

[
h̃′(u) +

1

2
h̃′′(u)u

]
+O(b2)

=
[
f ′(u) + f(u)/(2u)

]
b+O(b2),

given that h̃(u) = 0, h̃′(u) = f(u)/u, and h̃′′(u) = 2 f ′(u)/u − f(u)/u2. It follows from a second-

order Taylor expansion that Eζ [f(ζ)] = f(u) +O(b). It thus ensues that E
[
f̂ ′(u)

]
= f ′(u) +O(b).

It now remains to compute the variance of the derivative estimator so as to prove convergence in

the mean square sense. The variance of the derivative estimator is at most of the same order of its

second moment, viz.

E
[
f̂ ′(u)2

]
= n−1b−2

∫ ∞
0

K2
u(x1, b)

[
ln(x1/u) +O(b)

]2
f(x1) dx1

= n−1b−2
∫ ∞
0

K2
u(x1, b) [ln(x1/u)]2 f(x1) dx1 {1 +O(b)}

= n−1b−2Bb(u)Eη
{

[ln(η/u)]2 f(η)
}
{1 +O(b)},

where η is a random variate with gamma distribution G(2u/b+ 1, b/2), and

Bb(u) =
Γ(2u/b+ 1)/b

22u/b+1Γ2(u/b+ 1)

as in Fernandes and Monteiro (2005). It then follows from the properties of the standard gamma dis-

tribution that the above expectation is of order O(b), whereas Chen (2000) shows that
√
b uBb(u) ≤

1/(2
√
π). This means that

E
[
f̂ ′(u)2

]
≤ n−1 b

−5/2 u−1/2

2
√
π

O(b) {1 +O(b)} = O
(
n−1 b−3/2

)
.

This shows that the derivative estimator that employs the gamma kernel is consistent as long as

b→ 0 and n b3/2 →∞. �

Proof of Proposition 1: Note that we may write the test statistic as

n b1/4 In − b1/4 µ̂1
σ̂

=

[
n b1/4 I1n − b−1/4 µ1

σ0
+ b−1/4

µ1 − µ̂1
σ0

]
σ0
σ̂
.

The second term within brackets is op(1) given the assumption that µ̂1 − µ1 = op(b
1/4), whereas

the consistency of σ̂ ensures that σ0/σ̂ converges to one in probability. Altogether, this means that

n b1/4 In − b1/4 µ̂1
σ̂

=
n b1/4 In − b1/4 µ1

σ̂
+ op(1)
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by Slutsky theorem. It then follows from Lemmata A3 to A5 that the first term on the right-hand

side converges to a standard Gaussian distribution, completing the proof of (i). It is easy to show

that (ii) holds along the same lines. �

Proof of Proposition 2: The result follows along the same lines as in Proposition 1 by noting

that λn → 1 under the null as the sample sizes grow. �

Proof of Proposition 3: This is a particular case of the general results in Anderson et al. (1994).�

Proof of Proposition 4: It follows from the proof of Lemma A4 that under the local alternative

hypothesis H(n)
1 : g(y) = f(y) + εnh(y), E[nb1/4I2n] = n b1/4 εn µh and Var[n b1/2 I2n] = σ20 + σ2h.

As in Lemma A5, this implies that n b1/4 I2n − n b1/4 εnµh
d−→ N

(
0,
√
σ20 + σ2h

)
. The result then

follows trivially by replacing n = o(b−9/4). �

Proof of Proposition 5: By assumption, there exists Û = U(ξ̂, θ̂) = ξ̂(V1, V2; θ̂) that converges

in probability to U = ξ(V1, V2; θ0) at a rate Nd, with d ≥ 4/9. The test is nuisance parameter free

if the statistic evaluated at (ξ̂, θ̂) converges to the same distribution of the statistic evaluated at

(ξ, θ0). For ease of exposition, we assume in what follows that n1 = n2 = n. The test statistic then

reads

In(ξ̂, θ̂) =
1

n2

n∑
i=1

n∑
j 6=i,j=1

K
X̂j

(X̂i) +
1

n2

n∑
i=1

n∑
j 6=i,j=1

K
Ŷj

(Ŷi)

− 1

n2

n∑
i=1

n∑
j 6=i,j=1

K
Ŷj

(X̂i)−
1

n2

n∑
i=1

n∑
j 6=i,j=1

K
X̂j

(Ŷi),

where
(
X̂1 . . . , X̂n

)
and

(
Ŷ1 . . . , Ŷn

)
respectively correspond to the nonnegative values and the

absolute value of the nonpositive values of
(
Û1 . . . , ÛN

)
, with n = N/2. A second-order Taylor

functional expansion of In(ξ̂, θ̂) around (ξ, θ0) yields

In(ξ̂, θ̂)− In(ξ, θ0) = ∆1(ξ, θ0)(ξ̂ − ξ) + ∆2(ξ, θ0)(θ̂ − θ0) +Rn(ξ∗, θ∗),

where ∆1(ξ, θ0) and ∆2(ξ, θ0) respectively denote the functional derivative of In with respect to

the first and second arguments evaluated at (ξ, θ0), and Rn(ξ∗, θ∗) denotes the residual term of

the expansion. The latter depends on the second functional derivative of In evaluated at (ξ∗, θ∗),

with ξ∗ ∈ [ξ, ξ̂] and θ∗ ∈ [θ0, θ̂], and on both (ξ̂ − ξ)2 and (θ̂ − θ0)2. The limiting distributions of
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n b1/4 In(ξ̂, θ̂) and n b1/4 In(ξ, θ0) then coincide if and only if

∆1(ξ, θ0)(ξ̂ − ξ) + ∆2(ξ, θ0)(θ̂ − θ0) = op

(
n−1 b−1/4

)
= op

(
n−8/9

)
,

given that b is of order o
(
n−4/9

)
. Both ∆1 and ∆2 depend linearly on the product of the density

functions f and g and their first functional derivatives. In addition, they are equal to zero under

the null hypothesis. The norm of the density estimation error is of order Op
(
n−1/2 b−1/2

)
, whereas

Lemma A6 shows that the norm of the first-derivative estimation error is of order Op
(
n−1/2 b−3/4

)
.

This means that both ∆1 and ∆2 are of order Op
(
n−1 b−5/4

)
= op

(
n−4/9

)
and hence

∆1(ξ, θ0)(ξ̂ − ξ) + ∆2(ξ, θ0)(θ̂ − θ0) = op

(
n−4/9−d

)
.

We now move to the residual term of the expansion. It is straightforward to show that the supremum

of the second functional derivative of In over a neighborhood of (ξ∗, θ∗) is also of order O
(
n−1 b−3

)
and so n b1/4Rn(ξ∗, θ∗) = Op

(
n−2d b−11/4

)
= op

(
n−2d+11/9

)
. The latter condition is not binding in

view that d must already exceed 4/9. �
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Table 1

Distributions in the Monte Carlo study

The quantile function of the lambda distribution with parameter vector λ = (λ1, λ2, λ3, λ4)

is F−1(u) = λ1 + [uλ3 − (1 − u)λ4 ]/λ2.

distribution skewness kurtosis

S1 standard normal 0.000 3.00

S2 t-student with 10 degrees of freedom 0.000 4.00

S3 lambda with λ = (0, 0.1666667, 1, 1) 0.000 1.80

S4 lambda with λ = (0,−0.0141264,−0.08,−0.08) 0.000 5.99

A1 lambda with λ = (−12.601,−0.00980045,−0.11,−0.0001) -2.924 19.52

A2 lambda with λ = (9.7726, 0.0151878,−0.001,−0.13) 3.160 23.80

A3 lambda with λ = (−7.84595,−0.0223643,−0.15,−0.001) -3.478 30.24

A4 lambda with λ = (6.43871, 0.00317949,−0.001,−0.17) 3.880 40.70
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Table 2

Performance of the gamma-kernel symmetry test using In with vanishing bandwidth

We report the rejection frequency of the asymptotic test based on In within 1,000 replications. In particular,

we test whether the standardized least-squares residuals of a linear regression with both intercept and slope

coefficients equal to one are symmetric for sample sizes of 50, 100, 200, and 400 observations. We select the

bandwidth by means of a cross-validation approach. To assess size and power, we draw the error term from

both symmetric and asymmetric distributions. In particular, we consider the standard Gaussian (S1), t-student

with 10 degrees of freedom (S2), two symmetric lambda distributions (S3 and S4), as well as four asymmetric

lambda distributions (A1 to A4). We also report within parentheses and brackets the corresponding values for

Zheng (1998) and Bai and Ng (2001), respectively. See Table 1 for the values of the parameters in the above

distributions.

50 100 200 400
distribution

5% 10% 5% 10% 5% 10% 5% 10%

S1 0.048 0.090 0.060 0.090 0.067 0.139 0.090 0.155

(0.052) (0.086) (0.057) (0.101) (0.070) (0.093)

[0.037] [0.051] [0.049]

S2 0.048 0.108 0.063 0.081 0.072 0.120 0.156 0.210

(0.069) (0.114) (0.089) (0.134) (0.070) (0.103)

S3 0.100 0.166 0.125 0.195 0.174 0.267 0.181 0.284

(0.034) (0.069) (0.039) (0.061) (0.029) (0.055)

S4 0.093 0.145 0.073 0.107 0.109 0.168 0.093 0.163

(0.068) (0.101) (0.074) (0.131) (0.078) (0.125)

[0.078] [0.087] [0.075]

A1 0.185 0.315 0.435 0.625 0.870 0.933 0.996 0.999

(0.149) (0.229) (0.320) (0.439) (0.474) (0.616)

A2 0.176 0.314 0.450 0.621 0.875 0.944 0.993 0.997

(0.168) (0.257) (0.363) (0.479) (0.541) (0.645)

[0.932] [0.999] [1.000]

A3 0.195 0.334 0.457 0.654 0.889 0.951 0.996 0.997

(0.184) (0.286) (0.400) (0.513) (0.560) (0.692)

A4 0.194 0.320 0.491 0.671 0.895 0.952 0.993 0.995

(0.215) (0.303) (0.436) (0.541) (0.610) (0.722)

[0.961] [1.000] [1.000]
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Table 3

Performance of the gamma-kernel symmetry test using I2n with vanishing bandwidth

We report the rejection frequency of the asymptotic test based on I2n within 1,000 replications. See Table 2 for

more details.

50 100 200 400
distribution

5% 10% 5% 10% 5% 10% 5% 10%

S1 0.054 0.084 0.030 0.090 0.055 0.091 0.048 0.096

(0.052) (0.086) (0.057) (0.101) (0.070) (0.093)

[0.037] [0.051] [0.049]

S2 0.048 0.072 0.051 0.093 0.042 0.072 0.060 0.138

(0.069) (0.114) (0.089) (0.134) (0.070) (0.103)

S3 0.073 0.107 0.093 0.149 0.096 0.175 0.108 0.190

(0.034) (0.069) (0.039) (0.061) (0.029) (0.055)

S4 0.060 0.096 0.046 0.074 0.061 0.111 0.056 0.107

(0.068) (0.101) (0.074) (0.131) (0.078) (0.125)

[0.078] [0.087] [0.075]

A1 0.324 0.449 0.715 0.820 0.984 0.994 0.999 0.999

(0.149) (0.229) (0.320) (0.439) (0.474) (0.616)

A2 0.332 0.450 0.674 0.805 0.980 0.990 1.000 1.000

(0.168) (0.257) (0.363) (0.479) (0.541) (0.645)

[0.932] [0.999] [1.000]

A3 0.337 0.464 0.712 0.821 0.985 0.994 1.000 1.000

(0.184) (0.286) (0.400) (0.513) (0.560) (0.692)

A4 0.346 0.480 0.731 0.831 0.989 0.995 0.998 0.999

(0.215) (0.303) (0.436) (0.541) (0.610) (0.722)

[0.961] [1.000] [1.000]
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