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Any N = 2 superconformal field theory (SCFT) in four dimensions has a sector of operators

related to a two-dimensional chiral algebra containing a Virasoro sub-algebra. Moreover,

there are well-known examples of isolated SCFTs whose chiral algebra is a Virasoro algebra.

In this note, we consider the chiral algebras associated with interacting N = 2 SCFTs

possessing an exactly marginal deformation that can be interpreted as a gauge coupling

(i.e., at special points on the resulting conformal manifolds, free gauge fields appear that

decouple from isolated SCFT building blocks). At any point on these conformal manifolds,

we argue that the associated chiral algebras possess at least three generators. In addition,

we show that there are examples of SCFTs realizing such a minimal chiral algebra: they

are certain points on the conformal manifold obtained by considering the low-energy limit

of type IIB string theory on the three complex-dimensional hypersurface singularity x3
1 +

x3
2 + x3

3 + αx1x2x3 + w2 = 0. The associated chiral algebra is the A(6) theory of Feigin,

Feigin, and Tipunin. As byproducts of our work, we argue that (i) a collection of isolated

theories can be conformally gauged only if there is a SUSY moduli space associated with

the corresponding symmetry current moment maps in each sector, and (ii) N = 2 SCFTs

with a ≥ c have hidden fermionic symmetries (in the sense of fermionic chiral algebra

generators).
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1. Introduction

N = 2 SCFTs in four dimensions have at least two natural sub-sectors: the N = 2 chiral

ring (i.e., the ring of operators annihilated by all the anti-chiral Poincaré supersymmetries)

and the sector of Schur operators. The former controls the Coulomb branch moduli space

of vacua (when it exists) and was elucidated over twenty years ago in the groundbreaking

work of Seiberg and Witten [1]. The later captures a more intricate structure that is

related to a chiral algebra in two dimensions [2]. When there is a Higgs branch, the Schur

operators describe its properties, but this sector is also much more general.

Surprisingly, recent work on Argyres-Douglas theories [3–8] shows that these two sectors

are in fact closely related. Indeed, aspects of the Coulomb branch operator spectrum are

secretly encoded in the Schur limit of the superconformal index [4] (see also the discussion

in [9] of the deformation described in [10]). Moreover, BPS calculations on the Coulomb

branch allow one to reproduce the Schur index [6–8].

In this work, we will show another way in which the N = 2 chiral ring is tied to the

Schur sector. More precisely, we focus on the subset of the N = 2 chiral ring that controls

exactly marginal deformations (i.e., the chiral operators of scaling dimension two). We will

argue below that if a theory has an exactly marginal deformation, and it can be interpreted
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as a gauge coupling (i.e., the conformal manifold is built by conformally gauging global

symmetries of isolated SCFT sub-sectors), then the chiral algebra, χ, associated with the

theory has at least three generators. We will write this statement as

|χ| ≥ 3 , (1.1)

where the norm indicates the number of generators of the chiral algebra (i.e., the number

of operators whose normal-ordered products, along with their derivatives, span the chiral

algebra).

Interestingly, it turns out that the bound in (1.1) can be saturated by actual theories.

Indeed, we find one such example: the A(6) theory of Feigin, Feigin, and Tipunin [11], and

the associated four-dimensional theory is gotten by, for example, studying the low-energy

limit of type IIB string theory on a particular three complex-dimensional hypersurface

singularity we will mention below. Alternatively, this theory can be engineered by taking

three copies of the (A1, A3) theory and gauging a diagonal SU(2).

In the context of certain isolated theories, like the (A1, A2n) theories [12], it is known

that the chiral algebra corresponds to a vacuum module of Virasoro [6, 13], so |χ| = 1.

Our result is a first hint of some new connections between conformal manifolds and chiral

algebras. We will briefly return to these points in the conclusions.

We should also note that our argument in favor of (1.1) has at least two interesting

spinoffs:

(i) We show that we can conformally gauge some diagonal global symmetry, H , of a

set of isolated theories, Ti, only if the corresponding holomorphic moment maps, µI
i

(with I = 1, · · · , |H| an adjoint index), satisfy
(

µI
i

)n 6= 0 in the chiral ring of the Ti

for all n > 0. A standard folk theorem (which we do not prove) then implies that

there is an associated SUSY moduli space in each Ti.

(ii) Assuming all N = 2 SCFTs (or at least the ones we study) have the asymptotic

Cardy-like behavior governed by a − c derived in [14], then it follows that for any

N = 2 theory with a ≥ c, the associated chiral algebra necessarily has fermionic

generators.1 This result implies that |χ| ≥ 3 for interacting theories with a ≥ c.

1In [3], we saw that a − c does indeed control the q → 1 asymptotics of the Schur index for collections

of free hypermultiplets and vector multiplets as well as for several infinite classes of non-Lagrangian theories

(see also the recent discussion in [15]) via

lim
β→0

log IS(q) = −8π2

β
(a− c) + · · · . (1.2)
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The first point indicates a surprising connection between two different spaces: the con-

formal manifold on the one hand and the moduli space of vacua on the other (in all known

examples, there is a more obvious connection between the conformal manifold and the

Coulomb branch, because the exactly marginal deformations sit in multiplets whose pri-

maries parameterize part of the Coulomb branch).2 The second point is interesting as well

since it implies that N = 2 theories with a ≥ c have, in some sense, additional fermionic

symmetries. In the case of theories with N > 2 (which necessarily have a = c), these addi-

tional symmetries include additional supersymmetries in four space-time dimensions (and

therefore additional supersymmetries in two-dimensions—see [16] for a recent discussion of

the case with 4D N = 3 and [2] for the case with 4D N = 4). On the other hand, in the

case of theories with only N = 2 SUSY, these additional fermionic symmetries only exist

at the level of the corresponding chiral algebras.

The plan of this paper is as follows. In the next section, we review some chiral algebra

and Schur sector basics. We then describe conformal gauging and what it means for the

Schur sector. Afterwards, we move on to describe some empirical evidence in favor of (1.1).

Section 4 is the meat of the paper and contains our physics proof of (1.1). In section

5, we then describe our realization of a theory that saturates (1.1). Finally, we end with

conclusions and a discussion of open problems.

2. Chiral algebra / Schur sector basics

In this section we will give a lightning review of the pertinent aspects of Schur operators [17]

and their associated chiral algebras [2] that are useful below. For further details, the reader

is encouraged to consult the original references.

The Schur sector consists of the operators that are annihilated by the two supercharges

Q̃2−̇ and Q1
− (along with their conjugates). These degrees of freedom are the operators

In this formula, IS(q) is the Schur index, and q = e−β is the corresponding superconformal fugacity (see

the discussion in section 2 for further details). On the other hand, for certain N = 1 theories, [15] argues

that the Cardy-like behavior of [14] is modified. We assume that the theories we study have the standard

Cardy-like behavior controlled by a− c in (1.2) (and we are not aware of any N = 2 SCFT counterexamples

to this behavior).
2Connections between conformal manifolds and moduli spaces of vacua arise often in the context of the

AdS/CFT correspondence. However, the relations we find are purely in the realm of field theory.
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that contribute to the Schur limit of the superconformal index

I(q; ~x) = TrH(−1)F e−β∆qE−R
∏

i

(xi)
fi . (2.1)

Here |q| < 1, the |xi| = 1 are flavor symmetry fugacities, E is the scaling dimension, R is

the SU(2)R Cartan, and ∆ =
{

Q2−̇, (Q2−̇)
†
}

. In the classification of [18], the multiplets

that contain Schur operators are of type (see also the original discussion in [19])

B̂R , DR(0,j2) ⊕ D̄R(j1,0) , ĈR(j1,j2) , (2.2)

where the ji are the Lorentz spins.

It turns out that the B̂R and D̄R(j1,0) form a subring called the Hall-Littlewood (HL)

chiral ring, and it will be important for us below. As a point of reference, the B̂R multiplets

contain Schur operators that are the highest-weight primaries and parameterize the Higgs

branch (when it exists). In particular, B̂1 is the multiplet corresponding to flavor symmetry

currents, and the Schur operator is the holomorphic moment map, µ. On the other hand,

the DR(0,j2)⊕D̄R(j1,0) multiplets contain, respectively, first level Q̃2+̇ and Q1
+ highest-weight

descendants as Schur operators. When R = j1 = j2 = 0, these multiplets are vector

multiplets, and the corresponding Schur operators are gauginos, λ1
+, λ̃2+̇. The ĈR(j1,j2) are

semi-short multiplets and contain Schur operators as Q̃2+̇Q1
+ highest-weight descendants.

The Ĉ0(0,0) multiplet is the stress tensor multiplet, and the corresponding Schur operator is

the highest weight state of the SU(2)R current, J11
++̇

(where the superscripts are SU(2)R

spinor indices).

The authors of a beautiful recent paper [2] found a deep connection between the above

Schur operators and two-dimensional chiral algebras. Roughly speaking, one fixes the Schur

operators to lie in a plane and works with respect to a cohomology defined by a partic-

ular nilpotent supercharge. The Schur operators form non-trivial representatives of this

cohomology. Moreover, the Schur operators behave meromorphically (i.e., their correlation

functions in the plane are meromorphic) as long as we twist the anti-holomorphic transla-

tions in the plane with the SU(2)R symmetry. Therefore, twisted-translated cohomology

classes corresponding to Schur operators map to chiral algebra operators.

As an illustration of the above discussion, we have the following natural 4d/2d maps [2]

χ
[

J11
++̇

]

= − 1

2π2
T , χ

[

µI
]

=
1

2
√
2π2

JI , χ [∂++̇] = ∂z ≡ ∂ , (2.3)

where χ[· · · ] denotes the chiral algebra image of the argument, T is the holomorphic stress

tensor, JI is an affine current, and ∂ is a holomorphic derivative. Moreover, the central
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charges in four dimensions map simply to corresponding charges in two dimensions: c2d =

−12c4d and k2d = −1
2
k4d. In addition, the holomorphic level, h, satisfies

h = E − R . (2.4)

We can write the torus partition function of the chiral algebra as follows

Z(x, q) = Tr xM⊥

qL0 , (2.5)

where h is the eigenvalue of L0, and the trace is taken over the chiral algebra states.

In (2.5), x is a fugacity for the rotations in the plane transverse to the chiral algebra

plane. From the perspective of the chiral algebra, this is an additional symmetry, and it

will play an important role in our example below. Setting x = −1 and using the fact

that spin-statistics implies that (−1)M
⊥

= (−1)F , where F is the fermion number, it is

straightforward to argue that the torus partition function should match the Schur index in

(2.1)

Z(−1, q) = I(q) . (2.6)

We will use this correspondence below to identify the A(6) theory with the chiral algebra

of our diagonally gauged AD theory.

The important points of the above chiral algebra story for us are the following

• From (2.3), we see that the two-dimensional chiral algebra always has a Virasoro sub

algebra since there is always an SU(2)R current in four dimensions. In the next few

sections, we will see what additional structure the conformal manifold forces on this

algebra.

• The generators of the HL ring are automatically chiral algebra generators [2].

• If the four-dimensional theory has flavor symmetry moment maps that vanish (in

the chiral ring) at second order in the singlet channel, then T in (2.3) is not an

independent generator. Instead, it is the Sugawara stress tensor.

• Higgs branch generators contribute at least two chiral algebra generators since the

Higgs branch is quaternionic. Moreover, interacting theories with Higgs branches

necessarily have |χ| ≥ 3 since the stress tensor typically contributes an additional

generator. In order for the stress tensor to be a Sugawara composite in two dimen-

sions, there must be at least three B̂R generators (and a corresponding number of

generators in two dimensions) [2].
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• The previous point also applies to B̂R generators whose vevs parameterize more gen-

eral moduli spaces where SU(2)R is broken but U(1)R is preserved. For example,

these moduli spaces can contain some number of free vector multiplets in addition to

free hypermultiplets at generic points.

2.1. Gauging

In this section we suppose that we start with a collection of N isolated SCFTs and gauge

a diagonal H symmetry with coupling g

δW = g · Φ
N
∑

i=1

µi , (2.7)

where Φ is the adjoint field, and the µi are the H moment maps of the different isolated

sectors, Ti. We then want to know what happens to the chiral algebra.

In very general terms, when we turn on a non-zero gauge coupling, many of the mul-

tiplets that were short at g = 0 pair up and become long multiplets (according to the

rules of [18]). As a result, the chiral algebra that appears at infinite Zamolodchikov dis-

tance when g = 0 typically becomes much smaller when we are at finite Zamolodchikov

distance and non-zero gauge coupling. For operators built out of the Schur gauginos and

moment maps, this pairing up can be explicitly worked out at small gauge coupling3 via

the following (anti)commutators

{

Q̃2−̇, λ̃2+̇

}

=
{

Q1
−, λ

1
+

}

= F = g

N
∑

i=1

µi ,
{

Q̃2−̇, λ
1
+

}

=
{

Q1
−, λ̃2+̇

}

= 0 ,

[

Q1
−, D++̇

]

= gλ̃1
+̇ = gλ̃2+̇ ,

[

Q̃2−̇, D++̇

]

= gλ1
+ ,

[

Q1
−, D++̇

]

= gλ̃1
+̇ = gλ̃2+̇ ,

[

Q̃2−̇, D++̇

]

= gλ1
+ ,

[

Q1
−, µI

]

=
[

Q̃2−̇, µI

]

= 0 . (2.8)

The last two commutators amount to imposing current conservation. Most of the operators

built out of these degrees of freedom pair up at non-zero gauge coupling.

The important points for us below are that

• Interacting theories with fermionic chiral algebra generators must have |χ| ≥ 3 since

these operators come in pairs and cannot form a stress tensor composite.

3Note that this regime does not require the isolated SCFTs to be weakly coupled. Indeed, the most

interesting examples to study (including the one we will discuss in more detail below) involve strongly

coupled isolated sectors.
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• We do not require that the chiral algebra is invariant as we explore finite diameter

subregions of the conformal manifold (although there is considerable evidence that in

many theories this invariance holds).

3. Phenomenology

Before we get to our argument in favor of |χ| ≥ 3 in the case of theories with a marginal

gauge coupling, let us review some of the strong phenomenological and empirical evidence

in favor of this proposition.

For example, SU(Nc) SQCD with Nf = 2Nc ≥ 4 has at least U(2Nc) flavor symmetry.

Therefore, the associated chiral algebra at any point in the coupling space must have at

least 4N2
c ≥ 16 generators.4 Similar statements hold in the case of superconformal SQCD

with SO and Sp gauge groups.

Moving to the more general class S context with regular punctures, we can typically

reduce the flavor symmetry,5 and, in the process, induce exactly marginal deformations by

going to higher genus Riemann surfaces. On the other hand, quite generally, higher genus

surfaces lead to theories with D⊕D̄ representations [17]. As discussed above, this situation

leads to theories with |χ| ≥ 3. For example, the authors of [2] studied the chiral algebra

associated with a genus two SU(2)3 gauge theory. The flavor symmetry is reduced to U(1),

but there are many D ⊕ D̄ representations, and the chiral algebra has |χ| > 3.

Finally, let us consider the class of (generalized) Argyres-Douglas theories. Although

this is an enormous zoo, we can say some things about the associated chiral algebras. For

simplicity, let us stick to the set of (AK−1, AN−1) theories [12]. Such theories have marginal

couplings only if K and N are not relatively prime.6 These theories have (often large) Higgs

branches. Indeed, the three-dimensional mirror analysis of [20] shows that such theories

have a 2(K − 1) ≥ 2 complex dimensional Higgs branch. It follows from one of our bullet

4In the simplest case of SU(2) with Nf = 4, the global symmetry group is enhanced to SO(8), and

the authors of [2] have conjectured that the chiral algebra away from decoupling points is the so(8) Affine

Kac-Moody algebra at level k2d = −2. For Nc > 2, the authors conjecture that the chiral algebra is generated

by affine u(2Nc) currents at level k2d = −Nc along with baryonic generators b and b̃ obeying a particular

OPE.
5Since flavor symmetries must contribute generators to the chiral algebra, reducing the flavor symmetry

can lead to smaller |χ|.
6Note that this is not a biconditional statement. For example, the (A1, A2n−3) theories discussed in [3–5]

are isolated.
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points in the first part of section 2 that |χ| ≥ 3. As a particular set of examples of such

theories with a marginal coupling, we can consider the (AN , AN) theories for N ≥ 3 (the

conformal manifold of the N = 3 case was explored in [21, 22]). By our above discussion,

|χ| > 2N ≥ 6.

4. An argument in favor of |χ| ≥ 3

Below we give a detailed argument explaining why the inequality in (1.1) should be satisfied

in theories with an exactly marginal gauge coupling.

4.1. The case of N ≥ 4

When the conformal manifold has regions in which N ≥ 4 isolated SCFTs, Ti (i = 1, · · · , N),

weakly coupled to a gauge field appear (we denote g = 0 as a strict decoupling point), it is

straightforward to see that |χ| ≥ 3 by a direct argument in superconformal representation

theory.7 Indeed, consider the Schur conformal primary operators at O(q2). On general

grounds, these operators must be in multiplets of type Ĉ0(0,0), B̂2, D0(0,1) ⊕ D̄0(1,0), D1(0,0) ⊕
D̄1(0,0), or D 1

2
(0, 1

2
) ⊕ D̄ 1

2
( 1
2
,0) [17].

For the purposes of our argument, it suffices to focus on the Ĉ0(0,0), B̂2, and D1(0,0) ⊕
D̄1(0,0) multiplets. These degrees of freedom can only recombine into long multiplets via [18]

Ĉ0(0,0) ⊕D1(0,0) ⊕ D̄1(0,0) ⊕ B̂2 . (4.1)

Clearly, the N(N − 1)/2 flavor-singlet operators Oab = µI
aµbI ∈ B̂2 with a 6= b are in short

multiplets when g = 0 (here I = 1, · · · , |H| is an adjoint index). By (4.1), these multiplets

can only recombine if there are an equal number of (flavor-singlet) Ĉ0(0,0) multiplets. These

latter multiplets contain a stress tensor, and there are N such multiplets available to pair

up with the Oab multiplets when we turn the gauge coupling on. As a result, there are

N(N − 3)/2 ≥ 2 unpaired Oab multiplets. In particular, it follows that |χ| ≥ 3 as promised.

Note that this is a strict lower bound at any point on the conformal manifold since these

multiplets can disappear from the short sector only by pairing up with new conserved

stress tensor multiplets (which come with an equal number of short B̂2 and D1(0,0)⊕D̄1(0,0)

multiplets).

7In this sub-section, we will also assume that each sector has a unique flavor-neutral Ĉ0(0,0) multiplet. In

the more general argument of the next subsection, we will abandon this assumption.
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Before we conclude this sub-section, let us discuss some subtleties related to free fields.

To that end, we suppose, as part of our collection of isolated theories at g = 0, we have

free hypermultiplets transforming in n1 ≥ 1 copies of a representation, R1, of H . In this

case, we define the collection of n1 copies of R1 to form a single isolated sector, T1. The

reason we do not count each of the n1 copies of R1 as forming different sectors is that the

corresponding flavor singlet Ĉ0(0,0) multiplet used in our argument above involves multiplets

in all n1 copies of R1.

To understand this statement, consider H = SU(2) SCQD with Nf = 4. We have eight

fundamental SU(2) doublets, QAi
a , and an SO(8) flavor symmetry (here A = 1, 2 is an

SU(2)R index, a = 1, 2 is a fundamental H gauge index, and i = 1, · · · , 8 is a fundamental

SO(8) index). This theory has thirty-seven short Ĉ0(0,0) multiplets at g = 0

Jλ ∼ ΦIΦ†
I , J ij ∼ ǫABǫ

abQAi
a QBj

b , (4.2)

where ΦI is the chiral primary of the SU(2) vector multiplet. The only flavor singlet Ĉ0(0,0)
operator arising from the hypermultiplet sector is Jm =

∑8
i=1 J

ii, and so it is sensible to

define the collection of n1 copies of R1 as a single sector.

Note that when we turn on g 6= 0, the only remaining short operator in this collection

is

J = Jλ − Jm . (4.3)

The other thirty-six short Ĉ0(0,0) multiplets pair up with an equal number of B̂2 multiplets.

In particular, consider the flavor singlet operator

J⊥ = κλJλ + Jm , (4.4)

where κλ 6= 0 is a constant chosen so that 〈J⊥(x)J(0)〉 = 0 at g = 0. This operator pairs

up with the flavor singlet µijµij operator to form a long multiplet, where

µij = ǫabQ1i
a Q

1j
b . (4.5)

When we turn on small g 6= 0, this statement implies

µijµij = 0 , (4.6)

at the level of the chiral ring, while, at the level of the µij(x)µij(0) OPE, we have

µij(x)µij(0) = C · x∆−4 · (Q1)2(Q̃2)
2J⊥ + · · · , (4.7)

where ∆ > 4. In particular, the term appearing on the RHS of (4.7) arises because µijµij

pairs up with J⊥.
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4.2. The case of N = 1

The above argument does not work when the g = 0 point consists of a decoupled gauge

multiplet and a single isolated SCFT sector, T . Instead, we will take a more indirect route

in this case (note that, as we will see in the next sub-section, the argument in this sub-

section generalizes to arbitrary numbers of sectors; moreover, we do not assume that each

isolated SCFT has a single flavor-singlet Ĉ0(0,0) multiplet; instead we allow for one Ĉ0(0,0)
multiplet that contains the genuine stress tensor of the sector—i.e., the operator that gives

rise to the generator of translations in the sector—and an arbitrary number of other Ĉ0(0,0)
multiplets). To that end, we first show that T has a moduli (sub)space parameterized

by vevs of the holomorphic moment maps. From this fact, we will be able to show that

if |χ| < 3, then a4d ≥ c4d (note that we add the subscript “4d” to a solely for unity of

notation) along the conformal manifold of the gauged theory. Next, assuming the behavior

described in [14] and (1.2) (see the introduction for a discussion of this point), we see that

the partition function of the resulting chiral algebra lacks an essential singularity in the

q → 1 limit. Finally, we argue that the absence of this singularity implies the existence of

fermionic chiral algebra generators and hence, by one of the bullet points in section 2.1,

|χ| ≥ 3.

We begin by proving that in T , the On = (µIµI)
n ∈ B̂2n operators transform in short

multiplets for all n > 0. In other words, we prove that On 6= 0 in the chiral ring of T . For

n = 1, this follows from the unitarity bound of [2]. Indeed, if it were not the case, then

(4.16) of [2] implies
dimH

c4d
=

24h∨

k4d
− 12 = −6 , (4.8)

and so c4d < 0, which contradicts four-dimensional unitarity. More generally, suppose that

there is some maximal n̂ ≥ 1 such that On̂−1 is in a short multiplet of T . As a result, On̂

is in a long multiplet of type8

Ĉ2n̂−2(0,0) ⊕D2n̂−1(0,0) ⊕ D̄2n̂−1(0,0) ⊕ B̂2n̂ . (4.9)

Let us denote the (would be) Schur operators in the first three sub-multiplets of (4.9) as

O′
++̇

, O′′
+̇
, and O′′

+ respectively.

Now, consider working at arbitrarily small g 6= 0. The theory still possesses a short

stress tensor multiplet, and this multiplet has an associated Schur operator of the form

J11
++̇ = (λ1

+)
I(λ̃2+̇)I − J11

1++̇ , (4.10)

8We will see below that it is also inconsistent for On̂ to identically vanish.
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where, at g = 0, J11
1++̇

is the Schur operator in the stress tensor multiplet of T . Given this

operator, let us define

Õ++̇ = κ̃λ(λ
1
+)

I(λ̃2+̇)I + J11
1++̇ , (4.11)

where κ̃λ 6= 0,−1 is a constant chosen so that 〈J11
++̇

(x)Õ++̇(0)〉 = 0 (at g = 0). Clearly,

Õ++̇ is in a long multiplet for small g 6= 0 since it pairs up as follows

Õ++̇ ⊕ Õ+ ⊕ Õ+̇ ⊕ (1 + κλ)O , (4.12)

where O+ = (1 + κλ)µ
I(λ1

+)I , O+̇ = (1 + κλ)µ
I(λ̃2+̇)I , and O = µIµI . Moreover, we have

that

On̂−1Õ++̇ ⊕On̂−1Õ+ ⊕On̂−1Õ+̇ ⊕ (1 + κλ)On̂ . (4.13)

It then follows that O′
++̇

− (1 + κλ)
−1On̂−1Õ++̇ is in a short multiplet for small g 6= 0.

However, this statement leads to a contradiction, because, by dialing g arbitrarily small

but non-zero, we find that the anomalous dimension of On̂−1Õ++̇ is parametrically smaller

than the anomalous dimension of O′
++̇

.9 As a result, we see that, as claimed,

On 6= 0 ∀n > 0 , (4.14)

in the chiral ring of the isolated theory, T .10

As a final aside, note that, a priori, we might have imagined that On̂ could be identically

zero, i.e., it might not even be possible to define this operator to be in a long multiplet as

in (4.9). However, such a statement would be in contradiction with (4.13), since Õ++̇ must

recombine to become part of a long multiplet for g 6= 0, and therefore On̂−1Õ++̇ should also

be part of a long multiplet at small (but non-zero) coupling (in particular, this statement

must hold when we take the leading corrections in g into account).

Now we must use some physical intuition. Indeed, since O is an SU(2)R-charged but

U(1)R-neutral chiral operator that is not nilpotent, it is reasonable to associate a SUSY

moduli space, M̂O ⊂ MSU(2)R , with its vevs (here MSU(2)R contains any normal directions

to generic points on M̂O that also break SU(2)R but preserve U(1)R). Given this picture,

9This argument can be suitably generalized if the operators in question do not have definite scaling

dimension. Indeed, since the On̂−1Õ++̇ operator must become part of a short multiplet as the gauge coupling

is taken to zero, O′
++̇

−On̂−1Õ++̇ cannot be part of a short multiplet for sufficiently small g.

10This result immediately implies (after invoking flavor covariance) that

(

µI
)n 6= 0 ∀n > 0, I , (4.15)

in the chiral ring of T .
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we expect that for generic 〈O〉 6= 0, the IR theory is just a collection of free hypermultiplets.

In some theories, these free hypermultiplets might necessarily be accompanied by free vector

multiplets as well (see, e.g., [23]). This insight allows us to compute a bound on the value

of a4d − c4d for the isolated theory

a4d,T − c4d,T ≥ − 1

24
dimMSU(2)R . (4.16)

Note that (4.16) follows from the definition of our moduli space: it is a space of vacua in

which (i) SU(2)R is spontaneously broken, but U(1)R is not, and (ii) at generic points, the

theory consists of a set of free hypermultiplets possibly with additional vector multiplets.

As a result, (4.16) follows from linear U(1)R ’t Hooft anomaly matching. In particular, the

above inequality is saturated if we have a genuine Higgs branch (i.e., no vector multiplets

at generic points).

We can now show that, in the gauged theory, either a4d ≥ c4d along the conformal

manifold, or |χ| ≥ 3. Indeed, suppose a4d < c4d. In this case, the gauged theory would

still possess a non-trivial moduli space of the type described above with B̂R generators

parameterizing it. As discussed in the bullet points of the first part of section 2, this

conclusion means we would have |χ| ≥ 3. In particular, if we would like a theory with

|χ| < 3, we must have that

a4d ≥ c4d , (4.17)

along the conformal manifold.

In the rest of this sub-section, we show that |χ| ≥ 3 even in the case of a4d ≥ c4d. Note

first that, assuming the partition function has the behavior described in [14] and (1.2), it is

straightforward to show that if a4d ≥ c4d then the Schur index lacks an essential singularity

as q → 1. Let us see if we can find a chiral algebra with |χ| = 1 that is compatible

with this asymptotic behavior. Since the stress tensor always exists, such an algebra must

be a Virasoro algebra. If there are no null vectors (besides the trivial one involving the

derivative of the identity) in the vacuum Virasoro module, then the partition function is

I = χ(1,1) = P.E.

(

q2

1− q

)

, (4.18)

where the plethystic exponential of a function of variables x1, · · · , xi is defined as

P.E.(f(x1, · · · , xi)) ≡ exp

(

∞
∑

n=1

n−1f(xn
1 , · · · , xn

i )

)

. (4.19)

Therefore, (4.18) clearly has an essential singularity as q → 1. This result implies that the

corresponding Schur index also has an essentail singularity and therefore a4d < c4d.

12



Let us then consider cases with non-trivial null vectors. From the general formula for

the Kac determinant in (7.28) of [24] with h = 0 (since we are considering the Virasoro

vacuum representation) as well as (7.31) of that same reference, we find that a non-trivial

null vector exists only if

c2d = 13− 6(t+ t−1) , t =
1± s

1± r
=

p

p′
>

3

2
or t <

2

3
, (4.20)

for integers r, s, p, and p′. Without loss of generality, we can take p, p′ > 1 relatively

prime. Note that if p and p′ have different sign, then c2d > 0 and c4d < 0, which violates

four-dimensional unitarity. Also, if p = 1 or p′ = 1, then we have a partition function as

in (4.18). Finally, for t = 3
2
or t = 2

3
, we have that c2d = 0 and so by our discussion below

(2.3), c4d = 0 as well. However, this statement violates four-dimensional unitarity, so we

need not consider this case.

Now, according to (8.17) of [24] (we set the overall normalization of the character so

that the vacuum contributes unity) we have

I = χ(1,1) =
q−(p−p′)2/4pp′

(q; q)

∑

n∈Z

(

q(2pp
′n+p−p′)2/4pp′ − q(2pp

′n+p+p′)2/4pp′
)

, (4.21)

From the modular transformation properties of the vacuum character, we see that the Schur

index (4.21) behaves in the limit q ≡ e−β → 1 as

I ∼ e−
4π2

β
(hmin−

c2d
24

)+O(1) = e
π2

6β

(

1− 6

pp′

)

+O(1)
, (4.22)

where hmin = 1−(p−p′)2

4pp′
is the smallest holomorphic dimension of a primary state in the (p, p′)

minimal model (see [8] for a recent discussion of consequences of this fact in the context

of 4D/2D relations). Since p and p′ are relatively prime and t is in the range described in

(4.20), we see that pp′ ≥ 10 (pp′ = 10 in the case of the Yang-Lee model that is related

to the (A1, A2) theory). Therefore, we see that there is always an essential singularity in

(4.22) and so a4d < c4d. This inequality means that the four-dimensional theory cannot

have a4d ≥ c4d if the corresponding chiral algebra has only one generator.11

We therefore require at least one more generator to cancel the essential singularity in

the Schur index and realize a4d ≥ c4d. However, if there are only two generators, one of

them is the stress tensor and the other must be a bosonic operator. Since adding a bosonic

generator does not cancel the above essential singularity in the vacuum Virasoro character,

11See [6,13] for a discussion of four-dimensional N = 2 SCFTs whose chiral algebras are vacuum modules

of Virasoro minimal models. All of these theories have a4d < c4d.
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we conclude that a4d < c4d even in the case of |χ| = 2. Therefore, we need three or more

generators of the chiral algebra (including fermions) for the four-dimensional theory to have

a4d ≥ c4d.

4.3. The case of N ≥ 2

Let us now study the case of N ≥ 2 isolated SCFT sectors, Ti (i = 1, · · · , N), at g = 0

with decoupled gauge fields for a diagonal H global symmetry of the Ti. We will generalize

the discussion of the previous subsection for N = 1. To that end, consider the N operators

Oi = µI
i

(

∑N
a=1 µaI

)

. We claim that, in the chiral ring of the collection of the isolated Ti

On
i 6= 0 , ∀n > 0, i = 1, · · · , N . (4.23)

From this result, it follows (as in the N = 1 case discussed previously) that each of the

isolated Ti SCFTs have moduli spaces, MSU(2)R, where SU(2)R is spontaneously broken

but U(1)R is not.12 The argument we used in the single sector case starting with (4.16)

(but now for all N isolated sectors) applies directly to the case of N sectors since we have

a non-trivial MSU(2)R. We again conclude that the chiral algebra must have at least three

generators.

To justify (4.23), we first note that when we turn on small g 6= 0, only one stress tensor

multiplet remains short. This multiplet has the following Schur operator

J11
++̇ = (λ1

+)
I(λ̃2+̇)I −

N
∑

i=1

J11
i++̇ , (4.25)

where (at g = 0) the J11
i++̇

are the Schur operators in the stress tensor multiplets of the

isolated Ti theories. We can form N additional linearly independent combinations of the

operators appearing on the RHS of (4.25)

Õa++̇ = κa,λ(λ
1
+)

I(λ̃2+̇)I +
N
∑

i=1

κa,iJ
11
i++̇ , (4.26)

where a = 1, · · · , N runs over the linear combinations. The constants κa,λ and κa,i in (4.26)

are chosen so that 〈Õa++̇(x)J
11
++̇

(0)〉 = 〈Õa++̇(x)Õb++̇(0)〉 = 0 at g = 0. As in the N = 1

case, we can again check that all N of the operators in (4.26) must pair up with linearly

independent combinations of the N operators Oi = µI
i

(

∑N
a=1 µaI

)

.

12Moreover, we have
(

µI
i

)n 6= 0, ∀n > 0, i = 1, · · · , N, I , (4.24)

in the appropriate chiral rings of the isolated Ti.
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(A1, A3) 2 (A1, A3)

(A1, A3)

Fig. 1: A quiver diagram describing the theory T̂ near a weak coupling point on the

conformal manifold. The middle circle stands for an SU(2) vector multiplet gauging the

diagonal SU(2) flavor symmetry of three (A1, A3) theories.

Therefore, to justify (4.23), we can, in analogy with the N = 1 discussion in the previous

subsection, suppose that for some particular Oi there is a minimal n̂ > 0 such that On̂
i = 0

in the chiral ring of the collection of the isolated Ti. Clearly, this operator is in a long

multiplet of the following type (the case in which this operator identically vanishes can be

ruled out as in the case of a single isolated SCFT described in the previous section)

Ĉ2n̂−2(0,0) ⊕D2n̂−1(0,0) ⊕ D̄2n̂−1(0,0) ⊕ B̂2n̂ . (4.27)

Now, we study the operator On̂−1
i Õ′

++̇
in the theory with g 6= 0, where Õ′

++̇
is the appropri-

ate linear combination of the Õa++̇ in (4.26) that pairs up with Oi. From this discussion,

we have

On̂−1
i Õ′

++̇ ⊕On̂−1
i Õ′

+ ⊕On̂−1
i Õ′

+̇ ⊕On̂
i . (4.28)

As in the N = 1 case, we again find a contradiction since On̂
i is already in a long multiplet

at g = 0. In particular, we conclude that

On
i 6= 0 , ∀n > 0, i = 1, · · · , N , (4.29)

in the chiral ring of the collection of the Ti. Therefore, as discussed below (4.23), we see

that |χ| ≥ 3.

5. An example with |χ| = 3

Given the above general discussion, it is interesting to ask if there are examples that

saturate the bound (1.1). In this section, we will see the answer is yes by explicitly

constructing an N = 2 SCFT, T̂ , that has a one complex-dimensional conformal manifold

and whose chiral algebra, χ(T̂ ), saturates the bound (1.1).13

13We do not consider any hypothetical isolated points on the conformal manifold at finite Zamolodchikov

distance where new Schur operators might appear. Such points would have an accidental enhancement of
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The theory T̂ is given by the low-energy limit of type IIB string theory on the three

complex-dimensional hypersurface singularity x3
1 + x3

2 + x3
3 + αx1x2x3 + w2 = 0 [22], or,

alternatively, by three (A1, A3) Arygres-Douglas theories whose diagonal SU(2) flavor sym-

metry is gauged (Fig. 1). The central charge of the SU(2) flavor symmetry of the (A1, A3)

theory [25] is precisely the right value so that this diagonal gauging is exactly marginal.

The resulting N = 2 SCFT, T̂ , has conformal anomalies aT̂ = cT̂ = 2, and therefore its

two-dimensional chiral algebra, χ(T̂ ), has

c2d = −12cT̂ = −24 . (5.1)

In order to identify this chiral algebra, let us compute the Schur index of T̂ . Since it is

invariant under the exactly marginal gauge coupling, the index can be computed in the

weak gauge coupling limit by considering the following integral

IT̂ (q) =

∮

|z|=1

dz

2πiz
∆(z) Iv(q; z)

3
∏

i=1

I(A1,A3)(q; z) , (5.2)

where ∆(z) ≡ 1
2
(1− z2)(1− z−2) is the Haar measure of SU(2), and

Iv(q; z) = P.E.

[ −2q

1− q
(z2 + 1 + z−2)

]

, (5.3)

is the Schur index of a single SU(2) vector multiplet (recall the definition of the plethystic

exponential in (4.19)). The Schur index of the (A1, A3) theory was found in [3] to be14

I(A1,A3)(q; z) =
1

∏∞
k=2(1− qk)

∑

R

[dimR]q f̃
(3)
R (q; z) , (5.4)

where R runs over irreducible representations of su(2), and [k]q = (q
k
2 − q−

k
2 )/(q

1

2 − q−
1

2 )

for any integer k. The factor, f̃
(3)
R (q; z), is given by15

f̃
(3)
R (q; z) =

q3C2(R)

∏∞
k=1(1− qk)

TrR(z
4J3q−3(J3)2) , (5.5)

where J3 is the Cartan generator of su(2) normalized so that the fundamental representation

has eigenvalues ±1
2
, and C2(R) is the quadratic Casimir invariant.

the corresponding chiral algebras. No such points are known to exist in the literature, and they do not affect

our discussion at generic points.
14See also [6] for an equivalent expression for the same quantity.
15Here, we use a slightly different notation for the flavor fugacity from [3]. In particular, x in Eq. (1.6)

of [3] is related to z in this paper by x = z2. In terms of z, the character of the n-dimensional representation

of su(2) is given by χn(z) = (zn − z−n)/(z − z−1). See also footnote 20 of [3].
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Now, by an explicit calculation, we see that the index (5.2) has the following expansion

in q

TT̂ (q) = 1 + q2 + q3 + 2q6 + q8 + q11 + 2q12 + q15 + 2q18 + 2q20 + q24 + q26 + 2q27 + · · · .

(5.6)

Interestingly, this q-series can be written in closed form as

IT̂ (q) =

(

∞
∏

k=1

1

1− qk

)

∞
∑

n=1

(−1)n−1n
(

q
3n2

−n−2

2 − q
3n2

+n−2

2

)

. (5.7)

We have checked the equivalence of (5.6) and (5.7) up to very high perturbative order in

q. Moreover, the expression (5.7) has no essential singularity at q → 1, which is consistent

with aT̂ = cT̂ .
16

To identify χ(T̂ ), our strategy will be to show that the expression in (5.7) coincides with

the vacuum character of the A(6) algebra of Feigin, Feigin, and Tipunin [11]. The A(6)

algebra is a W algebra obtained by extending the Virasoro algebra with central charge

c = −24 by adding two Virasoro primaries, Φ±(z), of holomorphic dimension 4. Since

Φ±(z)Φ±(w) are anti-symmetric under z ↔ w, Φ± are fermionic generators. Moreover, Φ±

satisfy the following null state equations

∂2Φ± + αTΦ± = 0 , (5.8)

where α is a constant, and TΦ± is the normal ordered product of the stress tensor, T ,

and Φ±. The singular part of the operator product expansion of Φ+(z)Φ−(w) is given by

composite operators of the stress tensor and its derivatives. The vacuum character of this

algebra is evaluated in [11] as

ZA(6)(q, z) ≡ TrA(6) q
L0z2A =

1
∏∞

n=1(1− qn)

∞
∑

n=1

n−1

2
∑

j=−n−1

2

z2j
(

q
3n2

−n−2

2 − q
3n2

+n−2

2

)

, (5.9)

where A is an sℓ(2) charge under which Φ± have charge ±1
2
, and the stress tensor is neutral.

Note here that, when we set z = −1, this vacuum character is equivalent to the expression

(5.7), namely

IT̂ (q) = TrA(6)(−1)2AqL0 = ZA(6)(−1, q) . (5.10)

16The absence of the essential singularity can be seen by rewriting (5.7) using (the derivative of) Jacobi’s

triple product identity.
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Since the Φ± are fermionic operators with charges 2A = ±1, and T (z) is a bosonic operator

with charge 2A = 0, the factor (−1)2A in the trace is identified with (−1)F .17 Then, the

equality (5.10) is precisely of the form of (2.6). Moreover, the central charge c = −24 of

the A(6) algebra agrees with the expected value of the central charge, c2d = −12c4d, of

χ(T̂ ). These facts strongly suggest that indeed

χ(T̂ ) = A(6) , (5.11)

and that therefore, as promised,

|χ(T̂ )| = 3 . (5.12)

5.1. Explicit check of multiplet recombination in four dimensions

In this sub-section we further check the identification in (5.11) by explicitly constructing

the Schur operators, up to O(q4), that survive for small but non-zero gauge coupling.18 As

we will see, all chiral algebra generators of O(q4) and lower pair up to form long multiplets,

with the exception of the the SU(2)R current (at O(q2)) and the two fermionic generators

(at O(q4)). Moreover, it is straightforward to check, using the Macdonald index of the

(A1, A3) theory [5] and the Macdonald analog of (5.2), that the four-dimensional fermionic

primaries corresponding to Φ± should be of type Ĉ 3

2
( 1
2
,0) ⊕ Ĉ 3

2
(0, 1

2
) (the corresponding Schur

operators have charge ±1
2
under M⊥ = j1 − j2, which is in turn mapped to charge ±1

2

under A in the chiral algebra).

To check the above statements, we first consider the O(q2) Schur operators at g = 0

Oab = µI
aµbI ∈ B̂2 , O+a = λ1I

+ µaI ∈ D̄1(0,0) , O+̇a = Trλ̃I
2+̇µaI ∈ D1(0,0) ,

O++̇ = λ1I
+ λ̃2+̇I ∈ Ĉ0(0,0) , J11

a++̇ ∈ Ĉ0(0,0) , (5.13)

where a, b = 1, 2, 3 denote the particular (A1, A3) factor. Note that the Joseph ideal con-

straint in each (A1, A3) theory implies that Oaa = 0. As a result, this constraint leaves

three Oab operators with a 6= b. Using the variations in (2.8), it straightforward to check

that when we turn on a small gauge coupling, all operators in (5.13) pair up via

Ĉ0(0,0) ⊕D1(0,0) ⊕ D̄1(0,0) ⊕ B̂2 , (5.14)

17From the four-dimensional perspective, we can think of the z fugacity as being related to a fugacity for

rotations in the plane normal to the chiral algebra.
18We expect the resulting chiral algebra is the chiral algebra at generic points on the resulting conformal

manifold.
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with the exception of the overall SU(2)R Schur operator that is preserved along the con-

formal manifold

J11
++̇ = O++̇ −

3
∑

a=1

J11
a++̇ .

Next, at O(q3), we have the following Schur generators for g = 0

O+++ = fIJKλ
1I
+ λ1J

+ λ1K
+ ∈ D̄1(1,0) , O+̇++ = fIJKλ

1I
+ λ1J

+ λ̃K
2+̇ ∈ Ĉ 1

2
( 1
2
,0) ,

O+̇+̇+ = fIJKλ̃
I
2+̇λ̃

J
2+̇λ

1K
+ ∈ Ĉ 1

2
(0, 1

2
) , O+̇+̇+̇ = fIJKλ̃

I
2+̇λ̃

J
2+̇λ̃

K
2+̇ ∈ D1(0,1) ,

O++a = fIJKλ
1I
+ λ1J

+ µK
a ∈ D̄ 3

2
( 1
2
,0) , O+̇+a = fIJKλ

1I
+ λ̃J

2+̇µ
K
a ∈ Ĉ1(0,0) ,

O+̇+̇a = fIJKλ̃
I
2+̇λ̃

J
2+̇µ

K
a ∈ D 3

2
(0, 1

2
) , O+ab = fIJKλ

1I
+ µJ

aµ
K
b ∈ D2(0,0) ,

O+̇ab = fIJKλ̃
I
2+̇µ

J
aµ

K
b ∈ D̄2(0,0) , Oabc = fIJKµ

I
aµ

J
b µ

K
c ∈ B̂3 , (5.15)

O+̇+++ = λ1I
+D++̇λ

1I
+ ∈ Ĉ0(1,0) , O+̇+̇++ = λ1I

+D++̇λ̃2+̇I ∈ Ĉ0( 1
2
, 1
2
) ,

O+̇+̇+̇+ = λ̃I
2+̇D++̇λ̃2+̇I ∈ Ĉ0(0,1) , O+̇+[ab] = µI

[aD++̇µb]I ∈ Ĉ1(0,0) ,

O+̇++a = λ1I
+D++̇µaI ∈ Ĉ 1

2
( 1
2
,0) , O+̇+̇+a = λ̃I

2+̇D++̇µaI ∈ Ĉ 1

2
(0, 1

2
) ,

where fIJK are the SU(2) structure constants. We see that anti-symmetry implies that

Oabc ∼ O123. Similarly, the O+ab and O+̇ab operators are anti-symmetric in a and b. As

a result, there are sixteen fermionic and sixteen bosonic Schur generators at g = 0. It is

straightforward to check that when we turn on a small but non-zero gauge coupling, all of

these operators pair up via

Ĉ1(0,0) ⊕D2(0,0) ⊕ D̄2(0,0) ⊕ B̂3 ,

Ĉ0(1,0) ⊕ Ĉ 1

2
( 1
2
,0) ⊕ D̄1(1,0) ⊕ D̄ 3

2
( 1
2
,0) ,

Ĉ0(0,1) ⊕ Ĉ 1

2
(0, 1

2
) ⊕D1(0,1) ⊕D 3

2
(0, 1

2
) , (5.16)

Ĉ 1

2
( 1
2
,0) ⊕ Ĉ1(0,0) ⊕ D̄ 3

2
( 1
2
,0) ⊕ D̄2(0,0) ,

Ĉ 1

2
(0, 1

2
) ⊕ Ĉ1(0,0) ⊕D 3

2
(0, 1

2
) ⊕D2(0,0) ,

Ĉ0( 1
2
, 1
2
) ⊕ Ĉ 1

2
(0, 1

2
) ⊕ Ĉ 1

2
( 1
2
,0) ⊕ Ĉ1(0,0) .

In particular, there are no new chiral algebra generators at O(q3) for small but non-zero

gauge coupling, and the only contribution to the Schur index at this order comes from the

descendant, ∂++̇J
11
++̇

.
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Finally, let us discuss the O(q4) Schur generators at g = 0

O+̇+̇+++ = fIJKλ̃
I
2+̇D++̇λ

1J
+ λ1K

+ ∈ Ĉ 1

2
(1, 1

2
) ,O+++̇+̇+̇ = fIJKλ

1I
+D++̇λ̃

J
2+̇λ̃

K
2+̇ ∈ Ĉ 1

2
( 1
2
,1) ,

O+̇+̇+̇+++ = λ1I
+D2

++̇λ̃2+̇I ∈ Ĉ0(1,1) , O++++̇+̇a = D2
++̇µ

I
aλ

1
+I ∈ Ĉ 1

2
(1, 1

2
) ,

O+̇+̇+̇++a = D2
++̇λ̃

I
2+̇µaI ∈ Ĉ 1

2
( 1
2
,1) , O+̇+++a = fIJKD++̇λ

1I
+ λ1J

+ µK
a ∈ Ĉ1(1,0) , (5.17)

O++̇+̇+̇a = fIJKD++̇λ̃
I
2+̇λ̃

J
2+̇µ

K
a ∈ Ĉ1(0,1) , O+̇+̇++a = fIJKD++̇λ

1I
+ λ̃J

2+̇µ
K
a ,

O′
+̇+̇++a = fIJKλ

1I
+D++̇λ̃

J
2+̇µ

K
a ∈ Ĉ1( 1

2
, 1
2
) , O+++̇+̇ab = D2

++̇µ
I
aµbI ∈ Ĉ1( 1

2
, 1
2
) ,

O+++̇ab = fIJKλ
1I
+ µJ

aD++̇µ
K
b ∈ Ĉ 3

2
( 1
2
,0) , O+̇+̇+ab = fIJKλ̃

I
2+̇µ

J
aD++̇µ

K
b ∈ Ĉ 3

2
(0, 1

2
) ,

O++̇abc = fIJKµ
I
aµ

J
bD++̇µ

K
c ∈ Ĉ2(0,0) .

Naively, we have twenty-six fermionic generators and twenty-seven bosonic generators.

However, six bosonic and six fermionic constraints come from applying (4.15) of [5] in each

(A1, A3) sector. In particular, we have

J11
a++̇Oab = J11

a++̇Tr[µaµb] =
1√
2
fABCµ

A
b µ

B
a D++̇µ

C
a ∼ O++̇baa ,

J11
a++̇O+a = J11

a++̇Tr[µaλ
1
+] =

1√
2
fABC(λ

1
+)

AµB
a D++̇µ

C
a ∼ O+++̇aa , (5.18)

J11
a++̇O+̇a = J11

a++̇Tr[µaλ̃2+̇] =
1√
2
fABC(λ̃2+̇)

AµB
a D++̇µ

C
a ∼ O+̇+̇+aa .

Note that the case a = b is not a new constraint (indeed this follows from the Joseph

ideal constraints, Oaa = 0). The final three bosonic relations can be seen in the form of

the Macdonald index in [5]. In particular, according to table 1 of [5], there is only one

singlet of SU(2) at O(q2t2). The Joseph ideal constraint eliminates ∂2
++̇

(µI
aµaI), which

leaves D2
++̇

µI
aµaI = O+̇+̇++aa, and (J11

a++̇
)2. Therefore, we must have three relations (one

in each (A1, A3) sector) of the form

κ(J11
a++̇)

2 = O+̇+̇++aa , (5.19)

where κ is a constant. As a result, we are left with twenty fermionic generators and eighteen

bosonic generators. When we turn on the gauge coupling, all the bosonic generators pair

up with eighteen fermions via

Ĉ0(1,1) ⊕ Ĉ 1

2
(1, 1

2
) ⊕ Ĉ 1

2
( 1
2
,1) ⊕ Ĉ1( 1

2
, 1
2
) ,

Ĉ 1

2
(1, 1

2
) ⊕ Ĉ1(1,0) ⊕ Ĉ1( 1

2
, 1
2
) ⊕ Ĉ 3

2
( 1
2
,0) ,

Ĉ 1

2
( 1
2
,1) ⊕ Ĉ1(0,1) ⊕ Ĉ1( 1

2
, 1
2
) ⊕ Ĉ 3

2
(0, 1

2
) , (5.20)

Ĉ1( 1
2
, 1
2
) ⊕ Ĉ 3

2
( 1
2
,0) ⊕ Ĉ 3

2
(0, 1

2
) ⊕ Ĉ2(0,0) .
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It is easy to check that only one linear combination of the O+++̇ab and one linear com-

bination of the O+̇+̇+ab remain un-lifted. These operators are precisely the generators of

type Ĉ 3

2
( 1
2
,0)⊕Ĉ 3

2
(0, 1

2
) we are looking for (they cancel the O(q4) contributions from the stress

tensor multiplet: ∂2
++̇

J11
++̇

and (J11
++̇

)2).

6. Discussion and Conclusion

In this paper, we found new connections between the conformal manifold and the moduli

space of vacua. We also saw that N = 2 theories with a ≥ c must have additional fermionic

symmetries in two dimensions (as long as the theories we study satisfy the Cardy-like scaling

in (1.2) and [14]). Finally, we demonstrated that the chiral ring—specifically the subring

that controls exactly marginal deformations—and the chiral algebra are interrelated (in

the sense that the existence of an exactly marginal gauge coupling imposes (1.1) on the

resulting chiral algebras). We suspect that there is a deeper connection and therefore

suggest the following open problems:

• All examples of chiral algebras arising from conformal manifolds seem to admit non-

trivial actions of certain Lie algebras. In the case of the Lagrangian conformal theories

this is the manifest flavor symmetry in the four-dimensional description. On the other

hand, in our theory, T̂ , we had no flavor symmetry in four dimensions. The two

dimensional sl(2) symmetry instead arose from the non-trivial action of the rotational

symmetry transverse to the chiral algebra plane. It would clearly be desirable to have

an explanation (or refutation) of this apparently general phenomenon.

• It follows from our work that if there is an N = 2 theory (satisfying the usual Cardy-

like scaling of (1.2) and [14]) with |χ| < 3 and an exactly marginal deformation, then

that marginal deformation would be exotic: it would not have an interpretation as a

gauge coupling.

• It would be interesting to understand if the equation ∂2Φ±+αTΦ± = 0 when acting on

fermionic sl(2) doublets, Φ±, in chiral algebras arising from four dimensions is enough

to guarantee the existence of an exactly marginal deformation in the associated four-

dimensional theory. This statement holds in the A(6) theory we studied and also in

the case of the chiral algebra corresponding to the free vector multiplet.

• Identify the natural mathematical structures associated with chiral algebras coming

from conformal manifolds in four dimensions.
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