
Breakout Local Search for the

Multi-Objective Gate Allocation Problem

Una Benlic a,c,∗, Edmund K. Burke a, John R. Woodward b

aSchool of Electronic Engineering and Computer Science, Queen Mary University
of London, London, email: {u.benlic,e.burke}@qmul.ac.uk

bCHORDS Research Group, University of Stirling, Stirling FK9 4LA, email:
jrw@cs.stir.ac.uk

cUniversity of Electronic Science and Technology of China, North Jianshe Road,
Sichuan 610054

Abstract

The problem of assigning gates to arriving and departing flights is one of the
most important problems in airport operations. We take into account the real multi-
criteria nature of the problem by optimizing a total of nine gate allocation objectives
that are oriented both on convenience for airport/airline services and passenger
comfort. As far as we are aware, this is the largest number of objectives jointly
optimized in the GAP literature. Given the complexity of the considered problem, we
propose a heuristic approach based on the Breakout Local Search (BLS) framework.
BLS is a recent variant of the Iterated Local Search (ILS) with a particular focus on
the perturbation strategy. Based on some relevant information on search history, it
tries to introduce an appropriate degree of diversification by determining adaptively
the number and type of moves for the next perturbation phase. Moreover, we use
a new memory-based greedy constructive heuristic to generate a starting point for
BLS. Benchmark instances used for our experiments and comparisons are based on
information provided by Manchester Airport.

Keywords: Gate allocation; airports; breakout local search; greedy constructive
heuristic; adaptive diversification; metaheuristics.

1 Introduction

Due to the increase in the volume of air traffic, techniques for effective man-
agement of airport resources have gained an ever-increasing interest for both

∗ Corresponding author.

Preprint submitted to Elsevier 27 September 2016

stakeholders in airports and academics. There are several major classes of de-
cisions which need to be made by airline and airport management: ground
operations scheduling, aircraft sequencing, crew assignment, deicing schedul-
ing, etc. Nevertheless, one of the most important and complex airport related
problems is the allocation of aircraft to gates. The term gate is often used
in the literature to refer to terminal stands or off-pier stands on the apron,
while we use the term aircraft to designate the arrival of an aircraft until the
following departure of the same aircraft.

The gate allocation problem (GAP) consists of finding an allocation of aircraft
(or rather of aircraft serving flights) to a limited number of gates (i.e., stands),
provided that a set of hard and soft constraints is satisfied. Hard constraints
must be strictly satisfied. If at least one of these constraints is violated, the
solution is infeasible. The inherent hard constraints to GAP are that one gate
can only accommodate a single aircraft at a time, and that two aircraft with
overlapping times must not be allocated to the same gate. The assigning of
each operation to a compatible gate has recently proven to be NP-complete
[16]. Some additional hard constraints may also need to be considered, such as
the space restriction related to the size of available gates and aircraft, and the
shadowing restriction [12,13]. Recently, some effort has been made in [27] to
integrate gate allocation with the ground movement problem by introducing a
new constraint which limits the number of aircraft that are expected to block
each other while manoeuvring in the area close to the gates.

Soft constraints are used to define the objective function to be optimized, and
can be classified into passenger-oriented and airport-oriented. Different air-
ports prioritize different objectives. Some airports give higher priority to the
maximization of passenger comfort while others prioritize airport-oriented ob-
jectives. Moreover, conflicting objectives are very common. The vast majority
of research on GAP focuses on minimization of the total passenger walking
distance [1,11,17,26] to improve customer satisfaction. Optimization of this
GAP objective is NP-hard because of its relationship to the classic quadratic
assignment problem [28]. Other objectives considered in the literature are the
increase of schedule robustness [4,8,27,29], the minimization of aircraft tow-
ing activities [12,13,21,29], the maximization of total aircraft-gate preferences
[12,27,29], effective usage of gate space [27], minimization of unassigned air-
craft [11,22,29], the minimization of taxi delay caused by push-back and taxi
blocking [20,19], etc.

The earliest literature mostly considered the gate allocation problem as a
single objective problem, and focused mainly on different passenger comfort
objectives. Recent research considers a more realistic representation of GAP
by taking into account a trade-off between three or more conflicting objec-
tives. For instance, Dorndorf et al. [12] omitted the walking distance objective
and put focus on the following three objectives: maximization of the total air-

2

craft to gate preferences, minimization of the number of towed aircraft, and
minimization of the deviation form the initial allocation. In [13], the authors
consider four objectives: the maximization of the total assigned preference
score, minimization of the number of unassigned aircraft, minimization of the
number of tows, and also maximization of the schedule robustness with re-
spect to aircraft delays. In a recent work, Kumar and Bierlaire [29] present
mathematical formulations of different types of business and operational con-
straints, some of which have not been considered before in the GAP literature.
Moreover, the authors jointly optimize a total of six objectives encountered at
the Chicago O’Hare Airport: minimization of the cost for allocating aircraft to
unfavorable gates, minimization of the towing activities, minimization of un-
gated aircraft, maximization of connection revenue, zone gate maximization,
and maximization of the schedule robustness.

Given this wide range of GAP formulations and models, a variety of opti-
mization techniques, both exact and heuristic, have been used. The choice
of method depends on the GAP optimization model, i.e., the objectives and
constraints considered. Earlier exact methods [1,4,31] are generaly based on
the branch-and-bound framework and its variations. Several recent exact ap-
proaches are based on MIP formulations using standard solvers [16,25]. In
particular, Guépet et al. show how a natural MIP formulation can be strength-
ened with clique constraints, leading to significantly reduced MIP sizes and
solution times below a minute for instances with up to 700 operations per day.
In their model, they take into account two objectives, the maximization of the
number of passengers/aircraft at contact stands and minimization of the num-
ber of towing movements, while respecting a set of operational and commercial
requirements. More recently, Yu et al. [32] considered a GAP with three objec-
tives: robustness, tow cost and transfer distance. To make the problem solv-
able, they transformed the quadratic model into an equivalent MIP model, and
proposed a Variable Reduce Neighborhood Search (VRNS) algorithm which is
a variant of a MIP-based heuristic for NP-hard models. Given the complexity
of GAP formulations, many researchers use heuristic/metaheuristic methods
including tabu search [7,8,30], simulated annealing [7,11], genetic algorithms
[5,7,18,15], and hybrids [7,11,22]. This is often the case for GAP formulations
entailing a variant of the passenger walking distance objective [11,17,26,30]
which is NP-hard given its quadratic expression. For a detailed survey of GAP
state-of-art, the interested reader is referred to [6,12].

In this paper, we take into account the real multi-criteria nature of the GAP
problem by optimizing a linear combination of nine objectives that are ori-
ented both on convenience for airport/airline services and passenger comfort.
As far as we are aware, this is the largest number of objectives jointly opti-
mized in the GAP literature. These can be grouped into four main categories:
(i) idle times between conflicting aircraft, (ii) flight/aircraft to gate preference,
(iii) tows and (iv) passenger walking distances. Given the complexity of our

3

GAP formulation, we propose a Breakout Local Search (BLS) algorithm for
this problem. BLS is a recent variation of Iterated Local Search (ILS) [23]
which puts particular focus on the importance of the diversification phase.
For each perturbation phase, it tries to introduce the most suitable degree
of diversification into the search by determining dynamically the number of
perturbation moves (i.e., the jump magnitude) and by adaptively choosing
between two types of perturbations of different intensities. This is achieved
through the use of information from the search history. In addition to GAP,
BLS has been shown to provide competitive performance for several well-
studied combinatorial problems, e.g., the maximum cut [2]. We further pro-
pose a new memory-based greedy constructive heuristic to generate a starting
point for BLS. Benchmark instances used for our experiments and compar-
isons are based on information provided by Manchester Airport. Experimental
comparisons show the benefit of BLS for GAP.

The paper is organized as follows. The problem description and formulation
are presented in Section 2. Section 3 details the proposed BLS approach and
the new greedy constructive procedure for GAP. Experimental results and
comparisons on data from Manchester Airport are provided in Section 4. Fi-
nally, conclusions are presented in Section 5.

2 Gate allocation considering ground movement

The gate allocation problem considered in this paper consists of assigning a
certain number of aircraft activities to a limited number of gates provided that
a set of hard constraints is satisfied, while minimizing a linear combination of
nine GA objectives that can be grouped into four categories. Before formally
presenting GAP, we first provide the problem description and define the terms
used throughout the paper.

2.1 Problem description

As mentioned previously, we use the term aircraft to refer to the arrival of an
aircraft until the following departure of the same aircraft. Beside arrival and
departure times, each aircraft is associated with additional specifications: the
origin and destination of a aircraft, the type of aircraft, the aircraft registration
number, the number of passengers and transferring passengers, the airline
operating the aircraft, etc. We adopt the term gate to refer to both terminal
stands and remote stands. A terminal stand is an area adjacent to a terminal
building where an aircraft can easily be loaded and unloaded, while a remote
stand is an area which is not attached to a terminal where an aircraft can

4

G1 G2 G3 G4L

F1

F2

F3

F4

G4RG4F

Fig. 1. An example where a large gate G4 is used as two smaller gates G4L and
G4R that can accommodate two small aircraft.

park. The remote stands are used when all the terminal stands are occupied
or if requested by airline operator.

It is uncommon for every aircraft to be able to use every gate. A gate might
be too small for a given aircraft type or it may not have appropriate facilities
to accommodate the aircraft. In addition, an aircraft cannot be allocated to a
gate with inappropriate security facilities, e.g., domestic flights do not require
the same level of security measures as international flights. In some cases, two
adjacent gates cannot be used simultaneously, i.e., usage of one gate blocks
usage of the other gate. More precisely, a large gate can sometimes be used
as either two smaller gates (for two smaller aircraft) or as one gate for a large
aircraft. In the literature, this type of constraint is referred to as a shadowing
restriction. Figure 1 shows an example where a large gate G4 is modeled as
three gates: G4F (full size gate), G4L (the left side of gate G4) and G4R (the
right side of G4). The two gates G4L and G4R could be used simultaneously
by two small aircraft F2 and F4, but neither G4L and G4R could be used if
there is a large aircraft F3 parked at G4F .

G1 G2 G3

F1

F2

Taxiway

G4

(a) Push-back bloking

G1 G2 G3

F1F2

Taxiway

G4

(b) Taxi blocking

Fig. 2. Conflicts near gates

One crucial issue of gate allocation is that some aircraft stay at the airport
for an extended period of time, e.g., they arrive early in the morning and
leave late in the evening. An aircraft is considered as a long-stay aircraft if the
estimated time of its stay at the airport is longer than a fixed time limit. In the
case of many such long-stay aircraft, the number of available terminal stands
quickly decreases. To avoid this situation, gate planners have the possibility of
splitting the stay of a long-stay aircraft between two or more gates, and towing
the aircraft to a remote stand. In our formulation of GAP, we assume that
an aircraft may need to be towed to another stand (generally a remote one),

5

GR1

GR2

GR3

GR4

GR5

GR6

GR7

GR8

Fig. 3. Taxiways and groups of gates at Manchester Airport

which incurs a certain penalty. We also assume that a long-stay aircraft may
not need to change gates if the airport is not particularly busy at the given
time. As explained in the next section, the stay of each long-stay aircraft is
thus split into three time intervals or parts that we simply refer to as aircraft
activities. We distinguish between four types of aircraft activities:

Arrival: After the aircraft lands, it stays at the gate for not less than a fixed
time limit (depending on the time required to unload), after which it might
be towed to some other gate if required.

Tow: During this part, the aircraft resides on a gate other than that of its
arrival and departure for at least a fixed period of time.

Departure: The aircraft is taken to its departure gate, for at least a fixed
period of time before its departure.

Arrival/Departure: If an aircraft needs to stay at airport for less than a
given time limit, we consider it as a single activity.

In the best case, all parts (i.e., aircraft activities) are allocated together to one
gate. In the worst case, all aircraft activities are assigned to different gates.

Another major airport operation problem is the routing of departure aircraft
from gates to runways and arrival aircraft from runways to gates. There are
usually several taxiways that can be used to get from one point to another, and
the chosen taxiway is typically the shortest one without conflicts. An example
of gates and taxiways around the gates in provided in Fig. 3.

Motivated by the work presented in [27], we consider the expected traffic at
taxiways around the gates in order to reduce aircraft delays due to push-back
and taxiway blockages. Push-back blocking arises when a departing aircraft
is ready to leave a gate but is unable to since another aircraft is blocking
its push-back trajectory. This form of blockage is only common in the areas

6

close to gates. An example of push-back blocking is illustrated in Fig. 2a,
where aircraft F1 is pushing back into the path of aircraft F2. One of these
two aircraft needs to wait until the other has completed the manoeuver. Taxi
blocking arises either when two aircraft are going in opposite directions along
a taxiway as shown in Fig. 2b, or when two taxiways cross and two aircraft
happen to be at the crossing point at the same time. Taxi blocking may not
occur only around the gates but also further away from the gates on the
way to/from the runway. It is particularly common where multiple taxiways
converge. Our approach can only handle push-back and taxiway blockages in
the areas around the gates. To identify possible blockages, we divide gates
into groups as shown in Fig. 3. A gate group consists of a contiguous subset
of gates that are reached using similar routes. These groups are not disjoint
since one gate can we part of at most two gate groups. One of the objectives
considered in our work is to maximize the idle time between activities that
arrive (depart) to (from) gates that are from the same gate group.

2.2 Gate allocation problem formulation

We present a formulation of GAP considering ground movement around the
gates. To introduce the hard and soft constraints, we state:

• the set F of aircraft;
• the set G of gates;
• the set SH of neighbouring gate pairs that cannot be used simultaneously

due to shadow restriction;
• the set GR of gate subsets belonging to the same gate group;
• the set A of all aircraft activities obtained by splitting all long-stay aircraft
∀f ∈ F , (dep(f) − arr(f)) > t (where t = 240 minutes) into three time
intervals (i.e., activities). In our experiments, the duration d1 of the first
(arrival) activity of a long-stay aircraft is set to 60 minutes. After this period,
the aircraft can be towed to another stand (generally a remote stand). The
duration d3 of the third (departure) activity depends on the aircraft size
(aircraft size ranges from 1 to 12 according to the wingspan, 12 being the
maximal aircraft size): d3 = 60 for smaller aircraft (of size ≤ 5); d3 = 75
for medium aircraft (of size six); and d3 = 105 for large aircraft (of size
≤ 12). The duration d2 of the second activity of a long-stay aircraft f is
thus d2 = dep(f) − arr(f) − d1 − d3. An aircraft that stays at airport for
240 minutes or less is considered as a single activity (arrival/departure). An
example of splitting aircraft into aircraft activities is provided in Fig. 4.

We take xa,g = 1 to denote that activity a ∈ A is assigned to gate g ∈ G, and
otherwise xa,g = 0. Constants and variables are presented in Table 1, where
the constants are predefined by the problem instance or regulated by airport

7

Table 1
Constants and variables used in the formulation

Constant Description

arr(f) the expected arrival time of aircraft f ∈ F
dep(f) the expected departure time of aircraft f ∈ F
bgn(a) the begin time of activity a ∈ A
end(a) the end time of activity a ∈ A
A(g) the subset of activities that can be allocated to gate g ∈ G
A(f) the set of three activities of a long-stay aircraft f ∈ F , A(f) = {a1, a2, a3} (such that

bgn(a1) = arr(f), end(a3) = dep(f)) or a single activity of a short-stay aircraft

SH(g) the subset of gates that cannot be used at the same time as gate g ∈ G due to shadowing
restriction

GR(g) the set of gates that belong to the same gate group as g ∈ G
fg(a) number of feasible gates for activity a ∈ A, i.e., fg(a) = |{g : a ∈ A(g)}|
isRS(g) takes the value 1 if g ∈ G is a remote stand, and 0 otherwise

typ(a) takes the value 1 if a ∈ A(f), bgn(a) = arr(f) and end(a) = dep(f); 2 if a ∈ A(f), bgn(a) =
arr(f) and end(a) 6= dep(f); 3 if a ∈ A(f), bgn(a) 6= arr(f) and end(a) = dep(f); and 4
otherwise

pax arr(a) total number of passengers associated to activity a ∈ A(f) of f ∈ F , such that bgn(a) =
arr(f)

pax dep(a) total number of passengers associated to activity a ∈ A(f) of f ∈ F , such that end(a) =
dep(f)

ntx(a) total number of transfer passengers associated to activity a ∈ A(f) of f ∈ F , such that
bgn(a) = arr(f)

tx(a1, a2) number of passengers from aircraft activity a1 ∈ A(f1), bgn(a1) = arr(f1) transferring to
aircraft activity a2 ∈ A(f2), end(a2) = dep(f2).

gtg(g1, g2) estimated time required for passengers to transit from gate g1 to gate g2
oper(a) airline operator of activity a ∈ A
proper(a),g preference rank of airline operating activity a ∈ A for gate g ∈ G (based upon statistical

data analysis)

nproper(a) number of distinct preference ranks of airline operating activity a ∈ A
Variable Description

ALa takes the value 1 if two consecutive activities a and a′ of the same aircraft are not allocated
to the same gate (i.e., if ∃f ∈ F, a ∈ A(f) and a′ ∈ A(f); bgn(a) = end(a′); ∃g ∈ G, xa,g = 1
and xa′,g = 0), or if a ∈ A(f) is an arrival activity, i.e., arr(f) = bgn(a). Otherwise, ALa = 0

ARa takes the value 1 if two consecutive activities a and a′ of the same aircraft are not allocated
to the same gate (i.e., if ∃f ∈ F, a ∈ A(f) and a′ ∈ A(f); end(a) = bgn(a′); ∃g ∈ G, xa,g = 1
and xa′,g = 0), or if a ∈ A(f) is a departure activity, i.e., dep(f) = end(a). Otherwise,
ARa = 0

p(a, g) the immediate previous activity of activity a ∈ A at g ∈ G, i.e.,
p(a, g) = a′ ∈ A : ∃g ∈ G, xa,g = 1 and xa′,g = 1 and maxend(a′):end(a′)≤bgn(a). If a is the
first activity allocated to g, p(a, g) = −1

n(a, g) the immediate next activity of activity a ∈ A at gate g ∈ G, i.e.,
n(a, g) = a′ ∈ A : ∃g ∈ G, xa,g = 1 and xa′,g = 1 and minbgn(a′):bgn(a′)≥end(a). If a is the
last activity allocated to g, n(a, g) = −1

management.

We consider the following four hard constraints H1 to H4 that are inherent to
GAP:

H1. Restricted gates: An activity a ∈ A can only be allocated to a subset
of possible gates.

xa,g = 0,∀a /∈ A(g), ∀g ∈ G

8

In this work, we only consider gate restrictions due to gate size as well as
exceptions when a gate of larger size cannot accommodate an aircraft of a
smaller type. We do not consider gate restrictions due to security requirements
since some airports do not require this constraint, i.e., a gate can accommodate
an aircraft regardless of its origin and destination. However, gate restrictions
due to security requirements can easily be integrated in our formulation.

H2. Single gate per activity: Each activity a ∈ A must be assigned to
exactly one gate.

|G|+1∑
g=1

xa,g = 1, ∀a ∈ 1, ..., |A|

A “dummy gate” (gate |G| + 1) is included in this constraint to represent the
tarmac where aircraft arrive at when no gates are available.

H3. Activity overlap restriction: No two activities can be allocated to the
same gate at the same time.

xa1,gxa2,g(end(a2)− bgn(a1))(end(a1)− bgn(a2)) ≤ 1,

∀g ∈ G,∀a1, a2 ∈ A(g), a1 6= a2

H4. Shadow restriction: Any two adjacent gates (g1, g2) ∈ SH from the
shadowing set cannot be used simultaneously.

xa1,g1xa2,g2(end(a2)− bgn(a1))(end(a1)− bgn(a2)) ≤ 1,

∀(g1, g2) ∈ SH,∀a1 ∈ A(g1),∀a2 ∈ A(g2), a1 6= a2

Soft constraints are used to define the objective function to be optimized, and
are associated to an activity-gate pair. We group the problem soft constraints
into the following four classes:

(1) Idle times between conflicting aircraft: From this category, we take
into account three soft constraints, with the objective to maximize idle times
between aircraft that may be in conflict - (i) at the same gate (constraint S1),
(ii) at gates for which a shadowing constraint applies (constraint S2), and (iii)
at gates within the same gate group (constraint S3).

9

Function ca,g,1 assigns a penalty for violating a constraint of type S1. Given an
activity a ∈ A(f) of aircraft f allocated to a gate g, ca,g,1 assigns a positive cost
to a considering the idle time L1(a, g) between a and its immediate previous
activity p(a, g) at g and/or the idle time R1(a, g) between a and its immediate
next activity n(a, g) at g, provided that p(a, g) and/or n(a, g) are not part of
the same aircraft f , i.e., p(a, g), n(a, g) /∈ A(f).

ca,g,1 =


z(L1(a, g)) + z(R1(a, g)), if (ALa = 1 ∧ ARa = 1)

z(L1(a, g)), if (ALa = 1 ∧ ARa = 0)

z(R1(a, g)), if (ALa = 0 ∧ ARa = 1)

0 otherwise



L1(a, g) = bgn(a)− end(p(a, g))

R1(a, g) = bgn(n(a, g))− end(a)

To value the idle time, we adopt a cost function z(time) proposed in [9] which
is based on the arctangent, where time is the idle time. This function reflects
the appreciation when any improvement is made for small idle times, whereas
for large idle times any extra increase is of minor importance. In other words,
it penalizes very small idle times with very high cost while mildly penalizing
rather large idle times. The objective of ca,g,1 is thus to minimize the value
returned by z(time).

z(time) = arctan(0.21(5− time)) +
π

2
(1)

In case if time = inf (inf is a very large number), z(time) returns a value
close to 0.

Similarly, the penalty function ca,g,2 allocates a positive cost for violation of
a constraint S2. More precisely, it associates a cost to each activity a at gate
g with respect to the minimal idle times L2(a, g) and/or R2(a, g) between a
and activities allocated to g′ ∈ SH(g), provided that SH(g) 6= ∅.

ca,g,2 =


0, if (ALa = 0 ∧ ARa = 0) ∨ (SH(g) = ∅)

z(L2(a, g)) + z(R2(a, g)), if (ALa = 1 ∧ ARa = 1)

z(L2(a, g)), if (ALa = 1 ∧ ARa = 0)

z(R2(a, g)), if (ALa = 0 ∧ ARa = 1)



10

L2(a, g) = min{inf,min{(bgn(a)− end(a′)) : ∀g′ ∈ SH(g), a′ ∈ A, xa′,g′ = 1, end(a′) < bgn(a)}}
R2(a, g) = min{inf,min{(bgn(a′′)− end(a)) : ∀g′ ∈ SH(g), a′′ ∈ A, xa′′,g = 1, bgn(a′′) > end(a)}}

The aim is once again to minimize the cost function z(time) (see Eq. 1).

Similar objectives to S1 and S2, with the purpose to increase solution robust-
ness, were considered in [4,13,10,29,22,27].

Finally, the purpose of S3 is to maximize the amount of idle time between
aircraft activities which can be in conflict (push-back or taxi blocking) if as-
signed to the same gate group. The penalty function ca,g,3 assigns a penalty to
each activity a at gate g by considering the minimal idle times L2(a, g) and/or
R2(a, g) between a and activities allocated to gates g′ ∈ GR(g).

ca,g,3 =


z(L3(a, g)) + z(R3(a, g)), if (ALa = 1 ∧ ARa = 1)

z(L3(a, g)), if (ALa = 1 ∧ ARa = 0)

z(R3(a, g)), if (ALa = 0 ∧ ARa = 1)

0, otherwise



L3(a, g) = min{inf, {min(|bgn(a)− bgn(a′)| ×ALa′ , |bgn(a)− end(a′)| ×ARa′) : ∀g′ ∈ GR(g), a′ ∈ A, xa′,g′ = 1}}
R3(a, g) = min{inf, {min(|end(a)− bgn(a′)| ×ALa′ , |end(a)− end(a′)| ×ARa′) : ∀g′ ∈ GR(g), a′ ∈ A, xa′,g = 1}}

To valorize the idle time returned by L3(a, g) and/or R3(a, g), we once again
use the cost function z(time) from Eq. 1.

In [27], the authors introduce for the first time a hard constraint which limits
the number of aircraft which are expected to block each other if assigned
to gates from the same group. Furthermore, the minimization of taxi delay,
caused by push-back and taxi blocking, has been considered in [20,19].

(2) Flight/aircraft to gate preference: This category considers four types
of soft constraints whose objectives are (i) to maximize the usage of gate space
(constraint S4), (ii) to maximize airline preferences for a particular gate (con-
straint S5), (iii) to minimize the number of tows to terminal gates (constraint
S6), and (iv) to minimize the number of passengers arriving or departing from
remote gates (constraint S7).

The aim of S4 is to avoid allocating unnecessarily large gates since these have
more flexibility for use by aircraft which have to be moved on the day of
operations. Ideally, the aircraft size of activity a allocated to gate g should

11

be equal to the maximal size maxSize that g can accommodate. Otherwise,
ca,g,4 associates a penalty depending on the difference between maxSize and
the size of aircraft serving activity a. The larger this difference is, the higher
is the penalty.

ca,g,4 = (maxSize(g)− size(a)) ·maxSize(g)

Effective usage of gate space has previously been considered in [27].

The preferences of airlines for particular gates are determined based upon a
statistical data analysis which examines how often particular gates have been
used by particular airlines. The preference rank proper(a),g indicates that gate g
is the prthoper(a),g most frequently used gate by oper(a), and can take the value
from 0 to nproper(a)− 1. If two gates are used by oper(a) for the same number
of times, we assign them the same rank. The penalty function ca,g,5 associated
to S5 can be expressed as

ca,g,5 =
proper(a),g

nproper(a) − 1

Maximization of airline-gate preferences was also addressed in [12,13,29,27].

Given that a common practice at airports is to use remote stands for towed
aircraft, we further take into account constraints S6 with the aim to reduce
the number of towed aircraft at terminal gates. However, note that towing an
aircraft to a terminal stand may in some cases reduce the possibility of traffic
congestions on the way to a remote stand. For this reason, we consider towing
to a terminal stand as a soft constraint and associate a positive penalty to a
tow activity a if the corresponding aircraft is parked at a terminal stand g.

ca,g,6 =

{
1, if (typ(a) = 4 ∧ ALa = 1 ∧ ARa = 1 ∧ isRS(g) = 0)

0, otherwise

}

Finally, the purpose of S7 is to reduce the number of passengers that need to
take a bus or walk to and from remote stands. For each arrival and departure
activity a allocated to a gate g, the penalty function ca,g,8 assigns a cost which
depends on the total number of passengers that need to load or unload at
a remote stand, where maxPax is the maximal total number of passengers
at any flight. Moreover, the penalty associated to an arrival aircraft activity

12

depends on the number of transfer passengers that need to take a bus or walk
to the terminal building, where maxTxp is the maximal number of transfer
passengers at any flight.

ca,g,7 =



pax arr(a)
maxPax

+ ntx(a)
maxTxp

+ pax dep(a)
maxPax

, if (isRS(g) = 1 ∧ typ(a) = 1)
pax arr(a)
maxPax

+ ntx(a)
maxTxp

, if (isRS(g) = 1 ∧ typ(a) = 2)
pax dep(a)
maxPax

, if (isRS(g) = 1 ∧ typ(a) = 3)

0, otherwise



(3) Tows: The objective associated to soft constraint S8 is the minimization
of the number of tow (park) activities and the number of gate changes. The
function ca,g,8 pushes activities of the same long-stay aircraft f ∈ F , |A(f)| > 1
to be allocated to the same gate g by assigning a penalty to activity a ∈ A(f)
if activities a′ ∈ A(f), end(a′) = bgn(a) and/or a′′ ∈ A(f), end(a) = bgn(a′′)
are not allocated to g.

ca,g,8 =

{
2, if (a, a′, a′′ ∈ A(f)) ∧ (bgn(a) = end(a′)) ∧ (end(a) = bgn(a′′)) ∧ (xa′,g = 0) ∧ (xa′′,g = 0)

1, if (a, a′, a′′ ∈ A(f)) ∧ (bgn(a) = end(a′)) ∧ (end(a) = bgn(a′′)) ∧ ((xa′,g = 1)⊕ (xa′′,g = 1))

0, otherwise

}

Minimization of the number of towing activities is also considered in [12,13,16,21,29].

(4) Passenger walking distances: We aim to reduce the possibility of pas-
senger missing a connecting flight by minimizing the estimated time required
for transfer passengers to go from one gate to another (the corresponding soft
constraint is labeled as S9). The penalty function ca1,a2,g1,g2 assigns a positive
cost to the arrival and the departure activities a1 and a2 allocated to gates g1

and g2 respectively in terms of the time gtg(g1, g2) needed to go from gate g1 to
g2, the number of passengers transferring from a1 to a2, and the time difference
between the arrival and connecting flight activities. MaxGtGT and maxTxp
refer respectively to the maximal time needed to go from one gate to another,
and the maximal number of transfer passengers on any flight. The function z
from Eq. 1 ensures a very high penalty for short times between connections,
while only mildly penalizing long times between connections. Transfer pas-
sengers that have more than 120 minutes between a connecting flight are not
taken into account.

13

ca1,g1,a2,g2,9 =



gtg(g1,g2)·tx(a1,a2)
maxTxp·maxGtGT · z(end(a2)− bgn(a1)), if (end(a2) > bgn(a1))∧

(typ(a1) 6= 4 ∧ typ(a2) 6= 4)

(end(a2)− bgn(a1)) ≤ 120
gtg(g2,g1)·tx(a2,a1)
maxTxp·maxGtGT · z(end(a1)− bgn(a2)), if (end(a1) > bgn(a2))

(typ(a1) 6= 4 ∧ typ(a2) 6= 4)

(end(a1)− bgn(a2)) ≤ 120

0 otherwise


Different variants of the passenger walking distance objective have been exten-
sively considered in the GAP literature [1,11,17,26]. Because of its relationship
to the classic quadratic assignment problem [28], optimization of this GAP ob-
jective is NP-hard and hence the considered formulation of GAP is NP-hard.

Weighted sum of several objectives is a commonly used procedure in the liter-
ature for evaluation of the total cost of a GAP solution. Given the formulation
we have just described, we thus compute the total soft constraint cost for a
given candidate feasible solution S with the cost function c(S) defined in Eq.
2,

c(S) =
|A|∑
a=1

|G|∑
g=1

8∑
i=1

xa,gca,g,iwi

+
|A|∑
a1=1

|A|∑
a2=1

|G|∑
g1=1

|G|∑
g2=1

xa1,g1xa2,g2ca1,g1,a2,g2,9w9

(2)

where wi is the weight associated to the soft constraint Si, regulated by the
airport operations management. Note that different weights may be assigned
to different soft constraints so as to produce solutions that are more conve-
nient for their particular needs. A weight could be 0 if the corresponding soft
constraint is not considered. The problem objective is then to find a feasible
solution S∗ such that c(S∗) ≤ c(S) for all S in the feasible search space.

3 Breakout local search (BLS)

Given the complexity of our GAP formulation and given the nonlinearity of
the objective function defined in Eq. 2, we propose a breakout local search
(BLS) and a greedy constructive heuristic for GAP, detailed in the following
sections.

14

3.1 General framework of BLS

BLS is a recent stochastic local search method [2,3] which follows the general
scheme of iterated local search (ILS) [23]. Its basic idea is to use a descent-
based local search procedure to explore in depth the current search space
region, and to diversify the search once a local optimum is attained. More
precisely, BLS triggers an adaptive and multi-typed perturbation mechanism
to introduce a suitable degree of diversification required to escape from the
current local optimum. As explained in [2,3], the degree of diversification intro-
duced with BLS depends on the number L of perturbation moves (also called
jump magnitude) and on the type T of perturbation moves (e.g., random per-
turbation or directed perturbation). Alg. 1 provides a general framework for
BLS, which is explained in the previous works [2,3].

We next detail the solution representation and the four main component pro-
cedures of our BLS algorithm for GAP.

Algorithm 1 BLS general framework

1: S′ ← GenerateInitialSolution
2: L← L0 /*Initialize the number L of perturbation moves */
3: while stopping condition not reached do
4: S ← DescentBasedSearch(S ′)
5: L← DetermineJumpMagnitude(L,S , history)
6: T ← DeterminePerturbationType(S , history)
7: S′ ← Perturb(L,T ,S , history)
8: end while

3.2 Solution representation

For an effective search with BLS, a gate allocation S is represented as an
array of |G| lists (one list for each g ∈ G), where each list Sg consists of
a number of aircraft activities allocated to g. Each activity a ∈ Sg is asso-
ciated with some information including the begin time bgn(a), the end time
end(a), and the aircraft number corresponding to the given activity. Activities
in each Sg are ordered by their begin and end times, i.e., ∀a ∈ Sg, bgn(a) ≥
end(p(a)) and end(a) ≤ bgn(n(a)), where p(a) and n(a) are the immediate
previous and immediate next activities of a respectively. An example of a so-
lution with 5 gates and 14 activities (corresponding to 6 aircraft) is shown in
Fig. 4.

15

f1: 10:00 - 11:30 --> a1: 10:00 - 11:30
f2: 11:30 - 15:35 --> a2: 12:30 - 13:30; a3: 13:30 - 14:20; a4: 14:20 - 15:35
f3: 09:00 - 14:40 --> a5: 09:00 - 10:00; a6: 10:00 - 12:55; a7: 12:55-14:40
f4: 10:00 - 18:45 --> a8: 10:00 - 11:00; a9: 11:00 - 17:30; a10: 17:30 - 18:45
f5: 08:00 - 14:20 --> a11: 08:00 - 09:00; a12: 09:00 - 12:35; a13 12:35 - 14:20
f6: 16:45 - 17:30 --> a14: 16:45 - 17:30

a1, f1
bgn(a1) = 10:00
end(a1) = 11:30
ALa1=1 ARa1=1
typ(a1) = 1

G1

G2

G3

G4

G5

a2, f2
bgn(a2) = 12:30
end(a2) = 13:30
ALa2=1 ARa2=0
typ(a2) = 2

a3, f2
bgn(a3) = 13:30
end(a3) = 14:20
ALa3=0 ARa3=1
typ(a3) = 4

a14, f6
bgn(a14) = 16:45
end(a14) = 17:30
ALa14=1 ARa14=1
typ(a14) = 1

a5, f3
bgn(a5) = 09:00
end(a5) = 10:00
ALa5=1 ARa5=0
typ(a5)=2

a6, f3
bgn(a6) = 10:00
end(a6) = 12:55
ALa6=0 ARa6=0
typ(a6) = 4

a7, f3
bgn(a7) = 12:55
end(a7) = 14:40
ALa7=0 ARa7=1
typ(a7) = 3

a11, f5
bgn(a11) = 08:00
end(a11) = 09:00
ALa11=1 ARa11=1
typ(a11) = 2

a9, f4
bgn(a9) = 11:00
end(a9) = 17:30
ALa9=1 ARa9=0
typ(a9) = 4

a10, f4
bgn(a10) = 17:30
end(a10) = 18:45
ALa10=0 ARa10=1
typ(a10) = 3

a8, f4
bgn(a8) = 10:00
end(a8) = 11:00
ALa8=1 ARa8=1
typ(a8) = 2

a4, f2
bgn(a4) = 14:20
end(a4) = 15:35
ALa4=1 ARa4=1
typ(a4) = 3

a12, f5
bgn(a12) = 09:00
end(a12) = 12:35
ALa12=1 ARa12=0
typ(a12) = 4

a13, f5
bgn(a13) = 12:35
end(a13) = 14:20
ALa13=0 ARa13=1
typ(a13) = 3

Fig. 4. An example of an allocation of 14 activities (6 aircraft) to 5 gates.

3.3 Initial solution - Greedy constructive heuristic

We use a memory-based greedy constructive heuristic (MGCH) to generate
a feasible starting point for the search, i.e., an initial allocation S0 of all the
aircraft activities from A to a set of gates G, such that all the hard constraints
H1 to H4 are satisfied. The MGCH algorithm is presented in Alg. 2.

Let c(a, g) be the sum of the penalties S1 to S9 (see Section 2.2) for placing
activity a ∈ A to gate g ∈ G. For each a ∈ A, MGCH first calls the function
selectBestFeasibleGate(a) (line 6) to determine a g ∈ G for a ∈ A(g) such that
all the hard constraints H1 to H4 are satisfied and the cost c(a, g) with respect
to the partial solution S0 is minimized. If a feasible allocation for a exists
in the current partial solution (g 6= −1), MGCH allocates a to g (lines 7-8).
Otherwise, MGCH calls the backtrack(a) procedure (line 11) which deallocates
a given number of activities from a gate gb, a ∈ A(gb), in order to make place
for the critical activity a. These deallocated activities are placed into the set
P . Let R be the set of activities that need to be removed in the backtrack
phase to insert a critical element a, the backtrack procedure determines a gate
gb for a with the following relation:

16

gb ∈ {g′ : a ∈ A(g′),max(
∑
a′∈R

c(a′, g′)/|R| − c(a, g′)), tabu(a, g′) = 0} (3)

where tabu(a, g) is a function which returns 1 if the allocation of activity a to
gate g is prohibited, and 0 otherwise. Move prohibition is determined in the
following way. Each time an activity is allocated to gate g, it can be deallocated
without restriction. However, it is forbidden to reallocate a to g for a given
number of iterations iter (tabu tenure). More precisely,

tabu(a, g) =

{
1, if (γ(a, g) + α1 · fg(a) + random(α2 · fg(a))) ≥ iter

0, otherwise

}
,

(4)

where γ(a, g) is the matrix that keeps track of the iteration number when
activity a was last allocated to g, fg(a) is the number of feasible gates for
a, and α1 and α2 are two coefficients. Prohibition of certain allocations in
the backtrack phase reduces the number of unsuccessful reallocations (i.e., the
number of ungated activities). Note that the described backtrack procedure is
based on ideas borrowed from the tabu search metaheuristic [14].

After allocation of a to gb has been completed, MGCH tries to reallocate the
activities from P (lines 12-25) as follows. Starting from the first activity a in
P , MGCH first calls the function selectBestFeasibleGate(a) to find the best
feasible allocation of a to some gate g. If such an allocation does not exist,
MGCH then checks whether the number of trials to allocate a (counter [a]) has
exceeded a certain threshold κ (κ = 100 in our experiments). If counter[a] >
κ, activity a is left ungated and is not considered for allocation any more.
Otherwise, MGCH calls the backtrack procedure to allocate a by removing
a certain number of activities from S0 which are added to the set P . These
steps are repeated until P = ∅.

3.4 Neighborhood move and local search

To move from one solution to another in the search space, our BLS for GAP ap-
plies an insert move which consists in moving a single aircraft activity a ∈ A(g)
from its current gate g to another eligible gate g′, a ∈ A(g′). However, this
move may violate hard constraints H3 and/or H4 leading to an infeasible so-
lution. In that case, the resulting solution is repaired by deallocating a number
of activities in conflict with activity a, and reallocating them to other gates
as performed during the greedy construction phase (lines 11-25 of Alg. 2).

17

Algorithm 2 Memory-based greedy constructive heuristic (MGCH)

Ensure: A feasible initial solution (allocation) S0

1: P ← ∅
2: S0 ← ∅
3: iter ← 0
4: counter[|A|]← set all values to 0
5: for i := 1 to |A| do
6: g ← selectBestFeasibleGate(ai)
7: if (g 6= −1) /*ai can feasibly be allocated to g*/ then
8: S0

g ← ai /*Allocate activity ai to g*/
9: iter ← iter + 1

10: else
11: P ← backtrack(ai) /*A feasible gate allocation in the current partial solu-

tion does not exist, backtracking required*/
12: while (P 6= ∅) do
13: a← firstElementfromList(P)
14: P ← P\{a}
15: counter[a] := counter[a] + 1
16: g ← selectBestFeasibleGate(a)
17: if (g 6= −1) then
18: S0

g ← ai
19: iter ← iter + 1
20: else if counter[a] < κ then
21: P ← P + backtrack(a) /*Insert the deallocated activities to P*/
22: else
23: counter[|A|]← set all values to 0
24: end if
25: end while
26: end if
27: end for

The purpose of the descent-based local search procedure of BLS is to intensify
the search in the current search region. Each iteration of the descent-based
local search consists in selecting a highest penalty activity-gate pair (a, g) in
the current schedule S, and moving a to another gate gn. To select the highest
penalty activity-gate (a, g) pair in the current solution in O(1), we keep each
(a, g) pair ordered by their costs. This is achieved with an adaptation of bucket
sort data structure [2] that is commonly used for graph partitioning problems.
A new gate gn for a is selected according to the following relation:

gn ∈ {g′ : a ∈ A(g′),max(
∑
a′∈R

c(a′, g′)/|R| − c(a, g′)}, (5)

where R is the set of activities, currently allocated to gate g′, that have to be
removed from the current solution and reallocated to other gates (as explained
in the previous subsection) in order to allocate activity a.

18

The descent-based local search procedure stops as soon as a local optimum is
encountered.

3.5 Adaptive diversification strategy

To determine the most suitable number of perturbation moves at a given stage
of the search, the proposed BLS for GAP takes advantage of the information
related to the occurrences of cycles. This information is based on a number
of the most recently visited locally optimal solutions stored in a hash table
structure (HT), as performed in [3]. Moreover, for each perturbation phase,
BLS employs a probabilistic technique to select between directed and crit-
ical element-guided perturbation moves, the former being based on history
information maintained in a recency-based tabu list [14]. These two types of
perturbations introduce different degrees of diversification into the search. The
probability of determining one perturbation type over another depends on the
current search state, i.e., the current number of consecutive non-improving
local optima visited with respect to a reference solution.

We next describe in detail the proposed diversification mechanism, along with
the perturbation types used.

3.5.1 Determining jump magnitude

After a local optimum S is attained during the descent-based local search
phase, BLS determines a suitable number of moves for the next perturbation
phase. This procedure is given in Alg. 3.

BLS calls the function inHashTable (line 1 of Alg. 3) to check whether S is
already stored in the hash table HT memory. If S is not in HT , inHashTable
returns 0 and inserts S into HT . Otherwise, inHashTable returns 1. BLS incre-
ments the number of perturbation moves L if the search keeps consecutively
returning to an already visited local optimum for a fixed number of times ν
(lines 3-5 of Alg. 3), and decreases L if a new local optimum is reached (lines
6-9 of Alg. 3). Finally, we limit the number of perturbation moves to take
values no smaller than LMIN (lines 10-12 of Alg. 3).

3.5.2 Adaptive combination of two perturbation types

To perturb the current local optimum S, BLS adaptively chooses between
directed perturbation and critical element-guided perturbation.

The directed perturbation (or the tabu-based perturbation) is based on the

19

Algorithm 3 DetermineJumpMagnitude(L, S, HS, counter)
Require: Current jump magnitude L, local optimum S returned by

DescentBasedSearch, hash table memory HS, and the number of consec-
utive encounters of an already visited solution counter

Ensure: Jump magnitude L for the next perturbation phase

1: if (inHashTable(HS, S) = 1) then
2: counter ← counter + 1
3: if (counter > ν) then
4: L← L+ 1 /* Increment the jump magnitude*/
5: end if
6: else
7: L← L− 1 /* Decrement the jump magnitude */
8: counter ← 0
9: end if

/* Limit L to take values no smaller than LMIN */
10: if L < LMIN then
11: L← LMIN

12: end if
13: return L

tabu search principles [14]. It consists in selecting a highest penalty activity-
gate pair (a, g) in the current allocation, and moving a to another gate gb 6= g.
The selection of gb depends both on the quality of the move in order not to de-
teriorate too much the perturbed solution, and the history information which
keeps track of the last iteration (time) when the given move was performed.
More precisely, a gb for a is determined with the relation defined in Eq. 3.

Let K be the set of the first λ highest penalty activity-gate pairs, where λ
is a parameter. The critical element-guided perturbation (CEGP) [24] first
consists in randomly selecting a pair (a, g) ∈ K and deallocating a from g.
The procedure then sorts all the feasible gates g′, such that a ∈ A(g′), in a
decreasing order according to the penalty function value:

penalty(a, g′) =

∑
a′∈R c(a

′, g′)

|R|
− c(a, g′),

where R is once again the set of activities that have to be removed from g′ in
order to allocate a to g′, and c(a, g′) is the cost associated to the assignment
of a to g′ expressed as the sum of the soft constraint penalties S1 to S9.
Finally, activity a is allocated to one of the possible gates in an adaptive
and random way, according to the penalty score assigned to the gate - the
higher the penalty value, the more chance the gate is chosen for allocation. For
this purpose, the rth highly-scored gate is selected according to the following
probability function:

20

Prob(r) = r−φ/
fg(a)∑
i=1

i−φ,

where φ is a positive real number (empirically set to φ ∈ [1.5, 3.0]) which
determines the intensity of the selection procedure. The larger the value of φ
is, the higher is the possibility that the high-score gates are selected. Note that
the classic random perturbation is a special case of the critical element-guided
perturbation when φ = 0.

Algorithm 4 DeterminePerturbationType(S, Sbest, Sref , ω)

Require: Local optimum S, best solution found during the search Sbest, reference
local optimum Sref , number of consecutive non-improving local optima visited
ω with respect to Sref

Ensure: Perturbation type T .
1: if (c(S) · µ < c(Sbest)) then
2: Sref ← S /* Update reference local optimum*/
3: ω ← 0
4: end if
5: if (c(Sref) > c(S)) or (ω > η) then
6: ω ← 0
7: else
8: ω ← ω + 1
9: end if

10: Determine prob. P of applying directed over critical element-guided perturb.:
P = e−ω/η

11: if (P > random{0, 0.01, 0.02, ..., 1}) then
12: T ← Directed perturbation
13: else
14: T ← Critical element-guided perturbation
15: end if
16: return T

We set the parameters for these two types of perturbations so that the directed
perturbation is weaker than the critical element-guided perturbation.

In order to insure the best balance as possible between an intensified and a
diversified search, BLS uses a strategy given in Alg. 4 that takes turns proba-
bilistically between the directed and the critical element-guided perturbation.
The probability P of applying a particular perturbation is determined with
relation P = e−ω/η with respect to the search state ω, i.e., the current num-
ber ω of consecutive non-improving local optima visited with respect to a
reference solution Sref . The idea is to apply the directed perturbation with
a higher probability P whenever the search progresses towards local optima
with objective values better than that of Sref (counter ω is small). With the

21

increase of ω, the probability P of using directed perturbation decreases while
the probability of applying the critical element-guided moves increases for the
purpose of a stronger diversification. ω is reset to zero each time the reference
solution Sref is updated, or when the number of consecutive non-improving
local optima exceeds a given threshold η (line 3 and 6 of Alg. 4). Solution Sref
is updated with a new local optimum S if c(S) · µ is smaller than c(Sbest),
where µ is a coefficient that can take a value in the range [0, 1] (line 1-4 of
Alg. 4).

4 Experimental results

4.1 Problem instances

The data used in these experiments is provided by Manchester Airport and
contains:

• information on aircraft over six days - it includes the estimated arrival/departure
times, the number of passengers, flight operators, aircraft types, etc;
• information about gate usage, i.e., which gates cannot be used simultane-

ously due to shadowing restriction, and a list of aircraft types that can be
allocated to the given gate;
• information on aircraft sizes that divides aircraft into groups from 1 to 12

according to their wingspan;
• actual (final) allocation of gates.

In short, Manchester Airport has three terminals and a total of 95 stands/gates
(62 terminal stands and 33 remote stands). The size of the stands ranges from
from 2 to 12 (size 12 being the largest gate size). Out of the 95 stands, 21
stands induce a shadowing restriction, i.e., they can be used as either two
smaller gates (for two smaller aircraft) or as one gate for a large aircraft.

Information that is not provided by Manchester Airport include:

• information related to transfer passengers, such as the total number of trans-
fer passengers for each arrival and details on connecting flights;
• the estimated time required to go from one gate to another;
• gate preferences of airline operators;
• the division of gates into gate groups according to the path required to reach

the gate.

We generate the missing data either by statistical analysis of the provided
information or randomly, based on our understanding of the problem.

22

Table 2
Description of benchmark instances

Inst. |F | |A| #s-s #l-s % ogpt Inst. |F | |A| #s-s #l-s % ogpt

D1 295 519 183 112 75.78 D1to6 1780 2908 1216 564 82.11

D2 300 540 180 120 81.05 PK0.87 307 535 193 114 88.42

D3 291 539 167 124 72.63 PK0.97 315 543 201 114 96.84

D4 300 548 176 124 76.84 PK1.03 322 550 208 114 103.15

D5 323 579 195 128 80.00 PK1.14 333 571 214 119 113.68

D6 270 498 156 114 76.84

For our experiments, we use a set of 11 benchmark instances. Instances D1 to
D6 correspond to one day of planned flights at Manchester Airport, with the
number of aircraft per day ranging from 270 to 323. Instance D1to6 includes all
the aircraft from day 1 to day 6. Since the difficulty of a gate allocation depends
mostly on the number of aircraft that need to be allocated at peak time
(i.e., the percentage of gates allocated at peak time), we use four additional
instances PK which are obtained by modifying instanceD1 by adding a certain
number of additional aircraft during peak time. For each benchmark instance,
Table 2 provides the number of aircraft and activities, the number of short-
stay aircraft (column #s-s), the number of long-stay aircraft (column #l-s),
and the percentage of gates occupied at peak time (column % ogpt). Note that
% ogpt may be greater than 100% since, in some cases, a large gate may be
used as two small gates. Histograms showing the percentages of used gates for
instances D1 and PK1.14 over one day of operations are provided in Fig. 5.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

%
 o

f o
cc

up
ie

d
ga

te
s

Time

(a) D1

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20

%
 o

f o
cc

up
ie

d
ga

te
s

Time

(b) PK1.14

Fig. 5. Histogram showing the percentage of occupied gates over one day of opera-
tions at Manchester Airport

4.2 Experimental protocol

Our BLS algorithm is implemented in C++ and compiled with GNU g++
under GNU/Linux running on an Intel Xeon E5335 with 2 GHz and 2 GB of
RAM. The setting of BLS parameters, as well as the weights w1−w2 (see Eq.

23

Table 3
Settings of important parameters and weights associated to soft constraints S1−S9

Parameter Section Description Value

α1 3.3, 3.5.2 coefficient for tabu tenure 0.8

α2 3.3, 3.5.2 coefficient for tabu tenure 2.5

ν 3.5.1 coefficient for increase of the number of perturb. moves 60

LMIN 3.5.1 minimal number of perturbation moves 5

µ 3.5.2 coefficient for update of Sref 0.99

λ 3.5.2 coefficient for critical element-guided perturbation 0.2|A|
φ 3.5.2 coefficient for critical element-guided perturbation 2.2

η 3.5.2 coefficient for probability P 5000

w1 2.2 idle times between conflicting aircraft (S1) 12

w2 2.2 idle times between conflicting aircraft (S2) 12

w3 2.2 idle times between conflicting aircraft (S3) 8

w4 2.2 aircraft to gate preference (S4) 0.3

w5 2.2 aircraft to gate preference (S5) 15

w6 2.2 aircraft to gate preference (S6) 15

w7 2.2 aircraft to gate preference (S7) 30

w8 2.2 tows (S8) 5

w9 2.2 passenger walking distances (S9) 40

2) corresponding to soft constraints S1 − S9, are provided in Table 3. Since
different airports prioritize different objectives, the weights may be varied in
an attempt to obtain solutions that are more appropriate for the particular
needs. For each benchmark instance, we perform 30 independent executions
with the time limit set to 1.5 hour per run.

We compare the performance of BLS (both in terms of quality and computing
time) with seven other heuristic algorithms:

MGCH: the greedy constructive procedure (see Section 3.3) which generates
an initial solution for BLS;

TS: a tabu search algorithm which corresponds to the directed perturbation
used by BLS (see Section 3.5.2). The parameters α1 and α2 for the tabu list
are set to 0.8 and 2.5 respectively;

ILS-DIR: an iterated local search which combines the descent-based local
search (see Section 3.4) with the directed (tabu-based) perturbation (see
Section 3.5.2). The number of perturbation moves for ILS-DIR is fixed to
45. The search performed with this approach is highly oriented toward in-
tensification;

ILS-CEG: an iterated local search approach which combines the descent-
based local search with the critical element-guided perturbation (see Section
3.5.2). The number of perturbation moves for ILS-CEG is fixed to 4. The
perturbation phase of ILS-CEG introduces a high degree of diversification
into the search that can almost be compared to a random restart;

ILS-I: a modification of BLS obtained by fixing the probability P of applying
the directed over the critical element-guided perturbation to 0.75;

ILS-II: a modification of BLS obtained by fixing the number of perturbation
moves L = 100;

ILS-III: a modification of BLS obtained by fixing L to 100 and P to 0.75.

24

Table 4
Averaged computational results (in terms of objective value, see Eq. 2) over all the
benchmark instances and executions, obtained with BLS and seven other heuristics

TS ILS-DIR ILS-
CEG

MGCH ILS-I ILS-II ILS-III BLS

Avg. best 13194.7 13177.5 14954.4 14954.4 12981.9 13048.9 13549.3 12766.1

Avg. mean 13405.4 13448.7 14954.5 14954.5 13256.2 13265.6 13769.9 12995.4

Avg. worst 13883.0 13876.6 14955.2 14955.2 13502.7 13445.2 13957.2 13228.2

Avg. time 2798.4 2876.4 0.0 0.0 3238.3 3317.0 3477.4 3207.7

Table 5
Post-hoc analysis of the normalized performances reported with BLS and the refer-
ence algorithms across all the benchmark instances and executions.

TS ILS-DIR ILS-
CEG

MGCH ILS-I ILS-II ILS-III BLS

TS - - - - - - - -

ILS-DIR 0.00293 - - - - - - -

ILS-CEG 0.00098 0.00098 - - - - - -

MGCH 0.00098 0.00098 - - - - - -

ILS-I 0.04199 0.01855 0.00098 0.00098 - - - -

ILS-II 0.00684 0.00488 0.00384 0.00098 0.32030 - - -

ILS-III 0.70020 0.70020 0.00098 0.00098 0.00293 0.00098 - -

BLS 0.00098 0.00098 0.00092 0.00092 0.00195 0.00488 0.00098 -

The five latter algorithms are used to evaluate the importance of the adaptive
and multi-type perturbation mechanism employed by our BLS algorithm for
GAP. We apply MGCH to generate an initial solution for each local search al-
gorithm used in this comparison. The results for this comparison are obtained
under the same computing conditions.

We do not provide comparisons with the actual gate allocations provided by
Manchester Airport since these are obtained with rules different than those
applied in this work. More precisely, our solutions are based on incomplete
data from Manchester Airport. Moreover, we do not know the exact objectives
as well as the priorities of objectives for Manchester Airport. Therefore, any
comparison with the actual allocations would be inaccurate and inconclusive.

4.3 Computational results and comparisons

This section presents computational results and comparisons between the pro-
posed BLS and the seven heuristic approaches mentioned in the previous sec-
tion.

For each approach, Table 4 shows the average best, the average and the average
worst objective value (according to Eq. 2) over all the benchmark instances
after 30 executions. The best (minimal) values are higlihted in bold. We further
show the average time in seconds per run for each approach. From these results,
we can make the following observations. The proposed BLS generally provides
the best performance on the used benchmark compared to the seven reference

25

T
a
b

le
6.

C
o
m

p
a
ri

so
n

b
et

w
ee

n
th

e
b

es
t

so
lu

ti
on

s
ob

ta
in

ed
w

it
h

B
L

S
an

d
M

G
C

H
,

in
te

rm
s

of
th

e
in

d
iv

id
u

al
G

A
P

ob
je

ct
iv

es
.

O
b

je
ct

iv
e

D
1

D
2

D
3

D
4

D
5

D
6

B
L

S
M

G
C

H
B

L
S

M
G

C
H

B
L

S
M

G
C

H
B

L
S

M
G

C
H

B
L

S
M

G
C

H
B

L
S

M
G

C
H

M
in

.(
a
v
g
.)

id
le

ti
m

e
b

ew
te

en
a
ct

iv
it

ie
s

a
t

th
e

sa
m

e
g
a
te

(i
n

m
in

.)
1
0
(2

1
2
.7

)
1
0
(2

1
2
.3

)
1
5

(1
9
9
.6

)
1
0
(1

6
3
.7

)
1
5

(1
9
3
.6

)
1
0
(1

8
2
.3

)
1
5

(1
9
2
.0

)
1
0
(1

7
5
.3

)
1
0
(1

7
5
.1

)
1
0
(1

4
4
.9

)
1
0
(1

7
7
.6

)
1
0
(1

6
1
.2

)

M
in

.(
a
v
g
.)

id
le

ti
m

e
b

ew
te

en
a
ct

iv
it

ie
s

a
t

sh
a
d

o
w

in
g

g
a
te

s
(i

n
m

in
.)

2
0
(5

0
3
.9

)
2
5

(6
0
7
.8

)
4
0
(4

1
9
.7

)
4
0
(4

2
2
.8

)
4
5

(4
5
8
.4

)
1
5
(3

6
3
.7

)
3
0

(7
8
9
.1

)
1
5
(5

1
7
.6

)
2
0
(3

4
2
.9

)
2
0
(3

6
8
.2

)
2
0

(4
1
2
.9

)
1
0
(4

1
1
.9

)

M
in

.(
a
v
g
.)

id
le

ti
m

e
b

ew
te

en
a
ct

iv
it

ie
s

a
t

th
e

sa
m

e
g
a
te

g
ro

u
p

(i
n

m
in

.)
5

(9
3
.4

)
0
(9

1
.6

)
5

(8
5
.7

)
0
(5

9
.2

)
5

(8
1
.4

)
0
(7

6
.7

)
5

(8
5
.5

)
0
(6

5
.5

)
5

(6
9
.6

)
0
(5

6
.8

)
5

(8
3
.3

)
0
(7

6
.9

)

A
v
g
.

g
a
te

sp
a
ce

u
se

d
in

ex
ce

ss
1
.4

1
.4

1
.3

1
1
.3

1
1
.1
1

1
.1

7
1
.1
4

1
.1

5
1
.2

2
1
.2

2
1
.1
9

1
.3

6

A
v
g
.

a
ir

li
n

e
p

re
fe

re
n

ce
s

fo
r

p
a
rt

ic
u

la
r

g
a
te

s
0
.4
9

0
.5

1
0
.5
1

0
.5

6
0
.5
2

0
.5

7
0
.4
9

0
.5

8
0
.5
4

0
.6

1
0
.5
4

0
.5

7

T
o
ta

l
n
u

m
b

er
o
f

to
w

s
to

te
rm

in
a
l
g
a
te

s
0

0
0

0
0

0
0

0
0

0
0

0

%
p

a
x

a
rr

iv
in

g
a
t

re
m

o
te

g
a
te

2
.5

0
.9

4
.0

4
.5

3
.5

2
.9

3
.8

7
.0

2
.7

4
.9

1
.7

5
.3

%
p

a
x

d
ep

a
rt

in
g

fr
o
m

re
m

o
te

g
a
te

8
.7

6
.3

1
0
.6

8
.4

9
.1

7
.0

7
.6

6
.9

8
.5

7
.6

7
.8

7
.7

%
tr

a
n

sf
er

p
a
x

a
rr

iv
in

g
a
t

re
m

o
te

g
a
te

1
.5

0
.9

2
.7

4
.8

2
.9

2
.6

3
.7

7
.0

2
.7

4
.5

1
.6

4
.6

T
o
ta

l
n
u

m
b

er
o
f

g
a
te

ch
a
n

g
es

6
2

1
0
3

6
1

7
7

6
9

9
1

7
4

7
6

7
9

8
8

8
0

7
6

A
v
g
.

n
u

m
b

er
o
f

g
a
te

ch
a
n

g
es

p
er

lo
n

g
-

st
a
y

a
ir

cr
a
ft

0
.5
5

0
.9

2
0
.5
1

0
.6

4
0
.5
6

0
.7

3
0
.6
0

0
.6

1
0
.6
2

0
.6

9
0
.7

0
0
.6
7

%
tr

a
n

sf
er

p
a
x

m
is

si
n

g
a

co
n

n
ec

ti
n

g
fl

ig
h
t

3
.3

2
.2

3
.0

2
.1

0
.6

1
.6

2
.9

1
.8

2
.9

2
.9

2
.6

1
.2

N
u

m
b

er
o
f

u
n

g
a
te

d
a
ct

iv
it

ie
s

0
0

0
0

0
0

0
0

0
0

0
0

O
b

je
ct

iv
e

D
1
to

6
P

0
.8

7
P
.9

7
P

1
.0

3
P

1
.1

4

B
L

S
M

G
C

H
B

L
S

M
G

C
H

B
L

S
M

G
C

H
B

L
S

M
G

C
H

B
L

S
M

G
C

H

M
in

.(
a
v
g
.)

id
le

ti
m

e
b

et
w

ee
n

a
ct

iv
it

ie
s

a
t

th
e

sa
m

e
g
a
te

(i
n

m
in

.)
1
0

(3
2
1
.6

)
1
0

(3
2
3
.3

)
1
0

(2
0
4
.9

)
1
0

(2
0
7
.9

)
1
5

(2
0
9
.8

)
1
0

(2
1
2
.6

)
1
0

(2
0
8
.8

)
1
0

(2
1
1
.1

)
1
0

(2
0
3
.9

)
1
0

(2
0
8
.5

)

M
in

.(
a
v
g
.)

id
le

ti
m

e
b

et
w

ee
n

a
ct

iv
it

ie
s

a
t

sh
a
d

o
w

in
g

g
a
te

s
(i

n
m

in
.)

1
5

(1
6
3
3
.7

)
1
0

(1
4
5
3
.3

)
2
5

(5
8
3
.7

)
1
0

(5
5
4
.9

)
2
0

(5
4
6
.6

)
1
5

(5
3
4
.2

)
2
5

(4
9
1
.9

)
1
5

(5
3
3
.8

)
2
5

(4
8
9
.3

)
1
0

(5
6
7
.2

)

M
in

.(
a
v
g
.)

id
le

ti
m

e
b

et
w

ee
n

a
ct

iv
it

ie
s

a
t

th
e

sa
m

e
g
a
te

g
ro

u
p

(i
n

m
in

.)
5

(6
5
.1

)
0

(4
7
.1

)
5

(9
4
.6

)
0

(8
9
.0

)
5

(8
0
.9

)
0

(8
4
.7

)
5

(9
9
.5

)
0

(8
3
.0

)
5

(7
7
.3

)
0

(7
9
.9

)

A
v
g
.

g
a
te

sp
a
ce

u
se

d
in

ex
ce

ss
1
.3

3
1
.3
2

1
.2
3

1
.3

9
1
.2
9

1
.3

7
1
.2
6

1
.3

7
1
.3
9

1
.4

3

A
v
g
.

a
ir

li
n

e
p

re
fe

re
n

ce
s

fo
r

p
a
rt

ic
u

la
r

g
a
te

s
0
.5
5

0
.5

9
0
.5

2
0
.5

2
0
.5

3
0
.5

3
0
.5

6
0
.5
3

0
.5

5
0
.5
3

T
o
ta

l
n
u

m
b

er
o
f

to
w

s
to

te
rm

in
a
l
g
a
te

s
0

0
0

0
0

0
0

0
0

0

%
p

a
x

a
rr

iv
in

g
a
t

re
m

o
te

g
a
te

3
.5

5
.0

2
.9

1
.4

2
.8

3
.9

3
.2

4
.7

2
.8

6
.3

%
p

a
x

d
ep

a
rt

in
g

fr
o
m

re
m

o
te

g
a
te

8
.7

7
.3

9
.9

6
.7

1
3
.1

8
.9

1
3
.3

9
.5

1
5
.0

1
0
.8

%
tr

a
n

sf
er

p
a
x

a
rr

iv
in

g
a
t

re
m

o
te

g
a
te

2
.8

4
.5

1
.6

0
.9

1
.6

4
.1

1
.9

4
.6

2
.0

5
.5

T
o
ta

l
n
u

m
b

er
o
f

g
a
te

ch
a
n

g
es

4
5
2

5
2
2

6
9

1
0
7

7
8

1
0
3

8
2

1
0
3

9
0

1
1
4

A
v
g
.

n
u

m
b

er
o
f

g
a
te

ch
a
n

g
es

p
er

lo
n

g
-

st
a
y

a
ir

cr
a
ft

0
.8
0

0
.9

3
0
.6
1

0
.9

4
0
.6
8

0
.9

0
0
.7
2

0
.9

0
0
.7
6

0
.9

6

%
tr

a
n

sf
er

p
a
x

m
is

si
n

g
a

co
n

n
ec

ti
n

g
fl

ig
h
t

1
.6

1
.1

1
.9

2
.1

2
.4

3
.4

2
.3

2
.3

2
.6

2
.0

N
u

m
b

er
o
f

u
n

g
a
te

d
a
ct

iv
it

ie
s

0
0

0
0

0
0

0
0

0
0

26

heuristics. BLS and all the other local search algorithms except ILS-CEG
are able to significantly improve the initial solution obtained with MGCH.
Only ILS-CEG, which introduces a higher degree of diversification into the
search than ILS-DIR, is unable to improve the starting solution obtained with
MGCH. We may thus conclude that the critical element-guided perturbation,
used by our BLS for GAP, is unable to direct the search towards promising
regions of the search space.

To assess whether there exists a significant difference in the observed perfor-
mances between at least two algorithms on our set of benchmark instances, we
first normalize the obtained objective values into a common range of values.
More precisely, for each approach, we obtain a set Y of normalized objec-
tive values over all the problem instances and executions. We then employ
the Friedman rank sum test on all the sample sets Y . If significant difference
in performances exists, we carry out a post-hoc analysis to determine which
two algorithms differ in performance. The null hypothesis of the Friedman
rank sum test states that all normalized objective value samples have equal
medians, while the alternative hypothesis states that there exist at least two
samples with different median values. For the post-hoc analysis, we perform
pairwise Wilcoxon-signed rank tests on the normalized sample sets.

Since the Friedman rank sum test reveals a statistically significant difference in
performance between the considered algorithms (with p=1.609e-11), we con-
tinue with the post-hoc analysis and show in Table 5 the obtained p-values
from the Wilcoxon-signed rank tests. The tests confirm that BLS statistically
outperforms the reference algorithms with a p-value ≤ 0.00195. It also confirm
that the combination of the directed and the critical element-guided pertur-
bations is highly important for the performance of our BLS. Indeed, both
ILS-I and ILS-II ensure a statistically better performance than TS, ILS-DIR
and ILS-CEG (p-value < 0.05). Furthermore, the adaptive BLS strategy for
determining the number and the type of perturbation moves is another key
factor for success of the proposed approach. Indeed, there is no difference in
performance between ILS-III, TS and ILS-DIR according to the post-hoc test.

For each instance, Table 6 summarizes the best solutions obtained by BLS in
terms of the GAP objectives, using the penalty weights given in Section 4.2.
To justify the need for local optimization, we further provide the individual
objective values for the initial solutions generated with MGCH.

With the current setting of penalty weights, both BLS and MGCH are able to
allocate all aircraft activities (even in the case of PK1.14) with a 100% success
rate. For the optimized solutions, the minimal idle times between activities
at the same gate range from 10 minutes to 15 minutes, while the minimal
idle times between activities at shadowing gates range from 15 to 45 minutes.
Moreover, these BLS solutions reduce the number of push-back and taxiway

27

conflicts near the gates by introducing at least 5 minutes of separation between
activities allocated at the same gate group. The initial solutions are slightly
less robust, and would more likely increase the possibility of taxiway conflicts
around the gates. Indeed, for each benchmark instance, the minimal idle time
between activities allocated at the same gate group is 0 minutes in case of the
MGCH solutions. Fig. 6 provides a comparison of BLS and MGCH solutions
for instance D1 in terms of idle times between aircraft activities allocated to
the same gate group.

As for the effective gate usage, the average gate space used in excess is less
than or equal to 1.4 for all the benchmark instances, in case of both the
initial and the optimized solution. This can be explained by a relatively high
penalty weight (w4 = 0.3) associated to this objective. A preliminary tuning of
penalty weights showed that the lower the value of w4, the higher the number
of ungated aircraft activities is, in case of full capacity during peak times.
However, in case of regular days at Manchester Airport, a better compromise
between the gate-space usage and the other objectives may be obtained by
reducing w4 (e.g., with w4 = 0.05).

We further observe that the average satisfaction of airline preferences for spe-
cific gates ranges from 0.49 to 0.56 for optimized solutions (note that the value
of this objective should ideally be close to 0). For MGCH, this value is often
slightly higher, ranging from 0.51 to 0.61. The total number of passengers ar-
riving and departing at/from a remote stand is always below 15%, for both
BLS and MGCH solutions.

As for towing, a long-stay aircraft changes a gate from 0.51 to 0.7 times on
average during a regular day (in our problem formulation, an aircraft can
change gates at most 2 times) given a solution optimized with BLS. This
implies that a significant number of long-stay aircraft stay at the same gate
during their entire stay at the airport which reduces the total number of
aircraft movements on the ground. On the other hand, the average number
of gate changes for MGCH solutions is significantly higher, and ranges from
0.61 to 0.92 for instances D1 to D6. Therefore, BLS solutions greatly reduce
the number of aircraft movements which is an important objective for busy
airports.

Finally, Table 6 shows that the percentage of passengers missing a connecting
flight is often somewhat higher for the BLS than for the MGCH solutions, and
ranges from 0.6 % to 3.3 % (1.1 % to 2.9 % for MGCH solutions). However,
please note that the provided percentages are based on generated data as
mentioned in Section 4.1.

To summarize, BLS significantly improves the quality of the initial solution,
particularly in terms of separation between aircraft at the same gate group

28

and in terms of the number of aircraft movements on the ground.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50

#
 o

f
s
e

p
a

ra
ti
o

n
s

Separation

MGCH solution
BLS solution

Fig. 6. A comparison of BLS and MGCH solutions in terms of idle times between
aircraft activities allocated to the same gate group.

5 Conclusion

In this work, we take into account the real multi-criteria nature of the gate
allocation problem (GAP) and consider nine objectives that aim to optimize
idle times between conflicting aircraft, aircraft to gate preference, aircraft tow-
ing and passenger walking distances. As far as we are aware, this is the largest
number of objectives jointly optimized in the GAP literature. Given the non-
linearity of the considered problem formulation, we propose a heuristic ap-
proach that follows the general framework of Breakout Local Search (BLS).
BLS is able to obtain high quality gate allocations with reasonable comput-
ing efforts. Based on relevant information from its search history, it tries to
establish a most suitable degree of diversification for each perturbation phase
by determining dynamically the number of perturbation moves (i.e., the jump
magnitude) and by adaptively choosing between the directed (tabu-based) and
the critical element-guided perturbation. Moreover, we present a new memory-
based greedy constructive heuristic (MGCH) to generate a starting point for
the BLS search. To evaluate the performance of BLS, we perform statisti-
cal comparisons with a tabu search approach and five variants of ILS, using
benchmark instances that are based on information provided by Manchester
Airport. Experimental results demonstrate the usefulness of BLS for GAP,

29

and accentuate the contribution of the multi-type perturbation adaptive per-
turbation mechanism to the performance of the proposed approach.

Acknowledgment

This work was partially supported by the research project EP/H004424/2. We
are grateful to the anonymous referees for valuable suggestions and comments
which helped us improve the paper.

References

[1] O. Babic, D. Teodorovic, and V. Tosic, Aircraft stand assignment to minimize
walking, Journal of Transportation Engineering 110 (1984), no. 1, 55–66.

[2] U. Benlic and J.K. Hao, Breakout local search for the max-cut problem,
Engineering Applications of Artificial Intelligence 26 (2013), no. 3, 1162–1173.

[3] , Breakout local search for the vertex separator problem, IJCAI, 2013.

[4] A. Bolat, Procedures for providing robust gate assignments for arriving aircrafts,
European Journal of Operational Research 120 (2000), no. 1, 63–80.

[5] , Models and a genetic algorithm for static aircraft-gate assignment
problem, Journal of the Operational Research Society 52 (2001), no. 10, 1107–
1120.

[6] A. Bouras, M.A. Ghaleb, U.S. Suryahatmaja, and A.M. Salem, The airport gate
assignment problem: A survey, The Scientific World Journal 2014 (2014).

[7] C.H. Cheng, S.C. Ho, and C.L. Kwan, The use of meta-heuristics for airport
gate assignment, Expert Systems with Applications 39 (2012), no. 16, 12430 –
12437.

[8] M. Şeker and N. Noyan, Stochastic optimization models for airport gate
assignment, Transportation Research Part E 48 (2012), 438–459.

[9] G. Diepen, J.M. Van Den Akker, J.A. Hoogeveen, and J.W. Smeltink, Using
column generation for gate planning at amsterdam airport schiphol, Tech.
report, Institute of Information and Computing Sciences, 2007.

[10] G. Diepen, J.M. van den Akker, and J.A. Hoogeveen, Integrated gate and
bus assignment at amsterdam airport schiphol, Robust and Online Large-Scale
Optimization, 2009, pp. 338–353.

[11] H. Ding, A. Lim, B. Rodrigues, and Y. Zhu, The over-constrained airport gate
assignment problem, Computers & Operations Research 32 (2005), no. 7, 1867–
1880.

30

[12] U. Dorndorf, A. Drexl, Y. Nikulin, and E. Pesch, Flight gate scheduling: State-
of-the-art and recent developments, The International Journal of Management
Science 35 (2007), 326–334.

[13] U. Dorndorf, F. Jaehn, and E. Pesch, Modeling robust flight-gate scheduling as
a clique partitioning problem, Transportation Science 42 (2008), no. 3, 292–301.

[14] F. Glover, Tabu search - part i, ORSA Journal on Computing 1 (1986), no. 3,
190–260.

[15] Y. Gu and C.A. Chung, Genetic algorithm approach to aircraft gate
reassignment problem, Journal of Transportation Engineering 125 (1999), no. 5,
384–389.

[16] J. Guépet, R. Acuna-Agost, O. Briant, and J.P. Gayon, Exact and heuristic
approaches to the airport stand allocation problem, European Journal of
Operational Research 246 (2015), no. 2, 597–608.

[17] A. Haghani and M. Chen, Optimizing gate assignment at airport terminals,
Transportation Research 32A (1998), no. 6, 437–454.

[18] X.B. Hu and E.A. Di Paolo, An efficient genetic algorithm with uniform
crossover for the multi-objective airport gate assignment problem, IEEE
Congress on Evolutionary Computation, 2007, pp. 55–62.

[19] S.H. Kim, Airport control through intelligent gate assignment, Ph.D. thesis,
Georgia Tech, 2013.

[20] S.H. Kim, E. Feron, J.P Clarke, A. Marzuoli, and D. Delahaye, Airport
gate scheduling for passengers, aircraft, and operation, CoRR abs/1301.3535
(2013).

[21] P. Kumar and M. Bierlaire, Multi-objective airport gate assignment problem,
Proceedings of the Swiss Transport Research Conference, 2011.

[22] A. Lim and F. Wang, Robust airport gate assignment, ICTAI, 2005, pp. 74–81.

[23] H.R. Lourenco, O. Martin, and T. Stützle, Iterated local search, handbook of
meta-heuristics, Springer-Verlag, Berlin Heidelberg, 2003.

[24] Z. Lü and J.K. Hao, A critical element-guided perturbation strategy for iterated
local search, EvoCOP, 2009, pp. 1–12.

[25] B. Maharjan and T.I. Matis, Multi-commodity flow network model of the flight
gate assignment problem, Computers & Industrial Engineering 63 (2012), no. 4,
1135–1144.

[26] R.S. Mangoubi and D.F.X Mathaisel, Optimizing gate assignments at airport
terminals, Transportation Science 19 (1985), no. 2, 173–188.

[27] U.M. Neuman and J.A.D. Atkin, Gate assignment considering ground
movement, Lecture Notes in Computer Science, vol. 8197, 2013, pp. 184–198.

31

[28] T. Obata, The quadratic assignment problem: evaluation of exact and heuristic
algorithms, Tech. report, TS-7901, New York: Rensselaer Polytechnic Institute,
1979.

[29] V. Prem Kumar and Michel Bierlaire, Multi-objective airport gate assignment
problem in planning and operations, Journal of Advanced Transportation 48
(2014), no. 7, 902–926.

[30] J. Xu and G.T. Bailey, The airport gate assignment problem: Mathematical
model and a tabu search algorithm, HICSS, 2001, pp. 1–10.

[31] S. Yan and C. Huo, Optimization of multiple objective gate assignments,
Transportation Research 35A (2001), no. 5, 413–432.

[32] C. Yu, D. Zhang, and H.Y.K. Lau, Mip-based heuristics for solving robust gate
assignment problems, Computers & Industrial Engineering 93 (2016), 171 –
191.

32

