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Evidence for an elementary process in bone
plasticity with an activation enthalpy of 1 eV

Himadri S. Gupta1,*, Peter Fratzl1, Michael Kerschnitzki1,

Gunthard Benecke1, Wolfgang Wagermaier1 and Helmut O. K. Kirchner2,3

1Department of Biomaterials, Max Planck Institute of Colloids and Interfaces,
MPI-KG Golm, 14424 Potsdam, Germany

2Univ Paris-Sud, UMR8182, Orsay, F-91405, France
3CNRS, Orsay, F-91405, France

The molecular mechanisms for plastic deformation of bone tissue are not well understood.We
analysed temperature and strain-rate dependence of the tensile deformation behaviour in
fibrolamellar bone, using a technique originally developed for studying plastic deformation in
metals. We show that, beyond the elastic regime, bone is highly strain-rate sensitive, with an
activation volume of ca 0.6 nm3. We find an activation energy of 1.1 eV associated with the
basic step involved in the plastic deformation of bone at the molecular level. This is much
higher than the energy of hydrogen bonds, but it is lower than the energy required for
breaking covalent bonds inside the collagen fibrils. Based on the magnitude of these
quantities, we speculate that disruption of electrostatic bonds between polyelectrolyte
molecules in the extrafibrillar matrix of bone, perhaps mediated by polyvalent ions such as
calcium, may be the rate-limiting elementary step in bone plasticity.
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1. INTRODUCTION

Bone is fracture resistant and shows large plastic
deformation (Rho et al. 1998; Fratzl et al. 2004). Little
quantitative information is available on the nature of
the basic molecular level rearrangements under stress,
which make this irreversible plastic deformation
possible. Plasticity has to do with breaking and
rearrangement of bonds, and bone is not an exception.
Such processes can be helped by thermal activation
(Kocks et al. 1975). The question is which bonds are
breaking and how. In the case ofmetals, for example, the
elementary process is known to be associated with the
movement of lattice dislocations (Kocks et al. 1975), a
process not likely to occur in the protein–mineral
composite bone. As plasticity is a major factor reducing
bone fragility, its origin is of the highest interest, both
for the fundamental understanding of biological compo-
sites as well as to assess the possible origin of age-related
fracture (Zioupos 2001) occurring without apparent
change in the overall mechanical properties (Zioupos &
Currey 1998). Owing to the hierarchical structure of
bone (Rho et al. 1998; Weiner & Wagner 1998), length-
scales ranging from the tissue level at 1–100 mm (Nalla
et al. 2003) to the molecular scale (Mercer et al. 2006)
have been considered to be responsible for the inelastic
pplementary material is available at http://dx.doi.org/
006.0172 or via http://www.journals.royalsoc.ac.uk.
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behaviour of bone. Indeed, themajority of studies do not
use plasticity concepts but rather damage models
(Carter & Caler 1985; Schaffler et al. 1994; Zioupos &
Currey 1994; Reilly & Currey 2000) to understand the
post-yield behaviour in bone, where damage means
phenomena, such as microcracking and microfractures
(Zioupos & Currey 1994; Zioupos 1999), observed with
confocal scanning and light microscopy techniques.

In general, plastic deformation corresponds to the
opening and reforming of bonds, leading to a permanent
deformation. Thermodynamically, this corresponds to
a movement over local energy barriers at the molecular
level—leading to creep on a macroscopic scale—and
can be described as an Arrhenius-type rate process
(Schoeck 1965; Gibbs 1967). For permanent plastic
deformation at a stress s and temperature T, the
macroscopic strain rate d3/dt and the flow stress are
related to each other through the microscopic acti-
vation energy barrier H and the volume v associated
with the jump over the barrier, as

d3

dt
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exp K
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The magnitude of H and v, thus obtained from
macroscopic mechanical tests, give insight into the
nature of the deformation mechanism at the molecular
level. In metals and metal alloys, the activation volume
for dislocation movement v can be written in terms of
the Burgers vector for the basic dislocation step (Kocks
et al. 1975), and thus provides information on the
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Figure 1. (a) Overview of the tensile test set-up. (b) Light microscope image of a test sample between two cylindrical dental glue
grips. (c) Larger magnification view of the sample, showing the homogeneous structure. (d (i)) a schematic of a typical
stress–strain curve, with the definitions of elastic modulus, linear hardening and yield stress indicated; (ii) a representative
stress–strain curve taken with strain rate 1.5!10K4 sK1 at 168C, showing the elastic modulus, linear hardening and yield stress.
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nature of the dislocation mechanism (Caillard &Martin
2003). This motivates us to see whether we could,
similarly, quantify experimentally the length-scale and
energy barrier associated with the elementary step at
the molecular level for plastic deformation in bone.
2. MATERIAL AND METHODS

Fibrolamellar bone from the periosteum of bovine
femora (Gupta et al. 2005) was stretched to failure in
a specially built tensile rig which enabled temperature
control, from 4 to 508C, in saline testing to keep the
bone wet, and strain rates of up to 20–50% sK1

measured with video extensometry (figure 1 and
electronic supplementary material). The tensile speci-
mens had a gauge length of 6 mm and a cross-sectional
area of 0.08 mm2 on average. Strain was measured from
the percentage increase in separation of two markers on
the bone imaged with a video camera. Temperature was
J. R. Soc. Interface (2007)
typically kept constant during the test, although for a
few measurements the temperature was changed
abruptly in the yield region (see electronic supple-
mentary material).
3. RESULTS

Activation volume: to measure the activation volume v
of plastic deformation, bone samples were stretched at
constant motor velocity into the plastic yield region as
shown in figure 2. When the sample was clearly in the
zone of plastic deformation, the strain rate was
reduced either once or several times (figure 2, inset).
This change led to a reduction of the flow stress but,
interestingly, the slope of the post-yield curve (linear
hardening ds/d3) remained constant. From equation
(1.1), the activation volume can be estimated as

v Z kBT
dlnðd3=dtÞ

ds
jT: ð1:2Þ
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Figure 2. Measurement of the activation volume v in bone
plasticity: the plot shows a uniaxial tensile test at constant
temperature TZ296 K with six stepwise reductions in motor
velocity from10 to 0.1 mm sK1 (a/fh10 mm sK1/5 mm sK1/
2 mm sK1/1 mm sK1/0.5 mm sK1/0.2 mm sK1/0.1 mm sK1)
and subsequent increases. The differential changes in stress
with differential changes in strain rate can be used to
compute the activation volume (equation (1.2)).
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Figure 3. Measurement of the activation enthalpy H of bone
plasticity: a set of samples (nZ74) are stretched to failure in
tension, at three strain rates and at least three temperatures
at each strain rate, from 277 to 310 K, and the yield stress sP
measured. Plot (a) shows the yield stress sP as a function of
kBT and kBT ln(d3/dt). Black grid lines show the results of the
linear plane fit sPðT ; d3=dtÞZðH=vÞCð1=vÞkBT lnðd3=dtÞK
ðlnðd3=dtÞ0=vÞkBT . Plot (b) shows the same three-dimen-
sional plot in the sP–kBT plane, giving the average stress
(error bars: standard deviations) for a given strain rate and
temperature. Lines are predictions based on model fit in (a),
at the given three strain rates: dash-dotted lines and white
circlesh2.2!10K1 sK1; short dashed lines and grey sym-
bolsh5.4!10K3 sK1; solid lines and black symbolsh1.4!
10K4 sK1. Note that the fact that we view (a) at an angle
almost 908 to the effective viewing direction in (b) is
deliberate, chosen to give the reader the perspective from
two orthogonal directions.
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Using this differential method to estimate the acti-
vation volume leads to an average value of vZ1.00G
0.19 nm3 (nZ8, error bars: standard deviations),
implying that whatever (as yet unspecified) defor-
mation processes occur in bone plasticity, the funda-
mental step is confined within a nanoscale volume.
The activation volume is statistically independent
(pO0.05) of stress, for a range of samples studied.

Activation enthalpy: to determine the height of the
thermal activation barrier in bone deformation, numer-
ous stretch-to-failure tests were done on bone tissue at
strain rates varying from 1.4!10K4 to 2!10K1 sK1 and
temperatures from 4 to 378C (nZ74 total; see table 1 in
the electronic supplementary material for breakdown
by strain rate and temperature). The lowest strain rates
used were comparable to those previously used to
measure fibrillar deformation using synchrotron radi-
ation (Gupta et al. 2005), the intermediate strain rate
was comparable to the rates obtained from physiologi-
cal in vivo measurements (Robertson & Smith 1978;
Burr et al. 1996) and close to strain rates of 0.6 sK1

typical for hip fractures (Courtney et al. 1996). The
highest strain rates are a little below those rates at
which the onset of brittle behaviour was observed
(Mcelhaney 1966). For each sample, the yield stress sP
was calculated as in figure 1a. Rewriting equation
(1.1) as

sP Z
1

n
HKX CY ln

d3

dt

� �
0

� �
; with

X Z kBT ln
d3

dt

� �
and Y Z kBT ;

ð1:3Þ

we carried out a multiple linear regression of sP in
terms of X and Y. An extremely significant (p!0.0001)
correlation was found between the dependent (stress
sP) and independent variables (X andY ). The resulting
J. R. Soc. Interface (2007)
fit parameters are: HZ1.11G0.34 eV; vZ0.64G
0.07 nm3; and (d3/dt)0Z1.11!109 sK1 (3.00!
106–4.09!1011 sK1), and the plane fit is shown in
figure 3a. Representing our data in terms of s–T
graphs, as usual in analyses of thermally activated
plasticity (Kocks et al. 1975), we show mean value and
standard deviation of the yield stress for several values
of temperature and strain rate in figure 3b. The yield
stress decreases with increasing temperature for all the
three strain rates. The broken lines show how equation
(1.3) predicts that the yield stress sP would vary as a



280 Molecular level bone plasticity H. S. Gupta et al.
function of temperature at a given strain rate (using the
fitted parameters from figure 3a).

The discrepancy between the activation volumes
obtained from the global survey of yield stress data
(0.64G0.07 nm3) and from the differential data of
various flow stresses (1.00G0.19 nm3) is not surprising.
The former refer to specimens with unmodified
microstructure, at the onset of plastic deformation,
the latter to microstructures already modified by
plastic deformation. Such subtleties amount to strain
and stress dependence of the activation volume (Kocks
et al. 1975) and are beyond the concern of present bone
research. We therefore take the latter value as
confirmation of the former.
4. DISCUSSION

To summarize, we find that plastic deformation in bone
is characterized by a very small activation volume n of
the order of 1 nm3 and an activation enthalpy of the
order of HZ1.1 eV. This activation enthalpy is smaller
than typical covalent bond energies (C–C bond approx.
3.6 eV) but much larger than hydrogen bonds (approx.
40 meV). The Gibbs free energy G(s)ZHKvs is the
free energy to be supplied during one activation event
in the plastic deformation of bone. The applied stress s
increases the probability of the irreversible deformation
occurring, by doing work against a certain basic volume
of deformation v. H and v carry information on the
energy barrier needed to go from the undeformed to the
deformed state, but they give no information about
the kinetics of this process.

The small activation volume suggests that the
elementary process corresponds to the breaking of
just a few spatially confined bonds. In metal plasticity,
which is controlled by the dynamics of dislocations
(Schoeck 1965; Gibbs 1967; Kocks et al. 1975), the
activation volume is the area of slip ! the Burgers
vector (Kirchner 2006). In the case of bone, the small
size of the activation volume is likely owing to a
confinement of the soft organic matrix (which is likely
to flow) between nanometre-sized particles. Size effects
on mechanical properties are well known from the
science of materials strength as seen, for example, in
recent work (Uchic et al. 2004; Espinosa et al. 2005).
Our recent in situ diffraction results (Gupta et al. 2005,
2006) suggest that after the onset of macroscopic
plasticity, only elastic deformation is retained within
fibrils and plastic deformation occurs between them.

The magnitude of the activation enthalpyHy1.1 eV
suggests that the bonds being broken are not likely
covalent. Hydrogen bonds, having energy of 40 meV
each, would have to break in large numbers (approx.
50) simultaneously to provide the necessary energy, but
such a situation is inconsistent with the small acti-
vation volume of up to 1 nm3. As a consequence, the
most likely types of bonds are charge interactions
between molecules in the extrafibrillar space. It is not
known which these molecules are, but substantial
amounts of non-collageneous molecules, such as pro-
teoglycans (Scott 1992), osteopontin (Sodek et al. 2000)
or fetuin A (Heiss et al. 2003), are present in the bone
matrix. These (mostly negatively) charged molecules
J. R. Soc. Interface (2007)
(or any combination of them) could be responsible for
forming a plastic ‘glue’ between fibrils. The existence of
such a ‘glue’ has recently been proposed following force
spectroscopy experiments (Thompson et al. 2001) and
it was shown that the occurrence of bond breaking and
reforming was related to the presence of calcium ions
(Fantner et al. 2005, 2006). The energy associated with
these ‘sacrificial bonds’ is consistent with the activation
enthalpy of 1 eV found here (Fantner et al. 2006).
Recently, it has also been shown that the deformation
of polyelectrolyte capsules is associated with breaking a
group of neighbouring charge interactions on polyelec-
trolyte segment (Leporatti et al. 2001). The activation
enthalpy was shown to be ca 1 eV in this case and the
activation volume (corresponding to the size of the
polyelectrolyte segment) was also in the range of ca
1 nm3 (Leporatti et al. 2001). Breaking and reformation
of bonds has also been found in the hemicellulose matrix
between cellulose fibrils in the cell wall during plastic
deformation of wood (Keckes et al. 2003).

Thermodynamics of plastic deformation interprets
the pre-exponential factor (d3/dt)0 as a product of an
attempt frequency n0 and the deformation 30 caused by
each activated event. The latter quantity 30 depends on
the process controlling strain (dislocation density,
obstacle density, etc.). It is difficult to put a precise
value for the attack frequency n0, but it must be of the
order of vibrations present in the medium. The phonon
spectrum of bone has never been measured, but
presumably, it must be similar to the spectrum of
type I collagen found in tendon (Middendorf et al.
1995). The latter shows several broad maxima between
1!1013 and 6!1013 sK1, which have been attributed to
various localized modes. Given the fact that possible
localized modes at the interface between fibrils must be
low-frequency ones otherwise the interfacial entropy
would be negative, it is not unreasonable to assume a
value of n0Z1012–13 sK1. Our fit results provide a value
lower than this range (1.11!109 sK1) but, unsurpris-
ingly in light of the discussion above, this is the fit
parameter that showed a substantial error (approx.
30% in the logarithm) in the multiple linear regression,
leading to a possible range of values from 3.00!106 to
4.09!1011 sK1.

Damage has been associated with the post-yield
behaviour, but the nature of the damage is unclear
(Carter & Caler 1985; Schaffler et al. 1994; Zioupos &
Currey 1994; Zioupos et al. 1994; Zioupos 1999; Reilly &
Currey 2000). The damage is believed to be related to
the formation of microcracks or smaller defects at weak
interfaces such as between old and new bone packets in
trabecular bone, between lamellae in lamellar cortical
bone or between osteons and interstitial bone (Lakes &
Saha 1979; Braidotti et al. 2000; Diab et al. 2006;
Peterlik et al. 2006). In the present work, we try to
avoid the effect of these weak interfaces, both by
preparing samples whose cross-section is of the order of
the width of single fibrolamellar bone packets (see
electronic supplementary material) and by studying
this relatively parallel fibred tissue in tension. Never-
theless, the breaking of bonds (within an activation
volume of ca 1 nm3) can be regarded as damage at the
supramolecular level which has, however, the
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(glue layer) between mineralized fibrils controls bone
plasticity, based on results in this work as well as previous
papers proposing deformation by sacrificial bonds (Thompson
et al. 2001; Fantner et al. 2005; Hansma et al. 2005) and
demonstrating a shear deformation of the glue layer (Gupta
et al. 2005). Long chains of molecules (possibly negatively
charged polyelectrolytes like osteopontin (Sodek et al. 2000),
fetuin A (Heiss et al. 2003) or proteoglycans (Scott 1992), or
combinations of those) are interacting by charges, probably
with the help of cations such as calcium (circles). Charges
located on a given segment will have to be broken together
giving rise to the observed activation enthalpy of ca 1 eV
within a typical volume of 1 nm3. The arrows indicate the
movement of the collagen fibrils giving rise to shear in the
matrix layer (Gupta et al. 2005). Mineral particles are not
explicitly drawn, but present in the fibrils as well as in the
interfibrillar space.
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capability of self-healing by the reformation of the
bonds. An indication that this is the case is seen in
cyclic tensile loading of our samples in the inelastic
regime (figure S6 in electronic supplementary
material). The initial slopes of the loading segments
are similar, indicating recovery at the material level.
However, the progressively lower yield stress for
successive cycles implies that the recovery may be
incomplete, due to damage at the nanoscale level. As
such, the post-yield behaviour reported here has more
resemblance to plastic deformation in metals than to
damage as observed in many composite materials.

The results of this paper are in excellent agreement
with the previous work showing that the deformation in
bone might be associated with (calcium-dependent)
sacrificial bonds (Thompson et al. 2001; Fantner et al.
2005, 2006) and with independent work demonstrating
that the plastic deformation occurs in a thin ‘glue’ layer
between fibrils (Gupta et al. 2005, 2006). The picture
which emerges is that plastic deformation is controlled
by an elementary process where segments of molecules
in the interfibrillar layer are connected by charge
interactions with a total energy of 1 eV in a volume of
1 nm3 (corresponding to the volume of the rigid
molecular segments which move in a coordinated
fashion). These results are summarized in the model
drawn in figure 4.
J. R. Soc. Interface (2007)
In conclusion, our mechanical tests on bone estab-
lished a high sensitivity of the macroscopic plastic
deformation to the strain rate and temperature. By
putting our results in the scheme of thermally activated
processes controlling bone plasticity, quantitative
results can be obtained on the length-scale and energy
associated with bone plasticity mechanisms at the
molecular level. The fundamental processes involved in
plastic deformation are localized to within 1 nm3, and
with energy of the order of 1 eV. We speculate that
these processes are localized in a small fraction of the
bone tissue—the extrafibrillar matrix—and correspond
to the disruption of calcium-mediated ionic bonds
between the long and irregular chains of molecules
constituting this matrix.
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