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Abstract 38 

A large number of diversity metrics are available to study and monitor biodiversity, and their 39 

responses to biodiversity changes are not necessarily coherent with each other. The choice of 40 

biodiversity metrics may thus strongly affect our interpretation of biodiversity change and, hence, 41 

prioritization of resources for conservation. Therefore it is crucial to understand which metrics 42 

respond to certain changes, are the most sensitive to change, show consistent responses across 43 

different communities, detect early signals of species decline, and are insensitive to demographic 44 

stochasticity. Here we generated synthetic communities and simulated changes in their composition 45 

according to 9 scenarios of biodiversity change to investigate the behaviour of 14 biodiversity 46 

metrics. Metrics showed diverse abilities to detect changes under different scenarios. Sørensen 47 

similarity index, arithmetic and geometric mean abundance, species and functional richness were 48 

the most sensitive to community changes. Sørensen similarity index, species richness and geometric 49 

abundance showed consistent responses across all simulated communities and scenarios. Sørensen 50 

similarity index and geometric mean abundance were able to detect early signals of species decline. 51 

Geometric mean abundance, and functional evenness under certain scenarios, had the greatest 52 

ability to distinguish directional trends from stochastic changes, but Sørensen similarity index and 53 

geometric mean abundance were the only indices to show consistent signals under all replicates and 54 

scenarios. Classic abundance-weighted heterogeneity indices (e.g. Shannon index) were insensitive 55 

to certain changes or showed misleading responses, and are therefore unsuitable for comparison of 56 

biological communities. We therefore suggest that separate metrics of species composition, 57 

richness, and abundance should be reported instead of (or in addition to) composite metrics like 58 

Shannon index. 59 

 60 

Keywords: Abundance, Biodiversity indicators, Biodiversity monitoring, Similarity Index, 61 

Functional Diversity, Phylogenetic Diversity, Shannon Index, Simpson Index, Synthetic community. 62 

 63 
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1. Introduction 64 

In a period of rapid global change, monitoring biodiversity changes is key to detect early 65 

warning signals of decline, infer the causes of such decline, and develop effective conservation 66 

strategies to mitigate it (Ash et al., 2009; Balmford et al., 2005, 2003; Buckland et al., 2005; 67 

Butchart et al., 2010; Gregory et al., 2005; Nichols and Williams, 2006; Tittensor et al., 2014). The 68 

multifaceted nature of biodiversity (Gaston, 1996; Purvis and Hector, 2000) is studied through a 69 

large number of metrics. Different metrics measure different components of biodiversity such as 70 

species richness, abundance, evolutionary history (i.e. phylogenetic diversity; Faith, 1992), and 71 

functional traits (Mason et al., 2005). However, as no single metric captures all relevant aspects of 72 

biodiversity, none of them taken individually can provide a full picture of the patterns of change. 73 

Further, metrics can even be misleading if considered individually. For instance, the geometric 74 

mean abundance can increase if rare species increase in abundance, while total abundance is 75 

decreasing (Schipper et al., 2016). Similarly, invasive species can increase species richness or 76 

functional and phylogenetic diversity, while having negative impacts on the abundances of native 77 

species (Thomas, 2013; Winter et al., 2009). The rate and direction of change in a metric may also 78 

depend on idiosyncrasies in the state of the initial community, and/or natural ecological succession. 79 

Moreover, in addition to directional changes in biodiversity, species relative abundances may 80 

fluctuate over shorter time frames due to demographic stochasticity or competitive and predator-81 

prey dynamics. This “noise” can confound the signal of interest (i.e. directional change in response 82 

to a specific driver). 83 

The choice and response of biodiversity metrics may strongly affect our interpretation of 84 

biodiversity change and, hence, prioritization of resources for conservation (Gaston and Spicer, 85 

2004; Purvis and Hector, 2000). Thus, it is crucial to understand how alternative metrics respond to 86 

specific changes, which metrics are the most sensitive in order to detect early signals of biodiversity 87 

decline, and which ones respond consistently to changes. Empirical datasets allow investigating 88 

how metrics change in space and time, but have several limitations. These include the limited 89 
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number of possible scenarios and communities represented, and the lack of control on the 90 

underlying cause of change, the likely co-existence of several mechanisms of decline (e.g., decline 91 

of habitat specialists due to the loss of their habitat type and decline of large species due to 92 

overexploitation). This complicates the attempts to link the behaviour of a diversity metric to a 93 

definite mechanism of biodiversity change. Virtual datasets allow full control of both the 94 

community composition and the mechanism of decline, and thus allow the comparison of the 95 

relative responses of the diversity metrics (Zurell et al., 2010) by simulating ecological processes 96 

under alternative scenarios (Dornelas, 2010; Lamb et al., 2009; Münkemüller and Gallien, 2015; 97 

Olden and Poff, 2003; Supp and Ernest, 2014). 98 

 In this study, we explored the behaviour of a set of diversity metrics under different 99 

scenarios of biodiversity change. To this end, we generated synthetic communities and simulated 100 

changes in their composition to investigate the responses of the metrics. We recorded how metrics 101 

changed over time under each scenario, and identified those that were most sensitive to these 102 

community changes and showed a consistent response irrespective of the state of the original 103 

community. We also assessed non-linearity in metrics responses, and their effect on our ability to 104 

detect early warning signals of biodiversity change. Finally, we measured the signal-to-noise ratio 105 

(SNR) of the metrics under each scenario to compare the metrics’ ability to detect directional 106 

changes in biological communities.  107 

 108 

2. Methods 109 

 110 

2.1 Virtual dataset 111 

We assumed a landscape area of 10,000 km
2
 consisting of two habitats, one dominant and one 112 

secondary. For convenience we will refer to these habitats as forest and grassland, respectively. The 113 

size of the landscape was chosen such that it was large enough to allow each species to form a 114 

population from ~15 to >50,000 individuals. Forest covered a random proportion between 0.7 and 115 
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0.9 of the entire landscape.  116 

 We generated 150 species, and randomly assigned to each a diet, body mass, population 117 

density, and affinity level for each of the two habitats. The number of species was chosen as a 118 

compromise between representativeness of a biological community and computation time for the 119 

simulations. For simplicity, we simulated static assemblages with no interactions among species, 120 

and restricted the species pool to the consumers in the community.  121 

 To simulate realistic communities, we followed established macroecological rules. 122 

Specifically, our synthetic communities had the following properties: 1) species in higher trophic 123 

levels tended to be larger than species in lower trophic levels; and 2) smaller species tended to be 124 

more common than large species (Fig. 1). This was implemented as follows. We sampled a diet 125 

category for each species, where herbivores (H), omnivores (O) and carnivores (C) had relative 126 

probabilities of 0.5, 0.3 and 0.2 respectively. The body masses (kg) were then sampled from log-127 

normal distributions (Loder et al., 1997) reflecting the negative relationship between trophic level 128 

and body mass (H: log-mean = 0.5, log-sd = 1.5; C: log-mean = 0.5 multiplied by a random value 129 

between 0.5 and 4, log-sd = 1.5; O: log-mean = mean between the log-mean for H and C, log-sd = 130 

1.5; see predator-prey body mass ratio reported by Brose et al., 2006). Based on the species' body 131 

mass and diet category, we estimated population density (ind/km
2
) for each species using allometric 132 

relationships (log population density vs. log body mass), where the slope of the relationship was 133 

sampled from a normal distribution (mean = -0.75, sd = 0.1; Blackburn and Gaston, 1997). 134 

 We assumed forest habitat to be richer in species than grassland habitat: within the 135 

community, 40% of the species were exclusively forest specialists (affinity of 1 to forest and 0 to 136 

grassland), 20% were exclusively grassland specialists (affinity of 1 to grassland and 0 to forest), 137 

and 40% were ubiquitous. The affinity value of ubiquitous species to forest habitat was sampled 138 

from a symmetric beta distribution (shape parameters = 2; so that central values were more frequent 139 

than extreme values), and the habitat affinity to grassland was equal to 1-affinity to forest (i.e. the 140 

two affinity values summed to 1). The affinity values were multiplied by the estimated species 141 
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population abundance (in turn obtained by multiplying density by habitat area) in each of the two 142 

habitats to produce a realized abundance for each species.  143 

  Finally, we simulated two phylogenetic trees that described the relatedness among the 144 

species in the dataset. The first phylogenetic tree assumed that species with similar traits are more 145 

phylogenetically similar. For this, for each community we randomly sampled one or more 146 

biological traits (body mass, diet, affinity for the two habitats), and used them to generate a distance 147 

matrix based on Gower's distance, as it allows using both continuous and categorical data types 148 

(Gower, 1971). The phylogenetic tree was obtained by applying a neighbour joining approach on 149 

the distance matrix. The second phylogenetic tree assumed no dependency on biological traits. For 150 

this, we followed the same procedure of as described above, yet with biological traits randomly 151 

shuffled across species before calculating the distance matrix. 152 

 153 

2.2 Biodiversity change scenarios 154 

To explore how metrics behave under diverse conditions, we prepared nine scenarios of biodiversity 155 

change. Scenarios (Table 1) ranged from the uniform or proportional decline of all species in the 156 

community, to the decline of a subset of species sharing certain characteristics (e.g. traits, relative 157 

abundance), to the change in the area available for different species (i.e. extent of habitat). These 158 

scenarios span the range of disturbances considered by Dornelas (2010), and expand it to 159 

accommodate different susceptibilities to change among different types of species. To measure 160 

metrics' sensitivity to noise, we considered an additional scenario of stochastic demographic 161 

fluctuations (see section 2.4; Table 1). The simulations consisted of 10 time steps, whereby the first 162 

step represented the initial community and the nine subsequent time steps were used to simulate 163 

change until reaching an equilibrium (e.g. extinction of a given group of species). Each scenario 164 

was deterministic, but was replicated 1,000 times over independently sampled initial communities 165 

to account for stochasticity in the simulation parameters (% of forest, body-mass distribution, 166 

density distribution, diet categories distribution, habitat preferences). 167 
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 168 

2.3 Diversity metrics 169 

We recorded a set of metrics (Table 2) encompassing change in community composition from an 170 

initial community (temporal turnover), species abundance, taxonomic diversity, functional diversity 171 

and phylogenetic diversity. The set included 12 metrics: Sørensen similarity to the species 172 

composition of the original community (i.e. time step 1), arithmetic mean abundance, geometric 173 

mean abundance, species richness, Simpson diversity index, Shannon index, Faith's phylogenetic 174 

diversity, weighted Faith's phylogenetic diversity, functional evenness, functional divergence, 175 

functional dispersion and functional richness. Functional diversity metrics covered four traits: body 176 

mass, diet category, and the affinity levels for the two habitats. 177 

 Sørensen similarity index measures the change composition between two or more 178 

communities. It is commonly used to compare the composition of different communities in space (β 179 

diversity), but can also be used to compare the same community between consecutive time steps, or 180 

to a single baseline time period (temporal turnover; Dornelas et al., 2014; Shimadzu et al., 2015). 181 

The geometric mean abundance tends to be more sensitive to changes in abundances of rare species 182 

than the arithmetic mean, and acts as a composite measure of evenness and abundance (Buckland et 183 

al., 2011; Gregory and van Strien, 2010; Gregory et al., 2005; Schipper et al., 2016; van Strien et 184 

al., 2012). Because the geometric mean cannot handle zero values, it is common to add a small 185 

constant to all values prior the calculation, and to remove the constant from the result (Buckland et 186 

al., 2011, 2005). Here, we added 1 to all abundances prior the calculation, and removed 1 from the 187 

geometric mean. The Simpson and Shannon indices measure species diversity on the basis of 188 

species richness and evenness in abundance. Simpson diversity index tends to be more sensitive 189 

than Shannon index to the dominant species in the community (Nagendra, 2002). Faith’s 190 

phylogenetic diversity is calculated as the total length of all branches of the phylogenetic tree 191 

linking species in the community (Faith, 1992). The weighted Faith’s phylogenetic diversity is 192 

weighted by species’ relative abundance (Swenson, 2014). Functional richness represents the 193 
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amount of functional trait space filled by the community and is calculated as the volume of the 194 

convex hull of the trait space (Villéger et al., 2008). Functional dispersion also measures the trait 195 

diversity in the community, but differs from functional richness in being less sensitive to outliers. 196 

Functional dispersion is calculated as the weighted mean distance in multidimensional trait space of 197 

individual species to the weighted centroid of all species, where weights correspond to the relative 198 

abundances of the species (Laliberté and Legendre, 2010). Functional evenness describes the 199 

evenness of abundance distribution in the functional trait space (Mason et al., 2005). Functional 200 

divergence represents how abundance is spread along a functional trait axis, within the range 201 

occupied by the community (Mason et al., 2005); it takes lower values when the most abundant 202 

species have functional traits that are close to the community centre of functional trait space, and 203 

higher when at the extremes. 204 

 205 

2.4 Analyses 206 

To quantify the sensitivity of biodiversity metrics under different scenarios, for each of the 207 

1,000 replicates, we fitted a linear regression model between the biodiversity metric values and time 208 

(10 time steps). Biodiversity metrics were first standardized to a mean of zero and a SD of one 209 

across all replicates and scenarios, to obtain comparable slopes among the metrics under alternative 210 

scenarios. Trends are thus represented as standardized slopes, which indicate the rate of change in 211 

the metrics. The higher the slope values, the higher the sensitivity of the metrics to a given scenario 212 

of biodiversity change. We evaluated the consistency of the slope sign over all replicates, and 213 

considered metric responses significantly consistent if the slope sign was the same in >95% of the 214 

replicates. Thus, the response of metrics showing significant slopes can be considered more 215 

consistent across diverse communities. In order to detect differential abilities of the metrics to catch 216 

early (EWS) vs. late warning signals (LWS) of biodiversity change (non-linear responses), we also 217 

calculated the standardized slopes for the first two and the following eight time steps separately. 218 

Finally, to compare the metrics’ abilities to detect directional changes rather than stochastic 219 
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fluctuations in species abundances, we computed the signal-to-noise ratio (SNR) by dividing the 220 

slope of each replicate under each scenario by the standard deviation of the slopes of all replicates 221 

in the scenario of “Neutral community with stochastic fluctuations”. SNR was computed only for 222 

those metrics that are weighted by species abundance, and not for other metrics such as species 223 

richness that are by definition insensitive to stochastic demographic fluctuations unless these lead 224 

species to extinction. However, under the “Neutral community with stochastic fluctuations” we 225 

assumed that extinctions were compensated by colonizations of species with similar characteristics 226 

(see Table 1). We considered the SNR sign significantly consistent if it was the same in >95% of the 227 

replicates. 228 

The simulation was entirely done in R v. 3.0.3 (R Core Team, 2016). We calculated the 229 

Simpson, Shannon and Sørensen indices using the ‘vegan’ package v. 2.2. (Oksanen et al., 2012), 230 

Faith’s phylogenetic diversity using ‘picante’ package v. 1.6 (Kembel et al., 2010) and functional 231 

diversity metrics using ‘FD’ package v. 1.0. (Laliberté et al., 2014).  232 

 233 

3. Results 234 

3.1 Metric behaviour under alternative scenarios 235 

The diversity metrics exhibited different temporal trends under the nine scenarios of biodiversity 236 

change (Fig. 2, 3, Fig. A1-8). Under the “Uniform decline” scenario, where all species decreased by 237 

the same number of individuals and rare species went extinct first, all metrics showed a decrease, 238 

especially species richness, functional richness and functional dispersion (Fig. 2). The “Proportional 239 

decline” scenario, where all species declined but their relative abundance remained unchanged until 240 

extinction, was characterized by a decrease in all metrics, especially the Sørensen similarity index, 241 

Simpson index and functional divergence (Fig. A1). When common species declined, the Sørensen 242 

similarity index and arithmetic mean abundance decreased most, followed by geometric mean 243 

abundance and species and functional richness. Conversely, the Simpson and Shannon indices 244 
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increased, as did functional dispersion, evenness and divergence, and weighted phylogenetic 245 

diversity (Fig. A2). In the “Toward evenness” scenario, where the community gradually converged 246 

to an even abundance distribution, geometric abundance, richness and functional metrics weighted 247 

by abundance increased; arithmetic abundance and species richness remained stable; and Sørensen 248 

similarity index decreased (Fig. A4). Both the “Rare species decline” and “Large species decline” 249 

scenarios were characterized by a slight decrease in geometric mean abundance, species richness 250 

and functional richness (Fig. A3, A5). Under the “Invasive species” scenario, metric responses were 251 

weak, with some negative and some positive changes but all close to zero (Fig. A6). In the “Habitat 252 

loss” scenario, where forest extent was gradually decreased, the Sørensen similarity and the 253 

arithmetic mean abundance decreased, followed by the geometric mean abundance, species richness 254 

and functional richness, while functional dispersion, evenness and divergence, and the weighted 255 

phylogenetic diversity (using the trait-based tree) increased (Fig. A7). When the forest habitat loss 256 

was replaced by grassland, the metrics behaved similarly to the “Habitat loss” scenario, with the 257 

exception of the arithmetic mean abundance, which, despite decreasing, was partly balanced by the 258 

increase in abundance of grassland species (Fig. A8). 259 

 260 

3.2 Metric sensitivity 261 

In general, the responsiveness of the metrics was mostly determined by the specific change in the 262 

community: richness-based metrics (species richness, functional richness, phylogenetic diversity) 263 

showed stronger responses when the change led to a higher number of extinctions, abundance 264 

metrics (arithmetic and geometric mean) responded strongest when abundance declined in many 265 

species, and abundance-weighted metrics (Simpson, Shannon, weighted phylogenetic diversity, and 266 

functional dispersion, evenness and divergence) mainly responded to changes in species abundance 267 

distributions. The metrics most sensitive to biodiversity change (i.e., those with steeper slopes) were 268 

the Sørensen similarity index, arithmetic and geometric mean abundance, species richness and 269 
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functional richness. The weighted phylogenetic diversity metrics and functional divergence were 270 

less sensitive in most scenarios (Fig. 3). 271 

 272 

3.3 Metrics’ consistency across iterations 273 

Sørensen similarity index, species richness and geometric mean abundance were the only metrics 274 

that exhibited consistent responses in more than 95% of the replicates under all scenarios. 275 

Arithmetic mean abundance, Simpson and Shannon indices, and functional richness were consistent 276 

in most of the scenarios, whereas phylogenetic diversity, weighted phylogenetic diversity, 277 

functional dispersion, evenness and divergence often showed inconsistent responses across 278 

replicates (Fig. 3). 279 

 280 

3.4 Early versus Late warning signals of biodiversity change 281 

Many metrics showed non-linear responses (Fig. 4): some showed convex (accelerating) or concave 282 

(deaccelerating) responses, or inverted their trend. Species richness and functional richness 283 

generally showed a convex response, remaining stable until species went extinct. Under the 284 

“Proportional decline” scenario all abundance-weighted metrics behaved similarly, with a stable 285 

initial pattern followed by a steep decline when species went extinct. Similarly, geometric mean 286 

abundance response was stronger at later stages under the “Habitat replacement” scenario. Concave 287 

responses were rare, and only occurred in particular instances, such as geometric mean abundance 288 

and species richness and functional richness under the “Uniform decline” scenario (Fig. 2). In other 289 

instances, the trend reversed during the simulation, for example functional evenness under “Rare 290 

species decline” and “Large species decline”, which decreased at first, but increased when species 291 

went extinct (Fig. A3, A5). Similarly, under the “Habitat replacement” scenario the geometric mean 292 
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abundance, Simpson and Shannon indices, and functional evenness and dispersion first increased 293 

influenced by grassland species growth, but later decreased as a consequence of forest species 294 

decline and extinction (Fig. 4, A8). Among the metrics considered, Sørensen similarity index and 295 

geometric mean abundance showed more consistent responses in the first two and last eight time 296 

steps. 297 

 298 

3.5 Sensitivity to demographic fluctuations 299 

The metrics which were least confounded by demographic stochasticity (highest SNR) were 300 

the geometric mean abundance (to a lesser extent under the “Invasive species” scenario), the 301 

functional evenness under the “Proportional decline” and “Toward evenness” scenarios, and the 302 

functional divergence under the “Proportional decline” (Fig. 5). The other metrics did not show 303 

evident differences in SNR. The SNRs of the Sørensen similarity index and the geometric mean 304 

abundance exhibited consistent responses under all scenarios. Arithmetic mean abundance was also 305 

fairly consistent in most scenarios, whereas Shannon and Simpson indices, weighted phylogenetic 306 

diversity and functional dispersion, divergence and evenness were often inconsistent. 307 

 308 

4. Discussion 309 

Simulating biodiversity change through time allowed us to explore the behaviour of a set of 310 

biodiversity metrics and assess their suitability for monitoring biodiversity change, including 311 

declines in species’ abundances that can be of conservation concern. Richness-based metrics require 312 

presence data, which is less time-consuming and costly to collect than abundance data (Costello et 313 

al., 2016). Knowing which species are present, particularly those that are ecologically important, or 314 

may be of conservation concern, is fundamental to biodiversity data analysis (Asaad et al., 2016; 315 

Latombe et al., 2016). Functional richness can also provide important complementary information 316 
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that can be more directly related to ecosystem function and stability. However, richness-based 317 

metrics are not sufficient on their own for biodiversity monitoring, because they only respond to 318 

species extirpations or colonizations. Hence, they are inadequate for detecting early warning signals 319 

of biodiversity change. 320 

The Sørensen similarity index was used as a temporal beta-diversity index, and showed high 321 

sensitivity to changes, as it detects any change in composition and abundance of the species relative 322 

to the initial community. The extent of its change is proportional to the magnitude of the change, 323 

which, although desirable in some instances, it may under-estimate small but significant change. 324 

For example, the decline of elephants in Savanna would have little impact on the Sørensen 325 

similarity index, but potentially large indirect impacts on the habitat structure and the community. 326 

Interpretation of why this, and other beta-diversity indices, are changing requires knowing which 327 

species occurrences and abundances are changing.  328 

Abundance metrics are appealing for biodiversity monitoring, because a change in 329 

abundance of one or more species may lead to a change from one community to another, may 330 

reflect the decline or recovery of a threatened species, or an alien species becoming invasive. 331 

However, trends in population abundance can be easily confounded by two factors: demographic 332 

and environmental stochasticity, and abundance compensations. Populations of some species, such 333 

as microbes, invertebrates and plants, may live at high population densities and fluctuate by orders 334 

of magnitude due to natural reproductive cycles and weather events (Damuth, 1987; Sinclair, 2003). 335 

As a consequence, such species may dominate the arithmetic mean abundance of a given 336 

community, either being common or during outbreaks, and can easily confound temporal trends by 337 

natural demographic fluctuations. In this respect, the geometric mean abundance appears to be more 338 

useful by being more sensitive to the rare species of the community (van Strien et al., 2012), 339 

whether this is because they live at low densities or are close to extinction. Less abundant species, 340 

such as top predators or large herbivores, may be keystone species (Estes et al., 2011; Leleu et al., 341 
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2012; Ripple et al., 2015, 2014) that tend to be more vulnerable to extinctions (Cardillo et al., 2005; 342 

Purvis et al., 2000) and hence deserve particular conservation attention. On the other hand, small 343 

common species may be fundamental for ecosystem functioning and services (Gaston and Fuller, 344 

2008).  345 

Abundance compensation may occur, for example when the increase of one species leads to 346 

the decline of another (e.g. invasive species), or conversely when the decline of one species prompts 347 

the increase of another one (e.g. competitive release), or just by the occurrence of two simultaneous 348 

but unrelated events. In any of these cases, arithmetic mean abundance may be easily confounded, 349 

while geometric mean abundance would respond by being sensitive to the change in the rarer of the 350 

two species. An example is given by the “Toward evenness” scenario where the arithmetic mean 351 

was unresponsive, but the geometric mean abundance increased in response to the growth of 352 

populations of rare species. For these reasons abundance metrics on their own may not provide 353 

sufficient information for biodiversity monitoring. It is therefore essential that the identities of the 354 

species whose abundance is changing are also recorded. 355 

Abundance-weighted heterogeneity indices carry more information than richness alone and 356 

are sensitive to population changes. However, their weighting of richness and relative abundance 357 

varies (Magurran, 2004) and these components can vary independently (e.g. Costello and Myers, 358 

1987). Thus they may exhibit counter-intuitive trends and non-linear responses. An illustrative 359 

example is presented by the Shannon and Simpson indices, which increase if common species 360 

decline but abruptly change when these species go extinct (Fig. S2). This questions the reliability of 361 

such metrics for biodiversity monitoring (van Strien et al., 2012). In addition, our results question 362 

the validity of such metrics for the comparison of the biodiversity state between biological 363 

communities. Evenness is certainly an aspect of diversity, but we should also recognize that 364 

abundance distributions are naturally skewed (Magurran and Henderson, 2003) and an increase of 365 

evenness does not necessarily indicate greater ‘biodiversity’ (Schipper et al., 2016; van Strien et al., 366 
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2012). This problem is further exacerbated in metrics that cannot account for extinct species, such 367 

as functional diversity metrics (i.e. that do not allow for zero abundance values). Functional 368 

diversity metrics weighted by abundance might increase after the loss of rare and particular species 369 

(in terms of traits), thus leading to the conclusion that an impoverished community is actually more 370 

diverse than an intact community. All in all, we consider that phylogenetic and functional diversity 371 

metrics can only be informative when considered in relation to the more fundamental variables of 372 

species composition, richness and abundance and where they have been studied for long enough to 373 

relate their dynamics to actual changes in community structure.  374 

In this study, we employed a simplified model of biological communities where the decline 375 

or loss of a certain biodiversity component does not prompt an increase or decrease in another. Such 376 

interactions can be highly complex and unpredictable (Rossberg, 2013; Yodzis, 1988), and are 377 

likely to complicate interpretation. The trends that we have depicted are thus useful to investigate 378 

metrics' behaviour under controlled conditions, but may not be considered realistic representations 379 

of community change under specific pressures. We considered one form of noise deriving from 380 

population demographic stochasticity, but in practice, another form of noise is errors in abundance 381 

estimates due to e.g. detection bias. The influence of error in abundance estimates on diversity 382 

metrics is treated in Lamb et al. (2009). In our simulations, we simulated communities 383 

characterized by certain macroecological patterns in order to simulate realistic species assemblages 384 

(e.g. body mass distribution, trophic levels, body mass-density relationship). However in practice, 385 

another source of uncertainty is the choice of the empirical sample of species monitored (Maurer 386 

and McGill, 2011). These samples often focus on a given taxon or are collected on an opportunistic 387 

basis. Further research is needed to investigate the extent to which incomplete samples can inform 388 

about overall changes in a biological community. 389 

The Convention on Biological Diversity (CBD) has renewed the commitment to halt or at 390 

least reduce the rate of biodiversity loss (CBD, 2010). To this end, it is necessary to collect 391 
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biodiversity data in a systematic way, capturing those key biodiversity dimensions that allow us to 392 

monitor biodiversity change through time (Pereira et al., 2013), and prevent further biodiversity loss 393 

by prioritizing conservation funding and actions. Our results clearly indicate that no single metric 394 

should be employed for biodiversity monitoring. However, Sørensen similarity index and geometric 395 

mean abundance share several ideal properties for biodiversity monitoring such as the sensitivity to 396 

most scenarios of change, consistency in their responses irrespective of the original community 397 

composition, the ability to capture early signals of biodiversity change, and robustness to 398 

demographic stochasticity. Species richness and functional richness also share several of these 399 

properties. Therefore we recommend that biodiversity monitoring include the following primary 400 

data: (1) presence of species in the community (i.e. species composition), and (2) species 401 

abundance. From these at least the geometric mean abundance, Sørensen’s similarity index (or 402 

similar turnover measures) and species richness should be calculated. While metrics such as 403 

phylogenetic and functional diversity may also be useful, scientists should consider whether they 404 

provide added value in terms of conveying useful information to end-users such as conservation 405 

managers. For example, phylogenetic diversity and functional richness are often correlated with 406 

species richness (Schipper et al., 2016). Generally, a small set of complementary and conceptually 407 

simple metrics is more transparent, intuitive and informative for policy makers on the underlying 408 

causes of changes in biodiversity (e.g. Latombe et al. 2016 for invasive species). 409 

 410 
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Table 1. Description of the scenarios of biodiversity change. Each of the scenario is simulated for 9 416 

consecutive steps (from the 2
nd

 to the 10
th

). 417 

 418 

Scenario Description Rationale 

Uniform 

decline 

At each time step all species are reduced by 1/9 of the mean abundance of 

all species (i.e. species decline at different rates). By the end of the 

simulation half of the species have gone extinct. 

Extreme scenario to 

investigate metric 

behaviour where all 

species are losing the 

same number of 

individuals. 

Proportional 

decline 

At each time step all species are reduced by 1/9 of their original population 

size (i.e. species decline at the same rate). By the end of the simulation all 

species have gone extinct. 

General decline of all 

species, e.g. in response 

to the loss of natural 

areas. 

Large 

species 

decline 

At each time step all large species are reduced by 1/9 of their original 

population size. By the end of the simulation all large species have gone 

extinct. Large species are defined as those having a body mass larger than 

the 75
th

 percentile of the body mass of all species in the initial community. 

Large species are 

generally more 

vulnerable to extinction 

(Cardillo et al., 2005; 

Purvis et al., 2000), and 

are often targeted for 

subsistence or trophy 

hunting. 

Rare 

species 

decline 

At each time step all rare species are reduced by 1/9 of their original 

population size. By the end of the simulation all rare species have gone 

extinct. Rare species are defined as those having a population size lower 

than the 25
th

 percentile of the population size of all species in the initial 

community. 

Trophy 

hunting/Collection of 

rare animals (e.g. 

seashells, corals, 

butterflies..), together 

with higher 

genetic/demographic or 

environmental 

stochasticity, can easily 
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trigger extinction vortex 

(Courchamp et al., 2006; 

Gilpin and Soulé, 1986). 

Common 

species 

decline 

At each time step all common species are reduced by 1/9 of their original 

population size. By the end of the simulation all common species have gone 

extinct. Common species are defined as those having a population size 

higher than the 75
th

 percentile of the population size of all species in the 

initial community. 

Common species may be 

those more commonly 

hunted/fished. Common 

grassland species are also 

impacted by agricultural 

intensification (Gaston 

and Fuller, 2008). 

Toward 

evenness 

At each time step abundance is added to the rarer and or removed from the 

more common species. The increase/decrease in abundance was set to 1/9 of 

the species difference to the mean abundance of the community. By the end 

of the simulation all species have the same abundance. 

The decline of common 

species may be partly 

compensated by an 

increase in rare species 

(Schipper et al., 2016). 

We consider an extreme 

case to assess how 

metrics respond to an 

increase in evenness. 

Habitat loss At each time step forest habitat is reduced by 1/9 of its original extent. At 

each time step species abundance in forest is recalculated according to the 

new extent. The habitat is not replaced, it is just lost (i.e. converted to 

unsuitable habitat for all species). By the end of the simulation forest habitat 

is entirely lost. 

Habitat loss is one of the 

first cause of biodiversity 

loss (Hoffmann et al., 

2010). 

Habitat 

replacement 

At each time step, 1/9 of the original forest habitat extent is replaced by 

grassland. At each time step species abundance is recalculated according to 

the new extent of the two habitats. By the end of the simulation forest 

habitat is entirely lost and grassland habitat covers the entire landscape. 

Often habitat is replaced 

by habitat suitable to 

different species. Land 

cover change can be 

induced by climate 

change or human 

disturbance (e.g. fire). 
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Invasive 

species 

In the second step a new species (invasive species) is added to the 

community. The species originally has 1/9
th

 of its potential population size, 

and at each step it is increased by an additional 1/9
th

. Meanwhile, a sample 

of five species in the community (sensitive species), decline by 1/9
th

 of their 

population size. By the end of the simulation, the invasive species has 

reached its carrying capacity, while the sensitive species have gone extinct. 

The invasive species is sampled randomly from ubiquitous species living at 

high population density (>75
th

 percentile of the population density of all 

species in the community). Sensitive species are sampled randomly from the 

community. 

Invasive species are one 

of the main cause of 

biodiversity loss and 

homogenization 

(Hoffmann et al., 2010). 

We consider the scenario 

as one case of 

confounding effect on the 

metrics due to the 

population growth of 

alien species.  

Neutral 

community 

with 

stochastic 

fluctuations 

Species abundances fluctuate randomly while the total biomass remains 

constant, where the extent of the fluctuation depends on species body mass 

(Brown et al., 2004; Korhonen et al., 2010; Abundance t = 1 = Abundance t 

× exp[N(µ = 0, σ = 0.1× (body_mass) -1/4)]; Peters, 1983). When a species 

is lost from the community, an individual of a species with the exact same 

characteristics colonizes the community (i.e. trait distribution remains 

stable).  

Demographic 

stochasticity where 

species are characterized 

by demographic rates 

(Hubbell, 2001; 

Rossberg, 2013). 

  419 
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Table 2. Description of the diversity metrics employed in the simulation. Ab = Population 420 

abundance; Nsp= Number of species; BL = Branch length of the phylogenetic tree. In the Sørensen 421 

similarity formula: 1 = original community and 2 = community at time step x. 422 

 423 

Diversity 

metric 

Formula/Definition Reference 

Sørensen 

similarity 

 

    
            

   

   

            
   

   

 
(Sorensen, 1948) 

Arithmetic 

mean 

abundance 

   
    

   

   

    
 

 

Geometric 

mean 

abundance 

       
      

   

   

   

  

 

 

Species 

richness 

     [Ab>0]  

Gini-Simpson 

Index 
        

 

   

   

 

(Simpson, 1949) 

Shannon Index 

               

   

   

 

(Shannon and Weaver, 

1949) 

Faith’s 

phylogenetic 

diversity 

       

  

   

 

(Faith, 1992) 

Weighted 

Faith’s 

phylogenetic 

diversity 

      
    

  
       

    
  
   

 
(Swenson, 2014) 

Functional 

Richness 

The convex hull volume of the 

individual species in 

(Villéger et al., 2008) 
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multidimensional trait space 

(Villéger et al. 2008). 

 

Functional 

evenness 

The regularity with which species 

abundances are distributed along 

the minimum spanning tree which 

links all the species in the 

multidimensional functional space 

(Villéger et al. 2008). 

 

(Villéger et al., 2008) 

Functional 

divergence 

Species deviance from the mean 

distance to the centre of gravity 

weighted by relative abundance 

within multidimensional trait space 

(Villéger et al. 2008). 

(Villéger et al. 2008) 

Functional 

dispersion 

The weighted mean distance in 

multidimensional trait space of 

individual species to the centroid of 

all species. Weights are species 

relative abundances (Laliberté and 

Legendre 2010) 

(Laliberté and Legendre 

2010) 

 424 

  425 
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Fig. 1. (a) Distribution of body mass (log10 kg) in the virtual community. (b) Relationship between 426 

body mass (log10 kg) and population density (log10 ind/km
2
). Green = Herbivores; Orange = 427 

Omnivores; Red = Carnivores. 428 

 429 

Fig. 2. Temporal trends in biodiversity metrics under the “Uniform decline” scenario. Each line 430 

represents one of the 1,000 replicates. Metrics values are standardized on the same scale for 431 

comparability (mean = 0; sd = 1). 432 

 433 

Fig. 3. Heatmap representing the mean trend (standardized mean slopes over time; Color bar) of 434 

biodiversity metrics for the alternative scenarios of biodiversity change. Standardized slopes 435 

represent the rate of change in the metrics. * indicate metrics that show consistent trends (same 436 

sign) in >95% of the replicates. The heatmap can be read by row or by column, depending on 437 

whether one wants to compare metric behaviour in a given scenario or a given metric’s behaviour 438 

across scenarios. Ar = arithmetic; Gm = geometric; Phil = phylogenetic; Div = diversity; wPhil = 439 

phylogenetic weighted by abundance; F = Functional; T indicates phylogenetic trees based on 440 

Traits; R indicates Random trees. 441 

 442 

Fig. 4. Heatmap representing the early (EWS) vs. late warning (LWS) signals of biodiversity 443 

change for the alternative scenarios of biodiversity change. Both are represented as standardized 444 

mean slopes over time, where EWS is calculated in the first 2 steps, and LWS in the second 8 steps.  445 

The heatmap can be read by comparing the color (standardized slopes) of EWS and LWS within the 446 

a given metric for a given scenario: the colors differ if the metric response is non-linear. Ar = 447 

arithmetic; Gm = geometric; Phil = phylogenetic; Div = diversity; wPhil = phylogenetic weighted 448 

by abundance; F = Functional; T indicates phylogenetic trees based on Traits; R indicates Random 449 

trees. 450 

 451 
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Fig. 5. Heatmap representing signal to noise ratio (SNR) (Color bar) of biodiversity metrics 452 

weighted by abundance for alternative scenarios of biodiversity change. SNR is the strength of the 453 

signal (biodiversity change measured as standardized slopes) relative to the noise in the metric 454 

resulting from demographic fluctuations (SD in metric values under the “Neutral community with 455 

stochastic fluctuations” scenario). * indicate SNR that show consistent trends (same sign) in >95% 456 

of the replicates. The heatmap can be read by row or by column, depending on whether one wants 457 

to compare metric behaviour in a given scenario or a given metric’s behaviour across scenarios. Ar 458 

= arithmetic; Gm = geometric; Phil = phylogenetic; Div = diversity; wPhil = phylogenetic weighted 459 

by abundance; F = Functional; T indicates phylogenetic trees based on Traits; R indicates Random 460 

trees. 461 

 462 
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Supplementary material:  463 

Appendix A 464 

 465 

Fig. A1. Temporal trends in biodiversity metrics under the “Proportional decline” scenario. Each 466 

line represents one of the 1,000 replicates. Metrics values are standardized on the same scale for 467 

comparability (mean = 0; sd = 1). 468 

Fig. A2. Temporal trends in biodiversity metrics under the “Common species decline” scenario. 469 

Each line represents one of the 1,000 replicates. Metrics values are standardized on the same scale 470 

for comparability (mean = 0; sd = 1). 471 

Fig. A3. Temporal trends in biodiversity metrics under the “Rare species decline” scenario. Each 472 

line represents one of the 1,000 replicates. Metrics values are standardized on the same scale for 473 

comparability (mean = 0; sd = 1). 474 

Fig. A4. Temporal trends in biodiversity metrics under the “Toward evenness” scenario. Each line 475 

represents one of the 1,000 replicates. Metrics values are standardized on the same scale for 476 

comparability (mean = 0; sd = 1). 477 

Fig. A5. Temporal trends in biodiversity metrics under the “Large species decline” scenario. Each 478 

line represents one of the 1,000 replicates. Metrics values are standardized on the same scale for 479 

comparability (mean = 0; sd = 1). 480 

Fig. A6. Temporal trends in biodiversity metrics under the “Invasive species” scenario. Each line 481 

represents one of the 1,000 replicates. Metrics values are standardized on the same scale for 482 

comparability (mean = 0; sd = 1). 483 

Fig. A7. Temporal trends in biodiversity metrics under the “Habitat loss” scenario. Each line 484 

represents one of the 1,000 replicates. Metrics values are standardized on the same scale for 485 

comparability (mean = 0; sd = 1). 486 

Fig. A8. Temporal trends in biodiversity metrics under the “Habitat replacement” scenario. Each 487 

line represents one of the 1,000 replicates. Metrics values are standardized on the same scale for 488 
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comparability (mean = 0; sd = 1).489 
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