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Abstract.—Genetic sequence data provide information about the distances between species or branch lengths in a phylogeny,
but not about the absolute divergence times or the evolutionary rates directly. Bayesian methods for dating species
divergences estimate times and rates by assigning priors on them. In particular, the prior on times (node ages on the
phylogeny) incorporates information in the fossil record to calibrate the molecular tree. Because times and rates are
confounded, our posterior time estimates will not approach point values even if an infinite amount of sequence data
are used in the analysis. In a previous study we developed a finite-sites theory to characterize the uncertainty in Bayesian
divergence time estimation in analysis of large but finite sequence data sets under a strict molecular clock. As most modern
clock dating analyses use more than one locus and are conducted under relaxed clock models, here we extend the theory
to the case of relaxed clock analysis of data from multiple loci (site partitions). Uncertainty in posterior time estimates is
partitioned into three sources: Sampling errors in the estimates of branch lengths in the tree for each locus due to limited
sequence length, variation of substitution rates among lineages and among loci, and uncertainty in fossil calibrations. Using
a simple but analogous estimation problem involving the multivariate normal distribution, we predict that as the number of
loci (L) goes to infinity, the variance in posterior time estimates decreases and approaches the infinite-data limit at the rate
of 1/L, and the limit is independent of the number of sites in the sequence alignment. We then confirmed the predictions
by using computer simulation on phylogenies of two or three species, and by analyzing a real genomic data set for six
primate species. Our results suggest that with the fossil calibrations fixed, analyzing multiple loci or site partitions is the
most effective way for improving the precision of posterior time estimation. However, even if a huge amount of sequence
data is analyzed, considerable uncertainty will persist in time estimates. [Bayesian inference; divergence time; finite-sites
theory; infinite-sites theory; posterior variance; relaxed clock.]

Bayesian estimation of species divergence times under
the clock and relaxed clock models incorporating
uncertain fossil calibrations has attracted much attention
lately. Several computer programs have been developed
that implement different priors of rates and times and
different strategies for incorporating fossil calibrations,
such as MULTIDIVTIME (Thorne et al. 1998; Kishino et al.
2001), MCMCTREE (Yang and Rannala 2006; Rannala
and Yang 2007; Inoue et al. 2010), BEAST (Drummond
and Rambaut 2007), MRBAYES (Ronquist et al. 2012b)
PHYLOBAYES (Lartillot et al. 2009), and DPPDiv (Heath
et al. 2012). An important common feature of those new
generation dating programs is that they accommodate
the uncertainties in the fossil record to some extent. For
example, unlike earlier dating analyses which assume
that the ages of certain nodes on the phylogeny are
known without error (Graur and Martin 2004), the new
methods may use minimum- and maximum-age bounds
to calibrate the molecular tree (e.g., Benton et al. 2009).

Because molecular sequence data provide information
about distances only, but not about times and rates
individually, this confounding effect between times and
rates means that with uncertain calibrations, Bayesian
estimation of times (and rates) will not converge to
a point even if a huge amount of sequence data is
analyzed. Yang and Rannala (2006) and Rannala and
Yang (2007) developed the infinite-sites theory, which
provides analytically the limiting posterior distribution
when the number of sites in the sequence alignment

approaches N →∞. Moreover, the prior will always
exert an impact on the posterior, even in the analysis
of large genome-scale data sets, and seemingly small
differences between program implementations may
translate to large differences in posterior time estimates
(Inoue et al. 2010). Recently, dos Reis and Yang (2013)
developed the finite-sites theory, which extends the
infinite-sites theory of Yang and Rannala (2006) to the
finite-sites case. Assuming the molecular clock, they
were able to partition the uncertainty in posterior time
estimates into two sources: That due to the uncertain
fossil calibrations and that due to the limited sequence
data (limited number of sites in the sequence alignment).
Furthermore, when the sequence length N increases, the
posterior variance in the time estimate approaches the
infinite-data limit of Yang and Rannala (2006) at the rate
1/N.

The theory of dos Reis and Yang (2013) works for one
single locus (site partition) and assumes the molecular
clock. However, most modern molecular clock dating
analyses are conducted under the relaxed clock models,
as the strict clock is often violated, especially if the
species are distantly related, and also use multiple loci
(e.g., Bracken-Grissom et al. 2014; Christin et al. 2014).
Thus, in this article, we consider the case of relaxed
clock analyses of sequence data from multiple loci. Here
the term locus refers to a site partition. The work will
be an extension of the infinite-sites theory of Rannala
and Yang (2007) to large but finite sequence data sets.
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We are interested in how the uncertainty in the posterior
time estimates is reduced 1) when the number of sites at
each locus N →∞, 2) when the number of loci L→∞,
and 3) when both N and L→∞. The problem is not
tractable analytically. Thus, we take the same strategy as
in dos Reis and Yang (2013) and study a simple analogous
case based on the normal distribution, and then use
computer simulation and analysis of a real data set for a
primate phylogeny to confirm predictions based on the
analogy. We also use the primate data set to illustrate the
application of the finite-sites theory we develop here to
real data analysis.

Our theory applies to both the correlated-rate (Thorne
et al. 1998; Rannala and Yang 2007) and independent-
rate models (Drummond et al. 2006; Rannala and
Yang 2007) for relaxing the molecular clock. In the
analysis of sequence data from multiple loci (or site
partitions), we assume the compound Dirichlet prior
of dos Reis et al. (2014) for the locus rates (i.e., the
rates appropriate for the loci). This prior is implemented
in the MCMCTREE program. Most current Bayesian
dating programs assume an independent and identical
distribution of locus rates for multiple loci, which leads
to overconfident posterior time estimates (dos Reis et al.
2014). The case of the i.i.d. prior for locus rates is
discussed later.

THEORY AND METHODS

Theoretical Analysis of a Normal Distribution Example
Following Rannala and Yang (2007) and dos Reis

and Yang (2013), we consider a simple case of Bayesian
estimation of confounded parameters involving the
multivariate normal distribution. The example will help
us to gain insights into the posterior uncertainty in the
estimates of divergence times and substitution rates as
the size of the sequence data set increases.

Suppose the data consist of a matrix X = {xij}, i= 1, 2,
…, L; j= 1, 2, …, N; where each observation xij is normally
distributed. The model is

xij =�1 +�2 +�i +eij, (1)

where eij ∼N(0,�2
e ) and �i ∼N(0,�2

�), with both �2
e and

�2
� given. This is a mixed linear model with �1 and

�2 to be the fixed effects (parameters) and �i to be the
random effects. However, the data or likelihood always
depends on the sum �1 +�2, but not on �1 and �2
separately, so that there is a problem of nonidentifiability
in the construction of the model. We assign priors �1 ∼
N(−1, v1) and �2 ∼N(1, v2) to estimate �1 and �2, with
v1 and v2 known. We are interested in the posterior
distribution (and in particular, the posterior means and
variances) of �1 and �2 (and possibly of �i) when the
size of the data (N or L or both) is large.

Let x̄i = 1
N
∑N

j=1xij and x̄= 1
LN
∑L

i=1
∑N

j=1xij be
the sample means. The likelihood is given by

x̄i ~N(�1 +�2 +�i, �2
e /N). The joint posterior density is

f (�1,�2,{�i}|X)∝ f (�1)f (�2)
L∏

i=1

f (�i)f (x̄i|�1,�2,�i)

= f (�1)f (�2)
L∏

i=1

exp

{
− �2

i

2�2
�

− (x̄i −�1 −�2 −�i)2

2�2
e /N

}
.

(2)

This is a (L+2)-variant normal distribution. In the
Appendix, we show that �1 and �2 have a bivariate
normal posterior distribution with means, variances,
and correlation to be

m1 =E(�1|X)=−1+ v1x̄
v1 +v2 +v4

,

m2 =E(�2|X)=1+ v2x̄
v1 +v2 +v4

,

s2
1 =V(�1|X)= v1(v2 +v4)

v1 +v2 +v4
,

s2
2 =V(�2|X)= v2(v1 +v4)

v1 +v2 +v4
,

�=corr(�1,�2|X)=−
√

1− v4
(
v1 +v2 +v4

)
(
v1 +v4

)(
v2 +v4

) , (3)

where v4 =v3/L and v3 =�2
e /N+�2

�.
The posterior variance of �1 can be written as the sum

of three terms

s2
1 =v∞+ 1

LN
a+ 1

L
b, (4)

where �∞ = v1v2
v1+v2

is the infinite-data limit and where

a= �2
e v2

1(
�2

�

L +v1 +v2

)(
�2

e
LN + �2

�

L +v1 +v2

)≈�2
e

(
v1

v1 +v2

)2
,

b= �2
�v2

1(
v1 +v2

)(�2
�

L +v1 +v2

)≈�2
�

(
v1

v1 +v2

)2
. (5)

The approximations apply when L is large, which we
assume here.

Based on equation (4), the following observations can
be made. 1) When L is large and fixed, the posterior
variance s2

1 approaches the limit v∞+b/L at the rate 1/N
when N increases. 2) When N is fixed, s2

1 approaches
�∞ when L→∞, independently of N. The rate of
approaching the limit is 1/L. The same limit is reached
(a) when L→∞ with N fixed at a finite value and (b)
when both N and L→∞.

Predictions for molecular clock dating.—In Bayesian
divergence time estimation under a relaxed clock model,
we analyze sequence alignments at L loci, with N sites
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at each locus. The times (ages of nodes on the tree) are
shared across all loci and are assigned a prior, often
based on the birth–death process (e.g., Yang and Rannala
2006; Lepage et al. 2007). This prior also incorporates
fossil calibrations, which come in the form of probability
distributions. We assume that none of the node ages is
known with certainty. When the data are analyzed, each
locus i has an overall (mean) rate �i, for i=1,2,…,L, and
the �i are assigned a gamma-Dirichlet prior (dos Reis
et al. 2014). The rates for branches or for nodes on the tree
at the locus are then generated conditional on the locus
rate �i. Under the independent-rate model, the rates
for branches in the tree at the locus are i.i.d. variables
from the lognormal or gamma distribution with mean �i
(Drummond et al. 2006; Rannala and Yang 2007). Under
the correlated-rate model, �i is the rate at the root of the
tree at the locus, from which rates for other nodes or
branches evolve according to a stochastic process such
as the geometric Brownian motion (Thorne et al. 1998;
Thorne and Kishino 2002; Rannala and Yang 2007).

With this setup, the results for the normal distribution
example (in particular, equation (4)) lead us to the
following predictions concerning the uncertainty in the
posterior estimates of divergence times. 1) When the
number of loci L is large and fixed, the posterior variance
of any node age has a nonzero limit when N →∞, and
it approaches this limit at the rate 1/N. 2) When the
number of sites at each locus N is large and fixed, the
posterior variance of any node age has a nonzero limit
when the number of loci L→∞, and it approaches this
limit at the rate 1/L. Furthermore, the limiting variance
for L→∞ is the same when N is fixed at different
large values. The limiting variance when L→ ∞ reflects
the uncertainties in the fossil calibrations, which cannot
be reduced by further increase of the sequence data.
This prediction suggests that to improve the precision
of posterior time estimates, adding more loci (or site
partitions) may be far more effective than increasing the
length of sequence at each locus.

Using an analogy to equation (4), we may also partition
the uncertainty in the posterior estimates of divergence
times into three sources: The part due to the limited
number of sites at each locus (that is, the term a

LN in
equation (4)), which disappears when N → ∞, the part
due to the limited number of loci (the term b

L in equation
(4)), which disappears when L→ ∞, and finally the
part due to uncertainties in the fossil calibrations (�∞
in equation (4)), which cannot be reduced by further
increase of sequence data. We illustrate this calculation
in simulated and real data sets later.

Design of the Simulation Experiment
We simulated sequence alignments on two

phylogenies, with two or three species, respectively, to
examine how the number of loci (L) and the sequence
length at each locus (N) affect the uncertainty in
posterior time estimates. For computational efficiency,
we use the Jukes–Cantor (1969) model both to simulate

data and to analyze them. Our focus in this study is
the asymptotic behavior of posterior time estimation,
and the precise nature of the assumed substitution
model is unimportant (as long as the correct model
is used). For example, if we use GTR+� (Tavaré 1986;
Yang 1994a, 1994b) both to simulate and to analyze the
data, the dynamics of posterior time estimation will be
the same as under JC69, with parameters in the GTR+�
model approaching the true values. Similarly, while we
use small trees of only two or three sequences in the
simulation (to reduce the computational cost) we expect
the asymptotic dynamics of posterior time estimates to
be independent of the dimension of the problem and to
apply to larger trees with many species.

We describe the simulation for the three-species case
and then comment on the two-species case. The true age
of the root is fixed at t1 =1 and the age of the internal node
is t2 =0.5. We consider one time unit to be 100 Myrs, so
the two node ages are 100 and 50 Myrs, respectively. To
simulate sequence alignments at L loci, we fix the overall
rate at locus i at �i =0.1 (meaning 0.1 substitutions per
time unit or 10−9 substitutions per site per year). The
rates for the four branches on the three-species tree are
then generated as independent random variables from
the lognormal distribution: rij~LN(log�i −�2/2, �2), for
j=1,…,4 (Rannala and Yang 2007; equation (A.1)). We
fix �2 =0.01, which means that the molecular clock is
slightly violated. Each branch length is then calculated
by multiplying the time duration of the branch and the
rate for the branch. Sequences at the locus are then
simulated by evolving sequences along branches of the
tree, using the EVOLVER program in the PAML package
(Yang 2007). Simple R code is written to sample rates for
branches and to generate the control files for EVOLVER.
The alignments for all L loci are then merged into one
data file and constitute one data set, to be analyzed
by the MCMCTREE program, also from the PAML package.
For the case of infinite sites (N =∞), branch lengths in
the unrooted tree constitute the data. The number of
replicates is 200.

In the two-species case, the true divergence time (or
the age of the root) is t=1, and there are only two
branches on the tree. All other settings are the same as
in the case of three species. For example, the rates for the
two branches are generated as independent lognormal
variables with the mean �i =0.1 and variance parameter
�2

i =0.01.
The sequence data sets (each consisting of L

alignments, each of N sites) are analyzed using
MCMCTREE, whereas data sets of infinite sites (each
consisting of L sets of branch lengths on the unrooted
tree) are analyzed using the program INFINITESITES. Both
are Markov chain Monte Carlo (MCMC) programs from
PAML ver. 4.8. The age of the root is assigned the prior
t1 ∼G(100, 100), with mean 1 and 95% interval (0.814,
1.205). This mimics the use of a soft-bound calibration
at the root node of 81–121 Myrs. In the case of three
species, the age of the internal node has a uniform prior
between 0 and t1, that is, t2|t1 ∼U(0,t1). The prior on t2 is
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thus very diffuse, whereas the prior on t1 is informative.
This mimics the situation in which a fossil calibration
is placed on t1 but not on t2. We assume a gamma-
Dirichlet prior for rates at loci, {�i}∼gammaDir(100,
1000, 1) (dos Reis et al. 2014). The average rate over all loci
is assigned a gamma prior, �̄= 1

L
∑L

i=1�i ∼G(100, 1000),
with mean 0.1 and variance 10−4, and with the prior
95% interval 0.1±0.02 or (0.08, 0.12)×10−8 substitutions
per site per year. Then the total rate for all loci, L�̄, is
partitioned into the locus rates using a uniform Dirichlet
distribution (dos Reis et al. 2014). Given the locus rate
�i, the rates for branches have the i.i.d. prior from
the lognormal distribution with mean �i and variance
parameter �2

i . This is the so-called independent-rate
model for relaxing the clock. A gamma-Dirichlet prior
is assigned on parameters {�2

i }∼gammaDir(2, 200, 1) as
well: The mean across loci is assigned the gamma G(2,
200), whereas the total is partitioned among loci using a
uniform Dirichlet.

In the MCMC analysis, the likelihood is calculated
using Felsenstein’s (1981) pruning algorithm. The length
of the MCMC run is determined by running the program
multiple times on the same data set to assess consistency
between runs. Note that the amount of computation
increases far more quickly with the increase of the
number of loci than with the increase of the number
of sites per locus. The analysis of each replicate data
set (with L loci each of N sites) leads to a posterior
sample of the divergence times, from which the posterior
means and 95% equal-tail credibility intervals (CIs)
are generated. Those are then averaged over the 200
replicates and reported.

Estimation of Divergence Times on a Primate Phylogeny
We use the genomic data for six primate species of

dos Reis and Yang (2013) to examine the uncertainty
of posterior time estimates as a function of the loci
used. The phylogeny with fossil calibrations is given
later in Figure 3 The genomic data consist of six-species
alignments of 9,992 protein coding genes. We removed
ambiguous codons and alignment gaps and excluded
genes with fewer than 200 codons, resulting in a data set
of 7947 genes. We used only the third codon positions.
Among those 7947 genes, the number of codons (or the
number of third-position sites) ranged from 200 to 5055,
with the median at 399.

To study the effect of the number of loci on the
uncertainty of posterior time estimates, we sampled
genes (third codon positions only) without replacement
from the 7947 genes, to generate data sets with L=1, 5, 10,
20, 50, 100, 200, and 500 genes. For each L, 100 replicate
data sets were generated. The data were then analyzed
similarly to the simulated data, using MCMCTREE ver.
4.8. The sequence likelihood was calculated under the
HKY+�5 substitution model (Hasegawa et al. 1985;
Yang 1994b). The prior of the divergence times was
constructed using the calibrations of Figure 3 and

the birth–death process, with the birth and death
parameters �BD =�BD =1, and sampling fraction �BD =
0. Those parameter values give a uniform kernel density
(Yang and Rannala 2006, equation (5)). We used the
gamma-Dirichlet prior gammaDir(2, 20, 1) for rates at
loci (�i): The average rate over all loci is assigned a
gamma prior G(2, 20), with mean 0.1 and variance 0.005,
whereas the total rate is partitioned among loci using
a Dirichlet distribution (dos Reis et al. 2014). Here the
time unit is 100 myr, so that the prior mean rate is 10−9

substitutions per site per year. Given the locus rate �i, the
rates for branches at the locus have the i.i.d. prior from
the lognormal distribution with mean �i and variance
parameter �2

i . Parameters �2
i were assigned the prior

gammaDir(2, 20, 1), to allow for the violation of the clock.
Note that in the normal distribution example N is the

same for different i, whereas here N varies among loci.
However, one may envisage an extra sampling step in
which the number of sites N for each locus is sampled
as a random variable from a common distribution and
then the prediction based on the normal example should
remain valid.

Besides the independent sampling scheme of
generating data sets of L loci, we also used an alternative
scheme, to partition the 7947 genes (or 3,982,327 third-
codon-position sites) into L partitions. For each gene, we
estimated the branch lengths by maximum likelihood,
using RAxML (Stamatakis et al. 2012) and ranked the
genes by tree length (sum of branch lengths). We then
partitioned the genes into L=5, 10, 20, 50, 100, 200, and
500 partitions, with approximately the same number
of genes in each partition, placing genes with similar
tree lengths into the same partition. Here the tree
length was used as a proxy for relative evolutionary
rate. Note that the total number of sites analyzed
(3,982,327) is always the same whatever the number of
partitions L is. Each data set was analyzed exactly in
the same way as above, with the L partitions treated
as L independent loci. This way of analyzing the data
is carried out here as it is common in molecular clock
dating analysis, in which the genetic data are fixed and
different partitioning strategies are evaluated (e.g., dos
Reis et al. 2012). However, our predictions based on the
normal distribution example are not expected to apply
to this case.

RESULTS

Simulation in the Case of Two Species
For the tree of two species, the true root age is t=1,

and this is the only time parameter to be estimated. The
posterior mean, the 95% CI, and the CI width (w) of time
t are calculated for a number of values of L and N, with
the results shown in Table 1, averaged over 200 simulated
replicates. The posterior means are all very close to the
true value. Here we focus on the uncertainty in the
posterior time estimates, measured by w2. Note that
when the data set is large, w2 should be approximately
proportional to the posterior variance.
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TABLE 1. Averages of posterior mean, 95% CI and CI widths (w) of divergence time (t) between two species

L N Mean 95% CI w (w/w0)2, % 1 − (w∞/w)2, %

0 (prior) 0 1.000 (0.814, 1.205) 0.392 100 50
1 10 1.000 (0.815, 1.204) 0.389 99 49

103 1.002 (0.848, 1.171) 0.323 68 26
104 1.001 (0.857, 1.161) 0.304 60 16
∞ 1.002 (0.858, 1.160) 0.302 60 15

2 10 1.004 (0.820,1.207) 0.387 98 48
100 1.003 (0.834,1.188) 0.354 82 38
103 1.001 (0.856,1.162) 0.306 61 17
104 1.001 (0.861,1.155) 0.294 57 11
∞ 1.005 (0.866,1.158) 0.292 56 9

5 10 1.006 (0.825,1.205) 0.380 94 46
100 1.006 (0.849,1.179) 0.330 71 29
103 1.002 (0.864,1.155) 0.291 55 9
104 1.004 (0.869,1.154) 0.285 53 5
∞ 1.003 (0.868,1.152) 0.284 53 4

10 10 1.010 (0.834, 1.205) 0.371 90 44
104 1.003 (0.870, 1.151) 0.281 55 2
∞ 1.006 (0.872, 1.154) 0.282 53 3

100 10 1.026 (0.876,1.191) 0.315 90 22
104 1.005 (0.873, 1.151) 0.278 51 0
∞ 1.005 (0.872, 1.151) 0.279 51 1

1000 10 1.043 (0.906, 1.194) 0.288 54 7
104 1.004 (0.872, 1.150) 0.278 51 0
∞ 1.004 (0.872, 1.150) 0.278 51 0

10 100 1.003 (0.855, 1.166) 0.311 63 20
20 1.008 (0.866, 1.164) 0.298 58 13
50 1.009 (0.872, 1.159) 0.287 54 6

100 1.011 (0.877, 1.160) 0.283 52 4
200 1.010 (0.877, 1.158) 0.281 52 2

1000 1.010 (0.877, 1.156) 0.279 51 1
10 1000 1.005 (0.869, 1.155) 0.286 54 6
20 1.007 (0.873, 1.155) 0.282 52 3
50 1.005 (0.872, 1.152) 0.279 51 1

100 1.006 (0.873, 1.152) 0.279 51 1
200 1.005 (0.873, 1.151) 0.279 51 1

1000 1.004 (0.873, 1.150) 0.278 51 0

Notes: The true age is t= 1. Results for N =∞ are calculated using the infinite-sites theory of Rannala and Yang (2007). In the last two columns,
(w/w0)2 is the ratio of the posterior to the prior variance, and 1 − (w∞/w)2 is the percentage of the posterior variance that is due to limited
sequence data. The results are averages over 200 replicate data sets.

In Figure 1a, we plot w2 against 1/N with L fixed at
either 10 or 100, and in Figure 1b, we plot w2 against
1/L with N fixed at either 100 or 1000. According to our
predictions based on the analogous normal distribution
example, both plots should be linear when N and L are
large, with positive (nonzero) intercepts. This is indeed
the case.

In Figure 1a, the lines of best fit are w2 =1.8092/N+
0.0796 for L=10 and w2 =0.3387/N+0.0773 for L=100.
Both the slope and the intercept are smaller for the larger
L, indicating more information in data of more loci.

In Figure 1b, the lines of best fit are w2 =0.2317/L+
0.0777 for N =100, and w2 =0.0481/L+0.0773 for N =
1000. The slope is smaller for the larger N (0.0418 for N =
1000 compared with 0.2317 for N = 100). The intercepts
for N = 100 and 1000 are nearly identical (0.0777 for
N = 100 and 0.0773 for N = 1000). Based on the analogy
with the normal distribution example, we expect the

uncertainty to be the same for different N, when L → ∞,
so that those intercepts should be equal. Note that
the intercept in the w2 versus 1/L plot represents the
limiting value when L→∞ and reflects the uncertainty
in fossil calibrations and in the rate prior, uncertainty
that cannot be reduced by increasing the amount of
sequence data. We take w2 = 0.0773 as the limiting
uncertainty in time estimates for infinite sequence data.
Before any molecular data are analyzed, w2 = 0.3912 =
0.153, given by the prior, and this is reduced by a half
(1 − 0.0773/0.153 = 0.495) when an infinite amount of
sequence data is analyzed. The other half is due to the
uncertainty in the prior and in the fossil calibration, and
cannot be reduced by further increase of sequence data.

It is noteworthy that the posterior uncertainty does
not approach zero when the amount of sequence data
increases without bound (that is, when N →∞, when
L→∞ or when both N and L→∞) (Table 1). From the



[12:35 3/2/2015 Sysbio-syu109.tex] Page: 272 267–280

272 SYSTEMATIC BIOLOGY VOL. 64

a) b)

0.076

0.077

0.078

0.079

0.08

0.081

0.082

0.083

0.084

1/L

0.075

0.08

0.085

0.09

0.095

0.1

0 0.005 0.01 0.015 0.02 0.0250 0.002 0.004 0.006 0.008 0.01

1/N

w 2

FIGURE 1. The finite-sites theory for two sequences. The square of the posterior 95% CI width (w2) is plotted (a) against the reciprocal of the
number of sites (1/N) in the alignment with the number of loci L fixed at 10 or 100, and (b) against the reciprocal of the number of loci (1/L)
with the number of sites at each locus fixed at N =100 or N =1000.

intercepts of the w2 versus 1/L plots in Figure 1b and
from the results of Table 1, we estimate the limiting
posterior 95% CI to be (0.871, 1.148), with w= 0.278 or
w2 =0.0773. In other words, even with an infinite amount
of sequence data, the 95% CI (87.1–114.8Ma) spans 28
Myrs. Compared with the prior, which has the 95% CI
width to be 39.1 Myrs (Table 1), the posterior interval at
the infinite-data limit is 30% narrower, and the posterior
variance is ∼50% smaller.

It is also interesting to examine the posterior
uncertainty when the data set is small, before the
asymptotics are reliable. With only L= 2 loci, increasing
the sequence length N from 100 to 1000 reduces the
interval width from 0.354 to 0.306. This is a reduction
of 14% (= 1 − 0.306/0.354) in the CI width or a
reduction of 25% (= 1 − 0.3062/0.3542) in the posterior
variance. However, increasing N further to 104 reduces
the posterior CI width to 0.294, with much less effect.
This trend of diminishing returns is because very quickly
most of the posterior variance is due to the uncertain
fossil calibrations, which cannot be reduced by adding
sequence data. Increasing the sequence length has even
less effect when a larger number of loci is used. It seems
that with L≤ 5 loci analyzed, 104 sites per locus are nearly
as good as an infinite number of sites, and with L≥ 10
loci analyzed, 200 or 1000 sites are not much worse than
an infinite number of sites.

Simulation in the Case of Three Species
In the tree for three species, there are two node ages,

with the true ages to be t1 =1 and t2 =0.5. The posterior
means, the 95% CIs, and the CI widths for t1 and t2 are
shown in Table 2, averaged over 200 replicates. Again,
the posterior means are close to the true values, so we
focus on the posterior uncertainty measured by w2.

We plot w2 against 1/N with L fixed at 10 or 100
in Figure 2a and b, and against 1/L with N fixed at
100 or 1000 in Figure 2c and d. Both kinds of plots
show near perfect linear relationships when N and L are
large, confirming our predictions based on the normal
distribution example. The asymptotic linear relationship
holds well for N ≥40 and for L≥10.

For both t1 and t2, the intercepts in the plots of w2

against 1/L are nearly identical for N = 100 and N =
1000 (Fig. 2c, d). For example, the intercept for t1 is
0.0780 at N = 100 and 0.0773 at N = 1000, whereas for
t2 it is 0.0191 at N =100 and 0.0193 at N =1000. Those
results confirm our prediction that the limiting posterior
uncertainty when L→∞ does not depend on N. The
minor differences may be attributed to small sampling
errors due to limited number of replicates and to the
fact that our L and N values are not very large. The
results suggest that with an infinite amount of sequence
data, the limiting values are w2

1 ≈ 0.0773 = 0.2782 for t1
and w2

2 ≈ 0.0193 = 0.1392 for t2, with w1/w2 = 2 = t1/t2.
The one-dimensional limiting posterior is almost entirely
dominated by the prior for t1.

We also examined posterior uncertainties in small data
sets before the asymptotic theory is reliable. Note that the
prior and data information for t1 are nearly the same as in
the simulation for two species. The posterior uncertainty
for t1 is also very similar to and slightly smaller than
that for the two-species case. The reduced interval or
improved precision is due to the information coming
from the third sequence. At the infinite-data limit, the
posterior for t1 is exactly the same as in the two-species
case, with the posterior CI to be (0.871, 1.148), and w=
0.278 or w2 = 0.0773. Overall the pattern for t1 is the same
as in the two-species case.

The results for t2 are very different from those for t1.
There is much weaker information in the prior about
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TABLE 2. Posterior means, 95% CIs and CI widths of divergence times (t1 and t2) for three species

t1 t2

L N Mean 95% CI w (w/w0)2, % 1 − (w∞/w)2,% Mean 95% CI w (w/w0)2,% 1 − (w∞/w)2, %

0 0 1.000 (0.814, 1.205) 0.392 100 50 0.500 (0.025, 1.026) 1.001 100 98
10 20 1.005 (0.839 , 1.188) 0.349 79 37 0.509 (0.307, 0.758) 0.451 20 91

50 1.010 (0.855, 1.179) 0.324 68 26 0.509 (0.366, 0.678) 0.312 10 80
200 1.006 (0.865, 1.160) 0.295 56 11 0.505 (0.411, 0.612) 0.201 4.0 52
∞ 1.003 (0.870, 1.151) 0.281 51 2 0.502 (0.433, 0.579) 0.146 2.1 9

100 10 1.023 (0.876, 1.186) 0.310 62 20 0.506 (0.394, 0.636) 0.242 5.8 67
20 1.015 (0.874, 1.171) 0.296 57 12 0.504 (0.412, 0.609) 0.197 3.9 50
50 1.010 (0.875, 1.161) 0.286 53 6 0.505 (0.427, 0.592) 0.165 2.7 29
200 1.005 (0.872, 1.152) 0.280 51 1 0.503 (0.434, 0.580) 0.146 2.1 9
∞ 1.005 (0.873, 1.151) 0.278 50 0 0.503 (0.436, 0.576) 0.140 2.0 1

10 100 1.004 (0.858, 1.165) 0.307 61 18 0.506 (0.393, 0.637) 0.244 5.9 68
20 1.002 (0.862, 1.156) 0.294 56 11 0.506 (0.413, 0.613) 0.200 4.0 52
50 1.006 (0.871, 1.156) 0.286 53 6 0.503 (0.425, 0.591) 0.166 2.8 30

100 1.007 (0.873, 1.155) 0.282 51 3 0.502 (0.430, 0.582) 0.152 2.3 16
200 1.008 (0.875, 1.155) 0.280 51 1 0.502 (0.433, 0.578) 0.146 2.1 9
400 1.007 (0.874, 1.153) 0.279 50 1 0.501 (0.433, 0.575) 0.142 2.0 4

1 1000 0.997 (0.847,1.163) 0.315 64 22 0.506 (0.380,0.655) 0.275 7.5 74
2 1.002 (0.858,1.159) 0.301 59 15 0.505 (0.404,0.622) 0.218 4.7 59
5 1.003 (0.866,1.154) 0.288 54 7 0.501 (0.420,0594) 0.174 3.0 36

10 1.002 (0.867, 1.150) 0.283 52 4 0.503 (0.429, 0.587) 0.158 2.5 23
20 1.005 (0.872, 1.152) 0.281 51 2 0.501 (0.431, 0.579) 0.148 2.2 12
50 1.004 (0.872, 1.151) 0.279 50 1 0.502 (0.434, 0.577) 0.143 2.0 6

100 1.004 (0.872, 1.151) 0.279 50 1 0.502 (0.435, 0.576) 0.141 2.0 3
200 1.004 (0.872, 1.150) 0.278 50 0 0.502 (0.435, 0.575) 0.140 2.0 1
400 1.004 (0.872, 1.150) 0.278 50 0 0.502 (0.436, 0.575) 0.140 2.0 1

Notes: The true node ages are t1 =1 and t2 =0.5. Note that the limiting CI width for t2 is w∞ =0.139=√
0.0193 (Fig. 2). See legend to Table 1.

t2 than about t1. As a result, when molecular data
are analyzed, the uncertainty in t2 is reduced far
more dramatically than that for t1. Increase of both
the sequence length N and the number of loci L
leads to reduction in the posterior uncertainty of t2,
and improvement is seen even at large values of L
or N (Table 2). Even so, the percentage of posterior
uncertainty that is due to sequence data goes down
quickly. For example, for the sequence length N =1000,
this percentage is 59, 36, and 6% for L=2, 5, and 50
loci, respectively. Furthermore, we note that the linear
prediction becomes reliable for t2 earlier than for t1; in
other words, the linear relationship applies for smaller
values of N and L for t2 than for t1.

Estimation of Divergence Times on a Primate Phylogeny
The posterior means, the 95% CIs, and the CI widths

(w) of divergence times on the primate phylogeny of
Figure 3 (t7–t11) are shown in upper panel of Table 3,
when L loci are sampled at random from the 7949 genes
are analyzed. Here a gene or locus means all the third
codon positions of the protein coding gene. The prior is
shown as well (L= 0 in Table 3).

In Figure 4 we plot the posterior uncertainty
(measured by w2) for the five divergence times in the
phylogeny (t7–t11) against 1/L. In all cases except t8, w2

shows a strong linear relationship with 1/L as long as
L≥ 10, consistent with our predictions. For t8, the linear
relationship holds well only for much larger values of L,

that is, only if L≥50. For small L before the asymptotics
become reliable, the posterior CI width is smaller than
the predicted value from the straight line (see plot for
t8 in Fig. 4). As in the simulation for three species, the
asymptotic theory starts to become reliable for smaller
values of L if the node has a less informative prior
calibration. dos Reis and Yang (2013) suggested the use
of the 95% prior interval width divided by the prior
mean as a measure of prior or calibration precision.
This is 0.91, 0.37, 0.90, 1.02, and 0.56 for t7, t8, t9, t10,
and t11, respectively, with t8 having the most precise
calibration.

The intercept of the regression line, which is an
estimate of the limiting uncertainty (w2) with an infinite
amount of sequence data, is 0.0080, 0.0019, 0.0006, 0.0001,
and 0.00005, for the five nodes t7, t8, t9, t10, and t11,
respectively. These are very close to the w2 values for
L= 500 in upper panel of Table 3: 0.0090, 0.0021, 0.00068,
0.00014, 0.000064 for t7–t11, indicating that 500 loci may
be close to an infinite amount of sequence data.

We then consider the alternative strategy of
partitioning the 7947 loci (third codon positions)
into L site partitions. In this case, the same total number
of sites are always used in the analysis whatever L is.
The results are summarized in lower panel of Table 3.
Note that our asymptotic theory based on the normal
distribution example does not apply to this case, as the
setups of the statistical estimation problems are very
different. The case of L=1 (lower panel of Table 3)
corresponds to the concatenation analysis, in which
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FIGURE 2. The finite-sites theory for three sequences. The square of the posterior 95% CI widths (w2) for the two divergence times (t1 and t2)
is plotted against 1/N, with the number of loci L fixed at 10 a) or 100 b); and against 1/L, with the number of sites fixed at N =100 c) or 1000 d).
In (a) for L=10, the point N =20 is not used to fit the line for t1 because those values of L and N appear too small for the linear asymptotic trend
to apply.

all sites are analyzed as one partition, with the same
substitution model and the same set of branch rates for
all sites. This is still commonly used in molecular dating
analyses (e.g., Christin et al. 2014). The posterior CIs
from this concatenation analysis are slightly wider than
those in the independent sampling scheme for L=5 loci
for t7 and t8, and are slightly smaller for t9–t11 (upper
panel of Table 3), but they are larger for all node ages
than in the independent sampling scheme for L=10 loci,
even though 10 independent loci constitute only about
0.13% (=10/7947) of the data used in the concatenation
analysis.

At the other end, when L= 500 loci, the posterior
95% CI widths are similar between the independent
sampling scheme (upper panel of Table 3) and the
partition analysis (lower panel of Table 3), even though

the former used only about 6.3% (=500/7947) of the data
as in the latter. Indeed the independent sampling scheme
had very slightly smaller CI widths for t7–t11.

Those results suggest that to increase the precision
of posterior time estimates, it is far more effective to
increase the number of loci than to increase the sequence
length at each locus, at least when the sequence length at
each locus is not too small (in our case, N ≥ 200 at every
locus).

DISCUSSION

Unconventional Nature of the Estimation Problem
The confounding effect of times and rates makes

Bayesian estimation of species divergence times
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Platyrrhini

Hominidae
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Hominini

FIGURE 3. Phylogeny of six primate species. Fossil calibrations
are shown next to the nodes on the tree. The joint bounds (for nodes
7, 8, 9, and 11) are implemented as soft uniform bounds with a sharp
minimum (1% of tail probability on the left) and a soft maximum (5%
of tail probability on the right) (Yang and Rannala 2006, figure 2). The
minimum bound (on node 10) is implemented using the truncated
Cauchy distribution (Inoue et al. 2010).

using uncertain fossil calibrations an unconventional
estimation problem. Here we highlight two important
differences. First, in a conventional Bayesian estimation
problem, the estimate (posterior mean, say) will
converge to the true parameter value when the size
of the data set (N) increases without bound, with the
posterior variance decreasing to zero. In large data sets,
the posterior variance is typically proportional to 1/N.
The Bayesian method of parameter estimation is known
to be statistically consistent. However, such convergence
to truth does not occur in Bayesian divergence time
estimation, when the amount of sequence data increases
without bound and when the fossil calibrations
involve uncertainties and are fixed. The model is not
fully identifiable, and the posterior variance will not
approach zero even if an infinite amount of sequence
data is analyzed (Britton 2005; Yang and Rannala 2006).
Second, in a conventional Bayesian estimation problem,
the impact of the prior will become unimportant when
the data size increases, and in large data sets, the
posterior will be dominated by the data or likelihood.
This is not the case when we use genetic sequence data
to estimate absolute times and absolute rates. Even with
an infinite amount of sequence data, the posterior will
remain sensitive to the prior on times (which includes
the calibration information) and the prior on rates,
as highlighted in the infinite-sites theory (Yang and
Rannala 2006; Rannala and Yang 2007).

In this study, we characterized the posterior
uncertainty, measured by the posterior variance or the
square of the posterior CI width (w2), in Bayesian relaxed
clock dating analysis using sequence data from multiple
loci. We used an analogous normal distribution example
to make qualitative predictions about the posterior
variance of times when the number of loci L and the

sequence length N are large but finite. The predictions
are then confirmed in specific cases using computer
simulation and analysis of a primate data set. The
posterior variances of divergence times have three
components. The first is due to sampling errors in the
branch lengths due to the limited sequence length N.
If L is large, this component goes to zero at the rate
1/N. The second component is due to evolutionary rate
variation among loci and among branches at each locus
according to the relaxed clock model. This decreases
to zero in proportion to 1/L. The third component is
due to uncertainty in fossil calibrations. This cannot be
reduced by increasing the amount of sequence data.
For most phylogenetic analysis, the locus is not very
short (with N >1000 sites, say). Then use of multiple loci
(or site partitions) will be the most effective approach
to improving the precision of posterior time estimation
under relaxed clock models.

The importance of analyzing multiple loci or site
partitions to reduce posterior uncertainty does not seem
to be well appreciated in the literature. Many dating
analyses commonly use the concatenation method,
by which multiple genes are concatenated into one
“supergene,” with one set of rates for branches used
in the model (e.g., Christin et al. 2014). Also empirical
biologists appear to be surprised by the lack of big
improvement in estimation precision with the addition
of molecular data (e.g., Mulcahy et al. 2012), even
though this is expected from theory (Yang and Rannala
2006; Rannala and Yang 2007). Given the persistent
uncertainty in the posterior even when large genome-
scale data sets are analyzed, the posterior means or
medians of divergence times may not represent the
posterior distribution well. Thus, we suggest that in
molecular dating analyses, posterior CIs or standard
deviations of divergence times be reported in addition
to the posterior means or medians.

Assumptions and Validity of the Theory
Our theory is constructed not through mathematical

proofs but by statistical intuition through an analogy
with a toy example that is analytically tractable.
However, there are a number of differences between
the toy example and the divergence time estimation
problem. Here we discuss or speculate on which of
those differences matter to our qualitative results. First,
the toy example assumes an additive model (equation
(1)), but the model in the Bayesian dating problem
is multiplicative (i.e., a branch length or sequence
distance is the product of time and rate). However, we
consider this difference to be unimportant. If we take the
exponential on both sides of equation (1), the additive
model will become a multiplicative one, with

Xij =M1 ·M2 ·	i ·Eij, (6)

where Xij =exij , M1 =e�1 , and so on. By assuming
that the random effect 	i and the error Eij have
lognormal distributions and by assigning lognormal
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FIGURE 4. The finite-sites theory applied to the analysis of genomic sequence data from six primate species (Fig. 3). The square of the posterior
95% CI widths (w2) for the 5 node ages (t7, t8, t9, t10, and t11) is plotted against the reciprocal of the number of loci, sampled at random from
7947 protein coding genes (with only the third codon positions used).

priors on parameters M1 and M2, equation (6) specifies
exactly the same model as equation (1), so that exactly
the same results will be obtained in the Bayesian
analysis. Furthermore, in large data sets, the variances
for a parameter x and for its function y=y(x) are

approximately related as var(y)=var(x)×∣∣dy
dx

∣∣2, where
the derivative is evaluated at the true parameter
values and is a constant scale factor. Thus, if var(x)
is proportional to 1/N, so is var(y). Such transforms
or reparametrizations typically affect the sample size
needed for the asymptotics to work well but not the
asymptotic behavior itself. In other words, var(x) may
become proportional to 1/N sooner (for smaller N) than
var(y), but with sufficiently large N, both var(x) and
var(y) should be proportional to 1/N. Similarly we do
not consider the distributional forms (normal in the toy
example vs. multinomial for sequence alignments in the
dating problem) to be important.

In the simulation we fixed the locus rate �i to be
constant among loci (equal to the prior mean). We
suggest that the asymptotic behavior should be the
same if one samples �i from the prior instead: In both
cases, the data are independent among loci given the
parameters of interest (�1 and �2 in the toy example
vs. times and the average rate across loci in the dating
problem). Another assumption we made both in the
model and in the simulation is that the species phylogeny
and species divergence times are shared among all loci.
A number of biological processes can cause the gene
trees at individual loci to differ from the species tree.
For example, the coalescent process in ancestral species
may cause the gene tree topology to differ from the
species tree and also the gene divergences to be older
than the species divergences. This source of uncertainty
is ignored here. As a result, our theory may apply only

to distantly related species so that the coalescent times
are negligible compared with the species divergence
times.

Although many factors affect divergence time
estimation, we consider two of them to be particularly
important to the qualitative results of this article: The
fossil calibrations and the prior model for variable rates
among loci and among branches. Here we discuss the
first factor and treat the second below in the next
subsection.

We have assumed that the fossil calibrations are
uncertain (i.e., they are not fixed constants) but correct.
We have ignored the challenges of summarizing the
fossil evidence to generate uniform bounds or other
statistical distributions for use as fossil calibrations in the
dating analysis. Erroneous calibrations may have major
effects on divergence time estimation. In some situations,
they may produce extremely precise but grossly wrong
time estimates whereas in others the conflicts between
fossils and between fossils and molecules may lead
to multimodal posteriors. The impact of incorrect
calibrations on the asymptotic behavior of divergence
time estimation is not well understood (dos Reis and
Yang 2013). Also our theory assumes that the fossil
calibrations used in the dating analysis are fixed, and
does not apply if more and more fossil calibrations are
added into the dating analysis. We speculate that our
asymptotic results will also apply to the joint analysis
of morphological characters and molecular sequence
data, as conducted by Ronquist et al. (2012a), or in the
joint analysis of fossil occurrence data and molecular
sequence data, as in (Wilkinson et al. 2011; see also
Bracken-Grissom et al. 2014), if the morphological data
or fossil occurrence data are fixed, whereas the amount
of molecular data increases. Further research is needed
to test those predictions.
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Prior Models for Substitution Rates Among Loci
In this study, we have assumed the compound

Dirichlet prior of dos Reis et al. (2014) for the locus rates
(averages rates for the loci). Most current Bayesian dating
programs implement the i.i.d. prior for locus rates,
assuming that the rates for loci have an independent and
identical distribution. Suppose �i has a distribution with
variance v. With L loci, the average of �i over all L loci,
�̄= 1

L
∑L

i=1�i, will have the variance v/L. For large L, this
variance will be very small. In analysis of large molecular
data sets, the posterior of times and rates is nearly one
dimensional (e.g., dos Reis and Yang 2013, figure 3), and
the near certain knowledge of one parameter, such as the
age of a single node on the tree or the average rate over
all loci, will be sufficient to resolve the nonidentifiability
problem and make all parameters be estimated with
near certainty. This high precision is an artefact of the
unreasonable prior. One consequence of this i.i.d. prior

is that if the rate prior is mis-specified (with a wrong
prior mean, say), the posterior time estimates may be
grossly wrong and yet very precise (e.g., dos Reis et al.
2014, figure 1).

Here we mention two priors that avoid this problem.
The gamma-Dirichlet prior implemented by dos Reis
et al. (2014) assigns a gamma distribution for the average
rate across all loci: �̄= 1

L
∑L

i=1�i ∼G(
�, ��), and then
partitions the total rate for all L loci (L�̄) using a Dirichlet
distribution with concentration parameter 
. The means,
variance, and correlation are given as

E(�i)= 
�

��
,

var(�i)= 
�

�2
�

[
1+ 
�+1

L
+1 (L−1)
]
→ 
�

�2
�

[
1+ 
�+1


 )
]
, if L→∞,

�=corr(�i,�j)= L
−
�

L(
+1)+(L−1)
�
→ 



+1+
�
, if L→∞

(7)
(dos Reis et al. 2014; equations (6–7)).
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The second prior may be referred to as the conditional
i.i.d. prior, and is not yet implemented. We assume
that the rate �i for locus i has the distribution �i|�̄∼
G(
, 
/�̄), where 
 is the shape parameter and measures
how variable the rates are among loci, and �̄ is the mean
of the prior distribution. Then we assign a hyperprior
�̄∼G(
�, ��), with shape parameter 
� and ��. Under
this prior, we have

E(�i)=E(E(�i|�̄))= 
�

��
,

var(�i)=E(V(�i|�̄))+V(E(�i|�̄))=E( �̄2


 )+V
(
�̄
)

= 1



(

�

�2
�

+ 
2
�

�2
�

)
+ 
�

�2
�

= 
�

�2
�

[
1+ 1+
�




]
,

�=corr(�i,�j)= 


+1+
�

.

(8)

It does not seem possible to integrate out �̄ to generate
the joint prior distribution f (�1, �2, …, �L|
�, ��, 
)
analytically. However, one may use MCMC to integrate
over �̄.

A drawback of the gamma-Dirichlet prior is that it
depends on the size of the data (the number of loci L),
but it has the advantage that the joint prior distribution
f (�1, �2,…,�L|
�, ��, 
) is tractable analytically (dos
Reis et al. 2014, equation (3)). The conditional i.i.d.
prior appears to match the toy example and our
simulation more closely than the gamma-Dirichlet prior.
Nevertheless, the two priors are extremely similar
for large L, with the same means, variances, and
correlations. They appear to have the same asymptotic
dynamics.

One aspect of the prior for rates that may be
unrealistic biologically is the assumption that given the
rates for loci (�1,…,�L), the rates for branches are
independent among loci. In other words, the different
loci will provide independent realizations of the rate-
drift process. Analysis of real data has highlighted the
existence of both the gene effect, which is described
by the prior model f (�i|�̄), and the lineage effect of
substitution rates (Ho 2014). The lineage effect here
means that some branches on the tree have high rates in
all or most loci whereas some other branches have low
rates. Current prior models ignore such rate correlation
among loci, and may be expected to exaggerate the
information content in the sequence data (Thorne et al.
1998). An even more extreme case may be as follows.
Imagine one has five genes but analyzes them as
10 partitions, separating each gene into two arbitrary
partitions. Such an analysis will generate more precise
time estimates, but the high precision is spurious,
because the two halves of the same gene may have
very similar evolutionary rate trajectories and do not
constitute two independent realizations of the rate-drift
process.
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APPENDIX

To obtain the joint posterior distribution of �1 and
�2, we integrate out �i in equation (1). The exponent in
equation (1) is

−
(

1

2�2
�

+ 1

2�2
e /N

)
�2

i + 2N

2�2
e

(
x̄i −�1 −�2

)
�i

− N

2�2
e

(
x̄i −�1 −�2

)2

=−�2
e +N�2

�

2�2
e �

2
�

(
�i −

N�2
�

�2
e +N�2

�

(
x̄i −�1 −�2

))2

− 1

2
(
�2

e /N+�2
�

) (x̄i −�1 −�2
)2

. (A.1)

Let �2
e /N+�2

� =v3. Thus we have

f (�1,�2|X)∝ f (�1)f (�2)exp

{
−
∑

i

1
2v3

(x̄i −�1 −�2)2

}

∝ exp

{
− 1

2v1
(�1 +1)2 − 1

2v2
(�2 −1)2

−
∑

i

1
2v3

(x̄i −�1 −�2)2

}
. (A.2)

This is a bivariate normal density with standard form

f (�1,�2|X)= 1

2�s1s2
√

1−�2
exp

{
− 1

2(1−�2)

((
�1 −m1

s1

)2

−2�
�1 −m1

s1

�2 −m2
s2

+
(

�2 −m2
s2

)2
)}

.

(A.3)

The means, variances, and correlation could be obtained
by equating the coefficients of �2

1, �2
2, �1�2, �1, and �2

in the exponent in equation (A.2) to those in equation
(A.3). Here it seems simpler to integrate out �2 to get the
marginal distribution of �1, which is univariate normal.
Completing the square for �2 in the exponent of equation
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(A.2), we have

−
∑

i

1
2v3

(x̄i −�1 −�2)2 − 1
2v2

(�2 −1)2

=−
(

1
2v2

+ L
2v3

)
�2

2 +2
(

1
2v2

+ L(x̄−�1)
2v3

)
�2

− 1
2v3

∑
i

(x̄i −�1)2 − 1
2v2

=−
(

1
2v2

+ 1
2v4

)(
�2 − v4 +v2(x̄−�1)

v2 +v4

)2

− 2(1− x̄)
2(v4 +v2)

�1 − 1
2(v4 +v2)

�2
1 +const., (A.4)

where const. is independent of �1 and �2. Thus after �2
is integrated out, the terms involving �1 in the exponent
of equation (A.2) becomes

− 2(1− x̄)
2(v4 +v2)

�1 − 1
2(v4 +v2)

�2
1 − 1

2v1
(�1 +1)2

=− v1 +v2 +v4
2v1(v2 +v4)

(
�2

1 +2
v1 −v1x̄+v2 +v4

v1 +v2 +v4
�1

)
+const.

=− 1

2 v1
(
v2+v4

)
v1+v2+v4

(
�1 +1− v1

v1 +v2 +v4
x̄
)2

+const. (A.5)

Thus m1 and s1 are as given in equation (2). Similarly
one obtains m2 and s2. By equating the coefficient of �2

1
in the exponents of equations (A.2) and (A.3), we have
(v1+ v4)/(2v1v4)=1/(2s2

1(1−�2)), and by noting the sign
of the coefficient of �1�2 in equation (A.2), we obtain �
as in equation (2).
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