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1. Introduction and Summary

The superconformal index has proved to be an important tool in the study of superconfor-

mal field theories (SCFTs) in diverse dimensions [1, 2]. In some cases interesting limits of

the index have been devised, which isolate contributions from particular subsets of oper-

ators and provide information about its different phases, see e.g. [3]. Limits of the index

also help in identifying algebraic structures hidden within special subsectors of the theory,

a fact which has been put to remarkable effect in four and six dimensions [4].

In a closely related direction, recent work [5] established a connection between the so-

called Schur limit of the 4D index on the one hand,1 and a certain algebraic quantity

associated with the BPS spectrum of particles on the Coulomb branch on the other—the

trace of the Kontsevich–Soibelman (KS) operator—for a convincing number of 4D N = 2

SCFTs;2 see also [8] for generalisations. In this fashion one demonstrates that, for specific

BPS subsectors, the operator spectrum of an SCFT is directly related to the particle

spectrum of the same theory in a phase where the conformal symmetry has been broken.

In this note, we would like to import some of these results to five-dimensional SCFTs

[9–12]. Our first objective will be to define a limit of the 5D superconformal index by

turning off one of the two Ω-deformation parameters;3 this is the limit first considered by

Nekrasov and Shatashvili (NS) in a four-dimensional context [13]. Its naive implementation

1Recent exact results on the 4D Schur index include [6].
2For an alternative calculation of the Schur index for Argyres–Douglas theories see [7].
3Since the precise operator spectrum of the interacting 5D UV theories is unknown, one usually works

with the realisation of the index as a supersymmetric partition function on S4 × S1 with twisted boundary

conditions for the various fields.
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leads to a singular index, which calls for a prescription on how to extract the finite parts.

This problem can in principle be addressed in a way similar to the original NS limit

of [13]. However, the direct 5D extension of that recipe leads to a function whose fugacity

expansion does not necessarily involve integer coefficients. In turn, we propose a different

5D regularisation which results in a fugacity expansion with integer coefficients for arbitrary

gauge groups. In the abelian case, our regularisation clearly isolates contributions from

states localised on a four-dimensional subspace of the euclideanised spacetime. Moreover, it

reproduces, at least for the perturbative sector, the large-orbifold limit of the gauge theory

index of [14]. The latter effectively reduces the space down to a 4D geometry—of the form

M3 × S1—where the contributions of vector and hypermultiplets become identical to the

4D Schur index and may hint towards an interesting connection with [4]. Although our

limit does not lead to a counting of states preserving a larger fraction of supersymmetry,4

it does lead to a factorisation of the index into a “holomorphic” and “antiholomorphic”

part for general 5D SCFTs. This factorisation is reminiscent of the work of Iqbal and

Vafa [15], where it also appeared as the starting point for connecting the 5D BPS-particle

degeneracy5 to the index, using the topological string.

With this last point in mind, our second objective will be to relate the NS limit of

the 5D index to the work of [5]. For a number of abelian examples we will show that

the NS index can be reproduced by the trace of the KS operator for a “5D BPS quiver”.

This quiver can be constructed straightforwardly by assigning a node for each “partonic

BPS state”.6 This involves a node corresponding to the instanton-soliton parton of the 5D

theory, as well as a node for each of the possible Nf hypermultiplets of the theory. The

construction and study of the 5D BPS quiver for nonabelian theories, and their possible

connection to the NS index, is a question that we will leave open for future investigation.

However, our abelian results can already be thought of as a check of the proposal of [15],

for a particular subsector of five-dimensional theories.

The rest of this article is organised as follows: In Sec. 2 we will present the details of

the NS limit for the 5D index, after briefly reviewing some background material necessary

for our discussion. Then in Sec. 3 we will introduce the algebraic tools of [5] and use

them to recover our index for U(1) theories with different matter content and values of the

Chern-Simons coefficient. We will also discuss some directions for generalising these results

4Interesting limits of the 4D index with additional superymmetry were originally considered in [3].
5Note that in 5D there also exist BPS strings.
6By this we mean states with the lowest possible charges, i.e. ones that cannot be written as bound

states of any other states.
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to nonabelian gauge groups.

2. The Nekrasov-Shatashvili limit of the 5D index

2.1. Generalities

The superconformal index in five dimensions was first defined in [2] and computed using

supersymmetric localisation [16] for a variety of N = 1 theories in [17]. Recall that using

a Verma module construction, one can obtain all irreducible representations of the 5D su-

perconformal algebra (SCA) F (4) from irreducible representations of the maximal compact

subalgebra so(2)E ⊕ so(5)⊕ su(2)R. The latter are labelled by strings of quantum numbers

denoting the highest weight state {ǫ0, R, h1, h2}, where h1, h2 are the Cartan generators

of so(5),7 while ǫ0 is the scaling dimension measured by the charge under so(2)E. Finally,

the su(2)R Cartan generator is denoted by R.8

In the radial quantisation of the theory, where S = Q†, and for a particular choice of

supercharge,9 one can define

δ := {Q, S} = ǫ0 − h1 − h2 − 3R , (2.1)

which is a positive-definite quantity. The index is a partition function counting operators

transforming in irreducible representations of the subalgebra of the SCA that (anti)commute

with the above Q, S (these are 1
8
-BPS) and hence also δ—or equivalently, irreps of the

commutant of (Q, S, δ) of the 5D SCA. It is straightforward to see that h1+R and h2 +R

commute with the above choice of δ and as a result the most general, or “refined”, index

with respect to the supercharge Q is given by [2, 17, 18]

I = TrHδ=0
(−1)F ph1+R qh2+R

∏

a

wQa
a qk . (2.2)

Here the trace is taken over the Hilbert space of δ = 0 operators, F = 2h1 is the fermion

number operator, p, q are fugacities keeping track of the elements of the commutant

and the wa are additional fugacities for commuting charges Qa, corresponding to possi-

ble global/gauge symmetries. One such commuting charge corresponds to a topological

U(1) symmetry which is always present in the examples we are interested in: 5D gauge

7These are related to the Ω-deformation parameters ǫ1, ǫ2 in a simple way.
8As is common in the literature, we will use the same symbols for the Cartan generators and the corre-

sponding charges, depending on the context.
9We follow the conventions and choices of [17].
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theories possess a conserved current, ∗J = 1
8π2 tr(F ∧ F), and their spectrum contains in-

stanton solitons, charged under the associated symmetry. This global symmetry plays an

important role in five dimensions, where SCFTs with very interesting properties exist [9]:

in many cases it can combine with and enhance other symmetries (flavour, Lorentz); see

e.g. [17, 19, 20]. Indeed, one can also include a fugacity q in the index (2.2), which keeps

track of the instanton charge k, where |q| = 1.

Via the state-operator map, the 5D index can alternatively be evaluated by a Euclidean

path integral on S4 × S1 with twisted boundary conditions for the various fields according

to their charges [2, 17, 21]. The index then counts 1
8
-BPS states for the theory on the

sphere. This functional integral can be evaluated in the IR theory10 using localisation [17]

and the answer reduces to a gauge-group integral over the product of perturbative and

nonperturbative contributions, schematically

I =

∫

[dU ]ZS4

pertZnonpert , (2.3)

with [dU ] the unit-normalised Haar measure. The nonperturbative factor can be written

as

Znonpert = |ZNek|2 , (2.4)

where ZNek is the Nekrasov instanton partition function [24]. The perturbative contribution

is a modular quantity built out of the weak-coupling multiplets. The vectormultiplet and

hypermultiplet contributions are given by

IV,H = PE[fV,H ] , (2.5)

where PE refers to the plethystic exponential. The so-called single-letter indices appearing

above in turn read11

fV = − p+ q

(1 − p)(1− q)
χAdj , fH =

√
pq

(1− p)(1− q)
(χ� + χ�̄) , (2.6)

with χR denoting the character of a given representation R.

2.2. The NS index

Having set the stage, we would like to investigate whether there exist limits of the index

(2.2) which only receive contributions from certain sectors of the theory, as e.g. is the

10For a generic SCFT on R × S4 it is possible to turn on supersymmetrically a position-dependent YM

coupling, interpolating between the SCFT and the IR gauge theory [22, 23].
11For definiteness, we will assume that the hypermultiplet is in the fundamental of the gauge group.
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case in 4D [3]. Note that, as opposed to other dimensions, the 5D index only depends on

two fugacities. Moreover, these correspond to Cartans of SU(2) symmetries, a fact which

underlies the (p, q) ↔ (q−1, p−1) and (p, q) ↔ (q, p) invariance of the index; c.f. (2.6).

Thus, it is hard to imagine nontrivial regular limits as in [3]. Yet, this does not exclude

interesting singular limits. In particular, following [13], we will focus on the Nekrasov-

Shatashvili (NS) limit of the index. Generically, the NS limit involves sending one of the

two Ω-deformation parameters to zero, ǫ1 → 0, while keeping the other one, ǫ2, fixed. These

parameters are chemical potentials for rotations in two real planes, SO(2)ǫ1 × SO(2)ǫ2 ⊂
SO(5), and related to our choice of fugacities through p = e−ǫ1 and q = e−ǫ2 . Hence, one

can naively implement the NS limit directly at the level of the index, by considering

p→ 1 and q → fixed . (2.7)

Although this definition is natural, it leads to divergences as can be immediately seen by

applying it to the perturbative contributions (2.6). We therefore need to put forward a

modified definition for taking the NS limit of the 5D index, which leads to finite contribu-

tions.

Towards that end, we follow [18] and rewrite the index of the full theory on S4 × S1 in

terms of two “hemisphere indices” on D4 × S1 with Dirichlet boundary conditions, where

D4 ⊂ S4 is half the sphere. The hemisphere index is in turn defined by

II = ZD4

pertZNek . (2.8)

For the example of a single vectormultiplet and a hypermultiplet in the fundamental rep-

resentation, the perturbative piece reads

ZD4

pert = PE
[

− p + q

(1− p)(1− q)
χAdj +

√
pq

(1− p)(1− q)
χ�

]

, (2.9)

where the gauge symmetry of the full index on S4 × S1 is to be understood as a global

boundary symmetry.

The full index is then computed by combining two such contributions and gauging the

appropriate diagonal subgroup of said global symmetries to obtain

I = (I4DV )r
∫

[dU ] II II , (2.10)

where the overline implies that one inverts all gauge/flavour fugacities. The term

I4DV = PE
[

− p

1− p
− q

1− q

]

(2.11)
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is a purely four-dimensional N = 1 vectormultiplet contribution coming from the boundary

and r = rank(G) is the gauge group rank.

We are now in the position to define the NS index as follows:

NS index : IINS(zi, q; q) := PE
[

lim
p→1

(1− p) PE−1[II(zi, q; p, q)]
]

, (2.12)

such that

INS(q; q) :=

∫

[dU ] IINS(zi, q; q) IINS(zi, q; q) . (2.13)

Note that we have stripped off the (divergent in this limit) factors of I4DV . We will come

back to this below.

We stress that this definition of the NS limit is different from other versions where the

PE in (2.12) is traded for a standard exponential and results in a function whose fugacity

expansion does not necessarily involve integer coefficients; see [13, 25]. On the other hand,

Eq. (2.13) does admit an expansion with integer coefficients, due to the use of the PE.

In the above the zi, i = 1, . . . , r, are gauge/global symmetry fugacities and the plethystic

logarithm, PE−1, is the inverse of the plethystic exponential, defined as

PE−1[g(t)] :=

∞
∑

n=1

µ(n)

n
log[g(tn)] , (2.14)

with µ(n) the Möbius function. This factorisation of the superconformal index in the NS

limit is reminiscent of the discussion in [15], where the full index was calculated using

the refined topological vertex formalism and related to the counting of BPS states on the

Coulomb branch of the theory. We will see in the next section that the relationship to “5D

BPS quivers” can be quantified for G = U(1) through the formalism of [5].

Perturbative NS limit

Since our prescription for the NS limit (2.12) factorises over the perturbative and nonper-

turbative contributions, let us first look at the former. From (2.9) it is straightforward to

deduce that

ZD4,NS
pert = PE

[

− q

(1− q)
χAdj +

√
q

(1− q)
χ�

]

(2.15)

and consequently if we only focus on the perturbative sector

∫

[dU ]ZD4,NS
pert ZD4,NS

pert =

∫

[dU ]PE
[

− 2q

(1− q)
χAdj +

√
q

(1− q)
(χ� + χ�̄)

]

. (2.16)
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ǫ0 (j1, j2) R

q 3
2

(0, 0) ±1
2

ψ 2 (±1
2
, 0)⊕ (0, ±1

2
) 0

∂ 1 (±1
2
, ±1

2
)⊕ (0, 0) 0

Table 1: The letters in the hypermultiplet and their respective charges.

This is tantamount to projecting out states with a nontrivial x++ dependence, as can be

seen by taking the NS limit directly on the full 5D single-letter indices.

This requires an equivalent prescription for which it is convenient to introduce fugacities

x =
√
p q, y =

√

q/p. Note that, after performing this substitution in equation (2.2), the

exponents of the x and y fugacities are given respectively by h1 + h2 + 2R = 2j1 + 2R

and −h1 + h2 = −2j2. In terms of these, the NS index for the hypermultiplet can be

implemented by taking y → x. More precisely

fNS
H = lim

ǫ1→0
ǫ1 fH(x, x(1 + ǫ1)) . (2.17)

In this fashion the NS index picks out the coefficient of the 1
ǫ1

pole in the naive ǫ1 → 0

limit of fH . Recall that for the free hypermultiplet the single particle index fH can be

understood in terms of letter counting using the state-operator map [17]. Using Table 1,

one immediately sees that fH contains operators made out of letters of the form ∂m+±O;

here O is a scalar or fermionic component of the hypermultiplet and the derivatives are

responsible for the factor (1 − p) (1 − q) = (1 − x y)(1 − x
y
) appearing in the denominator

of (2.6). In the limit ǫ1 → 0, one such derivative becomes of zero weight. This results in

a divergence in the limit y → x, originating from an unrefinement in the index which now

counts letters containing arbitrary powers of ∂++ with the same weight (zero). Defining

the NS index through selecting the pole in (2.17), is tantamount to only accounting for the

contribution with no derivatives.

Somewhat surprisingly, the vector multiplet piece can also be given an IR-operator

interpretation. In such a scenario, one can understand the single-letter vector multiplet

contribution as arising from components of the gaugino plus a tower of infinitely many

derivatives. In the limit ǫ1 → 1, not only the weight of a derivative but also one of the

components of the gaugino become zero. These translate into singularities of the index and

our prescription amounts to regularising them by discarding zero-weight letters.

Hence, at the level of implementation, the following single-letter functions can be used

7



for the perturbative contributions in the NS limit:

fNS
V = − 2q

(1− q)
χAdj , fNS

H =

√
q

(1− q)
(χ� + χ�̄) . (2.18)

We highlight that these single-letter terms are precisely the vector and hypermultiplet

single-letter index contributions for the perturbative sector of N = 2 four-dimensional

theories in the Schur limit [3,6], which may hint at a connection with the results of [4]. It

is also interesting to observe that the large-orbifold limit of [14] also led to perturbative

contributions identical to those of the 4D Schur index.12

All in all, in the perturbative sector our NS limit discards states with a dependence on

the x++ direction on D4, along with the boundary N = 1 vectormultiplet contributions I4DV .

This is equivalent to using the single-letter expressions (2.18) directly into (2.5). We will

next see that this interpretation extends to the nonperturbative sector for abelian theories.

Nonperturbative NS limit

The result of the prescription (2.12) on the nonperturbative piece is somewhat more in-

volved. This is due to the fact that, with the exception of the abelian case, the Nekrasov

partition function cannot be written as a PE of single-letter contributions but is evaluated

as an expansion in powers of the instanton fugacity q

ZNek =

∞
∑

k=0

qkZ
(k)
Nek with Z

(0)
Nek = 1 . (2.19)

We will henceforth assume that the NS limit commutes with the instanton expansion and

then use this along with (2.12) to get

ZNS
Nek(zi, q; q) = PE

[

lim
p→1

(1− p) PE−1[

∞
∑

k=0

qkZ
(k)
Nek(zi; p, q)]

]

= PE
[

lim
p→1

(1− p) PE−1[1 + qZ
(1)
Nek(zi; p, q) + q2Z

(2)
Nek(zi; p, q) +O(q3)]

]

= PE
[

lim
p→1

(1− p)
(

qZ
(1)
Nek(zi; p, q)+

+ q2
(

Z
(2)
Nek(zi; p, q)−

1

2
Z

(1)
Nek(zi; p, q)

2 − 1

2
Z

(1)
Nek(z

2
i ; p

2, q2) +O(q3)
)]

= 1 + q lim
p→1

(1− p)Z
(1)
Nek(zi; p, q)+

12Recall that [14] considered the 5D theory on S4/Zn × S1 in the large-n limit. This effectively dimen-

sionally reduced the space down to a (singular) 4D geometry.
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+ q2 lim
p→1

(

(1− p)(Z
(2)
Nek(zi; p, q)−

1

2
Z

(1)
Nek(zi; p, q)

2 − 1

2
Z

(1)
Nek(z

2
i ; p

2, q2))

+ (1− p)2
Z

(1)
Nek(zi; p, q)

2

2
+ (1− p2)

Z
(1)
Nek(z

2
i ; p

2, q2)

2

)

+O(q3)

=:

∞
∑

k=0

qkZ
NS,(k)
Nek (zi; q) . (2.20)

This proposal is obviously applicable to the case of G = U(1), where as we will see shortly

the instanton expansion can be explicitly resummed into a PE. E.g. for a pure U(1) theory

one has

Znonpert = PE
[

√
pq

(1− p)(1− q)
(q+ q−1)

]

. (2.21)

In that context, the NS limit once again explicitly counts states which do not have any

dependence on the x++ direction.13 However, the definition (2.20) also makes sense for the

case of nonabelian gauge groups, where Z
(k)
Nek can be expanded in q to yield terms with

integer coefficients, as expected for an index. We have explicitly checked this to sufficiently

high order for G = SU(2).

As raised above, we should emphasise that a version of the NS limit for the Nekrasov

partition function has already been considered in [25], along the lines of [13]. This is

a different limit from the one discussed here, insofar as it involves replacing plethystic

exponentials with exponentials and plethystic logarithms with logarithms. Our motivation

for (2.12) stems from requiring finite coefficients in the fugacity expansion and mirroring

the definition of the 4D limits of [3], which act directly on the single-letter indices.

3. Kontsevich–Soibelman operators and BPS Quivers

Having provided our definition for the NS index, one can establish a connection with [5]. In

that reference—see also [8]—it was conjectured that the 4D Schur index of a rank-r theory

can be recovered in terms of quantities associated with the BPS quiver of the theory [26]

through

IKS = (q)2r∞Tr[O] , (3.1)

where the Pochhammer symbol is defined as

(q)0 = 1, (q)n =

n
∏

k=1

(1− qk) . (3.2)

13One can also ascribe an IR-operator interpetation to the abelian instanton partition function, as the PE

of single-letter contributions from instanton operators [19, 23]
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Here the quantity O is the Kontsevich-Soibelman (KS) operator associated with the BPS

quiver of the four-dimensional gauge theory. Such a theory contains a set of BPS particles

on the Coulomb branch labelled by a vector γ in the charge lattice Γ. Then, for each γ

one introduces a formal variable Xγ obeying a quantum torus algebra

XγXγ′ = q
〈γ,γ′〉

2 Xγ+γ′ = q〈γ,γ
′〉Xγ′Xγ , (3.3)

where 〈·, ·〉 is the (integer) Dirac pairing of charges in the lattice Γ, which can be read off

from the BPS quiver. In terms of these Xγ, the KS operator can be explicitly written as

O =
∏

γ

Eq(Xγ) , (3.4)

where Eq is the q-exponential function

Eq(z) =
∞
∏

i=0

(1 + qi+
1

2 z)−1 =
∞
∑

n=0

(−q 1

2z)n

(q)n
. (3.5)

For a theory without flavour, the trace of the quantum torus algebra is defined by its action

on the formal variables Xγ

Tr[Xγ ] =

{

1 γ = 0

0 otherwise
(3.6)

and extending linearly. For theories with flavour, there exist flavour charge vectors γf ,

which have zero Dirac pairing with all other γ′ ∈ Γ, 〈γf , γ′〉 = 0. Morevover, the definition

of the trace needs to be modified to

Tr[Xγ ] =

{

∏

i Tr[Xγfi
]fi(γ) 〈γ, γ′〉 = 0 ∀ γ′ ∈ Γ

0 otherwise
, (3.7)

where γfi is an integral basis of flavour charges and fi(γ) the flavour charges of γ. The

Tr[Xγfi
] are free quantities that are to be identified with the flavour fugacities appearing in

the index. Using the above machinery, the 4D Schur index can be read off from the BPS

quiver [5].

In view of the similarities between the NS limit of the 5D index discussed above and the

Schur index for an N = 2 4D theory with the same number of vector and hypermultiplets,

it is natural to wonder whether a decomposition in terms of “5D BPS quiver data” also

exists. In fact, Iqbal and Vafa have used the topological string [15] to argue that the 5D

BPS-particle spectrum reproduces the superconformal index.
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We will next provide a simple but concrete realisation of this idea, relating the NS index

to the trace of the KS operator for a number of abelian examples. At this point we should

make it clear that there exist no nontrivial abelian fixed points in five dimensions and

one may be alarmed that the notion of the superconformal index is ill-defined. However,

the quantity Eq. (2.3), and its subsequent NS limit, is meaningful even for non-conformal

theories and it is this definition that we will use in the upcoming discussion.14

We have already seen that the existence of BPS instanton particles in 5D leads to index

contributions with a new global fugacity, related to the topological charge. It is therefore

natural to suspect that any 5D extension of the Schur–KS correspondence must involve a

BPS quiver where at least one extra node, corresponding to the BPS instanton particle, is

added.

Unlike four dimensions, the five-dimensional central charge is real and the BPS states

are divided into CPT-conjugate pairs. The states with the lowest possible charges (the “par-

tonic” BPS states) comprise of W-bosons and quarks, instanton solitons and magnetically-

charged BPS strings; see e.g. [12]. The existence of BPS strings makes the identification

of the appropriate five-dimensional nonabelian generalisation of the BPS-quiver subtle.15

However, for abelian theories with Nf flavours BPS-string states are absent and one can

straightforwardly construct a 5D quiver comprising only of an instanton-particle node and

a node for each of the Nf flavours, with no arrows extending between them.

In the following section we will show that the abelian NS index can be re-expressed to

match the trace of the KS operator for the corresponding 5D BPS quiver. We will also

comment on the possible extension to nonabelian gauge groups.

3.1. Abelian theories

For abelian theories the nonperturbative contribution is particularly simple. This allows for

a straightforward reinterpretation of their NS index in terms of quiver data. The instanton

partition function for the U(1) theory with F flavours and Chern–Simons (CS) level κ can

14Having said that, “SU(1) theories” can exist at fixed points, since they correspond to pq branewebs

which can be collapsed to an intersection of fivebranes at a point. For instance, a pure “SU(1)” theory can be

engineered in the NS-D5 intersection, and corresponds to a pure U(1) gauge theory where the perturbative

vector multiplet is removed. The leftover instanton sector, behaving as a hypermultiplet, then still remains.

Thus, our abelian computations can be understood in terms of these “SU(1)” theories, which often appear

in quiver tails (e.g. [27]).
15For example, the results in [15] suggest that only BPS particles are important in reproducing the index.
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be borrowed from [17]:16

Z
(k)
Nekrasov =

(2i)k(F−3)

k!
×

×
∫ k

∏

I=1

dφI

2π

eiκφI (sin φI

2
)F

∏

I 6=J sin
φI−φJ

2

∏

I,J sin
φI−φJ−2iγ1

2
∏N

i=1 sin
φI−αi−iγ1

2
sin −φI+αi−iγ1

2

∏

I,J sin
φI−φJ−iγ1−iγ2

2
sin φI−φJ−iγ1+iγ2

2

.

(3.8)

Recall that, as is well-known, integrating out a massive flavour produces a shift to the CS

level by a factor of ∆κ = sign(m)
2

. As a consequence, odd F requires a half-integer κ. In

order to take the NS limit of the index, we shall rewrite the above expression using the

fugacities p and q, as well as a gauge fugacity u:17

p = e−(γ1+γ2) , q = e−(γ1−γ2) , u = eiα . (3.9)

We will next consider specific cases by fixing the CS level and the number of flavours.

Pure U(1)±1 theory

Let us consider the pure U(1) theory. The bound in [11] requires |κ| = 0, 1. Setting κ = 1

we find from (3.8)

Z
(1)
Nekrasov =

1

u

pq

(1− p)(1− q)
. (3.10)

As discussed in [28], the instanton contributions should be invariant under a transformation

that simultaneously sends p → 1/q and q → 1/p; this is a transformation that is part of

the superconformal group, under which the perturbative single-letter indices are invariant.

However, as it stands (3.10) is not invariant and this presents a problem.

Recall that this issue typically arises whenever the corresponding brane configuration

involves parallel external 5-brane legs. Indeed, in the case of SU(N)N theories, the brane

web includes a pair of external parallel NS5 branes. In the process of computing the

instanton contributions by decoupling the U(1) factor from the U(N)N theory, one finds

that the naive result does not exhibit the expected p → 1/q and q → 1/p invariance. As

first argued in [28], this noninvariance can be traced back to extra states left over from

the naive truncation, which in the brane web description correspond to D-strings stretched

16Compared to that reference, we have unrefined in the flavour fugacities for simplicity.
17The chemical potentials γ1, γ2 appearing here are not related to the vectors γ of the charge lattice Γ.

We hope that this notation, which is compatible with the literature, will not cause confusion.
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between the parallel external NS5s. These can slide off to infinity, and hence should not

be taken into account.

The discarded contribution from [28] turns out to be precisely equal to the naive U(1)1

instanton piece (3.10). As a result, going over the same brane-web argument, we conclude

that (3.10) corresponds to states which should not be counted in the 5D theory. Upon

removing them we are left with Z
(1)
Nekrasov = 0, so that the full instanton contribution

in this case is simply unity. Note that had we chosen the other sign for the CS level,

κ = −1, we would have found the same function upon taking u→ u−1. This is tantamount

to exchanging instantons with anti-instantons, and the previous discussion goes through

unchanged.

All in all, this theory has a trivial instanton sector; the index is purely perturbative

and coincides with the Schur index of a four-dimensional N = 2 theory with the same

gauge and flavour symmetries. Since there are no BPS particles in this rank-1 theory, the

corresponding 5D BPS quiver is trivial. One can therefore simply express the answer in

the general form of (3.1) by writing

IKS = (q)2∞ . (3.11)

Pure U(1)0

In four dimensions the Schur index of the pure U(1) theory at zero CS level, κ = 0, simply

reads

I4D = PE
[

− 2q

(1− q)

]

=

∞
∏

n=1

(1− qn)2 = (q)2∞ . (3.12)

In turn, the BPS quiver in 4D is trivial and therefore

Tr[O] = 1 . (3.13)

This fits the pattern of [5], since from (3.1) one also recovers that IKS = (q)2∞.

Let us now go to five dimensions. The exact index of the pure U(1) theory in 5D was

worked out in [29]. This is

I5DU(1)0
= PE

[

− p+ q

(1− p)(1− q)
+

√
pq(q+ q−1)

(1− p)(1− q)

]

. (3.14)

The first term is a free vectormultiplet, while the second looks like a hypermultiplet with

the gauge fugacities replaced by the instanton fugacities, q. We can therefore use (2.18) to

infer the corresponding NS index

I5D,NS
U(1)0

= PE
[

− 2q

(1− q)
+

√
q(q+ q−1)

(1− q)

]

. (3.15)
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As the instanton contribution is similar to that of a hypermultiplet, and in view of the

the fact that a free hypermultiplet contributes a flavour node to the BPS quiver [5], it

is natural to suspect that there is a 5D BPS quiver description containing one node and

yielding the correct 5D NS index.

In order to confirm this prediction, let us first pause to consider the nonperturbative part

of the index (3.15). Concentrating on instantons alone, one can rewrite their contribution

as

PE
[

√
q q

(1− q)

]

=
∞
∑

m=0

(
√
q q)m

∏m

k=1(1− qk)
= Eq(−q) , (3.16)

where in the last step we used Eq. (3.5). As an aside, it is interesting to observe that the

above expression can be identified with the 5D (“K-theoretic”) vortex partition function

[30].18 In fact, the NS limit of the full 5D index can be rewritten as

I5D,NS
U(1)0

=

∞
∏

n=1

(1− qn)2
∞
∏

n=0

(1− qn+
1

2q)−1

∞
∏

n=0

(1− qn+
1

2q−1)−1 , (3.17)

which with the help of (3.5) can in turn be massaged into

I5D,NS
U(1)0

= (q)2∞Eq(−q−1)Eq(−q) = (q)2∞Tr[Eq(X−γf )Eq(Xγf )] . (3.18)

The above expression is consistent with it originating from a 5D rank-1 theory with a BPS

quiver consisting of a single flavour node. The corresponding quantum torus algebra is

commuting and the formal variable Xγf can be chosen such that Tr[Xγf ] = −q.

U(1)− 1

2

with one flavour

Our next example is a U(1) theory with one flavour at CS level κ = −1
2
. The 5D index

reads

I5DU(1)
− 1

2

=

∫

du

u
ZpertZnonpert, (3.19)

where u is the U(1) gauge fugacity and the perturbative contribution, after massaging

(2.18), is given by

Zpert =
∞
∏

n=1

(1− qn)2
∞
∏

n=0

(1− qn+
1

2u)−1
∞
∏

n=0

(1− qn+
1

2u−1)−1 . (3.20)

In order to find the full nonperturbative contribution, given by the plethystic exponen-

tial of the 1-instanton term, let us begin by looking at the latter. This is given by

Z
(1)
Nek =

√
pq

(1− p)(1− q)
(1− u

√
pq) . (3.21)

18The second part of Eq. (3.16) is to be compared with Eq. (3.16) of [30] or its generalisation Eq. (2.40).
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As in the |κ| = 1 case, the above expression is not invariant under a transformation which

simultaneously sends p → 1/q and q → 1/p. However, following [28] and introducing a

correction factor

∆ =
qpu

(1− p)(1− q)
(3.22)

we can write a new 1-instanton partition function in terms of

Z ′(1)
Nek = Z

(1)
Nek +∆ =

√
pq

(1− p)(1− q)
. (3.23)

This would suggest that the correct instanton sector contribution for F = 1 is the same as

for the F = 0 case

Znonpert = PE
[

√
pq

(1− p)(1− q)
(q+ q−1)

]

. (3.24)

By expanding to arbitrary order in the q fugacity, it is straightforward to check that the

NS index is equivalent to

I5D,NS
U(1)

− 1
2

= (q)2∞

∞
∑

k1,k2,r1,r2=0

(−1)k1+k2+r1+r2q
k1+k2+r1+r2

2 (−q)r2−r1δk1,k2
(q)k1(q)k2(q)r1(q)r2

= (q)2∞Tr[Eq(X−γf )Eq(X−γ)Eq(Xγf )Eq(Xγ)] . (3.25)

In complete analogy with our previous discussion, the interpretation of this result in the

language of [5] would be that the instanton provides a flavour charge γf , in addition to the

charge lattice vector for the hypermultiplet, γ. This is consistent with having a 5D BPS

quiver involving two nodes and no adjoining arrows.

Maximally SUSY theory

Consider adding to the U(1) vectormultiplet a hypermultiplet in the adjoint representation.

This is the content of the maximally supersymmetric theory.19 One might naively think

that the adjoint hypermultiplet decouples and as a result that the instanton contribution is

simply that of the pure U(1) theory. This is however not the case, as the noncommutative

deformation regulating the Nekrasov partition function couples zero modes of the U(1)

adjoint hypermultiplet to the instantons. In fact, it turns out [31] that the instanton

contribution is

Zinst = PE
[

∞
∑

k=1

qk zsp

]

with zsp = − p+ q

(1− p) (1− q)
+ 2

√
pq

(1− p) (1− q)
. (3.26)

19Although this theory has N = 2 supersymmetry, we can still study it using 5D N = 1 tools.
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As stressed in [31], zsp is equal to the contribution of a 6D tensor multiplet. This con-

stitutes a nontrivial check for the conjectured UV self-completion of the maximally SUSY

5D theory into the (2, 0) theory [32]. Note that the expression for zsp above is exactly

that of an abelian vector plus an adjoint hypermultiplet. The latter is the full perturbative

contribution of the 5D maximally SUSY theory, i.e.

Zpert = PE[zsp] . (3.27)

Moreover, in the NS limit on can re-express

PE[qk fH ] =
(

∞
∏

m=0

(1− qkqm+ 1

2 )−1
)2

= (Eq(−qk))2 , (3.28)

while

PE[qk fV ] =
∞
∏

m=0

(1− qk q qm)2 = (qk q; q)2 , (3.29)

where (a; b) stands for the q-Pochhammer symbol.20 The full index is given by

IMaxSUSY
U(1) = ZpertZinstZ inst , (3.30)

where the overline implies an inversion of the instanton fugacity. This prescription—which

we stress is just the direct implementation of the results of [17], and strongly supported by

non-trivial checks, including the emergence of the enhanced flavour symmetries in the case

of ENf+1 theories—amounts to writing

Z inst = PE
[

∞
∑

k=1

q−kzsp

]

(3.31)

and Eq. (3.30) can be nicely repackaged into21

IMaxSUSY
U(1) =

∞
∏

k=−∞

(qk q; q)2Eq(−q−k)Eq(−qk) . (3.32)

This expression does not have a strict 5D BPS quiver interpretation. However, its form

is rather suggestive: the collection of instantons corresponds to BPS states at threshold

20The (a; b) q-Pochhammer symbol is defined as (a; b) :=
∏∞

j=0
(1− abj).

21Note that by taking into account Eqs. (3.26), (3.27) and (3.31) and naively resumming the instanton

expansions, it looks like the total partition function is PE[0] = 1. However this conclusion is incorrect, since

for this to happen each series is implicitly resummed in a different regime, while here |q| = 1.
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associated with the Kaluza–Klein modes that uplift the theory to 6D [31]. As such, one

may expect that these would provide an infinite tower of flavour nodes, each parametrised

by integer multiples of a fundamental charge, qn, which is what we seem to find. How-

ever, the q-Pochhammer symbol, expected to arise from the vectormultiplet contribution,

also depends on qn. It is tempting to speculate that this is due to the flavour fugacity

combinations qn being remnants of a 6D Lorentz fugacity.

3.2. Towards nonabelian theories

It is natural to ask whether there exists a nonabelian extension of the correspondence

between the NS index of a 5D SCFT and the trace of the KS operator for an associated

BPS quiver, but we have thus far not been successful in constructing any such examples.

Having a closed-form expression for the nonperturbative part of the nonabelian NS index—

the perturbative part reduces trivially to the 4D Schur index—would be helpful in pursuing

this direction. Although the NS limit of the abelian K-theoretic Nekrasov partition function

coincides with the K-theoretic vortex partition function—c.f. under Eq. (3.16)—explicitly

applying our prescription (2.12) to nonabelian gauge groups quickly produces an answer

which disagrees with the q-expansion of any K-theoretic vortex partition function.

However, there may be another way forward using dualities. The instanton partition

function—the 4D limit of the nonabelian 5D Nekrasov partition function22—has a well-

defined NS limit, originally discussed in [13,25], of which our prescription (2.12) is a natural

generalisation. As can be seen by expanding in the instanton fugacity, and simultaneously

for small but nonzero ǫ1, ǫ2, Eq. (2.20) becomes

ZNS
Nek → 1 + q lim

ǫ2→0
ǫ2Z

(1)
inst + lim

ǫ2→0
q2
(ǫ2(ǫ2 − 1)

2
(Z

(1)
inst)

2 + ǫ2Z
(2)
inst

)

+O(q3)

= exp
[

lim
ǫ2→0

ǫ2 logZinst(q; ǫ1, ǫ2)
]

, (3.33)

precisely the expression appearing in [13]. In that reference, the resultant partition function

was identified as the nonperturbative contribution to the twisted superpotential for some

associated two-dimensional theory. Subsequently, the authors of [33] also linked the full

2D twisted superpotential—the NS limits of the full perturbative plus nonperturbative

partition functions of the 4D theory—with the twisted superpotential for a different, dual

22This is known as the “homological limit” (see e.g. [30] and references therein) and in notation where one

has made explicit the dependence of the fugacities on the Euclideanised time radius, p = e−βǫ1, q = e−βǫ2,

corresponds to taking β → 0. In this limit, the full “K-theoretic” version of the Nekrasov partition function

we have been using thus far reduces to the 4D instanton partition function.
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2D theory. Interestingly, the latter theory can in certain cases—e.g. the abelian example—

be interpreted as the worldvolume description for a 2D defect in the Higgs branch of

the original 4D theory. The partition function for these defects is the well-known vortex

partition function, which has a natural K-theoretic lift up to 5D.23 It would be interesting

to closely study similar 5D→4D→2D→2D→4D→5D chains for more complicated theories.

This in turn could lead to identifying closed-form expressions for the NS limits of nonabelian

instanton contributions and shed light on how to proceed with the nonabelian extension of

the NS-KS correspondence presented in this section.

Another closely-related task would be to investigate whether the 5D NS index we have

defined admits an alternative (and possibly simpler) description associated with some lower-

dimensional structure, along the lines of [4]. In this respect, the similarity of our prescrip-

tion to the large orbifold limit of [14] may hint towards such a connection. We will leave

the answers to these questions as open problems for future research.
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