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Abstract 

Objectives: To manufacture and assess bioactivity of low fluoride/high phosphate 

(low F-/high P2O5) bioglasses (BGs). Then the effects of BG-conditioned medium on 

osteoblast-like cell behaviour and BG particles on bactericidal activity were 

investigated.  

Methods: BGs (0-7% F- content, constant 6.33% P2O5 in mol %) were designed and 

produced. BG powder was immersed in Tris Buffer solution or α-MEM to determine 

apatite formation and ion (Ca, P, Si and F) release. Osteoblast-like cells MC3T3-E1 

were treated with BG-conditioned medium and assessed for cytotoxicity, pre-

osteogenic and pro-angiogenic responses. Antibacterial ability was explored by 

incubating sub-gingival bacteria with BG particulates.  

Results: Rapid apatite formation was observed in F- containing BGs after only 2-8 h 

immersion in Tris buffer solution. In the F- free group, apatite was not detectable until 

72 h. Peak Ca, P and F release into Tris buffer was at 2 h immersion, and then the 

levels decreased. In α-MEM, apatite formation in all the BGs was undetectable until 

72 h immersion. Alkaline phosphatase activity, cell number, collagen formation, 

bone-like mineral nodules and osteogenic gene expression of MC3T3-E1 cells were 

significantly promoted in low F- BG (P6.33F1) conditioned medium. MC3T3-E1 

VEGF gene expression was increased, and protein production was dose-

dependently promoted with F- containing BG-conditioned medium. After incubation 

with BG particulates, the growth of sub-gingival bacteria, A. actinomycetemcomitans 

and P. gingivalis, was significantly inhibited; the antibacterial activity being 

dependent on the F- content of the BGs.  

Significance: These results show that low F-/high P2O5 BGs significantly accelerated 

apatite formation and promoted both pre-osteogenic and pro-angiogenic responses 



2 
 

of MC3T3-E1 osteoblast-like cells and inhibited the growth of periodontal pathogens 

in vitro. These BGs may prove useful as bone graft substitutes. 

Key words: bioactive glass, fluoride, phosphate, apatite, osteogenesis, 

angiogenesis, antibacterial  

1. Introduction 

Globally, the need for bone defect repair arises due to trauma, tumour, osteoporosis 

and other causes of skeletal tissue loss. In dentistry, periodontitis and peri-implantitis 

are common diseases associated with bone loss that require treatment. BG grafts, 

when exposed to body fluids, form a bone like apatite layer on their surface (a 

process termed ‘bioactivity’), which is capable of forming a strong bond with the 

living bone. For this reason they are widely utilized in dental and orthopaedic 

applications [1].  

Phosphate plays a vital role in BG bioactivity by forming a CaO-P2O5 rich bilayer: the 

new surface for apatite formation [2, 3]. 31P and 29Si magic-angle-spinning nuclear 

magnetic resonance (MAS-NMR) spectroscopy study demonstrates that phosphate 

is present largely as an orthophosphate phase in BGs results in an increase of the 

apatite deposition rate, which potentially promotes BG bioactivity [4, 5]. In the design 

of BGs, network connectivity (NC) is considered an important factor as it represents 

a measure of the number of bridging oxygen atoms per network forming element and 

an indicator of BG solubility, reactivity and ultimately bioactivity [6].  

In fluoride containing BGs, fluoride complexes with calcium and sodium rather than 

forming Si-F bonds in BG structure, this results in a decrease in the compactness of 

the BG network [7-9]. Brauer et al. studied fluoride containing BGs by 19F MAS–NMR 

and demonstrated the formation of fluorapatite (FAp, Ca10(PO4)6F2) [8], which is 

more acid resistant compared with hydroxyapatite (HA), has better stability and slow 

of degradation kinetics [10]. Numerous in vitro and animal studies have 

demonstrated that fluoride can regulate bone-forming cell activities and bone 

resorption [11-17], such as, affecting the RANKL/OPG system directly or indirectly 

[18], regulating BMP/Smads signalling pathway [12] or inhibiting NFATc1 gene 

expression to decrease osteoclastic activity [13]. Based on the characteristics of 

fluoride itself and the potential of forming FAp, local delivery of fluoride could reduce 
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demineralisation rate as well as enhancing re-mineralization to increase mineral 

density and clinically impact on the treatment strategies for osteoporosis [13, 19]. 

However, high levels of systemic fluoride are known to cause skeletal and dental 

fluorosis characterized by debilitating changes in the skeleton, and marked mottling 

and discoloration in the teeth [19, 20]. Nonetheless, the addition of fluoride into BGs 

and subsequent local delivery at beneficial concentrations would make such BGs 

more suitable than existing compounds for dental and orthopaedic problems.  

Grafting can fail because of insufficient vascularisation deep within the body of the 

graft, thus angiogenesis and associated patent vascular network is crucial for optimal 

bone formation [21] and subsequent bone:graft contact, ‘osseo-integration’ [22]. 

Vascular endothelial growth factor (VEGF), released by osteoblastic and other cells, 

can promote differentiation of local mesenchymal stem cells into endothelial cells 

and subsequently activate the transmembrane VEFGR2 receptors in endothelial 

cells, which in turn activates several pathways responsible for angiogenesis [23-26]. 

This response would be expected to encourage bone formation secondary to 

increased vascularization throughout the graft substitute.  

Another cause of graft failure is bacterial infections which hinder the repair of bone 

defects [27]. In particular, some oral pathogens associated with periodontal disease 

have also been associated with dental implant and defect repair failure [28]. Fluoride 

is widely incorporated into dental restorative materials, to encourage FAp formation,  

to reduce demineralisation and enhance re-mineralization, it also has anti-microbial 

properties [29]. Fluoride inhibits the dental plaque acid production that can result in 

demineralization [30, 31]. It acts directly as an enzyme inhibitor to interfere bacterial 

metabolism [32] and forms metal-fluoride complexes, most commonly AlF4-, which 

interact with F-ATPase and nitrogenase enzymes resulting in inhibition of bacterial 

activity [33]. If fluoride released from BGs is available to influence local cell 

behaviour, then fluoride would be a useful constituent of BGs to reduce graft failure 

due to inappropriate vascularisation and infection. 

We have created a series of BGs with high, constant phosphate content but with a 

varying and low fluoride addition, with a fixed BG NC. To determine whether such 

BGs maintained the characteristics that would make them suitable for potential use 

in vivo, the BGs bioactivity both in Tris buffer solution and cell culture medium were 

examined. Then, we further assessed the potential of BGs as modulators of 
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biological behaviour of osteoblast-like cells and bactericidal activity of the BG 

particles in vitro.  

2. Materials and methods 

2.1. BG synthesis 

BGs in the system SiO2-P2O5-CaO-Na2O-CaF2 (Table 1) were prepared by the melt-

quench route. Briefly, mixtures of analytical grade SiO2 (Prince Minerals Ltd., Stoke-

on-Trent, UK), P2O5, Na2CO3, CaCO3 and CaF2 (Sigma-Aldrich Company Ltd., 

Gillingham, UK) were weighed in the appropriate amounts to give a batch size of 200 

g. The batch was mixed thoroughly and placed in a platinum/rhodium crucible, and 

heated at 1360 oC for 60 min in an electrically heated furnace (Lenton EHF 17/3, 

Hope Valley, UK). After melting, the BGs were quenched rapidly into deionized water 

and the resulting frit was washed with ethanol then dried in a drying cabinet at 37 °C 

overnight. 100 g of each BG was ground in a Gyro mill (Glen Creston, London, UK) 

for two sets of 7 min and sieved by a mesh analytical sieve (Endecotts Ltd., London, 

UK) with a size of 38 µm to obtain fine powder. The amorphous structure of the BGs 

was tested using powder X-ray diffraction (XRD, PANalytical, Eindhoven, The 

Netherlands). 

2.2. Ion release in Tris buffer 

75 mg of each BG powder was dispersed in 50 mL Tris buffer solution, 

corresponding to a concentration of 1.5 g/L [34, 35]. All samples were placed in an 

orbital shaking incubator  (KS 4000i Control, IKA, Staufen, Germany) at 37 °C with 

an agitation rate of 60 rpm for 2, 8, 24 and 72 hours.  

For each time point, samples of each BG were removed from the incubator and the 

solutions were filtered with filter paper (4-13 µm pore retention, VWR International, 

Lutterworth, UK). The filtered solutions were next diluted 1:10 with deionized water 

and 1% nitric acid [34] and then analysed in an inductively coupled plasma–optical 

emission spectroscopy (ICP-OES; Varian Vista-PRO, Varian Ltd., Oxford, UK) to 

detect silicon, calcium, sodium, and phosphorus concentrations.  

Fluoride-release into Tris buffer was measured using a fluoride-selective electrode 

(Orion 9609BNWP with Orion pH/ISE meter 710, both Thermo Scientific, Waltham, 

MA, USA). 
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2.3. Characterization of BG powders after immersion in Tris buffer 

The filter papers collected from 2.2 were dried at 37 °C and the resultant powders 

were analysed using Fourier-transform infrared spectroscopy (FTIR; Spectrum GX, 

Perkin-Elmer, Waltham, MA, USA) data collected from 1800 to 500 cm-1 and XRD 

(PANalytical, Eindhoven, The Netherlands) data collected at room temperature with 

a 0.033° 2θ step size and a count rate of 99.6 s step-1, from 2θ values of 10° to 60°. 

2.4. Cell culture and cytotoxicity of BG-conditioned medium  

The mouse osteoblast-like cell line, MC3T3-E1, obtained from the Culture 

Collections (Public Health England, Porton Down, Salisbury, UK), was cultured 

under standard conditions (37 ºC, 5% CO2/95% air, 100% humidity) in α-minimum 

essential medium (α-MEM, Lonza, London, UK) with 1% L- glutamine, 1% antibiotic 

(penicillin and streptomycin, Invitrogen, London, UK) and 5% foetal bovine serum 

(FBS, Lonza, London, UK). 

75 mg BG particles from each group was immersed in 50 mL α-MEM with 1% 

antibiotic and kept shaking (60 rpm) for 2, 8, 24 and 72 h. For each time point, the 

samples were centrifuged (800 rpm, 5 min) to separate the solution and solid. The 

culture medium was then filtered with 0.2 µm pore size filters (VWR, Lutterworth, UK) 

for sterilization. Filtrate was further supplemented with sterile 1% L- glutamine and 5% 

FBS and used to treat MC3T3-E1 cells for 1, 3 and 5 days.  

The cytotoxicity of BG-conditioned medium was quantified by MTT (3-[4, 5-

dimethylthiazol-2-yl]-2, 5  diphenyl tetrazolium bromide) assay [36]. Briefly, medium 

was removed and cells were washed twice with PBS, then 30 μL 5 mg/mL 

tetrazolium salt MTT (Sigma-Aldrich Company Ltd., Gillingham, UK) was added to 

each well and incubated in 37 ºC for 4 h. Formazan crystals generated by 

mitochondrial enzyme activity were dissolved by dimethyl sulfoxide (DMSO, Sigma-

Aldrich Company Ltd., Gillingham, UK) and the intensity of purple coloured reaction 

product quantified by measuring the absorbance spectra at 570 nm.  

2.5. Ion release and apatite formation in cell culture medium 

According to the cytotoxicity data, 72 h conditioned medium was chosen to detect 

concentrations of silicon, calcium, phosphorus, and fluoride in cell culture medium by 

ICP and fluoride-release was measured using a fluoride-selective electrode and the 
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dried powders were analysed using FTIR and XRD as previously performed on BG 

in Tris buffer.  

2.6. Total quantification of cells cultured in BG-conditioned medium 

BG-conditioned medium was used to identify the effect on cell proliferation by 

determining the DNA quantity in cultures using the fluorochrome, bisbenzimidazole 

(Hoechst 33258, Sigma-Aldrich Company Ltd., Gillingham, UK) [37, 38], in which 

increased fluorescence emission is linearly related to DNA concentration. MC3T3-E1 

cells were cultured in 96-well plates in BG-conditioned medium for 7 d, 14 d and 21 d. 

On termination of the experiment, the cells washed in PBS, dried and lysed through 

a freezing and thawing cycle with 100 µL deionized water in each well to rupture 

cells and release DNA. The resulting lysate was then reacted with fluorochrome 

bisbenzimidazole (1:50) in TNE buffer with 10 mM Tris, 1 mM EDTA and 2 M NaCl 

(pH 7.4, Sigma-Aldrich Company Ltd., Gillingham, UK) and the resultant 

fluorescence intensity was measured at 460 nm emission and 355 nm excitation. 

Accurate cell number was determined by comparing fluorescence intensity with an 

established standard curve, which is a linear correction between fluorescence 

intensity and the cell number over a broad range (Fig. S1). 

2.7. Alkaline phosphatase (ALP) activity in cells cultured in BG-conditioned 

medium 

Cells were treated as for the cell proliferation experiments. ALP activity was 

measured by an enzyme histochemical assay [39, 40], in which ALP converts ρ-

nitrophenyl phosphate to ρ-nitrophenyl. At each time point, cells were lysed through 

a freezing and thawing process and reacted with a solution of 2.5 mg/mL 4-

nitropheyl phosphate disodium salt hexahydrate in Tris buffer solution with 1 mM 

MgCl2 (pH = 9.5, Sigma-Aldrich Company Ltd., Gillingham, UK) for 40 min in 37 oC. 

0.5 M NaOH was used to stop the reaction and the intensity of yellow colour reaction 

product was quantified by measuring the absorbance at 405 nm. ALP activity of the 

test samples were calculated and expressed as nmol/mL/min from calibration curve 

[41]. 

2.8. Detection and quantification of collagen formation in BG-conditioned 

medium 
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BG-conditioned medium was further supplemented with 5 mM β-glycerophosphate 

and 50 µg/mL L-ascorbic acid (Sigma-Aldrich Company Ltd., Gillingham, UK) to 

prepare osteogenic medium. 

Collagen formation was quantified by measuring the concentration of Sirius red stain 

incorporated in cell-mediated matrix formation [42, 43]. MC3T3-E1 cells were treated 

for 2, 3 and 4 weeks with BG-conditioned osteogenic medium. Post incubation, cells 

were fixed for 10min in 2.5% glutaraldehyde at 4ºC and washed three times in 

deionized water. Cells were next incubated in 0.1% Sirius red F3B in a 1.3% 

saturated aqueous solution of picric acid (Sigma-Aldrich Company Ltd., Gillingham, 

UK) for 1 h at room temperature. Cultures were then washed twice with 0.5% 

acidified water and three times in deionized water to remove the unincorporated dye. 

Stained cultures were photographed followed by a dye extraction procedure using a 

mixture of 0.1 M NaOH and absolute methanol (1:1, Sigma-Aldrich Company Ltd., 

Gillingham, UK) for 30 min at room temperature. 200 µL aliquots of eluted dye were 

transferred to a 96-well plate and measured the absorbance at 570 nm.     

2.9. Detection and quantification of mineralization in BG-conditioned medium 

For the detection of bone nodule formation, at each time point, osteogenic medium 

was removed and cells were washed twice with PBS and fixed in 2.5% 

glutaraldehyde at 4 ºC for 10 min. After deionized water washing 200 μL of 40 mM 

Alizarin Red S (pH 4.1, Sigma-Aldrich Company Ltd., Gillingham, UK) was added per 

well. The plates were incubated at room temperature for 40 min and washed three 

times with deionized water to remove unincorporated dye.  

For quantification of staining, an adaptation of the protocol described by Stanford et 

al. [44] was followed. Alizarin Red S was extracted from the monolayer by incubation 

in 10% (w/v) cetylpyridinium chloride (CPC, Sigma-Aldrich Company Ltd., Gillingham, 

UK) in 10 mM sodium phosphate, pH 7.0, for 30 min at room temperature. The dye 

was then removed and 100 µL aliquots transferred to a 96-well plate prior to 

absorbance reading at 570 nm. 

2.10. Osteogenic gene expression in BG-conditioned medium by quantitative 

Reverse Transcription polymerase chain reaction (qPCR) 

After treatment in BG-conditioned medium for 1, 4, 7, 14 and 21 d, total RNA of 

MC3T3-E1 was isolated using RNeasy mini kit (Qiagen, Manchester, UK) according 
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to the manufacture’s protocol. RNase-Free DNase set (Qiagen, Manchester, UK) 

was used to eliminate DNA contamination in RNA samples. The purity of the isolated 

RNA was determined by measuring the optical density (OD) value (A260/A280) 

using the NanoDrop™ 1000 Spectrophotometer (Thermo Scientific, UK). cDNA 

synthesis was performed using the transcriptor first strand cDNA synthesis kit  

(Roche, UK) at 42 ºC for 30 min, 85 ºC for 5 min, 4 ºC for 5 min and the products 

were stored in -20 ºC. Quantitative RT-PCRs were carried out using the DNA Master 

SYBR Green I Kit (Roche Diagnostics, England, UK) in the 96-well LightCycler 480 

qPCR system (Roche, UK) according to the manufacturer’s instructions. 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as a 

housekeeping gene. The relative gene expression level was determined by 

comparing against the reference gene and normalised by the control group (normal 

medium treatment). All primers used in this study are listed in Table 2. 

2.11. Angiogenesis gene expression and protein production in BG-conditioned 

medium by qPCR and Western blot 

The VEGF gene expression was performed as previously described and the primers 

used are listed in Table 2.  

To ascertain VEGF protein production, after treatment for the indicated periods, all 

the cells were washed twice with cold PBS and then lysed, homogenized and 

sonicated in RIPA lysis buffer containing 150 mM NaCl, 1.0% NP-40, 0.5% sodium 

deoxycholate, 0.1% sodium dodecyl sulphate (SDS), 50 mM Tris-HCl, pH 8.0 and 

freshly added Protease Inhibitors (Roche, UK). Lysates were centrifuged at 

16,000×g for 20 min in 4 ºC. The protein concentration was determined by DC 

protein assay (Bio-Rad, UK). 4x LaemmLi sample buffer (Bio-Rad, UK) was added to 

the lysates followed with boiling at 100 ºC for 5 min and storage at -20 ºC. Aliquots of 

the denatured proteins were separated by 10% NuPAGE® Bis-Tris gel (Thermo 

scientific, UK), transferred electrophoretically to polyvinyl difluoride (PVDF) 

membrane (Thermo scientific, UK) and soaked in a blocking buffer (5% non-fat milk 

in TBST buffer containing 20 mM Tris–HCl, pH 7.5, 0.5 M NaCl, 0.1% Tween 20) for 

1 h at room temperature. Subsequently, the membrane was incubated in blocking 

buffer with primary antibodies overnight at 4 ºC followed by three times TBST wash 

and secondary antibody incubation at room temperature for 1 h. Detection of protein 

antibody complex was performed by the ECL Western blot detection system 
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(Thermo scientific, UK).  Cyclophilin B was used as a loading control. The following 

antibodies were used in this study: anti-VEGF antibody (1:2000, Abcam, UK), anti-

Cyclophilin B antibody (1:6000, Abcam, UK) and Goat antiRabbit IgG (H+L) 

Secondary Antibody (1:2000, Thermo scientific, UK).  

2.12. Antibacterial studies 

Typical sub-gingival bacteria, Aggregatibacter actinomycetemcomitans and 

Porphyromonas gingivalis (kindly gifted by Professor Rob Allaker, Queen Mary 

University of London), were grown in brain heart infusion agar plates (Fisher 

Scientific, Loughborough, UK) for 48 h at 37 °C under anaerobic conditions. Then 

the log phase cultures were harvested and the bacterial concentrations were 

measured by reading absorbance at 595 nm.  

BG particulates were sterilized by autoclaving (dry cycle) at 121 °C for 15 min and 

added to brain heart infusion broth at concentrations of 1.25, 2.5, 5, 10 and 20 

mg/mL and plated in 96-well plates (100 µL/well). The bacteria (106 to 107 CFU/mL) 

were added subsequently (100 µL/well). Therefore, the final BG particle working 

concentrations were 0.625, 1.25, 2.5, 5 and 10 mg/mL.  Sodium Fluoride (NaF) 

concentrations (2, 1, 0.5, 0.25, 0.125 and 0 mM) in brain heart infusion broth were 

used to treat bacteria as well to investigate the antibacterial effects of F-.  After 

incubation under anaerobic conditions for 0, 2, 4 and 8 h, 20 µL alamarBlue (Bio-Rad, 

UK) was added to each well and incubated for 1h according to the manufacture’s 

protocol. Then the plates were centrifuged for 10 min at 4000 rpm and 100 µL 

aliquots transferred to new black 96-well plates to measure fluorescent intensity at 

590 nm emission and 560 nm excitation. Percent inhibition of bacterial growth was 

then defined as 1 - (mean fluorescence of test wells / mean fluorescence of negative 

control well) × 100% following the manufacturer’s instructions [45, 46].  

2.13. Statistical analysis 

The elemental analysis was carried out with three samples per group. Cell assay 

data with BG-conditioned medium are presented as means ± standard errors and 

represent data from six replicates per experiment. qPCR and Western blot assay 

were performed with three samples per group and bacterial studies were four 

replicates. Comparisons of cell assay data were made using a one-way analysis of 

variance (ANOVA). Significance is indicated when P ≤ 0.05. 
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3. Results 

3.1. BG formation 

XRD patterns show that all the prepared BGs exhibited broad halos, which is the 

typical feature of an amorphous structure (Fig. 1). Therefore, we can confirm that 

these BGs with high phosphate and low fluoride additions still retained the 

appropriate non-crystalline structure. 

3.2. Apatite formation in Tris buffer 

Fluoride added to BG compositions causes significant changes in the XRD traces 

and FTIR spectra after immersion in Tris buffer solution for 8 h, compared with the 

fluoride free glass (Fig. 2 and Fig. 3).  

In the XRD traces, patterns of hydroxyapatite (JCPDS 09-432), fluorapatite (15-876), 

carbonated hydroxyapatite (JCPD 19-272) and carbonated fluorapatite (JCPDS 31-

267) all overlap [8]. Therefore, the term of ‘apatite’ in the XRD traces is referred to 

here to cover these species.  

After 8 h immersion in Tris buffer solution, the typical apatite peaks at 26º, 32–34º, 

47º, 50º and 52º 2θº (JCPDS 9-432) appear in traces for the fluoride containing BGs. 

These peaks become intense and more clearly pronounced as fluoride content 

increased from 1 mol% to 7 mol%. For the BG P6.33F0, the XRD pattern shows a 

small peak at around 28.5º 2θ (starred), which may indicate the presence of a small 

amount of calcite (CaCO3).  

After immersion in Tris buffer solution for 8 h, the FTIR spectra shows the 

sharpening of the Si-O-Si stretch band at about 1030 cm-1 in fluoride added BGs 

P6.33F1 to P6.33F7 (Fig. 3). At the same time, new bands appeared at around 800 

cm-1, which were assigned to Si-O-Si bond vibration between two adjacent SiO4 

tetrahedra as described previously for SBF-treated BGs [8]. These changes indicate 

the formation of a silica-gel surface layer after leaching of Ca2+ and Na+ ions and 

formation of Si-OH groups in these ion-depleted BGs. 

A single band, or a split band at approximately 560-600 cm-1, is the most 

characteristic region for apatite and other orthophosphates. After immersion in Tris 

buffer for 8 h, a single band in this region appeared in the high phosphate but 

fluoride free BG P6.33F0 and suggests the presence of a disordered apatite or 
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amorphous calcium phosphate.  Characteristic split bands at 560 and 600 cm-1 

appeared in the fluoride containing BGs P6.33F1 to P6.33F7 and suggest that 

adding fluoride significantly accelerates apatite formation.  

Bands at about 870 cm-1 in the fluoride containing BGs after immersion in Tris buffer 

for 8 h indicate the presence of carbonate substitution in the apatite. It is noted that 

this carbonate band is an indicator of carbonate incorporated into the apatite, 

resulting in the formation of hydroxycarbonate apatite, rather than stoichiometric HAp 

[47]. Furthermore, broad CO3
2- bands are present in the region starting from 1410 

cm-1 indicating a B-type substitution (i.e. carbonate replacing a phosphate group), 

rather than an A-type substitution (i.e. carbonate replacing a hydroxyl group),  which 

would be shifted to higher wave numbers, starting from 1460 cm-1 [8].  

After immersion in Tris buffer, the XRD traces and FTIR spectra of BG P6.33F1 

(CaF2=1 mol%) showed significant changes compared with the pattern and spectrum 

of the unreacted glass (0 h) (Fig. 4 and Fig. 5). Within 2 h exposure to the Tris buffer 

solution, a small apatite peak at 26º 2θº appeared in the XRD trace. As immersion 

time increased, these typical apatite peaks at 26º and 32–34º 2θº become larger in 

intensity and more clearly pronounced. These data are consistent with the readings 

from the FTIR spectra: disappearance of the NBO (non-bridging oxygens, Si–O- 

alkali+) band at 920 cm-1, sharpening of the Si–O–Si stretch band at about 1030 cm-

1, new bands appeared at about 800 cm-1 and a single band at 560-600 cm-1 

indicates the presence of non-apatite or amorphous calcium phosphate was 

observed after 2 h immersion. As immersion time increased to 8 h, the characteristic 

split band at 560 and 600 cm-1 appeared indicative of calcium phosphate crystallites.  

3.3. Ion release in Tris buffer 

The Ca and P concentrations in Tirs buffer reached a maximum after 2 h immersion 

and then dropped drastically from 2 h to 8 h (Fig. 6A, C), which is consistent with the 

results of XRD and FTIR: apatite formed in the fluoride containing BGs after 2 h to 8 

h immersion.  

Compared with the fluoride containing BGs, the P concentration in solution of 

P6.33F0 was much higher after 8 h immersion (Fig. 6C), which indicates that the 

incorporation of fluoride into these glasses promotes phosphate consumption and 

accelerates apatite formation.   
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P6.33F1, the lowest fluoride containing BG in this study, shows some amorphous 

calcium phosphate formation in the XRD and FTIR patterns after 8 h exposure in Tris 

buffer. It explains the reason for P concentration from P6.33F1 being slightly higher 

than those in the other higher fluoride content BGs at the time point of 8 h (Fig. 6C). 

The fluoride concentrations in Tris buffer solution increased significantly after 2 h 

immersion in all the investigated BGs (Fig. 6E). In the low fluoride containing BGs, 

P6.33F1 and P6.33F3, F concentrations decreased gradually from 2 h to 72 h. 

However, when glass fluoride content increased from 5 mole % to 7 mole %, the 

solution fluoride was relatively constant.  

Silicon and sodium concentrations increased sharply in the first 2 h immersion and 

then remained relative constant in the remaining experimental time (Fig. 6G, H).  

3.4. Cytotoxicity of BG-conditioned medium 

Compared with the control (normal medium without glass immersion), all the BG-

conditioned medium samples, except 7% F- glass at 72 h, were not cytotoxic to the 

growth of MC3T3-E1 cells (Fig. 7 A, B, C, D). In the 72 h conditioned medium, levels 

of MTT reaction products were significantly higher in the BG groups, 0-3% F content. 

However, this increase is small, and might be without meaning.  

3.5. Ion release in cell culture medium 

After 72 h immersion in α-MEM, solution calcium concentrations increased slightly as 

BGs fluoride content increased from 0% to 7% (Fig. 8). In the fluoride free and low 

fluoride containing BGs (P6.33F0, P6.33F1 and P6.33F3), solution calcium 

concentrations dropped slightly in comparison with that in the α-MEM. However, for 

the high fluoride containing BG, P6.33F7, calcium concentrations were significantly 

higher than that in α-MEM.  

Phosphate concentration in all the BG compositions was constant, however, the 

released concentrations in all the groups were little lower than that in the α-MEM and 

dropped gradually as the BG fluoride content increased from 0% to 5%.  

As supplied, α-MEM is silicon and fluoride free, F concentrations in the medium 

increased gradually as the BG fluoride content increased from 0% to 7% during 72 h 

immersion. Silicon concentrations in the α-MEM was the greatest in the P6.33F0 
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group and dropped slightly as the BG fluoride content increased, which is consistent 

with the BG composition (Table 1).  

3.6. Apatite formation in cell culture medium 

After 72 h immersion in α-MEM, there were subtle differences between the untreated 

and treated BGs in the XRD traces (Fig. 9). All the treated BGs showed similar 

patterns and with no obvious apatite diffraction line. A small peak at around 28.5º 2θ 

appeared in glass P6.33F5, which may indicate the presence of a small amount of 

calcite (CaCO3) instead of apatite.  

In the FTIR spectra, compared with the untreated BG with a non-bridging oxygen 

band at 920 cm-1, all the treated BGs showed the disappearance of 920 cm-1 band 

and the sharpening of the Si-O-Si stretch band at about 1030 cm-1 (Fig. 10). It 

indicates the formation of a silica-gel surface layer after leaching of Ca2+ and Na+ 

ions and the formation of Si-OH groups. In all the treated BGs, a single P-O band 

was observed at around 570 cm-1 suggesting an amorphous or disordered crystalline 

apatite formation [48, 49]. Furthermore, in the F containing BGs, new bands at about 

870 cm-1 and further broad bands starting from 1410 cm-1 indicate possible 

carbonate replacement of phosphate in the formed apatite.  

3.7. Total quantification of cells cultured in BG-conditioned medium 

MC3T3-E1 proliferation in 72 h conditioned medium varied depending on the BG 

composition (Fig. 11). The number of cells that survived was too few to be detected 

in the high F addition group (P6.33F7), and cell number was significantly lower in the 

P6.33F5 group compared with the control group. However, significantly more cells 

were observed in P6.33F0 and P6.33F1 groups than non-conditioned medium 

(control) from 7 d to 21 d in culture.  

3.8. Alkaline phosphatase (ALP) activity in cells cultured in BG-conditioned 

medium 

After treatment for 7 d, 14 d and 21 d in the BG-conditioned medium, MC3T3-E1 

cells in the P6.33F0 and P6.33F1 groups demonstrated significantly higher ALP 

activity than those of the control. At time points 14 d and 21 d, ALP activity in 

P6.33F1 was significantly higher than that in P6.33F0, while in the 5% F addition 

glass (P6.33F5), ALP activity was significantly supressed (Fig.  12).  
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3.9. Collagen formation in BG-conditioned medium 

Collagen formation was significantly promoted in P6.33F0 and P6.33F1 groups in 

comparison with that in control after 2 w, 3 w and 4 w culture (Fig. 13). At the time 

points of 2 w and 3 w, P6.33F1 conditioned medium induced more collagen 

formation than P6.33F0. However, in the latest time point (4 w); it was significantly 

supressed in 5% F addition group (P6.33F5). 

3.10. Cell mineralization in BG-conditioned medium 

MC3T3-E1 mediated mineralization in BG-conditioned medium was significantly 

promoted in the P6.33F0 and P6.33F1 groups, in comparison with the control after 2 

w, 3 w and 4 w cultures (Fig. 14). At 2 w and 3 w, mineralization in P6.33F1 was 

significantly higher than that in P6.33F0. For the P6.33F3 group, mineralization was 

significantly promoted in the later time points (3 w and 4 w). However, in the 5% F 

addition group (P6.33F5), mineralization was significantly supressed in all the 

treatment periods. 

3.11. Osteogenic gene expression in BG-conditioned medium 

The expression of genes associated with osteogenesis, Col1a1 and OPN, are shown 

in Fig. 15. Both gene expressions were increased in the P6.33F0 and P6.33F1 

groups in comparison to those in the control from 1 d to 21 d. Furthermore, they 

were greater in P6.33F1 than those in the P6.33F0 through the whole experimental 

period. Both Col1a1 and OPN gene expressions were significantly decreased in the 

P6.33F5 group.  

3.12. Angiogenic gene expression and protein production in BG-conditioned 

medium 

Compared with the control, VEGF gene expression was promoted by all the 

investigated BGs (P6.33F0 to P6.33F5) from 1 d to 21 d treatment (Fig. 16). When 

comparing the fluoride free glass (P6.33F0) with fluoride containing BGs (P6.33F1 to 

P6.33F5), the presence of fluoride further promoted VEGF gene expression.  

VEGF protein production (Fig. 17), however, was not significantly different between 

BG and control groups at 7 d. In the 14 d and 21 d samples, greater VEGF protein 

production was observed in all the BG groups. Similar to VEGF gene expression, the 
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protein expression was also further promoted by the fluoride containing BGs 

compared with the fluoride free BG (P6.33F0).  

3.13. Antibacterial studies 

 The antibacterial activity on P. gingivalis was significantly dependent on the BG 

particulate concentrations after 4 h incubation (Fig. 18). For the A. 

actinomycetemcomitans, however, P6.33F0 showed very low bactericidal activity 

and no change was observed as the particle concentration varied. When BG F 

content increased to 1-3%, antibacterial activity on A. actinomycetemcomitans 

significantly rose and was dependent on the particle concentrations. However, the 

particle concentration dependent effects decreased as the BG F content increased to 

5 and 7%.  

With 1.25 mg and 10 mg BG particulate treatment (Fig. 19), the antimicrobial activity 

on A. actinomycetemcomitans increased drastically as BG F content increased after 

2h to 8h incubation. 

For the P. gingivalis, with 1.25 mg BG particle treatment, the antibacterial activity 

increased significantly as the BG F content increased. However, when incubation 

time extended from 2 h to 8 h, the killing effects in low F BGs, 0-3% F, dropped when 

the particle concentration increased to 10 mg, the antibacterial activity increased 

significantly and there was no difference between BGs after 2 h and 4 h incubation. 

However, when extended to 8 h, the killing effects dropped drastically in the 0-1% F 

BGs.  

To determine whether this was due solely as a function of F in the BGs, the effects of 

NaF concentrations on the viability of P. gingivalis and A. actinomycetemcomitans 

were carried out. Both bacteria were found to be sensitive to the F concentrations 

(Fig. 20). However, the antimicrobial activity of NaF on A. actinomycetemcomitans 

was significantly higher than that on the P. gingivalis. 

4. Discussion 

It is believed that increasing the P2O5 content in BGs enhances the reactivity as the 

phosphate is regarded to exist as a separate phase within the glass which is 

considerably more soluble than the silicate phase, resulted in faster apatite formation 
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[3-5]. However, we found that the formation of apatite occurred even more rapidly 

with the addition of fluoride (as low as only 1 mol %). Numerous experimental 

studies have reported that octacalcium phosphate (OCP) is a precursor phase 

involved in apatite formation in vitro [50-55]. Eanes et al. demonstrated that the 

presence of fluoride eliminated the formation of the intermediate OCP phase [56], 

and yet only 0.1–2 mg/L fluoride in the mineralization solution would promote the 

hydrolysis of OCP to apatite [57, 58]. In addition, as little as 1 mg/L fluoride was 

found to promote formation of needle-like nano-crystals, which are similar to native 

crystals in width and thickness and therefore have the potential to possess similar 

mechanical properties [58, 59].  

Although the phosphate content was kept constant in all the BGs, the released P 

concentrations were variable, and as a function of the BG fluoride content. From 8 h 

to 72 h immersion in Tris buffer, the solution P concentration dropped sharply 

between the P6.33F0 and P6.33F1 (Fig. 6D). This further indicates that the 

combination of high phosphate content with a small amount fluoride significantly 

promotes the apatite formation rate evidenced through the consumption of 

phosphate from solution.  

Compared to Tris buffer solution testing, experiments with cell culture medium 

provide a more in vivo-like model to examine how bodily fluids will interact with BGs. 

After 72 h immersion in α-MEM we observed a single band at approximately 570 cm-

1 in FTIR spectra, corresponding to the formation of an amorphous or disordered 

crystalline apatite such as amorphous calcium phosphate, which is considered as a 

precursor of apatite. O’Donnell et al. found that apatite formed in physiological 

solution SBF was in nano-sized crystals [3], which would result Scherrer line 

broadening of the apatite peaks in XRD. Compared with the apatite formation in Tris 

buffer, it is much slower in α-MEM. Sepulveda et al. attributed the delayed surface 

apatite formation in cell culture media to the presence of proteins from serum [60]. In 

this study, however, serum was not added until the BG-conditioned α-MEM was 

used to treat cells. Magnesium (Mg) is involved in protein and nucleic acid synthesis, 

cell cycle, cytoskeletal integrity and bone remodelling [61] and is included in cell 

culture medium (α-MEM) at a concentration of 0.8 mM. Numerous studies have 

demonstrated that Mg2+ ion retards apatite formation by adsorption onto crystal 

surfaces and blocking active growth sites, irrespective of whether Mg2+ ion originates 



17 
 

from test medium or from the BG [62-64]. Although Mg2+ slows down apatite layer 

formation, it is found to increase the layer thickness [63, 65]. In addition, these in 

vitro Tris buffer and cell culture medium studies differ from the BG dissolution 

mechanism and kinetics in vivo. The continuous flow of physiological fluids can 

promote continuous BG dissolution, leading to thicker apatite layers in vivo [60]. 

Our cell culture experiments demonstrated clear effects of BG composition on the 

proliferation, ALP activity, collagen and bone nodule formation, osteogenic gene 

expression, VEGF gene expression and protein production of osteoblast-like cells 

(MC3T3-E1). Cytotoxicity is not evident in the high phosphate and F free or low F 

BGs (P6.33F0 to P6.33F3) but significantly suppressed growth rate when the F 

content increased to 5-7%.  

Inorganic phosphate plays a vital role and is essential in the biological mineralization, 

which is throughout life and is mainly mediated by the function of osteoblasts [66-68]. 

The high phosphate containing BGs resulted in the phosphate concentrations in BG-

conditioned medium kept similar to that in α-MEM, avoiding consuming medium 

phosphate to form apatite. In BG, silicon acts as network former. However, it has 

stimulatory effects on cellular activities, such as regulating the expression of key 

osteoblastic marker genes, stimulating new bone formation in animal models and 

inhibiting osteoclast phenotypic gene expressions in vitro although the exact 

mechanism is yet to be understood [69-75]. In this study, the released silicon 

concentrations into cell culture medium were ranged from 45 to 52 ppm depending 

on BG composition, and may contribute to the promoted proliferation, ALP activity, 

collagen and bone nodule formation and osteogenic gene expression in MC3T3-E1 

cells by the high phosphate but fluoride free BG (P6.33F0), compared with the 

control (no BG). However, these osteogenic responses were further increased in BG 

P6.33F1, but suppressed when the BG fluoride content increased to 5-7%. It can 

attribute to that fluoride interacts with mineralized tissues in a biphasic manner [19, 

76] and also depends on the concentration, time and cell type (primary cells or 

established cell line) [77]. In this study, the glass P6.33F1 conditioned media, with a 

released F- concentration around 0.15mM, significantly promoted the osteogenic 

responses of MC3T3-E1 cells.  
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For the pro-angiogenic effects, we found the VEGF gene expression and its protein 

production were both significantly promoted by the high phosphate, but fluoride free 

BG P6.33F0, and further increased in the fluoride containing BG-conditioned 

medium. Compared with the control, BG-conditioned medium contains silicon that 

was released from the BGs. Silicon, aside from the potential osteogenic benefits 

discussed before, has angiogenic capabilities as well [26]. Numerous in vitro and in 

vivo studies have demonstrated that silicon containing BGs stimulate VEGF 

secretion and promote angiogenesis [78-80]. In addition to BGs, utilizing a calcium 

silicate bioceramic resulted in VEFG expression in human dermal fibroblasts, which 

was mainly induced by the presence of silicon [81]. Similarly, a calcium silicate 

applied in a rabbit femur defect was also able to demonstrate angiogenic effects [82]. 

However, very few publications discussed the effects of fluoride on angiogenesis. 

Through embedding different sponges into rabbit femur, Lalk et al. found that MgF2 

coating sponges exhibited the highest vascularization [83]. The deposition of VEGF 

in the thyroid gland was significantly promoted through NaF water feeding in a rat 

model [84]. In this study, there may be combined effects of silicon and fluoride 

responsible for the improved angiogenic potential from MC3T3-E1 cells. A sufficient 

supply of blood and oxygen is a key and dependent factor for osteogenesis in bone 

healing [85-87]. The fluoride containing glasses exhibit angiogenic potential in vitro 

and could be used as bone substitutes with the expected promotion of VEGF gene 

expression and protein production in vitro.  

Periodontal disease is a bacterially induced inflammatory disease resulting in the 

destruction of soft and hard tooth-supporting (periodontal) tissues [88]. Peri-

implantitis is also an inflammatory reaction associated with supporting bone loss 

around the dental implants and mainly caused by periodontal pathogens. P. 

gingivalis is highly associated with the chronic periodontitis, and can be detected in 

up to 85% of the disease sites [89]. A. actinomycetemcomitans is mainly detected in 

aggressive periodontitis, a severe and rapidly progressing form which most often 

starts at an early age [90]. In this study, the growth of both bacteria was significantly 

inhibited after incubation with the bioactive glass particulates. Bacteria were also 

sensitive in a dose dependent manner to the NaF concentrations. Numerous studies 

have demonstrated that the antimicrobial activity of fluoride, such as, in a 30min 

exposure test, both bacterial strains, A. actinomycetemcomitans and P. gingivalis, 
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exhibited a significant decrease of colony-forming units in a NaF concentration-

dependent manner [91]. A 6-month clinical study found that the fluoride containing 

dentifrice showed significant reductions in the number of anaerobic bacteria on both 

the dental implants and control teeth at 3 months [92]. Further, fluoride surface-

modified titanium specimens significantly inhibited the growth of both P. gingivalis 

and A. actinomycetemcomitans than the polished titanium [93].  

However, even the base glass P6.33F0 in this study showed some degree of 

antibacterial activity, especially against P. gingivalis. Several studies have 

demonstrated that BG, without specific ionic additions, has a clear growth-inhibitory 

effect against numerous clinically important pathogens such as S. aureus, E. coli, F. 

necrophorum, P. gingivalis, S. mutans, A.actinomycetemcomitans [94-97]. The 

antibacterial mechanism of BG is based on the pH elevation, unfavorable for bacteria, 

caused by the BG sodium release and increased osmotic pressure from ions (silicon, 

calcium, sodium and phosphate) dissolution, creating an environment where the 

bacteria cannot grow [98]. The incorporation of specific antibacterial ion F into BGs 

in this study significantly promoted the antimicrobial activity against periodontal 

pathogens.  

Conclusion 

In summary, we have shown that the low F-/high P2O5 BGs resulted in significantly 

faster apatite formation in Tris buffer solution, and promoted osteoblast-like cell pre-

osteogenic, pro-angiogenic responses and significantly inhibited the growth of two 

important periodontal pathogens in vitro. Such novel low F-/high P2O5 BGs would be 

expected to stimulate bone formation and overcome problems associated with 

infection and the poor vascularisation in large bone graft sites and reduce the need 

for further clinical intervention.  
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Tables: 

Table 1  Bioglass compositions. Compositions in mol% with increasing CaF2 content 

and constant P2O5.  NC fixed at 2.08 

Table 2   Sequences of primer pairs used for qPCR analysis 

 

Figures: 

Fig. 1 XRD traces of initial glasses 

Fig. 2 XRD traces for glasses immersed in Tris buffer solution for 8h 

Fig. 3 FTIR spectra for glasses immersed in Tris buffer solution for 8h 

Fig. 4 XRD traces for glass P6.33F1 in Tris buffer solution 

Fig. 5 FTIR spectra for glass P6.33F1 in Tris buffer solution 

Fig. 6  Dissolution studies. Elemental concentrations ± standard errors of Ca, P, Na, 

Si and F in Tris buffer vs. incubation time and CaF2 content 

Fig. 7 Cytotoxicity of BG-conditioned medium on MC3T3-E1. Cells were treated with 

BG-conditioned medium (2 h, 8 h, 24 h and 72 h) for 1 d, 3 d and 5 d. **P<0.01, 

compared with control group 

Fig. 8  Elemental concentrations ± standard errors of Ca, P, Si and F in α-MEM for 

72 h 

Fig. 9 XRD traces for glasses immersed in α-MEM for 7 2h 

Fig. 10 FTIR spectra for glasses immersed in α-MEM for 72 h 

Fig. 11 Effects of BG-conditioned medium on proliferation in MC3T3-E1. Cells were 

treated with BG-conditioned medium for 7 d, 14 d and 21 d. **P<0.01, compared with 

the control. 

Fig. 12 Effects of BG-conditioned medium on cell differentiation in MC3T3-E1. Cells 

were treated with BG-conditioned medium for 7 d, 14 d and 21 d. **P<0.01, 

compared with the control. +P<0.05, compared with P6.33F0 

Fig. 13 Collagen formation. Qualitative and quantitative results of collagen formation 

in MC3T3-E1 cultured in BG-conditioned medium. *P<0.05 or **P<0.01, compared 

with the control. +P<0.05, compared with P6.33F0 
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Fig. 14 Mineralised bone nodule formation. Qualitative and quantitative results of 

MC3T3-E1 mineralization in BG-conditioned medium. *P<0.05 or **P<0.01, 

compared with the control. +P<0.05, compared with P6.33F0 

Fig. 15 Expression of pre-osteogenic markers. Pre-osteogenic gene expression by 

MC3T3-E1 of Col1a1 and OPN in BG-conditioned medium measured by qPCR. 

Normalized by control groups. *P<0.05 or **P<0.01, compared with the control. 

+P<0.05, compared with P6.33F0. 

Fig. 16 VEGF gene expression. VEGF gene expression by MC3T3-E1 in BG-

conditioned medium measured by qPCR. Normalized by control groups. *P<0.05 or 

**P<0.01, compared with control group. +P<0.05, compared with P6.33F0 group. 

Fig. 17 VEGF protein production. VEGF protein production by MC3T3-E1 in BG-

conditioned medium measured by Western blot. Normalized by control groups. 

*P<0.05 or **P<0.01, compared with control group. +P<0.05, compared with P6.33F0 

group. 

Fig. 18 Growth inhibition percentage of P. gingivalis and A. actinomycetemcomitans 

after exposure to a range of BG particle concentrations for 4 h, normalized with 

negative control (no glass).  

Fig. 19 Growth inhibition percentage of P. gingivalis and A. actinomycetemcomitans 

after exposure to 1.25 mg and 10 mg BG particles, normalized with negative control 

(no glass).  

Fig. 20 Growth inhibition percentage of P. gingivalis and A. actinomycetemcomitans 

after exposure to NaF concentrations, normalized with negative control (no 

treatment).  

Fig. S1 Cell standard assay for MC3T3-E1 cells. 1500-150,000 cells, using Hoechst 

33258 after lysis by brief incubation in distilled water and freezing. Insert shows a 

second cell standard assay for MC3T3-E1 cells, 1000-10,000 cells. Fluorescence is 

expressed as arbitrary units. Each marker represents mean ± S.E of eight 

independent experiments. 

 

Table 1  Bioglass compositions. Compositions in mol% with increasing CaF2 content 

and constant P2O5.  NC fixed at 2.08 
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Glass SiO2 Na2O CaO P2O5 CaF2 

P6.33F0 38.14 29.62 25.91 6.33 0 

P6.33F1 37.59 29.38 25.70 6.33 1.00 

P6.33F3 36.57 28.85 25.25 6.33 3.00 

P6.33F5 35.55 28.33 24.79 6.33 5.00 

P6.33F7 34.53 27.81 24.33 6.33 7.00 

P6.33F0 named ICSW9 in previous publications [3-5] 

 

Table 2   Sequences of primer pairs used for RT-PCR analysis 

Name Primers 5’ – 3’ 

GAPDH Forward ATTGTCAGCAATGCATCCTG 

Reverse ATGGACTGTGGTCATGAGCC 

OPN Forward GAGATTTGCTTTTGCCTGTTTG 

Reverse TGAGCTGCCAGAATCAGTCACT 

Col1a1 Forward CATGTTCAGCTTTGTGGACCT 

Reverse GCAGCTGACTTCAGGGATGT 

VEGF Forward CAGGCTGCTGTAACGATGAA 

Reverse GCTTTGGTGAGGTTTGATCC 
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Fig. 3 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 9 
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Fig. 12 
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Fig. 13 
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Fig. 14 
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Fig. 15 
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Fig. 17 

 

 

 

Fig. 18 
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Fig. 19 

 

Fig. 20 
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Fig. S1 
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