
ZT 4ý -X C. oM 
QM Library 

IIIIIIIIIIIIIIIII 

23 13008956 11 i 11111 

ESSAYS ON BEHAVIOURAL ECONOMIC THEORY 

by 

Michele Lombardi 

A Thesis submitted to the faculty of 
Queen Mary, University of London 

in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy 

Department of Economics 

Queen Mary, University of London 

October 2007 



ii 

DECLARATION 

I declare that the work presented in this thesis is my own. 

London, October 2007 

ý4,4 
Signature of the Candidate: Mr Michele Lombardi 



Copyright © Michele Lombardi 2007 

All Rights Reserved 



ABSTRACT 

The chapters of this work lie at the intersection between classical choice theory and 

experimental data on decision making. 

In chapter 21 study necessary and sufficient conditions for a choice function to 

be rationalized in the following sense: there exists a complete asymmetric relation T 

(a tournament) such that, for each feasible (finite) set, the choice set coincides with the 

uncovered set of T restricted to that feasible set. This notion of 'maximization' may offer 

testable restrictions on observable choice behavior. In chapter 3 Mariotti and I give a 

group revealed preference interpretation to the concept of uncovered set, and we provide 

a characterization of uncovered bargaining solutions of a Pareto-consistent tournament. 

In chapter 41 study the rationalizability of reason-based choice correspondences 

axiomatically. A reason-based choice correspondence rationalizes choice behaviour in 

terms of a two stage choice procedure. Given a feasible set S, the individual eliminates 

in the first step all of the dominated alternatives according to her fixed (not necessarily 

complete) strict preference relation. In the second step, she first constructs for each max- 

imal alternative identified in the first step its lower contour set, and then she eliminates 

from the maximal set all of those alternatives so that the following justification holds: 

there exists another maximal alternative whose lower contour set strictly contains that 

of another maximal alternative. This procedural model captures the basic idea behind 

the experimental finding known as "attraction effect". 

Finally, in chapter 51 build a connection between the behavioral property expressed 

by the weak axiom of revealed non-inferiority and a new weak notion of rationality. 



This notion is weaker than that characterized by the weak axiom of revealed preference 

(WARP). 
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CHAPTER1 

INTRODUCTION 

1.1 The General Problem 

In economics a decision maker is rational if her choices are made in accordance to the 

maximization of some binary preference relation. To guarantee that not only a decision 

maker chooses, but also that her choices are rational, the goal of rational choice theory 

has been to identify which rationality postulates formulated in terms of the properties of 

choices (and hence directly testable on observable market or non-market behaviours) are 

characteristic of rational decisions. The standard approach is to posit these rationality 

postulates of choices (henceforth, choice consistency conditions) on choice behaviours, 

which, in turn, allow scholars to reconstruct the underlying preferences of decision makers 

according to the mvelation principle pioneered by Samuelson (1938). 

A very basic choice consistency condition is the so-called Property a (Sen, 1970) 

(also known as Chernoff 's axiom or basic contraction consistency). Property ci is 

necessarily satisfied by any rational choice as it rules out cyclical and context dependent 

patterns of choices. A cyclical pattern of choices is observed when only x is chosen from 

the two-element set {x, y}, only v from {y, z}, and only z from jx, z}; whereas a context 

dependent pattern of choices is observed when an alternative is chosen while a distinct 

one is discarded from a feasible set and a reverse choice is made from a different feasible 

set to which they both belong. 

Yet, in the last three decades, a large body of experimental findings on Individual 

choice behaviour has been obtained, and a number of persistent violations of standard 
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choice consistency conditions have been observed (see, e. g., Camerer (1994)). Contrary 

to what is prescribed by Property a, choices may be cyclical and context dependent. 

These startling and regular observed violations of Property a reveal that the standard 

economic interpretation of rational choice does not have a very satisfactory descriptive 

power, and this, in turn, motivates a substantial analytical rethink of the meaning of 

individual rational choice. 

The main objective of this work is to develop some weakened notions of rationality of 

individual choice in a way that they are consonant with some robust experimental data 

on decision making. First, I formulate choice consistency conditions, some of which are 

weakened versions of standard rationality postulates, whilst others are motivated by the 

empirical research which has established the importance of the violation that I will be 

interested in. Second, I posit these choice consistency conditions on the choice behaviour 

of a decision maker in accordance with the standard choice theory, and then by analyzing 

what kind of pattern of choices she is allowed under the conjunct operation of standard 

and non-standard choice consistency conditions, I presume the basic procedural choice 

model which guides her choices. This allows me to suggest some boundedly rational 

choice procedures which offer directly testable restrictions on observable choices. 

1.2 An Overview of the Results 

The purpose of Chapter 2 (forthcoming in Social Choice and Welfare) is to study 

necessary and sufficient conditions for a choice correspondence to be rationalized in the 

following sense: there exists a complete asymmetric relation T (a tournament) such that, 

for each feasible (finite) set, the choice set coincides with the uncovered set of T restricted 
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to that feasible set. 1 A choice correspondence behaving according to the uncovered set 

is named uncovered set choice rule. 

The uncovered set has been extensively studied in social choice theory. It represents 

a weak form of maximality which may be able to explain cyclic choices and context 

dependent choices. This is due to the fact that the uncovered set corresponds to the 

idea of the existence of a dominance hierarchy among alternatives of a given set, which 

depends on a number of attributes and, above all, on what are the alternatives of the 

set under consideration. 

My characterization result is provided by means of simple choice consistency con- 

ditions: two of them appear to be new to the best of my knowledge. I label them 

Weakened Chernoff (WC) and Non-Discrimination (ND). 

In Sen's words the Chernoff condition states "If the world champion of some game 

is a Pakistani, then he must also be the champion in Pakistan" (Sen, 1970, p. 17) (equiv- 

alently, if in some game a Pakistani does not win in a competition, then he cannot be 

a candidate for world champion). In sport terminology, my weakening of the Chernoff 

condition is as follows: if in some game an Italian athlete never wins if a Pakistani athlete 

participates to competitions, then the Italian athlete cannot be a candidate for becoming 

the world champion. 

ND states that if only x is chosen from f x, y}, only y from {y, z}, and only z from 

f x, zj, then all alternatives are choosable from jx, V, zj. It corresponds to the idea that 

if a decision maker is trapped in a three cycle, he must deem all alternatives equally 

adequate when called to choose from {x, y, z}. This property is implied by the Chernoff 

condition. 
I This chapter is extract from my paper entitled "Uncovered set choice rules", which is forthcoming 

in Social Choice and Welfare. 
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As a tournament is a non-standard type of individual preference (lacking acyclicity), 

but it seems more appropriate to consider such non-standard preference for a group 

rather than for an individual. In Chapter 3, my advisor Marco Mariotti and I ask the 

following question: given a baxgaining solution, does there exist a complete and strict 

relation T (a tournament) such that, for each feasible set, the bargaining solution set 

coincides with the uncovered set of T restricted to that set? We find a positive answer 

under the restrictive assumption of a Pareto-consistent tournament, and we name the 

bargaining solution as uncovered bargaining solution. 

Our chaxacterization result holds for the class of resolute bargaining solutions: loosely 

speaking, the baxgaining solution chooses a unique alternative from (the comprehensive 

hull of) any pair of alternatives. 

We offer two (related) motivations. First, a bargaining solution can be interpreted 

as a fair axbitration scheme (as argued for instance in Mariott! (1999)). In this sense, we 

may think of a bargaining solution as being ratified (or ratifiable) by a committee. In 

this interpretation, the tourhament expresses the majority preferences of the committee, 

and the uncovered set is the solution to the majority aggregation problem. 

A second interpretation follows the 'group revealed preference' interpretation pio- 

neered by Peters and Wakker (1991). As they argue, 'the agreements reached in bar- 

gaining games may be thought to reveal the preferences of the baxgainers as a group' (p. 

1787). 

The characterization uses four axioms: Strong Pareto Optimality; a standard Ex- 

pansion property (if an alternative is in the solution set of a collection of problems, it 

is, in the solution set of their union); a generalization of the 'Condorcet' property (if an 

alternative is chosen in 'binary' comparisons over each alternative in a collection, then 



5 

it is the solution of the problem including all the alternatives in the collection); and a 

weak contraction consistency property (implied by Arrow's choice independence axiom). 

My interest between decision theory and experimental data also leads me to the result 

of Chapter 4. A sizeable amount of experimental findings show that when added to a 

set a new relatively inferior alternative this alternative can increase the attractiveness of 

one of the alternatives obtainable from the original set (see, e. g., Rieskamp, Buserneyer, 

and Mellers, (2006)). 

This systematic observed choice behaviour is known as "asymmetric dominance ef- 

fect" or "attraction effect" and is explained in terms of bounded rationality; in a difficult 

and conflict-filled decision, where there is no escape from choosing, individuals choose by 

tallying defensible reasons for one alternative versus the other, rather than by trading 

off costs and benefits. 

In this Chapter I propose a procedural choice model which is able to capture the basic 

idea behind the experimental finding of "attraction effect". A choice correspondence 

able to explain this context dependent anomaly is said to be a reason-based choice 

correspondence. 

A reason-based choice correspondence rationalizes choice behaviour in terms of a 

two stage choice procedure. Given a feasible set S, the individual eliminates from it 

all of the dominated alternatives according to her fixed (not necessarily complete) strict 

preference relation, in the first step. In the second step, first she constructs for each 

maximal alternative identified in the first step its lower contour set (i. e., the set of 

alternatives which are dominated by it in S), and then she eliminates from the maximal 

set all of those alternatives, so that the following justification holds: there exists another 

maximal alternative whose lower contour set strictly contains that of another maximal 
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alternative. 

Most of the choice consistency conditions which are characteristic of reason-based 

choice correspondences appear to be new to the best of my knowledge and they relates 

to standard choice consistency proprieties. A key role in the development of this chapter 

is played by a choice consistency condition that I label Reason-Based Bias (RBB). It 

posits that for three distinct alternatives obtainable from a universal set, say x, y, and 

z, if x is strictly better than y and not worse than z, and y is not worse than z, then 

x must be the only choice from {x, y, z}. This property is motivated by the empirical 

research which established the importance of the attraction effect in decision making. 

This property captures this phenomenon requiring a bias toward the most defensible 

alternative in term of reasons. 

The purpose of Chapter 5 is to study what kind of preference maximization charac- 

terizes the weak axiom of revealed non-inferiority (WARNI) introduced by Eliaz and 

Ok (2006). These authors accommodate preference incompleteness in revealed prefer- 

ence theory by studying the implications of weakening Arrow (1959)'s weak axiom of 

revealed preference (WARP) in WARNI. 

This behavioural postulate entirely corresponds to maximizing behaviour on suitable 

domains. However, a choice correspondence rationalized by the maximization of a pref- 

erence relation (not necessarily complete) may fail to satisfy WARNI on an arbitrary 

choice domain. This is due to the fact that WARNI characterizes a particular type of 

rationality. My concern is to spell out the form of maximality of choice characterized by 

this behavioural postulate on an arbitrary choice domain, and then I contrast this form 

of maximality with that characterized by WARP. 

A choice correspondence is weak justified if there exists a binary relation J (dubbed 
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weak justification) such that, for all feasible sets, no available alternative is J-related 

to any chosen alternative, for each rejected alternative there is some chosen alternative 

which is J-related to it. Therefore, the binary relation J is a strict (not necessarily 

complete) preference relation. 

A decision maker makes weakly justified choices if she can assert that no chosen 

alternative is dominated by any other obtainable one, and for each discarded alternative 

there is some chosen alternative which dominates it. 

My notion of rationality differs from that provided by Mariotti (2007), according to 

which choices are justified if there exists a binary relation J such that, for all feasible 

sets, no two chosen alternatives are J-related to each other, and each chosen alternative 

is J-related to all of the rejected alternatives. Mariotti (2007) shows that choices satisfy 

WARP if and only if they are justified by an asymmetric relation. 

The result of this chapter is that choices satisfy WARNI if and only if they are 

weakly justified by an asymmetric relation. 



CHAPTER 2 

UNCOVERED SET CHOICE RULES 

2.1 Introduction 

There is evidence from psychological and marketing literature that in a choice task 

involving goods that vary along several attributes (e. g. TVs, digital cameras, job offers) 

a decision maker may prefer to use the majority rule (see May (1954) and Russo and 

Dosher (1983) for an early contribution, and Zhang, 11see, and Xiao (2006) for a recent 

study). 1 The majority rule requires that in pairwise choice problems the decision maker 

has to deem choosable that option which is majority preferred in terms of her preferences 

over the relevant attributes. 

The majority rule has been extensively studied in voting and social choice theory. It 

is well-known that this rule may produce cyclic majority relations (phenomenon known 

as Condorcet paradox). Of the existing literature on the Condorcet paradox two works 

are particularly relevant here. Miller (1977) shows that the majority relation may be 

represented as a tournament T. Moreover, to accommodate the general absence of 

undominated proposals as a solution set for majority voting (i. e. a tournament T), 

Miller (1980) suggested the solution concept of the Uncovered Set: a social state is in 

the uncovered set of T if it dominates every other state in at most two steps. 2 

The purpose of this chapter is to address the following question: given an individual 

1 The majority rule is applied in choice problems involving risky alternatives as well (see Fishburn 
and La Valle (1988)). For a discussion on the attraction of the majority rule in different choice contexts 
see Bar-Hillel and Margalit (1988). Fishburn (1991) also offers an example in which a decision maker 
may reasonably hold cyclical preferences using the absolute majority rule (pp. '120-121). 

2 For a clear and in-depth study of tournament solutions and majority voting see Laslier (1997). 
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choice function, does there exist a tournament T such that, for each feasible finite set, 

the choice set coincides with the uncovered set of T restricted to that feasible set? I find 

a positive answer. I label the choice function as uncovered set choice rule. 

In individual choice theory, the choice behavior of a decision maker is rational if 

it is the outcome of the maximization of some preference relation over every feasible 

set (equivalently, there exists a preference relation R such that a good is R-maximal 

if there does not exist another available good which strictly dominates it in terms of 

R). 3 This implies that a decision maker should at the very least rank goods acyclically. 

Since the main cost that a decision maker has to bear if she uses the majority rule in 

a multi-attribute setting is to be trapped in intransitive cycles, there are sound reasons 

for developing a descriptive model of choice axound a weak notion of maximality. I show 

that the uncovered set can be used for this purpose. 

I provide a complete characterization of the class of uncovered set choice rules by 

means of simple consistency conditions: these provide testable restrictions on observable 

choice behavior. Two of them are new to the best of my knowledge, and I label them 

Weakened Chernoff (WC) and Non-Discrimination (ND). 

The Chernoff condition (sometime known as property a or contraction consistency) 

demands that a good that is chosen from a set A and belongs to a subset B of A must 

be chosen from B. In Sen's words: "If the world champion of some game is a Pakistani, 

then he must also be the champion in Pakistan" (Sen, 1970, p. 17) (equivalently, if in 

some game a Pakistani does not win in a competition, then he cannot be a candidate for 

world champion). In sport terminology, my weakening of the Chernoff condition is as 

follows: if in some game an Italian athlete never wins if a Pakistani athlete participates 

3 See Suzumura (1983). 
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to competitions, then the Italian athlete cannot be a candidate for world champion. 

Since the majority rule can yield intransitive choices, the Non-Discrimination prop- 

erty states that if only x is chosen from {x, y}, only y from {y, z}, and only z from {x, z}, 

then all states are choosable from {x, y, z}. It corresponds to the idea that if a decision 

maker is trapped in a three cycle, he must deem all states equally adequate when called 

to choose from {x, y, z}. Non-Discrimination is implied by the Chernoff condition. 4 

In the next two sections I formalize and characterize the class of uncovered set choice 

rules, in section 1.3 I compare the suggested class with another one recently proposed in 

the literature (i. e. the class of top-cycle rules), while section 1.4 concludes. 

2.2 Preliminaries 

Let X be a universal finite set of cardinality IXI > 2. Let X be the collection of all 

subsets of X containing at least two distinct states. A choice rule f is a correspondence 

defined on X that assigns a nonempty subset f (A) of A to every AEX. Therefore, 

as standard in axiomatic choice theory, I postulate that the choice rule f is decisive: 

X00 =* If (X) I ý: 1. The following abuse of notation will be repeated throughout the 

chapter: f (xy) =x instead of fQx, y}) =f x}, f (xyz) = xyz instead of f Qx, ý, zj) = 

f x, y, z}, A\x instead of A\{xl, and AUx instead of AU jxj. I say that f is resolute if 

X, Y E X, X0y=!, If (Xy)l = 1. ' 

A binary relation T on X is a tournament if it is asymmetric (for all distinct x, yEX, 

(X, y) ET =ý, (y, x) 0 T) and complete (for all distinct X,, y E X, (X, y) ET or (y, x) E T). 

° To see this, let Chernoff condition hold. Assume that x, y, z are three distinct goods, and let 
{x, y, z} = X. Suppose that f ({x, y}) = {x}, f ({y, z}) _ {y}, and f ({x, z}) = {z}, where f is a 
standard choice function. I show that f (X) = X. Assume, to the contrary, that f (X) q& X. Then 
f (X) X. Let x¢f (X). Since f ({x, y}) = {x} and Chernoff condition holds, I have that y0f (X). 
By a similar argument, I have that z¢f (X). Therefore, f (X) = 0, a contradiction. 

a This condition appears in Ehlers and Sprumont (2007). 
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As usual, I write xTy for (x, y) E T. For every AEX, define Tn (A x A) = TIA. This 

restriction of T is a tournament on A. For every xEX, let 

T-1(x) = {y E XjxTy} 

T (x) _ {y E XIyTx} 

denote the lower and upper sections of T at x, respectively. 

BCA means that every element of B is in A, whilst BA means that BCA and 

B76 A. 

Following Miller (1980) I say x covers y in AEX, denoted XCTIAY, if T'1 (y) nA 

T-1 (x) fl A. 6 Observe that CTIA is a strict partial order (i. e. irreflexive and transitive), 

but it is not complete unless TEA itself is transitive. 

Given a tournament T on X and AEX, the uncovered set of T in A, denoted by 

UC (TEA), is the set of maximal alternatives of CTIA in A: 

UC (T IA) = {x E Alfor every yEA, x0y, not VCTjAx} . 

Equivalently, xE UC (TI A) if and only if the following two-step principle holds: 

for every yEA, x ,-y: xT y or for some zEA, xT zT y. 

Note that UC (T IA) is nonempty as CTIA is transitive and A is finite. 

Definition 1A choice rule f is said to be an uncovered set choice rule if there exists a 

tournament T on X such that f (A) = UC (T I A) for every AEX. 

2.3 Main Theorem 

I characterize the class of uncovered set choice rules by means of the following prop- 

erties: 
6 Observe that Cr is a subrelation of T. Different definitions of CT exist in the literature, but they 

are equivalent when T is a tournament. My main result holds for all of them. 
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Weak Expansion (WE ). If Ak E X, with k=1, ..., K, then (1 1f (Ak) C 

f (uk 
1Ak). 

Binary Dominance Consistency (BDC). If AEX, xEA, &f (xy) =x for 

every yE A\x, then f (A) = x. 

Weakened Chernoff (WC). For all AEX such that JAS > 3, if xEf (A) & 

yE A\x, then xE UBý, A: z, yEBf 
(B). 

Non-Discrimination (ND). For all distinct x, y, zEX, if f (xy) = x, f (yz) = y, 

&f (xz) = z, then f (xyz) = xyz. 

WE and BDC have a long history in choice theory. WE (also known as property 

y or expansion consistency) asserts that if a state is chosen from every element of a given 

nonempty collection of choice problems then it must still be chosen from their union, 

whilst BDC is the choice formulation of the so called "Condorcet winner principle" and 

asserts that if a state is chosen over every other single state then it must be uniquely 

chosen from the choice problem containing all states. 

WC asserts that in a set A containing more than three distinct states if x is chosen 

from A and y is a distinct available state in A, then the decision maker has to deem x 

choosable from some strict subset B of A containing y. Equivalently, it assures that if x 

is not chosen from any BSA, with x, yEB, then x cannot be chosen from A. WC is 

much weaker than the Chernoff condition (if BCA, then f (A) nBCf (B)). To see it 

observe that the Chernoff condition implies: 

for all AEX such that JAI > 3, if xEf (A) &yE A\x, then xE nBCA:.,, EB f (B) . 

ND states if an agent has a clear mind on three distinct pairwise choices, but his 
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choices cycle, then when called to make a choice from their union he must deem all 

alternatives equally adequate. I have already observed that ND is implied by Chernoff 

condition. 

Theorem 1. A choice rule f is an uncovered set choice rule if, and only if, it is 

resolute and satisfies Weak Expansion (WE ), Binary Dominance Consistency (RDC), 

Weakened Chernoff (WC), and Non-Discrimination (ND). 

Proof. (Only if) Let f be an uncovered set choice rule. Obviously, f is resolute, 

and satisfies ND. Next, I check WE, BDC, WC. 

To see that f satisfies WE , let Ak E X, with k K, and xE nf (Ak). Let 

S= UAk, Then xE UC (TIA0 for all Ak, As x reaches every other state in S\x in at 

most two steps, it follows that not yCT, sx for all yE S\x. Hence, xE UC (TIS). 

To verify that BDC is satisfied, assume that AEX, xEA, and f (xy) =x for 

every yE A\x. I show that x=f (A). Since f (xy) =x for every yE A\x, I have that 

xTy for all yE A\x. Thus XCTIAY for all yE A\x. Since T (x) nA=0, not yCTIAx for 

all VE A\x. It follows that x= UC (TIA) 
- 

To see that f satisfies WC, let AEX, with JAI > 3. Suppose that yE A\x 

and x0f (B) for all B A, with x, yEB; I prove that x0f (A). Assume, io the 

contrary, that xEf (A) UC (TIA). By the two-step principle, I have that for all 

y Cz A\x: xTy or for some zEA, xTzTy. Suppose xTy, and let B= jx, y} ý; A. Since 

f is an uncovered set choice rule it follows that f (B) = x, a contradiction. Thus, let 

yTx. Because xE UC (TIA) it follows that there exists zEA such that xTzTy. Let 

B=fx, y, z} g A. Because XE UC (TIB), and f is an uncovered set choice rule it 

follows that xEf (B) yielding a contradiction. 
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(If). Let f be resolute and satisfy WE, BDC, WC, and ND. Given X, define the 

relation T on X as follows: 

forx, yEX, with x: ý y: xTy q f(xy)=x. 

By resoluteness of f, it follows that T is asymmetric. Given that f is defined on a 

universal domain, I have that T is complete. Therefore, T is a tournament on X. 

I claim that 

f (A) = UC(TIA) for all AEX. (2.1) 

A proof by induction based on the cardinality of A is provided. 

Clearly, resoluteness, BDC, ND, and the construction of T, imply that (2.1) is 

true for every AEX, with JAI :53. Assume that (2.1) holds for each AEX, with 

JAI =ký! 3.1 prove that (2.1) is true for AEX, with JAI =k+1. 

Let XEf (A), and assume, to the contrary, that x0 UC (TIA). Therefore, there 

exists VE A\x such that YCTIAX- It follows that for B ý; A, with x, YEB, x0 UC (TIB). 

By the inductive hypothesis, xýf (B) . Because it is true for all BgA, with x, yEB, 

WC implies that xýf (A), a contradiction. 

Conversely, let XE UC (TIA), and partition A in T-1 (x) n A, T (x) n A, and jx}. 

Since xE UC (TIA), it follows that for every yE A\x: xTy or for some zEA, 

xTzTyý. This implies that T-' (x) nA 54 0. If T (x) nA=0, it follows from the 

construction of T and BDC that x=f (A). Otherwise, consider T (x) nA 3k 0. Take 

any YET (x) n A. Because x r= UC (TIA) and yTx, there exists zE T-1 (x) nA such 

that xTzTy, by the two-step principle. Therefore, xE UC (TI {x, Y, Zj). The inductive 

hypothesis implies xEf (xyz). Because it is true for any yET (x) n A, it follows that 

XE nyET(x)nAf (. TVZ) for some zE T- I (x) nA. Moreover, as xTz for all zE T-1 (x) nA, 
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the construction of T and BDC imply x_f (A\T (x)). As 

xE [fIýET(x)nAf (xyz» n ff (A\T ýx))ý 

WE implies x r= f (A). 

Hence, (2.1) is true for every AEX, by the principle of mathematical induction.   

The properties in theorem 1 are tight, as argued next. 

In figure 1.1 a --+ b stands for f (ab) = a. 

For an example violating only WE , fix X= {x, y, z, w}, and let choice in pairs be 

those displayed in figure 1.1. Let f (A) = UC (TIA) for every AE X\X, and f (X) = xy. 

Because w is an uncovered state it follows that f is not an uncovered set choice rule. 

WE is violated because wEf (xyw) and wEf (xzw), but wf (X). Observe that 

f (X) g UC (TIX) and WC is satisfied as z0f (X). 

For an example violating only BD C, fix X= Ix, y, z}, assume that choice in pairs 

are those displayed in figure 13, and let f (X) = xy. Clearly f (X) =/= U0 (TIX), and 

BDC is violated because yEf (X). 

For an example violating only WC, fix X= {x, y, z, w}, and let choice in pairs be 

those displayed in figure 1.1. Moreover, let f (A) = UC (TIA) for every AE X\X, and 

f (X) = X. Observe that UC (TIX) 54 f (X), and WC is violated because z is not 

chosen in any proper subset of X containing y, but zEf (X). 

For an example violating only ND, fix X {x, y, wj, and assume that choice in 

pairs be those displayed in figure 1.1, and f (X) xy. Obviously, f (X) 0 UC (TIX) as 

w0f (X) in violation of ND. 

Finally, for an example violating only resoluteness, fix X= {x, y}, and let f (X) 

X. As T is not defined, UC (TIX) = 0. It follows that f is not uncovered set choice 
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Figure 2.1: Revealed preferences in pairwise choice problems for independence of axioms 

used in Theorem 1 

rule. Resoluteness is violated because If (X)) 0 1. 

2.4 Discussion 

Since the uncovered set of a tournament is a subset of its top-cycle, it seems inter- 

esting to investigate the relationship between the axiomatization provided in Theorem 1 

and that of top-cycle choice rules which appears in Ehlers and Sprumont (2006). They 

axiomatize the class of top-cycle choice rules using resoluteness, BDC, and two more 

behavioral regularities: Weakened Weak Axiom of Revealed Preference (WWARP), and 

Weak Contraction Consistency (WCC). 

Weakened Weak Axiom of Revealed Preference (WWARP). Let x, yEX 

&AEX. If xEf(A)&yEA\f(A), then for no BEX: yEf(B)&xEB\f(B). 
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x 

Figure 2.2: Revealed preferences in pairwise choice problems for Remark 1. 

Weak Contraction Consistency (WCC). If AEX and IAA > 2, then f (A) c 

UxeA, f (A\x). 

WWARP is a weak version of Arrow's WARP, and it asserts that if x and y are 

two available states in A, and x is chosen while y is actually rejected, then there does 

not exist any distinct conceivable set B, with x, yGB, such that y is chosen and x is 

rejected. Conversely, WCC states that given a feasible set A, with JAI = k, a decision 

maker can deem x choosable from A only if he has deemed x choosable from some sets 

JAI =k-1. WCC implies a well known consistency property, namely, Never Chosen 

(NC): if AEX, x0f (xy) for all yG A\x, then f (A) 9 A\x. 

As resoluteness of f and DDC are necessary and sufficient for the uncovered set 

choice rules as well, I will focus on WWARP and WCC. Let me begin with WWARP. 
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Remark 1. WWARP is not necessary for the uncovered set choice rule. 

To see this, fix X= jv, w, x, y, z}. Binary choices are visualized in figure 1.2, 

where a --+ b stands for a=f (ab). Let f (A) = UC(TIA) for every AEX. It is 

easy to see that xE UC (TIX) and yE X\UC (TIX), while yE UC (TI Ix, y, z)) and 

xý UC (TI Ix, y, zj). 

The example above also shows that XEf (A) as long as wEA. Thus the desirability 

of x is conditional to the availability of w. From this perspective, Remark 1 suggests that 

the class of uncovered set choice rules captures some notion of context dependency of 

choices. The example above also shows that the uncovered set choice rule violates the so 

called dual Chernoff axiom: If A, BEX, B9A, then f (A) nB=0 or f (B) 9f (A) nB 

(Suzumura, 1983). It is easy to see that WWARP implies ND. 

Next, I show that resoluteness, BDC, WE , and WC are sufficient for f to satisfy 

WCC. 

Proposition 1. Let f be resolute and satisfy Weak Expansion (WE ), Binary 

Dominance Consistency (BDC), and Weakened Chernoff (WC). Then f satisfies Weak 

Contraction Consistency (WCC). 

Proof. Let f be resolute and satisfy WE , BDC, and WC. Let AEX, with 

JAI > 2, and xEf (A). I show that xEf (A\y) for some yE A\x. 

Define Dx = {y E Aix 0 y, f (xy) = y} and S. = {y E AI x#y, f (xy) = x}. Since 

f is resolute, A is partitioned in {x}, Dx, and S. 

Suppose Dy = 0. It follows from BDC that x=f (A\y) for all yE A\x. Otherwise, 

consider D., 71- 0.1 proceed according to whether At <3 or JAI > 3. 

Case 1. RAJ <3 
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The case JAI =2 is not possible as f is resolute and XEf (A). "Thus, let JAI = 3. 

Because xEf (A), f is resolute and satisfies BDC, it follows that JD, 'J = 1. Then 

S_ý :, PL- 0, as desired. 

Case 2. JAI >3 

Suppose that JDxJ = 1, and so let di E D, BDC implies that xf (A\dl), as 

desired. Otherwise, let I Dx n, with n>1. Take any di E Dx, for iE nj. WC 

implies that there exists B A, with x, di E B, such that xEf (B). ' Whenever IBI>3, 

I can iterate the application of WC until getting xEf (Bi'), with di E Bil C; B, and 

JBj'I = 3. Because JD-ýJ = n, there are n sets Bj' gA such that di E B'ý, JBjJ = 3, and 

xEf (Bi'). Let B be a class made of sets Bj', for iE n}. 

As JBjJ = 3, let s= Bj'\xdj. Since f is resolute either f (sx) =s or f (sx) = x. 

If f (sx) = s, resoluteness of f, combined with BDC, implies that either s=f (Bi) or 

di =f (Bj') yielding a contradiction. Then, it must be the case that x=f (x8), and 

so sE Sr 0 0. Therefore, for every Bj' E B, we established that: Bj = Idi, s, x}-, with 

di E Dx and sES.,; and di ý Bj' for all Bj' E B\Bi'. Now, fix any B, ' E 13. As xEf 
(Bj) 

for every Bj' E B\Bi', it follows that xen. B,, r,, 6\B,, f 
(Bj). Moreover, as S_, 96 0, BDC 

implies that xf (x U S., ). Because D,,, \di !; U. R'EB\BfBj, and 
j 

x Eýns; EI31Bof(B, )] n[. f (x u Si)) 

WE implies xEf (A\dti).   

Corollary 1. Let AEX, and let f satisfy resoluteness, Binary Dominance Consis- 

tency (BDC), Weak Expansion (WB), and Weakened Chernoff (WC). Then f satisfies 

Never Chosen (NC). 

Proof. It directly follows from Proposition 1 combined with the fact that WCC 



20 

implies NC.   

Under resoluteness, WE and BDC, WC and WCC are not equivalent. To see 

it, fix X= {w, x, y, z}. Assume that binary choices are those displayed in figure 1.1, 

where a --º b stands for a=f (ab). Let f (xyz) = x, f (xyw) = xyw, f (xzw) = xzw, 

f (yzw) = y, and f (X) = X. As it is easy to check, f is resolute and satisfies WE , 

BDC, and WCC. However, f does not satisfy WC as zEf (X) and there does not 

exist any A X, with z, yEA, such that zEf (A). It also follows that WCC cannot 

replace WC in Theorem 1. 

2.5 Concluding Remarks 

There is evidence that choice cycles and menu dependence of choices can be displayed 

by decision makers that use a consistent and deliberate rule of choice. One of this choice 

rule is the majority rule. Borrowing from Miller's solution concept, I characterize the 

class of uncovered set choice rules. It is different from that offered by Moulin (1986) 

because I use only properties relating choices across feasible sets. This has the advantage 

of offering behaviorists testable restrictions on observable choice behavior. Moreover, the 

class of rules characterized here may explain choice cycles. 

Ehlers and Sprumont (2007) characterize the class of top-cycle choice rules. They 

introduce the property of Weakened Weak Axiom of Revealed Preference which assures 

context independency of choices. WWARP is violated by my class of rules: this sug- 

gests that the uncovered set choice rule captures some notion of context dependency of 

choices. Manzini and Mariotti (2007) characterize the choice as the outcome of the im- 

plementation of a fixed ordered pair of asymmetric (and possibly incomplete) preference 
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relations. This choice procedure is able to explain both choice cycles and menu depen- 

dency of choices, but it does not necessarily preserve the notion of maximality suggested 

here. 

I conclude by observing that in a companion paper of Moulin's work, Dutta (1988) 

suggests the minimal covering set as solution concept (which is finer than the ultimated 

uncovered set) and offers a characterization by means of consistency requirements of 

different nature. A natural step forward would be a characterization of the minimal 

covering set by means of consistency properties relating only choices across sets. This 

open question is left for future research. 



CHAPTER 3 

UNCOVERED BARGAINING SOLUTIONS 

3.1 Introduction 

A bargaining solution expresses 'reasonable' compromises on the division of a surplus 

within a group. In this chapter my advisor prof. Marco Mariotti and I ask the following 

question: given a bargaining solution, does there exist a complete and strict relation T (a 

tournament) such that, for each feasible set A, the bargaining solution set coincides with 

the uncovered set of T restricted to A? If the answer is positive, we call the bargaining 

solution an uncovered bargaining solution. 

We offer two (related) motivations. First, a bargaining solution can be interpreted 

as a fair arbitration scheme (as argued for instance in Mariotti (1999)). In this sense, 

we may think of a bargaining solution as being ratified (or ratifiable) by a committee. In 

this interpretation, the tournament expresses the majority preferences of the committee, 

and the uncovered set is the solution to the majority aggregation problem. A bargaining 

solution that does not coincide with the solution of any tournament is certainly not fair 

in the described sense: it could not be ratified by any committee. 

A second interpretation follows the 'group revealed preference' interpretation pio- 

neered by Peters and Wakker (1991). As they argue, 'the agreements reached in bar- 

gaining games may be thought to reveal the preferences of the bargainers as a group' 

(p. 1787). A tournament is a non-standard type of preference (lacking transitivity), 

which has recently been considered in individual choice theory (Ehlers and Sprumont 

(2007), Lombardi (2007)). It seems even more appropriate to consider such non-standard 
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preference for a group than for an individual. 

For single valued solutions the issue under study has essentially been solved, since a 

single valued uncovered bargaining solution maximizes (if certain regularity conditions 

are met)l a binary relation (in other words, the solution point is a Condorcet winner of 

the underlying tournament). For the domain of convex problems, Peters and Wakker 

(1991) have shown that this is the case if and only if the solution satisfies Nash's Inde- 

pendence of Irrelevant Alternatives 2. Denicol6 and Mariotti (2000) show that the same 

holds for certain domains of non-convex problems, provided that Strong Pareto Opti- 

mality is assumed. In this latter case the binary relation is transitive. Therefore, the 

problem under study is new and interesting only for multi-valued solutions. It is thus 

natural to look at a domain of nonconvex problems, as many notable solutions (such as 

the Nash Bargaining Solution) are single-valued on a domain of convex problems, 

We focus on solutions which satisfy a'resoluteness' condition: loosely speaking, when 

only two feasible alternatives x and y are Pareto optimal (so the baxgaining problem is 

essentially binary), the solution picks either x or y. For this class of solutions, we provide 

a complete characterization of uncovered bargaining solutions for which the underlying 

tournament satisfies certain Paretian properties. The characterization uses four axioms: 

Strong Pareto Optimality; a standard Expansion property (if an alternative is in the 

solution set of a collection of problems, it is in the solution set of their union); a gener- 

alization of the 'Condorcet' property (if an alternative is chosen in 'binary' comparisons 

over each alternative in a collection, then it is the solution of the problem including all 

1 See the end of the next section for a discussion of this point. 
9 Peters and Wakker work with a weak relation. However it is easy to show - by using elementary 

duality properties in the maximization of binary relations - that a strict relation could be used instead. 
See e. g. Kim and Richter (1986) or Aleskerov and Monjardet (2002) for discussions of this issue in 
abstract choice theory. 
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the alternatives in the collection); and a weak contraction consistency property (implied 

by Arrow's choice independence axiom). 

3.2 Preliminaries 

An n-person bargaining problem is a pair (A, d), with dEA and AC tn, where A 

represents the set of feasible alternatives and d is the disagreement point. 

The null-vector is denoted 0E RI. The vector inequalities in Rn are, x>y (resp.: 

x> y) if and only if xi > yz (resp.: xi > yi) for every i. We view, as usual, xE Rn as a 

utility or welfare vector for n agents. 

A domain of bargaining problem 23 is said to be admissible if: 

D1 For every pair (A, d) E 13: A is compact, and there exists xEA such that x>d. 

D2 For all x, yE Ra, where x 71- y and Rd = {x E RnI x> d}, there exists a unique 

(M (x, y) , d) E 13 such that: 

1) x, yEM (x, y) and for every zEM (x, y) such that zV {x, y}, x>z or y>z; 

2) for every (A, d) E 13 such that x, yEA: M (x, y) C A. 

D3 For all (A, d), (B, d) E Ii: (A U B, d) E B. 

Many bargaining domains considered in the literature are particular cases of admis- 

sible domains3. For example the set of comprehensive problems (Zhou (1997), Peters and 

Vermeulen (2006)), the set of finite problems (Mariotti (1998), Peters and Vermeulen 

(2006)), the set of all problems satisfying D1 (Kaneko (1980)), the set of d-star shaped 

problems4. D2 guarantees the existence of a `minimal' problem containing any two given 
This class was essentially introduced in Denicolö and Mariotti (2000). 
That is, those problems (A, d) for which the convex hull of {d, x} is in A for all xEA. 
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alternatives x and y, and such that x and y are the only strongly Pareto optimal feasible 

alternatives. 

Unless specified otherwise, B is from now on a class of n-person admissible bargaining 

problems. A bargaining solution on B is a nonempty correspondence fB =3 R' such 

that f (A, d) 9A for all (A, d) E 13. 

Given a bargaining solution f, we say that an alternative xEA is the f- Condorcet 

winner in (A, d) E B, denoted by x= CW (A, d), if x=f (M (x, y), d) for all yEA, 

with y 54 x. Moreover, XEA is said to be an f- Condorcet loser in (A, d), denoted by 

XE CL(A, d), if y=f (M(x, y), d) for all YEA, withyox, 

Finally, the following abuses of notation will be repeated throughout this note: 

f (A, d) =x instead of f (A, d) =f x}, AUx instead of AU Jxj, A\x instead of A\ Jxj. 

We consider only resolute solutions, that is those which satisfy the following property. 

For all x, yE R1, with x 7ý y, for all A C- R1 

Resoluteness: If (M (x, y)) I=1. 

Resoluteness is analogous to a property with the same name imposed by Ehlers 

and Sprumont (2007) and Lombardi (2007) for individual choice functions over finite 

choice sets, given that (in the presence of Strong Pareto Optimality, defined below) the 

minimal problem M (x, y) involves essentially a choice between only two alternatives. 

For standard solutions that are obtained by maximizing a quasiconcave 'social welfaxe 

function' (e. g. the Nash Bargaining Solution or the Utilitarian solution) this involves 

adding a tie-breaking criterion on minimal problems. 

In addition the following properties will be used in the characterization result. 

Axiom 2 (Strong Pareto Optimality) x? y and x0yEf (A, d) =ý, xVA. 
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Axiom 3 A, BE Xi, x= CW (A, d) and yE CL (B U x, d) =; ý-yof (A U B, d) 

Axiom 4 x, y, zE RI, with x#y --ýL z, x=f (M (x, y), d) and y=f (M (y, z), d) 

=ý- xEf (M(x, y) UM(y, z), d) 

Axiom 5 Given a class of problems {Ak, d}, then flk f (Ak, d) Cf (UkAk, d) 

Strong Pareto Optimality is standard. Axioms 3 is a generalization of the natural 

`Condorcet Winner Principle' 

x=CW(A, d)=ý- ýx f(A, d) 

which is implied by setting B == 0 in axiom I 

Axiom 4 is a weak independence property. It says that if an alternative x is the 

unique solution point in a minimal problem where the only other Pareto optimal feasi- 

ble alternative is y, and if y is the unique solution point in a minimal problem where 

the only other Pareto optimal feasible alternative is z, then x is a solution point of a 

minimal problem where the only other Pareto optimal feasible alternatives are V and z. 

Consider the following standard contraction consistency axioms -RcS&f (S, d) nR : ý- 

0 =: ý f (R, d) =f (S, d) n R. Suppose xVf (M (x, V) UM (y, z) , d). If f is Paxeto op- 

timal then f (M (x, V) UM (y, z), d) 9 {y, z}. Suppose yEf (M (x, y) UM (y, z), d). 

If contraction consistency holds, then f (M (x, y) , d) = V, If on the other hand y0 

f (M (x, v) UM (y, z) , d), that is z=f (M (x, y) UM (y, z) , d), and if f satisfies con- 

traction consistency, then zf (M (y, z) , d). In either case the premise of axiom 4 is 

violated. This shows that, in the presence of Pareto optimality, axiom 4 is a very special 

implication of contraction consistency. 
5 This is also called Arrow's choice independence axiom. 
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Finally Axiom 5 is standard in choice theory: if an alternative is a solution point 

for every element of a given collection of bargaining problems, then it is still a solution 

point of their union. 

We are, as usual, only interested in solutions that satisfy translation invariance. 

Then, we can set d =- 0. A bargaining problem simply becomes a subset of R" containing 

the null-vector and the notation is simplified accordingly. 

A binary relation T C_ RI x R' is a tournament if it is asymmetric (i. e., for every 

x, yE Rn, x 54 V, (x, y) ET =ý. (y, x) ý T) and weakly connected (i. e., for every x, yE RI 

with x0y, f (x, y) , (y, x)} nT0 0) 
. We denote by T the set of all tournaments on R'. 

A restriction of T to A9 Rn, denoted by TIA, is a tournament. 

For XE Rn, let T-1 (x) and T (x) denote the lower and upper sections of T at x, 

respectively, that is: 

T' 1(x) = {y ERn l (x, y) E T} , and 

T (x) = {y E t'I (y, x) E T} . 

For any tournament TET and AC &n, define its covering relation CIA on A by: 

(x, y) E CIA iff (x, y) E TEA and T-1(y) fl AC T-' (x) fl A 

The uncovered set of TEA, denoted UC (TEA), consists of the CIA-maximal elements of 

A, that is: 

UC(TIA)= {x E Al (y, x) 0 CIA for all yE A}. 

The Strong Pareto relation P on yin is defined by 

for x, yE J2", x#y: (x, y) EPa xs > yi for all i, and xj > yj for some j. 
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We say that a tournament TET is Pareto consistent if for x, y, zE Rn, with 

x76 y0z: 

(x, y)EP=(x, y)ET, 

(X, y) EP& (y, z) ET= (X, Z) ET. 

So, a Pareto consistent tournament includes the Strong Pareto relation and satisfies 

a form of `Preto transitivity': any x which Pareto dominates y will beat any alternative 

z which is beaten by y. 

Definition. A bargaining solution f is an uncovered set bargaining solution (UCBS) 

if there exists TET such that, for every AEB, f (A) = UC (TEA). In this case we say 

that T rationalizes f. 

As an example of an UCBS which does not coincide with a standard solution, con- 

sider the following class. Let F be a asymmetric transitive and weakly connected rela- 

tion, which here we interpret as 'fairness'. Recall that P is the Strong Pareto relation. 

Then define the solution f by: xEf (A) iff for all yE A\x: either (x, V) r= P; or 

[(y, X) ýP& (X, y) E F]; or ((x, z) EP& (z, y) EF& (y, z) ýP for some zE A]; or 

I (x, z) EF& (z, x) 0P& (z, y) EP for some zE A]. In words, fairness is ignored if 

and only if a Pareto ranking is possible, and given this constraint, for any other alter- 

native y, the chosen alternative x must either dominate y directly in terms of Parcto 

or fairness, or indirectly via an intermediate alternative z, applying the Pareto and 

fairness (or vice versa) criteria in succession. The solution f is, in each problem, the 

uncovered set of the tournament T defined by: (X, y) ET iff either (x, y) E P; or 

f(y, x) VP and (x, y) E F] (note that T is weakly connected and asymmetric); or both. 

6F could be constructed for example on the basis of the Euclidean distance to the 450 line, with the 
addition of a tie-breaking criterion. 
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Finally, we come back briefly to the issue of single-valued solutions alluded to in the 

introduction. Let T be a tournament on A, and suppose UC (TIA)) = {x} for some 

xEA. If x is not a Condorcet winner, T (x) is nonempty, Let yE UC (TIT (x) U x). 

Then yE UC (TIA), since for any zE T-1 (x) we have (y, X) , (x, z) E T, But this 

contradicts the assumption that UC (TIA) = {x}. So x must be a Condorcet winner 

of A if it is the unique uncovered element of A. In this reasoning, however, it assumed 

that the uncovered set of T (x) Ux is nonempty, which is not necessarily true if T (X) is 

not finite. For conditions guaranteeing the nonemptinessý of the uncovered set on general 

topological spaces see Banks, Duggan and Le Breton (2006). 

3.3 Characterization 

We show below that in the presence of Resoluteness, axioms 2-5 characterize uncov- 

Bred bargaining solutions for which the rationalizing tournament is Pareto consistent. 

Theorem 2. Let f be a resolute bargaining solution. Then f is an UCBS, ratio- 

nalized by a Pareto consistent tournament, if, and only if, it satisfies axioms 2-5. 

Proof. (Only if). Let f be a resolute UCBS. Obviously f satisfies Strong Pareto 

Optimality and Weak Expansion. Next, we check axioms 3-4. 

To verify axiom 3, let x= CTV (A), and yE CL (B u x), with x0y. The existence 

of a Pareto consistent T implies that (X, Z) ET for all zE A\x u y. Moreover, as 

V0f (M (y, w)) for all wE B\y, there exists W' EM (w, y) \y which covers y. If w' = w, 

then (W, V) E T. Otherwise, consider wl 0 w. Since w' is not strongly Parcto dominated 

by y, it must be the case that (w, W') E P, by D2. It follows from Pareto consistency 

of T that (w, y) E T. Therefore, whether or not w= w' we have that (w, y) E T. Since 
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(X, z) ET for all z C- A\x Uy and (W, V) ET for all wE B\y, it follows that x covers 

and so yV UC (TI AU B) as desired. 

For axiom 4, let x, y, zE R', with x0y0z, and let xf (M (x, y)) and 

yf (M (y, z)). We show that XEf (M (x, y) UM (y, z)). Since x=f (M (x, y)) 

and y=f (M (y, z)), there exists a Pareto consistent T such that (x, x') ET for 

all X1 EM (x, y) \x and (y, yf) ET for all y' EM (y, z) \y. Observe M (x, y) U 

M (y, z) E B, by D3. Since no point in M (x, y) UM (y, z) \x covers x, it follows that 

xEf (M (x, y) UM (y, z)). 

(If). Let f be a resolute baxgaining solution satisfying the axioms. Define the relation 

T on R1 as follows: 

for all x, yE Rn, with x 96 y, (x, z) ET iff x=f (M (x, y)) . 

For all x, yE W', with x 76 y, there exists a minimal problem M (x, y), by D2. It 

follows from Strong Pareto Optimality and Resoluteness that either x=f (M (x, y)) or 

yf (M (x, y)). Then, T is weakly connected and asymmetric, and so TET- To 

see that'T is Pareto consistent as well, let X, V, zE R1, with x :ýy 96 z. We show that 

i) xPy =: ý- xTy, and ii) (x, y) EP& (y, z) ET =*- (x, z) E T. Case i) directly follows 

from Strong Pareto Optimality, Next, we show case ii). Since x=f (M (x, y)) and Y= 

f (M (y, z)), it follows from axiom 4 combined with D3 that XEf (M (x, y) UM (y, z)) - 

Since M (x, y) UM (y, z) =M (x, z), Resoluteness implies that xf (Af (x, z)), and we 

are done. 

We claim that 

f(A)=UC(TIA) for allAE13. 

Fix AEB. For any xEA partition A in T (x), T-1 (x) and {x}. 
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Let xEf (A) and assume, to the contrary, that x is a covered point, Then for 

some yE A\x it must be the case that (y, x) ET and T- I (x) c T- I (y). Therefore 

y= CW (T-1 (x) U Ix, y}). Let zET (x), and consider the minimal bargaining problem 

M (x, z). By definition of T, we have that z=f (M (x, z)) for all zET (x), and so 

xE CL (T (x) U x). It follows from axiom 3 that xVf (A), a contradiction. 

Conversely, let XE UC (TIA). Take any yE T-1 (x), and consider the minimal 

bargaining problem M (x, y). By definition of T it follows that x=f (M (x, y)). Because 

it is true for any y C-'T-1 (x), we have that x= CW (T-1 (x) U x). If T (x) = 0, it follows 

from the Condorcet Winner Principle implied by axiom 3 that XEf (A). Otherwise, 

take any zET (x). Since T is Pareto consistent and zET (x), there exists yE T-1 (x) 

which is not strongly Pareto dominated either by x nor by z such that (y, z) E T. Axiom 

4, combined with D3, implies that xEf (M (x, y) UM (y, z)). Because this holds for 

any zET (x), axiom 5 implies that xEf (A). 

3.4 Independence of the Axioms 

The axioms used in Theorem 2 are tight, as argued next. 

For an example violating only Strong Pareto Optimality, consider the disagreement 

point d as the solution of any admissible bargaining problem, that is, f (A, d) =d for 

every (A, d) E B. Clearly, f is resolute and satisfies axioms 3-5, but not Strong Parcto 

Optimality. 

Next, let us consider for simplicity only 2-person bargaining problems. 

For an example violating only axiom 3, define, for every x, yE R2+, with x 96 y: 

f(M(x, y))=xif xl+x2>y1+y2or x1+x2=yl+y2&xi>yi, 
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whilst, for any non-minimal problem AEB, define the bargaining solution f as: 

f (A) = argmaAx(sl + 82). 

To see that axiom 3 is contradicted, consider the domain of finite* problems, and let 

x, y, zEA, where x= (2,1), y= (1,2), and z= (1,0). By definition, f (xy) =f (xz) = 

x, and f (yz) = y, but f (xyz) = xy, which violates axiom 3. Obviously, the bargaining 

solution is resolute, and it satisfies axioms 2 and 4-5. 

For an example violating only axiom 4, f R2 ix y, zE ++, with y 9k z, such that 

YI+Y2 = Z1+Z2- Fix f (M(zly))= z. 

Given any other bargaining problem AEB, define the bargaining solution f as the 

following: 

J(A)=j 
argmax, l 

{argmaxBEA (Si + 82)} if y oA or zoA 

arg maxel {arg maxsEA (si + 82) - {y}} otherwise 

To see that axiom 4 is contradicted, consider the domain of finite problems, and 

let X, y, zEA, where x= (2,2), y= (3,1), and z= (1,3). We have that f (xy) = y, 

f (xz) = x, and f (yz) = z. Consider the bargaining problem A' = {x, Y, zj. Given that 

y, zE A', it follows from definition of f that x=f (A'), which violates axiom 4. Clearly, 

the bargaining solution is resolute and satisfies axioms 2 and 5. It is easy but tedious to 

check that it satisfies axioms 3 as well (details has been relegated to the Appendix A). 

R2 Finally, for an example violating only axiom 5, fix X, y, zE ++, with x 9k y0z and 

X1+X2 -==Yl+Y2 = ZI+Z2, and let M(x, V)UM(y, z) =CE Bwith f (M(x, y)) =x, 

f (M (y, z)) = y, and f (M (x, z)) = z. Define for any a, bE R2+\{x, y, z}, with a0b: 

f (M (a, b)) =a if a, + a2 > b, + b2 or a, + a2 = bi + b2 & al > bi, whilst let for any 
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a ER+\{x, y, z} and b E{x, y, z}: 

f (M (a, b)) =a if al + a2 > bl + b2 

f (M (a, b)) =b if al + a2 < bi + b2 

Define the following set of alternatives Sa: 

Sa = {b E It+\alf (M (a, b)) = a} 

and for any bargaining problem AEB not yet considered define the bargaining solution 

f as: 

f(A)= 

arg max,, (arg maxeEA (si + s2)) if An {x, y, z} =0 

arg max,, (arg max, EA (sl + 82) - SQ) if An {x, y, z} = {a} 

arg max,, (arg max, EA (sl + 82) - Sa) if A fl {x, y, z} = {a, b} &f (M (a, b)) =a 

x, y, z if A=C 

arg max,, (arg max, EA (Si + 52) - Sy) otherwise 

To see that axiom 5 is contradicted, consider the domain of finite problems, and 

let A= Ix, y, z, w}, where x (2,2), y= (3,1), z= (1,3), and w= (1,1). By 

construction f (xy) = x, f (yz) y, f (xz) = z, and f (xyz) = xyz; furthermore, we 

have that f (xw) = x, f (Vw) y, and f (zw) = z. Let us consider the bargaining 

problem Ix, z, wl = B. Since x, zEB and f (xz) = z, it follows from the definition of 

f that z=f (B). However, we have that zýf (A), by definition of f, which violates 

axiom 5. The bargaining solution as defined above is obviously resolute and it satisfies 

2. Moroeover, it can be checked that it satisfies axioms 3-4 (the tedious analysis has 

been relegated to the Appendix A). 
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3.5 Concluding Remarks 

Lombardi (2007) studies choice correspondences on the domain of all subsets of an 

abstract finite set, and poses the same question as this chapter. At the technical level, 

the main difficulty here is that bargaining sets are not always finite. This necessitates th e 

different axioms and argument of proof presented in this chapter, as well as the restric- 

tion to Pareto consistent tournaments. These arguments exploit heavily the ordering 

structure of Rn and the natural Strong Pareto Optimality assumption, which Is instead 

meaningless on the domain considered by Lombardi. 

Ehlers and Sprumont (2007), on the same domain as Lombardi, characterize choice 

correspondences for which there exists a tournament such that, for each choice set, the 

choice is the top cycle of the tournament, It is natural to seek a similar characterization 

in the context of bargaining solutions, as we have done for the uncovered set. This 

remains an open question for future research. 



CHAPTER4 

REASON-BASED CHOICE CORRESPONDENCES 

4.1 Introduction 

Rationality of choice behaviour cannot be assessed without seeing it in the context 

in which a choice is made (Sen, (1993) and (1997)). This view is confirmed by a sizeable 

amount of experimental findings which show that when added to a choice set a now 

relatively inferior alternative can increase the attractiveness of one of the alternatives 

obtainable from the original set (see, Rieskamp, Busemeyer, and Mellers, (2006)). 

This systematic observed choice behaviour, known as "asymmetric dominance effect" 

or "attraction effect", 1 is explained in terms of bounded rationality. In a difficult and 

conflict-filled decision, where there is no escape from choosing, individuals choose by 

tallying defensible reasons for one alternative versus the other, rather than by trading off 

costs and benefits, Furthermore, in this respect, the dominant structure of alternatives 

in the choice set provides the decision maker with good reasons for her choice (see, 

Simonson (1989), Tversky and Simonson (1993), and Shafir, Simonson, and Tversky 

(1993), and the references cited therein). ' 

Let me give an example. Suppose that an individual wishes to buy herself a digital 

camera for next holiday in Rome, and she has a choice among three competing models, 

say, x, y, and x', where each model is characterized by exactly two equally important 
1 Strictly speaking these two effects are slightly different, and the difference refers to the attributed 

levels of the new alternative that is added to the choice set. In this chapter I will refer only to the 
attraction effect since the asymmetric dominance effect is a special case. 

2A first formalization of how reasons affect the individual's decisions In a game theoretical framework 
appears in Spiegler (2002). 
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dimensions, say, price and quality. She may find the choice between x (resp., x') and 

y hard because x (resp., x') is better than V on one dimension (say, price) while Y is 

better than x (resp., x') on the other dimension (say, quality). She would find the choice 

between x and x' an easy one because the former dominates the latter with respect to 

both dimensions. Thus, while she has a clear and indisputable reason for choosing x 

over x', she cannot hold any compelling reason for choosing only x (resp., x') from Jx, YJ 

(resp., {x', yJ) or only y from {x, V} and f x, y} . However, the fact that x' is obtainable 

from Jx, y, xl} and x is better priced and of higher quality than x', whilst y is only of 

higher quality, may provide her with a reason for choosing only x from {x, y, x'}. 

This pattern of observed choices - which is not confined to consumer products, but 

also extends to choices among gambles, job applicants, political candidates (Rieskamp, 

Busemeyer, and Mellers, (2006)) - is partially consistent with the standard economic 

interpretation of rationality which is preference maximization. 

In our example, the individual has an incomplete preference relation on Jx, y, x'J 

because she deems x and y choosable from Jx, yl, x' and y from {x, yl, and only 

x from {x, x'} and {x, y, x'}. For any feasible set she faces, she chooses undominated 

alternatives relative to her preferences in that set. However, contrary to what is envisaged 

from the standard preference maximization hypothesis, she discards y from her choice. 

This suggests that our individual may have refined her choice by using the information 

available from the entire choice set (given her preferences) as a tic-breaking rule: As x 

dominates x', but y does not, the set of alternatives dominated by x strictly contains 

that dominated by y, providing the individual with a convincing reason for choosing only 

x from f x, y, x1 I (see, e. g., Tversky and Simonson, (1993), p. 1185). 

The idea of rationalizing choice correspondences in terms of a two-stage choice pro- 
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cedure whereby the individual arrives at a choice by using the information obtainable 

from the entire set in the second round of elimination appears in Ok (2004), who iden- 

tifies in these terms all the choice correspondences satisfying the canonical Property a 

(also known as Chernoff choice-consistency condition or basic contraction consistency). 

Property a requires that an alternative that is deemed choosable from a feasible set T 

and belongs to a subset S of T must be deemed choosable from S (Sen, (1971)). 

Indeed many contexts of choice which lead individuals to violate the normatively 

appealing Property a, and so the weak axiom of revealed preference (WARP) proposed 

by Samuelson (1938), 3 and the ways in which they interact, await further investigation. 

Returning to our consumer, suppose that another camera model y' - which is domi- 

nated by y with respect to both of the dimensions, whilst it is of higher quality than x and 

x1 and worse priced than them - is added to the set f x, y, xl}. In this new choice-context, 

the individual loses the compelling reason which led her to choose x from {x, y, x'} be- 

cause the set of alternatives dominated by x does not contain that dominated by Y, and 

vice versa. The presence of y' (which indeed should be irrelevant for her choice) makes x 

and y reasonably choosable from the grand set, whereas its absence makes only x choos- 

able from Ix, y, x'}. The combination of these choices violates Property ce even though 

there is nothing particularly "unreasonable" in this pair of choices. 

What is more, the described tie-breaking rule may lead an individual to suffer from 

certain framing manipulations. Let me give another example. Suppose an employee 

spends her lunch vouchers in one of her local restaurants. Assuming that her preferences 

may be incomplete and that her vouchers are enough to get any kind of luncheon served 

3 Analyses of these and related choice-consistency conditions can be found, among others, in Moulin 
(1985), Sen (1971), Suzumura (1983). For a recent study of what kind of preference maximization WART' 
characterizes, see Mariotti (2007). 
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Day Menu Choice 

1 {luncheon 1, luncheon 1', luncheon 2} {luncheon 1) 
2 {luncheon 2, luncheon 2', luncheon 3} {luncheon 2} 

3 (luncheon 3, luncheon 3', luncheon 1} (luncheon 3) 

Figure 4.1: Framing Effect 

at any chosen local restaurant, on day 1 she steps into one of the local restaurants 

finding three kinds of luncheon on the menu (say, luncheon 1, luncheon V, and luncheon 

2). Our employee strictly prefers luncheon I to luncheon V, whereas she cannot make 

up her mind between luncheon 1 (resp., luncheon P) and luncheon 2. To satisfy one's 

hunger she goes for luncheon I as it dominates luncheon V, but luncheon 2 does not. 

The day after (day 2) she steps into another available local restaurant to explore her 

range of choices, and it is serving three luncheons (say, luncheon 2, luncheon 2' and 

luncheon 3, where luncheon 2 is the same luncheon served from the restaurant of day 1). 

Because she dithers between luncheon 2 (resp., luncheon 2') and luncheon 3, whereas 

she strictly prefers luncheon 2 to luncheon 2', she goes for luncheon 2 as it seems the 

most "attractive" according to the menu of the day (i. e., luncheon 2 dominates luncheon 

2', but luncheon 3 does not). On day 3, she decides to return to the restaurant of 

day 1 which is serving only luncheon 3, luncheon 3' and luncheon I (luncheon I is the 

same luncheon served on day 1, and luncheon 3 is the same luncheon served from the 

restaurant of day 2). Since she strictly prefers luncheon 3 to luncheon 3, while she 

cannot make up her mind between luncheon 3 (resp., luncheon V) and luncheon 1, she 

goes for luncheon 3 because it dominates luncheon 3', but luncheon I does not. Her 

choices are displayed in figure 3.1. 
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The choices made over the three days may appear weird from an economic perspec- 

tive, but they are not as irrational in any minimal significant sense. The reason for this 

is that the employee's preferences are insufficient to solve the decision problem that she 

faces, and so she constructs a reason on the basis of the problem that she faces by using 

her known preferences. Since each day there is a maximal luncheon (i. e., luncheon 1 

on day 1, luncheon 2 on day 2, and luncheon 3 on day 3) which outperforms the other 

maximal one (i. e., luncheon 2, luncheon 3, and luncheon 1, respectively), this allows her 

to completeher preferences by knocking the latter off. 

Motivated by these observations, I believe that there is a need to shed more light 

on the phenomenon of how individuals use the set under consideration to identify the 

most "reasonable" alternatives following the revealed preference approach introduced by 

Samuelson (1938), the importance of which has been recently emphasized by Rubinstein 

and Salant (2006,2007). 4 

With this aim I provide a full characterization of a choice correspondence as ex- 

emplified above in terms of a two-stage choice procedure. Given a feasible finite set, 

the individual eliminates from the decision all of the dominated alternatives according 

to her fixed (not necessarily complete) strict preference relation, in the first step. In 

the second step, she eliminates from the maximal set, identified in the first step, those 

alternatives which have the set of dominated alternatives strictly contained in that of 

another undominated alternative. Whenever a choice correspondence can be rationalized 

with the described two-stage rationalization, I say that the choice correspondence is a 

reason-based choice correspondence. 

The rest of the chapter is organized as follows. I begin by outlining our axiomatic 
4 For a set theoretical foundation of the revealed preference theory see Richter (1966). For a recent 

survey on revealed preference see Varian (2005). 
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framework, delineating the behavioural consistency properties used in our characteriza- 

tion result. Next, I provide our characterization of reason-based choice correspondences. 

I conclude with a brief discussion of our result in relation to the literature. 

4.2 Preliminaries 

Let X be a universal finite set of conceivable alternatives that is fixed from now on. 

Let S be a collection of all nonempty subsets of X. By a choice correspondence C on S 

I mean a map C which assigns a nonempty subset C (S) of S to every SES. Following 

Sen (1993), 1 read xEC (S) as x is choosable from S. Moreover, given X, yEX, with 

x0y, X, yEC (S) for some SES does not necessarily mean that x is indifferent to y, 

but I interpret it as both of them are choosable from S. 

Two distinct alternatives x and y in X are said to be indistinguishable on a set 

SES, X, y0S, if, for all zES, one of the following holds: 

1. {x} =C ({x, z}) {y} =C ({y, z}); 

2. {z} =C ({x, z}) {z} =C ({y, z}); 

3. {x, z} =C ({x, z}) . {y, z} =C ({y, z}). 

Then x and y are indistinguishable one another if they behave in the same way with 

respect to direct choice comparisons with other alternatives. Observe that if x and y are 

not indistinguishable it does not necessarily mean that they are C-incomparable as I 

am silent on C (jx, y}). 5, 

The set of positive integers is denoted by N= 11,2,... }. Let >-g XxX be a 

binary relation on X which represents the individual preference relation. As usual I 
5 For a choice theoretical study of incomplete preferences, see Eliaz and Ok (2006). 
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write x >. - y for (x, y) E >-, and x >/ y for (x, y) A relation >- C_ XxX is acyclical 

if, for all tEN and for all xl,..., xt E X, xr >- xr+l for all rE J1,2,... 
't - 11 implies 

xt ;A x1. For any SES, -< (x, S) denotes the lower section of >- restricted to S at x, 

i. e., -< (x, S) = {y E Slx E S\{y}, y --< X}. S9T means that every alternative in S is in 

T, whilst SCT means that S9T and S0T. 

For SES and a binary relation >- on X, the set of >--maximal alternatives in S is 

M (S, >-) = Ix E Sly ý4 x for all yE S\{x}}. Whenever a choice correspondence C on S 

has an acyclical relation >- on X such that, for all SES, 

C (S) _ {x EM (S, >-) I (x, S) C- (y, S) for no yEM (S, >-) \ {x}}, 

I say that C is a reason-based choice correspondence. 

Now I define some choice-consistency conditions of interest. The first is borrowed 

by Sen (1977) which is much weaker than Property a. 

Property a2 (a2). For all SES: XE0 (S) *xE C({x, y}) for all yES. 

The second property is a weakening of Sen's (1971) Property 0. Property 0 demands 

that for all pair of feasible sets, say S and T, and for all pair of alternatives, say x and y, 

if x and y are choosable from S, a subset of T, then y is choosable from T if and only if 

x is choosable from T. Our Weak Property fl on the other hand requires Sen's Property 

to hold if x and y are indistinguishable one another on T\f x, yj. 

Weak Property 0 (WB). For all S, TES: SgT, X, YEC (S), and x, V 

indistinguishable on T\jx, y} =ý. [y EC (T) I* xEC (T)I. 

The third property is a weakening of Samuelson's (1938) Weak Axiom of Revealed 

Preference (WARP), according to which if xE C(S) and yE S\C(S), then there is no 
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feasible set T, with xET, such that yG C(T). Our Weak WARP on the other hand 

demands Samuelson's WARP to hold if x is uniquely chosen from S, and I add to the 

set Sa feasible set T such that x and y are indistinguishable one another on T, with 

x, y 0 T. 

Weak WARP (WWARP). For all S, TES: {xj =0 (S) and yE S\C (S) 

[x, y indistinguishable on T, x, y0T #- y0C (S U T)J. 

The following property is a straightforward strengthening of the choice formulation 

of the so called " Condorcet Winner Principle "- labeled Binary Dominance Consistency 

(BDC) by Ehlers and Sprumont (2007) -, according to which for a feasible set, say T, 

with xET, if x is uniquely chosen over every other alternative obtainable from T, then 

x must be the only choice from T. Our Strong BDC demands that for all pairs of 

feasible sets, say S and T, if x is the only choice from S and it is uniquely chosen over 

every other alternative obtainable from T, then x must be the only choice from SUT. 

Obviously, if our property holds, BDC follows. 

Strong BDC (SBDC). For all S, TE6: f xj =C (S) and jx} =CQx, y}) for all 

yET --* jxj =C (S U T). 

Our next property is a particular weakening of Weak A'xiom. of Revealed Non- 

Inferiority (WARNI) of Eliaz and Ok (2006), according to which for any feasible set, 

say S, if for every yE C(S) there exists a feasible set, say T, such that xe C(T) and 

yET, then xE C(S). Our Weak WARM on the other hand demands WARM to 

hold if there exists a T, with f x, y} CTCS, such that x is the only choice from T, and 

x is choosable over every other VES. 

Weak WARM (WWARNI). For all SES, XES. for all yEC (S) there exists 
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TcS: {x}=C(T)and {x, y}CT, and xEC({x, y}) for allyES=: xEC(S). 

The final property that I will consider here for reason-ba-sed choice correspondences 

plays a key role in the development of this chapter. It posits that for three distinct 

alternatives obtainable from a universal set, say x, y, and z, if x is strictly better than 

y and not worse than z, and y is not worse than z, then x must be the only choice 

from jx, y, zj. This property is motivated by the empirical research which established 

the importance of the attraction effect in decision making. Our property captures this 

phenomenon requiring a bias toward the most defensible alternative in term of reasons. 

Reason-Based Bias (RBB). For all distinct X, y, zEX: f x} =0 (jx, y}), xG 

C ({x, z}), and YEC QY, Z}) =! * {X} =C (f X, Y, Z}) - 

4.3 Reason-Based Choice Correspondences 

The following theorem shows that whenever X is a universal finite set of alternatives, 

the axioms above characterize completely a reason-based choice correspondence. 

Theorem 3. A choice correspondence C on S is a reason-based choice corre- 

spondence if and only if it satisfies Property c12 (a2), Weak Property 6 (WO), Weak 

WARP (WWARP), Strong BDC (SBDC), Weak WARNI (WWARNI), and Reason- 

Based Bias (RBB). 

Proof. Suppose that C is a reason-based choice correspondence on S. That C 

satisfies ct2 is straightforward, thus omitted. I show that C satisfies the remaining 

choice-consistency conditions listed above. 

To prove that C satisfies WO, take any S, TE8, such that S9T, and assume 

that x, yEC (S) and x and V are indistinguishable on T\{x, yj. Let yEC (T). I show 
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that xEC (T). Because x, yEM (S, ý-), neither x ý- y nor y ý- x. Since YEM (T, >-), 

then z >- y for no zE T\{x, yj. As x and y are indistinguishable on T\jx, y}, z )4 x 

for all zE T\{x, y}. It follows that XEM (T, >-). Moreover, there does not exist 

zEM (T, >-) \ jy} such that -ý (y, T) C -. < (z, T), by our supposition. Because x and 

y are indistinguishable on T\ {x, yj 2 S\ f x, yj, and neither x >- y nor y >- x, I have 

that --< (y, T) =-< (x, T). It follows from our supposition that xEC (T). Suppose that 

y0C (T). I show that xVC (T). Assume, to the contrary, that XEC (T). By an 

argument similar to the case above, I have that yEC (T), a contradiction. 

To show that C satisfies WWARP, let x, yEX be two distinct alternatives, and 

take any S, TES such that x, yES and x, yVT. Suppose that {xj =C (S), and x and 

y are indistinguishable on T. Then y0M (S, >-) or --ý (y, S) C-< (x, S). If y0M (S, >-), 

then yVM (S U T, >-). As C is a reason-based choice correspondence it follows that 

y0C (S U T). Otherwise, let consider -< (y, S) C-< (x, S). If {z} =C ({y, z}) for some 

zETUS, then y0M (S U T, >-), and so y0C (S U T), by our supposition. Otherwise, 

suppose I z} :0C ffy, z}) for all zETuS. It follows that yEM (S U T, >-). As X and 

y are indistinguishable on T, and (y, S) C -. < (x, S), it follows that -< (y, SU T) C 

(x, SU T). Therefore, I have that C (S U T), as desired. 

To show that C satisfies SBD C, take any S, TES, and suppose that f x} =C (S) 

and jx} =C (jx, y}) for all yET. Because jx} =C (S), it follows that either 

{xj =M (S, >-) or -< (z, S) C--< (x, S) for all zEM (S, >-) \{xj. As x >- y for all 

yE T\jxj it follows that xEM (S U T, >-). Suppose that M (S U T, ý-) 56 jxj. Then, 

the only possible case is that z6M (S U T, >-) \{xj for some zEM (S, >-) \f x}. Be- 

cause -< (z, S) C -< (x, S) and x >- y for all yE T\jx 1, it follows that (z, SU T) C -< 

(x, SU T). Because this holds for any zEM (S U T, >-) \I x}, with z Al (S, >-) \{x}, 
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our supposition implies that {xj =C (S U T). Otherwise, let M (S U T, >-) jxj. It 

follows from our supposition that f x} =C (S U T). 

To prove that C satisfies WWARNI, take any SES, with xES, and suppose 

that for every y C- C (S) there exists TCS such that jx} =C (T) and Ix, YJ C T, 

and XECQX, yj) for all yES. I show that XEC (S). By the way of contradiction, 

let x0C (S). Thus xýM (S, >-) or -< (x, S) C-< (z, S) for some zE Af (S, >-) \jXj- 

As XEC Qx, yj) for all YES, it follows that xEM (S, >-). Thus, it must be the 

case that -. < (x, S) c-< (z, S) for some zEM (S, >-) \{x}. If zEC (S), it follows from 

our supposition that for no TCS it can be that jxj =C (T) and jx, zj C T, a 

contradiction. Otherwise, let zVC (S). As S is finite and C is a reason-based choice 

correspondence, there exists yEC (S) such that VEM (S, >-) and -< (z, S) c -< (y, S) - 

By the transitivity of set inclusion, -< (x, S) C -< (y, S). Therefore, by our supposition, I 

have that for no TcS it can be that Jx} =C (T) and Ix, yj C T, a contradiction. 

To prove that C meets RB13, let x, y, zEX be three distinct alternatives such that 

jx} =C (jx, y}), xEC (jx, z}), and yEC ({y, z}). I show that f x} =0 Qx, y, z}). 

Assume, to the contrary, that jx} 94- C (jx, V, z}). As 0 is a reason-based choice rule and 

y ý/ x and z )4 x, I have that xEM Qx, y, z}, >-). If x >- z, then z0M Qx, y, zj, >-), and 

so that jx} =M ({x, y, z}, >-). It follows from our supposition that {x} =C Qx, y, zj), 

a contradiction. Otherwise, consider X, zEC Qx, zj). If {yj =C Qy, z}), then zV 

M Qx, y, zj, >-). Because jx} = Al ({x, y, z}, >-), it follows that {x} =C ({x, V, z}), a 

contradiction. Therefore, let y, zECQy, zj). So, I have that X, zEM ({x, y, zj, >-) 

Because -. < (z, f x, y, z}) c -. < (x, f x, y, z}), it follows from our supposition that jx} 

C ({x, y, z 1), a contradiction. 

For the converse, assume that C satisfies a2, WO, WWARNI, SBDC, WWARP, 
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and RBB. Given X, define the relation >- on X as follows: 

for x, yEX, with x0y: x>- y aC({x, y})={x}. 

I have to prove that, for all SES, 

C (S) = {x EM (S, >-) I -< (x, S) C-< (y, S) for no yEM (S, >-) \{x}}} 

holds true and that >- is acyclic. 

To show acyclicity of >-, suppose x1, X2 XtEX are such that x1-1 >- x1 for -r E 

12,..., tj, that is, C (fx7-1, x'}) = jx'-1j forr E 12,..., t}. Lot S= JX1' X2 I..., Xt1 g S. 

Suppose that X" EC (S) for rE {2, tj. As a2 holds, I have xr EC (JX7. - 1, XT 1), 

and so x7-I )4 x7, a contradiction. Then x' 0 C(S) for rE 12,... 
't). 

It follows from 

the nonemptiness of C that jx1} =C (S). Because xý E S\{xl} and ct2 holds, I have 

x1 EC (Jxl, xtj). This implies xt )4 x1, as desired. 

Take any SES, and let XEC (S) 
-I show that xEM (S, >-) and -4 (x, S) c -< (y, S) 

for no yEM (S, >-) \fx}. Assume, to the contrary, that xýM (S, >-) or there exists 

yEM (S, >-) \f x} such that -< (x, S) C-. < (y, S). As xEC (f x, y}) for all yES, by c12, 

the case x0M (S, >-) is not possible. Thus, let xEM (S, >-) and -< (x, S) C-. < (y, S) 

for some yEM (S, >-) \f xj. Take any zE --< (y, S) \ -. < (x, S). Because {yj =C ({V, Z}), 

yEC Qx, y}), and zEC Qx, z}), RBB implies {yj =CQx, y, z}). It follows from 

SBDC that {yj =C (-< (y, S) Ufx, y}). If S\ (-< (y, S) U {x, v}) is empty, then xV 

C (S), a contradiction. Otherwise, let S\I-< (y, S) U {x, y}j be a nonempty set. Because 

x and y are indistinguishable on S\ (-< (y, S) U jx, y}) and jyj -C (-< (y, S) u {x, yj), 

WWARP implies xVC (S), a contradiction. 

Assume that XEM (S, >-) and -< (x, S) C-< (y, S) for no vEM (S, >-) \jxj. I show 

that x C- C (S). Because xEM (S, >-), it follows that xEC Qx, y}) for all yES. 
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If jxj =M (S, >-), it is clear, by ct2 and the nonemptiness of C, that {x} =C (S). 

Otherwise, consider {xj ýk M (S, >-). By the nonemptiness of C, {x} =C (S) whenever 

yVC (S) for all yC S\{xl. Thus, let yEC (S) for some yE S\{xl. It follows from 

the paragraph above that yEM (S, >-) and -< (y, S) C--< (z, S) for no zEM (S, >-) \f y}. 

Therefore, Ix, y} =CQx, yl). If -< (y, S) is empty, then -< (x, S) must be empty, 

and so W, 8 implies XEC (S). Thus, let -< (y, S) be a nonempty set. It follows that 

-< (x, S) is nonempty as well. If --< (x, S) =-< (y, S) for some yEC (S), W, 6 implies 

xEC (S). So, let (x, S) 0 -< (y, S) for all YEC (S). Thus, for any YEC (S), there 

exists zE -< (X, S) -< (y, S) and WE -< (y, S) \ -< (x, S). Therefore, for all yEC (S), 

jx, y, z} cS for some z E--< (x, S) \ --< (y, S). Since jxj =C Qx, zj), zcC Qy, zj), and 

xEC (jx, y}) it follows from RBB that W=C ({X, Y, Z}) . Because this holds for any 

yEC (S), WWARNI implies XEC (S), 0 

The mutual independence of choice-consistency conditions used in Theorem 3 has 

been relegated to the Appendix B. 

Observe that a reason-based choice correspondence does not meet Sen's (1977) Prop- 

erty y2, according to which for any feasible set, say S, if XEC Qx, y 1) for all yES, then 

xE C(S). To see it, suppose that an individual has the following preferences among 

three distinct alternatives: x >- x', x ý4 y and y ý4 x, and x' >/ y and yýx. If our in- 

dividual follows the reason-based procedural choice, then her choices are VEC ({X, Yj), 

yEC (jx', y}), and fx} =C ({x, x', y}) which contradicts Property 72. It follows that 

Property a2 is not equivalent to Property a in our framework (that is, Son' s (1977, 

p. 65) Propositon 10 is not fulfilled). Needless to say, Son' s (1971) Property -Y is not 

necessary for a reason-based choice correspondence. It also follows that our reason-based 

choice correspondences do not necessarily meet the standard 'binariness' property. 
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4.4 Concluding Remarks 

Motivated by the vast literature on the attraction effect, I provide a characterization 

of reason-based choice correspondences which captures the basic idea behind this choice 

`anomaly'. 

Our characterization result is obtained by using the standard revealed preference 

methodology, Thus I suppose that our individual possesses a (not necessarily com- 

plete) preference relation which is revealed by her choices. From the normative point of 

view our choice-consistency conditions are appealing because they never lead an individ- 

ual to make 'bad' choices (i. e., dominated alternatives) even though most of them are 

weaker than the conventional choice-consistency conditions (i. e., Property a, Property 

fl, Samuelson's WARP). Nonetheless, a reason-based choice correspondence lends itself 

to certain framing manipulations that are hard to explain only from the point of view of 

preference maximization, However, it differs from other rules which allow an individual 

to reveal a fixed cyclic preference relation (see, Ehlers and Sprumont (2007), Lombardi 

(2007)). 

In this work I have attempted to analyze how offered sets may induce an individual 

to follow a particular guidance in her decisions, and how this affects her choices across 

sets. Needless to say, reasons that guide decisions are likely to be diverse. In this respect, 

for example, Balgent and Gaertner (1996) characterize a choice procedure in which the 

individual's choices are guided by a self-imposed constraint of "choosing a non unique 

largest or otherwise a second largest alternative" from each off ered set. 

Our two-stage choice model can be contrasted with other decision-making procedures 

recently suggested in the literature. Closer to our reason-based choice rules are the two- 
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stage procedural choice models suggested by Houy (2006), Manzini and Mariotti (2006, 

2007), Rubinstein and Salant (2006). The first author proposes a choice model in which 

an individual eliminates maximal alternatives identified in the first-stage according to 

her conservative mood. In contrast to the history dependent choice model of Houy, in our 

model the choices of an individual are driven by the set under consideration whenever 

her preferences are insufficient to solve the decision problem that she deals with. Manzin! 

and Mariotti (2006,2007) and Rubinstein and Salant characterize slightly different two- 

stage choice models which have the following property in common, the individual arrives 

at a choice by eliminating some of the shortlisted alternatives identified in the first stage 

according to a fixed asymmetric (and not transitive) preference relation. 6 In contrast to 

their two-stage choice procedures, in our model an individual constructs in the second- 

stage a (not necessarily complete) binary relation (i. e., the strict set inclusion) according 

to her known preferences on the set of alternatives under consideration to knock off some 

of the alternatives that survive the first round of elimination, 

To conclude I observe that Ma-satlioglu and Ok (2006) axiomatize a reference- 

dependent procedural choice model in which an individual, endowed with an objective 

utility function, solves sequentially a two-stage constrained utility maximization prob- 

lem where the constraints depend on her status quo alternative - if she cannot find an 

alternative yielding her a higher utility level than that brought to her by the status quo 

alternative, she keeps the latter. Our model differs from the choice model of Masatli- 

oglu and Ok in many respects. Mainly I have investigated how in the second-stage a 

convincing reason (i. e., the information inferable from the entire offered set) plays a 

role in decision making rather than investigating how a reference alternative affects the 

6 Indeed, Manzini and Mariotti (2007) suggest a choice model in which an individual may use several 
asymmetric preference relations to arrive at a choice. 
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decisions that an individual makes. 



CHAPTER5 

WHAT KIND OF PREFERENCE MAXIMIZATION DOES THE WEAK AXIOM OF 

REVEALED NON-INFERIORITY CHARACTERIZE? 

5.1 Introduction 

Eliaz and Ok (2006) accommodate preference incompleteness in revealed preference 

theory by studying the implications of weakening the fundamental choice-consistency 

condition of the weak axiom of revealed preference (WARP) in the weak axiom of re- 

vealed non-inferiority (WARNI). ' This behavioural postulate entirely corresponds to 

maximizing behaviour on suitable domains. However, a choice function rationalized by 

the maximization of a preference relation (not necessarily complete) may fail to satisfy 

WARM on an arbitrary choice domain. This is due to the fact that WARM charac- 

terizes a particulax type of rationality. Our concern is to spell out the form of maximality 

of choice characterized by this behavioural postulate on an arbitrary choice domain, and 

then I contrast this form of maximality with that characterized by WARP. 

A choice function is weak justified if there exists a binary relation J (dubbed weak 

justification) such that, for all feasible sets, no available alternative is J-related to any 

chosen alternative, for each rejected alternative there is some chosen alternative which 

is J-related to it. Therefore, the binary relation J is a strict (not necessarily complete) 

preference relation. 

A decision maker makes weakly justified choices if she can assert that no chosen 

alternative is dominated by any other obtainable one, and for each discarded alternativo 
1 On a finite universal set WARNT is identical to one of the behavioral properties suggested by 

Bandyopadhay and Sengupta (1993). 



52 

there is some chosen alternative which dominates it. 

My rationality hypothesis differs from that provided by Marlotti (2007), according 

to which choices are justified if there exists a binary relation J such that, for all feasible 

sets, no two chosen alternatives are J-related to each other, and each chosen alternative 

is J-related to all of the rejected alternatives. Mariott! (2007) shows that choices satisfy 

WARP if and only if they are justified by an asymmetric relation. 

The result of this chapter is that choices satisfy WARNI if and only if they a-re 

weakly justified by an asymmetric relation. 

5.2 Analysis 

Let X be a nonempty set of alternatives. Let S be a collection of nonempty subsets 

of X. By a choice function C on SI mean a map C which assigns a nonempty subset 

C (S) of S to every SES. 

A binary relation J C- XxX is said to be asymmetric if, for all X, yEX, (X, y) EJ 

implies (Y' X) 0 J. 

If there exists a binary relation J on X such that, for all SES: 

1) Vx EC (S), VY E S: (y, X) ýJ 

2) VY E S\C (S) : (X, y) EJ for some xEC (S) 

then I say that J is a weak justification for C. If C has a weak justification, I say that 

C is weak justified. I will call J an asymmetric weak justification if J is asymmetric. 

Our notion is weaker than that provided by Mariott! (2007), according to which choices 

are justified if, for all SES, for all x, yEC (S) it holds that (x, y) 0 J, and for all 

xEC (S) and for all yE S\C (S) it holds that (x, y) E J. 

Eliaz and Ok (2006) suggested to read the statement "x EC (S)" as "x is revealed 
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not to be inferior to any other obtainable alternative in S" rather than to follow the classic 

interpretation of "x is revealed to be at least as good as all other available alternatives 

in S". Under this interpretation of revealed preferences, they propose the weak axiom 

of revealed non-inferiority (WARNI). The idea behind this behavioural regularity is 

quite mild. It asserts that if an obtainable alternative from a set S is revealed not to be 

inferior to all of other chosen alternatives from S, then it must be chosen from S as well. 

WARNI: VS ES, yES: [`dxEC(S)3TES: yEC(T) andxET)=*- yEC(S). 

This behavioral postulate is weaker than WARP which asserts that if xEC (S) and 

there exists a feasible set T such that yEC (T) and XET, then yEC (S). Furthermore, 

WARM implies the canonical Property ci (also known as Chernoff choice-consistency 

condition or basic contraction consistency), according to which an alternative that is 

deemed choosable from a feasible set T and belongs to a subset S of T must be deemed 

choosable from S (i. e., xET9S and xEC (S) =* xEC (T)). 2 

Theorem 4. There exists a choice that is not weak justified. 

Proof. Let X be the set consisting of three distinct alternatives: x, y, and z. Let 

S=I Ix, y} , X}, and suppose that C (f x, v}) =f x} and C (X) =fx, y}. It is easy to 

see that C cannot be weak justified. For suppose that 0 is weak justified. Then, since 

C (X) = Jx, y}, I must have (x, y) 0 J. Since C Qx, yJ) = Jx}, I must have (x, Y) E J, 

contradicting the definition of weak justification of C. a 

Theorem 5. A choice function C on S is asymmetric weak justified if and only if 

it satisfies WARNI. 

s See Eliaz and Ok (2006, lemma 1, p. 81). 
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Proof. Assume that C is asymmetric weak justified. I show that C satisfies 

WARNI. Suppose that for all SES, with yES, it holds that for every XEC (S) 

there exists TES such that yEC (T) and xET. As C is asymmetric weak justified 

it follows that for all xE C(S) it holds that (x, y) 0 J. By way of contradiction, let 

y0C (S). Because C is asymmetric weak justified it follows that there exists xEC (S) 

such that (X, y) EJ yielding a contradiction. 

For the converse, let C satisfy WARM. I show that C is asymmetric weak justified. 

Define for all distinct x, yEX: 

(x, y)EJ* 3SES: xEC(S), yES\C(S), andýTES, xET: yEC(T). 

Then J is asymmetric. To show that C satisfies property 1), let xEC (S) and yES 

for some SES. By way of contradiction, let (y, X) E J. Then there exists S' ES such 

that y C: C (S'), XE S\C (S), and for no TE8, with yET, it holds that XEC (T), 

which contradicts that xEC (S) and yES. Finally, I show that C meets property 2). 

Suppose that yE S\C (5) for some SES. WARM implies that there exists XE0 (S) 

such that for all TES it holds true y00 (T) if xET. It follows that (x, y) E J. a 

Theorem 2 clarifies how much rationality in terms of preference maximization I give 

up in passing from WARP to WARM. Both properties require no chosen alternative 

is dominated by any other available alternative. However, while WARP demands that 

each chosen alternative has to dominate all of the discarded alternatives, WARM 

requires that for each rejected alternative there exists some chosen alternative which 

dominates it, Obviously there are choices which are weak justified but not justified, as 

argued next. 

Theorem 6. There exists a choice that is weak justified but not justified. 
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Proof. Let X be the set consisting of three distinct alternatives: x, y, and z. 

Suppose that S= J{x, y}, {z, y}, X} . Define the choice C on S by C (X) = Ix, z), 

C (f x, yJ) =f x}, and CQz, y}) = Jz, y}. It is easy to see that 0 is weak justified, but 

not justified. For suppose that C is justified. Then, since C (X) = Jx, zJ, I must have 

(X, y), (z, y) E J. But CQz, yJ) =fz, yJ implies that (z, y) 0J yielding a contradiction. 
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A. Independence of Axioms used in Theorem 2 

Independence of axiom 4. 

Since it is easy to check that the bargaining solution is resolute, and satisfies axioms 

2 and 5, next we show that axiom 3 is satisfied as well. 

Axiom 3. A, BE13, a=CW(A)&bECL(BUa)=ý>bOf(AUB) 

Let A, BEB, and a= CW (A) and bE CL (B U a), with a -A b. Obviously axiom 2 

is satisfied whenever y0AUB or z0AUB. Let us consider the case that y, zEAUB. 

It may be useful to distinguish the following subcases, i) az&by, ii) a=Y& 

b=z, iii) a=x yl- z&by, iv) a=x 34 V&b=z, v) a=yb=xz, vi) a =. z & 

b=x ýk y, vii) a, b0 (y, zj. 

Next, we check all the subcases. 

Subcase i). a=z&b=y 

By definition zj + z2 = yj + y2. If there exists sEAU B\yz such that al + 82 > 

zi + z2, we have that y0 argmax,, EAU. & (s, + S2), and so V0f (A U B). Otherwise, lot 

Z1 + Z2 ;4 S1 + S2 for any 9EAU B\yz. Then y0f arg max. eAua (al + 82) - {y) 1, but 

zE {arg maxsEAUB (81 + -92) - IY}} 
- It follows that y0f (A U B). 

Subcase ii). a=y&b=z 

Since this case violates the premise of axiom 2, it does not apply. 

Subcase iii). a=x 94 z&b=V 

Then X1 + X2 > yj + y2 or X1 + X2 = yj + y2 and xj > yl. If thero cxlstss GA UB\xy 

such that 81 + 82 > X1 + X2, we have that y0f (A U B). If xj + x2 14 al + s2 for any 
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sEAU B\xy, then we distinguish whether -X1 + X2 > Yj + y2 or X1 + X2 ý yj + y2. In 

either case we have that yýf (A U B). 

Subcase iv). a=x 34 y&b=z 

Then -T1 
+ X2 > Z1 + Z2 or X1 + X2 = zi + z2 and x, > zj. If there exists aEAU B\xz 

such that S1 + 82 > X1 + X2, we have that z0f (A u B). If X1 + X2 14 81 + 82 for any 

sEAU B\xz, then we distinguish whether X1 + X2 > Z1 + Z2 Or X1 + X2 = Z1 + Z2. Recall 

that yj + y2 = ZI + Z21 by definition. In either case we have that z0f (A U B). 

Subcasev). a=y&b=xOz 

Then Y1 + Y2 > X1 + X2 or Y1 + Y2 = X1 + X2 and yj > xj, If there exists sEAU B\xy 

such that S1 + S2 > yj + y2, we have that xVf (A U B). Otherwise, consider yj + Y2 14 

S1 + 82 for any sEAU B\xy. Recall that 1/1 + Y2 = Z1 + Z2 and f (Al (y, z)) = z, 

by definition. It follows that z0A, and so f (M (x, z)) =zE B\x. We distinguish 

whether yj + y2 > x, + x2 or yj + y2 = X1 + X2. Consider the Case Y1 + Y2 > X1 + X2- 

Then xf (A U B) and f (A U B) is nonempty as zEf arg MaX, EAUB (SI + S2) 

Consider the case Y1 + Y2 = X1 + X2. Then X, ZE Jarg MaXsEAUB (81 + 82) -f Yjb and 

so x0f (A U B) given that f (M (x, z)) = z. 

Subcase vi). a=z&b=x qk y 

Then Zi + Z2 > X1 + X2 or Z1 + Z2 = X1 + X2 and zj > xj. If there exists SE 

AU B\xz such that 81 + S2 > Z1 + Z2, we have that x0f (A U B). Otherwise, consider 

Z1 + Z2 1ý, S1 + 82 for any sEAU B\xz. Recall that Y1 + Y2 = Z1 + Z2, by definition. We 

distinguish whether zi + z2 > X1 + X2 or z, + z2 ' X2 + X2. Obviously x0f (A U B) 

if ZI + Z2 > X1 + X2- Otherwise, consider the case that Z1 + Z2 = X1 + X2. Therefore, 

x, zE Jarg maxSEAUB (81 + 82) - {Yj} 
- 

It follows from zi > x, that x0f (A U B). 

Subcase vii). a, b V {y, zj 
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It is easy to check as f (M (a, b)) =a if al + a2 > bl + b2 or al + a2 = bi + b2 & 

al > bl, and f (A) =argmaxa, fargMaXsEA(81 +82) 

Independence of axiom 5. 

Since it can easily be checked that the bargaining solution f is resolute and satisfies 

axiom 1, we check here that it satisfies axioms 3-4. 

Axioms. A, BE Li, a=CW(A) &bECL(BUa)=ý-bof (A UB) 

To see that f satisfies axiom 2, we distinguish the following cases: 

Case 1. I(A U B) n jx, y, z}1 =0 

Case 2. I(A U B) n Ix, y, z}1 =1 

Case 3. I(A U B) n jx, y, z}1 =2 

Case 4. (A U B) n jx, y, zj = jx, y, z} 

Case I is obvious and so omitted. 

Case2. I(AUB)nfx, y, z}l=l 

Wlog let (A U B) nfx, y, zj =f xj . We distinguish whether i) a=x, ii) b=x, or 

iii) a, b 54 x. 

Subcase 0- a=x 

Then X1 + X2 ý: bi + b2- It follows from bES. T that b0f (A U B), as desired. 

Observe that f (A U B) 9ý 0. 

Subcase ii). b=x 

Then al + a2 > X1 + X2- It follows that x0f (A U B). Observe that f (A U B) 0. 

Subcase iii). a, b 96 x 

Then a, + a2 > bi + b2 or a, + a2 = bi + b2 & al > bi. Since XEAU B\ab, we 

proceed according to: 
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1. f (M (a, x)) =a& f (M(b, x)) =b 

2. f (M (a, x)) =a& f (M(b, x)) =x 

3. f (M (a, x)) =x f (M(b, x)) =x 

4. f (M (a, x)) =x f (M(b, x)) =b 

Subcase iii. l. f (M (a, x)) =a&f (M (b, x)) =b 

Then a, b0 S-,. If a, + a2 > bi + b2l then b0f (A U B), as desired. Otherwise, lot 

a, + a2 = bi + b2 & a, > bi. Since al > b, we have that býf (A u B). Observe that 

f (A U B) 3k 0. 

Subcase iii. 2. f (M (a, x)) =a&f (M (b, x)) =x 

Then al + a2 > X1 + X2 ý: bi + b2- Thus bES,,,, and so b0f (A U B). Observe that 

f (A U B) : ý4 0. 

Subcase iii. 3. f (M (a, x)) =x&f (Al (b, x)) =x 

Then X1 + X2 ý: al + a2 ý! bi + b2, and so a, bE S-- Clearly, bVf (A u B). If there 

exists sEAU B\abx such that 81 + 82 > X1 + X2 , we have that f (A U B) 96 0. Otherwise, 

consider x, + X2 1ý sI+ . 92 for any 8EAU B\x. It follows that xf (A U B). 

Subcase iii. 4. f (M (a, x)) =x&f (Al (b, x)) =b 

This case is not possible as it contradicts f (M (a, b)) = a. 

Case 3. I(AUB)n fx, y, z}l =2 

Wlog let (A U B) nfx, y, zj =fx, yj. It may be useful to distinguish the following 

subcases: i)a=x&b=y, ii)a=y&b=x, iii)ag6x&b=y, iv). a0V&b=x, 

v)a=y&box, vi)a=x&bOy, vii)a, bý{V, xl. 

Observe that in all cases yC Sý. 

Subcase i). a=x&b=V 

By construction X1 + X2 = Y1 + V2- It follows that yff (A U B). Observe that 
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f (A U B) 96 0. 

Subcase ii). a=Y&b=X 

Since this case violates the premise of axiom 2, it does not apply. 

Subcase iii). a 94- x&b=y 

Then al + a2 > X1 + X2 ý! Y1 + V2- We have that VVf (A U B). Observe that 

f (A U B) 0 0. 

Subcase iv). a 74- y&b=x 

Then al + a2 > X1 + X2- It follows that x0f (A U B). Observe that f (A U B) 34 0. 

Subcase v). a=y&b 36 x 

Then X1 + X2 " Y1 + Y2 bi + b2, so bE Sx. It follows that bf (A u B). Observe 

that f (A U B) 0 0. 

Subcase vi). a=x&b 

The same reasoning of previous subcase applies. 

Subcase vii). a, b ý Ix, y} 

Then a, + a2 > b, + b2 or al + a2 = bj + b2 & al > bi. Since xEAU B\ab, we 

proceed according to: 

1. f (M (a, x)) a&f (M (b, x)) b 

2. f (M (a, x)) a&f (M (b, x)) 

3. f (M (a, x)) x&f (M (b, x)) x 

4. f (M (a, x)) =x&f (M (b, x)) =b 

Subcase vii. 1. f (M (a, x)) =a&f (Al (b, x)) =b 

Then a, b0S, If al + a2 > b, + b2 i then b0f (A U B), as desired. Otherwise, let 

a, + a2 bi + b2 & al > bl. Since a, > b, we have that b0f (A U B). Observe that 

f (A U B) -qk 0. 
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Subcase vii. 2. f (M (a, x)) =a&f (M (b, x)) =x 

Then al + a2 > X1 + X2 ý! b, + b2- Thus bES, and so b0f (A U B). Observe that 

f (A U B): 0 0. 

Subcase vii. 3, f (M (a, x)) =xf (M (b, x)) =x 

Then X1 + X2 ý: a, + a2 > bi + b2, and so a, bE Sx. Clearly, býf (A U B). If there 

exists sE AUB\abx such that 81 +82 > X1 +X2, we have that f (A U B) 96 0. Otherwise, 

consider X1 + X2 'ý S1 + 82 for any sEAU B\x. It follows that x=f (A U B). 

Subcase vii. 4. f (M (a, x)) =x&f (M (b, x)) =b 

This case is not possible as it contradicts f (M (a, b)) =a 

Case 4. (A U B) n jx, y, zj = jx, y, zj 

We proceed according to: i) a, bE jX, y, zj, ii) aEfx, y, zj &b0 Ix, y, z}, iii) 

aVfx, y, z} &bEfx, y, zj, iv). a, bý jx, y, zj. 

Recall that M (x, y) UM (Y, Z) = C. 

Subcase i). a, bEfX, y, z} 

By construction, f (M (x, y)) = x, f (M (y, z)) = V, and f (M (x, z)) = z. Let a=x 

and b=y. Then zýA, and so it must be the case that zEB. Thus yV CL (B U x). It 

follows that for this case the axiom does not apply. The same reasoning applies for the 

remaining cases. 

Subcase ii) -aE 
Ix, y, zj &b0fx, y, z} 

Then X1 + X2 = V1 + Y2 ' Z1 + Z2 ý! bi + b2. Hence, bE Sy. If C=AUB, then 

b0f (0). Otherwise, let CCAUB. It follows from bE Sy that b0f (A U B). Observe 

that in either case f (A U B) 0 0. 

Subcase iii). a0 Ix, y, zj &bE {X, y, z} 

Then al + a2 > X1 + X2 = Y1 + V2 --ý Z1 + Z2. Hence, It must be the case that 
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CC A UB. Let b=x. Since al+a2>Yl+&, 2, we have that a 0SV and xVf (A UB). 

Observe that f (A U B) 34 0. Similax argument applies whether b=y or b=z. 

Subcase iv). a, bý Ix, y, z} 

We distinguish the following cases: 1-f (M (a, x)) =a&f (M (b, x)) = b, 2. 

f (M (a, x)) =a&f (M (b, x)) = x, 3. f (Al (a, x)) =x&f (M (b, x)) = x, 4. f (Af (a, x)) 

x&f (M(b, x)) = b. 

Recall that X1 +X2 = Y1 +Y2 = zi + z2. First observe that subcase iv. 4 is not possible 

as it contradicts f (M (a, b)) = a. 

Subcase iv. 1-f (M (a, x)) =a&f (M (b, x)) =b 

Then it must be that CCAuB. Since f (M (a, b)) = a, we have that either 

al + a2 > bi + b2 or al + a2 = b, + b2 & al > bl. Since a, b0S., we have that 

býf (A U B). Observe that f (A U B) 0 0. 

Subcase iv. 2. f (M (a, x)) =a&f (M (b, x)) =x 

Then a, + a2 > yj + y2 -e b, + b2. If 0=AUB, then b0f (C). Otherwise, lot 

CCAUB. Since bE Sy, it follows that býf (A U B). Observe that f (A U B) 56 0. 

Subcase iv. 3. f (M (a, x)) =x&f (M (b, x)) =x 

Then X1 + X2 ý: al + a2 ý: bi + b2. If AUB=C, then b0f (C), by construction. 

Otherwise, consider CCAUB. Observe that x0 Su and bE Sy. If there exists 

sE AUB\xyz such that 81 +492 > X1 +X2, we have that b0f (A U B) and f (A u B) 54 0. 

Otherwise, consider X1 + X2 'A 81 + 82 for any aEAU B\x. Then b0f (A U B) and 

f (AUB) = xy. 

Next we check axiom 4. 

Axiom 4. a, b, cE R+, with a0b 76 c, a=f (AI (a, b)) &b_f (lii (b, c)) =*. aE 
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f (A), with M (a, b) UM (b, c) = A. 

We proceed according to: 1. a, b, cE jx, y, zj , 2. a, bE jx, y, z} &cý {x, V, z}, 3. 

a, cEfx, y, zj &bý {x, y, z}, 4. a C- jx, y, z) & b, c jx, y, z}, 5. a0 {x, y, z} & 

b, cE {x, y, z}, 6. a, býfx, y, zj &cE Ix, y, zj, 7- a, c jx, y, z) &bE {X, y, zj, 8. 

a, b, c0 jx, y, z}. 

Case 1 is obvious, so omitted. Case 3 is not admissible, by construction. 

Case 2. a, bE {x, y, zl & cý {x, y, z} 

Ut a=x and b=y. Observe that An jx, y, z} = x, y. It follows that y, cE 

Since for not sE A\x -91 + S2 > X1 + X2, we have that xEf (A). Similar reasoning 

applies whether a=y and b=z or a=z or b=x. 

Case 4. aE fx, y, z} & b, cV fx, y, z} 

Then a, + a2 2: bi + b2 2: ci + c2. Let a=x. Observe that An jx, y, Z} = x. Then 

b, CE Sx. Since for not s (=- A\x 81 + 82 ýý' X1 + X2, we have that xEf (A). The same 

reasoning applies whether a=y or a=z. 

Case 5. ao fx, y, zl & b, cE {x, y, zl 

Then al + a2 > bi + b2- Observe that either JA n {x, y, zJ1 =2 or An {x, y, z} = 

{x, y, z}. In either case it follows that a= arg max,, rA (s, + 92). Then aEf (A). This 

is true in all admissible cases: b =, x &c=y; b=y&c=z; and b=z&c=x. 

Case 6. a, bo jx, y, zj &cE {x, y, zl 

Then al+a2 bj+b2 > r-1+C2- The following cases are possible: i) An fx, V, z} = c, 

ii) IAnfx, y, z} 2, iii) Anfx, y, z} = {x, y, z 1, In any case aGf (A), as desired. 

Case 7. a, co {x, y, z} & bE fx, y, z} 

Then a, +a2 > bi +b2 > cl +c2. The following cases are possible- i) Anf x, Y, ZI = b, 

ii) JA n {x, y, zj I=2, iii) An {x, y, z} = {x, y, z}. In all cases we have that aGf (A), 
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Figure 5.1: Revealed preferences in pairwise choice problems for independence of axioms 

used in Theorem 3 

as desired. 

Case 8. a, b, c x, y, zj. 

The following cases are possible: i) IAn {x, y, z} 0, ii) IAnfx, y, Z} 

jAn f x, y, zj I=2, iv) An {x, Y, zj = {x, Y, zj. It is easy to see that in all cases aEf (A), 

as desired. 

B. Independence of Axioms used in Theorem 3 

To complete the proof of Theorem 3, we show that Property a2 (a2), Weak Prop- 

erty 0 (W/3), Weak WARM (WWARNI), Strong BDC (SBDC), Weak WARP 

(WWARP), and Reason-Based Bias (R13D) are independent, 

Suppose that u, v, w, x, y and z are distinct feasible alternatives, and lot choice in 

pairs be as displayed in Figure 2, where a-b stands for {aj =C ({a, b)), whilst no 
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arrow between a and b stands for la, bl =C Qa, bl). 

For an example violating only a2, fix X= {u, x, z}, and suppose C (X) = X. C 

is not a reason-based choice correspondence because zVM (S, >-) but zEC (S). C12 is 

violated as z00 (Jx, z}). All other choice-consistency conditions are satisfied. 

For an example violating only WO, fix X=fu, x, zj, and suppose 0 (X) = Jul. C 

is not a reason-based choice correspondence because xEM (S, >-) and there does not 

exist aEM (S, >-) \ {x} such that -ý (x, S) C -. < (a, S) but xýC (X). WO is violated 

because {u, x} =CQu, xj), u and x are indistinguishable on Jz}, and uEC (X) but 

xVC (X). All other choice-consistency conditions are satisfied. 

For an example violating only WWARNI, fix X= Jv, w, x, z}. Let 0 (S) be a 

reason-based choice correspondence for all SE S\X, and suppose C (X) = {v}, C 

is not a reason-based choice correspondence because xEM (X, >-) and there does not 

exist aEM (X, >-) \{xl such that -< (x, X) C-. < (a, X), but xýC (X). WWARNI is 

violated because vEC (X), and there exists S= Jv, x, z} cX such that {xj =0 (S) 

and Jx, vj C S, xEC (f a, xj) for all aEX, but xC (X). All other choice-consistency 

conditions are satisfied. 

For an example violating only SBDC, fix X ju, v, y, z 1. Let C (S) be a reason- 

based choice correspondence for all SE S\X, and suppose C (X) f u, y}. C is not 

a reason-based choice correspondence because u, yEM (S, >-) and (y, S) C-. < (u, S), 

but yEC (X). SBDC is violated because C ({u, v, yl) = Jul and Jul =CQu, z}) but 

C (X) 34 Jul. All other choice-consistency conditions are satisfied. 

For an example violating only WWARP, fix X=fw, x, y, z}. Let C (S) be a 

reason-based choice correspondence for all SE S\X, and suppose C (X) X\{z}. C 

is not a reason-based choice corre. spondence because w, x, yEM (S, ý-), (w, S) 
, -< 
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(y, S) c-< (x, S), but w, yEC (X). WWARP is violated because C (IX, y, zj) =f X}, 

y0C (fx, y, zj), x and y are indistinguishable on f w}, but yEC (X). All other 

choice-consistency conditions are satisfied. 

For an example violating only RBB, fix X=fx, y, z}. Lot C (X) = Ix, yj. C is not 

a reason-based choice correspondence because X, yE Af (S, >-), -< (y, S) c -< (x, S), but 

VEC (X). RBB is violated because jX} =C (IX, Zj), XEC Qx, yj), zEC Qy, Z}), 

but C ({x, y, z}) : ý_ f x}. All other choice-consistency conditions axe satisfied. 


