
Abstraction and common classroom activities   
       Jane Waite Paul Curzon, William Marsh 

Queen Mary University of London 
Mile End Road  

London 
044 020 7882 5555 

{j.l.waite p.curzon d.w.r.marsh}@qmul.ac.uk 
 

Sue Sentance 
King’s College London 

Stamford Street 
 London 

044 020 7836 5454 
sue.sentance@kcl.ac.uk 

 

ABSTRACT 
In popularizing computational thinking, Wing notes that 

‘abstraction is described as underlying computational thinking and 

computational thinking is described as fundamental to computing.’ 

Emerging curricular now require educators to incorporate 

computational thinking and abstraction into their teaching. Many 

refer to Piaget’s work as evidence of an age-related ceiling 

preventing younger pupils from being able to abstract.  However, 

more recent evidence suggests that pupils use elements of 

abstraction in their general process of learning, and that the skill of 

abstraction can be explicitly taught. We draw on personal 

classroom experience to illustrate the points made in the literature. 

Common classroom activities such as using labelled diagrams, 

concept maps and storyboards are aligned to features of abstraction. 

We argue that abstraction can and should be taught to young pupils.  

CCS Concepts 
• Social and professional topics~Computational 

thinking   • Social and professional topics~K-12 education  

Keywords 

Abstraction, visualisation, storyboard, graph, design. 

1. COMPUTATIONAL THINKING AND 

ABSTRACTION 
The concept of abstraction within computer science is, as with 

computational thinking, not new. Those learning to solve problems 

using computers, are required to abstract as they develop designs at 

different levels of detail, write programs and run code; algorithms 

and programs themselves are abstractions [17, 21].  

Abstraction, has been widely accepted to be included as a 

component, if not the cornerstone, of computational thinking [8, 12, 

20, 21] and there appears to be general consensus that abstraction 

relates to hiding detail, and removing unnecessary complexity with 

respect to the problem at hand [4]. Some also include 

generalisation, such as Barr and Stephenson’s definition 

‘abstraction - simplifying from the concrete to the general as 

solutions are developed’ [2]. 

How abstraction relates to other computational thinking terms is 

sometimes mentioned in emerging lists of what abstraction might 

look like in class [2, 4, 5], and curriculum material is starting to be 

developed that suggest lists of behaviours and activities that might 

demonstrate progression in abstraction [4, 9]. 

2. ABSTRACTION CEILING OR 

PROGRESSION IN ABSTRACTION? 
Piaget’s seminal educational theories on learning, written some 

thirty years ago are often referenced as evidence of  an age-related 

developmental ceiling for abstraction [13, 14]. However, Piaget’s, 

rarely cited, late work, ‘Recherches sur l ’abstraction 

réfléchissante’, first translated to English in 2001, seems to counter 

these claims [16]. Campbell translates key terms used by Piaget to 

describe abstraction as empirical abstraction, projection, reflected 

abstraction and meta reflection. Piaget, describes abstraction as a 

spiral of learning ‘without end and especially without an absolute 

beginning’ (page 306 of [16]) not bound by operational stages. He 

also details tests of children’s ability to abstract from 18 months. 

Recently, Syslo & Kwiatkowska concluded 5 to 12 year olds   
‘demonstrate that they are capable to work with abstraction’  [18]. 

Similarly, Gibson showed he could introduce children to 

abstraction rich computer science material normally associated 

with older pupils [11]. Curzon et al’s unplugged cs4fn activities, 

taught to younger pupils, include teaching abstraction [6].  

3. LEVELS OF ABSTRACTION 
Armoni states ‘there are no validated tools that assess abstraction 

ability’[1]. However, she points to the PGK model’s levels of 

abstraction 1. Execution, 2. Program, 3. Object (redefined to 

Algorithm by Armoni), 4. Problem [1, 15] and defines sub-skills , 

simplified here as being able to say what level you are working at;  

move between levels; say what level you should be using;  add 

more detail, or remove detail as needed within a level 

In a similar vein, Cutts et al assign abstraction to levels, when 

investigating how students were asked to express answers to 

questions. The levels were 1. English, 2. CS Speak, 3. Code  [7].  

They found that much assessment is focused on levels 2 and 3. 

Taub et al’s study considered how abstraction might be taught 

through physics games, concluding that students, in terms of 

computer science learning, moved from the high level of what the 

simulation should do to the low level of how it is done [19].  

In order to situate classroom activities, we combine and add to the 

work of these authors to create a simple framework of the levels 

of abstraction for problem solving in programming projects. 1. 

Problem – English – What is needed 2. Algorithm – CS Speak – 

What it should do. 3. Program – Code - How it is done. 4. 

Runtime – Results – What it does.  

4. CLASSROOM ACTIVITIES 
We write now based not on empirical work but on the experience 

of one of the paper’s authors, as a primary teacher. We discuss 

several classroom activities, each in some way a summary, an 

Permission to make digital or hard copies of part or all of this work for 
personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. Copyrights 
for third-party components of this work must be honored. For all other 

uses, contact the Owner/Author.  

Copyright is held by the owner/author(s).  
WiPSCE '16, October 13-15, 2016, Münster, Germany 

ACM 978-1-4503-4223-0/16/10. 

DOI:http://dx.doi.org/10.1145/2978249.2978272 



abstraction. We ask how each might be investigated, in a 

sociocultural situated framework, with pupils, teachers, toolset and 

environment and so outline a programme of work to investigate 

abstraction in a primary school context.  

Labelled diagrams: Across the curriculum, from emergent writing 

onwards, the labelled diagram provides pupils with the opportunity 

to show what is most important about an object, process or system. 

Teachers exemplify what can be ignored as they provide model 

examples, and pupils demonstrate understanding in independent 

work. Can Piaget’s late work on abstraction be aligned to Solo [3] 

or Blooms [10] to aid teachers understanding of pupils’ progression 

in abstraction as they use labelled diagrams?  

Concept maps: These visualisations are used across the curriculum 

to teach classification and grouping. The property used to create a 

new group implies it is important. Do teachers point this out? Are 

pupils given opportunities to work out new classifications and 

groupings and compare their ideas to that of others, across different 

scenarios? Would doing so provide a foundation for understanding 

levels of abstraction in programming concepts. 

Storyboards: As pupils plan writing they must decide what must be 

included, and what they can ignore. Teachers provide examples that 

children first copy, but with experience they adapt and invent. How 

might the storyboard format, and how storyboards are used, impact 

progression of abstraction? When writing a story, the brief is the 

problem, the storyboard like an algorithm and the story itself like a 

program, conforming to syntax and grammar rules, debugged at 

write time. Do teachers draw attention to the level of abstraction 

being used during use? 

5. CONCLUSION 
As well as the classroom activities above there are numerous 

situations where pupils are asked to summarise or create and then 

work from a plan. Similarly, as pupils embark on programming 

projects perhaps these visualisations can be used at various levels 

of abstraction. There appear to be rich far reaching opportunities to 

utilise planning and summarising visualisations to make 

progression in abstracting and to work across the levels of 

abstraction. However, evidence is limited and research is needed to 

determine the potential of, and effectiveness of such approaches. 

6. REFERENCES 
[1] Armoni, M. 2013. On Teaching Abstraction in Computer 

Science to Novices. Journal of Computers in Mathematics 

and Science Teaching. 32, 3 (2013), 265–284. 

[2] Barr, V. and Stephenson, C. 2011. Bringing computational 

thinking to K-12: what is involved and what is the role of 

the computer science education community? ACM Inroads. 

2, 1 (2011), 48–54. 

[3] Biggs, J. and Collis, K. 1982. Origin and description of the 

SOLO taxonomy. Evaluating the quality of learning: The 

SOLO Taxonomy. New York: Academic Press Inc. 17–30. 

[4] Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S., 

Ng, T., Selby, C. and Woollard, J. 2015. Computational 

Thinking a Guide for Teachers. Retrieved May 5, 2016  

http://community.computingatschool.org.uk/files/6695/ori

ginal.pdf 

[5] CSTA 2011. Computational Thinking Teacher Resources 

2nd Edition. (2011). Retrieved May 5, 2016 from 

http://csta.acm.org/Curriculum/sub/CurrFiles/472.11CTTe

acherResources_2ed-SP-vF.pdf 

[6] Curzon, P., McOwan, P.W. and Plant, N. 2014. Introducing 

teachers to computational thinking using unplugged 

storytelling. Proceedings of the 9th Workshop in Primary 

and Secondary Computing Education (2014), 89–92. 

[7] Cutts, Q., Esper, S.,Fecho, M., Foster, S.R. and Beth, S. 

2012. The abstraction transition taxonomy: developing 

desired learning outcomes through the lens of situated 

cognition. Proceedings of the ninth annual international 

conference on International computing education research 

(2012), 63–70. 

[8] DfE 2013. Computing programmes of study key stages 1 

and 2 National Curriculum in England. Department of 

Education. Retrieved May 5, 2016 from 

https://www.gov.uk/government/publications/national-

curriculum-in-england-computing-programmes-of-study. 

[9] Dorling, M. and Walker, M. 2015. Computing Progression 

Pathways. (2015). Retrieved May 5, 2016 from 

http://community.computingatschool.org.uk/files/5098/ori

ginal.xlsx 

[10] Fuller, U., Johnson, C.G., Ahoniemi, T., Cukierman, D., 

Hernan-Losada, I., Jackova, J., Lahtinen, E., Lewis, T. L., 

Thompson, D. M.  Riedesel, C. and Thompson, E.  2007. 

Developing a computer science-specific learning 

taxonomy. ACM SIGCSE Bulletin (2007), 152–170. 

 [11] Gibson, J.P. 2012. Teaching graph algorithms to children 

of all ages. Proceedings of the 17th ACM annual 

conference on Innovation and technology in computer 

science education (2012), 34–39. 

[12] Grover, S. and Pea, R. 2013. Computational Thinking in K–

12 A Review of the State of the Field. Educational 

Researcher. 42, 1 (2013), 38–43. 

[13] Kramer, J. 2007. Is abstraction the key to computing? 

Communications of the ACM. 50, 4 (2007), 36–42. 

[14] Lister, R. 2011. Concrete and other neo-Piagetian forms of 

reasoning in the novice programmer. Proceedings of the 

Thirteenth Australasian Computing Education Conference-

Volume 114 (2011), 9–18. 

 [15] Perrenet, J.C., Groote, J.F. and Kaasenbrood. E. 2005. 

Exploring students’ understanding of the concept of 

algorithm: levels of abstraction. ACM SIGCSE Bulletin. 37, 

3 (2005), 64–68. 

[16] Piaget, J. and Campell, R.L. 2001. Studies in reflecting 

abstraction. Psychology Press. 

[17] Schwill, A. and Universität Paderborn. 1994. Fundamental 

ideas of computer science. Bulletin-European Association 

for Theoretical Computer Science. 53, (1994), 274–274. 

[18] Syslo, M.M. and Kwiatkowska, A.B. 2014. Playing with 

computing at a children’s university. Proceedings of the 9th 

Workshop in Primary and Secondary Computing 

Education (2014), 104–107. 

[19] Taub, R., Armoni, M. and Ben-Ari, M. 2014. Abstraction 

as a bridging concept between computer science and 

physics. Proceedings of the 9th Workshop in Primary and 

Secondary Computing Education (2014), 16–19. 

[20] The College Board 2016. AP Computer Science Principles 

Curriculum Framework 2016-2017. The College Board. 

Retrieved May 5, 2016 from https://secure-

media.collegeboard.org/digitalServices/pdf/ap/ap-

computer-science-principles-course-and-exam-

description.pdf 

[21] Wing, J. 2008. Computational thinking and thinking about 

computing. Philosophical Transactions of the Royal 

Society of London A: Mathematical, Physical and 

Engineering Sciences. 366, 1881 (2008), 3717–3725. 

 

http://community.computingatschool.org.uk/files/6695/original.pdf
http://community.computingatschool.org.uk/files/6695/original.pdf
http://csta.acm.org/Curriculum/sub/CurrFiles/472.11CTTeacherResources_2ed-SP-vF.pdf
http://csta.acm.org/Curriculum/sub/CurrFiles/472.11CTTeacherResources_2ed-SP-vF.pdf
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study.
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study.
http://community.computingatschool.org.uk/files/5098/original.xlsx
http://community.computingatschool.org.uk/files/5098/original.xlsx
https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-course-and-exam-description.pdf
https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-course-and-exam-description.pdf
https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-course-and-exam-description.pdf
https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-course-and-exam-description.pdf

