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ABSTRACT 
In popularizing computational thinking, Wing notes that 

‘abstraction is described as underlying computational thinking and 

computational thinking is described as fundamental to computing.’ 

Emerging curricular now require educators to incorporate 

computational thinking and abstraction into their teaching. Many 

refer to Piaget’s work as evidence of an age-related ceiling 

preventing younger pupils from being able to abstract.  However, 

more recent evidence suggests that pupils use elements of 

abstraction in their general process of learning, and that the skill of 

abstraction can be explicitly taught. We draw on personal 

classroom experience to illustrate the points made in the literature. 

Common classroom activities such as using labelled diagrams, 

concept maps and storyboards are aligned to features of abstraction. 

We argue that abstraction can and should be taught to young pupils.  
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1. COMPUTATIONAL THINKING AND 

ABSTRACTION 
The concept of abstraction within computer science is, as with 

computational thinking, not new. Those learning to solve problems 

using computers, are required to abstract as they develop designs at 

different levels of detail, write programs and run code; algorithms 

and programs themselves are abstractions [17, 21].  

Abstraction, has been widely accepted to be included as a 

component, if not the cornerstone, of computational thinking [8, 12, 

20, 21] and there appears to be general consensus that abstraction 

relates to hiding detail, and removing unnecessary complexity with 

respect to the problem at hand [4]. Some also include 

generalisation, such as Barr and Stephenson’s definition 

‘abstraction - simplifying from the concrete to the general as 

solutions are developed’ [2]. 

How abstraction relates to other computational thinking terms is 

sometimes mentioned in emerging lists of what abstraction might 

look like in class [2, 4, 5], and curriculum material is starting to be 

developed that suggest lists of behaviours and activities that might 

demonstrate progression in abstraction [4, 9]. 

2. ABSTRACTION CEILING OR 

PROGRESSION IN ABSTRACTION? 
Piaget’s seminal educational theories on learning, written some 

thirty years ago are often referenced as evidence of  an age-related 

developmental ceiling for abstraction [13, 14]. However, Piaget’s, 

rarely cited, late work, ‘Recherches sur l ’abstraction 

réfléchissante’, first translated to English in 2001, seems to counter 

these claims [16]. Campbell translates key terms used by Piaget to 

describe abstraction as empirical abstraction, projection, reflected 

abstraction and meta reflection. Piaget, describes abstraction as a 

spiral of learning ‘without end and especially without an absolute 

beginning’ (page 306 of [16]) not bound by operational stages. He 

also details tests of children’s ability to abstract from 18 months. 

Recently, Syslo & Kwiatkowska concluded 5 to 12 year olds   
‘demonstrate that they are capable to work with abstraction’  [18]. 

Similarly, Gibson showed he could introduce children to 

abstraction rich computer science material normally associated 

with older pupils [11]. Curzon et al’s unplugged cs4fn activities, 

taught to younger pupils, include teaching abstraction [6].  

3. LEVELS OF ABSTRACTION 
Armoni states ‘there are no validated tools that assess abstraction 

ability’[1]. However, she points to the PGK model’s levels of 

abstraction 1. Execution, 2. Program, 3. Object (redefined to 

Algorithm by Armoni), 4. Problem [1, 15] and defines sub-skills , 

simplified here as being able to say what level you are working at;  

move between levels; say what level you should be using;  add 

more detail, or remove detail as needed within a level 

In a similar vein, Cutts et al assign abstraction to levels, when 

investigating how students were asked to express answers to 

questions. The levels were 1. English, 2. CS Speak, 3. Code  [7].  

They found that much assessment is focused on levels 2 and 3. 

Taub et al’s study considered how abstraction might be taught 

through physics games, concluding that students, in terms of 

computer science learning, moved from the high level of what the 

simulation should do to the low level of how it is done [19].  

In order to situate classroom activities, we combine and add to the 

work of these authors to create a simple framework of the levels 

of abstraction for problem solving in programming projects. 1. 

Problem – English – What is needed 2. Algorithm – CS Speak – 

What it should do. 3. Program – Code - How it is done. 4. 

Runtime – Results – What it does.  

4. CLASSROOM ACTIVITIES 
We write now based not on empirical work but on the experience 

of one of the paper’s authors, as a primary teacher. We discuss 

several classroom activities, each in some way a summary, an 
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abstraction. We ask how each might be investigated, in a 

sociocultural situated framework, with pupils, teachers, toolset and 

environment and so outline a programme of work to investigate 

abstraction in a primary school context.  

Labelled diagrams: Across the curriculum, from emergent writing 

onwards, the labelled diagram provides pupils with the opportunity 

to show what is most important about an object, process or system. 

Teachers exemplify what can be ignored as they provide model 

examples, and pupils demonstrate understanding in independent 

work. Can Piaget’s late work on abstraction be aligned to Solo [3] 

or Blooms [10] to aid teachers understanding of pupils’ progression 

in abstraction as they use labelled diagrams?  

Concept maps: These visualisations are used across the curriculum 

to teach classification and grouping. The property used to create a 

new group implies it is important. Do teachers point this out? Are 

pupils given opportunities to work out new classifications and 

groupings and compare their ideas to that of others, across different 

scenarios? Would doing so provide a foundation for understanding 

levels of abstraction in programming concepts. 

Storyboards: As pupils plan writing they must decide what must be 

included, and what they can ignore. Teachers provide examples that 

children first copy, but with experience they adapt and invent. How 

might the storyboard format, and how storyboards are used, impact 

progression of abstraction? When writing a story, the brief is the 

problem, the storyboard like an algorithm and the story itself like a 

program, conforming to syntax and grammar rules, debugged at 

write time. Do teachers draw attention to the level of abstraction 

being used during use? 

5. CONCLUSION 
As well as the classroom activities above there are numerous 

situations where pupils are asked to summarise or create and then 

work from a plan. Similarly, as pupils embark on programming 

projects perhaps these visualisations can be used at various levels 

of abstraction. There appear to be rich far reaching opportunities to 

utilise planning and summarising visualisations to make 

progression in abstracting and to work across the levels of 

abstraction. However, evidence is limited and research is needed to 

determine the potential of, and effectiveness of such approaches. 
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