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Abstract—Caching is a core principle of information-centric
networking (ICN). Many novel algorithms have been proposed
for enabling ICN caching, many of which rely on collaborative
principles, i.e. multiple caches interacting to decide what to
store. Past work has assumed entirely altruistic nodes that will
sacrifice their own performance for the global optimum. In this
paper, we argue that this assumption is flawed. We address
this problem by modelling the in-network caching problem as
a Nash bargaining game. We develop optimal and heuristic
caching solutions that explicitly consider both performance and
fairness. We argue that only algorithms that are fair to all parties
will encourage engagement and cooperation. Through extensive
simulations, we show our heuristic solution, FairCache, ensures
that all collaborative caches achieve performance gains without
undermining the performance of others.

I. INTRODUCTION

Information-Centric Networking (ICN) [2], [3] has been
proposed to ameliorate the pressure on current network infras-
tructures. It replaces the existing end-to-end Internet model
with a content request/response model. Many benefits have
been suggested, including superior performance, better support
for mobility and reduced overheads. A fundamental enabler
of these attributes is in-network caching. Whereas initial ICN
caching studies used traditional algorithms (e.g. Least Recently
Used), there has been a flurry of novel proposals that attempt to
specifically target ICN environments. These algorithms exploit
things like inter-AS cooperation, request prediction and a
priori topology maps to optimise performance [5], [6], [26].

A key outcome of this work has been the observation that
collaborative caching usually outperforms locally optimised
algorithms [4], [6]–[8]. This is primarily caused by the nature
of ubiquitous ICN caching, where nearby caches will often
wastefully store the same objects [7]. To remedy this, a
simple collaborative algorithm between two nearby nodes may
involve strategically caching distinct objects [5], [9]. Any
future ICN deployments are therefore likely to involve some
form of cache collaboration. In tandem, we are witnessing
a fragmentation of cache ownership in the live Internet,
with large content providers deploying separate infrastructures
(e.g. Google, Facebook, Netflix). A more extreme example
of this fragmentation is within the expanding number of
wireless community mesh networks, e.g. Guifi [19]; these
are constructed by groups of individuals who each contribute
wireless routers, usually mounted on their property on a city-
wide scale. In a community network, every router/cache is
operated by a separate individual. Hence, we predict that future
ICNs will use caches that are provisioned not just by network
operators, but also various distinct stakeholders at strategic
in-network locations. These observations, however, have the

potential to undermine the key tenets of caching in ICNs: What
if caches operated by separate entities pursue policies that do
not include collaboration, the storage of competitor’s content
or the serving of specific users? This is currently the situation
online today, and it is unlikely to change with the advent of
ICN. Despite this, nearly every ICN collaborative algorithm
proposed assumes altruistic nodes that simply strive to reach
a global optimum [5]–[10].

The reasons why a non-collaborative policy may be im-
plemented are diverse. However, in this paper, we explore
the topic from a utilitarian perspective. Intuitively, caches
would wish to engage in a collaborative algorithm if they
attain greater utility than if they were not to engage. This
observation mandates some concept of fairness, where ben-
efits are spread fairly across caches, and individuals are not
expected to sacrifice personal performance by collaborating.
Imagine, for instance, the above community network example;
an individual who sees his/her own performance consistently
detrimented by collaboration would (rationally) cease. We
therefore argue that collaboration should be based on fairness,
which may or may not reduce global performance. While
a global optimum sounds attractive, we argue it is more
important, from a practical perspective, that every node is
better off by collaborating together than working alone. In
this paper, we design a collaborative caching algorithm that
embraces both high performance and fairness. Our focus is not
to build a protocol that forces nodes to collaborate, or provides
protection against malicious behaviour but, rather, to design
underlying algorithms that can fairly share cache space across
trusted collaborators. We first formulate the fair in-network
caching problem as a Nash bargaining game (§III) before
delineating optimal algorithms for allocating objects to caches
(§IV). We then propose FairCache, a heuristic collaborative
caching algorithm (§V) with fairness at its heart. We show
that FairCache achieves in excess of 90% accuracy compared
to the optimal solution, at a fraction of the overheads (§VI).
Importantly, we show that, when using FairCache, all nodes
improve their performance via cooperation. It can be deployed
across small subsets of collaborating caches or, alternatively,
globally without change to design. We conclude by extracting
key lessons learnt (§IX).

II. MOTIVATION AND SYSTEM MODEL

A. Motivational Example
We use the simple toy caching system described in Figure 1

as a motivating example. Imagine two routers with a cache
capacity of one object. They each serve a nearby set of users
and, consequently, it is desirable that they collaborate to decide
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Fig. 1: A mini caching system with two caches and six objects.
Three strategies (Greedy, Global and Fair) are presented.

which objects should be cached (e.g. to avoid storing the same
object twice). To decide which object to store, the caches
inspect the request rates they receive, also depicted in Figure 1
(as a Demand Matrix). Intuitively, each cache would wish to
selfishly optimise some concept of individual “utility”. For
simplicity, we measure their utility as the number of cache hits
they get. We also allow nodes to redirect requests to the other
cache; if a hit is attained there, a utility of 0.5 is given to the
node performing the redirect (factored down due to the extra
delay, overhead etc.). We consider three caching strategies:

Case 1: Greedy Strategy, where each cache locally and
selfishly optimises its performance. Cache 1 chooses to hold
A since it is the most popular content of demand 90, which
leads to U1 = 90 +

31
2 = 105.5. Similarly, Cache 2 caches B

which leads to U2 = 83 +

5
2 = 85.5. Therefore, we have the

aggregated utility UTotal = U1 + U2 = 105.5 + 85.5 = 191.
Case 2: Global Strategy, where each cache tries to maximise

the aggregated utility UTotal of the whole system. By caching
C and D on Cache 1 and 2 respectively, UTotal reaches its
theoretical maximum, namely UTotal = 126+85 = 211. How-
ever, if we examine the individual performance and compare
them to the Greedy Strategy, we notice that the increase in
utility for Cache 1 results in a utility decrease for Cache 2.

Case 3: Fair Strategy, where caches attempt to collaborate
fairly, in a way that does not reduce utility for any party. Cache
1 stores E and Cache 2 stores F . Although this does not
achieve the global optimum (i.e. the aggregated utility UTotal

drops from 211 to 208.5), it ensures that both caches improve
their respective performance whilst also improving upon the
local Greedy Strategy. This solution is Pareto efficient, and
ensures both parties are incentivised.

The above reveals a stark mismatch. Attaining a global op-
timum often disadvantages some parties [21]. Thus, nodes that
are unfairly exploited by other caches’ redirects (at the cost of
their own performance) are unlikely to continue collaboration:
Caching should balance the need for high performance against
the need for fair usage across caches.

B. System Model

We assume a network whose topology can be represented
as a graph, G = (V,E), where V is the set of nodes and
E is the set of edges. V could consist of all caches in a

network or, alternatively, a subset of collaborating partners.
These could be owned by one or more separate organisataions.
We follow an NDN [2] model, whereby hosts generate requests
that get deterministically routed to sources that reply with
content objects. Each node in the network, vi 2 V , is equipped
with cache of size Ci. We denote O as the global set of content
objects that could be stored in the cache. For each ok 2 O,
we associate two parameters: sk, which is the object size and
wi,k, which is its aggregated demand (requests per second)
observed from all the clients connected to vi. We focus on a
subcategory of caching: collaborative algorithms. Because of
resource constraints, we assume that nodes are limited in the
number of nearby nodes they can cooperate with. We use ri
to represent vi’s search radius measured in hops. ri uniquely
defines a neighbourhood for each vi, which we denote as
Ni = {vj |l

⇤
i,j  ri, 8vj 2 V, vi 6= vj}, where l⇤i,j measures

the length of the shortest path between vi and vj .
Thus, a collaborative caching algorithm can be decomposed

into “caching decisions” and “retrieval decisions”. These two
parts solve “what to cache” and “where to fetch”, respectively.
The latter is necessary to allow nodes to redirect requests to
other caches that have agreed to store objects on their behalf
(opposed to forwarding it along the default route to the original
source). To model such a caching strategy, we use two vector
decision variables: x and y. xi,k 2 {0, 1} denotes whether
vi caches ok, and yi,j,k 2 {0, 1}, 8i 6= j denotes whether vi
retrieves the object ok from vj . Formally, we say:

Definition 1. A caching strategy for a network G is a tuple
of functions (x,y) where x : V ⇥ O ! {0, 1} and y : V ⇥

V ⇥ O ! {0, 1}. The family of all such tuples is denoted as
 , which represents the whole space of all caching strategies.

Definition 2. A caching strategy for a node vi is defined as
(x

i

,y
i

), where x

i

: {vi} ⇥ O ! {0, 1} and y

i

: {vi} ⇥ V ⇥

O ! {0, 1} are the partial functions of x and y with domains
restricted to {vi}⇥O and {vi}⇥ V ⇥O respectively.

Note that “⇥” above represents the Cartesian product.
We strive for a caching strategy that is (i) Pareto efficient;
(ii) has well-defined fairness achieved amongst the nodes; and
(iii) attains high performance. From a utilitarian perspective,
this combination of attributes will lead to stable cooperation.

III. FUNDAMENTALS OF BARGAINING GAMES

A bargaining game is a model for analysing how play-
ers collaborate to obtain certain utility values. We model
collaborative caching as a bargaining game, in which we
aim to achieve both high performance (utility) and fairness.
Ideally, a solution is considered fair if it satisfies certain
axioms [11], [12]: (i) Pareto optimality; (ii) Scale invariance;
(iii) Symmetry; (iv) Independence of the irrelevant alternatives;
(v) Monotonicity. Nash proved that there is one unique solution
which satisfies axiom (1)-(4), termed the Nash Bargaining
Solution (NBS) [11]. The NBS can be extended to multiple
players. On the other hand, the Kalai-Smorodinsky Solution
(KS) [12] satisfies axiom (1)-(3) and (5). These two solutions



lead to two fairness metrics. Compared to NBS, KS often does
not have a closed-form expression. Hence, we focus on NBS.

A. Game Definitions
In game theory, each node attempts to optimise its personal

“utility”. In caching, utility for a node, Ui, can be measured by
the delay to respond to a client. Each cache aims to serve its
clients with the lowest possible delay. Consequently, serving
a request from the local cache produces the greatest “utility”,
but redirecting a request to another nearby neighbour also
increases it (rather than forwarding to the original source).
As such, a selfish cache strives to maximise its utility through
a combination of local caching and redirects to nearby neigh-
bours.1 Of course, if utility can be maximised solely through
local caching then a node will cease to collaborate. NBS is an
axiomatic solution for solving the following problem:

max

Y

vi2V

(Ui � u0
i ) (1)

Eq. (1) is called the Nash product. As mentioned, Ui is
node i’s utility. u0

i is the initial disagreement value of i.
The disagreement value is defined as the worst utility payoff
a node would accept for collaboration. In practice, a node
sets its disagreement value to the maximum value achieved
by optimising locally as a standalone cache, e.g. using Least
Recent Used. In the following, we give the formal definition
of our in-network caching game and its solution.

Definition 3. An in-network caching game is a tuple (⌦,u0

),
where ⌦ ⇢ R|V | contains all the utility values obtainable via
collaboration, and u

0

⇢ R|V | contains all the disagreement
values leading to a negotiation breakdown.

Let ⌦e

⇢ ⌦ be the Pareto frontier of set ⌦, i.e. the potential
Pareto efficient solutions. We assume that ⌦e is also a concave
function with a closed compact convex domain. A game is
considered fair iff its outcome is fair. Therefore, we have:

Definition 4. A fair caching game is a game (⌦,u0

) with a
Nash bargaining solution, i.e. a function f : ⌦

e

!  such
that f(⌦,u0

) = (x,y) uniquely maximises
Q

vi2V (Ui � u0
i ).

By taking the logarithm of the objective function (1), we
have ln(max

Q
vi2V (Ui � u0

i )) = max ln(

Q
vi2V (Ui � u0

i )).
By taking the negation, NBS can be obtained equivalently by:

max

X

vi2V

ln(Ui � u0
i ) =) min

X

vi2V

� ln(Ui � u0
i ). (2)

B. Fairness Definitions
We argue that collaboration should follow the intuitive

concept of “fairness”, such that all caches receive fair utility
improvements through collaboration. This is critical to ensure
that node owners do not feel exploited and do not disengage
from the collaboration. Being Pareto efficient, alone, does not
achieve this. To attain fairness, it is necessary to formalise the

1Here, we assume that each individual node selfishly optimises. However,
our model can also support collective self interest amongst multiple nodes,
e.g. if several caches are owned by a single organisation.

concept. Three well-defined fairness metrics are often referred
to in the literature [13]–[15], i.e. Egalitarian (EF), Max-min
(MF) and Proportional (PF) fairness. EF pursues an equal
amount of improvement on every node, which usually creates
Pareto inefficiency (and is thus seldom used in practice). Both
MF and PF have axiomatic foundations and are widely used,
e.g. in traffic engineering. MF is a generalisation of KS, while
PF is a generalisation of NBS. Thus, we focus on PF, defined
as:

Definition 5. Proportional Fairness (PF): A caching strategy
(x

⇤,y⇤
) is PF iff 8(x,y) 6= (x

⇤,y⇤
) )

P
vi2V

Ui�U⇤
i

U⇤
i �u0

i
< 0.

A cache allocation is considered PF if the re-allocation of
any object would decrease the proportional utility gain (from
collaboration) of a node by less than the respective aggregated
increase for others. For example, imagine an object is re-
allocated from Cache 1 to Cache 2. It would not be fair if this
re-allocation reduces Cache 1’s utility by 20%, so that Cache
2 could increase its utility by just 3%. However, it would be
considered fair if Cache 2 could increase its utility by 60%.
Importantly, to be considered PF (and to incentivise uptake),
it is necessary for all caches to improve their performance
over local optimisation (e.g. Least Recently Used). Otherwise
collaboration would immediately breakdown in favour of local
algorithms. In our caching games, PF is guaranteed by NBS;
the proof is trivial and is available in [1].

IV. SOLVING A FAIR IN-NETWORK CACHING GAME

We next devise both centralised and decentralised optimal
solutions for achieving fair caching. We later use these to
evaluate our heuristic solution, FairCache. Due to space lim-
itations, we cannot present all the derivation and algorithm
details but rather focus on the key mechanisms. Please refer
to our online technical report [1] for further details such as the
fairness proof, convergence proof, complexity analysis etc.

A. Defining a Utility Function
In this paper, we assume that a cache’s utility is generated

from serving its users’ demand with low delay. For edge nodes,
this demand comes directly from clients, whereas for core
nodes this comes from their downstream customers. In either
case, uility could be improved by a router using its local cache,
or by redirecting a request to a nearby collaborative cache.
Both improve delay compared to following the deterministic
route to the origin. More precisely, vi’s utility is defined as:

Ui =

X

ok2O

skwi,kxi,k +

X

ok2O

X

vj2Ni

skwi,k

l⇤i,j + 1

yi,j,k (3)

Both terms show that the utility is a non-decreasing function
of demand and content size. The second term shows that the
utility of retrieving remote content decreases as the distance
increases. It indicates that a node prefers fetching from the
closest source to reduce latency and traffic footprint. Although
this affine utility function is used throughout the paper, any
other metric (e.g. bandwidth) or affine function can be used
to model the utility without change to our model. We leave
experimentation with these other metrics to future work.



B. Centralised Solution
We begin by outlining the optimal solution, which can be

computed centrally (e.g. on a software controller). Without
loss of generality, we assume unit object size sk = 1,2 also let
li,j , l⇤i,j +1 for simplicity of expression. Plugging in Eq. (3)
and Eq. (2), we define the optimisation problem as:

min

X

vi2V

� ln(

X

ok2O

wi,kxi,k +

X

ok2O

X

vj2Ni

wi,k

li,j
yi,j,k � u0

i ).

(4)Subject to
X

ok2O

xi,k  Ci, 8vi 2 V (5)

X

vj2Ni

yi,j,k  1, 8vi 2 V, 8ok 2 O (6)

yi,j,k  xj,k, 8vi, vj 2 V, ok 2 O (7)
xi,k 2 {0, 1}, 8vi 2 V, ok 2 O (8)
yi,j,k 2 {0, 1}, 8vi, vj 2 V, ok 2 O (9)

Constraint (5) means the content stored at a node cannot
exceed its cache capacity. Constraint (6) simplifies the data
scheduling by constraining a node to retrieve a maximum of
one complete object in a cache period. Constraint (7) says
vi can retrieve ok from vj only if vj has cached it; it also
says vi cannot get more than vj can offer. Constraints (8)
and (9) impose the domain of decision variables. This is
clearly a subset of the full range of practical constraints that a
cache infrastructure may embody; for example, a cache server
may suffer from limitations regarding availability of processor
cycles, network capacity or bus speed. We leave these to future
work, as currently content availability is the most prominent
bottleneck.

The above optimisation problem is a typical Integer Pro-
gramming program which is NP-Complete. By applying Lin-
ear Programming relaxation, we relax constraints (8) and (9)
by letting xi,k 2 [0, 1] and yi,j,k 2 [0, 1], so the original prob-
lem can be transformed into a linear programming problem.
We later round up/down xi,k and yi,j,k to construct caching
strategies. Such relaxation renders a suboptimal solution hence
is considered as the lower bound of the actual performance.
Regarding Eq. (4), since all the affine functions are log-
concave, its composite with logarithmic function preserves
concavity. Thus, the problem (4) is a convex optimisation
problem. The centralised solution can be derived by applying
standard convex optimisation techniques (see [1]). The solver
needs the demand matrix of each cache, cache size, content
object set, whole network topology and etc. as inputs. The
whole equation system has 3|O|·|V |

2
+2|O|·|V |+|V | variables

and the same number of equations. Thus, its computation is
non trivial.

C. Distributed Solution
The optimal centralised solution has obvious drawbacks in

its actual use: (i) it suffers from high computation complexity;

2In practice, object size could either be varied per-object or, alternatively,
objects can be separated into smaller fixed size units

(ii) it creates a single point of failure; and (iii) it is not adaptive
under network dynamics. Hence, we next translate it into a
distributed solution using decomposition techniques.

To solve an equation system, each node can be viewed
as a subsystem. If they simply optimise locally, all the cal-
culations in each subsystem are independent from those in
others. However, due to collaboration, there are variables and
constraints, which are referred to as complicating variables
and constraints [16]. These make calculations interdependent
and couple a subsystem with others. In problem (4), the only
complicating constraint is (7).

To decompose Eq. (4), we apply Lagrangian dual relaxation.
Lagrangian dual relaxation provides a non-trivial lower-bound
of a primal. The difference between the dual and the primal is
called the duality gap, which can be zero if certain conditions
are met as we show below. The Lagrangian L(·) : R2|O||V |2

!

R associated with objective (4) is defined as follows:

L(x,y,�) (10)

=

X

vi2V

[� ln(Ui � u0
i ) +

X

vj2Ni

X

ok2O

�i,j,k(yi,j,k � xj,k)].

� ⌫ 0 is the dual variable associated with constraint (7)
of objective function (4). Then the Lagrangian dual function
d(·) : R|O||V |2

! R is as follows:

d(�) = inf

x2X,y2Y
L(x,y,�). (11)

Given �, let x

⇤ and y

⇤ be the unique minimizers for the
Lagrangian (10) over all x and y. Then the dual function (11)
can be rewritten as d(�) = L(x

⇤,y⇤,�). By maximising the
dual function, we can reduce the duality gap. The Lagrangian
dual problem of the primal (4) is defined as:

max

�2R|O||V |2
d(�) = L(x

⇤,y⇤,�). (12)

The constraints for the dual are the same as those of the primal
except constraint (7) which has already been included in the
dual objective function (12). Because (4) is convex and all the
constraints (5)(6)(8) and (9) are affine, Slater’s condition holds
given a solution exists, and the duality gap is zero. Thus, when
the dual (12) reaches its maximum, the primal also reaches its
minimum. The optimal solution for primal problem (4) can be
derived from the optimal solution for dual problem (12).

After decomposition, each node vi now only needs to
optimise its utility locally for a given � by calculating:

minLi(x,y,�) = � ln(Ui � u0
i ) +

X

vj2Ni

X

ok2O

�i,j,k(yi,j,k � xj,k).

We use the standard projected subgradient method [16] to
derive the algorithm. Let h(�) and @d(�) denote the sub-
gradient and subdifferential of dual function d(·) at point �
respectively. Then for every hi,j,k 2 h(�) we have:

hi,j,k = y⇤i,j,k � x⇤
j,k =) h(�) 2 @d(�).

Gradient h , h(�) points to the direction where d(·) increases
fastest. In each iteration, node vi solves the local subsystem



(13) to update the dual variable �. t represents the tth iteration.
⇠t is the step-size in the tth iteration which can be determined
by several standard methods [16]. The projected subgradient
method projects � on its constraint (i.e. � ⌫ 0) in each
iteration, and we use (·)+ as a shorthand for the Euclidean
projection. Eventually �(t)

! �⇤ when t ! 1. The primal
solution can be constructed from the optimum �⇤. Combining
the above, we refer to Eq. (13) as the distributed optimal
algorithm:

8
><

>:

x

(t)
i ,y

(t)
i = argmin

x,y Li(x,y,�
(t)
)

h

(t)
= �(x

(t)
i � y

(t)
i )

�(t+1)
= (�(t)

+ ⇠t
P

vj2Ni[{vi} hj)+

(13)

Theorem 1. Optimal algorithm converges to its optimum as
the sequence {�(1),�(2) ... �(t)

} converges, if a diminishing
step size is used such that limt!1 ⇠t = 0 and

P1
t=1 ⇠t = 1.

The above theorem guarantees convergence [1]. �i,j,k can
be viewed as the “shadow price” of transferring ok from vj to
vi, which is a “cost” for vi but an “income” for vj . It is worth
emphasising that although the optimal algorithm distributes
the calculations over nodes, the overall computations are not
reduced. At the same time, the communication cost increases
significantly due to exchanging “shadow price” information.

V. FAIRCACHE: A LOW-COMPLEXITY HEURISTIC DESIGN

The computational cost of the distributed optimal algorithm
comes at the price of high communication overheads. To ad-
dress this, we propose FairCache, a heuristic algorithm which
does not require global knowledge of content and network. We
emphasise that FairCache is a decentralised algorithm for fairly
sharing cache capacity across multiple trusted stakeholders. It
is not intended to be a protocol, by which malicious behaviour
(e.g. falsifying content demand) can be prevented.
A. Overview of Heuristics

To understand the rationality behind our heuristic, we first
give a verbal explanation on the mechanisms of the optimal
algorithm expressed in Eq. (13). Recall � represents the
shadow price of transmitting an object between two nodes.
Each node hence maintains a list of prices for any given object
from any given node. In each iteration of the optimisation,
a node tries to minimise its total cost using �(t). During
the optimisation, the node adjusts its local caching strategy
(via x

i

and y

i

) and price list on other nodes (via � and h).
Namely, a node may decide to cache an object if it brings
significant improvement, or stop retrieving an object from
another node due to high cost. Meanwhile the node adjusts
the price on how to charge its neighbours by offering help.
Then the node collects the price adjustments from all others in
the network and updates its own list. The procedure continues
until the performance converges based on certain well-defined
criteria (as described next). Future updates are periodicly
shared to address changes in content popularity. As, generally,
popularity changes are relatively slow to occur (hours, rather
than minutes), this does not create considerable overheads.

Algorithm 1 Fair in-network caching (FairCache) on vi

1: Input:
2: Demand matrix w

3: Dual variables �
4: Search radius r = 0

5: Improvement threshold ✓, ✓0 (✓ = 10

�2
; ✓ < ✓0)

6: Output:
7: Caching decision xi

8: Collaboration decision yi

9: while ✓0 � ✓ and r < network diameter do
10: r = r + 1; t = 0;
11: while t < tstop do
12: xi, yi = argmin

x,y Li(x,y,�)
13: h = yi � xi; trim h

14: h = h+

P
8vj2Ni

hj

15: � = (�+ ⇠h)+
16: t = t+ 1

17: end while
18: Update ✓0 with current improvement
19: end while

The mechanisms above indicate that we can approximate the
optimal algorithm in the following ways:

(i) Cut out unpopular content: This approximation takes
advantage of the highly skewed content popularity distribution.
It is well-known that the popularity distribution has a long and
heavy tail and most content fall into the tail. Removing the tail
can significantly reduce the size of the exchanged messages.
Meanwhile, the results will not be significantly influenced
because of their marginal contribution to the overall utility
(whilst also reducing signalling overheads dramatically). Thus,
requests for unpopular content will be forwarded towards the
origin (as with vanilla NDN [2]).

(ii) Cut out distant nodes: This approximation takes
advantage of topological locality. Since the utility of retrieving
distant content is a decreasing function of the hop count
between two nodes, the value quickly diminishes as path
length increases. It is more likely to find the requested content
in nearby nodes due to content spatial locality [22]; removing
remote nodes should not have significant impact on the result.

(iii) Reverse direction: This approximation takes advantage
of the behaviours of gradient methods. In the optimal algo-
rithm, the neighbourhood gradually shrinks from the network
diameter (r) to its optimum (as a result of minimising the
cost function). However, most elements in y

i

are already set
to zero by the gradient method in the beginning phase of the
optimisation. Exchanging messages between nodes that are not
going to collaborate is a waste of resources. By growing the
neighbourhood set outwardly, instead of shrinking it, we can
avoid unnecessary message exchange.

B. FairCache Algorithm

We embed the above heuristics in our algorithm, FairCache,
presented in Algorithm 1. It takes several inputs. w is the
local demand matrix. r is for tracking the current number of



hops that defines a node’s neighbourhood radius. ✓0 is used
for recording the utility improvement by increasing the radius
from r to r+1, while ✓ is the threshold below which FairCache
should stop growing the neighbourhood size. � is the list
for tracking the shadow prices; this needs to be exchanged
amongst nodes (via price adjustment h) in a neighbourhood.

To apply the approximations, for node vi, instead of making
a complete price list, �, containing all the content and nodes
in the network, node vi makes a partial � which only includes:
(i) the most popular content that can be fit into its local cache
(i.e. heuristic (i)); and (ii) the nodes in the neighbourhood
defined by r (i.e. heuristic (ii)). It is possible that vi observes
other content in the hj , collected from neighbours while r
grows (i.e. heuristic (iii)), then vi dynamically adds those
content into its own �. vi can also remove items from � if they
are too expensive to retrieve. After local optimising in each
iteration, the price adjustment h will be trimmed before ex-
change by removing information that is not included in �; and
removing the unchanged items, i.e. the zero values. Essentially,
vi only exchanges the trimmed h within its neighbourhood and
� only contains the aggregated popular content in the neigh-
bourhood. Obviously, these approximations render incomplete
information (due to removing unpopular content and distant
nodes). To handle the missing �i,j,k in the local optimisation,
we let missing �i,j,k = 1 (i 6= j), which indicates that
the optimisation algorithm should neither exchange unpopular
content nor exchange content with distant nodes.

Looking more closely, FairCache consists of two loops. The
outer loop (line 9–19) increases the search radius r by one
hop in each iteration. The outer loop stops when the current
improvement, ✓0, drops below the threshold ✓ (i.e. ✓0 < ✓)
due to enlarging the neighbourhood. The inner loop (line 11–
17) finishes the local optimisation which is the calculations
in Eq. (13) for the given neighbourhood defined by the
current radius r. The communication overhead come from the
operation in line 14 which collects the price adjustments hj

from the neighbourhood Ni. Line 15 adjusts the local shadow
price list and updates the � by removing or adding items.

VI. FAIRCACHE EVALUATION

A. Methodology
To evaluate FairCache, we perform extensive simulations

using the publicly available LiteLab platform [17]. We use
several topologies. First, we use real topologies collected
by the Rocketfuel project [18]; namely, two ISP router-level
topologies: Sprint (604 nodes, 2,279 edges) and AT&T (631
nodes, 2,078 edges). Second, we use traces from Guifi [19].
Guifi is the largest open wireless community mesh network
in the world. It allows any user to purchase equipment and
become part of the network. We use its core network topology
in the Catalunya region (735 nodes, 1,059 edges). Third, to
allow us to vary key graph parameters, we also generate
synthetic networks based on two models: the Barabási-Albert
(BA) model and the Erdős-Rényi (ER) model. Four parameter
sets are used for these synthetic networks: {BA1 : m = 2},
{BA2 : m = 4}, {ER1 : p = 1.1 · log(n)/n} and

{ER2 : p = 1.5 · log(n)/n}. For each topology we attach
a single client to each edge router (i.e. with degree of 1).
This results in 161 clients in Sprint; 207 clients in AT&T;
and 200 in Guifi. We then randomly select between 10 and
20 distinct routers to attach a source to. Each router is then
allocated a given cache capacity, which we vary; the default is
4 GB, which is < 0.1% of the corpus. We select a low value
to be representative of feasible cache capacity in a wide area
network with a large corpus.

Using the above topologies, clients generate requests at each
simulation tick, which are then routed through the network to
either a content source or an intermediate cache based on the
strategy employed. We base our content set on the Youtube
trace from [20]. This contains 1,687,506 objects (average size
is 8.0 MB and aggregated size is 12.87 TB). We use the view
count information to fit a Zipf (↵) distribution (↵ = 0.9537) to
model the overall content popularity. To explore the impact of
different request patterns, we also perform sensitivity analysis
on ↵. Throughout this section, we use our distributed optimal
algorithm (i.e. Eq. (13)) as an optimal benchmark to compare
FairCache against. Each result is averaged over 50 runs;
errorbars are not plotted if they are sufficiently small (< 5%).

B. Scalability

We start by exploring scalability, measured by FairCache’s
convergence rate, i.e. how many rounds of message exchange
it takes the algorithm to bootstrap. This happens once at
initiation: future dynamics are addressed using periodic low
cost updates that are algorithmically trivial. Figure 2a com-
pares the convergence rates of the optimal (the upper figure)
and FairCache (the lower figure) on the real ISP and Guifi
topologies. The optimal needs significantly longer time to
bootstrap than FairCache. Unsurprisingly, larger cache sizes
also lead to a longer convergence time, as more state must
be exchanged. To investigate how network size impacts the
convergence rate, we use synthetic topologies with 4 GB
caches. The lines in Figure 2b are clearly divided into two
groups: the upper one is the optimal (with hollow markers)
and the lower one is FairCache (with filled markers). The con-
vergence rate degrades as the network size grows. Importantly,
though, the increase in convergence time only grows sub-
linearly, stabilising at networks of size 1k; we experimented
with topologies of upto 9k nodes to find consistent results.

We also measure FairCache’s scalability by its traffic over-
heads. Clearly, it is undesirable to require large amounts
of control message volume to bootstrap. In this experiment,
we measure the aggregated size of control messages for
both the distributed optimal and FairCache as CO and CF

respectively. We then calculate the traffic reduction as CO�CF

CO
.

Figure 2c presents a box plot of the results for both BA1

(upper boxes) and ER1 (lower boxes) topologies. It shows that
FairCache is able to achieve over 80% traffic reductions, even
on small networks of 100 nodes. As the network size increases,
the benefit of using FairCache becomes more obvious. In
a network of 900 nodes, FairCache attains 95% reductions.
This equates to significant traffic volumes; in one iteration,
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Fig. 2: Compared to the optimal algorithm, FairCache is more scalable on both real and synthetic networks. FairCache has a
faster convergence rate and generates less traffic overhead than the optimal. Meanwhile FairCache achieves high accuracy.

a 500 node network with 10

3 objects can save 887 MB of
control traffic via FairCache (leaving only 66.8 MB). With
FairCache, on average, each cache only introduces 136 KB
traffic overhead in an iteration. We can therefore combine the
above message overhead and convergence measurements to
calculate the convergence time. If we configure the rate of
control messages to 100 KB/s, FairCache takes 11 minutes
to bootstrap. This is just 4.6% of the time taken by the
distributed optimal algorithm. Given a saturated 54 Mbit link,
the FairCache control messages would consume just 1.4% of
traffic. Importantly, this is only a bootstrap process; changes
in request patterns are addressed with low cost updates within
each node’s neighbourhood. Even in highly dynamic situa-
tions, these updates constitute under 10 KB/s.

C. Accuracy

FairCache significantly reduces the convergence time and
messaging overhead of fairly allocating caching responsibil-
ities. These improvements potentially come at the cost of
accuracy (i.e. lower utility). We next inspect the accuracy
sacrifice required to obtain these improvements.

To measure the accuracy of FairCache, we compare it
against the optimal algorithm using multiple topologies of
different sizes. We first run the optimal algorithm and measure
the utility Ui for every node i. Similarly, we run FairCache
and measure the utility U 0

i . We then calculate the accuracy of
FairCache as its ratio to the optimal for every node, i.e. U 0

i

Ui
.

Figure 2d plots the per node CDF of this ratio. We can see
that FairCache achieves very high accuracy. For large networks
like Guifi, all the nodes achieve an accuracy of over 92%.
For medium size networks like Sprint, all the nodes have at
least 97% accuracy and about 50% of the nodes reach 100%
accuracy. We also measure the aggregated accuracy usingP

i U
0
iP

i Ui
. The aggregated accuracy is always above 95% and may

slightly degrade as the network size increases (i.e. 3% drop
from Sprint to Guifi). These findings are consistent across the
other topologies. To validate that these benefits continue to
be enjoyed by large topologies, we repeated the experiments
presented in Figure 2b on topologies ranging from 1k–9k
nodes. Again, we find very high levels of accuracy, stabilising
at 95%.

The results confirm the rationale behind the heuristics used

by FairCache. The approximation introduces almost negligible
degradation in the accuracy. The main reason is that the highly
skewed content popularity means that the bulk of caching de-
cisions are limited to the most popular objects. This means that
FairCache can attain high accuracy without requiring to share
information about all objects (unlike the optimal). Further,
by localising interactions to neighbouring nodes, FairCache
can scale-up easily, without be overly effected by increasing
network sizes.

D. Price of Fairness
FairCache aims to realise fair collaboration amongst nodes,

which could cause a degradation in aggregated global utility.
We use the Price of Fairness (PoF) to measure the loss
in utility. The PoF is calculated as the ratio between the
aggregated utilities of all nodes using FairCache and the global
optimal that does not consider fairness [21]. A higher PoF
value indicates a larger utility sacrifice.

Figure 3a and 3b plot the PoF results of using both real and
synthetic networks with three cache sizes. Both figures convey
the same information, which is that the PoF increases as
network size increases. We experiment with synethic networks
of up to 9k nodes, to find that the PoF stabilises after reaching
a size of ⇡3k nodes, with a maximum of PoF of 24% (and a
maximum of 20% in the real topologies, i.e. Guifi). This is
not negligible, but is likely not significant enough to dissuade
caches who are interested in fairness from using FairCache.
Interestingly, our results also show that increasing the cache
size is an effective way to ameliorate the loss in efficiency.
In Figure 3a, a 4 GB cache significantly improves the PoF.
Using a 2 GB cache, the PoF increases by 11% when the
network size increases from 100 to 900, whereas the PoF only
increases by 3% if a 4 GB cache is used. Figure 3b shows
similar properties, with, for example, a 57% improvement in
PoF when increasing the cache size from 2 GB cache to 4 GB
in Guifi. Despite of the promising results, we acknowledge that
further investigations are needed to back up our observations.

Overall, we believe that an average PoF of < 8% is a cost
worth paying for those concerned by a need for fairness.
E. Caching Performance

The previous section has shown that utility is reduced by
considering fairness. Next, we explore performance from the
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Fig. 3: FairCache achieves fairness by trading off some efficiency. However, large cache size can effectively reduce PoF. In
reality, FairCache is able to achieve very similar performance as Global, and is superior to Greedy in all cases.

perspective of traditional metrics: byte hit rate and footprint
reduction. Hit rate is a conventional metric to measure sav-
ing on inter-domain traffic, whilst footprint reduction is the
reduction on the product of traffic volume and distance.

We compare FairCache against two other strategies:
(i) Greedy, which computes the local optimal for each cache
without collaboration; and (ii) Global, which maximises the
aggregated utility. Figure 3c and 3d plot the results on the
real networks using 4 GB caches. Naturally, Figure 3c shows
that Global achieves the best hit rates due the fact that it opti-
mises the overall network. That said, FairCache only performs
slightly worse, with a 5%–10% performance degradation.
Compared to Greedy, FairCache is consistently superior with
at least a 28% improvement. This shows that, regardless of
fairness, FairCache can offer significant performance improve-
ments over local algorithms (note that Greedy is the theoretical
upper bound of algorithms such as Least Recently Used).
When inspecting the traffic footprint reduction, performance
is even higher. FairCache is superior in all networks. Although
the reasons are intuitive for Greedy, which sees nodes locally
optimising, it is more surprising in Global. The reason is that
FairCache only requests from nearby caches (limited by r). In
contrast, Global uses any node in the network. This increases
hit rates, but results in more traffic.

To have a closer look how utility is spread across caches,
we select the AT&T network and study the utility distribution
in the network (i.e. how are traffic savings distributed across
caches). Figure 4a plots the CDF of normalised utility values
across each node (normalised by the top value per simulation).
By comparing Greedy and FairCache, we see that every node
is better off through collaboration using FairCache (note this is
also the case across all other topologies and cache sizes). On
the other hand, the Global strategy intersects with both Greedy
and FairCache, i.e. some caches in Global get lower utility than
Greedy. The area between the lines indicates the percentage
of caches that are worse off due to global optimisation.
The Global strategy leads to 13% of nodes getting worse
off compared to Greedy, and 20% compared to FairCache.
With Global, these nodes should rationally cease to cooperate.
Again, regarding the aggregated utility, Global is only about
5% better than FairCache. Moreover, the CDF curve of Global
is more stretched than that of FairCache, which indicates there

are much larger variations in nodes’ utilities when using the
Global strategy, i.e. benefits are not evenly distributed.
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Fig. 4: Comparison of strategies on AT&T, 4 GB cache size.
Figure 4b shows the log-log plot of nodes’ normalised utility

as a function of betweenness centrality [7]. Nodes with a high
betweeness are core routers, whilst those with low betweeness
are usually found at the edge. Interestingly, when nodes use
the Global strategy, a node’s utility strongly correlates with
its position in the network: core nodes gain the highest utility.
This is because the Global optimal tends to place all the popu-
lar (i.e. high value) content at the core to reduce duplicates —
a theoretically attractive, but practically infeasible approach.
In contrast, FairCache significantly weakens this correlation.
This is beneficial as it means that utility is also increased at
the edge caches. As well as improving fairness, it also reduces
load in the backbone and provides consumers with lower delay
access to object. This also contributes to FairCache’s high
traffic reductions, as hits are pushed closer to clients.
F. Sensitivity Analysis of Spatial/Content Locality

FairCache’s heuristics take advantage of highly skewed
spatial and content popularity localities. A natural question
is how these localities impact the algorithm. To explore this,
we perform sensitivity analysis across these two parameters
to measure the robustness of our heuristics. Here, we solely
present the Guifi topology due to space constraints. The
reason we select Guifi is that the dataset contains geographic
coordinates of each node, allowing much more fine grained
analysis of spatial locality. We have confirmed that the results
are representative of the other topologies.

We use a Hawkes process-based algorithm [22] to generate
a user request trace. The algorithm is controlled by two
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Fig. 5: Experiments on the Guifi network, 4 GB cache size. We vary both content popularity skewness ↵ and spatial locality
factor � from 0.1 to 1. We observe a gradual and slow improvement in caching performance as spatial locality factor increases.
Both spatial locality and content popularity skewness have significant impacts on the accuracy and the traffic reduction.

parameters: a content popularity skewness ↵ and a spatial
locality factor �. ↵ controls the overall content popularity
which follows Zipf (↵). The spatial locality factor, � = 0,
means the request pattern reduces to an Independent Reference
Model; whilst � = 1 indicates very high spatial localisation
(i.e. requests for an object often occur in the same locale).

First, we inspect their impact on the caching performance
metrics. Figure 5 presents the results by varying both ↵ and
� in (0, 1]. From Figure 5a and 5b, we observe a shallow
improvement on byte hit rate and footprint reduction as �
increases. Specifically, they increase by only 6% and 8%

respectively when increasing � from 0.1 to 1. This suggests
that spatial locality is not a critical requirement for FairCache.

On the other hand, the popularity skew, ↵, has a more
significant impact on the accuracy and message reduction
of FairCache. Figure 5c shows that the average accuracy of
FairCache improves from 85% to 97% by increasing ↵ from
0.2 to 1. The speed of degradation of accuracy by decreasing
↵ also slows down at certain point (↵ = 0.4). The reason
is because the general popularity distribution gets closer to
a uniform distribution (due to a small ↵). Thus, items are
randomly requested, which means that each object has a
similar utility when being cached. Interestingly, this means
the overall utility of a cache will not vary much, though the
solution can be quite different from the optimal one.

Last, we inspect the messaging overhead of running Fair-
Cache, presented as the reduction in comparison to the dis-
tributed optimal solution again. In Figure 5d, we see that
both ↵ and � have a notable impact. Higher ↵ and � both
result in lower overheads (i.e. higher reductions). The reason
is that a smaller ↵ value leads to a more uniform popularity
distribution, which makes the demand matrices deviate more
from each other, which further leads to larger exchanged
messages for � values. The smaller � values have almost the
same effect on demand matrices as that of ↵. However, we also
notice that � has more significant impacts when ↵ is small.

VII. DISCUSSION AND LIMITATIONS

Deployment of FairCache raises a number of questions.
To ensure tractability, we have designed FairCache with a
number of assumptions that must be discussed. So far, we have

focussed on storage as the key bottleneck (i.e. whether or not
an object is locally stored). However, there are also a number
of other constraints that we have not considered yet. For
instance, hardware bottlenecks can render servers useless even
whilst in possession of content (e.g. CPU, I/O bus, congestion
collapse). As FairCache is aimed at situations where caches
are owned by separate organisations, it is likely that these
concerns will be of potential interest. Thus, deployment will
probably involve the integration of such considerations into our
model of fairness and utility. This could, for example, result in
caches actively storing the same object in an attempt to share
heavy load. Another simplifying assumption is the modelling
of delay using hop count (like BGP); whereas this is a useful
abstraction, it does not consider the variability introduced by
realtime congestion. We consider this an acceptable sacrifice
in most scenarios, although it is something future work should
explore. Another point worth highlighting is that we base
caching decisions on per-object popularity counts, therefore
introducing greater memory overheads. We emphasise, how-
ever, that our heuristic removes all unpopular content, making
such counts highly feasible (see our complexity analysis [1]).

Finally, a critical practical concern is the potential for
stakeholders to try to maliciously undermine FairCache. This
is because we require nodes to accurately report shadow prices.
FairCache was not intended to force stakeholders to collabo-
rate, or to protect against cheating; hence, we have assumed
that all nodes adhere to the FairCache algorithm. However,
if deployed, such complexities would need to be addressed.
In current inter-domain network protocols this problem is
handled using out-of-band trust establishment (e.g. RPKI
[30]). Equally, we envisage FairCache could rely on similar
principles, in which legally formed (potentially transitative)
collaboration agreements are underpinned by public key cryp-
tography. However, we delay such exploration to future work.

VIII. RELATED WORK

There are three key related areas of work: collaborative
caching, content delivery networks (CDNs) and game theo-
retical studies of caching. Collaborative in-network caching
has been proven as an effective methodology to improve
system performance in various contexts [4]–[10], [23], even



though edge caching has also been shown to be effective [24].
Previously proposed solutions are either limited by a cen-
tralised solver [4], [25] which makes scalability difficult, or
limited by distributed heuristics [5]–[10], [23], which neither
guarantees a global optimum nor Pareto efficiency. FairCache
is most related to the latter in that we do not guarantee a
global optimum; however, we build on their contributions
by introducing the concept of fairness and ensuring Pareto
efficiency. Importantly, we also reveal the need for fairness to
encourage engagement by cache operators.

The current solution used for Internet-scale content delivery
are CDNs. They hold many similarities to ICNs [24], however,
unlike our proposal, they are not collaborative entities. Typ-
ically, they are operated by distinct companies that deploy
independent infrastructures. Some, like Akamai, sell their
capacity to third party content providers (arguably a form of
collaboration), whilst others build dedicated infrastructures for
their own content (e.g. Google, Facebook, Netflix). Recent
work within the IETF has endeavoured to support inter-
CDN cache sharing [31], however, this only provides protocol
support, rather than algorithms to decide when, where and how
caches should be shared. Hence, our work is orthogonal, and
could be applied to CDNs.

Recent work [25]–[29] applies game theory to study in-
network caching. In these papers, the caching problem is mod-
elled as non-cooperative, pure strategic games and the equi-
librium is analysed. Unlike us, these work take a system-level
utilitarian approach that aims to achieve a global optimum. In
contrast, we focus on attaining fairness amongst nodes. More
related to us is [25], [26], [28], which look at how selfishness
drives nodes to act. These studies show how selfishness impact
the equilibrium and efficiency in cache systems (measured by
the Price of Anarchy). They also show that the global optimum
is seldom achieved due to lack of coordination and nodes’
inherent selfishness. Again, fairness is overlooked though; we
introduce this as an integral requirement of cooperation.

IX. CONCLUSION

To date, studies of collaborative ICN caching have focussed
on traditional metrics such as hit rate, assuming that nodes
are happy to contribute to achieving a global optimum. In this
paper, we have argued that practical situations are unlikely
to adhere to this model. Instead, caches operated by separate
stakeholders will expect a reasonable level of fairness, where
they are not penalised for cooperating with others. We began
by delineating an optimal solution, which ensures no node
attains lower utility by collaborating. To address its high
complexity, we have also proposed a heuristic algorithm,
FairCache, which we have shown achieves high performance
at a fraction of the cost. Unlike past work, FairCache offers
Pareto efficiency and proportional fairness, ensuring that all
nodes are incentivised to collaborate. As well as helping
to promote cooperation, our results show that proportional
fairness plays a key role in balancing network traffic too.
It helps maintain more hits at the edge, rather than globally
optimal solutions that centralise hits in the core. We are not

prescriptive in how FairCache is deployed and have ensured
that it can be used either globally or amongst a subset of
collaborating nodes. Hence, our key take-home message is that
future collaborative caching designs should cease to assume
purely altruistic cooperation and, instead, be explicitly built
around the concept of fairness. There are a number of avenues
of future work. The most prominent challenge is implementing
a FairCache protocol that is robust against cheating. However,
there are several other real-world concerns that we wish to
integrate into FairCache, e.g. considering link dynamics and
bandwidth constraints.
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