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Abstract 42 

Species extinctions are accelerating globally, yet the mechanisms that maintain local 43 

biodiversity remain poorly understood. The extinction of species that feed on or are 44 

fed on by many others (i.e. ‘hubs’) has traditionally been thought to cause the greatest 45 

threat of further biodiversity loss. Very little attention has been paid to the strength of 46 

those feeding links (i.e. link weight) and the prevalence of indirect interactions. Here, 47 

we used a dynamical model based on empirical energy-budget data to assess changes 48 

in ecosystem stability after simulating the loss of species according to various 49 

extinction scenarios. Link weight and/or indirect effects had stronger effects on food 50 

web stability than the simple removal of ‘hubs’, demonstrating that both quantitative 51 

fluxes and species dissipating their effects across many links should be of great 52 

concern in biodiversity conservation, and the potential for ‘hubs’ to act as keystone 53 

species may have been exaggerated to date.  54 

55 



4 

Introduction 56 

Biodiversity loss is a major threat to Earth’s ecosystems (Barnosky et al. 2011) and it 57 

is crucial to identify and conserve influential ‘keystone’ species or nodes, whose loss 58 

would cause the cascading extinctions of many other species (Dunne et al. 2002; 59 

Jordán 2009). Theoretical and empirical approaches to studying the importance of 60 

interactions among species in maintaining biodiversity recognize that there is a bi-61 

directional component to every interaction that gauges the separate impacts of one 62 

species on the dynamics of another (May 1972; Tang et al. 2014). For every direct 63 

interaction, the consumer will have a negative effect on the resource and the resource 64 

will have a positive effect on the consumer. Simple binary measures of interaction 65 

strength have been used to identify ‘hubs’, i.e. highly connected nodes with a high 66 

degree centrality (Dunne et al. 2002; Memmott et al. 2004; Dunne & Williams 2009). 67 

Selective removal of nodes with the most trophic links in a network typically causes 68 

more secondary extinctions than random removal of nodes (Dunne et al. 2002; 69 

Memmott et al. 2004; Dunne & Williams 2009). However, this index of node 70 

importance based on degree centrality ignores two major components of food webs: 71 

the strength or weight of the links and indirect effects (Scotti et al. 2007). This can 72 

lead to an inaccurate ranking of species importance, such that removing the most 73 

connected nodes does not necessarily identify the most destructive extinction 74 

sequence (Allesina & Pascual 2009). 75 
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There has been a tradition of binary descriptions in many network studies, 76 

reflecting the relative ease of data collection, but there is a growing appreciation that 77 

this qualitative network structure is often uninformative (Jordán et al. 2006). An 78 

increasing number of studies now consider weighted networks in ecology (Jordán et 79 

al. 2006; Borrett 2013; Ulanowicz et al. 2014), which can dramatically alter the 80 

conclusions about node importance (Scotti et al. 2007; Jordán 2009). In many 81 

quantitative food webs, link weights (i.e. the strength of trophic interactions) have 82 

been estimated based on the biomass, numbers of individuals, or carbon flows 83 

between species or compartments (Moore et al. 1993; Jordán et al. 2006; Borrett 84 

2013). These quantitative approaches are arguably more robust than binary methods, 85 

but are not without criticism (Paine 1980). For example, controlled removal studies 86 

have demonstrated empirically that material flow does not always translate directly to 87 

the impacts that interaction strength purports to capture (Woodward et al. 2005). 88 

Indirect effects describe the impact of one species on another that is mediated 89 

by a third species (Montoya et al. 2009), and their importance for the maintenance of 90 

structure, stability, and biodiversity in food webs has been increasingly emphasised 91 

(Bukovinszky et al. 2008; Woodward et al. 2008; Sanders et al. 2013). Both empirical 92 

(Sanders et al. 2013) and theoretical (Stouffer & Bascompte 2011; Säterberg et al. 93 

2013) studies show that secondary extinctions can occur even when a species is more 94 

than one trophic link away from the primary extinction. Recent studies that used a 95 

static structural approach showed that direct and indirect indices provide quite 96 
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different rankings of node importance in networks (Scotti et al. 2007; Jordán 2009) 97 

and we do not know which of the indices performs best at identifying keystone 98 

species for maintaining biodiversity.  99 

There are two main approaches to simulating the cascading extinctions that 100 

occur after primary removals: topological and dynamical analyses (Eklöf & Ebenman 101 

2006). Both approaches have strengths and weaknesses: the former considers only 102 

binary network structure and so is easier to parameterise, whereas the latter takes into 103 

account both link structure and changes in species abundance through time 104 

(Curtsdotter et al. 2011). In topological models, secondary extinctions emerge from 105 

bottom-up cascades (Eklöf & Ebenman 2006). In a natural system, the loss of species 106 

can also cause top-down extinction cascades (Elmhagen & Rushton 2007; Säterberg 107 

et al. 2013), meaning that the full range of indirect effects are not covered and food 108 

web robustness is often overestimated (Curtsdotter et al. 2011). We chose the 109 

dynamical approach here and we simulated natural communities using parameter 110 

values derived from empirical data, which should provide more realistic outcomes 111 

than can be derived from simulating purely artificial communities (Curtsdotter et al. 112 

2011). Furthermore, both top-down and bottom-up effects are possible in the 113 

dynamical approach, therefore extinction cascades in both directions could be 114 

detected. We expect the assessment of node importance indices using the dynamical 115 

approach should bring new insights into the magnitude and extent of secondary 116 

extinctions.  117 
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We compared the performance of four different ranking scenarios (considering 118 

direct effects only, both direct and indirect effects, weighted direct effects only, and 119 

weighted direct and indirect effects) at identifying taxa that maintain biodiversity. 120 

Considering the importance of link weight and indirect effects, we expect the nodes 121 

with large carbon flux or dissipating their effects across many nodes would be 122 

influential. We hypothesised that the indices considering weighted links and/or 123 

indirect effects would perform better than the more traditional measures: i.e. more 124 

secondary extinctions will be caused in deletion sequences ordered by link weight, 125 

direct plus indirect effects, or both. 126 

 127 

Materials and methods 128 

QUANTITATIVE FOOD WEBS 129 

We analysed 20 of the 50 aquatic food webs from a recently published database (see 130 

Table 1; Salas & Borrett 2011; Borrett 2013). The extraction criteria were as follows: 131 

1) small networks (containing no more than 10 nodes) which are easily collapsed 132 

were excluded; 2) each dataset was from a distinct study system to avoid 133 

pseudoreplication of similar networks from the same location (e.g. we randomly 134 

chose one web from Florida Bay Dry Season and Florida Bay Wet Season).  135 

The data for each food web include a list of taxa, the carbon biomass of each 136 

taxon (g C m-2), the carbon per unit time of import, export, and respiration of each 137 

taxon (g C m-2 day-1), and the carbon flux between a pair of taxa (g C m-2 day-1). The 138 
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dataset was archived in the ‘enaR’ package in R (Borrett & Lau 2014). Nodes 139 

represent species, trophic guilds, functional groups, or non-living components of the 140 

system in which matter is stored. Initially unbalanced food webs, i.e. energy entering 141 

a taxon does not exactly balance the output, were balanced using the AVG2 algorithm 142 

using established procedures in Matlab 7.12.0 (Allesina & Bondavalli 2003). Our 143 

focal food webs exhibit a wide range of network complexity, indicated by taxon 144 

richness (S = 12-125), binary directed connectance (C = 0.094-0.366), and weighted 145 

directed connectance (Cw = 0.029-0.184), but all of these were within the range 146 

reported for other recently described catalogues (see Table 1; cf. Williams & Martinez 147 

2000; Ings et al. 2009). Binary directed connectance is a qualitative descriptor based 148 

on binary networks, which measures the proportion of possible links between taxa 149 

that are realized; weighted directed connectance Cw is a quantitative descriptor based 150 

on Shannon’s entropy (Banašek-Richter et al. 2009; see Appendix S1 for details).  151 

FOOD WEB DYNAMICS 152 

The model was constructed based on energy budgets that index the carbon fluxes 153 

entering and leaving each taxon. The imports and exports via animal migration and 154 

water flows are considered to be in balance and not to influence the food web 155 

dynamics, similar to many other dynamical models (Moore et al. 1993; Hudson & 156 

Reuman 2013). Generally the taxa in the system can be divided into four categories 157 

(see Fig. S1): producers, consumers, decomposers, and non-living compartments (i.e. 158 

detritus). 159 
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The change in biomass of producers can be described as: 160 

i
i i i ij j i i

j herbi

dB
r B G B d B

dt 

                        (1) 161 

Here, ‘herbi’ are herbivorous taxa, r is the maximum specific or intrinsic growth rate, 162 

Gi is the growth model, following 1 /i j

j pro

G B K


   . Here ‘pro’ are producer taxa, 163 

and K is the carrying capacity. The value of K is considered as the total initial 164 

producer biomass in the community multiplied by a term 10k0. The carrying capacity 165 

coefficient k0 was set to follow the distribution U[0, 3] (after Hudson & Reuman 166 

2013). Φij is the functional response when taxon j consumes taxon i (see below for 167 

more details), and d is the specific death rate. The biomass of producer taxon i is 168 

increased by photosynthesis and decreased by inter-taxon competition, consumption, 169 

and non-predatory death.  170 

The change in biomass of consumers (including herbivores and predators) can 171 

be depicted as: 172 

i
i ji i ij j i i

j res j pred

dB
a B B x B

dt  

                  (2) 173 

Here, ‘res’ means resource taxon, ‘pred’ means predator taxon, a is the assimilation 174 

efficiency, and x is the respiration rate. The biomass of consumer taxon i is increased 175 

by assimilation of consumed resources and decreased by predation and respiration.  176 

The change in biomass of decomposers can be depicted as: 177 

i
i ji i ij j i i

j det j pred

dB
a B B x B

dt  

                  (3) 178 



10 

Here, ‘det’ are detrital taxa. The biomass of decomposer taxon i is increased by 179 

assimilation of consumed detritus and decreased by predation and respiration.  180 

In some food webs, detritus has been divided into separate compartments. For 181 

example, there are three detrital taxa in the Florida Bay ecosystem: water particulate 182 

organic carbon (POC), benthic POC, and dissolved organic carbon (DOC). The 183 

change in biomass of each detrital taxa can be described as: 184 

( )i
ji j j ji j j kj ji j ij j ij i

j pro j con k res j det j dec j det

dB
p d B p e B c B B c B

dt      

              (4) 185 

Here, ‘con’ are consumer taxa and ‘dec’ are decomposer taxa, pji is the proportion of 186 

converted detritus i to the total amount of detritus converted from taxon j, e = (1 – a) 187 

is the egestion rate, and cji is the conversion coefficient from detrital taxon j to detrital 188 

taxon i. Here we consider that the amount of faeces, i.e. the unassimilated fraction of 189 

prey killed, is proportional to the amount of predation (Moore et al. 1993; de Ruiter et 190 

al. 1995; Moore & de Ruiter 2012). The biomass stored in detrital taxon i is increased 191 

by the dead bodies of producer taxa, the faeces of consumer taxa, and the conversion 192 

from other detritus, and decreased by consumption of decomposer taxa and 193 

conversion to other detritus. The meanings and calculations of the parameters listed 194 

above (except the functional response Φ which was given below) can be found in 195 

Table 2. 196 

FUNCTIONAL FORMS 197 

The functional response Φij was set to follow either a nonlinear form or a linear form. 198 

The nonlinear form was set as follows (see Hudson & Reuman 2013): 199 
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h

j ij i

ij h h h

j j j j kj k

k res

y B

H q B H B






 
  

      (5) 200 

Here yj is the maximum consumption rate of taxon j and ωij is the preference of taxon 201 

j for taxon i. For a consumer j, / h

ij ij iF B  . Fij is the carbon flux from taxon i to 202 

taxon j, which was contained in the empirical data. Given that 1ij

i res




 , we can 203 

calculate ωij as: 204 

/

/

h

ij i

ij h

kj k

k res

F B

F B







                      (6) 205 

Hj is the half-saturation density, which was one order of magnitude either side of the 206 

mean of all biomasses in the community being simulated (Hudson & Reuman 2013). 207 

That means 10b

jH B . Here b is a coefficient following the distribution U[-1, 1].  qj is 208 

the predator interference coefficient, which was randomly chosen from 0 to 100 209 

(Hudson & Reuman 2013). h is the hill exponent that regulates the shape of the curve 210 

from Holling type II (h = 1) to Holling type III (h = 2). We chose the value of h 211 

randomly from 1 to 2. 212 

Notice that 
ij ij jF B , combining Eq. 5, and we can calculate the value of yj 213 

by: 214 

( )h h h

ij j j j j kj k

k res
j h

ij i j

F H q B H B

y
B B






 




                    (7) 215 

We ran 1,000 simulations for each food web. The values of parameter b, q, and h for 216 

each simulation were chosen randomly from their ranges, i.e. U[-1, 1] for b, U[0, 100] 217 

for q, and U[1, 2] for h. 218 
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To increase the generality of our model, we also applied the linear functional 219 

response, i.e. the Holling type I. The linear form of the functional response Φij is: 220 

ij ij if B                         (8) 221 

Here fij is the feeding rate coefficient when taxon j consumes taxon i. The value of fij 222 

can be got by: 223 

ij

ij

i j

F
f

B B
          (9) 224 

SEQUENTIAL NODE DELETIONS 225 

Following the framework of Scotti et al. (2007), but using the whole food web 226 

dynamical model, we compared four different rankings based on the presence or 227 

absence of information on indirect effects and weighted links. Here, we ordered nodes 228 

by their: 1) maximum unweighted direct effect (Max.D); 2) maximum unweighted 229 

direct plus indirect effect (Max.DI); 3) maximum weighted direct effect (Max.wD); 230 

and 4) maximum weighted direct plus indirect effect (Max.wDI). Unweighted direct 231 

effect is defined as the degree centrality of a node (i.e. the number of its direct 232 

neighbours including both consumers and resources), while weighted direct effect of a 233 

node is defined as the total amount of its inward and outward carbon fluxes. The 234 

unweighted direct plus indirect effect is the mean of effects originating from one 235 

taxon in a binary network, while weighted direct plus indirect effect has the same 236 

meaning but in a weighted network.  237 

 The method for quantifying the direct plus indirect effects has been used in 238 

both undirected (Jordán et al. 2006; Jordán 2009) and directed networks (Scotti et al. 239 
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2007). First, we calculated the direct plus indirect effects in unweighted networks. We 240 

defined an,ij as the effect of taxon j on taxon i when i can be reached from j in n steps. 241 

The simplest case of calculating an,ij is when n = 1:  242 

1,

1

ij

ij D

ij

j

b
a

b





             (10) 243 

where bij is the element of the qualitative feeding matrix. Here 1, , ,1/i j i outa D  if 244 

species j is a consumer and 1, , ,1/i j i ina D   if species j is a resource. ,i inD  is the number 245 

of resources for taxon i while ,i outD  is the number of consumers for taxon i. 246 

Furthermore, we define the n-step effect originating from species i by the following 247 

formula: 248 

, ,

1

S

n i n ji

j

a


             (11) 249 

The direct and indirect effects originating from species i up to n steps are considered 250 

as: 251 

,,
1 11

n Sn

m jim i
m jn m

i

a

DI
n n


  


          (12) 252 

which represents the sum of effects originating from species i up to n steps averaged 253 

over by the maximum number of steps considered. Here we considered a maximum of 254 

five-step long indirect effects, i.e. n = 5. As the strength of indirect effects decreases 255 

dramatically with distance (Berlow et al. 2009; Borrett et al. 2010; Stouffer & 256 

Bascompte 2011), up to five steps is sufficient to get their precise value (Scotti et al. 257 

2007; Borrett et al. 2010). For a weighted network, all the effects are defined in the 258 
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same way as above except that the value of bij is the amount of biomass flowing from 259 

taxon i to taxon j.  260 

We simulated taxon loss for each food web by sequentially removing taxa. We 261 

used the Adaptive Runge–Kutta method with adaptive step sizes to perform numerical 262 

simulations. In each simulation, the empirical biomass data were employed to give the 263 

initial biomass values. 1,000 days were simulated first, to allow transient dynamics 264 

caused by initial effects to settle down and let the system reach steady state (Hudson 265 

& Reuman 2013). Then we started the sequential deletions, which can be seen as a 266 

stepwise process: 1,000 days were simulated after each deletion, and secondary 267 

extinctions during this time were recorded. Before adding a new step, the deletion 268 

sequences were updated, as the extinctions in the former step would change network 269 

structure and carbon fluxes among the surviving taxa. During the simulation, a species 270 

was considered to be extinct if its biomass fell to <10-30 g C m-2 (Berlow et al. 2009). 271 

We did not remove any detrital nodes in the extinction sequence (Staniczenko et al. 272 

2010) to guarantee that energy cycling would occur during the simulations, which 273 

thus continued until only detrital nodes were left in the web. Note that an established 274 

food web may persist for a long period without autotrophs if detrital taxa have 275 

accumulated sufficient carbon storage to sustain detritus-based organisms (see 276 

Appendix S2). 277 

MEASURES OF STABILITY 278 
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We employed two indices to characterize the stability of food webs: robustness (R50), 279 

and survival area (SA). Robustness was quantified as the proportion of species 280 

subjected to primary removals that resulted in 50 percent of total species loss, which 281 

is commonly used in such analyses (Dunne et al. 2002; Dunne & Williams 2009; 282 

Curtsdotter et al. 2011). A higher value of R50 means fewer secondary extinctions and 283 

thus higher stability. SA is the area under the curve resulting from plotting the number 284 

of surviving taxa, NP, having occurred at a specific number of primary deletions, p. SA 285 

is calculated as 286 

1

2

lS

pp

l

N
SA

S





        (13) 287 

where Sl is the number of living taxa in the original food web. The value of SA meets 288 

the term SA + EA = 1, where EA means extinction area as used in prior studies 289 

(Allesina & Pascual 2009; Curtsdotter et al. 2011). Here we chose SA rather than EA 290 

because it exhibits a positive relationship with stability, i.e. a higher value of SA 291 

indicates higher stability. All numerical simulations and calculations were carried out 292 

in Matlab (version 7.12.0). 293 

STATISTICAL PROCEDURES 294 

We conducted 1,000 Monte-Carlo simulations for each web and for each node-295 

ordering index, with four parameters (h, k0, b, and q) varying randomly in each 296 

replicate (1,000 replicates × 20 webs × 4 indices = 80,000 simulations). We separately 297 

compared the effects of the four indices (Max.D, Max.DI, Max.wD, and Max.wDI) on 298 

R50 and SA using a linear mixed effects model (LME) with a maximum-likelihood 299 
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estimator (function ‘lme’ with ‘method = ML’ within the ‘nlme’ package in R 3.2.3). 300 

Food web identity was included in the model as a random factor to correct for 301 

differences between study systems. Post-hoc comparisons were applied using the 302 

Tukey HSD test at α = 0.05 level of significance (function ‘glht’ within the 303 

‘multcomp’ package). Since robustness and connectance are logarithmically related 304 

(Dunne et al. 2002), we explored the relationship between stability and log 305 

transformations of the measures of complexity (i.e. S, C, and Cw), using the functions 306 

‘lm’ and ‘cor’ in the ‘stats’ package. 307 

 308 

Results 309 

With the nonlinear functional response, the four deletion orders produced 310 

significantly different values of R50 (Fig. 1a, LME: F3, 57 = 13.07, P < 0.001). Deletion 311 

orders Max.DI, Max.wD, and Max.wDI had significantly lower values of R50 than 312 

order Max.D (Tukey test, see Table S1). There was no significant difference of R50 313 

among the three deletion orders Max.DI, Max.wD, and Max.wDI (Tukey test, Table 314 

S1). The four deletion orders also produced significantly different values of SA (Fig. 315 

1b, LME: F3, 57 = 12.072, P < 0.001). Again, the three new indices led to significantly 316 

lower values of SA than Max.D (Tukey test, Table S1). Using a linear functional 317 

response led to significantly lower stability than the nonlinear form (LME: F1,79 = 318 

98.974, P < 0.001 for R50; F1,79 = 101.338, P < 0.001 for SA). The comparison of the 319 

four deletion orders produced similar results to the nonlinear functional response, 320 
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however, with significantly different values of R50 (Fig. S2a, LME: F3, 57 = 12.520, P 321 

< 0.001) and SA (Fig. S2b, LME: F3, 57 = 25.048, P < 0.001), while Max.DI, Max.wD, 322 

and Max.wDI led to significantly lower stability than Max.D (Tukey test, Table S1). 323 

Further analyses showed that different values of the four free parameters (h, k0, 324 

b, and q) in the nonlinear functional form did not alter our major conclusion for both 325 

R50 and SA (Fig. S3-S6), i.e. deletions in Max.D led to significantly higher stability 326 

than the three new indices in all groups (Tukey test). With the linear functional 327 

response, the change of the only free parameter (k0) also did not alter this conclusion 328 

(Fig. S7).  329 

There was no significant difference in the connectivity of nodes that went 330 

secondarily extinct compared with the average value of those that remained (Fig. 2a; 331 

t19 = 0.31, P = 0.762 for Max.D; t19 = 0.44, P = 0.667 for Max.DI; t19 = 1.65, P = 332 

0.115 for Max.wD; and t19 = 1.44, P = 0.167 for Max.wDI). There was a significant 333 

difference in the link weight of nodes that went secondarily extinct compared with the 334 

average value of those that remained (Fig. 2b; t19 = -14.47, P < 0.001 for Max.D; t19 = 335 

-12.66, P < 0.001 for Max.DI; t19 = -19.03, P < 0.001 for Max.wD; and t19 = -18.40, P 336 

< 0.001 for Max.wDI). Most (54-71%) secondary extinctions were caused by indirect 337 

effects (the pink, yellow, and purple groups in Fig. 2c). Bottom-up cascades, which 338 

are the only cause of collateral losses in the topological approach, accounted for about 339 

40% of secondary extinctions (the red and pink groups in Fig. 2c). 340 
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Across all 20 food webs, the stability indicated by R50 and SA under the four 341 

deletion orders with the nonlinear functional response varied significantly with S and 342 

Cw, but rarely with C (Table 3 and Fig. 3). More specifically, R50 and SA decreased 343 

with increasing Log S (except SA in Max.D) and with decreasing Log Cw (Table 3). 344 

There was no significant effect of the different deletion orders on the slopes of Log 345 

R50 versus Log S (Two-way ANOVA: F3,72 = 0.31, P = 0.821) and Log Cw (F3,72 = 346 

0.07, P = 0.977). Similarly, there was no significant effect of the different deletion 347 

orders on the slopes of Log SA versus Log S (F3,72 = 0.34, P = 0.795) and Log Cw 348 

(F3,72 = 0.09, P = 0.968). The same patterns emerged from the dynamical models 349 

based on a linear functional response (Fig. S8). Although food web stability increased 350 

with decreasing food web size, we found that the inevitable decrease in the size of a 351 

food web during the deletion process seldom affected our conclusion (see Appendix 352 

S3). 353 

 354 

Discussion 355 

In the last few decades, the influence of random loss of nodes (‘error’) and selective 356 

loss of the most-connected nodes (‘attack’) has been investigated in many real-world 357 

networks, e.g. the Internet (Albert et al. 2000). All of these networks exhibit high 358 

fragility against the removal of the most-connected nodes (i.e. ‘hubs’), which in an 359 

ecological context suggests these nodes would represent keystone species that play an 360 

important role in maintaining biodiversity (Dunne et al. 2002; Memmott et al. 2004; 361 
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Dunne & Williams 2009). However, this conclusion is drawn based on topological 362 

approaches that always underestimate the amount of secondary extinctions 363 

(Curtsdotter et al. 2011). Recent studies using a static structural approach have found 364 

that node ordering would be altered when considering link weight or indirect effects 365 

(Jordán et al. 2006; Scotti et al. 2007; Bauer et al. 2010), suggesting the possibility of 366 

more useful centrality indices. Using a food web dynamical model derived from 367 

empirical energy budget data, we found that network stability was significantly lower 368 

when deletions were ordered by indirect effects, link weight, or both, compared with 369 

the ordering by unweighted degree centrality (see Fig. 1). Furthermore, poorly-370 

connected nodes faced the same extinction risk as highly-connected nodes, while 371 

nodes with low link weight were more likely to go extinct secondarily (see Fig. 2a-b), 372 

indicating the failure of degree centrality and the importance of weighted indices. 373 

Over 50% of secondarily extinct nodes were not directly connected to the removed 374 

nodes (see Fig. 2c), emphasizing the need to consider indirect effects. These findings 375 

suggest that indices considering link weight and indirect effects are better descriptors 376 

of centrality in food webs than the traditional binary, direct-link measure. Moreover, 377 

our findings were robust to different forms of the functional response and different 378 

values of the hill exponent, carrying capacity coefficient, half-saturation coefficient, 379 

and predator interference coefficient, suggesting a high level of generality. 380 

The uneven distribution of interaction strengths in food webs (O'Gorman et al. 381 

2010) provides a cautionary note when interpreting results derived from analyses of 382 
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simple binary networks (Banašek-Richter et al. 2009). It is generally assumed that 383 

specialised species tend to have strong connections while generalised species have 384 

weak interactions (Wootton & Emmerson 2005) and hence weaker net effects 385 

(Montoya et al. 2009; O'Gorman et al. 2010) and different contributions to network 386 

structure and stability relative to poorly connected species. We found that species 387 

removals ordered by link weight led to a >30% reduction in network stability relative 388 

to direct unweighted orderings. This conclusion is important because it suggests that 389 

studies focused solely on direct, unweighted indices for identifying key species in 390 

food webs may have severely overestimated the relative importance of degree 391 

centrality and, while successfully identifying topologically important nodes, they may 392 

fail to detect functionally important ones. Notice that considering weights did not add 393 

anything to the conclusion as long as indirect effects were considered, which might be 394 

caused by the significant correlation between Max.DI and Max.wDI in 18 of the 20 395 

food webs (Spearman rank correlation = 0.557 ± 0.037; mean ± SEM). 396 

Most empirical studies only contain qualitative food web data due to logistical 397 

constraints in collecting quantitative information on link weights, although the 398 

situation is improving (Ings et al. 2009). Our results show that food web stability is 399 

significantly lower after removals ordered by both unweighted direct and indirect 400 

effects than by direct effects alone. Thus, in the absence of quantitative data, an 401 

understanding of indirect effects will give a more realistic view of species importance 402 

than in a network constructed solely from direct link information. This is perhaps 403 
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unsurprising, given that indirect effects can often be stronger than direct effects in 404 

food webs (Werner & Peacor 2003; Salas & Borrett 2011). Trophic cascades and 405 

apparent competition are the best known examples of indirect effects (Montoya et al. 406 

2009). Indirect effects have also been regarded as important drivers of secondary 407 

extinctions in a recent empirical study (Sanders et al. 2013). In our study, indirect 408 

effects accounted for over 50% of the secondary extinctions (Fig. 2c). This implies 409 

that not only neighbouring links, but also neighbours of neighbours need to be 410 

considered to better understand how species losses propagate. For example, in the 411 

well-studied Chesapeake ecosystem, zooplankton have the most direct links to other 412 

taxa, whereas bacteria in sediment POC have the strongest direct plus indirect and 413 

weighted effects (see Table S2 for the other food webs).  414 

The hypothesis that diversity may give rise to ecosystem stability has led to 415 

more than half a century of heated debate in ecology (May 1972; Tilman et al. 2006). 416 

Many experiments have shown that higher diversity is associated with a reduction in 417 

temporal variability (i.e. increased temporal stability; Tilman et al. 2006; Cardinale et 418 

al. 2009), but the opposite may be true when considering other measures of stability 419 

(Donohue et al. 2013). Our study demonstrated a negative relationship between 420 

species richness and the robustness of food webs to secondary extinction under all 421 

four of the deletion scenarios, suggesting that even species-rich ecosystems can be 422 

vulnerable to cascading extinctions. A possible explanation for this is density 423 

compensation, i.e. population densities decrease with increasing species richness 424 
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because of the increased intensity of interspecific competition (Borrvall & Ebenman 425 

2008; Kaneryd et al. 2012). Our data showed a strong negative correlation between 426 

average biomass densities and taxon richness (Fig. S9, Pearson correlation coefficient 427 

r = -0.95, P < 0.001), which supported this hypothesis. As a consequence, species are 428 

more easily excluded because they are closer to their extinction threshold, a finding 429 

consistent with previous dynamical-analyses (Borrvall & Ebenman 2008; Kaneryd et 430 

al. 2012).  431 

We found a strong positive relationship between weighted directed 432 

connectance, Cw, and food web stability, but a surprisingly weak relationship with 433 

binary directed connectance, C. This stands in contrast to earlier topological analyses 434 

(Dunne et al. 2002; Dunne & Williams 2009) conducted on binary networks of direct 435 

links. When topological approaches are used, highly connected communities are 436 

robust to species loss because species with many binary links are unlikely to become 437 

isolated and thus go extinct. Using a dynamical approach, however, highly connected 438 

nodes face a similar extinction risk as poorly connected nodes (Fig. 2a). In this case, 439 

the density of weighted carbon flows plays an increasingly important role, where the 440 

loss of a particularly strong link may result in a node receiving insufficient energy to 441 

persist in the network, even if it retains several weak connections to other nodes. 442 

Therefore the nodes with lower link weight would have a significantly higher risk of 443 

going secondarily extinct (Fig. 2b). This is also consistent with recent findings that 444 

increasing the energy threshold for consumer secondary extinction would nullify the 445 
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previously positive relationship between robustness and binary directed connectance 446 

(Thierry et al. 2011; Bellingeri & Bodini 2013). The dynamical approach, through the 447 

weighting of links refines our understanding of the factors affecting network stability 448 

in ways that topological analyses cannot do because they assign equal importance to 449 

all connections in the network (Eklöf & Ebenman 2006; Curtsdotter et al. 2011).  450 

Moreover, in the topological approach, nodes are considered to be extinct only 451 

when they lose all their resources, so all secondary extinctions emerge from bottom-452 

up cascades (Eklöf & Ebenman 2006). In dynamical approaches, however, a node 453 

cannot persist if it receives insufficient energy, even though it still has resources. This 454 

is in agreement with a recent study (Bellingeri & Bodini 2013), which investigated the 455 

effects of the thresholds of minimum energy requirement for species survival on the 456 

robustness of food webs. Top-down effects and other effects mediated by exploitative 457 

and apparent competition can also play an important role (Elmhagen & Rushton 2007; 458 

Säterberg et al. 2013). In our study, bottom-up effects only accounted for about half 459 

of all the secondary extinctions (Fig. 2c), highlighting the potential for dynamical 460 

analyses to identify a significant proportion of secondary extinctions that would 461 

otherwise be missed with topological approaches. 462 

As we enter the age of the sixth mass extinction (Barnosky et al. 2011), we 463 

need efficient indices to quantify the relative importance of species to develop new 464 

management policies for prioritising key populations to be conserved (Waldron et al. 465 

2013). Our study contributes towards potential solutions and may help ecologists to 466 
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outline a better conservation policy based on the functional importance of species, 467 

rather than qualitative metrics such as rarity or ‘hubs’. By quantifying link weights (or 468 

in the absence of quantitative link data, by considering indirect effects) we can 469 

improve the accuracy of keystone species identification (Jordán et al. 2008). The 470 

extent to which our methods help in detecting more accurate indices remains to be 471 

seen, but we posit that it will improve the designs of subsequent experiments or 472 

dynamical simulation studies. 473 
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Table 1 Original names and structural properties of the 20 empirical food webs 605 

examined in the study. 606 

Food web Original name S* C † Cw
‡ 

Bothnian Bay Bothnian Bay 12 0.222 0.184 

Baltic Sea Baltic Sea 15 0.173 0.184 

Ems Estuary Ems Estuary 15 0.196 0.169 

Swartkops Swartkops Estuary 15 0.169 0.121 

Crystal River Crystal River (control) 21 0.186 0.070 

Benguela Northern  Benguela  Upwelling 24 0.208 0.101 

Neuse Estuary Neuse Estuary (late summer 1998) 30 0.138 0.062 

Georges Bank Georges Bank 31 0.354 0.162 

Gulf of Maine Gulf of Maine 31 0.345 0.148 

Narragansett Narragansett Bay 32 0.154 0.093 

Atlantic Bight Middle Atlantic Bight 32 0.366 0.156 

New England Southern New England Bight 33 0.347 0.154 

Chesapeake Chesapeake Bay 36 0.094 0.068 

St. Marks St. Marks Seagrass, site 1 (Feb.) 51 0.103 0.086 

Graminoids Graminoids (wet) 66 0.182 0.033 

Cypress Cypress (wet) 68 0.118 0.060 

Lake Oneida Lake Oneida (pre-ZM) 74 0.223 0.072 

Bay of Quinte Bay of Quinte (pre-ZM) 74 0.211 0.056 

Mangroves Mangroves (wet) 94 0.152 0.036 

Florida Bay Florida Bay (wet) 125 0.124 0.029 

* number of taxa. 607 

† binary directed connectance, L/S2; where L is the number of trophic links. 608 

‡ weighted directed connectance (see Materials and Methods for calculation method). 609 

610 
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Table 2 Details of the parameters used in the model. 611 

Symbol Meaning Value Unit 

ri 
Maximum specific or intrinsic 

growth rate 
0( ) / (1 1/10 )

k

i i iGPP R B     day-1 

K Carrying capacity 
010

k

i

j pro

B


  g C m-2 

di Natural specific death rate 
det

/ij i

j

F B


  day-1 

ai Assimilation efficiency 
det

1 /ij ji

j j res

F F
 

   proportion 

(unitless) 

xi Respiration rate Ri / Bi day-1 

pji 

Proportion of converted 

detritus i in all the converted 

detritus from producer or 

consumer taxon j 
det

/ji jk

k

F F


  proportion 

(unitless) 

ei Egestion rate 1 ia  
proportion 

(unitless) 

cji 
Conversion coefficient from 

detritus j to detritus i 
Fji / Bj day-1 

Our data (see Table 1) contain the values of GPPi (gross primary production), Ri (respiration), 612 

Bi (biomass), and Fij (carbon flux when taxon j consumes taxon i). k0 is an undetermined 613 

parameter. Considering that carrying capacity K was within three orders of magnitude of total 614 

primary producer biomass in the community being simulated (Hudson & Reuman 2013), we 615 

assumed k0 follows the distribution U[0, 3]. We ran 1,000 separate simulations for each food web, 616 

using different values of k0, chosen randomly from this distribution. 617 
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Table 3 Stability of food webs under four different species deletion sequences as a 618 

function of three measures of food web complexity. 619 

Stability 
Deletion 

sequences 

Log S  Log C  Log Cw 

Slope P r2  Slope P r2  Slope P r2 

R50 

Max.D -0.067 0.043 0.21  0.201 <0.001 0.69  0.096 0.008 0.33 

Max.DI -0.092 0.002 0.41  0.081 0.141 0.12  0.076 0.040 0.21 

Max.wD -0.072 0.022 0.26  0.065 0.238 0.08  0.085 0.016 0.28 

Max.wDI -0.094 0.007 0.34  0.112 0.065 0.18  0.106 0.008 0.33 

SA 

Max.D -0.053 0.083 0.16  0.186 <0.001 0.71  0.082 0.013 0.30 

Max.DI -0.083 0.001 0.45  0.096 0.035 0.22  0.078 0.010 0.31 

Max.wD -0.064 0.030 0.23  0.065 0.209 0.09  0.081 0.015 0.29 

Max.wDI -0.081 0.012 0.30  0.107 0.051 0.20  0.095 0.009 0.33 

Linear regressions of robustness, R50 (the fraction of species that have to be removed in order to 620 

induce ≥50% total species loss), and survival area, SA (the area under the curve resulting from 621 

plotting the number of survival taxa), of 20 food webs to species loss following four deletion 622 

sequences as a function of the logarithm of taxon richness (S), binary directed connectance (C), 623 

and weighted directed connectance (Cw). Significant results (P < 0.05) are shown in bold. 624 

625 



 34 

Figure Legends: 626 

 627 

Figure 1 Stability of the 20 food webs to species loss in 4 deletion sequences (mean ± 628 

SEM). Here, stability is represented by (a) robustness, R50, the fraction of taxa that 629 

have to be removed in order to induce ≥50% total taxon loss, and (b) survival area, 630 

SA, the area under the curve resulting from plotting the number of surviving taxa. The 631 

stars directly above the error bars denote significant differences in stability between 632 

the focal deletion orders and the control order (Max.D): ***p < 0.001; **p < 0.01; * p 633 

< 0.05; and NS, not significant. 634 

 635 

Figure 2 (a-b) Comparison of the types of nodes that went secondarily extinct with 636 

those surviving. The nodes going secondarily extinct were significantly different 637 

(denoted by stars) from the surviving nodes in (a) number of links or (b) link weight if 638 

the confidence intervals around the logarithm of the ratio between the value of the 639 

secondarily extinct nodes and the average value of all surviving nodes did not overlap 640 

with zero. (c) Trophic categories of nodes that caused the secondary extinctions. The 641 

percentage of secondary extinctions for each trophic category across the 1,000 642 

simulations of all 20 food webs is shown, along with an illustration of what each of 643 

the trophic categories imply. 644 

 645 

Figure 3 Stability in nonlinear functional response simulations indicated by 646 



 35 

robustness, R50 (top panels), and survival area, SA (bottom panels), as a function of 647 

the taxon richness, S (left panels), and weighted directed connectance, Cw (right 648 

panels), of each food web. Logarithmic fits to the four datasets are shown, with 649 

different colours and markers indicating different deletion orders.  650 

651 
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