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Abstract

We consider the problems of completing a low-rank positive semidefinite square
matrix M or a low-rank rectangular matrix N from a given subset of their entries. We
study the local and global uniqueness of such completions by analysing the structure
of the graphs determined by the positions of the known entries of M or N .

We show that, in the generic setting, the unique completability testing of rectangu-
lar matrices is a special case of the unique completability testing of positive semidefinite
matrices. We prove that a generic partially filled positive semidefinite n × n matrix
is globally uniquely ranks d completable if any principal minor of size n− 1 is locally
uniquely ranks d completable. These results are based on new geometric observations
that extend similar results of the theory of rigid frameworks. We also give an example
showing that global completability is not a generic property in R2.

We provide sufficient conditions for local and global unique completability of a
partially filled matrix in terms of either the minimum number of known entries per
row or the total number of known entries.

1 Introduction

We consider the problem of determining the uniqueness of a low-rank positive semidefinite
completion of a partially filled matrix. This completion problem and its variants arise in
various practical problems, such as computer vision, machine learning and control, and
several completion algorithms have been developed and implemented in recent decades,
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see for example [24, 21, 18, 16]. It is also related to the fundamental problem of Euclidean
distance geometry and has been investigated from several different viewpoints, see for
example [9, 17].

Singer and Cucuringu [20] initiated an analysis of this problem using techniques from
graph rigidity theory. They defined the underlying graph of a partially filled positive
semidefinite matrix M = (mij) of size n as the graph G with vertex set V = {1, . . . , n}, in
which ij is an edge if and only if the (i, j)-th entry (or (j, i)-th entry) is known. Note that
G is semisimple, meaning that it has no parallel edges but may have loops.

Recall that a positive semidefinite matrix of size n and rank d can be written as P>P
for some d× n matrix P . Hence, finding a completion of M corresponds to finding a map
p : V → Rd such that

〈pi, pj〉 = mij for all ij ∈ E

where pi = p(i). Therefore, assuming that a completion is known in advance, the unique
completability problem can be restated as follows. We are given a graph G = (V,E) and
a map p : V → Rd. We need to decide whether there exists a q : V → Rd such that
〈pi, pj〉 = 〈qi, qj〉 for all ij ∈ E and 〈pk, pl〉 6= 〈qk, ql〉 for some k, l ∈ V .

We will adopt the terminology from rigidity theory and refer to a pair (G, p) as a (d-
dimensional) framework. Two maps p : V → Rd and q : V → Rd are said to be congruent
if

〈pi, pj〉 = 〈qi, qj〉 for all i, j ∈ V (1)

and we say that (G, q) is equivalent to (G, p) if

〈pi, pj〉 = 〈qi, qj〉 for all ij ∈ E. (2)

A d-dimensional framework (G, p) is called globally uniquely completable (or, simply, globally
completable) in Rd if for every d-dimensional framework (G, q) which is equivalent to (G, p)
we have that p and q are congruent. A recent result of E.-Nagy, Laurent, and Varvitsiotis
[5] shows that the decision problem of asking whether a partially filled matrix can be
completed to a positive semidefinite matrix of rank at most d is NP-hard for any fixed
integer d ≥ 2 (even if it has an all-ones diagonal). The proof of this result, combined
with ideas from Saxe [19], can be used to show that testing the global completability of
d-dimensional frameworks is also hard for all d ≥ 2.

The local version of the uniqueness of the completion can also be defined by using
terminology inspired by rigidity theory. A framework (G, p) is locally uniquely completable
(or, simply, locally completable) in Rd if there exists an open neighborhood N(p) of p in
Rd|V | (regarding a map p as a point in Rd|V |) such that for any q ∈ N(p) the equivalence
of (G, q) to (G, p) implies that p and q are congruent.1

1It can be seen that, as in the case of rigidity, the local completability of (G, p) is equivalent to the fact
that every continuous motion of the vertices of (G, p) in Rd which preserves equivalence must also preserve
congruence.
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The local or global rigidity of a framework is defined by replacing each inner product
with the squared distances in (1) and (2), respectively. An important fact in rigidity
theory is that local and global rigidity are both generic properties, meaning that, if a
framework (G, p) is locally (globally) rigid for a generic p, then (G, q) is locally (globally)
rigid for all generic q. (We say that p is generic if the set of the coordinates in p(V ) is
algebraically independent over Q.) This was first pointed out by Gluck [7] and Asimov and
Roth [1] for local rigidity. For global rigidity, the generic property was first conjectured by
Connelly [3] and was recently confirmed by Gortler, Healy, and Thurston [8]. This leads
to a polynomial-time randomized algorithm for checking local or global rigidity of generic
frameworks. Singer and Cucuringu [20] showed that several concepts in rigidity theory
can be naturally extended to the completability setting and gave a randomized algorithm
for checking local completability as well as a heuristic algorithm for global completability
in the generic case. An advantage of this approach is that the algorithms use only the
underlying graphs of the frameworks.

There is a direct connection between rigidity and completability. For a framework (G, p)
with a simple graph G and a map p : V → Sd, the rigidity of (G, p) on the d-dimensional
sphere Sd is equivalent to the completability of (G◦, p) in Rd+1, where G◦ denotes the
graph obtained from G by adding a loop at each vertex. The rigidity of frameworks on the
sphere is a classical concept and is closely related to the rigidity in Euclidean space via the
so-called coning technique (see, e.g., [4, 27]). In fact, at a generic level, the local (global)
completability of G◦ in Rd+1 is equivalent to the local (global) rigidity of G in Rd (see [13,
Corollary 2.6 and Corollary 2.7]).

In [13] we began a more detailed analysis of the relationship between rigidity and
completability. This paper is a sequel to [13]. We will show that two-dimensional global
completability is not a generic property, suggesting a difficulty for checking global com-
pletability in the existing theory. On the positive side, we show that a generic framework
(G, p) is globally completable if (G− v, p) is locally completable for every v ∈ V . This in
turn implies that a generic partially filled semidefinite n×n matrix is globally uniquely rank
d completable if any principal minor of size n− 1 is locally uniquely rank d completable.

The paper is organized as follows. In Section 2, we give preliminary results that will be
used throughout the paper. In Section 2.3 we discuss the unique completability problem
for low rank rectangular matrices (which was also introduced by Singer and Cucuringu
[20]). In Section 3.1 and Section 3.2, we shall introduce the concept of canonical positions
and standard positions, which are adaptations of concepts from rigidity theory. In Section
3.3, we show that the unique completability testing of rectangular matrices is a special case
of the unique completability testing of positive semidefinite matrices. In Section 4, we give
some geometric observations on completability. These observations are used in Section 5
to show that a generic partially filled matrix is globally completable if any principal minor
of size n − 1 is locally completable. In Section 6, we give three examples that indicate
a difficulty in characterizing 2-dimensional generic global completability by using existing
techniques from rigidity theory. In particular we give an example showing that global
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completability is not a generic property in R2. In Section 7 we provide sufficient conditions
for local and global unique rank d completability of a partially filled n×n matrix in terms
of either the minimum number of known entries per row, or the total number of known
entries, as functions of n and d.

2 Preliminaries

2.1 Infinitesimal completability and the completability matroid

One may define the infinitesimal version of local completability based on an analogy with
infinitesimal rigidity. A map ṗ : V → Rd is called an infinitesimal c-motion of (G, p) if

〈pi, ṗj〉+ 〈pj , ṗi〉 = 0 (ij ∈ E). (3)

The |E| × d|V |-matrix representing this system of linear equations with variables ṗ is the
completability matrix of (G, p), denoted by C(G, p). (Thus the entries of C(G, p) in the
d-tuples of positions i and j of row e = ij are pj and pi, respectively, and all other entries
are zeros.)

For any d × d skew-symmetric matrix S, the map ṗ : V → Rd defined by ṗi = Spi
for i ∈ V is an infinitesimal c-motion. (The infinitesimal c-motions of this kind are called
trivial.) Therefore, if |V | ≥ d, then

rankC(G, p) ≤ dn−
(
d

2

)
. (4)

Clearly the rank of C(G, p) is also bounded above by the number of edges in the complete
semisimple graph on n vertices. A framework (G, p) is said to be infinitesimally completable
if rankC(G, p) = dn −

(
d
2

)
when n ≥ d or rankC(G, p) =

(
n+1
2

)
when n ≤ d. It is

c-independent if rankC(G, p) = |E|. Note that the rank of C(G, p) will be the same
for all generic realizations of G. Singer and Cucuringu [20] showed that infinitesimal
completability is a sufficient condition for local completability, and that the two properties
are equivalent when (G, p) is generic. Hence we say that the graphG is locally completable or
c-independent in Rd if some (or equivalently, every) generic realization of G in Rd is locally
completable or c-independent. It follows that in the generic case, the local uniqueness of a
completion of a partial positive semi-definite matrix depends only on the underlying graph
G, which is determined by the positions of the known entries.

The d-dimensional completability matroid Cd(G) of G is the matroid on E in which
a set of edges is independent if and only if the corresponding set of rows in C(G, p) is
linearly independent, for some generic p : V → Rd. We say that G is c-independent if E is
independent in Cd(G). The following necessary condition for c-independence was observed
in [20]. We use iG(X) to denote the number of edges induced by a set X of vertices in
graph G.
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Lemma 1 ([20]). Let G = (V,E) be c-independent in Rd. Then
(i) iG(X) ≤ d|X| −

(
d
2

)
for all X ⊆ V with |X| ≥ d, and

(ii) for each bipartite subgraph H = (V1, V2;F ) on vertex set X = V1 ∪ V2 with |Vi| ≥ d,
i = 1, 2 we have iH(X) ≤ d|X| − d2.

We say that a graph G is globally completable in Rd if every generic realization of G in
Rd is globally completable. In Section 6 we show that global completability is not a generic
property in general, unlike in the case of global rigidity.

2.2 The rectangular matrix model

Singer and Cucuringu [20] also considered the unique completability of low rank rectangular
matrices, i.e. rectangular matrices of the form P>Q for some d × n matrix P and d ×m
matrix Q. In this case the known entries of the rectangular matrix define a bipartite graph
G = (V,E) with bipartition (U,W ) in which |U | = n, |W | = m, and an edge ij corresponds
to the known scalar product of row i in P> and column j in Q.

We say that two bipartite frameworks (G, p) and (G, q) are bicongruent if 〈pi, pj〉 =
〈qi, qj〉 holds for every pair i ∈ U and j ∈W . This is equivalent to saying that there exists
an invertible matrix A such that qi = AT pi and qj = A−1pj for all i ∈ U and j ∈ W . The
framework (G, p) is globally bicompletable if every framework which is equivalent to (G, p),
is bicongruent to (G, p). Similarly, (G, p) is said to be locally bicompletable if there exists
an open neighborhood N(p) of p such that for any q ∈ N(p) the equivalence of (G, q) to
(G, p) implies that the two frameworks are bicongruent.

For any d× d matrix A, the map ṗ : Rd → Rd by ṗi = Api for i ∈ U and ṗj = −AT pj
for j ∈W is an infinitesimal c-motion of (G, p), and hence

rank C(G, p) ≤ d|V | − d2 (5)

whenever |U |, |V | ≥ d. (This gives Lemma 1(ii).) It is also bounded above by |U | |W |.
We say that (G, p) is infinitesimally bicompletable if rank C(G, p) = d|V | − d2 when
min{|U | |W |} ≥ d and rank C(G, p) = |U | |V | when min{|U | |W |} < d. Local bicom-
pletability and infinitesimal bicompletability are equivalent for generic bipartite frame-
works. Hence we say that a bipartite graph G is locally bicompletable in Rd if (G, p) is
infinitesimally bicompletable for some (or equivalently, every) generic d-dimensional frame-
work (G, p). We say that G is globally bicompletable in Rd if every generic d-dimensional
framework (G, p) is globally bicompletable.

Király et al. [16] also considered the uniqueness of matrix completion in the rectangu-
lar matrix model over the complex field. They discussed combinatorial characterizations
of 1-dimensional bicompletability and corank-1-dimensional bicompletability, a sufficient
condition for global bicompletability, and bicompletability of random graphs. Infinitesi-
mal bicompletablity was also analyzed (as a special case) in Kalai et al. [15] in a different
context.
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2.3 Graph operations

We introduce several graph operations which were shown to preserve local (global) com-
pletability in [13]. Let G = (V,E) be a semisimple graph. The (d-dimensional) 0-extension
operation adds a new vertex v to G and d new edges vu1, . . . , vud for distinct vertices
u1, . . . , ud ∈ V + v. If we only add less than d new edges, the operation is called a partial
0-extension. Note that we allow one of the new edges to be a loop by taking ui = v. If
necessary, we will specify whether or not a loop is added by referring to the operation as
a looped extension or a simple extension.

Lemma 2. [13, Lemma 2.3] Suppose that G is obtained from G′ by a 0-extension operation.
Then G′ is c-independent (resp. locally completable) in Rd if and only if G is c-independent
(resp. locally completable) in Rd.

Lemma 3. [13, Theorem 6.7] Let G be a globally completable graph in Rd, and let G′ be
a graph obtained from G by a simple 0-extension. Then G′ is globally completable in Rd.

Let G = (V,E) be a semisimple graph. The (d-dimensional) double 1-extension op-
eration removes an existing edge e = ab from G and inserts two new vertices v1 and v2
with new edges av1, v1v2, v2b and v1u

1
1, v1u

2
1, . . . , v1u

d−1
1 and v2u

1
2, v2u

2
2, . . . , v2u

d−1
2 , where

{u11, u21, . . . , u
d−1
1 } and {u12, u22, . . . , u

d−1
2 } are d − 1 distinct vertices in (V + v1) \ {a} and

(V + v2) \ {b}, respectively. We allow the possibility that e is a loop (in which case a = b).

Lemma 4. [13, Lemma 4.1] Let G = (V,E) be a graph and G′ = (V ′, E′) be the graph
obtained from G by a double 1-extension. If G is c-independent (resp. locally completable)
in Rd then G′ is also c-independent (resp. locally completable) in Rd.

For a vertex v1 in a semisimple graph G, NG(v1) denotes the set of vertices adjacent
to v1 in G, taking v1 ∈ NG(v1) when v1 is incident to a loop. The d-dimensional vertex-
splitting (or simply vertex-d-splitting) operation at v1 (with respect to some fixed partition
{U0, U

∗, U1} of N(v1) with |U∗| = d) removes the edges between v1 and the vertices in U0,
inserts a new vertex v0, and inserts new edges v0u for u ∈ U0 ∪ U∗. Note that v0 and v1
are adjacent in the resulting graph if and only if there is a loop incident with v1 in G and
v1 ∈ U0 ∪ U∗.

Lemma 5. [13, Lemma 4.3] Let G = (V,E) be a graph and G′ = (V ′, E′) be the graph
obtained from G by a vertex-d-splitting at vertex v1. If G is c-independent in Rd then G′

is also c-independent in Rd.

Let G = (V,E) be a semisimple graph. The looped cone extension G◦v of G is obtained
by adding a new vertex v and all edges uv for u ∈ V + v.

Lemma 6 ([13]). Let G = (V,E) be a graph and G ◦ v be its looped cone extension. Then
G is locally completable in Rd if and only if G ◦ v is locally completable in Rd+1.
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2.4 Complete graphs

Recall that for a loopless graph G we use G◦ to denote the graph obtained from G by
adding a loop incident with each vertex. Lemmas 1 and 2 imply the following.

Lemma 7. The looped complete graph K◦n is c-independent if and only if n ≤ d.

By Lemmas 1 and 2 we also have the following.

Lemma 8. The complete bipartite graph Kn,m is c-independent in Rd if and only if n ≤ d
or m ≤ d. In particular, the edge set of Kd+1,d+1 is a circuit in Cd(Kd+1,d+1).

Proof. Observe that, for any edge e, Kd+1,d+1 − e can be constructed from a graph with
d vertices and no edges by a sequence of partial 0-extensions. Hence Kd+1,d+1 − e is c-
independent. On the other hand Kd+1,d+1 is c-dependent by Lemma 1(ii). Thus Kd+1,d+1

is a circuit.
This also implies that, if Kn,m is c-independent, then n ≤ d or m ≤ d holds. Conversely,

if n ≤ d, then Kn,m can be constructed from a graph with d vertices and no edges by a
sequence of partial 0-extensions, so is c-independent.

We will need the following characterisation of global (local) completability of complete
tripartite graphs.

Lemma 9. The complete tripartite graph Ka,b,c is globally (or locally) completable in Rd
if and only if min{a, b, c} ≥ d.

Proof. Let G = Ka,b,c and let A,B,C be the sets in the tripartition. Suppose |C| < d.
Since G− C is bipartite, it is not locally completable in R1 by (5). Lemma 6 now implies
that G is not locally completable in Rt for any t > |C|.

Suppose on the other hand that min{a, b, c} ≥ d. Let (G, p) be a generic realization
and take any equivalent realization (G, q) to (G, p). Since Ka,b is globally bicompletable,
there exists a d × d matrix M such that qi = MT pi and qj = M−1pj for all i ∈ A and
j ∈ B. Similarly, since Ka,c is globally bicompletable, qi = NT pi and qk = N−1pk for
all i ∈ A and k ∈ C for some d × d matrix N . Hence (MT − NT )pi = 0 for all i ∈ A.
Since p is generic and |A| ≥ d, we have M = N . The same argument for Kb,c now gives
qk = MT pk = M−1pk for all k ∈ C. Hence (MT −M−1)pk = 0 for all k ∈ C. Since p is
generic and |C| ≥ d this implies that MMT = Id. Hence M is orthogonal and qi = MT pi
for all vertices i of G. This gives 〈pi, pj〉 = 〈qi, qj〉 for all pairs i, j of vertices of G, so (G, q)
is congruent to (G, p).

3 Canonical Positions

When analyzing the rigidity of frameworks, pinning down some points to factor out trivial
motions is a useful tool. We will introduce a corresponding technique for completability
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in this section and use it frequently in the rest of this paper. In particular we will use it
to show that testing bicompletability of bipartite graphs can be reduced to completability
testing in Subsection 3.3.

For a vector p, let Q(p) denote the field extension of the rationals by the coordinates
of p. Let Q(p) denote the algebraic closure of Q(p) in C.

3.1 Completability

Let G = (V,E) be a semisimple graph. We define the completability function fG : Rd|V | →
R|E| by

fG(p) = (. . . , 〈pi, pj〉, . . . ) (p ∈ Rd|V | and ij ∈ E).

Notice that the completion matrix C(G, p) is the Jacobian of fG at p.
For a finite set V with |V | ≥ d and a sequence S = (k1, . . . , kd) of d elements in V , let

WS =

{
p ∈ Rd|V |

∣∣∣∣∣ 〈p(ki), ej〉 = 0 (∀i = 1, . . . , d− 1, ∀j = i+ 1, . . . , d)
〈p(ki), ei〉 ≥ 0 (∀i = 1, . . . , d− 1)

}
,

where ej be the j-th vector of the standard basis in Rd. For a point p ∈WS , a coordinate
of p that is set to zero is called a fixed coordinate. We say that p is in canonical position
(with respect to S) if p ∈ WS . Notice that for any p ∈ RdV there is a p̂ ∈ WS that is
congruent to p, and that p̂ is unique when p(S) is linearly independent. A point p ∈WS is
called semi-generic if the set of non-fixed coordinates of p is algebraically independent over
Q, or equivalently, if the transcendence degree of Q(p)/Q is d|V | −

(
d
2

)
. Our next result

shows that the completability matroid of G is determined by any semi-generic realisation
of G.

Lemma 10. Let (G, p) be a semi-generic framework in canonical position with respect to
S. Then rank C(G, p) = rank Cd(G).

Proof. Take any generic q : V → Rd. Then there is an orthogonal matrix A such that
A · q ∈WS . Then q̇ ∈ kerC(G, q) if and only if A · q̇ ∈ kerC(G,A · p), which means

rankC(G, p) ≤ rank Cd(G) = rankC(G, q) = rankC(G,A · q) ≤ rankC(G, p),

where the last inequality follows since both p and A ·q are in WS and p is semi-generic.

The next four propositions are analogous to results from [13].

Proposition 11. Suppose that p is (semi)generic and G is c-independent. Then fG(p) is
generic.

Proof. This is a direct application of [12, Lemma 3.1].
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Proposition 12. Suppose that p is semi-generic and G is locally completable. Then Q(p) =
Q(fG(p)).

Proof. LetG′ be a spanning c-independent and locally completable subgraph ofG. Since fG
is a polynomial map, we have Q(fG′(p)) ⊆ Q(fG(p)) ⊆ Q(p). The point fG′(p) is generic by
Proposition 11, and hence the transcendence degree of Q(fG′(p))/Q is d|V (G)|−

(
d
2

)
, which

is equal to the transcendence degree of Q(p)/Q. We thus have Q(fG′(p)) = Q(fG(p)) =
Q(p).

Proposition 13. Suppose that G is locally completable, and p and q are in canonical
positions with fG(p) = fG(q). Suppose that p is semi-generic. Then q is semi-generic and
Q(p) = Q(q).

Proof. By Propositions 11 and 12 we have Q(p) = Q(fG(p)) = Q(fG(q)) ⊆ Q(q). Since p
is semi-generic, q is semi-generic and Q(p) = Q(q) follows.

Proposition 14. Let V be a finite set, S be a sequence of d distinct elements in V , p
be a generic point in Rd|V |, and p′ be a point in WS which is congruent to p. Then p′ is
semi-generic.

Proof. Let G be a c-independent and locally completable graph on V . Then by Propo-
sition 11, fG(p) is generic. Now we have Q(fG(p)) = Q(fG(p′)) ⊆ Q(p′). Since G is
c-independent and locally completable, |E| = d|V | −

(
d
2

)
, and hence the transcendence

degree of Q(p′)/Q is at least d|V | −
(
d
2

)
. In other words, p′ is semi-generic.

3.2 Bicompletability

Suppose G = (U,W ;E) is a bipartite graph and S = (u1, . . . , ud) is a sequence of distinct
elements in U . Define W̃S by

W̃S =
{
p ∈ Rd|U∪W | | p(ui) = ei (∀i = 1, . . . , d)

}
.

We say that (G, p) is in standard position with respect to S if p ∈ W̃S . It is easy to see
that (G, p) is bicongruent to a unique framework (G, p̃) in standard position with respect
to S whenever p(S) is linearly independent (where S is regarded as a set). In particular
two generic realisations of G are bicongruent if and only if they are both bicongruent to
the same realisation in standard position with respect to S. Since bicongruence is an
equivalence relation, we have the following.

Lemma 15. Let (G, p) be a realization of a bipartite graph G = (U, V ;E) in Rd, S be a
sequence of d distinct elements in U such that p(S) is linearly independent, and p̃ be the
configuration bicongruent to p which is in standard position with respect to S. Then (G, p)
is globally bicompletable if and only if (G, p̃) is globally bicompletable.
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A point p ∈ W̃S is called semi-generic if the set of coordinates in p(V \S) is algebraically
independent over Q. It is straightforward to check that the counterparts of the propositions
given in the last subsection obtained by replacing ”completability” with ”bicompletability”
and ”canonical position” with ”standard position” all hold.

3.3 From Bicompletability to Completability

In this subsection we establish a relation between bicompletability and completability, and
show that bicompletability testing of bipartite graphs can be reduced to completability
testing.

For a finite set X, let K◦(X) be the graph on X whose edge set is {ij | i, j ∈ X}
(including loops). We begin with infinitesimal completability.

Lemma 16. Let (G, p) be a realisation of a bipartite graph G = (U,W ;E) in Rd and
S = {u1, . . . , ud} be a set of d distinct vertices in U such that p(S) is linearly independent.
Let G+ = G ∪K◦(S). Then

rankC(G, p) = rankC(G+, p)−
(
d+ 1

2

)
.

Hence (G, p) is infinitesimally bicompletable if and only if (G+, p) is infinitesimally com-
pletable.

Proof. Let C ′(G, p) be the matrix obtained from C(G, p) by deleting the columns indexed
by u1, u2, . . . , ud. Let T be the set of all infinitesimal c-motions ṗ of (G, p) such that, for
some fixed d×d matrix A, ṗi = Api and ṗj = −AT pj for all i ∈ U and j ∈W . (So T is the
space of all ‘trivial’ infinitesimal c-motions of (G, p).) Let F be the space of all infinitesimal
c-motions ṗ of (G, p) which keep u1, u2, . . . , ud fixed i.e. ṗ(ui) = 0 for all 1 ≤ i ≤ d. Then
kerC(G, p) = T ⊕ F and dimT = d2. The fact that F is isomorphic to kerC ′(G, p) now
gives rankC ′(G, p) = rankC(G, p).

We have C(G+, p) =

(
C(K◦(S), p) 0

∗ C ′(G, p)

)
. Hence

rankC(G+, p) = rankC ′(G, p) + rankC(K◦(S), p) = rankC(G, p) +

(
d+ 1

2

)
.

As a corollary we obtain the following result for graphs.

Theorem 17. Suppose that G = (U,W ;E) is a bipartite graph with |U |, |W | ≥ d and
S = {u1, . . . , ud} is a set of d distinct vertices in U . Then G is locally bicompletable in Rd
if and only if G+ = G ∪K◦(S) is locally completable in Rd.
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We next give the global completability counterpart to this result. We need the following
technical lemma.

Lemma 18. Let (G = (U,W ;E), p) be a locally bicompletable framework with |U |, |W | ≥ d,
and (G, q) be a framework equivalent to (G, p). Suppose p is generic. Then any d points
in q(U) are linearly independent.

Proof. We first prove that q(U) spans Rd. Suppose not. Let q(u1), q(u2), . . . q(ut) be a basis
for the subspace of Rd spanned by q(U) with t < d. By applying a suitable congruence to
(G, q) we may assume that q(u1), q(u2), . . . q(ut) are the first t vectors in a standard basis
for Rd. Let (G, q′) be the projection of (G, q) onto Rt. Since the last (d− t) coordinates of
q(u) are zero for all u ∈ U , we have 〈q′(u), q′(w)〉 = 〈q(u), q(w)〉 for any u ∈ U and w ∈W .
Therefore Q(fG(q)) = Q(fG(q′)). Since the transcendence degree of Q(fG(q′))/Q can be
at most t|U ∪W | − t2, the transcendence degree of Q(fG(q))/Q is at most t|U ∪W | − t2.

On the other hand, since G is locally bicompletable and p is generic, (the bicompletabil-
ity version of) Propositions 12 and 14 imply that the transcendence degree of Q(fG(p))/Q
is equal to d|U ∪W | − d2. Since fG(q) = fG(p), the transcendence degree of Q(fG(q))/Q
is equal to d|U ∪W | − d2, a contradiction.

Therefore q(U) spans Rd and we may choose X ⊆ U such that q(X) is a basis for Rd.
Then there is the unique q̄ such that q̄ is bicongruent to q and is in standard position with
respect to X (assuming any order on the elements of X). Then by (the bicompletability
version of) Propositions 13 and 14, q̄ is semi-generic. This in turn implies the statement
since q̄(U) is an image of q(U) by a nonsingular linear map.

Theorem 19. Suppose that G = (U,W ;E) is a bipartite graph with |U |, |W | ≥ d and
S = {u1, . . . , ud} is a set of d distinct vertices in U . Then G is globally bicompletable in
Rd if and only if G+ = G ∪K◦(S) is globally completable in Rd.

Proof. Let p : U ∪W → Rd be generic.
Suppose that (G, p) is globally bicompletable. Let Ḡ+ be the graph obtained from

G+ by adding all edges from U to W . Let (G+, q) be a framework equivalent to (G+, p).
Since (G, p) is globally bicompletable, (Ḡ+, p) and (Ḡ+, q) are equivalent. Since (Ḡ+, p)
can be obtained from K◦d by simple 0-extensions and edge-additions, (Ḡ+, p) is globally
completable by Lemma 3. Hence p and q are congruent.

Suppose that (G, p) is not globally bicompletable in Rd. Then there exists an equivalent
framework (G, q) such that 〈p(a), p(b)〉 6= 〈q(a), q(b)〉 for some pair a ∈ U and b ∈ W . By
Lemma 18, q(S) is linearly independent. Let P and Q be the d × d matrices whose i-th
columns are p(ui) and q(ui), respectively. Define

q′(v) =

{
PQ−1q(v) if v ∈ U
(P−1)>Q>q(v) if v ∈W

11



We claim that (G+, q′) is equivalent, but not congruent, to (G+, p) . To see this observe
that q′(ui) = p(ui) for 1 ≤ i ≤ d. Hence 〈q′(ui), q′(uj)〉 = 〈p(ui), p(uj)〉 for any 1 ≤ i, j ≤ d.
Also for any u ∈ U and w ∈ W we have 〈q′(u), q′(w)〉 = 〈PQ−1q(u), (P−1)>Q>q(w)〉 =
〈q(u), q(w)〉. Hence 〈q′(u), q′(v)〉 = 〈p(u), p(v)〉 for all uv ∈ E(G+), and 〈q′(a), q′(b)〉 6=
〈p(a), p(b)〉. This implies that (G+, q′) is equivalent, but not congruent, to (G+, p).

We do not know whether a similar relation between bicompletability and completability
holds at the level of frameworks, i.e., whether it is true that (G, p) is globally bicompletable
if and only if (G+, p) is globally completable even for non-generic p.

4 Geometric Observations

In this section we shall provide several geometric tools for constructing globally completable
graphs. Our proof strategy using algebraic independence is inspired by [12, 22], but extends
and clarifies the existing theory.

Proposition 20. Let (G, p) and (G, q) be d-dimensional frameworks and let v be a vertex
in G with {1, 2, . . . , d+ 1} ⊆ NG(v). Suppose that 〈pv, pi〉 = 〈qv, qi〉 for all 1 ≤ i ≤ d. If

〈pv, pd+1〉 = 〈qv, qd+1〉, (6)

then

det

(
q1 q2 . . . qd+1

〈pv, p1〉 〈pv, p2〉 . . . 〈pv, pd+1〉

)
= 0. (7)

Conversely, if (7) holds and q1, . . . , qd are linearly independent, then (6) holds.

Proof. If (6) holds, we have(
qv
−1

)>(
q1 q2 . . . qd+1

〈pv, p1〉 〈pv, p2〉 . . . 〈pv, pd+1〉

)
= 0.

This implies (7).
Conversely suppose that (7) holds and q1, . . . , qd are linearly independent. Then (7)

implies

〈pv,
d+1∑
i=1

(−1)i(det Qi)pi〉 = 0 (8)

where Qi is a d× d-matrix whose columns are {q1, q2, . . . , qd+1} \ {qi} in this order. Since
〈pv, pi〉 = 〈qv, qi〉 for 1 ≤ i ≤ d, we have

〈qv,
d∑
i=1

(−1)i(det Qi)qi〉+ (−1)d+1(det Qd+1)〈pv, pd+1〉 = 0 . (9)
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Also we have
d+1∑
i=1

(−1)i(det Qi)qi = 0 (10)

since each coordinate of the left vector is the determinant of a (d+ 1)× (d+ 1)-submatrix
of the following matrix of rank d: (

q1 . . . qd+1

q1 . . . qd+1

)
.

Combining (9) and (10) we get (−1)d+1(det Qd+1)〈pv, pd+1〉 = (−1)d+1(det Qd+1)〈qv, qd+1〉.
Since det Qd+1 6= 0, this gives 〈pv, pd+1〉 = 〈qv, qd+1〉 as required.

Proposition 21. Let (G, p) be a generic framework and v be a vertex with {1, . . . , d+1} ⊆
NG(v) \ {v}. Suppose (G − v, p) is locally completable. Then for any (G, q) equivalent to
(G, p), {q1, . . . , qd+1} is a linear image of {p1, . . . , pd+1} (i.e., there is a d × d-matrix A
such that qi = Api for all i = 1, . . . , d+ 1).

Proof. Let S be a sequence of d distinct vertices in V \{v}. By Proposition 14 it suffices to
show the statement for a semi-generic (G, p) and for any equivalent (G, q) both in canonical
position with respect to S. By Proposition 20 we have (7). In particular, we have (8).

Since (G−v, p) is locally completable, Q(q|V−v) = Q(p|V−v) by Proposition 13. Hence,
the left hand side of (8) is a linear combination of the components of pv with coefficients
in Q(p|V−v). Since p is generic, each coefficient is zero and hence

d+1∑
i=1

(−1)i(detQi)pi = 0. (11)

This in turn implies

rank

(
p1 . . . pd+1

q1 . . . qd+1

)
= d,

which means that there is a d× d-matrix A such that qi = Api for i = 1, . . . , d+ 1.

For i, j ∈ V , we say that i and j are globally c-linked in G (in Rd) if 〈pi, pj〉 = 〈qi, qj〉
for all generic realizations (G, p) in Rd and all equivalent realizations (G, q). We use this
term even when i = j.

Theorem 22. Let G be a graph and uv be a non-loop edge in G with |NG(u) \ {u}| > d
and |NG(v) \ {v}| > d. Suppose that G− u and G− v are locally completable in Rd. Then
i and j are globally c-linked in G for any i ∈ NG(u) \ {u} and j ∈ NG(v) \ {v}.
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Proof. By Proposition 14, we may focus on a semi-generic (G, p) in canonical position with
respect to S with S ∩ {u, v} = ∅ and any framework (G, q) that is equivalent to (G, p) and
is in canonical position with respect to S. By Proposition 21, there are linear maps A and
B such that

qi = Api for all i ∈ NG(u) \ {u} and qj = Bpj for all j ∈ NG(v) \ {v}. (12)

Since G − u is locally completable and G − u is a subgraph of G, Q(p|V−u) = Q(q|V−u)
by Proposition 13. In particular, the set of entries of pu is algebraically independent
over Q(p|V−u, q|V−u). Symmetrically the set of entries of pv is algebraically independent
over Q(p|V−v, q|V−v). Therefore, the entries of qi are algebraic over Q(p|V−u−v) for all
i ∈ V −u−v. (Otherwise the transcendence degree of Q(p)/Q becomes more than d|V |−

(
d
2

)
by Q(q) = Q(p).)

Since |NG(u) \ {u, v}| ≥ d and |NG(v) \ {u, v}| ≥ d, A and B are determined by the
following equations,

qi = Api for all i ∈ NG(u) \ {u, v} and qj = Bpj for all j ∈ NG(v) \ {u, v}. (13)

(Recall that a linear map is determined by d linearly independent vectors.) This in partic-
ular implies that the entries of A and B are algebraic over Q(p|V−u−v).

Since G contains edge uv, we have

0 = 〈pu, pv〉 − 〈qu, qv〉 = p>u (Id −A>B)pv.

Since the entries of pu and pv are algebraically independent over Q(p|V−u−v), we have
A>B = Id.

To complete the proof, consider any i ∈ NG(u) \ {u} and j ∈ NG(v) \ {v}. Then we
have 〈pi, pj〉 − 〈qi, qj〉 = p>i (Id −A>B)pj = 0 as required.

Corollary 23. Let G be a graph and let uv be a non-loop edge in G with |NG(u)\{u}| > d
and |NG(v) \ {v}| > d. Suppose that

• G− u and G− v are locally completable in Rd, and

• the graph obtained from G− u− v by adding all edges of the form {ij | i ∈ NG(u) \
{u}, j ∈ NG(v) \ {j}} (including loops at vertices in (NG(u) \ {u} ∩NG(v) \ {v})) is
globally completable in Rd.

Then, G is globally completable in Rd.

Proof. By Theorem 22, G is globally comletable if and only if the graph G′ obtained from
G by adding all edges between NG(u) and NG(v) is globally completable. By assumption,
G′ − u− v is globally completable. Lemma 3 now implies that G′ is globally completable
since we can obtain a spanning subgraph of G′ from G′−u− v by simple 0-extensions.
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It is straightforward to check that an analogous result to Corollary 23 holds for bicom-
pletability.

We next derive a similar statement to Corollary 23 for a vertex incident with a loop.

Theorem 24. Let G be a graph with |V | ≥ d+ 1, and let v be a vertex in G having a loop
with |N(v) \ {v}| ≥ d. Suppose that G − v is locally completable in Rd. Then i and j are
globally c-linked in G for all i, j ∈ NG(v).

Proof. Take any semi-generic (G, p) in canonical position with respect to S with v /∈ S, and
consider any (G, q) that is equivalent to (G, p) and is in canonical position with respect to
S. Since G and G− v are locally completable, q is semi-generic and Q(q|V−v) = Q(p|V−v)
by Proposition 13.

Take any d vertices from N(v) \ {v} and, without loss of generality, denote them by
{1, . . . , d}. Since {p1, . . . , pd} and {q1, . . . , qd} are linearly independent, there is a d × d
nonsingular linear map A such that

qi = Api for all 1 ≤ i ≤ d. (14)

More specifically A can be expressed as A = QP−1, where P is the d × d matrix whose
i-th column is pi and Q is the d × d matrix whose i-th column is qi. Hence the entries of
A are contained in Q(p|V − v).

Since G has edge vi, we have

〈pv, pi〉 = 〈qv, qi〉 for all 1 ≤ i ≤ d

which can be written as
p>v P = q>v Q.

Hence we have qv = (Q−1)>P>pv = (A−1)>pv. Since G has a loop at v, we also have

0 = 〈pv, pv〉 − 〈qv, qv〉 = p>v (Id −A−1(A−1)>)pv.

Since the entries of pv are algebraically independent over Q(p|V − v) and Id −A−1(A−1)>
is symmetric, we have A−1(A−1)> = Id, implying that A is orthogonal. Therefore, for any
1 ≤ i, j ≤ d, we have 〈pi, pj〉 − 〈qi, qj〉 = p>i (Id −A>A)pj = 0 as required.

Corollary 25. Let G be a graph and let v be a vertex in G having a loop with |N(v)\{v}| ≥
d. Suppose that

• G− v is locally completable in Rd, and

• the graph obtained from G − v by adding all edges of the form {ij | i, j ∈ NG(v)}
(including loops) is globally completable in Rd.

Then, G is globally completable in Rd.
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The following connection between rigidity and completability is a corollary of the coning
arguments given in [4, 27], which will enable us to use the results of this section to obtain
new results on global rigidity.

Proposition 26. ([13]) Let G be a simple graph. Then G◦ is globally/locally completable
in Rd if and only if G is globally/locally rigid in Rd−1.

Corollary 25 and Proposition 26 now give the following, which was implicit in [22] and
was shown to be a powerful tool for analyzing the global rigidity of graphs in [23].

Corollary 27. Let G be a simple graph and let v be a vertex in G with |NG(v)| ≥ d + 1.
Suppose that

• G− v is rigid in Rd, and

• the graph obtained from G − v by adding all non-loop edges of the form {ij | i, j ∈
NG(u)} is globally rigid in Rd.

Then, G is globally rigid in Rd.

There is a corresponding concept to global c-linkedness in rigidity theory, and the main
theorem of [12] is the rigidity counterpart of Theorem 24. We note that this would also
follow from Theorem 24 if we knew that coning preserves global c-linkedness. However
it is not straightforward to extend Proposition 26 to global linkedness since the proof of
Proposition 26 is based on stress matrices.

We can use similar geometric arguments to derive results on infinitesimal completability.
Theorem 29 below is an infinitesimal counterpart of Theorem 24 and Corollary 30 is a
completability analogue of a well-known result on infinitesimal rigidity. We first need to
establish one technical lemma.

Lemma 28. Let (G, p) be a generic framework such that rank Cd(G) = d|V | −
(
d
2

)
− 1.

Then there is a nontrivial infinitesimal c-motion ṗ of (G, p) such that Q(ṗ) ⊆ Q(p).

Proof. Let C ′ be the matrix obtained from C(G, p) by deleting the first d− i columns from
the d columns indexed by i, for all 1 ≤ i ≤ d − 1. Then rankC ′ = rankC(G, p). More
specifically, an infinitesimal c-motion ṗ of (G, p) is nontrivial if ṗ is obtained by extending
a nonzero ṗ′ ∈ kerC ′ by adding zero components in positions corresponding to the columns
we deleted from C(G, p). We take ṗ′ ∈ kerC ′ such that one specific nonzero entry is equal
to one. Then Q(ṗ′) ⊆ Q(p) since ṗ′ is the unique solution to a system of d|V | −

(
d
2

)
− 1

linear equations in d|V | −
(
d
2

)
− 1 unknowns with coefficients in Q(p). Thus Q(ṗ) ⊆ Q(p)

follows.

We say that an edge ij is implied in the completability matroid Cd(G) if the rank
remains unchanged after adding ij.
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Theorem 29. Let G = (V,E) be a graph, v ∈ V , and N(v) = {v, 1, . . . , d}. Suppose that
the rank of Cd(G−v) is d(|V |−1)−

(
d
2

)
−1. Then ij is implied in Cd(G) for all 1 ≤ i, j ≤ d.

Proof. Take any generic framework (G, p). By Lemma 28, (G− v, p|V−v) has a nontrivial
infinitesimal c-motion ṗ such that Q(ṗ) ⊆ Q(p|V−v). Let ` be the loop at v. Also let P
and Ṗ be the matrices whose columns are p1, . . . , pd and ṗ1, . . . , ṗd, respectively. Since
G− ` is a 0-extension of G− v, ṗ can be extended to a nontrivial infinitesimal c-motion of
G − `, which we will again denote by ṗ. More specifically, since 〈pv, ṗj〉 + 〈pj , ṗv〉 = 0 for
1 ≤ i ≤ d, we have ṗv = (P>)−1Ṗ pv.

Since G has loop ` at v, we have 〈pv, ṗv〉 = 0, implying p>v (P>)−1Ṗ pv = 0. The
facts that the entries of (P>)−1Ṗ are algebraic over Q(p|V − v) and pv is algebraically
independent over Q(p|V − v) now imply that (P>)−1Ṗ is skew-symmetric. This in turn
implies that there is a skew-symmetric matrix S such that ṗi = Spi for all 1 ≤ i ≤ d. Thus
〈pi, ṗj〉+ 〈pj , ṗj〉 = 0 for any 1 ≤ i, j ≤ d, so ij is implied.

Given a graph G = (V,E) and distinct vertices v1, v2, . . . , vd ∈ V with vivj ∈ E for
some 1 ≤ i, j ≤ d, the (d-dimensional) looped 1-extension operation constructs a new graph
H by deleting the edge vivj and then adding a new vertex v0 and edges v0v0, v0v1, . . . , v0vd.

Corollary 30. Suppose H is locally completable in Rd and G is a looped 1-extension of
H. Then G is locally completable in Rd.

Proof. Since H is locally completable, Theorem 29 implies that vivj is an implied edge in
G. Since G + vivj can be obtained from H by a 0-extension and an edge addition, G is
locally completable.

Notice that, for a simple graph G, a looped 1-extension of G◦ can be expressed as H◦

for some simple graph H. The operation for constructing H from G is known as ((d− 1)-
dimensional) 1-extension in rigidity theory, and is widely used for analyzing global/local
rigidity (see, e.g., [11, 26]). By Proposition 26, Corollary 30 extends the well-known fact
that 1-extension preserves local rigidity.

5 Vertex Redundancy Implies Global Completability

A graph is said to be vertex redundantly completable if G− v is locally completable for all
v ∈ V . In this section we shall prove the following theorem, which implies that a partially
filled positive semidefinite matrix of order n is globally rank d completable if every n − 1
principal submatrix is locally rank d completable.

Theorem 31. Let G = (V,E) be a vertex redundantly completable graph in Rd with |V | ≥
d+ 1 for some d ≥ 2. Then G is globally completable in Rd.
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For the proof, we need the geometric results from the previous section as well as the
following combinatorial lemmas.

For finite sets X and Y that may be intersecting, let K◦(X,Y ) be the graph on X ∪ Y
whose edge set is {ij | i ∈ X, j ∈ Y } (including loops at vertices in X ∩ Y ).

Lemma 32. Let X and Y be sets with |X| = |Y | = d + 1. Then K◦(X,Y ) is not c-
independent in Rd. Moreover, for any edge ij with i ∈ X \Y and j ∈ Y \X, K◦(X,Y )− ij
is c-independent in Rd.

Proof. Let k = |X ∩ Y |. Then K◦(X \ Y, Y \ X) is isomorphic to Kd+1−k,d+1−k, whose
edge set is a circuit in Cd−k(K◦(X \ Y, Y \X)) by Lemma 8. Observe that K◦(X,Y ) can
be obtained from K◦(X \ Y, Y \X) by a sequence of k looped cone extensions. Lemma 6
now implies the claim.

Given a semisimple graph G = (V,E) with i ∈ V and F ⊆ E, let dF (i) be the number
of edges in F incident with i.

Our next result follows from repeated applications of Lemma 32.

Lemma 33. Let X and Y be sets with |X| ≥ d+1 and |Y | ≥ d+1. Then for any i ∈ X \Y
and j ∈ Y \X there is a base B of Cd(K◦(X,Y )) such that ij /∈ B and dB(i) = dB(j) = d.

Proof. We first suppose that |X ∩ Y | ≥ d. Choose Z ⊆ X ∩ Y with |Z| = d. Then
Z induces K◦(Z) in K◦(X,Y ), and K◦(Z) is c-independent and locally completable in
Rd by Lemma 7. Hence the edge set of K◦(Z) can be extended to the desired base of
Cd(K◦(X,Y )) by 0-extension operations.

Next suppose that |X∩Y | < d. Take X ′ ⊆ X\{i} and Y ′ ⊆ Y \{j} with |X ′| = |Y ′| = d
and X ∩ Y = X ′ ∩ Y ′. The edge set of K◦(X ′, Y ′) is c-independent by Lemma 32. We
may extend it to a spanning edge subset F of K◦(X,Y ) by 0-extension operations in such
a way that each new vertex in X is connected to all vertices in Y ′ and each new vertex in
Y is connected to all vertices in X ′. We claim that F spans Cd(K◦(X,Y )). To see this,
take any k ∈ X \X ′ and l ∈ Y \Y ′. Then F contains all edges of K◦(X ′+k, Y ′+ l) except
kl, and kl is spanned by F by Lemma 32. Hence F spans Cd(K◦(X,Y )), and F is a base
satisfying the degree condition.

Lemma 34. Let X be a finite set with |X| ≥ d. Then for any i ∈ X, Cd(K◦(X)) has a
base B such that dB(i) = d.

Proof. Take any X ′ ⊆ X − i such that |X ′| = d − 1. Then K◦(X ′ + i) is c-independent
and locally completable in Rd. By adding vertices of X \ (X ′ + i) by 0-extension, one can
obtain a desired base of Cd(K◦(X)).

Lemma 35. Let G = (V,E) be a vertex redundantly completable graph in Rd with |V | ≥
d ≥ 2. Then for any v ∈ V , |NG(v)| ≥ d+ 1.
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Proof. If |NG(v)| < d + 1, then |NG−w(v)| < d for any w ∈ NG(v) − v. Then G − w is
not locally completable since every vertex has at least d neighbors in a locally completable
graph with at least d vertices. This contradicts the hypothesis that G is vertex redundantly
completable.

We are now ready to prove Theorem 31.

Proof of Theorem 31. We use induction on |V |. Note that K◦d is c-independent and locally
completable in Rd. Hence K◦d+1 is the only vertex redundantly completable graph with

|V | = d + 1. Since K◦d+1 is clearly globally completable in Rd, we may assume that
|V | > d + 1. We split the remainder of the proof into two cases depending on whether or
not G has a loop.

Suppose G has a vertex v incident with a loop. Let G1 be the graph obtained from G
by adding all edges {ij | i, j ∈ N(v)} and let G′1 = G1 − v. By the induction hypothesis
and Corollary 25, it suffices to show that G′1 is vertex redundantly completable in Rd. To
this end, take any vertex w in G′1. Since G is vertex redundantly completable, G1 − w
is locally completable. Notice that G1 − w contains a subgraph which is isomorphic to
K◦d and contains v by Lemma 35. Hence by Lemma 34 there is a base B of Cd(G1 − w)
such that dB(v) = d. Note that B induces a locally completable subgraph in G1 −w since
G1 − w is locally completable. Therefore Cd(G1 − w − v) contains a locally completable
spanning subgraph by Lemma 2, which in turn implies that G1−w− v = G′1−w is locally
completable. In other words G′1 is vertex redundantly completable in Rd.

Suppose G has no loop. We say that an edge is bad if exactly one of its endvertices
has degree d+ 1. If every edge is bad then exactly one of the endvertices of each edge has
degree d+ 1, and hence G is bipartite. This gives a contradiction since no bipartite graph
can be locally completable by Lemma 1.

Thus there is an edge uv that is not bad. Let G2 be the graph obtained from G by
adding any edges between NG(u) and NG(v) including loops at NG(u) ∩ NG(v), and let
G′2 = G2 − u − v. By the induction hypothesis and Corollary 23, it suffices to show that
G′2 is again vertex redundantly completable. Since uv is not bad, we have the following
two cases according to Lemma 35.

Case 1: Suppose that |NG(u)| = d + 1 and |NG(v)| = d + 1. We claim that NG(v) ∩
NG(u) = ∅. Suppose not, and let w ∈ NG(v) ∩NG(u). Then G− w is locally completable
since G is vertex redundantly completable. Moreover G−w− v is also locally completable
since v has degree d in G−w. However |NG−w−v(u)| = d− 1, which means that G−w− v
is not locally completable, a contradiction. Thus N(u) ∩ N(v) = ∅ and G2 contains a
subgraph isomorphic to Kd+1,d+1 and covering uv.

Let us take any vertex w in G′2. Since G is vertex redundantly completable, G2 − w is
locally completable. If w /∈ N(u) ∪N(v) then G2 −w − uv is locally completable since uv
is covered by a subgraph isomorphic to Kd+1,d+1 whose edge set is a circuit in Cd(G2 −w)
by Lemma 8. Since u and v have degree d in G2 − w − uv, G′2 − w is locally completable.
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Figure 1: The graph of Example 1.

On the other hand, if w ∈ N(u)∪N(v), then G′2 −w can be obtained from G2 −w by the
inverse operations to 0-extension, which implies that G′2 − w is locally completable.

Case 2: Suppose that |N(u)| ≥ d + 2 and |N(v)| ≥ d + 2. Take any vertex w in G′2.
Observe that G2−w contains K◦(NG(u)\{w}, NG(v)\{w}) as an induced subgraph. Since
|NG(u) \ {w}| ≥ d+ 1 and |NG(v) \ {w}| ≥ d+ 1, Lemma 33 implies that Cd(G2 − w) has
a base B such that uv /∈ B and dB(u) = dB(v) = d. Let H be the subgraph of G2 − w
induced by B. Then H is locally completable since G2 − w is locally completable. Since
H − u− v can be obtained from H by the inverse operations to 0-extension, H − u− v is
locally completable and hence G′2 − w is locally completable.

6 Three Examples

In this section we shall present three examples that indicate it will be difficult to character-
ize 2-dimensional generic global completability by using existing techniques from rigidity
theory.

Example 1. Suppose G is the graph of the cube labeled as in Figure 1. Since G is a maximal
planar bipartite graph, G is locally bicompletable in R2 by [13, 15]. We will show that (G, p)
is not globally bicompletable when p is generic. By Lemma 15 and (the bicompletability
version of) Proposition 14, it will suffice to consider a semi-generic framework (G, p), in
standard position with respect to (1, 2). We will compute all possible realizations (G, q)
which are equivalent to (G, p). Since G is locally bicompletable, we may assume that q
is semi-generic and in standard position with respect to (1, 2) by (the bicompletability
version of) Proposition 13. Since G[1, 2, 3, 8] is globally bicompletable, we have pi = qi for
i ∈ {1, 2, 3, 8}.

For each pi, let p⊥i be the vector obtained by rotating pi by π/2. Since G has edges
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14, 25, we have

q4 = p4 + t4p
⊥
1 (15)

q5 = p5 + t5p
⊥
2 , (16)

for some t4, t5 ∈ R.
By Proposition 20 and the semi-genericity of q, the constraints by edges 36, 46, 56 are

equivalent to

det

(
q3 q4 q5

〈p6, p3〉 〈p6, p4〉 〈p6, p5〉

)
= 0. (17)

Thus we get

0 = det

(
p3 p4 + t4p

⊥
1 p5 + t5p

⊥
2

〈p6, p3〉 〈p6, p4〉 〈p6, p5〉

)
(18)

= det

(
p3 p4 p5

〈p6, p3〉 〈p6, p4〉 〈p6, p5〉

)
+ det

(
p3 t4p

⊥
1 p5

〈p6, p3〉 0 〈p6, p5〉

)
+ det

(
p3 p4 t5p

⊥
2

〈p6, p3〉 〈p6, p4〉 0

)
+ det

(
p3 t4p

⊥
1 t5p

⊥
2

〈p6, p3〉 0 0

)
(19)

Since det

(
p3 p4 p5

〈p6, p3〉 〈p6, p4〉 〈p6, p5〉

)
= 0, this gives

At4t5 +Bt4 + Ct5 = 0, (20)

where A =

(
p3 p⊥1 p⊥2

〈p6, p3〉 0 0

)
, B = det

(
p3 p⊥1 p5

〈p6, p3〉 0 〈p6, p5〉

)
, and

C = det

(
p3 p4 p⊥2

〈p6, p3〉 〈p6, p4〉 0

)
.

A similar calculation for the constraints represented by the edges 87, 47, 57 gives

at4t5 + bt4 + ct5 = 0, (21)

where a =

(
p8 p⊥1 p⊥2

〈p7, p8〉 0 0

)
, b = det

(
p8 p⊥1 p5

〈p7, p8〉 0 〈p7, p5〉

)
, and

c = det

(
p8 p4 p⊥2

〈p7, p8〉 〈p7, p4〉 0

)
.

Equations (20) and (21) imply that t5 = kt4 for some constant k depending only on
p. Substitution back into equation (20) gives a quadratic equation for t4 with two distinct
real roots, one of which is t4 = 0. The other root gives us a realisation (G, q) which is
equivalent but not congruent to (G, p). Hence (G, p) is not globally bicompletable in R2.
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Figure 2: The graph of Example 2.

Theorem 19 now implies that the graph G+ obtained from G by adding the edges
{11, 12, 22} is not globally completable in R2.

It is known that the 1-extension operation introduced in Section 4 preserves the global
rigidity of graphs. We showed in [13] that the double 1-extension operation (defined in
Section 2.3), which is a natural analogue of 1-extension in the completability setting, pre-
serves global completability if the initial graph satisfies the completability-stress rank con-
dition given in [20]. Since the graph G+ can be constructed from the globally completable
graph K◦2 by 0-extension and double 1-extension operations, and since 0-extension pre-
serves global completability, we may conclude that double 1-extension does not preserve
global completability in general.

Example 2. We next investigate the configuration space of a semi-generic realization of
the graph G given in Figure 2 in R2. Since G is a maximal planar bipartite graph, G is
locally bicompletable in R2 by [15, 13]. We will show that (G, p) is globally bicompletable
for some but not all generic p.

By Lemma 15 and (the bicompletability version of) Proposition 14, it will suffice to
consider a semi-generic framework (G, p), in standard position with respect to (0, 1). We
will compute all possible realizations (G, q) which are equivalent to (G, p). Since G is
locally bicompletable, we may assume that q is semi-generic and in standard position with
respect to (0, 1) by (the bicompletability version of) Proposition 13. Since G[0, 1, 2, 3] is
globally bicompletable, we have pi = qi for i ∈ {0, 1, 2, 3}. Since G has edges 14, 17, 05, we
also have

q4 = p4 + t4p
⊥
1 (22)

q5 = p5 + t5p
⊥
0 (23)

q7 = p7 + t7p
⊥
1 (24)

for some t4, t5, t7 ∈ R.
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Proposition 20 implies that the constraints represented by the three sets of edges
{38, 58, 78}, {29, 59, 49} and {46, 56, 76} are equivalent to the system of three quadratic
equations

a1t5t7 + a2t5 + a3t7 = 0, (25)

b1t4t5 + b2t5 + b3t4 = 0, (26)

c1t4t5 + c2t4t7 + c3t5t7 + c4t4 + c5t5 + c6t7 = 0 (27)

where:

a1 = det

(
p3 p⊥0 p⊥1

〈p8, p3〉 0 0

)
, a2 = det

(
p3 p⊥0 p7

〈p8, p3〉 0 〈p8, p7〉

)
, a3 = det

(
p3 p5 p⊥1

〈p8, p3〉 〈p8, p5〉 0

)
;

b1 = det

(
p2 p⊥0 p⊥1

〈p9, p2〉 0 0

)
, b2 = det

(
p2 p⊥0 p4

〈p9, p2〉 0 〈p9, p4〉

)
, b3 = det

(
p2 p5 p⊥1

〈p9, p2〉 〈p9, p5〉 0

)
;

c1 = det

(
p⊥1 p⊥0 p7
0 0 〈p6, p7〉

)
, c2 = det

(
p⊥1 p5 p⊥1
0 〈p6, p5〉 0

)
, c3 = det

(
p4 p⊥0 p⊥1

〈p6, p4〉 0 0

)
,

c4 = det

(
p⊥1 p5 p7
0 〈p6, p5〉 〈p6, p7〉

)
, c5 = det

(
p4 p⊥0 p7

〈p6, p4〉 0 〈p6, p7〉

)
,

c6 = det

(
p4 p5 p⊥1

〈p6, p4〉 〈p6, p5〉 0

)
.

Clearly c2 = 0. We can rewrite (26) and (27) as

t4(b1t5 + b3) + b2t5 = 0 (28)

t4(c1t5 + c4) = −(c3t5t7 + c5t5 + c6t7) (29)

We can now substitute (29) into the equation we get by multiplying (28) by (c1t5 + c4) to
obtain

−(c3t5t7 + c5t5 + c6t7)(b1t5 + b3) + b2t5(c1t5 + c4) = 0. (30)

We next rewrite (25) and (30) as

t7(a1t5 + a3) + a2t5 = 0 (31)

t7(c3t5 + c6)(b1t5 + b3) = t5[b2(c1t5 + c4)− c5(b1t5 + b3)]. (32)

We then substitute (32) into the equation we get by multiplying (31) by (c3t5+c6)(b1t5+b3)
to obtain

t5(d1t
2
5 + d2t5 + d3) = 0 (33)

where d1 = a1(b2c1− b1c5) +a2b1c3, d2 = a1(b2c4− b3c5) +a3(b2c1− b1c5) +a2(b3c3 + b1c6),
and d3 = a3(b2c4−b3c5)+a2b3c6. This cubic equation will have either one or three real roots
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Figure 3: The graph of Example 3.

depending on the sign of the discriminant D = d22 − 4d1d3. It follows that the framework
(G, p) will be globally bicompletable when D < 0, and will not be globally bicompletable
when D > 0. It remains to show that both alternatives are possible.

If we take p such that p⊥0 =

(
1
0

)
, p⊥1 =

(
0
1

)
, p3 =

(
1
−1

)
, p4 =

(
1
1

)
, p5 =

(
1
1

)
, p6 =(

0
1

)
, p7 =

(
1
0

)
, p8 =

(
1
1

)
, p9 =

(
1
0

)
, then a1 = 0, b1 = p2,x, c1 = 0, c3 = 1, a2 =

1, a3 = −2, b2 = p2,x − p2,y, b3 = 0, c4 = 1, c5 = 0, c6 = 0. Hence d1 = p2,x, d2 = 0,
d3 = −2(p2,x − p2,y) and D = 8p2,x(p2,x − p2,y), which can be both positive and negative
depending on the entries of p2.

This example shows that global bicompletability is not a generic property. We can now
apply Theorem 19 to also deduce that global completablity is not a generic property.

Example 3.
Theorems of Connelly [3], and Jackson and Jordán [11] for d = 2, or Gortler, Healy,

and Thurston [8] for general dimension, imply that the global rigidity of graphs can be
characterized by a rank condition on stress matrices. An analogous condition, which we
have referred to as the completability-stress rank condition, was shown to be sufficient to
imply global completability in [13]. This rank condition is not necessary in general, how-
ever, since any graph which can be constructed from a globally completable graph by a
simple 0-extension is globally completable by Lemma 3, but cannot satisfy the rank condi-
tion. It is perhaps plausible that all gobally completable graphs can be constructed from
graphs satisfying the completability-stress rank condition by a sequence of 0-extensions.
In Figure 3 we give an example which shows that this is not the case.

Let G be the graph in Figure 3, and let (G, p) be a generic realization in R2. Con-
sider any realization (G, q) equivalent to (G, p). Note that {1, 2, 3, 4} induces a globally
completable subgraph since it can be constructed from K◦2 by 0-extension. Hence we may
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assume p(i) = q(i) for i = 1, . . . , 4. Also {5, . . . , 10} induces K2,4 which is globally bi-
completable. Hence there is a 2-by-2 nonsingular matrix A such that q(i) = Ap(i) for
i = 5, . . . , 8, and q(i) = (A−1)>p(i) for i = 9, 10. Due to the existence of the four bridging
edges between {1, 2, 3, 4} and {5, . . . , 10}, we have p(i)>(I−A)p(i+4) = 0 for i = 1, . . . , 4,
which implies that A = I since p is generic. Thus (G, q) is congruent to (G, p), and G is
globally completable in R2.

Since G is globally completable in R2, it is locally completable in R2, and hence is c-
independent since |E| = 2|V |−1. It follows that the only completability-stress of a generic
realization of G is the zero stress and hence the rank condition cannot be satisfied. Since
G has no vertex of degree two, it cannot be constructed by a 0-extension.

A similar construction can be used to give a globally completable graph from any
pair consisting of a globally completable graph and a globally bicompletable graph with
sufficiently many vertices.

7 Combinatorial sufficient conditions for completability

In this section our goal is to show that if the minimum degree of an n-vertex graph G
is sufficiently large, or the number of pairs of non-adjacent vertices is sufficiently small,
compared to n and d, then G is locally (resp. globally) completable in Rd. Our bounds
are essentially tight in most cases.

These results will imply that if sufficiently many entries are known in each row/column
of the given partially filled matrix (or if the number of unknown entries is sufficiently small)
then - in the generic case - the completion is locally (resp. globally) unique.

We shall frequently use the fact that the graph operations introduced in Section 2.3
preserve local (or global) completability in Rd.

7.1 Minimum degree bounds

The degree of a vertex v in a graph G is the number of edges incident to v, counting loops
once. Let δ(G) denote the minimum degree of G. We will use the fact that K4 + e (the
graph obtained from K4 by adding a loop) and K5 − e (the graph obtained from K5 by
deleting an edge) are locally completable in R2, since they can be obtained from K◦2 by a
0-extension and one or two vertex splits, respectively.

Since the complete tripartite graph Km,m,1 is not locally completable in R2 by Lemma
9, the bound in the next result is almost tight.

Theorem 36. Let G = (V,E) be a semisimple graph on n vertices with δ(G) ≥ dn/2e+ 2.
Then G is locally completable in R2.

Proof. We use induction on n. Note that the minimum degree condition implies that n ≥ 4.
We first show that G has a locally completable subgraph on at least four vertices.

Suppose not. Then K5 − e 6⊆ G.
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Figure 4: The subgraphs F3 and F4.

Suppose that G has a subgraph H isomorphic to K4. Since K5− e 6⊆ G, each vertex of
G−H is adjacent to at most two vertices of H. We can now apply induction to G−H to
deduce that G−H is a locally completable graph on at least four vertices. Hence we may
assume that K4 6⊂ G.

The minimum degree condition implies that there exists a subgraph F1 of G which is iso-
morphic to K3. Let V (F1) = {v1, v2, v3}. The minimum degree condition also implies that
vi and vi+1 have a common neighbour zi+2 in G−F1, reading subscripts modulo three, and
the fact that G has no K4 implies that z1, z2, z3 are distinct. Let F2 = G[v1, v2, v3, z1, z2, z3].

If each vertex of G − F2 is adjacent to at most three vertices of F2 then we may
apply induction to deduce that G − F2 is a locally completable graph on at least four
vertices. Hence some vertex w of G− F2 is adjacent to four vertices of F2. Since K4 6⊂ G,
G[V (F2) ∪ {w}] contains one of the two graphs F3, F4 shown in Figure 4.

We can reduce F3 to the locally completable graph K5 − e by deleting z2 and then
contracting (i.e. applying the inverse of vertex-splitting to) the pair z1, z3. Hence F3 is
locally completable. Similarly, we can reduce F4 to a K4 + e by contracting the pair z1, z3
and then applying the inverse of double 1-extension. Thus F4 is locally completable. It
follows that G has a locally completable subgraph on at least four vertices.

We may now choose a maximal locally completable subgraph H of G. Let |V (H)| = t.
Suppose that H 6= G. If t < dn/2e then the minimum degree condition implies that there
are at least t(dn/2e + 2 − t) > n − t edges from H to G − H, and hence some vertex of
G−H is adjacent to two vertices of H. On the other hand, if t ≥ dn/2e then each vertex
of G−H is adjacent to at least dn/2e+ 2− n+ t ≥ 2 vertices of H. In both alternatives
we may construct a larger locally completable subgraph by performing a 0-extension on
H.

By using Theorem 31 we can deduce the following sufficient condition for global com-
pletability.

Theorem 37. Let G = (V,E) be a semisimple graph on n vertices. Suppose that δ(G) ≥
dn/2e+ 3. Then G is globally completable in R2.

We close this subsection by considering a possible extension to Rd. Lemma 9 implies
that Km,m,d−1 is not locally completable in Rd for all m, and hence that the degree bound
in the following conjecture would be best possible.
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Conjecture 38. For every d ≥ 1 there is an integer cd such that every semisimple graph
G on n ≥ cd vertices with δ(G) ≥ (n+ d)/2 is locally completable in Rd.

Some evidence in favour of this conjecture can be deduced from our next result.

Theorem 39. For all d ≥ 1 and ε > 0 there exists an integer N = Nd,ε such that every
semisimple graph G on n > N vertices with δ(G) ≥ n(1 + ε)/2 is locally completable in Rd.

Proof. The Erdős-Stone Theorem [6] tells us that there exists anN such that every semisim-
ple graph G on n > N vertices with δ(G) ≥ n(1 + ε)/2 has a subgraph F isomorphic to
Kd,d,d. Lemma 9 implies that F is a locally completable graph on 3d vertices. We can
now choose a maximal locally completable subgraph H of G, and use (the d-dimensional
version of) the argument given in the last paragraph of the proof of Theorem 36 to deduce
that H = G.

7.2 Bounds on the number of missing edges

Let G = (V,E) be a simple graph. We say that a pair u, v ∈ V of non-adjacent vertices
with u 6= v is a missing edge of G. If G is locally (or globally) completable in Rd on at
least d + 1 vertices then each vertex must be incident with at least d edges. This implies
that there exist simple graphs on n vertices with n− d missing edges which are not locally
(or globally) completable in Rd.

The number of edges from a vertex v to a set X of vertices is denoted by dG(v,X).

Theorem 40. Let G = (V,E) be a simple graph on n ≥ 3(2d + 1) vertices. Suppose that
G has at most n− d− 1 missing edges. Then G is globally completable in Rd.

Proof. We first remark that K2d+1 is locally completable in Rd. This can be checked by
first observing that a simple 0-extension G′ of K◦d is locally completable in Rd and that
a spanning subgraph of K2d+1 can be obtained from G′ by vertex-splitting operations by
eliminating a loop at each step. Hence K2d+2 is globally completable in Rd by Theorem 31.

Now the number of edges in G is at least
(
n
2

)
− (n − d − 1), which is larger than

(1− 1
2d+1)n

2

2 since n ≥ 3(2d+1). Therefore by Turán’s theorem [25] G contains a subgraph
H which is isomorphic to K2d+2.

To conclude the proof we show that a spanning subgraph of G can be obtained from H
by a sequence of simple 0-extensions. Let {v1, . . . , v2d+2} be the vertices of H, and consider
an ordering {v1, v2, . . . , vn} of the vertices which starts with the vertices of H and satisfies

d(vi, {v1, v2, . . . , vi−1}) ≥ d(vj , {v1, v2, . . . , vi−1})

for all 2d+ 3 ≤ i < j ≤ n. Such an ordering can be found greedily.
We claim that for all 2d+ 3 ≤ i ≤ n we have d(vi, {v1, v2, ..., vi−1}) ≥ d (which implies

the statement of the theorem). Indeed, by assuming that the inequality fails for vi we can
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deduce that all vertices after vi send at most d− 1 edges back to the set {v1, v2, ..., vi−1},
which means that the number of missing edges is at least (n− i+ 1)(i− d) ≥ n− d. This
contradicts the fact that G has at most n− d− 1 missing edges.

By a more detailed analysis it is possible to reduce the lower bound for n. We shall
demonstrate this for local completability in R2. First we use an observation of Berger,
Kleinberg, and Leighton [2]. For completeness we give (a slightly simplified) proof of their
result.

The degree-k extension operation adds a new vertex v to a graph and at least k new
edges incident with v.

Lemma 41. [2] Let G = (V,E) be a simple graph on n vertices. Suppose that G has at
most n − 5 missing edges. Then G can be obtained from K5 by a sequence of degree-4
extensions.

Proof. Let H be the complement of G. Since H has n vertices and at most n− 5 edges, it
has at least five connected components. By choosing vertices from five different components
we can find five pairwise non-adjacent vertices v1, v2, v3, v4, v5 in H. Consider an ordering
v1, v2, ..., vn of the vertices of G which starts with the five chosen vertices and satisfies

dG(vi, {v1, v2, ..., vi−1}) ≤ dG(vj , {v1, v2, ..., vi−1})

for all 6 ≤ i < j ≤ n. Then we can use the argument given in the last paragraph of the
proof of Theorem 40 to conclude that dG(vi, {v1, v2, ..., vi−1}) ≥ 4 for 6 ≤ i ≤ n.

Theorem 42. Let G = (V,E) be a simple graph on n ≥ 6 vertices. Suppose that G has at
most n− 3 missing edges. Then G is locally completable in R2.

Proof. It follows from Lemma 41 that G can be obtained either from K5 or K5 − e by a
sequence of degree-2 extensions, or from K5 minus two edges by a sequence of degree-4
extensions.

In the first case we can deduce that G is locally completable in R2 by observing that
a degree-2 extension corresponds to applying a 0-extension and possibly adding some new
edges, and using the fact that K5 − e is locally completable.

Consider the second case. The graph obtained from K5 minus two edges by a degree-4
extension operation is a graph H on six vertices with at most three missing edges. It is
easy to see that H can be obtained from K5 − e by a degree-3 extension (and hence it is
locally completable in R2) or H can be obtained from K6 by deleting three disjoint edges
(and hence is isomorphic to K2,2,2 which is locally completable by Lemma 9). We can now
deduce that G is locally completable in R2 as in the first case.

The preceding results in this subsection have been restricted to simple graphs. It is
also natural to consider semisimple graphs on n vertices and to compare the number of
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edges to that of the complete semisimple graph K◦n. We close this section with two results
of this type, which are valid in all dimensions. Henceforth, we will also consider a pair u, u
to be a missing edge of G if there is no loop incident with u in G.

Theorem 43. Let G = (V,E) be a semisimple graph on n ≥ d vertices. Suppose that G
has at most n− d missing edges. Then G is locally completable in Rd.

Proof. Note that the hypotheses imply that each vertex has at least d incident edges. We
use induction on the number of vertices. We may assume that G 6= K◦n and hence that
n > d.

Choose a vertex v of G with at most n − 1 incident edges. Then G − v has at most
n− d− 1 = (n− 1)− d missing edges and hence is locally completable by induction. Since
G can be obtained from G− v by a (possibly non-simple) 0-extension and edge additions,
G is also locally completable in Rd.

The bound n − d is best possible. To see this consider the graph obtained from a
complete semisimple graph by attaching a vertex v of degree d − 1. Theorems 43 and 31
imply a similar bound for global completability.

Theorem 44. Let G = (V,E) be a semisimple graph on n ≥ d vertices. Suppose that G
has at most n− d− 1 missing edges. Then G is globally completable in Rd.

The graph obtained from a complete semisimple graph by attaching a vertex v of degree
d which has a loop on it shows that this bound is also best possible.

8 Concluding remarks

We conclude the paper with some open questions. As we noted earlier, the complexity of
deciding whether a given graph is locally (or globally) completable in Rd remains open for
all d ≥ 2.

One may also consider the completion problem of matrices with complex entries and
search for a charaterization of those partially filled Hermitian matrices which have a unique
complex completion. We note that, in this case, global completability is known to be a
generic property by [14, Lemma 4.4].

Motivated by corresponding results for rigidity and global rigidity, we also ask the
following questions. Is it true that, if a graph is redundantly locally completable in Rd
(i.e., it is locally completable after removing any edge), then G is globally completable if
and only if the completability-stress condition holds (c.f. [13, Theorem 6.2])? In particular,
is global completability a generic property of redundantly locally completable graphs?

The configuration space of a framework (G, p) is the set of all q ∈ Rd|V | for which (G, q)
is equivalent to (G, p). It seems likely that the proof technique used by Hendrickson [10]
can be used to show that, if (G, p) is generic and globally completable, then for each e ∈ E
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the framework (G − e, p) is either locally completable or has an unbounded configuration
space. Hence it would be useful to determine when the configuration space of a (generic)
framework in Rd is bounded.
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