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Abstract

Four influenza pandemics have struck the human population during the last 100 years causing substantial morbidity and
mortality. The pandemics were caused by the introduction of a new virus into the human population from an avian or
swine host or through the mixing of virus segments from an animal host with a human virus to create a new reassortant
subtype virus. Understanding which changes have contributed to the adaptation of the virus to the human host is essential
in assessing the pandemic potential of current and future animal viruses. Here, we develop a measure of the level of
adaptation of a given virus strain to a particular host. We show that adaptation to the human host has been gradual with
a timescale of decades and that none of the virus proteins have yet achieved full adaptation to the selective constraints.
When the measure is applied to historical data, our results indicate that the 1918 influenza virus had undergone a period
of preadaptation prior to the 1918 pandemic. Yet, ancestral reconstruction of the avian virus that founded the classical
swine and 1918 human influenza lineages shows no evidence that this virus was exceptionally preadapted to humans.
These results indicate that adaptation to humans occurred following the initial host shift from birds to mammals,
including a significant amount prior to 1918. The 2009 pandemic virus seems to have undergone preadaptation to
human-like selective constraints during its period of circulation in swine. Ancestral reconstruction along the human virus
tree indicates that mutations that have increased the adaptation of the virus have occurred preferentially along the trunk
of the tree. The method should be helpful in assessing the potential of current viruses to found future epidemics or
pandemics.
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those infected (Taubenberger and Morens 2006), causing
over 50 million deaths (Johnson and Mueller 2002). Around
the same time, a panzootic was observed in swine, which is
thought to have been the origin of the “classical swine”
lineage observed especially in North America. The timing
and nature of the host-shift events that caused the
near simultaneous human and swine epidemics have been
a matter of controversy (Reid et al. 2004; Taubenberger et al.
2005; Antonovics et al. 2006; Gibbs M and Gibbs A 2006;
Taubenberger 2006; dos Reis et al. 2009; Smith, Bahl,
et al. 2009). Reassortment, whereby circulating human vi-
ruses acquired novel avian-like gene segments, resulted in
two further pandemics in 1957 (H2N2) and 1968 (H3N2)
(Kawaoka et al. 1989; Schafer et al. 1993). After each of these
pandemics, the new virus replaced the previously circulating
subtype. In 1977, an HIN1 virus reappeared in the human
population and cocirculated with H3N2 until 2009. The re-

Introduction

Influenza A is a negative-strand RNA virus with a genome
composed of eight genetic segments encoding 11 proteins.
Influenza A viruses are categorized by the antigenicity
of the two surface glycoproteins, the hemagglutinin
(HA) and neuraminidase, which are differentiated as 16
(H1-H16) and 9 (N1-N9) subtypes, respectively. Although
the natural reservoir of influenza A is waterfowl, where the
virus propagates causing little or no disease (Webster et al.
1992), viruses periodically transmit to other host species
resulting infrequently in a stable lineage in, for example,
poultry, swine, and most significantly, humans. These
host-shift events can result from the transfer of a complete
virus from one host to another or from genetic reassort-
ment, where a chimera is formed by the mixing of genetic
segments from a virus of a different host with genetic seg-
ments of a virus already circulating in the “new” host.

Over the last century, four influenza pandemics have re-
sulted from the establishment of a new virus in humans as
a result of the introduction of genetic elements from an
animal virus either in toto or through reassortment causing
substantial morbidity and mortality. In 1918-1919, an influ-
enza A H1N1 virus pandemic struck the human population,
infecting a third of the world population and killing 2.5% of

emerging virus closely resembled the H1N1 viruses that had
circulated approximately 25 years earlier (Nakajima et al.
1978; dos Reis et al. 2009), suggesting that the virus was
a member of the 1957 lineage and had been held in artificial
evolutionary stasis during this time (Palese 2004).

In the late 1970s, an independent “Eurasian swine” HIN1
lineage resulted from a direct transmission from an avian
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Table 1. Significant Events of Relevance to Recent Human Pandemics.

Resulting Pandemic/

Year Event Segments Panzootic Lineage
Pre-1918 Host shift: ? to swine ? Classical swine (HIN1)
Pre-1918 Host shift: ? to human ? Spanish flu (H1N1)
1957 Host shift: avian to human H2, N2, PB1 Asian flu (H2N2)
1968 Host shift: avian to human H3, PB1 Hong Kong flu (H3N2)
1977 Reintroduction of human H1N1 virus All segments Russian flu (HIN1)
Late 1970s Avian to swine All segments Eurasian swine (H1N1)
Late 1990s Host shift: human to swine H3, N2, PB1 from human Reassortant swine (H3N2)
Late 1990s Host shift: avian to swine PA, PB2 Triple-reassortant swine (H3N2)
Pre-2009 Mixing between swine H1 from classical swine; N1, H1N1

M from Eurasian swine; NS, NP, PA,

PB1, PB2 from Triple-reassortant
2009 Swine to human All segments Pandemic H1IN1 2009

host to pigs (Pensaert et al. 1981). In the late 1990s, a series of
reassortant viruses appeared in pigs in North America that
initially combined genetic elements from human H3N2
(PB1, H3, and N2) with classical swine viruses followed by
the introduction of genetic elements from avian influenza
(PA and PB2) (Zhou et al. 1999). This “triple-reassortant”
strain then underwent various reassortments acquiring ge-
netic elements from classical swine (H1) and Eurasian swine
(N1 and MP) before undergoing a host shift to humans, re-
sulting in the novel “swine origin” influenza virus (pandemic
H1N1 2009). First identified in April 2009 (Centers for Dis-
ease Control and Prevention 2009; Dawood et al. 2009;
Smith, Vijaykrishna, et al. 2009), it quickly spread through-
out the world, causing the first pandemic of the 21st century
(Fraser et al. 2009). The major events over the last century of
relevance to humans are listed in table 1.

Although sporadic cross-species transmissions are com-
mon, transmissions leading to the establishment of new
mammalian lineages have been relatively rare. For a virus
to infect, replicate, and transmit efficiently in a different
host species, it must undergo a series of host-specific adap-
tations. It must have a HA protein that can efficiently bind
to and infect the host cell (Rogers et al. 1983; Nobusawa
et al. 1991; Connor et al. 1994; Vines et al. 1998; Matroso-
vich et al. 2000). It also requires a polymerase and nucle-
oprotein complex that can actively replicate the virus
genome within the targeted host cells. This involves the
polymerase and ribonucleoprotein complex interacting
with host-specific nuclear import factors so that replication
can take place inside the nucleus. The polymerase complex
should also efficiently replicate the virus RNA at the host-
specific body temperature (for reviews, see Naffakh et al.
2008; Ruigrok et al. 2010). The virus must also confront
the various host-specific immune responses. The mecha-
nisms of adaptation are poorly understood, and all virus
proteins may potentially play some role. Host shifts occur
due to a mixture of factors, including virus potential, host
susceptibility, and possibly chance occurrences. Although
a comprehensive understanding of host shifts would re-
quire addressing all these aspects, assessing the degree
of adaptation of the virus to the new host is an important
factor in assessing the potential pandemic risk of new
strains.
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We recently developed a maximum likelihood phy-
logenetic method to detect and characterize amino acid
locations in influenza virus proteins that evolve under
host-specific constraints (Tamuri et al. 2009). In this paper,
we describe how we can use these measures to characterize
how well any given virus sequence is adapted to the selec-
tive constraints imposed by avian or human hosts. We fo-
cus on the host shift that led to the 1918 HIN1 pandemic
and the process of adaptation of the viral proteins during
the approximately 70 years that the viruses have circulated
in the human population. We address such questions as
the rate of host adaptation for the individual proteins,
the degree of human adaptation found in currently circu-
lating strains, and how the avian viruses that initiate hu-
man pandemics compare with other avian viruses.

Materials and Methods

Host Adaptation Measure

In addition to identifying locations in influenza proteins
where there is a change in selective constraints following
a host shift from birds to humans, our previous work also
provided us with the expected equilibrium frequency of
amino acid A; at identified location k evolving in host h,
nﬁ (A;) (Tamuri et al. 2009). We can use these equilibrium
frequencies to construct a measure of host adaptation. Con-
sider that we have identified N locations in a given protein
where there is a difference in selective constraints in human
and avian hosts. If we assume that the selective constraints
act at the protein level, we can, following Yang and Nielsen
(2008), express the equilibrium frequencies f(A;) in
terms of the “fitness parameters” for those amino acids
Fe(A):

(AN (D mmym )efi A, (1)

1€A;

where 7, represents the background equilibrium frequency
for the nucleotide found in position | of codon I, and the
sum is over all codons that code for amino acid A;. With this
expression, we can write F[(A;)=K(A;) + log(n} (A;)), where
K(A;) represents the nucleotide biases and the proportionality
constant. Assuming that the fitness effects of the differ-
ent locations are additive, we can create a measure of host
adaptation 0"({S¢}) of a virus with amino acid sequence
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where we have replaced the sum of K(A;) with the average value
of K(A;), N times K, which is only a function of the background
distribution of nucleotides and should not vary significantly
from one sequence to another.

Fully adapted proteins that had equilibrated with the
selective constraints would have amino acid frequencies
at the various sites given by the equilibrium frequencies
7 (A;). We can model random proteins as having amino
acid frequencies at each location given by my(A;), the fre-
quency of amino acid A; averaged over our influenza
sequence database. For convenience, we scale 0"({S.})
so that an ensemble of random proteins have an average
host adaptedness of 0, whereas an ensemble of fully adapted
proteins have an average host adaptedness of 1 by
computing

_ Hh({sk}) - <9h>Random

H' =
<0h >Adapted - <0h >Random

: (3)

where (0")g.dom 2nd (0" Adapted FePresent the average value of
0"({S}) for an ensemble of random and adapted sequences,
respectively:

(P leantom = 3 3 7o(A) log(L(A)) + N,
k=1i ;01 (4)
5

T (A;) log(ml(A)) + NK.

Il
M=

<6h >Adapted

Note that NK drops out of equation (3) and does not
need to be computed. Our results and conclusions were
negligibly affected by our choice of 7y(A;), which was only
used to scale the adaptedness values. We call H" the
“human adaptedness” when the host h is human and
the “avian adaptedness” when the host is avian. Further
discussion of this measure as well as a numerical example
is provided in the Appendix.

Individual sequences can have host adaptedness values
less than zero or greater than one if the sequences have
a greater number of especially unfavorable (low equilibrium
frequency nf (A)) residues compared with random
sequences or a greater number of favorable (high equilib-
rium frequency nﬁ (A))) residues compared with fully adap-
ted sequences.

The maximum likelihood estimate 7} (A;) of ml!(A;) is
zero for all amino acids not present at identified
location k. In order to avoid logarithms of zero in equations
(2) and (4), we incorporated pseudocounts into the calcu-

Table 2. Protein Sequences Used in the Analysis.

Alignment Number of Number of
Protein Length Human Sequences Avian Sequences
H1 566 404 30
N1 470 274 232
NS1 305 61 312
NP 507 122 308
PA 716 60 347
PB2 759 80 321

lation of 7fl(A)):

A(A) + O

h
A,’ =
m (A1) 1 + 205

: (5)
where § was set equal to 10, Varying J did not appreciably
change the results.

Sequence Data and Analysis

The data collection and analysis were performed as de-
scribed previously (Tamuri et al. 2009). Briefly, sequences
for human and avian influenza A viruses (excluding labo-
ratory strains) were obtained from the NCBI Influenza Virus
Resource Database (Bao et al. 2008). The sequence data
were culled to eliminate near-identical sequences and
the result of sporadic transmissions between hosts. The se-
quences were aligned at the amino acid level (MUSCLE;
Edgar 2004) and converted to nucleotide codon alignments
(PAL2NAL; Suyama et al. 2006); the nucleotide data were
used to construct separate phylogenetic trees for each gene
segment using PhyML (Guindon and Gascuel 2003; HKY85
model; Hasegawa et al. 1985; gamma-distributed rates).
Branch lengths representing amino acid evolutionary dis-
tances were then optimized for this fixed-tree topology us-
ing the corresponding amino acid data (PAML; Yang 1997,
2007; WAG substitution matrix; Whelan and Goldman
2001; gamma-distributed rates). The number of sequences
used (with the exception of the PB1, M1, and M2; see be-
low) is listed in table 2. The phylogenetic trees are shown in
figure 1.

We then identified locations with significant support
for having undergone changes in selective constraints ac-
companying the host-shift event from birds to humans,
using the analysis described previously (Tamuri et al
2009), related to the approach described by Forsberg
and Christiansen (2003). In this method, locations in the
influenza genome were analyzed under two models. The
first model assumes that the pattern of evolution for
the given location is host independent, and the site-specific
amino acid composition is estimated. The second model
assumes that the pattern of evolution for the given location
depends on the particular host (avian or human), and
two sets of site-specific amino acid compositions (one
for each host) are estimated. The likelihoods of the two
models were compared, and the statistical significance
of the host-specific model was obtained for the given
location. The procedure was then repeated for all polymor-
phic locations in all proteins, and a false discovery rate
(FDR) approach (Benjamini and Hochberg 1995) was used

1757
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MBE

2009

Fic. 1. Phylogenetic trees of the various genes in the analysis, with host and lineage indicated by branch colors: avian (black), human (red),
classical swine (blue), and Eurasian swine (cyan). For PA and PB2, we additionally include triple-reassortant swine sequences (green). The
location of the host shift used in the calculations is indicated by an orange dot. Shifting the location of the host-shift event did not appreciably
change the results. 1918 and pandemic H1N1 2009 sequences are labeled. Horizontal line represents a branch length corresponding to 0.1
nucleotide substitutions per site. Only the avian and human sequences were used in determining the significant locations, the equilibrium
amino acid frequencies, and the ancestral reconstructions as explained in the text.

to correct for multiple testing, resulting in a set of locations
that differ in the two hosts.

Using a FDR cutoff of 0.20, we identified 294 sites on six
different proteins as described in the supplementary
material, Supplementary Material online (H1: 84 sites,
N1: 68 sites, NS1: 28 sites, NP: 48 sites, PA: 27 sites, and
PB2: 39 sites). (M1, M2, and PB1 have relatively few loca-
tions undergoing changes in selective constraints and thus
do not have sufficiently robust statistics for computing hu-
man and avian adaptedness.) We used these 294 sites to
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calculate host adaptedness for the various human and
avian virus sequences as well as for the pandemic HIN1
2009 virus and selected classical swine and Eurasian swine
virus sequences, using equations (2—4) described above.
The strains used in the analysis and their host adaptedness
values are included as supplementary material, Supplemen-
tary Material online. Varying the FDR threshold between
5% and 20% or random resampling of included sites results
in different magnitudes of change in adaptedness but has
little effect on the qualitative results.


http://mbe.oxfordjournals.org/cgi/content/full/msq317/DC1
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Fic. 2. Host adaptedness values for a series of different virus sequences, including avian (black), human (red), classical swine (blue), Eurasian
swine (cyan), and the host-shift sequence (orange). Open red circles represent post-1977 human H1N1 viruses whose isolation times were
corrected as described in the text. Error bars for the host-shift sequence represent the 95% Cl indicating the uncertainty in the ancestral
reconstruction. For PA and PB2, we additionally include triple-reassortant swine sequences (green). 1918 and pandemic H1N1 2009 sequences
are labeled. Human sequences inside the distribution of avian sequences represent sporadic H5N1 infections.

Reconstructing the Host-Shift Sequence

We are also interested in studying the host adaptedness of
the ancestor of the 1918 pandemic virus. The host shift was
assumed to have occurred at the midpoint of the branch
connecting the parent node of the 1918 human H1N1 se-
quence with its parent as shown in figure 1. (Moving the
host shift along this branch did not appreciably affect the
results of the calculation.) Using the maximum likelihood
of our site-wise nonhomogenous model, we calculated the
posterior probability of every amino acid for every site at
the host-shift event (Koshi and Goldstein 1996). We sam-
pled sequences from the posteriors 1,000 times, calculating
the host adaptedness for each reconstruction. The mean
and 95% confidence intervals (Cls) of the human adapted-
ness and avian adaptedness measures were constructed
based on this sampling.

Reconstructing the Pattern of Sequence Changes
We performed a reconstruction of the most likely set of-
substitutions for each protein using the joint recon-
struction method of Pupko (Pupko et al. 2000) under
the WAG amino acid substitution model (Whelan and
Goldman 2001) with site-optimized rates. We then calcu-
lated human adaptedness measures for each node of the
phylogenetic tree following the avian-to-human host shift.
By traversing the phylogenetic tree for the protein starting
at the host-shift node down through the human lineage,
we calculated the change in human adaptedness along
the trunk of tree, leaf nodes, and the remaining internal
branches.

Fits to Host Adaptedness Data

To study the change in host adaptedness with time, we fit
the host adaptedness of human virus sequences (ignoring
sporadic H5N1 infections) as a function of isolation date to
two possible functional forms: (a) an exponential decay to
baseline equal to 1.0, where H(t)=1 — Aexp( — t/1), and
(b) an exponential decay to an adjustable baseline, where
H(t)=B — Aexp( — t/7). The adjustable parameters are, as
appropriate, the amplitude of change A, the adaptation
time 7, and the asymptotic value B. We subtracted 25 years
from the isolation date of post-1977 human H1N1 viruses
corresponding to the time that these viruses were in arti-
ficial evolutionary stasis (dos Reis et al. 2009). We used the
likelihood ratio test (P << 0.05) to test whether model (a)
can be rejected in favor of (b) as outlined in the Appendix.
For the chosen model, we calculated Cls for the parameters
and the time when the fit matches the human adaptedness
at the host-shift sequence through bootstrapping by sam-
pling the residuals.

Results

Figure 2 shows the host adaptedness (human or avian) val-
ues computed for the H1, N1, NS1, NP, PA, and PB2 pro-
teins for a variety of avian, human, and swine viruses. Points
representing the human pandemic viruses of 1918 and
2009 are indicated. In addition, we represent the position
of the reconstructed virus at the host-shift event that gave
rise to the 1918 pandemic. This figure highlights that the
avian sequences are at equilibrium, clustering around 1.0,
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whereas mammalian viruses are spread out, suggesting an
ongoing adaptation process.

To evaluate whether the virus at the pre-1918 host-shift
event was a typical or exceptional avian virus, we calculated
the fraction of avian viruses that were less well adapted to
avian and human hosts compared with the host-shift virus.
As shown in figure 3, the avian adaptedness and human
adaptedness of the host-shift virus are generally within
the distribution of values obtained for other avian viruses,
although, interestingly, the polymerase proteins (PA and
PB2) have relatively high avian adaptedness. This suggests
that the host-shift virus was not exceptionally preadapted
to humans. Figure 3 also shows how the pandemic HIN1
2009 virus proteins compared with the corresponding pro-
teins of the lineage from which the genetic element came
(i.e., the human adaptedness and avian adaptedness values
for the H1, NS1, and NP proteins are compared with those
from classical swine viruses, those for PA and PB2 are com-
pared with avian virus proteins, and N1 is compared with
the corresponding protein of Eurasian swine viruses). The
pandemic H1N1 2009 virus proteins, with the exception
of N1, seem to be more adapted to humans than might
be expected. In particular, the human adaptedness of the
pandemic H1N1 2009 PA protein is larger than 99% of
the corresponding proteins from avian viruses. The N1 pro-
tein actually has a lower human adaptedness than the other
Eurasian swine N1 proteins, with a human adaptedness
value more typical of avian sequences; the latter results
from residues V13, A75, and R257, all three of which are rare
in human and swine (as well as avian) viruses. The pandemic
H1N1 2009 PA and PB2 proteins have high human adapt-
edness, even relative to the distribution found in the
swine triple reassortants. Contributing to this are the PB2
A684S and PA K356R substitutions that have occurred in
these two proteins prior to the 2009 pandemic (Tamuri
et al. 2009).

Figure 4 shows the changing avian adaptedness and hu-
man adaptedness values as a function of isolation year. Wa-
terfowl virus proteins show an average avian adaptedness
close to one, agreeing with the notion that waterfowl is the
natural reservoir of influenza A. Conversely, human viruses
show a trend toward increasing human adaptedness and
decreasing avian adaptedness with time of isolation. Inter-
estingly, the 1918 human virus shows intermediate values
for both avian adaptedness and human adaptedness,
especially for the H1 segment.

Also included in figure 4 is a least-squares fit of an ex-
ponential to the human adaptedness data for the human
virus lineage, performed as described in the Materials and
Methods section. Fitting parameters are shown in table 3.
Best fits were obtained with a timescale for adaptation
(7, the time necessary for 63.2% of the adaptation to oc-
cur) on the order of 30-70 years, fastest for H1, N1, NP,
and PB2 and slowest for NS1. We would expect that the
asymptotic human adaptedness values for these extrapo-
lations should equal 1.0. In fact, significantly better fits
were obtained for four of the proteins when the asymp-
totic values are larger (H1 and N1) or smaller (NP and
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Fic. 3. Comparison of various proteins from the pre-1918 host-shift
reconstruction and pandemic H1N1 2009 virus with those of the
host viruses from which they emerged. Points in blue show the
percentage of avian virus protein sequences that have avian and
human adaptedness values lower than that of the pre-1918 host-
shift reconstruction. Points in red show the percentage of avian (PA
and PB2), Eurasian swine (N1), or classical swine (H1, NP, and NS1)
virus sequences with human adaptedness or avian adaptedness
values lower than the pandemic HIN1 2009 sequences. The human
adaptedness values for the pre-1918 host-shift proteins are well
within the distribution expected for avian sequences, suggesting
that the host-shift virus was not exceptional, whereas the pandemic
H1N1 2009 virus proteins, with the exception of N1, have greater
than average human adaptedness, indicating preadaptation to the
new human host.

PB2) than 1.0. Extrapolation of these fits to the human
adaptedness at the host-shift event can provide an esti-
mate of the timing of this host shift. We performed a boot-
strap analysis by sampling on the residuals. The estimated
host-shift timings are all consistent with previous esti-
mates (1883-1912) based on nucleotide evolution (dos
Reis et al. 2009).

In addition to reconstructing the virus at the time of the
host shift, we also performed an optimal reconstruction of
the various substitutions that occurred in the human lin-
eage following the host-shift event. We separated these in-
to changes that occurred in the “trunk” of the tree
connecting the host-shift event directly with recent virus
sequences, other interior branches, and exterior branches
ending at isolates. As shown in figure 5, we found signifi-
cant differences in the nature of the sequence changes that
occur along these different sets of branches; branches along
the trunk of the tree are characterized by a much higher
likelihood of an increase in human adaptedness compared
with other branches in the tree. This was observed for every
gene considered separately.

Discussion

Properties, Limitations, and Approximations of the
Model

We previously developed a method for identifying changes
in selective constraints acting on influenza virus proteins



Adaptation of Influenza Viruses -

doi:10.1093/molbev/msq317

1.1
1.0
0.9
0.8
0.7
0.6
b A 0.5
20.4 ﬂ% 3';«,.‘.,,_.
0.3 f . 0.4
0.2 0.3
1.1 1.1
1.0{—=— Lot bl
a a,r‘ 1.0 . 2009
go ¥ i .
= ¢ , & .
0.8 v* | 0.9/ 1918 R A
Boql 1918 . Ly S I -4
. * se g™, = 0% T, eqm
© . o -es’ &
06 2, 08 35 P
o . “p e -
£0.5 - ¢ | 07 fouge O
< e 2009 -+
Z0.4 . :,% o s @f%ﬁﬁ 0.8 g
0.3 ;gw ) : & °
0.2 i | 0.5 0.7
1900 1950 2000 1900 1950 2000 1900 1950 2000

Isolation year

1.0
- PB2
w .
Zo.9 :
o
[0}
+—
a
5 0.8
m
:
£0.7 ,*1918
E ’ .

7]
,’f
0.6
1.1
2009

1] — .
%n1.0 1918 Bl - ¢
=
L) . i *s 0.9 o v 0y
So.g| 1918 ""“f* ’_. 0.9 o .
O . ecg B EE, o . .
= . 2009 08 g % 3"
Ro.s ¥ ., |os S om. s
.E . . . sl il Y 8, ae :f
> vr w8 2 : . . ‘e
<07 -::;:a".. -’;-'. -‘5 0.6 . 0.7 P

0.6 g = 0.6

1900 1950 2000 1900 1950 2000 1900 1950 2000

Isolation year

Fic. 4. Human adaptedness and avian adaptedness values for a series of different virus sequences as a function of time. Color coding is as in
figure 1, including avian (black), human (red), classical swine (blue), Eurasian swine (cyan), triple-reassortant (green), and the host-shift
sequence (orange). Open red circles represent post-1977 human H1N1 viruses whose isolation times were corrected as described in the text.
Human sequences inside the distribution of avian sequences represent sporadic H5SN1 infections. Abscissa error bars for the host-shift sequence
represent 95% Cls for the timing of this event as determined from an analysis of nucleotide evolution (dos Reis et al. 2009), whereas ordinate
error bars indicate the uncertainty of the ancestral reconstruction. Least-squares fits to the human adaptedness of the human virus sequences,
as described in the text, are included as a solid line, whereas the extrapolation to the host-shift event is shown as a dashed line.
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Table 3. Curve-Fitting Parameters with 95% Cls.

Adaptation Equilibrium Value Host-Shift
Protein Time 7 (years) (if different from 1.0) Year
H1 33.50 1.08 (1.08, 1.09) 1907.3
(33.21, 35.42) (1906.1, 1907.8)
N1 33.57 1.04 (1.03, 1.05) 1905.1
(31.10, 35.64) (1903.4, 1906.8)
NS1 71.54 1894.6
(62.88, 84.03) (1891.5, 1903.5)
NP 31.94 0.98 (0.97, 0.99) 1894.9
(23.58, 43.29) (1883.0, 1904.9)
PA 50.36 1888.2
(42.44, 61.76) (1872.5, 1898.0)
PB2 34.15 0.84 (0.81, 0.88) 1904.7

(24.70, 50.09) (1894.2, 1911.6)

corresponding to a change in host (Tamuri et al. 2009). In
contrast to previous methods that ignore the phylogenetic
relationship of the isolates and treat each sequence as an
independent observation (Chen et al. 2006; Finkelstein et al.
2007; Miotto et al. 2008) resulting in both lack of sensitivity
and exaggerated estimation of statistical significance, we
analyzed the nature of the substitutions that occur during
the evolutionary process and identified when there is sta-
tistical support that these substitution patterns are host
dependent. In this way, we were able to both identify lo-
cations where selective constraints differ and characterize
the nature of these differences.

In particular, rather than calculating the observed fre-
quencies of the amino acids found in different positions,
our analysis provides the equilibrium amino acid frequen-
cies, given the estimated substitution rates. Observed fre-
quencies are biased by similarities between evolutionarily
related viruses and are time dependent as the viruses adapt
to the new host following the host-shift event. In contrast,
equilibrium frequencies represent the asymptotic value for
an ensemble of adapted viruses at equilibrium with the
host selective constraints and can be used to describe those
constraints. We have used these equilibrium frequencies to
develop a measure of how well any virus protein matches

0.8

Fraction

0.0

AH < 0 AH=0 AH > 0
Change in Human adaptedness

Fic. 5. Relative fraction of “trunk” branches (red), other interior
branches (green), or exterior branches to isolates (blue) that are
characterized by a negative, neutral, or positive change in human
adaptedness, following the shift from avian-to-human host prior to
1918. Error bars represent standard error based on the number of
observations. All genes show a similar distribution.
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the host-specific selective constraints and can compute the
corresponding host adaptedness of the viruses to the two
hosts. We can then visualize the process of adaptation to
the new host following a host shift and provide insight into
what might have occurred both prior to and following the
host-shift event.

Our evolutionary model assumes that fitness effects at
each location are additive and constant within each host
only changing at the host shift. Previous work indicates that
these assumptions are not strictly valid. Selective con-
straints can change as the proteins evolve within a host,
especially for the HA during changes in antigenic properties
(Blackburne et al. 2008). Adaptation to humans can occur
through different sets of substitutions, indicating that the
selective constraints at one site are influenced by the amino
acids found at other locations. This is clearly seen in HA,
where significant differences in structure are reflected in
different characteristic substitutions necessary for recogni-
tion of receptors on the target human cells (Rogers et al.
1983; Nobusawa et al. 1991; Connor et al. 1994; Vines et al.
1998; Matrosovich et al. 2000). Different substitutions in
response to host shifts to human are not confined to these
membrane proteins as is clear from considering PB2 627;
E627K was experimentally identified as an important sub-
stitution necessary for the virus to replicate and spread
in mammals (Subbarao et al. 1993; Hatta et al. 2007;
Tarendeau et al. 2008; Steel et al. 2009). The pandemic
H1N1 2009 virus maintains an glutamic acid at this loca-
tion, and it appears that a basic amino acid (E) at position
591 compensates for the absence of the basic amino acid at
position 627 (Yamada et al. 2010).

Such violations might explain the asymptotic values for
the exponential fits to the human adaptedness with isola-
tion time. According to our model, we would expect this
asymptotic value to be 1.0, which is the average adapted-
ness of viruses at equilibrium with the human selective
constraints. For four of the proteins, the asymptotic human
adaptedness value was not 1.0, suggesting that the selective
constraints on the individual locations might be changing
either because of changes in the immunity of the host pop-
ulation or because of interaction between the various lo-
cations in the protein. Herd immunity dynamics would
tend to increase the asymptotic values over 1.0 as there
would be a need for the virus to continue to adapt to
the new constraints represented by the adapting host im-
mune response. Correspondingly, H1 and N1, the surface
glycoproteins most involved in antigenic recognition, have
asymptotic values of 1.08 and 1.04, respectively. Conversely,
we might expect that there were a number of different
ways that a protein could adapt to its host, and adaptation
in some locations might lessen the pressure to adapt in
others (as in the example of the complementarity of the
basic amino acids at positions 591 and 627 of PB2 as men-
tioned above) in violation of our assumption of additivity.
In this case, we would expect asymptotic values less than
1.0 as is observed for PB2 (0.84) and NP (0.98).

The magnitudes of the changes in host adaptedness are
different for the different proteins, representing the variety
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of degrees of difference in selective constraints in the two
hosts. Locations that undergo a relaxation in selective con-
straints during the host shift to humans will have a relatively
small change in human adaptedness (avian virus sequences
are compatible with the human constraints) but a larger
change in avian adaptedness (many human viruses will
not be compatible with the avian constraints). The oppo-
site relationship would hold for a tightening of selective
constraints. The amount of scatter in host adaptedness
values for the various proteins mostly reflects the number
of significant sites considered, which range from 27 sites in
PA to 84 locations in H1.

Our exponential fit to human adaptedness, extrapolated
to the host-shift event, is in rough agreement with the es-
timate of 1883-1912 obtained through the analysis of nu-
cleotide composition changes (dos Reis et al. 2009). These
extrapolated values, however, should be treated with cau-
tion as they assume that adaptation to the human host
occurred in a similar manner prior to and following
1918. If the intermediate host prior to the 1918 pandemic
was swine, it is likely that the rate of adaptation was
slower before 1918 and the host shift occurred earlier than
indicated by the extrapolations. The extrapolation also as-
sumes that the functional form of the adaptation process is
correct and that the changing human adaptedness can
be represented by an exponential with a single timescale.
It might be conjectured that the adaptation was faster im-
mediately following the host shift, suggesting a more recent
event. This can be modeled as a mixture of exponentials
with different adaptation times; the locations with the
shortest adaptation times would equilibrate fastest, leaving
locations with longer adaptation times to equilibrate lon-
ger after the host-shift event. To test this possibility, the
human adaptedness data were fit to an ensemble of expo-
nentials with a Gaussian distribution of adaptation rates.
This more complicated model could not be justified by
the data, but this does not indicate that some mixture
of substitution rates would not give an improved fit.

It is clear that the mathematical model developed here
still leaves much unknown about evolution of influenza
and host shifts. Our current model should be considered
as a basic framework onto which more complete models
can be developed. Particularly, modeling variation in se-
lective constraints along time and within hosts could pro-
vide a better understanding of the adaptation process.
Our assumption of additiveness can also be relaxed, and
models that consider interactions among locations could
be developed.

How Typical Was the Host-Shift Virus?

It is not clear why a particular virus undergoes a host-shift
event. One possibility is that chance mutations result in
a “preadapted” virus particularly fit for the new host prior
to the host transfer event. The other possibility is that the
virus is not distinctive, and the host transfer of a particular
virus is simply a chance occurrence. The answer to this
question has important consequences for our ability to
characterize the pandemic potential of zoonotic viruses.

To distinguish between these two possibilities, we recon-
structed the ancestral sequence of the virus that under-
went the shift to humans prior to the 1918 pandemic as
well as analyzing the 2009 pandemic virus.

We observed that the avian-like pre-1918 host-shift vi-
rus, as best shown in figure 3, has human adaptedness val-
ues within the distribution of what would be expected for
an avian virus, which suggests that the identity of the virus
that underwent the host-shift event was a matter of oppor-
tunity. In contrast, the pandemic H1N1 2009 virus proteins,
with the exception of N1, were more adapted to humans
than would be expected, given their origin. The most in-
teresting examples of such preadaptation are in PB2 and
PA; in both proteins, there was an initial host shift from
birds to swine, presumably around 1998, followed by the
host shift to humans in 2009. While circulating in swine,
both experienced substitutions identified with increasing
human adaptedness (e.g, PB2 A684S and PA K356R) prior
to the shift to humans (Tamuri et al. 2009). The resulting
increase in human adaptedness for PA is especially large
as there are comparatively fewer host-specific locations
in this protein compared with PB2. N1 of the 2009 pan-
demic virus was not as well adapted to humans as N1 from
other Eurasian influenza viruses, although it is about as well
adapted as a typical avian virus. The relatively lower adapt-
edness for this particular gene may represent a random
fluctuation that is compensated for by the greater adapt-
edness of the other genes.

Changing Adaptedness in the Phylogenetic Tree

We note that adaptation to the new host has occurred
preferentially along the “trunk” of the phylogenetic tree,
whereas other branches where the adaptation does not oc-
cur as quickly tend to represent evolutionary “dead ends.”
This would be expected if such sequence changes increase
the fitness of these sequences in the new host relative to
those viruses experiencing alternative substitutions. This
points to the possibility that measures, such as human
adaptedness, can be used to provide insight into why cer-
tain lineages persisted and others did not.

Ancestral Reconstruction Methods

Analyses of both the host-shift viruses and the changes
along the tree required reconstruction of the evolutionary
trajectories. We used marginal reconstruction for the
ancestral sequences (Koshi and Goldstein 1996) and joint
reconstruction (Pupko et al. 2000) for the historical
changes.

The reconstruction of the ancestral sequence relies on
an accurate model of the substitution process, which
we observe to depend upon the host, especially for the
locations under consideration here. The use of host-specific
substitution models is especially important for examining
the evidence for preadaptation in the host-shift virus
as some changes that might reflect the adaptation of
the virus to the new host may, with an inappropriate
host-independent evolutionary model, appear to be prior
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to the host shift. We were specifically interested in identi-
fying evidence for preadaptation that cannot be explained
by such changes in selective constraints, which required the
use of host-dependent models and the exclusion of viruses
from other than avian and human hosts. Although it is
standard, especially for experimental work, to consider
the most likely sequence, we generated an ensemble of
sequences by sampling from the posterior probabilities
of the reconstruction, allowing us to determine unbiased
statistical properties of this ensemble (Williams et al
2006). For this paper, we recreated an ensemble of sequen-
ces representing the virus at the point of host transfer.
In this way, we were able to obtain the mean and Cls
for the human adaptedness and avian adaptedness at
this point.

More accurate ancestral reconstruction could have been
achieved by modeling selective constraints in swine. Iden-
tification of three sets of selective constraints per location
provides computational and statistical challenges. Particu-
larly, with three sets of constraints, alternative models are
not nested, and the likelihood ratio test cannot be used.
We are currently working on updating our models to in-
cluded swine, and we are exploring computationally inten-
sive Monte Carlo methods to construct suitable null
distributions for hypothesis testing. For this reason, in
our joint reconstruction, we used a more standard method
with substitution models that did not depend on either
host or location.

The History of the 1918 Pandemic

As is clear in figures 2 and 4, significant adaptation to hu-
man selective constraints had occurred prior to the 1918
pandemic. This is in seeming contrast to the conclusions
made by Taubenberger et al. (2005), who concluded that
the 1918 virus sequences more closely resemble avian than
human virus sequences. The difference in conclusions be-
tween earlier work and this work can be explained by a dif-
ference in focus; previous work considered all the amino
acid changes that had occurred in the virus proteins,
whereas our methods allow us to focus on locations in-
volved in host adaptation.

The degree of human adaptation prior to the 1918
pandemic can be explained in three ways: (a) The virus
had “preadapted” to humans in its avian host, presumably
as a result of stochastic fluctuations, perhaps explaining
why that particular virus was able to establish itself so readily
in humans; (b) the virus had evolved in humans for a period of
time priorto 1918; or (c) thevirus had evolvedinanonhuman
nonavian host that exerted similar selective pressure on the
virus as exerted by a human host. (a) seems unlikely as the
human adaptedness values of the 1918 virus are well outside
the range of observed avian viruses. In addition, our recon-
struction of the sequence of the virus at the host-shift event
shows that the host-shift proteins were avian like in their hu-
man adaptedness, suggesting that there was little evidence of
preadaptation. Although we cannot rule out the possibility
that the 1918 pandemic virus evolved in humans for a signif-
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icant period of time prior to the subsequent pandemic, the
similarity of avian and porcine cell receptors, the observed
successful avian-to-swine host shift in 1979 compared with
the lack of precedent for a successful avian-to-human shift,
and the difficulty in the virus existing undetected for so
longin the human population argue for swine as an interme-
diate host (Scholtissek 2008; dos Reis et al. 2009; Smith, Bahl,

et al. 2009).
Adaptation to humans during virus evolution in swine is

possible if there are similarities in the selective constraints
imposed on viruses in these two species. In fact, human
adaptedness values for H1, NP, PA, and PB2 are higher
in the classical swine lineage than in avian isolates. The in-
creasing human adaptedness of the Eurasian swine H1 after
the initial host shift in 1979 is clear in figure 4. If the evo-
lution of the human virus prior to 1918 occurred mostly in
swine, we would expect the human adaptedness values for
the 1918 human virus to resemble the human adaptedness
values of classical swine. This is true for most proteins, al-
though the 1918 virus N1 and NP proteins have signifi-
cantly higher human adaptedness than is observed in
later classical swine viruses. Resolution of this issue will re-
quire greater availability of early influenza viruses or more
sophisticated evolutionary models. We also note that the
2009 virus seems to have preadapted to humans during its
circulation in swine. This again highlights the ability of
swine to preadapt viruses to human hosts, suggesting
a potentially similar role for swine in facilitating the
1918 and 2009 human pandemics.

The results described above seem to suggest that, al-
though the virus that underwent the first host-shift event
from birds to mammals before the 1918 pandemic seems
unexceptional, the virus had substantially adapted to hu-
mans prior to the subsequent pandemic. Similarly, we can
detect substantial adaptation to humans in five of the
virus genes in the triple reassortant prior to the 2009 pan-
demic. Although the causes of a pandemic are complex,
involving a mixture of virus properties, host susceptibilities,
and historical contingencies, these results indicate that the
degree of human adaptation of the virus plays an impor-
tant role in host shifts to humans.

Supplementary Material

Supplementary material is available at Molecular Biology
and Evolution online (http://www.mbe.oxfordjournals.
org/).
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Appendix

Example of Adaptedness Calculation

Consider an aligned set of protein sequences of length 2
where two different residues, A and B, are observed. Imag-
ine our analysis indicates that A is strongly favored in hu-
mans in both sites (13"™" =0.7 and }"™*" =0.3). Over the
entire viral genome, both residue types are found equally
often (4 =73=0.5). Ignoring the effect of NK (which drops
out at the end of the calculation), we can express the raw
“fitness” of sequences AA, AB, BA, and BB as the sum of logs
of the equilibrium frequencies:

0™ (AA) = log(0.7) + log(0.7) = — 0.71,
0™ (AB) = log(0.7) + log(0.3) = — 1.56, (A1)
0" (BA) = log(0.3) + log(0.7) = — 1.56,
0" (BB) = log(0.3) + log(0.3) = — 2.41.

An ensemble of random sequences, where each possible
sequence is equally likely, would have an average 0™
of  (0M™™endom=0.25 X ( —0.71) 4+ 0.5 x ( — 1.56)+
0.25 X ( — 2.41)= — 1.56. In an ensemble of fully adapted
sequences, where the proportion of As and Bs at each loca-
tion matches the equilibrium frequencies, we would expect
to find 49% AA, 21% AB, 21% BA, and 9% BB. Such an en-
semble would have an average 0"“™" of (HH“ma">Adapted=
0.49 X (—0.71) + 0.42 x ( — 1.56) +0.09 x ( —2.41)=
—1.22. We scale the human adaptedness values by subtract-
ing the average value of the random ensemble and dividing
by the difference between the average of the adapted and
random ensembles to yield

HAmen (Ap) = o0 = 0138 =250,
A (A) = H (BA) = 21 <0
HHm (BB) = 513y = — 250,

(A2)

As desired, our random ensemble of sequences (with equal
mixtures of AA, AB, BA, and BB) would have an average
human adaptedness value of 0, whereas our adapted en-
semble would have an average human adaptedness value
of 0.49 x 2.5+ 0.42 X 0 +0.09 x ( —2.5)=1.

In this case, BB has an adaptedness value less than 0,
whereas AA has an adaptedness value greater than 1. This
is because BB is less adapted than the average of a random
ensemble, 75% of which have at least one more favored A;
conversely, AA is better adapted than the average of an
ensemble of adapted proteins, 51% of which have at least
one less favored B.

As we sum over an increasingly large number of locations
with a similar degree of selective constraints, both random
and adapted proteins would have more representative mix-
tures of more favorable and less favorable residues. As a re-
sult, random sequences would have adaptedness values
approximately normally distributed around 0, whereas
adapted proteins would have adaptedness values approx-
imately normally distributed around 1. For example, imag-

ine we had N identical independent locations such as the
one described above, with a favorable residue A (equilib-
rium frequency in humans 7“™") and less favorable res-
idue B  (equilibrium  frequency in  humans
riuman =1 — ghuman) Imagine that over the entire genome,
both residues are equally represented (74 =73 = 0.5). In
this case, the human adaptedness is equal to

2ny — 1

HHuman = Human
21y -1

; (A3)

where ny is the fraction of residues in the sequence that are A.
In this simple model, the distribution of n, in random sequen-
ces would follow a binomial distribution with ny=0.5% #ﬁ

resulting in a distribution of human adaptedness values with

mean 0 and standard deviation (SD) m Conversely,
A

the distribution of n, for adapted sequences would follow a bi-

. . . . . T[Human 1_nHuman
nomial distribution with nA=n2“ma"i\/@l result-

ing in a distribution of human adaptedness values with mean
Humxn)

1 and SD —2 17

27 uman —q N

T[Quman (

Fits to Adaptedness Data

As described in the text, we fit the host adaptedness of
human viral sequences as a function of isolation date
H(t) to two possible functional forms:

(a) ':’(t) =1 — Aexp( — t/1)
(b) H(t) =B — Aexp( — t/1). (A4)

Assuming that the errors are normally distributed with var-
iance &°, the likelihood function A for the fit can be rep-
resented as
A= S° loal L exp( — ) =A?
= 3" log[ s exp( — U]
= — Nlog(v/2m) — Nlog(d) — 517,

N
where y2=S"(H(t;) — H(t;))’. This function is a maximum

(AS5)

) (A6)

We then used the likelihood ratio test (1 degree of freedom,
P < 0.05) to test whether model (a) can be rejected in favor
of (b). Computed P values were

Gene P Value for Rejecting a
H1 <107 ¢

N1 <1076

NS1 0.228

NP 0.044

PA 0.814

PB2 227 X 1074
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