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Natural selection on codon usage is a pervasive force that acts on a large variety of prokaryotic and eukaryotic genomes.
Despite this, obtaining reliable estimates of selection on codon usage has proved complicated, perhaps due to the fact that
the selection coefficients involved are very small. In this work, a population genetics model is used to measure the
strength of selected codon usage bias, S, in 10 eukaryotic genomes. It is shown that the strength of selection is closely
linked to expression and that reliable estimates of selection coefficients can only be obtained for genes with very similar
expression levels. We compare the strength of selected codon usage for orthologous genes across all 10 genomes
classified according to expression categories. Fungi genomes present the largest S values (2.24–2.56), whereas
multicellular invertebrate and plant genomes present more moderate values (0.61–1.91). The large mammalian genomes
(human and mouse) show low S values (0.22–0.51) for the most highly expressed genes. This might not be evidence for
selection in these organisms as the technique used here to estimate S does not properly account for nucleotide
composition heterogeneity along such genomes. The relationship between estimated S values and empirical estimates of
population size is presented here for the first time. It is shown, as theoretically expected, that population size has an
important role in the operativity of translational selection.

Introduction

Different codons are used to different extents, and ev-
ery genome shows particular codon preferences (Grantham
et al. 1980). It is generally acknowledged that the pattern of
codon usage in a given genome is given by a balance be-
tween mutational bias, random genetic drift, and the action
of natural selection (Sharp et al. 1995). In highly expressed
genes of fast-growing organisms, preferred codons are fa-
vorably selected to match the most abundant cognate trans-
fer tRNAs (tRNAs), thus improving translational efficiency
and accuracy (Bennetzen and Hall 1982; Ikemura 1985). A
selection–mutation balance theory of codon usage (Bulmer
1991;McVean and Charlesworth 1999) has been developed
to explain the forces that shape codon usage in different
genomes. Organisms like the bacteriumHelicobacter pylori
show codon usage patterns that can be explained mainly by
mutational biases and drift (Lafay et al. 2000), whereas or-
ganisms like the fast-growing bacterium Escherichia coli
show patterns of codon usage that are consistent with a co-
adaptation to the intracellular tRNA levels (Ikemura 1981;
dos Reis et al. 2003). Natural selection acting at the codon
level for translational optimization is usually referred to as
translational selection (Akashi and Eyre-Walker 1998). Un-
derstanding how and why translational selection acts to op-
timize codon usage in certain organisms is an important and
active area of research.

One of the major limitations of codon usage studies is
thatmeasuring translational selection is a complicatedmatter.
Most studies are based on the development or application of
codon usage indices that intend to describe general patterns of
codon usage, and any evidence of selection is indirect, with
selection rarely being measured directly (see, e.g., Sharp and
Li 1987; Wright 1990; Knight et al. 2001; Chen et al. 2004).
Perhaps, the only group of organisms where several serious
attempts to estimate selection have beenmade areDrosophila
spp. (Akashi 1995, 1997;Akashi and Schaeffer 1997;Maside

etal. 2004)withsomeestimates inotherorganisms (Hartl et al.
1994; Cutter and Charlesworth 2006; Yang and Nielsen
2008). These studies have shown that the selection coeffi-
cients affecting codon usage are very small, roughly ranging
between 10�6 and 10�9. Only fairly recently, Sharp et al.
(2005) conducted an extensive study of codon usage in pro-
karyotic organisms, utilizing a population genetic model
developed by Bulmer (1991) to obtain appropriate estimates
of translational selection. These workers estimated the
population parameter S, which is the confounded product
of the effective population size and the actual selection coef-
ficient acting at the codon level. Regrettably, their study was
not extended to eukaryotic organisms.

Because the selection coefficients affecting codon
usage are so small, translational selection is expected to
be operative only in large populations. In small populations,
random drift effects largely determine the fate of new mu-
tants in a population even if they are slightly advantageous
(Kimura 1983). The role of effective population size on the
evolution of codon usage has been well discussed in the lit-
erature (Sharp et al. 1995; Chamary et al. 2006). However, it
seems no researchers have actually compared estimates of
selection and population size from actual data. Perhaps,
the only exception is the work by Akashi (1997), where
the differences in effective population sizes and the degree
of codon usage in two Drosophila species were discussed.

The objective of the present work is to utilize Bulmer’s
(1991) model of codon evolution as implemented by Sharp
et al. (2005) to study codon selection in a small set of eu-
karyotic genomes, with particular emphasis on the baker’s
yeast, Saccharomyces cerevisiae. The relationship between
estimates of translational selection and expression levels is
studied in detail. Furthermore, we use published estimates
of effective population sizes (Lynch and Conery 2003) to
show, perhaps for the first time, the relationship between
effective population size and estimates of translational
selection in eukaryotic organisms.

Materials and Methods
Estimating Selection on Codon Usage

This work follows Bulmer’s model of codon evolution
(Bulmer 1991; McVean and Charlesworth 1999). Let us
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consider a diploid model with an amino acid that is encoded
by only two synonymous codons, c1 and c2. The mutation
rate from c1 to c2 is u and from c2 to c1 is v. The model
assumes that selection acts independently at all sites and that
there is genic selection, this is, c1 has selective advantage s in
single dose and 2s in double dose. The frequency (P) of c1, at
equilibrium, will be determined by the mutation pattern, the
selection strength in favor of c1, and the effect of random
drift. P is approximately given by

P5
1

1 þ ðu=vÞe� 4Nes
; ð1Þ

whereNe is the effective population size. Figure 1 shows the
expected theoretical relationship betweenP andNe for a con-
stant selective pressure s.

In practical terms, the selection coefficient (s) cannot
be estimated independently because it is confounded with
the effective population number. The confounded parame-
ter S 5 4Nes (for haploid organisms S 5 2Nes) can be
estimated from the previous equation as

S5 ln

�
P

Q
k

�
; ð2Þ

where k 5 u/v and Q 5 1 – P is the frequency of the sub-
optimal codon (c2). If selection is absent (s 5 0), equation
(1) is reduced to

P5
1

1 þ k
: ð3Þ

Rearranging this equation (3) gives k 5 (1 – P)/P. From
a practical point of view, in any given genome, a value
of k can be estimated from a set of genes where selection
is either absent or very weak. This value of k can then be
used to estimate S for a set of highly expressed genes in
such genome. Formally, the estimated value of S can be
expressed as

Ŝ5 ln
P̂hx

1 � P̂hx

� ln
P̂ref

1 � P̂ref

; ð4Þ

where the caret is used to distinguish the estimate from the
model parameter and P̂hx and P̂ref are the observed frequen-
cies of optimal codons in the highly expressed and refer-
ence gene sets. Please note that the estimated k is
k̂5

�
1� P̂ref

��
P̂ref . Equation (4) was used by Sharp et al.

(2005) to estimate S values in 80 bacterial genomes. For-
mally, this equation is simply the log-odds ratio of the
relative codon frequencies of optimal over nonoptimal co-
dons (Eyre-Walker and Bulmer 1995). If the value of k is
nonhomogeneous throughout a given genome, then equa-
tion (4) cannot be used to estimate S correctly as the
log-odds ratio would simply reflect different mutational
patterns in different genes and not selection. This is an
important issue that must be kept in mind. The crucial point
is to choose the gene sets carefully and to verify that
mutational patterns in both sets are similar.

All nine amino acids encoded by only two synony-
mous codons were analyzed in this study. Values of k were
estimated for each of the nine codon pairs from a suitably
determined reference gene set. These k values were then

used to estimate S values for each one of the nine optimal
codons in genes expressed at different levels. Overall,
S values for all nine amino acids were calculated as the
average weighted according to the number of codons pres-
ent. Bootstrap (Efron and Tibshirani 1993) confidence in-
tervals for estimated S values were obtained by sampling
with replacement codons within amino acids and expres-
sion categories. The confidence intervals are then the 2.5%
and 97.5% quantiles of Ŝb values obtained from 1,000
bootstrap samples.

The technique used here to estimate S is symmetrical
for amino acids encoded by two codons. This means that if
a codon c1 has a selective value S1, then the selective value
against the complementary codon c2 is simply S2 5 –S1.
This property allows the estimation of S irrespective of
whether we know beforehand which codon is the optimal
one. In fact, it allows the identification of the optimal codon
by computing S itself. If a negative value is obtained, then
the optimal codon is the complementary one. The only ex-
ception to this rule is when S is zero, which can easily be
determined by bootstrapping. Optimal codons determined
this way for baker’s yeast are the same as those reported
in the literature (Bennetzen and Hall 1982; Percudani
et al. 1997; Kanaya et al. 2001).

Sequence Data and Analysis

Sequence data for all open reading frames (ORFs) rec-
ognized in the S. cerevisiae genome were downloaded from
the National Center of Biotechnology Information ftp site
(ftp://ftp.ncbi.nih.gov/genomes/Saccharomyces_cerevisiae).
Expression data for this organism were obtained from http://
web.wi.mit.edu/young/expression/ (Holstege et al. 1998).
This data set contains estimates of mRNA abundance
for 5,460 genes as number of transcripts per cell, obtained
from duplicated high-density oligonucleotide array

FIG. 1.—Theoretical expected equilibrium frequency (P) of an
optimal codon versus effective population size (Ne). The curve
represented in the figure is from rearranging equation (1). The gray
rectangles show estimated effective population size intervals for some
eukaryotic groups (Sherry et al. 1997; Harpending et al. 1998; Lynch and
Conery 2003). Estimates of selection on codon usage are in the order of
10�6 to 10�9 (Hartl et al. 1994; Maside et al. 2004). A value of s 5 10�7

was chosen for illustrative purposes only. The dashed line shows the
equilibrium frequency of the codon under no selection when u/v 5 2.
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experiments. This data set has already been used to study
codon usage in at least three separate publications
(Coghlan and Wolfe 2000; Akashi 2001, 2003). A total
of 119 genes were excluded for analysis in this work be-
cause they present name discrepancies with the down-
loaded yeast genome or present duplicated expression
values in the set. Genes were ranked according to their
expression level and binned in groups containing at least
6,000 codons. Genes with the same expression level were
binned together. Seventy-seven bins were obtained con-
taining between 8 and 523 genes (there is a disproportion-
ate amount of genes with very low expression values).
This binning scheme is very similar to that used previ-
ously by Akashi (2003) for the same yeast data. Two hun-
dred and eighty genes are depicted in the data set as
having only 0.1 transcripts per cell. This represents the
lowest detectable value in the array experiments. In this
study, these genes were assumed to be under no transla-
tional selection, so this group was taken as the reference
gene set in order to calculate codon frequencies under
mutational equilibrium.

Nine more eukaryotic genomes were also analyzed:
the orange bread mold (Neurospora crassa), the cryptococ-
cosis agent (Cryptococcus neoformans), the malaria para-
site (Plasmodium falciparum), the mouse-ear cress
(Arabidopsis thaliana), the fruit fly (Drosophila mela-
nogaster), a microsporidian parasite (Encephalitozoon
cuniculi), a nematode worm (Caenorhabditis elegans),
the common mouse (Mus musculus), and human (Homo sa-
piens). The 77 gene expression bins identified in the baker’s
yeast were collapsed into 11 expression categories sorted
according to increasing expression levels. The observed
number of optimal codons in a sequence is a binomial vari-
able, and so the proportion of optimal codons has a variance
inversely proportional to the total number of codons in
question. Because of this, relatively large bins containing
thousands of codons are desirable to obtain reliable esti-
mates of S. These expression categories, and the genes con-
tained within them, were used as a reference to find the
corresponding orthologs in the other genomes. Best recip-
rocal matches obtained with BLAT (Kent J, unpublished
data) were used to identify orthologous pairs of protein se-
quences between the baker’s yeast and the nine other eu-
karyotic genomes. BLAT was designed to find closely
related sequences and will fail to identify more distant ho-
mologs. In this sense, our approach is rather conservative as
only well-conserved homologs were considered here. For
general advice on the identification of orthologous sets
of genes, the reader is encouraged to read Koonin
(2005). If the orthologous genes are assumed to have con-
served relative expression levels across species, then the
technique described above can be used to estimate transla-
tional selection (S) in any of the other nine genomes given
a sufficiently large number of orthologous genes can
be identified. We used microarray expression data for 79
physiologically normal human tissues (Su et al. 2004;
http://symatlas.gnf.org) to assess the assumption of con-
served expressivity for our set of orthologs.

R scripts to calculate Swith bootstrap intervals and the
sets of orthologous genes analyzed here are available for
download at http://people.cryst.bbk.ac.uk/;fdosr01/Nes/.

Results
Estimates of S in the Baker’s Yeast

There are approximately 15,000 transcripts in a yeast
cell, with individual transcript species ranging from 0.1 to
80 transcripts per cell. The estimated S values ranged from
0 to 2.5 for the most highly expressed genes. As expected,
there is a strong positive correlation between Ŝ values and
expression levels for the yeast transcriptome (fig. 2), with Ŝ
values showing an asymptotic relationship with expression
level for the highest expression values. Individual amino
acids showed Ŝ values for their optimal codons ranging
from 1.04 for cysteine’s TGT to 4.53 for glutamine’s
CAA in the three most highly expressed gene bins (table 1).
Interestingly, genes expressed at over one transcript per cell
show noticeable, albeit small, signs of selection on codon
usage. Because about 40% of yeast ORFs present more than
one transcript per cell (fig. 3), this percentage of the tran-
scriptome seems to be under the action of translational
selection. All optimal codons showed the same relationship
of Ŝ value to expression level when all bins are taken into
account (fig. 3). The trend observed in figure 2 was first
noticed by Coghlan and Wolfe (2000) using the codon ad-
aptation index (Sharp and Li 1987) compared against un-
binned expression levels. This was later studied in more
detail by Akashi (Akashi and Eyre-Walker 1998; Akashi
2003), comparing the relative frequency of optimal codons
against binned expression data. However, our study seems
to be the first comparing a formal measure of translational
selection, namely Ŝ, with expression levels in any organism.

Estimates of S in Other Eukaryotic Genomes

The following analysis of selection on codon usage in
the nine other eukaryotic genomes is rather exploratory in
nature. Because some of the assumptions of the analysis

FIG. 2.—Expression levels versus average Ŝ values on codon usage
for the yeast Saccharomyces cerevisiae. Vertical bars are the bootstrap
nonparametric 95% confidence intervals.
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might be violated (specially the homogeneity of k), these
results should be taken with care. They are presented here
mainly to illustrate the problems faced when estimating se-
lection. However, it is hoped that these results will help
clear a path toward future research on this topic.

Figure 4 shows average estimated S values for all the
genomes studied across expression categories. As expected,
Ŝ is positively correlated with increasing expression cate-
gory. What is surprising though is that the trend is strikingly
similar for all species. Furthermore, orthologs belonging to

the highest expression category also show the larger Ŝ val-
ues across all genomes analyzed. It must be stressed here
again that this analysis assumes that expression levels
are conserved across all species. Also it is assumed that mu-
tation patterns between highly and lowly expressed genes
are very similar, so a meaningful estimate of S can be ob-
tained. This is why this analysis should be regarded with
care. However, the results shown in figure 4 are very sug-
gestive, and further work will be needed to confirm them.

Table 2 shows estimated S values for all the optimal
codons in each of the nine amino acids being considered.
The two most highly expressed bins from the original yeast
analysis (fig. 2) were collapsed into one putatively highly
expressed orthologous category to compute the values
shown in table 2. All genomes analyzed, except mouse,
show Ŝ values for the most highly expressed genes that
are statistically different from zero, even after correcting
for multiple testing (table 2). It is interesting to note that
optimal codons are not always the same across the genomes
analyzed. For example, codon CAA coding for glutamine is
preferred in S. cerevisiae and P. falciparum, whereas its
counterpart CAG seems to be consistently preferred by
the other genomes. Estimates of S are statistically different
from zero for most amino acids in most genomes. For those
cases where Ŝ is indistinguishable from zero, the optimal
codon was arbitrarily chosen as the one with a positive Ŝ
value. This did not cause noticeable biases in the estimation
of Ŝ for the genomes analyzed.

The results indicated above assume that expression
levels are conserved for orthologous genes across the ge-
nomes studied. There are two problems with this. First,
identifying sets of orthologous genes is a complicated mat-
ter (Koonin 2005). The organisms studied here have suf-
fered several genome expansions during their
evolutionary histories (e.g., Friedman and Hughes 2001;

Table 1
Estimated S Values Partitioned according to the Optimal
Codons Analyzed for the Two Bins with Highest Expression
in the Yeast Saccharomyces cerevisiae

Codon P̂ref P̂hx k̂ Ŝ (2.5%, 97.5%)

Phe TTT
TTC 0.38 0.86 1.66 2.34 (2.08, 2.63)

Tyr TAT
TAC 0.41 0.92 1.41 2.78 (2.32, 3.43)

Cys TGT 0.59 0.80 0.70 1.04 (0.50, 2.23)
TGC

His CAT
CAC 0.34 0.79 1.91 1.95 (1.59, 2.26)

Gln CAA 0.67 0.99 0.50 4.53 (3.69, 5.27)
CAG

Asn AAT
AAC 0.37 0.91 1.67 2.79 (2.44, 3.16)

Lys AAA
AAG 0.38 0.87 1.61 2.39 (2.19, 2.58)

Asp GAT
GAC 0.34 0.60 1.95 1.08 (0.87, 1.27)

Glu GAA 0.69 0.99 0.44 3.43 (3.03, 4.06)
GAG

Overall — — — — 2.57 (2.36, 2.78)

NOTE.—Optimal codons are shown in boldtype face.

FIG. 3.—Expression levels versus Ŝ values for each of the codons analyzed in this study for the baker’s yeast. Vertical bars are the bootstrap
nonparametric 95% confidence intervals. The right bottom corner depicts the frequency histogram for the expression levels of the yeast transcriptome.
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Maere et al. 2005). Groups of orthologous genes have led to
the origin of sets of paralogous gene families through ge-
nome duplications across these genomes. For example,
a single yeast gene might have several homologs in the cor-
responding mammalian genomes that could be considered
true orthologs. The reciprocal BLAT search approach we
used would simply find one of those several possible orthol-
ogous pairs. For example, once a yeast gene was matched
with BLAT against the human RefSeq transcriptome
(;17,000 genes), the newly found, best match human se-
quence was then matched back to the yeast transcriptome. If
the best reciprocal match was the original yeast sequence,
then this was considered a suitable orthologous pair and
was kept for further analysis, otherwise, it was discarded.
Of course, each one of the selected human–yeast ortholo-
gous pairs is simply one out of several arbitrary possible
pairs. It is important to note that out of ;5,000 yeast
and ;17,000 human genes, only 1,079 were considered
as suitable orthologous pairs for further analysis, so our ap-
proach attempted to be as conservative as possible. The
other problem is that, even after obtaining such suitable sets
of close orthologs, it is not guaranteed that their expression
levels will also be conserved. We tested this for the yeast
and human expression data. Figure 5 shows that, for the

particular set of orthologs analyzed for these two genomes,
expression levels are relatively well conserved despite
1,500 My of evolutionary divergence (Wang et al.
1999). Plotting Ŝ values versus expression for human pro-
duces essentially the same trends observed in figure 4 for
this organism (data not shown). These results are encour-
aging and suggest that a well-conserved core of eukaryotic
genes exists across the genomes analyzed with conserved
expression values.

Selection on Codon Usage and tRNA Adaptation

As mentioned above, estimated S values from a given
genome simply reflect the log-odds values of codon fre-
quencies between highly and lowly expressed genes. If
the observed differences in codon frequencies are due to
different mutational biases in both gene sets (e.g., if k is
not constant throughout the genome), then misleading
(and statistically different from zero) S values might be ob-
tained. A good example of this was reported by Sharp et al.
(2005) for the genomes of Xylella fastidiosa and Nitroso-
monas europaea, where peculiar base compositions bias the
estimation of S values. To help decide whether estimated S

FIG. 4.—Estimated S values across expression categories for several eukaryotic genomes. Organism codes are: mmus, Mus musculus; hsap, Homo
sapiens; pfal, Plasmodium falciparum; atha, Arabidopsis thaliana; cele, Caenorhabditis elegans; ecun, Encephalitozoon cuniculi; dmel, Drosophila
melanogaster; ncra, Neurospora crassa; scer, Saccharomyces cerevisiae; and cneo, Cryptococcus neoformans. The values on the upper left corner of
each panel are the number of orthologous genes analyzed.
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Table 2
Estimated S Values for Several Eukaryotes

Cryptococcus neoformans Neurospora crassa Saccharomyces cerevisiae Plasmodium falciparum Arabidopsis thaliana

Aa Codon tRNA Ŝ 2.5% 97.5% tRNA Ŝ 2.5% 97.5% tRNA Ŝ 2.5% 97.5% tRNA Ŝ 2.5% 97.5% tRNA Ŝ 2.5% 97.5%

Phe TTT 0 0 0 0 0
TTC 5 1.58 1.19 2.12 12 2.41 1.84 3.12 10 2.21 1.99 2.45 1 0.53 0.12 0.92 16 0.68 0.34 1.08

Tyr TAT 0 0 0 0 0
TAC 4 2.54 1.78 4.11 11 1.73 1.33 2.29 8 2.79 2.36 3.26 1 1.23 0.77 1.60 76 1.06 0.63 1.57

Cys TGT 0 0 0 1.22 0.53 2.29 0 0 0.05 �0.35 0.48
TGC 3 0.26 �0.22 0.76 7 1.92 1.19 3.53 4 0 1.10 0.52 1.61 15

His CAT 0 0 0 0 0 0
CAC 4 2.27 1.59 3.17 9 2.05 1.60 2.78 7 1.98 1.68 2.32 2 1.03 0.42 1.58 10 0.87 0.43 1.40

Gln CAA 2 3 9 4.16 3.50 5.67 1 0.42 �0.10 1.12 8
CAG 3 1.54 1.18 1.95 11 2.89 2.38 3.64 1 1 9 0.50 0.16 0.93

Asn AAT 4 10 10 1 16
AAC 1 3.11 2.50 4.26 2 3.29 2.67 4.80 7 2.83 2.53 3.16 2 1.35 0.98 1.69 13 0.88 0.64 1.14

Lys AAA 7 24 14 2 18
AAG 0 2.98 2.58 3.62 0 3.44 2.64 4.96 0 2.35 2.17 2.53 0 0.38 0.16 0.59 0 1.06 0.79 1.38

Asp GAT 1 17 16 1 23
GAC 3 2.13 1.78 2.62 5 0.38 0.08 0.73 14 1.10 0.92 1.27 1 0.29 �0.13 0.62 12 0.34 0.03 0.63

Glu GAA 9 23 2 3.42 3.02 3.93 1 0.60 0.19 1.15 13
GAG 0 1.73 1.48 2.10 0 2.67 2.23 3.28 0 1 0.56 0.23 0.93

Totals 2.24* 1.91 2.74 2.50* 2.14 3.14 2.56* 2.37 2.78 0.66* 0.48 0.85 0.75* 0.50 0.98

Drosophila melanogaster Encephalitozoon cuniculi Caenorhabditis elegans Mus musculus Homo sapiens

Aa Codon tRNA Ŝ 2.5% 97.5% tRNA Ŝ 2.5% 97.5% tRNA Ŝ 2.5% 97.5% tRNA Ŝ 2.5% 97.5% tRNA Ŝ 2.5% 97.5%

Phe TTT 0 0 0.06 �0.37 0.64 0 0 0
TTC 8 1.18 0.47 1.97 1 16 2.93 2.30 4.37 7 0.28 0.00 0.56 14 0.55 0.25 0.88

Tyr TAT 0 0 0.03 �0.35 0.44 0 0 1
TAC 9 1.30 0.74 2.04 1 19 2.06 1.51 2.70 11 0.26 �0.10 0.71 11 0.21 �0.08 0.55

Cys TGT 0 0 0.46 �0.03 0.91 0 0 0.04 �0.39 0.49 0
TGC 7 1.28 0.30 3.42 1 13 1.77 1.20 2.53 56 30 0.16 �0.25 0.63

His CAT 0 0 0 0 0
CAC 5 0.58 0.03 1.35 1 0.19 �0.26 0.66 17 1.45 1.06 1.87 10 0.20 �0.21 0.62 12 0.85 0.45 1.26

Gln CAA 4 1 18 7 11
CAG 8 1.05 0.34 2.09 1 0.75 �0.04 1.87 7 0.05 �0.29 0.37 10 0.03 �0.40 0.50 21 0.52 0.13 1.01

Asn AAT 9 2 20 15 33
AAC 7 1.59 1.03 2.10 1 0.48 �0.08 0.91 16 2.65 2.14 3.22 12 0.22 �0.12 0.56 16 0.73 0.39 1.09

Lys AAA 13 1 33 30 22
AAG 0 1.47 0.76 2.39 0 1.01 0.39 1.74 0 2.72 2.16 3.35 0 0.31 0.01 0.60 0 0.61 0.32 0.93

Asp GAT 11 1 22 16 0.27 0.02 0.54 10
GAC 5 0.20 �0.12 0.54 1 0.17 �0.27 0.69 17 1.08 0.79 1.40 8 14 0.16 �0.21 0.56

Glu GAA 12 1 20 11 8
GAG 0 0.79 0.16 1.38 0 0.68 �0.27 1.62 0 1.48 1.15 1.80 0 0.14 �0.20 0.47 0 0.48 0.13 0.87

Totals 1.08* 0.57 1.70 0.56* 0.23 0.94 1.96* 1.61 2.40 0.22 0.04 0.41 0.51* 0.25 0.80

NOTE.—Aa, amino acid; tRNA, number of cognate tRNA gene copies for the given codon present in the genome (as identified with tRNAscan-SE; Lowe and Eddy 1997); 2.5% and 97.5%, are the quantiles from 1,000 bootstrap samples

on Ŝ; and *, indicates that the mean Ŝ is statistically different from zero after using Bonferroni’s correction for multiple testing (P , 0.005).

4
5
6

d
o
s
R
eis

an
d
W
ern

isch



values are caused by translational selection and not spurious
artifacts, the S values can be compared with the St values
suggested by dos Reis et al. (2004). The St test is based on
the relationship between the tRNA adaptation index (tAI)
and the effective number of codons (Nc) used in a gene
(Wright 1990). tAI quantifies how well a protein-coding se-
quence is adapted to the genomic tRNA pool of an organ-
ism, based on the codon frequencies observed in the gene,
and how well different tRNAs recognize each codon. If
a gene presents a high tAI value, it is assumed that the gene
in question is finely tuned to match the tRNA composition
of the genome. The correlation (St) between tAI values for
a suitably chosen set of genes and their corresponding
(corrected) Nc values gives an idea of how well codon us-
age and tRNA usage are coadapted in a given genome.
Because selection for translational optimization acts
through codon–tRNA coadaptation (Bulmer 1987), a high
St value suggests that translational selection has been op-
erative in the genome in question. Organisms presenting
high S values averaged for highly expressed genes should
also present high St values. It has been shown that S and St
are moderately correlated in bacterial genomes (Sharp
et al. 2005). This correlation can be substantially im-
proved if only highly expressed genes are used to compute
St (dos Reis M, unpublished data). Both, S and St values,
are complementary measures that can give insight into
whether true translational selection is operative or not
in a given genome. Figure 6 shows that Ŝ and St values
for the 10 genomes analyzed are indeed correlated. This
suggests that adaptation to the genomic tRNA configura-

tion, and not mutational patterns, drives the trends
observed in table 2.

Relationship between S and Effective Population Size

Random drift causes the nonpreferential fixation of
certain alleles in a population and the elimination of others.
Because the time it takes for an allele to become fixed is
proportional to the population size, new mutants at individ-
ual sites tend to become fixed relatively quickly in small
populations, whereas individual sites tend to remain poly-
morphic in larger populations. Thus, random drift causes
a reduction of genetic diversity, or polymorphism, in small
populations (Kimura 1983). This provides a way to use mo-
lecular data to estimate population size. Using polymor-
phism levels from gene alignments, it is possible to
estimate the quantity Nel, which is the product between
the effective population size (Ne) and the mutation rate
per base pair per generation (l). If the mutation rate is
known, then it can be factored out to obtain an estimate
of Ne. Recently, Lynch and Conery (2003) used this idea
and gathered estimates of Nel for several eukaryotic and
prokaryotic genomes. This provides us with a unique op-
portunity to compare those values with estimates of selec-
tion on codon usage. This will tell us whether, as should be
expected, organisms with small population sizes show signs
of reduced selected codon usage bias. Figure 7 shows the
estimated S values for the most putatively highly expressed
orthologs in the 10 eukaryotic genomes analyzed (these are
equivalent to the three most highly expressed bins out of
77 in the yeast analysis), plotted against Lynch and Conery
Nel values. As expected, there is a positive correlation
between Ŝ and Nel. The large mammalian genomes
(M. musculus and H. sapiens) with low Nel values show,

FIG. 5.—Average expression levels within orthologous gene
categories for Homo sapiens and Saccharomyces cerevisiae. The full
77 orthologous categories were used. The Spearman rank correlation
between the two data sets is 0.76. This shows that the orthologous genes
analyzed here for these organisms have reasonably conserved expression
levels despite over 1,500 My of evolutionary divergence (Wang et al.
1999). Using maximum expression levels for human transcripts (i.e., the
highest observed value in any tissue) leads to very similar results as
reported previously (Urrutia and Hurst 2003). The human expression data
were standardized so the median value per tissue equals 100 (Su et al.
2004).

FIG. 6.—St versus Ŝ values for several eukaryotic genomes.
Organism codes as in figure 4. St values were calculated as described
in dos Reis et al. (2004). The correlation between phylogenetically
independent contrasts (Felsenstein 1985) for the two variables is 0.95.
The contrasts were calculated for hsap, dmel, cele, scer, and atha based on
a phylogeny published for these organisms (Wang et al. 1999).
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as expected, low Ŝ values. On the other hand, the fast-grow-
ing fungal genomes (N. crassa, S. cerevisiae, and C. neo-
formans) show the largest values of Ŝ and Nel. The two
multicellular invertebrates (C. elegans and D. melanogaster)
and the plant genome (A. thaliana) present intermediate
Nel and Ŝ values with large variances. The two intracellular
parasites (E. cuniculi and P. falciparum) show relatively
low values of Ŝ despite intermediate Nel values.

The presence of selected codon bias in mammals has
been contentious, with reports in favor and against the pres-
ence of translational selection (see, e.g., Eyre-Walker 1991;
Urrutia and Hurst 2001). Recent works by Urrutia and
Hurst (2003), Comeron (2004), and Yang and Nielsen
(2008) have shown evidence of selected codon usage in hu-
mans and other mammals. The results presented here are
compatible with the findings of these authors; however,
with our current analysis we cannot assert that Ŝ values
are statistically different from zero in this group of organ-
isms, until the problem of heterogeneity in k values is ad-
dressed. In any case, the general consensus seems to be that
translational selection in mammals is either nonexistent or
weak. This suffices to show that selection on codon bias is
correlated with effective population size as displayed in
figure 7. In fact, this correlation would even be stronger
if the Ŝ values for mouse and human were completely
on the zero line at the bottom right-hand side of figure 7.

Discussion

This study highlights several important issues regard-
ing the estimation of selection on codon usage. On the first
hand, which genes are selected and how they are pooled
together might have dramatic effects on selection estimates.
If a cutoff of 10 transcripts per cell is used to define highly
expressed genes, then overall estimates of S in the baker’s

yeast can range anywhere from 0.75 to 2.6 (fig. 2); because
many studies use a few dozen highly expressed genes for
these estimates, a lot of variation should be expected. This
has important implications when comparisons between dif-
ferent works are made. If different studies on the same or-
ganism are based on different genes, estimates of selection
could differ substantially from one another despite the fact
that both studies analyzed genes that could be considered
highly expressed. Recently, there has been some contro-
versy regarding estimates of s in various species of Dro-
sophila (Maside et al. 2004), and part of the discrepancy
in the estimated s values in these studies could be explained
by the fact that substantially different sets of genes were
analyzed. Controlling for intragenomic heterogeneity in
translational selection is of great importance in comparative
studies. Furthermore, studies comparing estimates of trans-
lational selection between distant species are meaningless
unless orthologous gene sets are compared. It is hoped that
the approach taken in this work of using orthologous se-
quences to estimate S in distant species will be taken up
by other workers.

An important issue is the selection of the reference
(i.e., under no selection) gene set in order to estimate the
relative mutational bias (k). In their work on translational
selection in prokaryotic genomes, Sharp et al. (2005) used
all of a genome’s ORF to estimate k and then S was esti-
mated for a small subset of 40 highly expressed genes. It is
clear that if selection has been widespread in a genome, the
above procedure would result in an underestimation of S in
highly expressed genes. We repeated Sharp’s approach to
the yeast genome and found an average value of S for the
two most highly expressed bins equal to 2.47, a small un-
derestimation when compared with the value of 2.57 ob-
tained when only the lowest expressed genes are used to
estimate k. In an organism like E. coli, where the proportion
of genes under selection is substantially higher (dos Reis
et al. 2003), the above approach could lead to a larger error.
Another problem with the estimation of k is the heteroge-
neity in mutational bias along genomes (Lynch 2007). In
this work, it was assumed that mutational biases are homo-
geneous along the baker’s yeast chromosomes. This is a rea-
sonable assumption given the narrow distribution of Gþ C
content in this genome. However, for some of the other eu-
karyotes analyzed, such as worm, fly, and human, the es-
timates of S are less reliable due to the larger variation in
G þ C content observed in these genomes (C. elegans
Sequencing Consortium 1998; Adams et al. 2000; Lander
et al. 2001).

This issue seems to be particularly important for the
mammalian genomes, where the variation in genomic
GþC composition is more pronounced (isochores), reflect-
ing dramatic differences in local mutational patterns.
Biased gene conversion and transcriptionally coupled mu-
tation in these genomes could be correlated to expression
levels and might produce directional biases in the estima-
tion of S (Birdsell 2002; Duret 2002; Comeron 2004; Lynch
2007). Urrutia and Hurst (2003), Comeron (2004), and
Yang and Nielsen (2008) have attempted, in various ways,
to analyze the effect of expression levels on selected codon
usage after taking into account various mutational effects.
Urrutia and Hurst (2003) showed that expression levels in

FIG. 7.—Estimated S values for several eukaryotic genomes versus
Nel. Organism codes as in figure 4. The horizontal bars are the mean
values, and the vertical bars are the 95% nonparametric bootstrap
intervals. The Spearman rank correlation for the phylogenetically
independent contrasts (Felsenstein 1985) for the two variables is 0.8.
The contrasts were calculated as in figure 6.
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human are correlated with codon bias after correcting for
local nucleotide composition, however, is not clear whether
their method would account for biased gene conversion or
transcriptionally coupled mutation. Comeron (2004) per-
formed a similar analysis of human expression and codon
usage and found that transcription-associated mutational bi-
as (TAMB) is a major factor determining codon usage in
humans, however, for genes expressed in tissues with no
evidence for TAMB, this worker found a definite prefer-
ence for a set of optimal codons. Finally, Yang and Nielsen
(2008) extended well-known codon substitution models to
include population genetic parameters and selection on co-
don usage. Their model implicitly takes into account the
local nucleotide composition of a gene, and it uses the phy-
logenetic relationship among a set of orthologous genes to
estimate the substitution parameters. They tested the model
on a set of 5,639 orthologs from five mammalian genomes
and found, under a likelihood ratio test, that the null hypoth-
esis of no selection on codon bias could be readily rejected.
It is not the objective of this work to present a detailed anal-
ysis of translational selection in mammals. The estimated S
values we report here for human and mouse simply reflect
the log-odds ratio of codon usage in lowly versus highly
expressed genes. Whether the relatively modest positive de-
viation we observe in this ratio is due to selection as sug-
gested by the authors above or is due to other forces such as
biased gene conversion (Lynch 2007) or TAMB (Comeron
2004) is a contentious topic that requires more research.

Another issue is themeaning of S. This is a confounded
parameter that contains a numerical constant (2 or 4), the
effective population size (Ne), and the actual selection co-
efficient (s). The value of the numerical constant depends
on whether the organism is haploid or diploid and, in the
case of diploidy, on the selection model being considered
(Crow and Kimura 1970). Nearly all studies seem to assume
genic selection, if this assumption does not hold, then the
exact form of S cannot be known unless a different model is
explicitly specified. Furthermore, some organisms like the
baker’s yeast present alternating haploid and diploid
phases, which could arguably lead to oscillations between
2Nes and 4Nes, with the estimated value of S being an av-
erage over the variable numerical constant. However, it is
important to note that S, as defined in this work, is simply
the log-odds ratio between the relative frequencies of the
optimal codon in highly versus lowly expressed genes. This
is, nonetheless, a useful comparative measure of selected
codon usage in disparate organisms such as eubacteria, uni-
cellular eukaryotes, or metazoans.

The results presented here show that population size
has an important role affecting the operativity of transla-
tional selection. The organisms analyzed that presented
the largest Nel values also showed the largest selected co-
don usage bias. Although this fact was expected, this is the
first time it is confirmed by empirical data. Further prob-
lems though need to be addressed before a fully clear pic-
ture can emerge. Mutation rate per base pair per generation
varies from about 1 to 100 � 10�9 in eukaryotes (Lynch
2006), with the lowest rates observed in free living unicel-
lular eukaryotes and the highest rates in vertebrates. This
presupposes a negative correlation between Ne and l
(Lynch 2007), which, after being taken into account in

figure 7, implies that the actual selection coefficient for co-
don usage, s, would be unusually high for genomes with
low Ne. Another striking issue is that S for bacterial ge-
nomes ranges from 0 to 2.6 for the fastest dividing genomes
(Sharp et al. 2005), which is about the same range observed
here (fig. 7). Giving that average population numbers for
bacteria are on the order of 108, this suggests that s would
be substantially smaller for prokaryotes than eukaryotes.
This paradox has been reviewed by Lynch (2007), and he
has proposed that biased gene conversion in eukaryotes
might have a substantial role in the overestimation of s in
this group.Whether this is the case, it can only be confirmed
with a more thorough analysis of mutational patterns in
highly expressed genes. Yet another problem is the estima-
tion ofNel itself. Usually, silent sites in protein-coding gene
alignments are used for this, and if translational selection has
been widespread in a genome (as seems to be the case for
unicellular eukaryotes and eubacteria), thenNel itself would
be underestimated. All these problems highlight the chal-
lenges that amore thoroughanalysis onS extended to a larger
set of eukaryotic genomes will have to face.

A final future issue will be to try to understand what
ecological factors or lifestyle choices affect population
numbers in the organisms studied and hence their degree
of selected codon bias. It is interesting to note that among
the organisms studied, those with the largest genomes
showed the lowest population numbers. Lynch and Conery
(2003) have proposed that although prokaryotes evolved to-
wardmulticellular eukaryotes, the consequent increase in or-
ganism size was linked to a dramatic reduction in population
size due to ecological constrains. Because random genetic
drift is stronger in smaller populations, this allowed the ac-
cumulation of genomic features that would have been elim-
inated by the action of natural selection in larger populations.
These features include the evolution and expansion of in-
trons, gene duplication, and the accumulation of repetitive
DNA, mechanisms that account for genome size expansion.
Lynch and Conery present convincing evidence showing
that indeed population size and genome size are inversely
correlated from prokaryotes to eukaryotes. These findings
suggest that any form of weak selection tends to be overrid-
den by random drift in organisms with large genomes, and
this must include selection on codon usage. Lynch and
Conery ideas are very appealing and could provide a nice
framework onto which the action of translational selection
in eukaryotes could be understood. Why translational selec-
tion behaves so idiosyncratically as to optimize codon usage
in certain genomes while ignoring others is a puzzling ques-
tion. Achieving reliable and consistent ways to test for selec-
tion in eukaryotes is of paramount importance in order to
solve this issue and to gain a deeper understanding of the
processes of molecular evolution.
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