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Abstract. Let G be the product GLr(C) × (C×)n. We show that the G-
equivariant Chow class of a G orbit closure in the space of r-by-n matrices is

determined by a matroid. To do this, we split the natural surjective map from

the G equvariant Chow ring of the space of matrices to the torus equivariant
Chow ring of the Grassmannian. The splitting takes the class of a Schubert

variety to the corresponding factorial Schur polynomial, and also has the prop-
erty that the class of a subvariety of the Grassmannian is mapped to the class

of the closure of those matrices whose row span is in the variety.

1. Introduction

The first goal of this paper is to prove that the Chow class of a certain affine
variety determined by a r-by-n matrix is a function of the matroid of that matrix.
Specifically, given an r-by-n matrix v with complex entries, we let X◦

v denote the
set of those matrices that are projectively equivalent to v in the sense that they
are of the form gvt−1, where g ∈ GLr(C), and t ∈ GLn(C) is a diagonal matrix.
Let G be the group consisting of pairs of matrices (g, t), which acts on the space
Ar×n of r-by-n matrices via the rule (g, t)v = gvt−1. A matrix orbit closure Xv

is the Zariski closure of X◦
v in Ar×n; it is the G orbit closure of v. This variety

determines a class in the G equivariant Chow ring of Ar×n. Theorem 4.3 states
that this class depends only on the matroid of v.

This matroid invariance is a consequence of two results. The first result is the
matroid invariance of the class of a torus orbit closure in the torus equivariant
K-theory of the Grassmannian G(r, n). This result was shown by Speyer [Spe09]
and was used by Speyer and the second author to find a purely algebro-geometric
interpretation of the Tutte polynomial [FS12]. The second result which our matroid
invariance relies on deals with the relationship between the G equivariant Chow ring
of Ar×n and the torus equivariant Chow ring of G(r, n), which we now explain.

The geometry of a particular subvariety Y of the Grassmannian G(r, n) (or more
generally, a partial flag variety) is of interest. To study it, one constructs a certain
matrix analog of Y , defined to be the closure in Ar×n of π−1(Y ) where π is the
projection from the space full rank r-by-n matrices to G(r, n). Let X denote this
matrix analog, which is a GLr(C) invariant subvariety of Ar×n. Sometimes X can
be effectively studied using the techniques of combinatorial commutative algebra, in
the sense that its prime ideal is recognizable and a Gröbner basis can be produced
from it. If the original variety Y had the action of a subgroup of GLn(C) (acting
on the Grassmannian in the usual way), then X has the action of the product of
GLr(C) and this group. Such analogs have been constructed for Schubert varieties,
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first by Fulton [Ful92] and later by Knutson, Miller [KM05] and their collaborators
(e.g., [KMS06, KMY09]). Knutson considered the matrix analog of Richardson
varieties in [Knu10]. Recently, Weyser and Yong have constructed such analogs for
symmetric pair orbit closures in flag varieties [WY14].

The matrix analog of a torus orbit closure in G(r, n) is precisely a variety of the
form Xv, where v has rank r. In this case, the matrix analog appears to be, in
some sense, more complicated than the original variety. Set-theoretic equations are
known for Xv, but they are not known to generate its prime ideal. It is natural to
ask if the apparent added complications are visible in various algebraic invariants
of Xv. This is how our second main result of the paper arose. We will prove the
following theorem.

Theorem. The natural surjective map of Z[t1, . . . , tn]-modules,

A∗
G(Ar×n) → A∗

T (G(r, n)),

has a splitting s that satisfies the following properties: For every closed, irreducible,
T -invariant subvariety Y ⊂ G(r, n),

(i) s([Y ]T ) = [π−1Y ]G,
(ii) s([Y ]T ) is a Z[t1, . . . , tn]-linear combination of classes of matrix Schubert

varieties [Xλ]G.

The structure of our paper is as follows. In Section 2.1 we provide the required
background on equivariant Chow groups. In Section 3 we recall results of Fehér and
Rimányi used to bound polynomial degrees in Chow classes, and use these results
to prove Theorem 3.5, which is the theorem stated above. In Section 4 we use
Theorem 3.5 to prove Theorem 4.3 on the matroid invariance of the class of Xv.
Lastly, in Section 5 we use equivariant localization to compute the Chow class of a
sufficiently generic torus orbit closure in G(r, n), and use Theorem 4.3 to compute
the Chow class of Xv when v has a uniform rank r matroid.

2. Equivariant Chow ring

2.1. Background on Chow groups and rings. A variety is a reduced and irre-
ducible scheme over C and a subvariety is a closed subscheme which is a variety. Let
X be a variety over C. Assume that X has an action of a reductive linear algebraic
group G. Our main references for equivariant Chow groups are [Bri97, EG98a].

Let V be a representation of G containing an open subvariety U which is the
total space of a principal G-bundle. Such a representation always exists because
G is reductive. The product X × U has a free G action, so the quotient space
X ×G U := (X × U)/G is a variety. Assume the codimension of U in V is larger
than some integer k. The G-equivariant Chow group of X of degree k is defined as

AG
k (X) := Ak+dim(V )−dim(G)(X ×G U),

and this is independent of the choice of U . Here Ak(−) is the usual Chow group of
dimension k cycles on −, modulo rational equivalence. If Y ⊂ X is a G-invariant
subvariety of codimension k, then Y defines a class [Y ]G := [Y ×G U ] in Ak

G(X).
For all integers k, there is an exact sequence of groups

(1) AG
k (Y ) → AG

k (X) → AG
k (X − Y ) → 0

where the former map is pushforward and the latter is pullback. In general, any
proper G-equivariant map f : Y → Z gives rise to a pushforward map AG

k (Y ) →
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AG
k (Z) and any flat G-equivariant map X → Y gives rise to a pullback map

AG
k (Y ) → AG

k (X).

Proposition 2.1. Let Y ⊂ X be a closed, irreducible, G-invariant subvariety of
dimension d. Then,

(i) [Y ]G freely generates ker(AG
d (X) → AG

d (X − Y )),
(ii) for all j > d, we have ker(AG

j (X) → AG
j (X − Y )) = 0.

Proof. This follows because AG
j (Y ) = 0 for j > d and because AG

d (Y ) is freely
generated by [Y ]G. �

Assume X is smooth. Write Ak
G(X) = AG

dim(X)−k(X) and define

A∗
G(X) :=

⊕
k≥0

Ak
G(X).

Since X is smooth, this group can be endowed with the intersection product, for
which the element [X]G ∈ A0

G(X) is a multiplicative identity. The group A∗
G(X)

becomes a graded commutative ring called the G-equivariant Chow ring of X. This
name reflects the fact that A∗

G(X) is the Chow ring of X ×G U .
When the open complement X−Y ⊂ X is smooth, one obtains a surjective map

of graded rings A∗
G(X) → A∗

G(X − Y ).

Corollary 2.2. Suppose that Y ⊂ X is an irreducible G-invariant subvariety of
codimension k with a smooth complement X − Y . Then the kernel of the pullback
A∗

G(X) → A∗
G(X − Y ) is a graded ideal satisfying:

(i) [Y ]G freely generates ker(Ak
G(X) → Ak

G(X − Y )), and
(ii) for all j < k, ker(Aj

G(X) → Aj
G(X − Y )) = 0.

Remark 2.3. The ideal ker(A∗
G(X) → A∗

G(X − Y )) is not necessarily principal.

2.2. K-theory and Chow groups of affine spaces. We will briefly need the
torus equivariant K-theory of an affine space A and its relation to the equivariant
Chow ring.

Let KG
0 (X) denote the Grothendieck group of G-equivariant coherent sheaves

on X. When X is smooth, this is generated by the classes of locally free sheaves,
and this group becomes a ring with product being the tensor product of locally free
sheaves.

When X = A is an affine space, then KG
0 (A) is simply KG

0 (pt) which is the
representation ring of the group G. The class of a representation corresponds to a
trivial bundle over A with G action determined by the representation. If G is a torus
(C×)m then KG

0 (A) is a Laurent polynomial ring in m variables Z[t±1
1 , . . . , t±1

m ].
Similarly, the equivariant Chow ring of A is Z[t1, . . . , tm]. Here, a trivial line bundle
twisted by a character is mapped to its first equivariant Chern class.

If Y ⊂ A is a subvariety of A then we write K(Y ) for the class of the struc-
ture sheaf of Y in KG

0 (A). There is a recipe to obtain [Y ]G from K(Y ) [KMS06,
Proposition 1.9].

Proposition 2.4 (Knutson–Miller–Shimozono). To obtain [Y ]G from K(Y ), first
replace each ti with 1− ti and expand the result as a formal power series in the ti.
Gather the monomials of lowest possible total degree, which will be the codimension
of Y in A. The result is [Y ]G.
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3. Splitting of the localization sequence

We now specialize the set-up of Section 2.1 to our main case of interest. Let
Ar×n, r ≤ n, be the affine space of r-by-n matrices with entries in C. This has an
action by G = GLr(C) × T , where T = (C×)n is the algebraic n-torus acting by
(g, t) · m = gmt−1, viewing t ∈ T as a diagonal matrix. For the remainder of our
work G will denote this product of groups.

3.1. Degree bound of Fehér and Rimányi. The equivariant Chow ring of Ar×n

is the equivariant Chow ring of a point, since Ar×n is a vector bundle over a point.
We can succinctly describe this object [EG98a, Proposition 6]: It is the ring of Weyl
group invariants of the polynomial ring over the character lattice of a maximal torus
of G. Specifically,

A∗
G(Ar×n) = Z[u1, . . . , ur, t1, . . . , tn]Sr ,

where the symmetric group Sr acts by permuting the subscripts on the u variables.
Here the u variables represent the characters of the diagonal torus in GLr(C) and
the t variables represent the characters of the torus T .

We consider the map Ar×n → A(r−1)×n that forgets the last row of a matrix.
Given Y ⊂ Ar×n we let Y0 denote the image of Y under the above map, which is
itself closed and irreducible.

The following result relates the classes of Y and Y0 and is a special case of a
more general result due to Fehér and Rimányi [FR07, Theorem 2.1].

Theorem 3.1. Let Y and Y0 be as above, which we take to have codimension c
and c0, respectively. Write [Y ]G ∈ Ac

G(A(r+1)×n) uniquely as

[Y ]G =
∑

k

pk(u1, . . . , ur−1, t1, . . . , tn) · uc−k
r ,

where pk is a homogeneous polynomial of degree k. Write G0 = GLr−1(C)×T ⊂ G.
Then for all k ≥ 0, pk is in the kernel of A∗

G0
(A(r−1)×n) → A∗

G0
(A(r−1)×n − Y0).

In particular, the degree of ur in [Y ]G is at most c− c0.

Corollary 3.2. Using the notation above, if Y is the closure of its full rank matrices
then the degree of ur in [Y ]G is at most n− r.

Proof. It suffices to verify that c − c0 ≤ n − r, and this is equivalent to dim(Y ) −
dim(Y0) ≥ r. To verify this, we consider the non-empty open subset of Y0 of rank
r− 1 matrices. The fiber of the natural map Y → Y0 over a matrix of rank r− 1 is
at least (r − 1) + 1 dimensional, since Y is GLr(C) invariant. Since the dimension
of this general fiber is precisely dim(Y )− dim(Y0), we are done. �

3.2. Matrix Schubert varieties. The Schubert varieties of the Grassmannian
G(r, n) are B ⊂ GLn(C) orbit closures, where B is a Borel subgroup. Fixing such
a B, the Schubert varieties are in bijection with partitions λ = (λ1 ≥ · · · ≥ λr ≥ 0)
with λ1 ≤ n− r. We denote the Schubert variety corresponding to λ by Ωλ. Since
the Schubert varieties Ωλ form a stratification of G(r, n), the classes [Ωλ]T form a
Z[t1, . . . , tn]-linear basis of A∗

T (G(r, n)).
For r < n, denote the set of f ull rank r-by-n matrices by Afr. Let π : Afr →

G(r, n) denote the projection map, which sends a matrix to the span of its rows.
Define a matrix Schubert variety as Xλ = π−1(Ωλ), where the closure takes
place within Ar×n. The equivariant Chow classes of these varieties were computed
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by Knutson, Miller and Yong [KMY09]. It is important here that one computes
the class of the matrix Schubert variety Xλ, and not a representative for the class
of the Schubert variety Ωλ. This is to say, one does computations in A∗

G(Ar×n)
instead of a quotient of this ring.

Let λ be a partition, which we regard simultaneously as a decreasing sequence
of non-negative integers, as above, and as a set λ = {cij : 1 ≤ i ≤ λj}. We say that
cij ∈ λ is above (or left) of ck` ∈ λ if j < ` (or i < k). A tableau is a function
τ : λ → N+.

A tableau τ : λ → N+ is said to be semistandard provided that for all c, d ∈ λ

(i) if c lays to the left of d then τ(c) ≤ τ(d); and
(ii) if c lays above d then τ(c) < τ(d).

We let SST (λ, r) be the set of all semistandard tableaux τ : λ → {1, 2, . . . , r}. The
following result appears in [KMY09, Theorem 5.8], although its origins are much
older.

Theorem 3.3 (Knutson–Miller–Yong). For any matrix Schubert variety Xλ ⊂
Ar×n,

[Xλ]G =
∑

SST (λ,r)

∏
cij∈λ

(uτ(cij) − tτ(cij)+j−i).

The displayed polynomial is called a factorial Schur polynomial. It is impor-
tant to note that since the partitions λ above have λ1 ≤ n − r, the degree of any
ui in [Xλ]G is at most n− r.

Corollary 3.4. The following is a Z[t1, . . . , tn]-linear basis for A∗
G(Ar×n): The

set of classes of matrix Schubert varieties together with the Schur polynomials
sλ(u1, . . . , ur) where λ1 ≥ n− r + 1.

3.3. Splitting of the localization sequence. In this section we prove the fol-
lowing result.

Theorem 3.5. The natural map of Z[t1, . . . , tn]-modules,

A∗
G(Ar×n) → A∗

G(Afr) ≈ A∗
T (G(r, n)),

has a splitting s that satisfies the following properties: For every T invariant sub-
variety Y ⊂ G(r, n),

(i) s([Y ]T ) = [π−1Y ]G,
(ii) s([Y ]T ) is a Z[t1, . . . , tn]-linear combination of classes of matrix Schubert

varieties [Xλ]G. Equivalently, the Schur polynomial expansion of s([Y ]T )
is a linear combination of Schur polynomiala sλ(u) with λ1 ≤ n− r.

Proof. A splitting s is uniquely determined by condition (ii). So it suffices to show
that if [Y ]T =

∑
λ qλ[Ωλ]T then [π−1Y ]G =

∑
λ qλ[Xλ]G.

Suppose that Y is a T -invariant subvariety of G(r, n). It follows that X = π−1Y
satisfies the hypothesis of Corollary 3.2 and so the degree of ur (and hence any u
variable) in [X]G is at most n− r. Hence [X]G is a Z[t1, . . . , tn]-linear combination
of classes of Schur polynomials sλ with λ1 ≤ n− r (cf. [FNR12, Theorem 7.4]). We
conclude that [X]G is a linear combination of the the classes of the matrix Schubert
varieties: [X]G =

∑
λ pλ[Xλ]G.

We can uniquely write

[Y ]T =
∑

qλ[Ωλ]T ∈ A∗
T (G(r, n)),
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for some polynomials qλ ∈ Z[t1, . . . , tn]. Since π∗ : A∗
T (G(r, n)) → A∗

G(Afr) is an
isomorphism, this yields

[X◦]G =
∑

λ

qλ[π−1Ωλ]G.

We claim that [X]G =
∑

λ qλ[Xλ]G. To see this, note that∑
λ

(qλ − pλ)[Xλ]G ∈ ker(A∗
G(Ar×n) i∗→ A∗

G(Afr)).

Applying i∗ to this class gives
∑

λ(qλ − pλ)[π−1Ωλ] = 0. However, the classes
[π−1Ωλ]G form a Z[t1, . . . , tn]-linear basis for A∗

G(Afr) so this means qλ = pλ. �

4. Matrix orbit closures and matroids

In this section we prove that the equivariant Chow class of a G-orbit closure in
Ar×n is determined by a matroid. We begin by stating the background we need
from matroid theory.

4.1. Matroid terminology. Write [n] for {1, 2, . . . , n} and
(
[n]
r

)
for the set of size

r subsets of [n]. Let v ∈ Ar×n be any r-by-n matrix. The matroid of v, denoted
M(v), is the set of subsets I ⊂ [n] where the column restricted matrix vI has rank
|I|. When the rank of v is k, so that k is the maximum cardinality of a set in M(v),
we say that M(v) has rank k. In this case M(v) is determined by its size k sets,
which are called its bases.

Given a matroid M with ground set [n] we define its matroid base polytope
P (M) as follows: Let {ei} ⊂ Rn be the standard basis vectors and write eI =∑

i∈I ei. We define P (M) to be the convex hull in Rn of eB where B ranges over
the bases of M . The points eB are actually the vertices of P (M), and the convex
hull of two vertices eB and eB′ forms an edge of P (M) if and only B and B′ differ
by exactly one element [Edm70, GGMS87].

4.2. Matroid invariance of Chow classes. A matrix orbit closure is a G
orbit closure of a point in Ar×n. We write Xv for the orbit closure of a matrix
v ∈ Ar×n and X◦

v for the G orbit itself. When v is a rank r matrix we can project
X◦

v to the Grassmannian. The result is the T orbit closure of π(v), which we denote
by Yπ(v).

The following result is proven by Speyer [Spe09, Proposition 12.5].

Theorem 4.1. For any rank r matrix v ∈ Ar×n, the class of the structure sheaf of
Yπ(v) in the T -equivariant K-theory of G(r, n) is determined by the matroid M(v).

As an immediate corollary we have:

Corollary 4.2. The T -equivariant Chow class [Yπ(v)]T is determined by the ma-
troid M(v).

Applying Theorem 3.5 gives:

Theorem 4.3. Assume the matrix v has rank r. The class [Xv]G depends only on
the matroid M(v).

The case when v has rank less than r can be obtained by taking a rank(v)-by-n
matrix u with the same row span as v, considering Xu in a smaller matrix space
and taking the G orbit closure of this variety in Ar×n (cf. [FNR12, Theorem 7.5]).
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5. Chow classes for uniform matroids

In this section our goal is to explicitly compute [Xv]G when v is a sufficiently
general matrix in Ar×n. Here, sufficiently general means that the matroid M(v) is
uniform, i.e., no maximal minor of v vanishes. That such a formula exists is due
to Theorem 4.3. To find this class, we will follow the idea of Theorem 3.5, and
compute the Chow class of the toric variety Yπ(v) in A∗

T (G(r, n)) and lift the result
to A∗

G(Ar×n).

5.1. Equivariant localization and the Grassmannian. In order to state our
main result we will need to gather some background material about equivariant
localization and the Grassmannian.

The Grassmannian G(r, n) has a finite set of T -fixed points: they are the r-
dimensional coordinate subspaces of Cn. We denote by xB the fixed point in which
the unique coordinate not fixed to zero is the one indexed by the set B ∈

(
[n]
r

)
.

The Plücker embedding embeds G(r, n) equivariantly in P(n
r)−1 = P

∧r Cn, with
T action inherited from the natural one on Cn. A fixed point xB of G(r, n) is
sent to a coordinate point in P(n

r)−1, and the character by which T acts on the
corresponding coordinate is tB =

∏
i∈B ti.

The inclusion ι of this discrete fixed set G(r, n)T into G(r, n) induces a restriction
map

ι∗ : A∗
T (G(r, n)) → A∗

T (G(r, n)T ).

Its target A∗
T (G(r, n)T ) is a direct sum of polynomial rings A∗

T (pt) = Z[t1 . . . , tn],
one for each fixed point. The restriction of the class of a T -equivariant subvariety to
a fixed point x will equal the restriction of this class to an affine space A containing
x on which T acts linearly, under the natural isomorphism A∗

T (A) = Z[t1 . . . , tn] =
A∗

T (pt). We will let c|x ∈ Z[t1, . . . , tn] denote the restriction of the class c to x.
Since the Grassmannian is smooth and projective and T is a torus, results of

Brion [Bri97, Theorems 3.2–3.4] imply that ι∗ is injective and we can identify the
image of ι∗. It consists of the tuples of polynomials f = (fB : B ∈

(
[n]
r

)
) such that

fB − fB∪j\i ∈ 〈tj − ti〉

for all i ∈ B and j /∈ B. Such results were also proved by Edidin and Graham
[EG98b] and are closely related to the topological results of Goresky, Kottwitz and
MacPherson [GKM98].

5.2. Vector bundles on the Grassmannian. We will let S denote the tauto-
logical rank r vector vector bundle over G(r, n). It is a subbundle of the trivial
bundle Cn and its fiber over x ∈ G(r, n) is the r-dimensional subspace x ⊂ Cn.
The quotient bundle Q is Cn/S.

When we write a symmetric function of a vector bundle E , we mean that sym-
metric function of its Chern roots, so that ek(E) = ck(E). For later reference, we
give explicit expansions of sν(S∨) and sν(Q), which are elements of A∗

T (G(r, n)),
as polynomials in the variables ui and tj . The formulae are these:

sν(S∨) = sν(u),

sν(Q) = ω (sν(u, t)) =
∑
λ,µ

cν
λ,µsλ(t)sµ′(u).
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Here ω is the usual operation on symmetric polynomials that transposes Schur poly-
nomials, extended Z[t]-linearly [Mac95, I.2.7]. On symmetric functions in infinitely
many variables, ω is an involution; in our setting, it is an involution as long as no
part of a partition exceeds r.

If E is a vector bundle on G(r, n), a Schur polynomial sλ of the Chern roots of
E localizes at a fixed point to the sum of the characters by which T acts on the
tangent space of Sλ(E∨), where Sλ is a Schur functor. For the vector bundles S∨
and Q, the resulting localizations are

sλ(S∨)|xB
= sλ(−ti : i ∈ B),

sλ(Q)|xB
= sλ(tj : j 6∈ B).

5.3. Statement of the formula. We will use one piece of notation to succincly
state our theorem. The partition (n−r−1)r−1 is the (r−1)×(n−r−1) rectangle, and
if λ and µ are two partitions, then the Littlewood–Richardson coefficient c

(n−r−1)r−1

λµ

equals 1 or 0, according to whether or not λ is the 180◦ rotated complement of µ
within this rectangle. Given a partition λ fitting inside a (r− 1)× (n− r− 1) box,
we let λ̃ denote the unique partition µ satisfying c

(n−r−1)r−1

λµ = 1.

Theorem 5.1. Given v ∈ Ar×n whose matroid is uniform of rank r, the class of
Yπ(v) in A∗

T (G(r, n)) is

(2) [Yπ(v)]T =
∑

λ⊂(n−r−1)r−1

sλ(S∨)sλ̃(Q).

The class of Xv in A∗
G(Ar×n) is

[Xv]G =
∑

λ⊂(n−r−1)r−1

µ,ν

cλ̃
µνsλ(u)sµ′(t)sν(u),

= ω(s(r−1)n−r−1(u, u, t)).

5.4. Proof of the formula. The first step is to understand the class of Yπ(v)

localized at a T -fixed point.

Lemma 5.2. The T -equivariant cohomology class of Yπ(v) localized at xB is

(3) [Yπ(v)]T |xB
=

∏
i∈B,j /∈B

(tj − ti)
∑

(i1,...,in)

1
(ti2 − ti1)(ti3 − ti2) · · · (tin − tin−1)

,

where the sums range over permutations (i1, . . . , in) ∈ Sn whose lex-first basis is B.

Note that the sum occurring in Lemma 5.2 is zero if B is not a basis of M(v).
When M(v) is uniform, the sum ranges over those permutations that have the
elements of B in their first r positions.

Proof. Following the approach of [FS12], we first identify Yπ(v) as a toric variety.
Viewing toric varieties as images of monomial maps [MS05, Chapters 7, 10], the
normalization of Yπ(v) is the toric variety of the polytope given as the convex
hull of the characters corresponding to the T -fixed points it contains. By a result
of White [Whi77, Theorem 2], the variety Yπ(v) is already normal, and therefore
is the toric variety just stated. The T -fixed points in Yπ(v) are those xB such
that B is a basis of the matroid M(v). The corresponding characters are {tB :
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B is a basis of M(v)}, whose convex hull is the matroid base polytope P (M(v)) of
M(v), defined in Section 4.

If the toric variety Yπ(v) contains the fixed point xB , then its restriction to the
T -invariant translate of the big Schubert cell around xB is the corresponding affine
patch of Yπ(v), in Fulton’s construction: that is, it is the affine toric subvariety
consisting of the orbits whose closures contain xB . Explicitly, this affine scheme
is SpecC[C], where C is the semigroup of lattice points in the tangent cone to
P (M(v)) at the vertex eB . The T -equivariant K-theory class of [Yπ(v)]T |xB

is then
the product of Hilb(C[C]) with

∏
i∈B,j 6∈B(1− tj/ti). The Hilbert series Hilb(C[C])

is the finely-graded lattice point enumerator of C. We claim

Hilb(C[C]) =
∑

(i1,...,in)

Hilb cone(ei2 − ei1 , . . . , ein
− ein−1)

=
∑

(i1,...,in)

1
(1− ti2/ti1)(1− ti3/ti2) · · · (1− tin

/tin−1)
(4)

where the sums range over permutations (i1, . . . , in) ∈ Sn whose lex-first basis is
B. To see this, apply Brion’s theorem to the triangulation of the dual of this cone
into type A Weyl chambers. The cones in the triangulation are unimodular, and
their lattice point generators are those given in the second line.

Altogether,

K(Yπ(v))|xB
=

∏
i∈B,j /∈B

(1− tj/ti)
∑

(i1,...,in)

1
(1− ti2/ti1) · · · (1− tin/tin−1)

Using Proposition 2.4, this becomes the equation to be proved upon replacing each ti
with 1−ti, and then extracting the lowest degree term of the resulting power series.
(Note that taking the lowest-degree term can be done one factor at a time.) �

Proof of Theorem 5.1. The second equation of the theorem follows from the first,
by Theorem 3.5.

By equivariant localization, it is enough to show the claimed equality after re-
striction to each xB , in A∗

T (xB) ∼= Z[t1, . . . , tn]. On one hand, the restriction of the
right side of (2) at xB is∑

λ

sλ(−ti : i ∈ B) sλ̃(tj : j 6∈ B).

We massage the formula for [Yπ(v)]T |xB
in Lemma 5.2, and show that it equals the

above polynomial.
Let us temporarily write f(i1, . . . , in) for 1/(ti2 − ti1) · · · (tin

− tin−1). We have

f(i1, . . . , îs, . . . , in)
f(i1, . . . , in)

=
tis+1 − tis−1

(tis
− tis−1)(tis+1 − tis

)
=

1
tis+1 − tis

− 1
tis−1 − tis

and similar identities when s = 1 or s = n in which the right hand term with
an out-of-range index in it is deleted. Thus, if ` is a list of indices, we have a
telescoping sum ∑

`′ : ` is `′ with i dropped
i precedes j in `′

f(`′) =
f(`)

tj − ti
.
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Grouping the terms of the sum in (3) by ir and repeatedly applying the above
identity and its order-reversed counterpart, we get

(5) [Yπ(v)]T |xB
=

∏
i∈B,j 6∈B

(tj − ti) ·
∑
ir∈B

 ∏
i∈B\ir

1
ti−r − ti

∏
j /∈B

1
tj − tir

 .

We next invoke the following variant of the Cauchy identity:∏
t∈T,v∈V

(t− v) =
∑
ν,µ

c(|V |)|T |

νµ sν(t ∈ T ) sµ′(−v ∈ V )

In our localized cohomology class, we combine the first and last products in (5) and
apply the Cauchy identity with (T, V ) = ({−ti : i ∈ B \ ir}, {−tj : j /∈ B}), giving

∑
ir∈B

 ∏
i∈B\ir

1
tir

− ti

(∑
ν,µ

c(n−r)r−1

νµ

det(−tji )
j=νk+r−1−k
i∈B\ir

det(−tji )
0≤j<r−1
i∈B\ir

· sµ′(tj : j 6∈ B)

)
where the sν is written as a ratio of determinants. Now we combine the remaining
product in the above display into the Vandermonde determinant in the denom-
inator. The sum over ir ∈ B can then be read as an expansion along the last
row of the determinantal formula for sλ(−ti : i ∈ B), where λ is obtained from
ν by decrementing every part if ν has r − 1 parts; if ν has fewer parts then the
terms in this determinantal expansion cancel. For a given ν the only µ yielding
a nonzero term is the one such that c

(n−r)r−1

ν,µ equals 1, i.e. so that ν and µ are
complements in a (r−1)× (n−r) rectangle. In this event λ and µ are complements
in a (r − 1)× (n− r − 1) rectangle, so our localized class is∑

λ⊂(n−r−1)r−1

sλ(−ti : i ∈ B)sλ̃(tj : j 6∈ B).

This agrees with the localization of (2) and the theorem follows. �

5.5. Comparison to a formula of Klyachko. There is another formula, due to
Klyachko [Kly85], for the non-equivariant class of Yπ(v) in A∗(G(r, n)) when v has
a uniform rank r matroid.

Theorem 5.3 (Klyachko). Let v have a uniform, rank r matroid. Let λ ⊂ (n−r)r

be a partition of n− 1. Then the coefficient of [Ωλ] in [Yπ(v)] is
r∑

i=1

(−1)i

(
n

i

)
sλ(1r−i).

Setting all the t variables equal to zero in Theorem 5.1 we obtain a different
looking formula for the GLr(C)-equivariant Chow class of Xv:

[Xv]GLr(C) =
∑

λ⊂(n−r−1)(r−1)

sλ(u)sλ̃(u).

As a consequence of this:

Corollary 5.4. Let v ∈ Ar×n have a uniform rank r matroid. The degree of the
variety Xv is ∑

λ⊂(n−r−1)r−1

sλ(1r)sλ̃(1r).
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