SUPPORTING INFORMATION

Fe-N-doped Carbon Capsules with Outstanding Electrochemical Performance and Stability for the Oxygen Reduction Reaction in Both Acid and Alkaline Conditions

Guillermo A. Ferrero, Kathrin Preuss, Adam Marinovic, A. Belen Jorge, Noramalina Mansor, Dan J. L. Brett, Antonio B. Fuertes, Marta Sevilla,* Maria-Magdalena Titirici*
Table S1. Summary of reported ORR performance for heteroatom-doped carbon catalysts in alkaline media (0.1 M KOH).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mass loading (mg cm(^{-2}))</th>
<th>Onset Potential (V vs. RHE)</th>
<th>Kinetic current density (mA cm(^{-2}))</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe-N-CC</td>
<td>0.10</td>
<td>0.94</td>
<td>18.3 (@ 0.58 V)</td>
<td>This work</td>
</tr>
<tr>
<td>NMCS-3</td>
<td>0.66</td>
<td>~ 0.86</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>NHPCM-1000</td>
<td>0.32</td>
<td>0.88</td>
<td>6.19 (@ 0.6 V)</td>
<td>2</td>
</tr>
<tr>
<td>NZ-13</td>
<td>0.21</td>
<td>~ 0.93</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>N-Fe-C@CNTs</td>
<td>0.09</td>
<td>0.88</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>N-OMCS-1.5-900</td>
<td>1.00</td>
<td>0.77</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Meso/micro-PoPD</td>
<td>0.50</td>
<td>~ 0.90</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Meso-EmG</td>
<td>0.81</td>
<td>1 V</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>m-NC-600</td>
<td>1.14</td>
<td>0.92</td>
<td>10.54 (@ 0.57)</td>
<td>8</td>
</tr>
<tr>
<td>NC-A</td>
<td>0.128</td>
<td>0.90</td>
<td>33.24 (@ 0.34 V)</td>
<td>9</td>
</tr>
<tr>
<td>N-MCN</td>
<td>0.40</td>
<td>~ 0.83</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>SNGL-20</td>
<td>0.306</td>
<td>~ 0.88</td>
<td>10 (@ 0.73 V)</td>
<td>11</td>
</tr>
<tr>
<td>N-doped mesoporous nanosheets</td>
<td>0.60</td>
<td>0.97</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>N-doped carbon spheres</td>
<td>0.25</td>
<td>0.88</td>
<td>-</td>
<td>13</td>
</tr>
<tr>
<td>N-doped graphene</td>
<td>0.05</td>
<td>~ 0.95</td>
<td>~ 6.7 (@ 0.58 V)</td>
<td>14</td>
</tr>
<tr>
<td>R/Fe (~0.05 %)</td>
<td>0.21</td>
<td>~ 0.90</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>BP-NFe</td>
<td>0.40</td>
<td>1.06</td>
<td>-</td>
<td>16</td>
</tr>
<tr>
<td>PANI-4.5Fe-T2(SBA-15)</td>
<td>0.95</td>
<td>7.4 (@ 0.82 V)</td>
<td>-</td>
<td>17</td>
</tr>
<tr>
<td>N-Fe-co-doped CNTs</td>
<td>0.485</td>
<td>0.93</td>
<td>-</td>
<td>18</td>
</tr>
<tr>
<td>Fe-N-CNFs</td>
<td>0.60</td>
<td>0.93</td>
<td>48.15 (@ 0.53 V)</td>
<td>19</td>
</tr>
<tr>
<td>Fe-N/C</td>
<td>0.10</td>
<td>0.92</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>Fe–N–C–700</td>
<td>0.03</td>
<td>0.93</td>
<td>19.4 (@ 0.58 V)</td>
<td>21</td>
</tr>
<tr>
<td>Fe–N–C–900</td>
<td>0.03</td>
<td>~ 0.90</td>
<td>10.3 (@ 0.58 V)</td>
<td>21</td>
</tr>
<tr>
<td>Fe3C@NCNF-900</td>
<td>0.15</td>
<td>~ 0.98</td>
<td>~ 15 (@ 0.4 V)</td>
<td>22</td>
</tr>
</tbody>
</table>
Table S2. Summary of reported ORR performance for heteroatom-doped carbon catalysts in acidic media.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Electrolyte</th>
<th>Mass loading (mg cm$^{-2}$)</th>
<th>Onset Potential (V vs. RHE)</th>
<th>Kinetic current density (mA cm$^{-2}$)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe-N-CC</td>
<td>0.5 M H$_2$SO$_4$</td>
<td>0.10</td>
<td>0.80</td>
<td>4.85 (@ 0.46 V)</td>
<td>This work</td>
</tr>
<tr>
<td>NZ-13</td>
<td>0.05 M H$_2$SO$_4$</td>
<td>0.21</td>
<td>~ 0.81</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Meso/micro-PoPD</td>
<td>Unknown</td>
<td>0.50</td>
<td>0.84</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>N-doped mesoporous nanosheets</td>
<td>0.5 M H$_2$SO$_4$</td>
<td>0.60</td>
<td>0.75</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>N-doped Carbon Spheres</td>
<td>0.5 M H$_2$SO$_4$</td>
<td>0.25</td>
<td>0.65</td>
<td>-</td>
<td>13</td>
</tr>
<tr>
<td>N-doped graphene</td>
<td>0.5 M H$_2$SO$_4$</td>
<td>0.05</td>
<td>~ 0.76</td>
<td>0.5 (@ 0.47 V)</td>
<td>14</td>
</tr>
<tr>
<td>N-Fe-co-doped CNTs</td>
<td>0.1 M HClO$_4$</td>
<td>0.49</td>
<td>0.89</td>
<td>-</td>
<td>18</td>
</tr>
<tr>
<td>Fe-N-CNFs</td>
<td>0.5 M H$_2$SO$_4$</td>
<td>0.60</td>
<td>0.79</td>
<td>-</td>
<td>19</td>
</tr>
<tr>
<td>Fe-N/C</td>
<td>0.1 M HClO$_4$</td>
<td>0.10</td>
<td>~ 0.78</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>Fe–N–C–700</td>
<td>0.5 M H$_2$SO$_4$</td>
<td>0.03</td>
<td>0.89</td>
<td>-</td>
<td>21</td>
</tr>
<tr>
<td>Fe–N–C–900</td>
<td>0.5 M H$_2$SO$_4$</td>
<td>0.03</td>
<td>0.85</td>
<td>-</td>
<td>21</td>
</tr>
<tr>
<td>Fe-N-HCMS</td>
<td>0.5 M H$_2$SO$_4$</td>
<td>0.25</td>
<td>0.80</td>
<td>4.6 (@ 0.6 V)</td>
<td>23</td>
</tr>
<tr>
<td>Fe3C@NCNF-900</td>
<td>0.1 M HClO$_4$</td>
<td>0.15</td>
<td>0.78</td>
<td>-</td>
<td>22</td>
</tr>
</tbody>
</table>
Figure S1. Nitrogen sorption isotherm of the Fe-N-doped carbon capsules (Fe-N-CC).
Figure S2. XRD pattern of the Fe-N-CC (a) after and (b) before washing, (c) Raman spectra of amorphous (blue line) and graphitic carbon regions (red line), and (d) TGA analysis of Fe-N-CC in air.
Figure S3. (a) XPS general spectrum of Fe-N-CC and (b) high-resolution Fe 2p$_{3/2}$ XPS spectrum.

As can be seen in Figure S3b, the Fe 2p$_{3/2}$ XPS spectra shows multiple peaks, which indicates that metal species in the catalysts are complicated in terms of their chemical state. According to previous reports, the Fe 2p$_{3/2}$ peak located at around 712 eV is due to N-coordinated iron.19, 24 This metal species and Fe$_3$C have been demonstrated to be the main responsible active centers on iron and nitrogen co-doped carbon materials.25, 26 However, no peak corresponding to Fe$_3$C (located at 706.7-706.9 eV)27, 28 can be identified, which agrees with the TEM/HRTEM studies that show its encapsulation in a relatively thick graphitic carbon layer. The other peaks may be attributed to Fe$^{2+}$ (709.05 eV) and Fe$^{3+}$ (710.8 eV), and the corresponding satellite peaks (714.3 and 716.1 eV respectively).29, 30 As shown by previous studies, these peaks may as well correspond to N-coordinated iron.20, 31
Figure S4. (a) TEM image and its corresponding EDX mappings for (b) carbon, (c) nitrogen, (d) iron and (e) oxygen for the corresponding Fe-N-CC.
Figure S5. (a) HRTEM image of a Fe$_3$C nanoparticle, (b) an enlarged HRTEM image of the graphitic layer, (c) an enlarged HRTEM image of the Fe$_3$C nanoparticle and (d) its SAED pattern.
Figure S6. Cyclic voltammograms of Fe-N-CC in N\textsubscript{2} and O\textsubscript{2} saturated (a) 0.1 M KOH and (b) 0.5 M H\textsubscript{2}SO\textsubscript{4} electrolytes.
Figure S7. LSVs at 10 mV s\(^{-1}\) in the presence of oxygen with rotation speed from 400 to 2400 rpm in (a) 0.1 M KOH and (b) 0.5 M H\(_2\)SO\(_4\), and the corresponding Koutecky-Levich plots in (c) 0.1 M KOH and (d) 0.1 M H\(_2\)SO\(_4\), compared with those of an ideal 2-electron process (red line) and an ideal 4-electron process (black line).
Figure S8. Comparison of the chronoamperometric response of Fe-N-CC and Pt/C over 10,000 s at 0.68 V and a constant rotation speed of 800 rpm in O\textsubscript{2}-saturated solution 0.1 M KOH.

Figure S9. Nyquist plots of the whole cell, including the half-cell measurements of the cathode, at current densities in the 10 – 100 mA cm-2 range. Anode half-cell measurements are not shown for clarity.
References

