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In Brief

Ishida et al. show that GPI-anchored
neurotrophic factor receptor Gfra2
specifically marks cardiac progenitor
cells (CPs) in mouse and human,
providing a method for isolating CPs.
Unexpectedly, Gfra2 plays a significant
role in heart development via a non-
canonical signaling pathway that is
independent of known ligands and the
co-receptor RET tyrosine kinase.
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SUMMARY

A surface marker that distinctly identifies cardiac
progenitors (CPs) is essential for the robust isolation
of these cells, circumventing the necessity of genetic
modification. Here, we demonstrate that a Glyco-
sylphosphatidylinositol-anchor containing neurotro-
phic factor receptor, Glial cell line-derived neurotro-
phic factor receptor alpha 2 (Gfra2), specifically
marks CPs. GFRA2 expression facilitates the isola-
tion of CPs by fluorescence activated cell sorting
from differentiating mouse and human pluripotent
stem cells. Gfra2 mutants reveal an important role
for GFRA2 in cardiomyocyte differentiation and
development both in vitro and in vivo. Mechanis-
tically, the cardiac GFRA2 signaling pathway is
distinct from the canonical pathway dependent on
the RET tyrosine kinase and its established ligands.
Collectively, our findings establish a platform for
investigating the biology of CPs as a foundation for
future development of CP transplantation for treating
heart failure.

INTRODUCTION

The heart is the first morphologically distinct developing organ in
vertebrates. The primordial heart is derived from the anterior part
of the lateral plate mesoderm as cardiac progenitors (CPs) being
one of the earliest populations emerging from the primitive streak

at gastrulation (Kinder et al., 1999; Rana et al., 2013). Lineage
tracing experiments have led to the identification of CPs in the
first (FHF) and second heart field (SHF) according to their
anatomical origin and destiny (Rana et al., 2013). Recently,
studies have delineated the complex molecular mechanisms
underlying cardiomyocyte differentiation (Kathiriya et al., 2015;
Paige et al., 2015); however, our knowledge of the precise
spatiotemporal mechanisms that regulate the segregation, iden-
tity, and fate of CPs remains incomplete. A major hurdle is the
paucity of reliable and specific markers to identify CPs, espe-
cially for the robust isolation of living CPs using cell sorting, cir-
cumventing the requirement of genetic modification for tagging
CPs. Previous reports have demonstrated that Kinase insert
domain receptor (KDR, also known as Flk-1), platelet-derived
growth factor receptor alpha (PDGFRA), KIT, C-X-C chemokine
receptor type 4 (CXCR4), and/or Prion protein (PrnP) can be
used in defined combinations to identify and harvest CPs (Bon-
due et al., 2011; Hidaka et al., 2010; Kattman et al., 2006, 2011;
Nelson et al., 2008; Yang et al., 2008). In vitro clonal-tracing
studies have revealed that both KDR*/PDGFRA* and KDR'*"*/
KIT"™ cell populations contain highly enriched multipotent pro-
genitors producing not only cardiomyocytes but also endothelial
and smooth muscle cells in mouse and human, respectively
(Kattman et al., 2006, 2011; Yang et al., 2008). Moreover, since
the expression pattern of each of these factors in the embryo
is dynamic and not specific for the cardiac lineage (Hidaka
et al., 2010; Kataoka et al., 1997; McGrath et al., 1999; Yang
et al., 2008), concerns have been raised about the purity of
CPs harvested using these markers. More recently, a cell-
surface protein, hyperpolarization-activated cyclic nucleotide-
gated potassium channel 4 (HCN4), has been reported to be
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transiently specific for FHF CPs during the earliest phase of car-
diomyogenesis (Spater et al., 2013). However, because there is
no commercially available antibody against the extracellular
domain of this molecule, its use in cell-sorting experiments
is limited. Thus, identification of a CP-specific surface antigen
for which an antibody is readily available is essential for
furthering our understanding of the critical early events in heart
development.

In this study, we found that Glial cell line-derived neurotro-
phic factor receptor alpha 2 (Gfra2) specifically marks CPs
of the FHF and SHF in mouse and human (Airaksinen and
Saarma, 2002; Paratcha and Ledda, 2008). The specificity
and expression pattern of Gfra2 provides a reliable means to
isolate stage-specific CPs with high purity. Strikingly, Gfra2 is
essential for heart development, whereas Gfra?, another mem-
ber of the Gfra receptor family, is functionally redundant.
Finally, we demonstrate that the pathway by which GFRA1/2
modulates heart development is independent of the classical
Gfra receptor family signaling pathway via the RET proto-
oncogene.

RESULTS

Gfra2 Specifically Marks Both FHF and SHF CPs
According to previous single-cell expression profiling of mouse
embryonic CPs between days 7.5 and 8.0 post-conception
(E7.5-E8.0), we observed that Gfra2, a specific receptor for
a neurotrophic factor Neurturin (NRTN), was expressed in
CPs but not in embryonic stem cells (ESCs) (42.31 + 22.53
SEM of CPs versus 0.00 of ESCs in Reads Per Millions,
respectively) (Brouilette et al., 2012; Kokkinopoulos et al.,
2015). This was consistent with the data demonstrating that
Gfra2 was co-expressed within the cardiac mesoderm ex-
pressing Mesp1 (Bondue et al., 2011). To confirm the expres-
sion pattern of Gfra2 in mouse embryos, we conducted whole-
mount in situ hybridization (WISH) analyses in serial stages
of early mouse embryos and found that Gfra2 was detected
from the Early Allantoic Bud stage simultaneously with one
of the earliest markers of CPs, Is/1, and was clearly expressed
in the cardiac crescent from E7.5 to E8.5 (Figures 1A and
S1A) (Downs and Davies, 1993; Kokkinopoulos et al., 2015).
Single-cell expression profiling suggests that /s/7 precedes
Gfra2, because Isl1-expressing CPs had a higher incidence
of expression of Gfra2 after they had started to express a
common marker for the FHF and SHF, Nkx2-5, as they further
differentiated (Figure S1B) (Kokkinopoulos et al., 2015). There-
after, Gfra2 was downregulated in the heart field by the ten-
somite stage (E8.75) upon formation of the heart tube (Fig-
ure 1A). Immunofluorescence micrographs indicated that
GFRA2 protein was prominently detected in the early headfold
(EHF) stage CPs (Figure 1B) (Downs and Davies, 1993). Serial
sections of the three-somite stage embryos revealed that
GFRA2 co-localized with NKX2-5, TBX5, HCN4 (the FHF),
and ISL1 (the SHF) (Figures 1C and S1C) (Cai et al., 2003; De-
vine et al., 2014; Kokkinopoulos et al., 2015; Liang et al., 2013;
Spéter et al., 2013; Stanley et al., 2002). Therefore, GFRA2 can
be considered a marker of CPs within both the FHF and SHF in
mouse embryos.
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GFRA2 Predominantly Identifies CPs Derived from
Pluripotent Stem Cells

Next, to clarify whether GFRA2 marks CPs derived from pluripo-
tent stem cells, we investigated the expression of Gfra2 during
cardiac differentiation of mouse ESCs. Quantitative real-time
reverse transcription PCR (gPCR) demonstrated that Gfra2
was transiently expressed with its peak at differentiation day 7,
before the initiation of spontaneous beating of differentiated
cardiomyocytes (Figure 2A). Flow cytometry using an antibody
raised against the extracellular domain of GFRA2 revealed that
GFRA2 could be identified between differentiation days 4-9,
among the PDGFRA positive mesodermal cells (Figures 2B
and S2A). Upon culturing the separately isolated cell populations
of GFRA2*/PDGFRA*, GFRA2"°9/PDGFRA*, and GFRA2"°9/
PDGFRA"™ at differentiation day 7 by fluorescent activated
cell sorting (FACS), the majority of GFRA2*/PDGFRA* cells
differentiated into TNNT2* and ACTN1 (2.-ACTININ)* cardiomyo-
cytes, without a propensity for differentiation to endothelial cells
and smooth muscle cells (Figures 2C-2F, S2B, and S2C; Movie
S1). By contrast, the other cell populations rarely contained such
cardiac cells. These results suggest that GFRA2*/PDGFRA*
cells at day 7 are already committed to a cardiomyocyte fate
but remain as precursor cells without terminal differentiation.
The expression of NKX2-5 (common), TBX5 (FHF), HCN4
(FHF), and ISL1 (SHF) in GFRA2*/PDGFRA" cells demonstrated
that GFRA2*/PDGFRA* CPs reside in both the FHF and SHF
(Figures 2G and S2D) (Cai et al., 2003; Devine et al., 2014; Kok-
kinopoulos et al., 2015; Liang et al., 2013; Spater et al., 2013;
Stanley et al., 2002). These data were consistent with our histo-
logical results in mouse embryos (Figures 1C and S1C).

To further characterize GFRA2* cells during cardiac differenti-
ation, we investigated the relationship between GFRA2-ex-
pressing CPs and the well-validated earliest CPs of the KDR*/
PDGFRA* population in differentiating mouse ESCs (Kattman
et al., 2006, 2011). KDR and PDGFRA were already expressed
by day 3 of differentiation as previously described (Kattman
et al,, 2011), and KDR expression was downregulated in the
PDGFRA* population at day 6 (Figure 3A). Of note, from day 4
to 5, almost the entire KDR*/PDGFRA" population expressed
GFRA2. Thus, GFRA2 could also mark the earliest mouse CPs
in cardiac differentiating ESCs. When we isolated a GFRA2*/
KDR*/PDGFRA* triple-positive population on day 4 and cultured
the cells for a further 7 days, they gave rise not only to cardiomyo-
cytes, but also to endothelial cells (Figure 3B). Given that GFRA2
marked KDR*/PDGFRA™ CPs on differentiation day 4, the earliest
GFRA2" CPs would be expected to be multipotent based on pre-
vious reports (Bondue et al., 2011; Kattman et al., 2011). There-
after, KDR expression would be limited to the endothelial lineage,
with cardiomyogenic cells having lost KDR expression after day 6
of differentiation (Figures 3A, S2E, and S2F). Taken together, our
findings clearly demonstrate that GFRA2 facilitates the robust
isolation of CPs from differentiating mouse ESCs.

GFRA2 Marks Human CPs from Differentiating Human
Pluripotent Stem Cells

To challenge whether human GFRA2 can be used for CP isolation
from human pluripotent stem cells, we investigated the expres-
sion of human GFRA2 during the cardiac differentiation of human
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Figure 1. GFRA2 Is Expressed in the First and Second Heart Field Cardiac Progenitor Cells

(A) Whole-mount in situ hybridization (WISH) of Gfra2 in E7.25-8.75 early allantoic bud (EB) stage to the ten-somite (S) stage embryos. Gfra2 was expressed in the
cardiac crescent (arrows). Once the heart tube is formed and the looping initiated, Gfra2 is downregulated (red arrowheads). Gfra2 was also expressed in
migrating neural crest cells and the rhombomere 4 (white arrowheads). n = 3. Scale bar, 250 um. EHF, early headfold; LHF, late headfold.

(B and C) Immunohistochemical (IHC) images of GFRA2 in an EHF and three-somite stage embryo. GFRA2 was expressed in the mesodermal regions corre-
sponding to the heart field. n = 4. Scale bar, 50 um. FHF, first heart field; SHF, second heart field.

See also Figure S1.
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Figure 2. GFRA2*/PDGFRA" Cells Derived from Mouse ESCs Are Unipotent Cardiac Precursors

(A) gPCR analyses of Gfra2, Mesp1, T (Brachyury), Nkx2-5, Tbx5, and Myl2. The peak of Gfra2 expression was observed just before the initiation of spontaneous
beating of cardiomyocytes. Note that mesodermal induction represented by Mesp1 and T peaked at day 3 and sarcomeric protein synthesis of cardiomyocyte
was apparent from day 8. Data are representative of biological triplicates with technical duplicates as mean + SEM.

(B) Flow cytometrical (Flo) analyses show transient expression of GFRA2 during cardiomyocyte differentiation. GFRA2 was detected in the PDGFRA* meso-
dermal population from day 4 to day 9.

(C) FACS isolation at day 7 of differentiation. GFRA2*/PDGFRA* (G*P*), GFRA2 /PDGFRA* (G P*), GFRA2 /PDGFRA™ (G P") populations were separately
isolated.

(D) Immunocytochemistry (ICC) of TNNT2 in FACS-isolated cells after an additional 5 days culture in differentiation media. The condensed high DAPI signals
represent dead cells. We counterstained with TUBA1A (a-tubulin) to delineate the live cells and found that most of G*P* cells differentiated into TNNT2*
cardiomyocytes. Scale bar, 100 pm.

(E and F) Flow cytometrical (Flo) analyses for TNNT2 revealed that most of the G*P™* cells (93.6% =+ 3.1%) differentiated into cardiomyocytes. n = 3.

(G) Quantitative analyses by Flo for HCN4, NKX2-5, TBX5, and ISL1 in GFRA2* CPs at day 7. Bar graph represents of the proportion of FHF and SHF as
mean + SEM. n= 3.

See also Figure S2 and Movie S1.
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ESCs or induced pluripotent stem cells (iPSCs) (Burridge et al.,
2011). Consistent with our results for the mouse, gPCR analyses
showed human GFRA2 was induced with a peak just before the
appearance of spontaneously beating cardiomyocytes at day 8
of differentiation, both in ESCs and iPSCs (Figures 4A and
S3A). We also identified the hGFRA2*/hPDGFRA™ cell population
at day 8 by flow cytometry, with FACS-isolated hGFRA2*/
hPDGFRA™ cells efficiently differentiating into TNNT2* cardio-
myocytes when cultured for an additional 5 days (Figures 4B-
4D and S3B-S3D). These TNNT2" cardiomyocytes demon-
strated spontaneous beating (Movie S2). The expression profiles
of FACS-purified hGFRA2"/hPDGFRA* cells suggest that this
population contains both the FHF and SHF CPs, similarly as in
the case of mouse ESCs (Figures 2G, 4E, and S2D). Thus, labeling
with antibodies raised to human GFRA2 also enables the isolation
of a CP population from human pluripotent stem cells, without the
need of lineage tagging by genetic modification.

To elucidate additional details concerning the earliest phase of
hGFRA2* CPs in human cardiac differentiation, we performed
flow cytometry using hGFRA2, hPDGFRA, hKDR, and hKIT anti-

GFRA2 in PDGFRA*/KDR*

7 days after FACS
TNNT2/

N=

See also Figure S2.

bodies at day 4 of differentiation. We found
that the proportion of hGFRA2-expressing
cells among the multipotent CP-enriched
population of hKDR°“*/hPDGFRA* cells
were less than in the case of mouse
(Figures 3A and 4F) (Kattman et al., 2011).
As expected, the hKDR'"“*/hPDGFRA*
population was hKIT negative, whereas
hKDR*/hPDGFRA™? population was hKIT
positive (Figure 4F) (Yang et al., 2008). By
separating isolated hGFRA2*/hKDR""*/
hPDGFRA*/hKIT™®  and  hGFRA2"%%/
hKDR'*"*/hPDGFRA*/hKIT"*® populations,
we found that the GFRA2 negative pop-
ulation almost lacked cardiomyogenic
ability (Figure S3E). To confirm multipotency
of human GFRA2 positive cells, we per-
formed clonal lineage-tracing experiments.
A single hGFRA2*/hKDR'*"*/hPDGFRA"/
hKIT™®® cell at day 4 was cloned by FACS and cultured for
2 weeks. RT-PCR using cardiomyocyte (hTNNT2), endothelial
cell (hPECAM), and smooth muscle cell (hMYH11) markers clearly
indicated the existence of the multiple cell lineages derived from a
single cell, which strongly supports the multipotency of hGFRA2*/
hKDR'*"*/hPDGFRA*/hKIT" cells (Figure 4G). This is consistent
with the data from mouse ESCs and previous work (Kattman
et al., 2006, 2011; Yang et al., 2008). After differentiation day 4,
as cardiomyocyte differentiation progressed, GFRA2*/PDGFRA"*
CPs lost KDR expression by day 8 as observed in mouse ESCs
differentiation (Figure S3F). Taken together, as in the mouse,
hGFRA2*/hKDR'"°"*/hPDGFRA*/hKIT"® CPs at day 4 are multipo-
tent CPs, and hGFRA2*/hKDR"*9/hPDGFRA*/hKIT"®d at day 8 are
unipotent cardiac precursors.

3

A Non-canonical Signaling Cascade via GFRA1/2 Is
Indispensable for Cardiomyocyte Differentiation of
Pluripotent Stem Cells

To elucidate a physiological function of GFRA2 in cardiac differ-
entiation, we generated Gfra2 knockout (KO) mouse ESC lines
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using the CRISPR/Cas9 genome editing system (Figures 5 and
S4) (Cong et al., 2013; Wang et al., 2013). After 10 days of cardiac
differentiation, two independent lines of Gfra2-KO ESCs did
not show significant defects in cardiomyocyte differentiation,
although a minor decrease in the number of differentiated cardi-
omyocytes was observed without statistical significance (Fig-
ures 5A-5C). This is consistent with the phenotype of KO mice
that showed no cardiac defects (Airaksinen and Saarma, 2002;
Hiltunen et al., 2000; Paratcha and Ledda, 2008; Rossi et al.,
1999, 2003). Since GFRA1, another member of GFRA-family
receptor whose specific ligand is glial cell line-derived neurotro-
phic factor (GDNF), might be functionally redundant, we gener-
ated compound mutant of Gfra7/2 double-KO (DKO) ESCs (Air-
aksinen and Saarma, 2002; Baloh et al., 2000). Whereas Gfra1
KO lines exhibited no significant defect in cardiomyocyte differ-
entiation (Enomoto et al., 1998), the simultaneous ablation of
Gfral in addition to Gfra2 significantly suppressed cardiomyo-
cyte differentiation (Figures 5A-5C and S4A-S4E). It is unlikely
that an off-target mutation is responsible for this phenotype,
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onic fibroblasts (MEFs) for 2 weeks. RT-PCR of
hTNNT2, hPECAM1, and hMYH11 represent the
existence of cardiomyocytes, endothelial cells, and
smooth muscle cells among the cells derived from a
single cell, respectively. Note the existence
of multiple lineages, which indicates the multi-
potency.

See also Figure S3 and Movie S2.

G+P+
uG-P+
uG-P-

MEF H,0

because two independent single guidance (sg) RNA targeting
different portions of the gene resulted in an indistinguishable
phenotype (Figures S4C and S4D) (Enomoto et al., 1998; Fu
et al., 2013; Hiltunen et al., 2000; Rossi et al., 1999, 2003).
Thus, Gfral/2 are required for cardiomyocyte differentiation
in vitro, and Gfra1 is functionally redundant for Gfra2. Interest-
ingly, we found that Gfra7 expression was significantly increased
in Gfra2 KO ESCs (Figure 5D). By contrast, Gfra2 expression was
unchanged in Gfra1 KO ESCs. This result suggests that the loss
of Gfra2 can be compensated for by upregulated Gfra7, whereas
Gfra1 appears to be dispensable for cardiac differentiation (Ba-
loh et al., 2000; Paratcha and Ledda, 2008; Scott and Ibanez,
2001). This suggestion is supported by the fact that Gfra? is
not expressed in the heart field in vivo (Figure S5A).

The canonical signaling cascade acting via GFRA2 depends
on a single-pass transmembrane protein, RET tyrosine kinase
(Airaksinen and Saarma, 2002). When the specific ligand, neu-
rturin (NRTN) binds GFRA2, the RET tyrosine kinase is activated
by GFRA2/NRTN, to elicit a biological response. To confirm
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tion. WT, wild-type; G1-KO, Gfra1-KO; G2-KO,
Gfra2-KO; DKO, Gfra1/2-DKO; R-KO, Ret-KO; ISO
CTRL, isotype control.

(B) Quantitative analyses of flow cytometry show the
severe impairment of cardiomyocyte differentiation
in Gfra1/2 DKO ESC lines. *p < 0.05 versus WT in
Student’s t test. n = 5.

(C) Immunocytochemical analyses of each KO ESC
line 10 days after induction of cardiomyocyte dif-
ferentiation. Gfra1/2 double-KO (DKO) ESCs ex-
hibited severe defects in TNNT2* cardiomyocyte
differentiation. Scale bar, 100 um.

(D) gPCR analyses for Gfra1 and Gfra2 in Gfra2 KO
ESC lines and in Gfral KO ESC line at day 7,
respectively. Note the elevated expression of Gfra1
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whether the GFRA2 signaling pathway affecting cardiomyocyte
differentiation depends on RET, we generated Ret KO ESCs
lines. As expected from the phenotypes of KO mice, targeting
of Ret did not resulted in significantly impaired cardiomyocyte
differentiation (Figures 5A-5C, S4A, and S4B) (Airaksinen and
Saarma, 2002; Baloh et al., 2000; Paratcha and Ledda, 2008;
Schuchardt et al., 1994). This observation is also supported by
the fact that RET was not expressed in the heart fields (Fig-
ure S5A). In addition, the KO lines of Nrtn, Gdnf, and Nrtn/Gdnf
also did not show a significant defect (Figures 5E-5G, S5B,
and S5C) (Golden et al., 1999; Heuckeroth et al., 1999; Sanchez
et al., 1996). Collectively, these results indicate that cardiac
differentiation signaling via GFRA2 is independent of the co-re-
ceptor RET tyrosine kinase.

Previous studies have reported that the direct interaction be-
tween Neural Cell Adhesion Molecule (NCAM1) and GFRA1 me-
diates an alternative GFRA1 signaling pathway via FAK/FYN

Day 10 TNNT2 IHC

Gdnf-KO #2  Nrtn-KO#9 = G&N-DKO
#1

Gdnf-KO #19 Nrtn-KO #13 G&N-DKO,
#24

operating in the absence of any secreted
ligands and RET (Paratcha and Ledda,
2008; Paratcha et al., 2003; Sjostrand
et al., 2007). Although NCAM1 was not
expressed in the heart field (Figure S5A),
we cannot exclude the possibility that
another cell adhesion molecule mediates
a similar signal pathway. To confirm
whether a similar pathway is responsible
for the cardiac signaling of GFRA2, we
investigated the phosphorylation of FAK, FYN, and its down-
stream ERK1/2 in Gfra1/2 DKO ESCs during cardiomyocyte dif-
ferentiation (Figure S6). Western blot analyses demonstrated
that FAK phosphorylation was slightly but significantly elevated
in Gfra1/2 DKO ESCs, whereas FYN and ERK1/2 phosphoryla-
tion were unaffected (Figure S6A). Since the NCAM1/GFRA1
signal pathway first activates FYN and phosphorylated-FYN ac-
tivates FAK (Paratcha et al., 2003), it is unlikely that a signal
similar to the NCAM1/GFRAT1 signal mediated by a cell adhesion
molecule is operating. Thus, it suggests that FAK phosphoryla-
tion in Gfra1/2 DKO ESCs becomes elevated by an unknown
mechanism. We further tested whether the attenuation of
elevated FAK could rescue the phenotype of Gfra1/2 DKO
ESCs, since it has been previously reported that activated
FAK signaling impaired cardiomyocyte differentiation (Hakuno
et al., 2005). We administered the FAK inhibitor PF-573228 to
Gfra1/2 DKO ESCs during their differentiation. However, the
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Figure 6. Gfra1/2 Play Important Roles for the
Heart Development In Vivo
(A) Genotype of the Gfra1/2 DKO mouse embryos

48.95 555:: ggggﬁ:gﬁjﬁgggggﬁgg _—gl' ((; ES g:ll)) g:: GACCTCCCG——————— GACATCT :g: leg !;jpeld)el) generated by the direct injection of Gfra7-targeted
a N sgRNA, Gfra2-targeted sgRNA, and Cas9 mRNA into
Q #8:20 317 [OICACh IATICCASANST 3 (it 57 cAccrcccaciasacasceasct 3 (Zopeadop) 2901 i .
[a] . . (B) WISH analyses of differentiated cardiomyocyte
#8-81 3'- [TTTTTTTTTTTTTTTTTCRGT -3 §]3 ‘;g gz:g 2 CACCTOC o e oncATOT 3 Efé’ﬁ;%ﬁ'g) marker Nppa in Gfra1/2 DKO and WT littermate em-
bryos at E8.5. Nppa expressions disappeared in DKO
embryos (red arrows). Scale bar, 250 pm.
B | E8.5 Nppa WISH | (C) H&E staining for the .hearts of Gfra1/2 DKO E17.5
- embryos. The compaction layers of myocytes were
thin, and the alignments of cardiomyocytes were
N impaired in Gfra1/2 DKO embryos as compared to the
ﬁ control hearts (mCherry sgRNA and Cas9 mRNA
transduced embryos) and Gfra1/2 compound hetero-
WT DKO #8-25 DKO #8-29 DKO #8-81 zygote rr.1utant. Gfral 'nuII resulted in kidney agenesis
as previously described (black arrowheads, No),
c whereas the well-developed kidney was observed in
| E17.5 Hearts HE staining | the heterozygotes and WT (black arrows, +) (Enomoto
et al., 1998). The mutation of each embryo induced by
CRISPR/Cas9 is shown in Figure S7B.
‘,I IVS, intraventricular septum; RV, right ventricle; LV,
by left ventricle. Scale bar, 500 um in whole-heart im-
g i ages and 100 pum in higher magnification. See also
o Figure S7.
N3
N~
H*
g
[a) just after heart tube formation, since embry-
onic defects or lethality would preclude
g the analysis of later stage embryos. Em-
®* bryos containing multiples of three base
2 insertions/deletions inside the exon were
e discarded from the analysis because the
S presence of functional protein produc-
»8 tion could not be refuted (Figure 6A). We
Eé examined cardiomyocyte differentiation of
Eg Gfra1/2 DKO embryos by WISH using a
= marker of differentiated cardiomyocytes,
g Nppa (also known as ANF) (Bruneau et al.,
s % 2001; Christoffels et al., 2000). As expected
§§ from our ESC experiments, Gfra1/2 DKO
§ embryos exhibited a significant reduction

efficiency of cardiomyocyte differentiation showed no improve-
ment even though FAK phosphorylation was kept within
physiological levels (Figures S6B and S6C). Therefore, the upre-
gulation of FAK signaling was not primarily responsible for
the defect of Gfra1/2 DKO ESCs. This signaling pathway oper-
ating via GFRA2 during cardiomyogenesis must activate effec-
tors of an alternative and critical circuit for cardiomyocyte
differentiation.

Gfra1/2 Are Required for Ventricular Compaction In Vivo

To exclude the possibility that the phenotype observed in Gfra1/2
DKO ESCsis anin vitro phenomenon, we generated Gfra1/2 DKO
mouse embryos by the direct transduction of (sgRNAs) for Gfra1/
2 and Cas9 mRNA into zygotes (Figures 6A-6C and S7A-S7D)
(Wang et al., 2013). At first, we assayed the embryos at E8.5
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of Nppa (Figure 6B), suggesting the cardio-
myocyte differentiation process was signifi-
cantly affected. As expected from the data of Gfra2 KO ESCs
(Figure 5D), Gfra2 single-KO embryos showed significant but
transiently elevated Gfra7 expression by E8.5 in the heart field
(Figure S7A). However, despite the fact that cardiomyocyte
differentiation was impaired, the macro- and micro-anatomical
morphology of the formed heart tube appeared unaffected in
any DKO embryos (Figures 6B and S7B). This suggests that
the reduction of Nppa in Gfra1/2 DKO embryos simply reflected
a delay of cardiomyocyte differentiation. To clarify this, we
analyzed the Gfra1/2 DKO embryos at E17.5 (Figures 6C,
S7C, and S7D). Surprisingly, DKO embryos had the capacity
to develop up to this stage without edema, and developed
hearts were also observed (Figure 6C). This indicates that suffi-
cient cardiomyocyte differentiation occurred in DKO embryos
to support the fetal circulation. Further histological examination
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Figure 7. Impaired NOTCH Signaling in Gfra1/2 DKO Embryos Is Responsible for Noncompaction Cardiomyopathy
(A) The unaltered structure of sarcomeres and mitochondria in the hearts of Gfra7/2 DKO embryos. The data represent biological triplicates. Scale bar, 500 nm.
(B) Downregulation of NOTCH1, BMP10, and ERBB4 in E9.5 DKO hearts (green). The data represent biological triplicates. Blue, DAPI; LV, left ventricle; RV, right

ventricle.

(C) Schematic model of the in vivo function of non-canonical Gfra1/2 signal pathway.
(D) A model of the expression pattern of GFRA2 and other surface markers during differentiation of mouse and human pluripotent stem cells. At an earlier stage of
differentiation, GFRA2*/KDR'*"*/PDGFRA* marks multipotent cardiovascular progenitors, whereas GFRA2*/KDR~/PDGFRA* marks cardiac precursors that are

committed to cardiomyocytes fate at the later phase.
See also Figure S7.

unexpectedly revealed that Gfra71/2 DKO hearts at E17.5 suffered
from noncompaction cardiomyopathy (Figures 6C and S7D).
Excessively prominent trabeculations and deep intra-trabecular
recesses, which are characteristic features of noncompaction
cardiomyopathy, were apparent, but no other congenital heart
disease in DKO embryos was observed. However, the structure
of sarcomeres and mitochondria were not altered (Figures 7A
and S7C), suggesting that noncompaction was not caused by
the abnormality of sarcomeres and mitochondria (Towbin et al.,
2015). The absence of Gfra1/2 and Nrtn at the sites of trabecula-
tion and compaction suggests that RET-dependent and -inde-
pendent GFRA1/2 signal pathways do not directly or locally regu-
late trabeculation and compaction (Figures S7A, S7E, and S7F).
Importantly, we found that NOTCH1 in total protein and its down-
stream molecules BMP10 and ERBB4 were missing in DKO
hearts at E9.5 (Figure 7B). NOTCH signaling is essential for prolif-
eration and differentiation of ventricular cardiomyocytes through
which proper trabeculated and compacted myocardial layers are

formed, and mutants with NOTCH signaling defects exhibit a
noncompaction phenotype (de la Pompa and Epstein, 2012;
Grego-Bessa et al., 2007; Luxan et al., 2013; Zhang et al.,
2013). Thus, the ventricular noncompaction observed in DKO
embryos likely resulted from altered NOTCH signaling (Figures
7B and 7C).

Taken together, these results suggest that GFRA1/2 plays
an important function in normal mammalian heart development,
especially for ventricular wall compaction, but an unknown
mechanism could compensate for cardiomyocyte differentiation
due to the lack of GFRA1/2 in vivo. Thus, taken together, our data
reveal a non-canonical signal cascade via GFRA1/2 is indispens-
able for heart development in vivo.

DISCUSSION

Here, we report a surface marker, GFRA2, that is specific for
CPs in mouse and human. We show that the expression of
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Gfra2 is initiated among both FHF and SHF CPs in vivo and
in vitro just before the initiation of spontaneous beating of cardi-
omyocytes. Gfra2 is downregulated after CPs terminally differen-
tiate to cardiomyocytes. The use of an antibody specific for
GFRA2 protein made it possible for us to harvest human and
mouse CPs derived from pluripotent stem cells. Physiologically,
Gfra2 plays an important role in heart development in vitro as well
as in vivo, but, in the absence of Gfra2, ectopic activation of
Gfral can functionally compensate for its loss. Of note, our
data suggest that an alternative non-canonical signaling
cascade transmits GFRA1/2 activation to CP function, and that
this is distinct from the canonical signaling pathway dependent
on RET.

In differentiating ESCs, it is known that KDR®"*/PDGFRA* or
KDR'“"*/KIT"®¢ cells constitute multipotent CPs which give rise
to cardiomyocytes, smooth muscle cells, and endothelial cells,
based on previously reported clonal tracing experiments (Bondue
et al., 2011; Kattman et al., 2006, 2011; Yang et al., 2008). How-
ever, it remains an open question as to whether all of these cells
or only a proportion of these cells are CPs. In this study, we found
that almost all mouse KDR®"*/PDGFRA* express GFRA2 (Fig-
ure 3). However, the situation is likely somewhat different in
human. The proportion of hGFRA2-expressing cells among
hKDR'*"*/hPDGFRA* population is much lower (Figure 4F). As ex-
pected, hKDR"*/hPDGFRA" cells are negative for KIT (Yang
etal., 2008). Of note, most GFRA2-negative hKDR'*"*/hPDGFRA*
cells failed to differentiate to cardiac cells (Figure S3E), which
strongly supports the specificity of hGFRA2 for human CPs.
Thus, inhumans, the additional usage of hGFRA2 labeling is supe-
rior to the previously proposed protocols to isolate multipotent
CPs with high purity. Furthermore, the use of GFRA2 labeling
in addition to KDR and PDGFRA will enrich for more mature uni-
potent CPs which cannot be isolated with previous protocols
dependent on KDR expression. It is interesting that these unipo-
tent late-stage GFRA2" CPs represent not only the FHF, repre-
sented by HCN4/TBX5 and already known as unipotent, but
also the SHF identified through expression of ISL1, because the
SHF CPs are generally thought as multipotent (Figures 2G, 4E,
S2D, and S2E) (Devine et al., 2014; Evans et al., 2010; Kelly and
Evans, 2010; Kokkinopoulos et al., 2015; Lescroart et al., 2014;
Spater et al., 2013). This evidence indicates that the late-stage
expression of GFRA2 excludes the multipotent SHF but includes
the already committed but not fully differentiated SHF lineage.
Thus, here we propose a strategy to isolate stage-specific
human and mouse CPs with GFRA2, PDGFRA, and KDR (Fig-
ure 7D). GFRA2*/KDR"*/PDGFRA" triple-positive CPs would
be multipotent cardiovascular progenitors. As CPs begin to
commit but not yet terminally differentiate to cardiomyocytes,
they lose KDR expression so that a GFRA2*/KDR"*9/PDGFRA*
double-positive population represents a cardiomyocyte precur-
sor at a later stage.

We found that Gfra1/2 DKO mouse ESCs showed a severe
impairment of cardiomyocyte differentiation. Our data reveal
that GFRA2 plays a pivotal role in cardiomyocyte differentiation
in vitro that can be compensated by upregulation of GFRA1. Ex-
amples of an ectopic upregulation of an evolutionally duplicated
paralogous gene to compensate for loss of a gene have been
described (Barbaric et al., 2007). An evolutionally close relation-
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ship between Gfra1 and Gfra2 suggests that a preserved common
enhancer drives Gfral if Gfra2 is not expressed in CPs, whereas a
high level of Gfra2 primarily suppresses Gfra1 (Barbaric et al.,
2007; Hatinen et al., 2007). However, the phenotype of KO of
the known ligands for GFRA1 and 2, Gdnf and Nrtn, or KO of its
co-receptor Ret did not show any defect of cardiomyocyte differ-
entiation (Figures 5, S4, and S5). Interestingly, we observed a ten-
dency of a slightly reduced yield of cardiomyocytes in single KO of
Gfral, Gfra2, and Ret, although not to a statistically significant de-
gree (Figure 5B). Given the evidence that previously reported KO
mice of each gene also did not show any heart defect (Enomoto
et al., 1998; Heuckeroth et al., 1999; Rossi et al., 1999; Sanchez
et al., 1996), the role of classic RET-dependent GFRA1/2 signals
are unlikely to be vital for heart development. In addition, whereas
an alternative GFRA1 signal pathway via NCAM1/FYN/FAK is
known (Paratcha et al., 2003; Sjostrand et al., 2007), our data
showed that NCAM1, FYN, and FAK were not involved in the car-
diac differentiation defect in the Gfra1/2 DKO (Figure S6). Thus,
the pathway by which GFRA2 modulates heart development is
likely to be distinct from previously established pathways. To
uncover the nature of this alternative non-canonical signaling
pathway acting via GFRA1/2, further investigation is required, to
identify molecules interacting directly with GFRA2 in the context
of cardiac differentiation.

In contrast to the in vitro phenotype, the loss-of-function of
Gfra1/2 showed a different phenotype in vivo. In E8.5 DKO em-
bryos, Nppa expression disappeared, which is likely consistent
with the impaired in vitro cardiomyocyte differentiation of DKO
ESCs. However, viable E17.5 DKO embryos possessing a devel-
oped heart were observed, indicating that cardiomyocyte differ-
entiation itself occurred to form a functional fetal heart in vivo.
Indeed, although missing Nppa, the heart tube of E8.5 DKO em-
bryos seemed morphologically normal (Figures 6B and S7B).
This evidence is inconsistent with the in vitro phenotype of ablated
cardiomyocyte differentiation in DKO ESCs. Thus, the disappear-
ance of Nppa in E8.5 DKO embryos might simply represent the
delay of cardiomyocyte differentiation or anomalous sequential
events inside the cardiomyocytes in DKO embryos. We propose
that an unknown compensatory mechanism functions in vivo
to circumvent the lack of GFRA1/2 to promote cardiomyocyte
differentiation. Although the differentiation protocol for ESCs
used in this study provides a strong drive toward cardiomyocytes
with a defined set of growth factors (Kattman et al., 2011; Wam-
stad et al., 2012), these conditions are probably insufficient to
perfectly mimic the in vivo environment for cardiomyocyte
differentiation.

E17.5 DKO embryos showed noncompaction cardiomyopathy
without other congenital heart diseases (Towbin et al., 2015;
Zhang et al., 2013). We speculate that these DKO mice would
not survive after birth because of the extremely thin compact
layer of the ventricular wall. However, absence of edema in
E17.5 DKO embryos suggests that the contractile apparatus in
DKO cardiomyocytes at least developed sufficiently to support
the fetal circulation. Unfortunately, germline deletion of Gfrat
does not allow neonates to survive due to kidney agenesis (Fig-
ure 6C) (Enomoto et al., 1998; Sanchez et al., 1996). Thus, to
confirm the perinatal prognosis, a conditional knockout will be
required.
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Importantly, we found that NOTCH1 and its downstream
targets, BMP10 and ERBB4, were significantly downregulated
in DKO embryos, and that this might be responsible for the non-
compaction defect (Figures 7B and 7C) (Grego-Bessa et al.,
2007; Luxan et al., 2013; Zhang et al., 2013). Given the lack of
Nppa expression in NOTCH signal mutants (Luxan et al., 2013),
it is concluded that the altered NOTCH signal in the endocardium
promotes the downregulation of Nppa in DKO embryos. Surpris-
ingly, Gfra2 is expressed by CPs, but not at the sites of trabecu-
lation or compaction (Figures 1, S1, S7E, and S7F). Thus, the
defect within the endocardium is cell autonomously induced by
the loss of Gfra1/2 in multipotent CPs and is likely primarily
required for ventricular noncompaction, although we cannot
exclude a possibility that additional defects within the myocar-
dium of DKO embryos may also contribute to this phenotype
(Figure 7C).

Taken together, an alternative signaling pathway via GFRA1/2
is indispensable for proper heart development, although the
mechanism underlying the signaling pathway of cardiac differen-
tiation mediated by GFRA2 has yet to be elucidated. Future
work, involving the clarification of the mechanistic details of
this signaling pathway should provide deeper insight into cardi-
omyocyte differentiation, the biology of CPs, normal trabecula-
tion, and compaction of ventricular myocytes.

EXPERIMENTAL PROCEDURES

The details are given in the Supplemental Experimental Procedures.

Animals

All animal procedures in this project were carried out under the project licenses
70/7254 and 80/2452 and 27-028-001 approved by the Home Office accord-
ing to the Animals (Scientific Procedures) Act 1986 in the UK and Osaka
University Animal Ethical Committee in Japan, respectively.

Cell Culture and Differentiation

Cardiomyocyte induction for mouse E14tg2a ESCs (Magin et al., 1992; Smith
and Hooper, 1987) was performed according to standard protocols as previ-
ously described (Kattman et al., 2011). Cardiomyocyte induction from human
HUES7 ESCs or iPSCs was undertaken as previously described (Burridge
et al.,, 2011). Human ESCs were used under the license of the UK Steering
Committee (reference number; SCSC13-25). Human iPSCs (iPS-HS1M)
were originally established by D.M. using human dermal fibroblasts (HDFs)
from a healthy donor under informed consent (Health Research Authority
approval 13/L0O/0224), for a study to be described elsewhere (D.M., T. McKay,
L.D., and A.T., unpublished data).

CRISPR/Cas9-Mediated Genome Editing

The CRISPR/Cas9-mediated genome editing for mouse ESCs and embryos
was performed as previously described (Hashimoto and Takemoto, 2015;
Wang et al., 2013).

Flow Cytometry/FACS

Cells were sorted as previously described using FACS ARIA Il or analyzed by
LSR Fortessa Il or FACSConto Il (BD Biosciences) with FACSDiva 7.0 software
(Kokkinopoulos et al., 2015).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,
seven figures, and two movies and can be found with this article online at
http://dx.doi.org/10.1016/j.celrep.2016.06.050.
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