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Abstract

A d-dimensionaframeworkis a straight line realization of a graghin
RY. We shall only considegenericframeworks, in which the co-ordinates
of all the vertices ofc are algebraically independent. Two frameworksGor
areequivalentif corresponding edges in the two frameworks have the same
length. A framework is ainique realizatiorof G in RY if every equivalent
framework can be obtained from it by an isometryRf Bruce Hendrickson
proved that ifG has a unique realization iRY thenG is (d + 1)-connected
and redundantly rigid. He conjectured that every realization (f & 1)-
connected and redundantly rigid graphRA is unique. This conjecture is
true ford = 1 but was disproved by Robert Connelly fbe> 3. We resolve
the remaining open case by showing that Hendrickson’s conjecture is true
for d = 2. As a corollary we deduce that every realization of a 6-connected
graph as a 2-dimensional generic framework is a unique realization. Our
proof is based on a new inductive characterization of 3-connected graphs
whose rigidity matroid is connected.
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1 Introduction

We shall consider finite graphs without loops, multiple edges or isolated vertices.
A d-dimensionaframeworkis a pair(G, p), whereG = (V,E) is a graph angb is

a map fromV to RY. We consider the framework to be a straight line realization
of G in RY. Two frameworkgG, p) and (G, q) areequivalentf ||p(u) — p(v)|| =

l|a(u) —q(v)|| holds for all pairau, v with uv € E, where||.|| denotes the Euclidean
norm inRY. FrameworkgG, p), (G, q) arecongruentf ||p(u) — p(v)|| = ||g(u) —

q(v)|| holds for all pairsu,v with u,v € V. This is the same as saying th&, q)

can be obtained froriG, p) by an isometry ofR9. We shall say thatG, p) is a
unique realizatiorof G in RY if every framework which is equivalent @, p) is
congruent tqG, p), see Figure 1.1.

Figure 1.1. Two realizations of the same grapm R?: F is a unique realization,
F is not since we can obtain a realization®fvhich is equivalent but not congru-
ent toF, by reflectingp; in the line throughps, ps, ps.

The unique realization problenis to decide whether a given realization is
unigue. Saxe [19] proved that this problem is NP-hard. We obtain a problem of
different type, however, if we exclude ‘degenerate’ cases. A framew®rk) is
said to begenericif the coordinates of all the points are algebraically independent
over the rationals. Note that the framewdékof Figure 1.1 is not generic since the
three pointsps, ps, p3 all lie on the same line. In what follows we shall consider
the unique realization problem for generic frameworks.

A simple necessary condition for unique realization of generic frameworks is
rigidity. The framework(G, p) is rigid if there exists arg > 0 such that if(G, q)
is equivalent tqG, p) and||p(u) —q(u)|| < € for all ve V then(G, q) is congruent
to (G, p). Intuitively, this means that if we think of d-dimensional framework
(G, p) as a collection of bars and joints where points correspond to joints and each
edge to a rigid bar joining its end-points, then the framework is rigid if it has no



non-trivial continuous deformations (see also [9],[23, Section 3.2]). It is known
[23] that rigidity is a generic property, that is, the rigidity @, p) depends only

on the graplG, if (G, p) is generic. We say that the gra@his rigid in RY if every
generic realization o6 in RY is rigid. (A combinatorial definition for the rigidity

of G in R? will be given in Section 2 of this paper. We refer the reader to [23, 24]
for a detailed survey of the rigidity af-dimensional frameworks.)

The necessary condition of rigidity was strengthened by Hendrickson [13] as
follows. A graphG is redundantly rigidin RY if deleting any edge o6 results in
a graph which is rigid irRY. By using methods from differential topology, Hen-
drickson proved that the redundant rigidity @fis a stronger necessary condition
for the unique realizability of a generic framewdi®, p).

Hendrickson [13] also pointed out that tfet+ 1)-connectivity ofG is another
necessary condition for @dimensional generic framewo(ks, p) to be a unique
realization ofG: if G has at leastl + 2 vertices and has a vertex separdbamf
sized, then we can obtain a framework which is equivalent but not congruent to
(G, p) by reflecting one component &— Salong the hyperplane spannedi).
Similarly, if (G, p) is a unique realization o6 andG has at most + 1 vertices
thenG is a complete graph. Summarising we have

Theorem 1.1 [13] If a generic framework(G, p) is a unique realization of G in
RY then either G is a complete graph with at most d vertices, or the following
conditions hold:

(a) G is(d+1)—connected, and

(b) G is redundantly rigid.

Hendrickson [11, 12, 13] conjectured that conditions (a) and (b) are sufficient
to guarantee that any generic framew¢& p) is a unique realization db. This
conjecture is easy to prove far= 1 sinceG is rigid in R if and only if G is
connectedG is redundantly rigid iR if and only if G is 2-edge-connected; and
(G, p) is a unique generic realization &in R if and only if G is 2-connected. On
the other hand, Connelly [4] has shown that Hendrickson'’s conjecture is false for
d > 3. We shall settle the remaining case by showing that the conjecture is true for
d = 2. As a corollary we deduce that unique realizability is also a generic property,
that is to say the unique realizability of a 2-dimensional generic framey®rg)
depends only on the grajgh Note thatit is not known whether unique realizability
is a generic property iR9 for d > 3. Following Connelly [4], we say that a gragh
is globally rigid in RY if every generic realization a& in RY is a unique realization.

Our solution of the conjecture implies thais globally rigid inR? if and only if G
is a complete graph on at most three vertice& s 3-connected and redundantly
rigid. Globally rigid graphs have several diverse applications, e.g. in distance



geometry [7], molecular conformation [12, 14], and localization problems in sensor
networks [8].

Our proof of the conjecture is based on an inductive construction for all 3-
connected redundantly rigid graphs. We shall show that every graph in this family
can be built up fronK, (which is globally rigid) by an appropriate sequence of
operations, where each of the two operations we use preserves global rigidity.

One operation igdge addition we add a new edge connecting some pair of
non-adjacent vertices. The otherligextensionwe subdivide an edgav by a new
vertexz, and add a new edgew for somew # u,v. Clearly, the first operation
preserves global rigidity. So does the second. This fact follows from a deep result
of Connelly, first proved in the 1980's (see [12]), and recently published in [5].
Connelly developed a sufficient condition for a generic frameworRIrto be a
unique realization in terms of the rank of its ‘stress matrix’ (see also [3]). Based
on this condition, he proved that@ is obtained fronK, by a sequence of edge
additions and 1-extensions théns globally rigid inR?.

In what follows we shall assume thdt= 2. In this case both conditions in
Hendrickson’s conjecture can be characterized (and efficiently tested) by purely
combinatorial methods. This is straightforward for 3-connectivity. In the case of
redundant rigidity, the combinatorial characterization and algorithm are based on
the following result of Laman [16]. For a grafks,E) and a subseX C V let
ic(X) (or simplyi(X) when it is obvious to which graph we are referring) denote
the number of edges in the subgraph induceXby G. The graphG is said to be
minimally rigidif Gis rigid, andG — eis not rigid for alle € E.

Theorem 1.2 [16] A graph G= (V, E) is minimally rigid inR? if and only if|[E| =
2|V|—3and
i(X) <2|X|—=3forall X CV with|X| > 2. 1)

Note that a graph is rigid if and only if it has a minimally rigid spanning sub-
graph.

It can be seen from Theorem 1.2 that a redundantly rigid g&agh(V, E) will
have at least four vertices and at lea8t|2- 2 edges. We call graphs which are
redundantly rigid and have this minimum number of edifesircuits, see Figure
1.2. Motivated by Hendrickson’s conjecture, Connelly conjectured (see e.g. [10,
p.99], [23, p.188]) in the 1980’s that all 3-connectddcircuits can be obtained
from K4 by 1-extensions. It is easy to see that the 1-extension operation preserves
3-connectivity and that it creates dfrcircuit from anM-circuit. The other direc-
tion is more difficult. It is equivalent to saying that every 3-connedtedircuit
on at least five vertices has a vertex of degree three which can be “suppressed”
by the inverse operation to 1-extension, so that the resulting graph is a smaller
3-connectedM-circuit.



Figure 1.2. Three examples bf-circuits

The inverse operation to 1-extension is calggditting: it chooses a vertex
of degree three in a grapB, deletesv (and the edges incident 9 and adds a
new edge connecting two non-adjacent neighbouss ¢if G is a 3-connecte-
circuit with at least five vertices and at least one of the splittings r@fsults in a
3-connectedM-circuit, then we say that the vertas feasible It can be seen that
eachM-circuit G has at least four vertices of degree three. It is not true, however,
that each vertex of degree threedns feasible. The existence of such a vertex was
verified by Berg and the second author [1] in their recent solution to Connelly’s
conjecture.

In this paper we shall show that every 3-connected redundantly rigid graph can
be obtained fronkK, by edge additions and 1-extensions by extending the methods
in [1]. We show that every 3-connected redundantly rigid grépn at least five
vertices either contains an edgsuch thatG — e is 3-connected and redundantly
rigid, or a vertexv of degree three such that some splittingvah G results in a
graph which is 3-connected and redundantly rigid.

The structure of the paper is as follows. In Section 2 we review elementary
results on rigidity: we define the rigidity matroid of a graph and use it to give
combinatorial definitions for when a graph is rigid, redundantly rigid ofvin
circuit. In Section 3 we characteridé-connected graphs (graphs with a connected
rigidity matroid). Section 4 describes and extends lemmas from [1] on splitting in
M-circuits. In Section 5, we use the concept of an ear decomposition of a matroid
to extend the splitting theorem of [1] froM-circuits toM-connected graphs. We
use this in Section 6 to obtain our above mentioned recursive construction for 3-
connected redundantly rigid graphs. This verifies Hendrickson’s conjecture. This,
and other corollaries on global rigidity are included in Section 7.



2 Rigid graphs and the rigidity matroid

In this section we prove a number of preliminary lemmas and basic results, most
of which are known. Our goal is to make the paper self-contained and to give
a unified picture of these frequently used statements. Our proofs are based on
Laman’s theorem and use only graph theoretical arguments. Some of these results
can be found in [10, 17, 21, 23, 24].

Let G = (V,E) be a graph. LeF be a non-empty subset &f U be the set of
vertices incident with=, andH = (U,F) be the subgraph d& induced byF. We
say that~ is independenif

in(X) <2X|—3forall X CV(H) with |X| > 2. (2)

The empty set is also defined to be independent. rigidity matroid M (G) =
(E, I) is defined on the edge setGfby

I ={F CE:Fisindependenti®}.

To see thatM (G) is indeed a matroid, we shall verify that the following three
matroid axioms are satisfied. (For basic matroid definitions not given here the
reader may consult the book [18].)

(MY 0Oe 1,
(M2)if DCF € I'thenD € I,

(M3) for everyE’ C E the maximal independent subsetsdfhave the same car-
dinality.

Let G = (V,E) be a graph. FoX,Y,Z C V, let G[X] be the induced subgraph
of G on vertex seX andEg(X) be the set of edges @[X]. We simply useE(X)
if the graph is clear from the context. LetX,Y) = [E(XUY) — (E(X) UE(Y))],
andd(X,Y,Z) = [E(XUYUZ)— (E(X)UE(Y)UE(Z))|. We define thelegreeof
X by d(X) =d(X,V — X). Thusd(X,Y) is the number of edges betwe¥n-Y
andY — X andd(X) is the number of edges with precisely one endverteX.in
The degree of a vertexis simply denoted byl(v). We shall need the following
equalities, which are easy to check by counting the contribution of an edge to each
of their two sides.

Lemma 2.1 Let G be agraph and ¥ CV(G). Then

i(X)+1(Y) +d(X,Y) =i(XUY)+i(XNY). (3)



Lemma 2.2 Let G be a graph and X,Z CV(G). Then

i(X)+i1(Y)+i(Z)+d(X,Y,Z) = i(XUYUZ)+i(XNY)+i(XNZ)+
i(YNZ)—i(XNYNZ).

We say that the graphl = (V,F) is M-independenif F is independent in
M(H). We call a seX CV critical if i(X) = 2|X| — 3 holds.

Lemma 2.3 Let H = (V,F) be M-independent and let,X C V be critical sets in
H with |[XNY| > 2. Then X0Y and XJUY are also critical, and @X,Y) = 0.

Proof: SinceH is M-independent, (2) holds. By (3) we have
2IX|=34+2Y|=3=i(X)+i(Y)=i(XNY)+i(XUY)—-d(X,Y) <
2IXNY|=3+2XUY|—=3—-d(X,Y)=2|X|—-34+2|Y|-3—d(X,Y). Thusd(X,Y) =
0 and equality holds everywhere. ThereféraY andX UY are also critical. e

Lemma 2.4 Let G= (V,E’) be a graph withE’| > 1 and let FC E’ be a maximal
independent subset of EThen

t
Fl=min{y (2X|-3)} (4)

where the minimum is taken over all collections of sub$&tisXo,..., X} of V
such that{Eg(X1),Ec(X2),...,Ec(X%)} partitions E.

Proof: SinceF is independent, we hayE NEg(X)| < 2|X|—3forall 1<i <t.
Thus|F| < S1_,(2|X%]| — 3) for any collection of subset&Xy, Xy, ..., % } satisfying
the hypothesis of the lemma.

To see that equality can be attained, Hebe the subgraph db induced by
F. Consider the maximal critical se¥g, Xo,...,X% in H. By Lemma 2.3 we have
IXinX;| <1lforall1<i< j<t. Since every single edge &finduces a critical
set, it follows that{ Ey (X1), En (X2), ..., En (%)} is a partition ofF. Thus

t t

IF|= Z|EH(Xi)| = Z(leal—3)-

To complete the proof we show thfEg(X1),Ec(X2),...,Ec(X)} is a partition of
E’. Chooseauve E’ — F. SinceF is a maximal independent subsetif F + uvis
dependent. Thus there exists aXet V such thau,v € X andiy (X) = 2|X| — 3.
HenceX is a critical set irH. This implies thaiX C X; and henceiv € Eg(X;) for



some I<i <t. °

It follows from the definition of independence th#f(G) satisfies axioms (M1)
and (M2). Lemma 2.4 implies tha¥ (G) also satisfies (M3). It also determines
the rank function ofM (G), which we shall denote big or simply byr.

Corollary 2.5 Let G= (V,E) be a graph. Them/ (G) is a matroid, in which the
rank of a non-empty set'E E of edges is given by

rE’) = min{_;(Z\Xa! -3)}

where the minimum is taken over all collections of sub$&tisXo,..., %} of V
such that{Eg(X1),Ec(X2),...,Ec(X%)} partitions E.

We say that a grapts = (V,E) is rigid if r(E) = 2|V| -3 in M(G). The
H = (V,E’) is a spanning subgraph &, thenH is minimally rigid if and only if
E’ is a base i (G). Theorem 1.2 ensures that these definitions agree with the
geometric definitions for rigidity given in Section 1.

A k-separationof a graphH = (V,E) is a pair(H1,Hz) of edge-disjoint sub-
graphs ofG each with at least + 1 vertices such thad = H; UHz and |V (H1) N
V(H2)| = k. The grapHH is said to bek-connectedf it has at leask+ 1 vertices
and has ng-separation for all &< j < k—1. If (H1,Hy) is ak-separation oH,
then we say tha¥ (H1) NV (H) is ak-separatorof H.

2.1 Minimally rigid graphs

We first investigate the connectivity properties of minimally rigid graphs.

Lemma 2.6 Let G= (V,E) be minimally rigid with|V| > 3. Then

(a) G is2-connected.

(b) For everyd # X C V we have ¢@X) > 2 and if d(X) = 2 holds then either
X|=1or|V-X|=1

Proof: Suppose that for somec V the graphG — v is disconnected and |&tU B
be a partition oV —v with d(A,B) = 0. Then (2) givesE| =2|V| -3 =i(A+
V)+i(B+Vv) <2(]A|+1)—3+2(|B|+1) —3=2(|A|+|B|+1)—4=2|V|—4,a
contradiction. This proves (a).

Using (a), we havel(X) > 2 for everyD # X C V. SupposéX|, |V — X| > 2.
By (2) we obtainE| =i(X) +i(V —X)+d(X) <2|X|-3+2|V - X|—-3+d(X) =
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2|V|—-6+d(X) = |[E| —34d(X). This impliesd(X) > 3 and proves (b). o

Letv be a vertex in a grap@® with d(v) = 3 andN(v) = {u,w, z}. Recall that
the operatiorsplitting means deleting (and the edges incident ¥ and adding
a new edge, sayw, connecting two non-adjacent verticeshfv). The resulting
graph is denoted bgy" and we say that the splitting is mada the pair uywv.
Note thatv can be split in at most three different ways, see Figure 2.1.

Figure 2.1. There are only two possible splittingsvafl G. Splitting v on uv,wv
results in the grapsy”.

LetG = (V,E) be minimally rigid and lev be a vertex wittd(v) = 3. Splitting
v on the pairuv,wv is said to besuitableif Gy'" is minimally rigid. Note that in
Figure 2.1, splittingr on uv,wv is suitable inG, but splittingv on xv,wvis not. We
call a vertexv suitableif there is a suitable splitting at We shall show that every
vertex of degree three in a minimally rigid graph is suitable.

Lemma 2.7 Let G= (V,E) be minimally rigid and let XY,Z C V be critical sets
in G with [ XNY|=|XNZ|=|YNnZ=1and XNYNZ=0. Then XUYUZ is
critical, and d(X,Y,Z) = 0.

Proof: Since G is minimally rigid and our sets are critical, Lemma 2.2 gives
2IX|—=34+2|Y|—3+2Z| —3+d(X,Y,Z2) =i(X)+i(Y)+i(Z2)+d(X,Y,Z) <
I(XUYUZ) <2(IXuYuZ|)—3=2(|X|+|Y|+]|Z]| —3) —3=2|X| -3+ 2|Y| -
3+2|Z| — 3. Henced(X,Y,Z) = 0 and equality holds everywhere. Thxis)Y UZ

is critical. °

For X CV let N(X) denote the set afeighboursof X (that is,N(X) := {ve
V — X :uve E for someu € X}).



Lemma 2.8 Let v be a vertex in a minimally rigid graph & (V, E).
(@) If d(v) = 2then G—v is minimally rigid.
(b) If d(v) = 3then v is suitable.

Proof: Part (a) follows easily from (2) and from the definition of minimally rigid
graphs.

To prove (b) letN(v) = {u,w,z}. It is easy to see that splitting on the
pair uv,wv is not suitable if and only if there exists a critical s€tc V with
uw e X andv,z ¢ X. Also observe that no critical s& C V — v can satisfy
d(v,Z) > 3, since otherwis&(G[ZU {v}]) is not independent i, contradicting
the fact thatG is minimally rigid. Thus ifv is not suitable then there exist max-
imal critical setsXyw, Xuz Xwz C V — V each containing precisely two neighbours
({u,w}, {u,z},{w,z}, resp.) ofv. By Lemma 2.3 and the maximality of these sets
we must havéXyw N Xuz| = [XuwN Xwzl = [XuzNXwz| = 1. Thus, by Lemma 2.7 the
setY := XywU XuzU Xz IS also critical. Sincé&(v) CY, we haved(v,Y) > 3. This
is impossible by our previous observation. Thereforesuitable. °

The minimally rigid graph<s — e shows that among the three possible splittings
at a vertex of degree three there may be only one which is suitable.

We now define the reverse operations of vertex deletion and vertex splitting
used in Lemma 2.8. The operatioreftensioradds a new vertex and two edges
vu,vw with u # w. The operation Zextensionsubdivides an edgaw by a new
vertexv and adds a new edge for somez = u,w. (Thus, in Figure 2.1G is a
1-extension ofGy".) An extensions either a 0-extension or a 1-extension. The
next lemma follows easily from (2).

Lemma 2.9 Let G be minimally rigid and let Gbe obtained from G by an exten-
sion. Then Gis minimally rigid.

Theorem 2.10 Let G= (V, E) be minimally rigid and let G= (V’,E’) be a min-
imally rigid subgraph of G. Then G can be obtained frohb@ a sequence of
extensions.

Proof: We shall prove thaG’ can be obtained fron® by a sequence of vertex
splittings and deletions of vertices (of degree two). The theorem will then follow
since these are the inverse operations of extensions.

The proof is by induction oV —V’|. SinceG' is rigid andG is minimally
rigid, G’ must be an induced subgraph@f Thus the theorem holds trivially when
IV —V’| = 0. Now suppose that =V —V’ # 0. SinceG' andG are minimally
rigid, it is easy to see thakE — E’| = 2|Y| holds. Therefore, ifY| =1, then we
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must haved(v) = 2 for the unique vertex € Y. HenceG' can be obtained fror®
by deleting a vertex of degree two. Thus we may assumeYhat 2.

Claim 2.11 If [Y| > 2thenY v d(v) < 4|Y|—3.

Proof: Since|V'| > 2 and|V —V’| > 2, we can apply Lemma 2.6(b) to deduce that
d(Y) > 3. Sincei(Y) +d(Y) = |E—E'| = 2|Y|, we obtain

Z(d(v) = 21(Y) +d(Y) = 4]Y| —d(Y) < 4|Y| - 3.

ve

It follows from Claim 2.11 (and from the fact that the minimum degre&in
is at least two) that there is a vertex Y with 2 < d(v) < 3. Now Lemma 2.8
implies that eitheH = G — v orH = Gy is minimally rigid and is such tha® is
a subgraph o and|V(H) -V (G')| < [V(G) —V(G')|. The theorem now follows
by induction. °

By choosingG' to be an arbitrary edge @& we obtain the following construc-
tive characterization of minimally rigid graphs (called the Henneberg or Henneberg-
Laman construction, c.f. [15, 16, 21]).

Corollary 2.12 G = (V,E) is minimally rigid if and only if G can be obtained from
K> by a sequence of extensions.

Theorem 2.13 Let G, = (V4,E1) and G = (Ve, E2) be two minimally rigid graphs
with V1 NV,| > 2. Then GQUG; is rigid. Moreover, if G NG, is minimally rigid
then G UG, is minimally rigid as well.

Proof: LetF’ be a maximal independent sethi(G; N G;). LetK be the complete
graph with vertex séf (G1 N G,) andF be a base o/ (K) containingF’. LetH be
a minimally rigid spanning subgraph & + (F — F’) which containd=. Such an
H exists, sincé,, and henc&;, + (F — F’), is rigid. (To see thaE andH exist we
use the fact that any independent set in a matroid can be extended to a base.) Now
Theorem 2.10 implies thdd can be obtained by a sequence of extensions from
(ViNV,, F). The same sequence of extensions, appli€@;toyields a minimally
rigid spanning subgraph @; UG, by Lemma 2.9. This proves th& UGy is
rigid.

The second assertion follows from the fact thaGifn G, is minimally rigid
thenF = F’ andH = G,. .

11



Corollary 2.14 Let G, = (V4,E1) and G = (V2, E2) be two rigid graphs withvy N
V| > 2. Then GU G is rigid.

Let G = (V,E) be a graph. Since every edge®@induces a rigid subgraph of
G, Corollary 2.14 implies that the maximal rigid subgraptisRy, ..., R; (called the
rigid components of $of G are pairwise edge-disjoint atR; ), E(Rz), ..., E(R)
is a partition ofE. Thus a graph is rigid if and only if it has precisely one rigid
component.

2.2 M-circuits and redundantly rigid graphs

Given a graplG = (V,E), a subgrapiH = (W,C) is said to be amM-circuit in G
if C is a circuit (i.e. a minimal dependent set) ¥ (G). In particular,G is an
M-circuit if E is a circuit inM (G). For exampleKs, K3 3 plus an edge, anklz 4
are allM-circuits. Using (2) we may deduce:

Lemma 2.15 Let G= (V,E) be a graph. The following statements are equivalent.
(a) G is an M-circuit.

(b) |[E| = 2|V| — 2 and G— e is minimally rigid for all ec E.

(©) |[E|=2V|—-2andi(X) <2|X|-3forall X CV with2 < [X| < |V|—-1.

We shall need the following elementary propertiedbtircuits which can be
derived in a similar way to Lemma 2.6.

Lemma 2.16 [1, Lemma 2.4] Let H= (V, E) be an M-circuit.

(a) For everyd # X Cc V we have @X) > 3 and if d(X) = 3 holds then either
X|=21or|V-X|=1

(b) If X C V is critical with |X| > 3 then HX] is 2-connected.

LetH = (V,E) be a 2-connected graph and suppose(tHatH.) is a 2-separation
of Gwith V(H1) NV (H2) = {a,b}. For1<i <2, letH' = H; +abif ab¢ E(H;)
and otherwise puitl/ = Hi. We say thati;,H, are thecleavage graphsbtained
by cleaving G along{a,b}. Given two graphdd; = (Vi,E;1) andHy = (V2, Ep)
with V1 NV, = 0 and two designated edgesv; € E; andupvs € Ep, the 2sum
of H; andH; (along the edge painv;, uxv,), denoted byH; &, Hy, is the graph
obtained fromH; — u;v; andH; — uxv» by identifying u; with u; andvy with vs.
These definitions are illustrated by the grahsG, of Figure 1.2. If we cleave
G, along its unique 2-seperator we obtain two copie&ofsayH; andH,, and
Gy =Hy @2 Ha.

We shall use the following results on 2-sums and cleaving.

12



Lemma 2.17 [1, Lemma 4.1] Let = (V1,E;1) and & = (V,, E2) be M-circuits
and let yv; € E; and wv, € E». Then the2-sum G ¢, G, along the edge pair
UiVvi, UpVz is an M-circuit.

Lemma 2.18 [1, Lemmas 2.4(c), 4.2] Let & (V,E) be an M-circuit and{a, b}
be a 2-separator of G. Then abE. Furthermore, if Gand G’ are the graphs
obtained from G by cleaving G alord@, b} then G and G’ are both M-circuits.

Recall that a grapf® is redundantly rigidif G has at least two edges aGd- e
is rigid for all e € E. M-circuits are examples of (minimally) redundantly rigid
graphs. Note also that a graghis redundantly rigid if and only if5 is rigid and
each edge o6 belongs to a circuit it (G) i.e. anM-circuit of G.

It follows from Corollary 2.14 that any two maximal redundantly rigid sub-
graphs of a graple = (V,E) can have at most one vertex in common, and hence
are edge-disjoint. Definingr@dundantly rigid componermif G to be either a max-
imal redundantly rigid subgraph @, or a subgraph induced by an edge which
belongs to ndM-circuit of G, we deduce that the redundantly rigid components of
G partitionE. Since each redundantly rigid component is rigid, this partition is a
refinement of the partition d& given by the rigid components &.

We shall need two elementary lemmas on redundant rigidity.

Lemma 2.19 If G is redundantly rigid and Gis obtained from G by an edge ad-
dition or a 1-extension, then Gs redundantly rigid.

Proof: This follows from the definition of redundant rigidity and the facts that
edge additions, 0-extensions and 1-extensions preserve rigidity. .
Lemma 2.20 If G is redundantly rigid andq u, v} is a 2-separator in G then(@), d(v) >
4.

Proof: Supposeal(u) < 3. Then we can choose an edgmcident tou such that

G—eis not 2-connected. By Lemma 2.6(8; eis not rigid. This contradicts the
redundant rigidity ofG. °

3 Graphs with a connected rigidity matroid

Given a matroidM = (E, I'), we define a relation oB by saying thae, f € E are
related ife= f or if there is a circuiC in M with e, f € C. It is well-known that
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this is an equivalence relation. The equivalence classes are calledrtipwnents
of M. If M has at least two elements and only one componentifiesnsaid to be
connected If M has component&;, E»,...,E; and % is the matroid restriction
of M ontoE thenM = M, & M... D M, whered denotes the direct sum of
matroids, see [18].

We say that a graps = (V,E) is M-connectedf #(G) is connected. For
example, Kz m is M-connected for alin > 4. The M-component®f G are the
subgraphs o6 induced by the components 81 (G).

Lemma 3.1 Suppose that G is M-connected. Then G is redundantly rigid.

Proof: G is rigid, since otherwis& has at least two rigid components and hence
at least twoM-components. Sincg/(G) is connected, every edgds contained
in a circuit of M (G). ThusG is redundantly rigid. .

Since theM-components o5 are redundantly rigid by Lemma 3.1, the parti-
tion of E(G) given by theM-components is a refinement of the partition given by
the redundantly rigid components and hence a further refinement of the partition
given by the rigid components, see Figure 3.1.

Figure 3.1. This graph is rigid so has exactly one rigid component. There are
three redundantly rigid components, consisting of the union of the three copies of
K4, and the remaining two copies Kp. There are fivévi-connected components:
each of the three copies Kf;, and the remaining two copies Kb.
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Furthermore M (G) can be expressed as the direct sum of the rigidity matroids
of the rigid components o6, the redundantly rigid components Gf or the M-
components o6.

The main result of this section (Theorem 3.7 below) charactekizesnnected
graphs. We say that a gra@his nearly3-connectedf G can be made 3-connected
by adding at most one new edge.

Theorem 3.2 Suppose that G is nearBrconnected and redundantly rigid. Then
G is M-connected.

Proof: For a contradiction suppose thats notM-connected and let;, Hp,... Hq
be theM-components 06. Let X; =V (H;) — UV (H;j) denote the set of vertices
belonging to no otheM-component thahl;, and lety; =V (H;) — X for 1 <i <q.
Letni = [V(Hi)|, x = |X|, yi = |Y|. Clearly,ni =x +y; and|V| =S x + U,
Yi|. Moreover, we havqiq:lyi > 2| uiq:lviy. Since every edge dg is in some
M-circuit, and everyM-circuit has at least four vertices, we have that 4 for
1 <i < q. Furthermore, sinc& is nearly 3-connected; > 2 forall 1<i <q, and
yi > 3 for all but at most twdvi-components.

Let us choose a bad® in each rigidity matroid# (H;). Using the above
inequalities we have

q q q
lUd,Bi| = Bil=S(@2n—-3)=2Yn—3q>
PR DR R

q q

q
25 %+ S v+ S yi—-3g>2V|+3g—2—-3q=2|V|—2.
225+ 20+ 2 vi—3a= 2V VI

SinceM (G) has rank /| — 3, this implies that? ;B; contains a circuit, contra-
dicting the fact that th@’s are bases for th@/ (H;)’s and M (G) = &1, M (H;).

A graphG is birigid if G— v is rigid for all ve V(G). It was shown by Ser-
vatius [20, Theorem 2.2] (using a similar argument to our proof of Theorem 3.2)
that every birigid graph i-connected. Theorem 3.2 extends this result, since bi-
rigid graphs are clearly 3-connected and redundantly rigid. The wheels (on at least
5 vertices) are 3-connected redundantly rigid graphs which are not birigid. This
shows that the extension is proper.

We need the following results to complete our characterizatidn-cbnnected
graphs. The first two lemmas follow from Lemmas 2.17 and 2.18, respectively.

Lemma 3.3 Suppose Gand G are M-connected. Then/@», G, is M-connected.
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Lemma 3.4 Suppose Gand G are obtained from G by cleaving G along2a
separator. If G is M-connected then @nd G are also M-connected.

LetG=(V,E) be a 2-connected grapt> 3 be an integer, and I€X1, Xz, ..., X¢)
be cyclically ordered subsets \éfsatisfying (by taking<c.1 = X1):
(i) XinX;| =1, for|i—j| =1, andX N X; = 0for |i — j| > 2, and
(i) {E(X1),E(X2),...,E(Xc) } is a partition ofE.
Then we say thatXy, X, ..., Xc) is apolygon (of size cin G. (The graph in Figure
3.1 is a polygon of size 3, where the s¥isX;,, X3 are given by the vertex sets of
its 2-rigid components.) It is easy to see that &ndv are distinct vertices with
{u} =X_1NX and{v} = XjN X1, for some 1< i, j < c, then eithedu,v} is a
2-separator il ori = j andX = {u,v}.

Lemma 3.5 Suppose that G (V,E) has a polygon of size c. Then
(a) G is not M-connected.
(b) If c > 4 then G is not rigid.

Proof: Let Xy, X, ..., X; be a polygon and lgE; = E(X;) for 1 <i < c. Note that
Ei,Ep,...,Ec is a partition ofE. Using the polygon structure we obtain

rg) < ir(Ei) < 'i(ZIXi —3)=2|V|+2c—3c=2V|—c. (5)

Thus forc > 4 we have (E) < 2|V| —4, and henc& is not rigid. This proves (b).
To prove (a) suppose thétis M-connected. The is rigid andr(E) = 2|V | — 3.

By (b) this yieldsc = 3. Moreover, equality must hold everywhere in (5). Thus
r(E) = Siqr(Ei). It follows that no two edges in different sefs belong to an
M-circuit, see [18, Proposition 4.2.1]. This contradicts the fact #Hdt5) is a
connected matroid. °

We say that a 2-separatdx;,x»} crossesanother 2-separatdy;,y2} in a 2-
connected grapl, if x; andx, are in different components & — {y1,y»2}. Itis
easy to see that ifx;, x2} crosseqys,y»} then{ys,y-} crosseqxi,x2}. Thus, we
can say that these 2-separators@uossing It is also easy to see that crossing 2-
separators induce a polygon of size fouGnThus Lemma 3.5(a) has the following
corollary:

Lemma 3.6 Suppose that G is rigid (and hen2econnected). Then there are no
crossing 2-separators in G.
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Let G = (V,E) be a 2-connected graph with no crossing 2-separators. The
cleavage unit®f G are the graphs obtained by recursively cleav@glong each
of its 2-separators. Sind® has no crossing 2-separators this sequence of opera-
tions is uniquely defined and results in a unigue set of graphs each of which have
no 2-separators. Thus each cleavage un@ &f either 3-connected or else a com-
plete graph on three vertices. (The gr&pim Figure 3.1 has three cleavage units,
obtained by cleavin@gs along the 2-separatofs/,w} and{x,y}.) The stronger
hypothesis thaG has no polygons will imply that each cleavage unit®is a
3-connected graph. In this case, an equivalent definition for the cleavage units is
to first construct theaugmented grapﬁB from G by adding all edgesv for which
{u,v} is a 2-separator d& anduv ¢ E, and then take the cleavage units to be the
maximal 3-connected subgraphs®f (These definitions are a special case of a
general decomposition theory for 2-connected graphs due to Tutte [22].)

Theorem 3.7 A graph G is M-connected if and only if it Bconnected, has no
polygon, and each of its cleavage units is redundantly rigid.

Proof: If G is M-connected, thef® is rigid and hence 2-connected by Lemma
2.6(a),G has no polygons by Lemma 3.5(a), each cleavage u@tisM-connected

by Lemma 3.4, and hence each cleavage unit is redundantly rigid by Lemma 3.1.
On the other hand, i& is 2-connected, has no polygons and each cleavage unit is
redundantly rigid, then each cleavage uniMisconnected by Theorem 3.2, a&d

is M-connected by Lemma 3.3. °

The weaker hypothesis th@tis 2-connected, has no polygons, and is redun-
dantly rigid is not sufficient to imply tha® is M-connected. This can be seen
by considering the grapts obtained from the triangular pristd by replacing
each edgesvj of H by a complete graph with vertex sét,vj,v,vj}, where
\/i,v’j ZV(H). The graphG is redundantly rigid since it is rigid and every edge
belongs to aM-circuit (a complete graph on four vertices). To see tBas not
M-connected we first note thetis minimally rigid and hence it is not redundantly
rigid. We may now deduce th& is not M-connected sincél is a cleavage unit
of G, and every cleavage unit of &-connected graph i8l-connected by Lemma
3.4.

We close this section by obtaining two further resultsvbiconnectivity which
we will need later.

Lemma 3.8 Let G= (V,E) be a2-connected graph anfu,v} be a2-separator of
G such that ue E. Then G is M-connected if and only if-Guv is M-connected.

17



Proof: First suppose thab — uvis M-connected. The — uvis rigid by Lemma
3.1, and hence there existsMrcircuitH in Gwith uve E(H). TheM-connectivity
of G now follows from the transitivity of the relation o which defines théV-
connected components. To see the other direction supposé thai-connected
and let(Gy,Gy) be a 2-separation @ with V(G1) NV (G2) = {u,v} and lete, f €
E(G—uv). We shall prove that there is an-circuit H in G — uv which contains
eand f. SinceG is M-connected, there is a-circuit H' with e, f € E(H’). If
uv ¢ E(H’) then we are done by choositj= H’. Note that ifE(H’) intersects
both sides of the 2-separation (in particulareiand f belong to differeniG;’s)
then{u, v} is also a 2-separator 6f' and henceiv¢ E(H’) by Lemma 2.18. Thus
we may suppose, without loss of generality, that € E(G;), uve E(H’), and
E(H)NE(Gz—uv) =0. Letg e E(Gy) —uv. SinceG is M-connected, there is
an M-circuit H” in G with e,g € E(H”). Let H; andH; be the subgraphs @
obtained by cleavingl” along{u,v}, wheree € E(H;) andg € E(H3). ThenH
is anM-circuit by Lemma 2.18. NowH = H’ ¢, H; is the desired-circuit in G
with e, f € E(H) by Lemma 2.17. o

Lemma 3.9 If G is M-connected and ‘Gs obtained from G by an edge addition
or a 1-extension, then Gs M-connected.

Proof: First suppose thd®' is obtained fronG by adding an edge. SinceG is
M-connected, it is rigid by Lemma 3.1. Thus there isNastircuit H in G’ with
e E(H). Now theM-connectivity ofG’ follows from transitivity.

Next consider the case whe3i is obtained fromG by a 1-extension which
subdivides an edgew of G by a new vertew and adds a new edge for some
z¢ {u,w}. Let f € E(G) be an edge which is incident with Sincef # uw, we
also havef € E(G'). We shall prove that for all edgesc E(G') — f there exists
anM-circuitH in G’ with f,g € E(H). This will imply thatG’ is M-connected by
transitivity.

If g€ E(G) then there is aM-circuitH’ in Gwith f,ge E(H’). If uw¢ E(H')
then we are done by choosifg= H’. Otherwise we leH be the 1-extension di’
(on the edgaaw and vertexz), which is a subgraph d&’, and is also aM-circuit
by Lemma 2.19. Finally, ify ¢ E(G), that is, ifg € {vu,vw vz}, then we take an
M-circuit H” of G with uw, f € E(H”) and letH be the 1-extension d” (on the
edgeuw and vertexz). As aboveH is anM-circuit of G’ with f,ge E(H). .
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4 Admissible splittings in M-circuits

LetG=(V,E) be agraph and I&; = {veV :d(v) = 3}. We will refer to vertices

in V3 asnodesof G and to the subgrapB|Vs] as thenode-subgraplof G. A node

of G with degree at most one (exactly two) in the node-subgrapB f called
aleaf node(series nodgrespectively). Awheel W = (V,E) is a graph om > 4
vertices which has a vertexwhich is adjacent to all the other vertices and for
whichW,[V — 7 is a cycle. Thus the node-subgraph of a whagwith n > 5 is

a cycle. It was shown in [1, Lemma 2.1] thatGfis anM-circuit then eithelG is

a wheel orG|V;] is a forest. The proof can be extendedveconnected graphs to
give:

Lemma 4.1 Let G be M-connected. If G is not a wheel, then the nodes of G induce
a forestin G.

We also need two results dv-circuits from [1]. The proof of the first lemma
is similar to that of Lemma 2.3.

Lemma 4.2 [1, Lemma 2.3] Let H= (V,E) be an M-circuit and let XY C V be
critical sets with XNY| > 2and|XUY| < |V|—1. Then X0Y and XUY are both
critical, and d(X,Y) = 0.

Lemma 4.3 [1, Lemma 2.5] Let H= (V,E) be an M-circuit and let XC V be a
critical set. Then \\- X contains at least one node of H. FurthermoraYif- X| >
2, then V— X contains at least two nodes of H.

We shall say that splitting a nodein an M-connected graph iadmissibleif
it preservedM-connectivity, thatv is anadmissible nodéf it has an admissible
splitting, and otherwise thatis non-admissibleNote that an admissible splitting
in an M-circuit results in arM-connected graph wittE| = 2|V| — 2, and hence
results in anothe¥-circuit. The following result follows easily from Lemma 2.15.

Lemma 4.4 [1, Lemma 3.1] Let H= (V,E) be an M-circuit and v be a node in G
with N(v) = {u,w,z}. Then splitting v on the pair uwv is not admissible if and
only if there is a critical set X V withuw e X and vz ¢ X.

If vis a node in a graps with N(v) = {u,w,z} andX is a critical set with
u,w e X andv,z¢ X then we callX av-critical set on{u,w}, or simply av-critical
set If X is av-critical set on{u,w} for some nodes with N(v) = {u,w,z}, and
d(z) > 4, thenX is said to benode-critical

Our next lemma extends [1, Lemma 3.2].
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Lemma 4.5 Let H = (V,E) be an M-circuit,|V| > 5, and v be a non-admissible
leaf node in H with Nv) = {x,y,z}. Suppose that no two neighbours of v are a
2-separator in H.

(a) If zis a node of H then for any pair, X of v-critical sets oy, z}, and{x, z},
respectively, we hay& NY| > 2and XUY =V(H) —v.

(b) If v is not adjacent to a node then there exist two v-critical sgtXXwith
‘Xlﬂx2’ > 2, XlUXZIV(H) —V.

Proof: (a) If the edgexzandyzare both present ig(H) then, sincezis a node

of Hand|V| > 5, {x,y} is a 2-separator, contradicting an hypothesis of the lemma.
Thus we may assume, without loss of generality, ylagt E. Then for thev-critical
setX ony,zwe must haveX| > 3. By Lemma 2.16(bH[X] is 2-connected, and
hencez has two neighbours iX. If z has no neighbours iX thenxz ¢ E(Y),

Y| > 3, andzis an isolated vertex ifl [Y]. This would contradict Lemma 2.16(b).
Hencez has a neighbour iN. Sincezis a node and has two neighbours{nthis
implies that X NY| > 2. By Lemma 4.2 this gives thatUY is also critical. Since
d(v,XUY) > 3, Lemma 2.15 implies tha¢ UY =V (H) — v. Thus (a) holds.

(b) Sincev is non-admissible, Lemma 4.4 implies that there exist thwee
critical setsX,Y,Z on {y,z}, {x,z} and{x,y}, respectively. Suppose that no two
of these sets intersect each other in at least two vertices. Then we also have
XNYNZ=0. Lemma 2.2 implies thal UY UZ is critical andd(X,Y,Z) = 0. Since
d(v,XUYUZ) =3, we deduce th& UY UZ =V —v (otherwise( X UY UZ) + v vi-
olates Lemma 2.15). Sin¢¥| > 5, at least one of the three critical s¥tsy,Z (say,
X) satisfiegX| > 3. But we haveal(X,Y,Z) =0, and hencgy, z} is a 2-separator in
H, contradicting an hypothesis of the lemma. This contradiction shows that we can
choose two setX3, Xo € {X,Y,Z} with | X3 N Xz| > 2. ThenX; UX; is critical by
Lemma 4.2 and si; UX; =V —vfollows, using Lemma 2.15 ari(v, XUY) = 3.
Thus (b) holds. °

The next lemma extends [1, Lemma 3.3].

Lemma 4.6 Let H= (V,E) be an M-circuit which is not a wheel, and let v be a
node. Let Nv) = {x,y,z} and let X be a v-critical set on,y with d(z) > 4 and
|X| > 3. Suppose that either

(a) there is a non-admissible series node ¥ — X — v with exactly one neighbour
w in X, and w is a node, or

(b) there is a non-admissible leaf node v/ — X —v.

Then either there is -separation(H1,H;) of H with X C V(H;) or there is a
node-critical set X with X properly contained in X
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Proof: Suppose first that (a) occurs and égu) = {w, p,q}. By our assumption
N(u)ynX = {w} andd(w) = 3. Sinceu is a series node, we can assume that
d(p) = 3 andd(q) > 4. Sinceu is non-admissible, there existuecritical setY

on {w, p} by Lemma 4.4. NowH is not a wheel, and hence the node subgraph
of H contains no cycles by Lemma 4.1. Thpw ¢ E and hencgY| > 3. This
implies, by Lemma 2.6(a), thds[Y] is 2-connected, and hendecontains two
neighbours ofv. Since|X| > 3, Lemma 2.6(a) implies th&[X] is 2-connected,
and hence at least one of the neighboure/@f Y must be inX. Thus|XNY| > 2.

Let X* = XUY. We haveX* CV —u—q, and Lemma 4.2 implies tha¢* is a
u-critical set on{w, p}. Sinced(q) > 4 andp ¢ X, the setX* is a node-critical set
which properly containX.

We next suppose that (b) occurs. We must hidlfg) N X| < 2, since|N(t) N
X| = 3 would imply thatX +t violates Lemma 2.15(c). IfN(t) N X| = 2 then
X+t is also critical and by choosing* = X +t the lemma follows. Thus we may
assume thgiN(t) N X| < 1.

Sincet is a non-admissible leaf node, Lemma 4.5 implies that either there is
a 2-separator consisting of two neighbourg of there exist twd-critical setsY;
andY; with Y1 UY> =V —t, [Y1NY;| > 2, and so that if has a neighbourwhich is
a node them € Y1 NY,. In the former case we are done (sir&§X| is 2-connected
by Lemma 2.6(a) and hencé is contained in one side of the corresponding 2-
separation). Suppose that the latter case holds. Not¥;thatlY, are node-critical
sincet is a leaf node angl|,|Y2| > 3. SinceY;UY, =V —t,t ¢ X, and|X]| > 3,
we have|XNYi| > 2 or [XNY,| > 2. Let us assume, without loss of generality,
that|X NYi| > 2 holds. By Lemma 4.2XUY; is a critical set. IfN(t)NX CYj,
then the lemma follows by choosi = X UY;. (The setX* is t-critical and the
unique neighbour dfin V — X* has degree four iAl.)

Thus we may assume thak(t) N X = {s} ands ¢ Y; holds. This implies
thatd(s) > 4, since ifd(s) = 3 then we haves € Y1 N Y, as noted above. Since
Y1UY2 =V —t, we haves € Y,. Hence if X NY,| > 2 then we are done, as above,
by choosing the-critical setX* = XUY,. Thus, we may suppose thxtNY;| = 1.
Sinced(t,XUY;) = 3, andX UY; is critical, Lemma 2.15 implieXUY; =V —t.
SinceY1UY, =V —t, we havg X —s) C V. ThusV —Y; = {s,t}. This contradicts
Lemma 4.3, sincé(s) > 4, and completes the proof of the lemma. °
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5 Eardecompositions and admissible splittings itM-connected
graphs

Let M = (E, I) be a matroid and le€;,C,...,C; be a non-empty sequence of
circuits of M. LetD; =C,UC,U...UC; for 1 < j <t. We say thaCy,Cy, ...,C is
apartial ear decompositioof 2 if for all 2 <i <t the following properties hold:

(E1CNDi-1 #0,
(E2)Ci —Di-1 #0,
(E3) no circuitC satisfying (E1) and (E2) haS/ — D;_1 properly contained in
G —Dj_1.

The selCi — Di_; is called thdobe of circuit Ci, and is denoted bgi. An ear
decompositiorof M is a partial ear decomposition withy = E. As an example,

we construct an ear-decompositiGn, C,,Cs of the rigidity matroid of the graph
obtained fronKz s by adding an edge, see Figure 5.1.

X1 X2 X3

.f:f" AL N ;\%.
Y1 Y2 Y3 Ya Y5

Figure 5.1. IfC; = E(G—y1), Co = E(G—Y2) andCs = E(G — {ya,ys}), then
C1,C;,Cg is an ear decomposition of the rigidity matroid @f We haveC, =
{x1y1,%2y1,Xay1} andCs = {y1y-}.

We need the following facts about ear decompositions. The proof of (a) and
(b) in the next lemma can be found in [6]. The proof of (c) is easy and is omitted.

Lemma 5.1 Let M be a matroid with rank function r. Then

(a) M is connected if and only iM has an ear decomposition.

(b) If M is connected then any partial ear decompositiofMbtan be extended to
an ear decomposition o¥/ .

(c) If Cy,Cy, ...,C is an ear decomposition o/ then

r(Dj)—r(Di_1) =G| —1 for 2<i<t. (6)
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Lemma5.2 Let G= (V,E) be an M-connected graph andiHHy, ..., H; be the
M-circuits of G induced by an ear decompositionG, ...,C; of M (G) witht > 2.
LetY =V(H)—UZIV(Hi), and let X=V (H;) - Y. Then:

(a) Either Y=0and|G| =1, or Y # 0 and every edge e G is incident to Y .

(b) 1G] =2/Y|+1.

(c) IfY £ 0then X is critical in H.

(d) G[Y] is connected.

(e) If G is3-connected thefX| > 3.

Proof: SinceM-connected graphs are rigid, it follows that U};iHi, andH; are
all rigid. Thus (E3) implies that (a) holds. Furthermor¢E) = 2|V| —3 and
r(UZlc) = 2)v — Y| - 3. By Lemma 5.1(c) this implies that¥ = |G| — 1. This
gives (b).

SinceH; is anM-circuit, we haveE(H;)| = 2|V (H;)| — 2. Hence, sinceX| > 2,
(b) implies thatX is critical inH; and hence (c) holds.

To prove (d) suppose that can be partitioned into two non-empty s&isY»
with d(Y1,Y2) = 0. SinceX is critical andH; is an M-circuit, we must have
i(Y]) +d(Y;,X) < 2JYj| for j = 1,2. This gives|G| = $2_;i(Y;) +d(Y},X) <
2(Y1] + Y2]) < 2|Y|, contradicting (b). Property (e) follows from the fact that
eitherY # 0 andX is a separator i (using (c)), oY =0 and|X| = |V(H;)| > 4
(sinceH; is anM-circuit). °

LetH = (V,E) be anM-circuit, v be a node oH, N(v) = {x,y,z}, and suppose
thatxy ¢ E. SinceH — vzis rigid, H — v is rigid by Lemma 2.8(a). Thully” =
H —v+xyis rigid. Since|V(HyY)| = 2|E(HyY)| — 2, Hy"Y contains a uniqué/-
circuit J. We havel = Hy™ if and only if the splitting ofv onvx, vy is admissible.
If not, V(J) is the minimalv-critical set on{x,y} in H.

Lemma 5.3 Let G= (V,E) be an M-connected graph and;HH,, ..., H; be the
M-circuits of G induced by an ear decompositionG, ...,CG; of M (G) witht > 2.
Let Y =V(H)—UZ}V(H;) and X=V(H;) — Y. Letv be a node of G in Y, and
let x,y € N(v) with x¢ X and xy¢ E. Let J be the unique M-circuit ifH;)y” and
C=E(J). IfCNEp (X) #0and E((H)¥Y) — En,(X) C C then splitting v on vxry

is admissible in G.

Proof: Let N(v) = {x,y,z}. It suffices to show that;,C,,...,C;_1,C is an ear-
decomposition ofM (GyY) since this will imply thatGy” is M-connected. Let
Dt_1=U_1Ci. ThenEp, (X) C D;_1 by Lemma5.2(a). Sindg((H)v”) —En, (X) C
C, Di_1UC = E(GYY). Properties (E1), (E2) and (E3) are clearly satisfied fer 2
i <t—1. Property (E1) follows fori‘=t’ from the hypothesis tha&@ NEg, (X) # 0

23



and the fact thafEn, (X) C Dy_1. Property (E2) holds foii ‘= t’ sincexy € C —Dy_1.

To see that (E3) holds foii =t we proceed by contradiction. Suppose that
there is arM-circuit J’ whereC' = E(J') satisfiesC'ND;_1 # 0 #C —D;_; and

C' —D¢{_1 Cc C—Dyt_1. SinceCy,Cy,...,GC satisfies (E3), we must hawy € C'.
LetJ” be obtained frond’ by a 1-extension, which deletes the eageadds a new
vertexv, and the edgegx, vy,vz ThenJ” is anM-circuit andC” = E(J") violates
(E3) with respect to the ear decompositenC,, ... ,C; of M (G), a contradiction.

Note that if splittingv alongvx vy is admissible irH;, then the hypotheses of
Lemma 5.3 are trivially satisfied since we have- (H;)y”. Thus an admissible
splitting of v in H; is admissible inG. However, it is possible a non-admissible
splitting of v in H; still satisfies the hypotheses of Lemma 5.3 and hence is admis-
sible inG.

Theorem 5.4 Let G= (V,E) be a3-connected M-connected graph which is not
an M-circuit. Let H,Ho, ..., H; be the M-circuits of G induced by an ear decom-
position G,C,...,C of M(G). Suppose that G e is not M-connected for all
e e G and for all but at most two edges of.CThen \(H;) — UIZIV (Hi) contains
an admissible node of G.

Proof: Suppose the theorem is false andddbe a counterexample. SinGes not
anM-circuit, we havet > 2. LetY =V (H;) — UZV (Hi), X =V (H) — Y. Since
G — e is notM-connected for ale € G, we haveY # 0 by Lemma 5.2(a). Let
L = U2V (H;). SinceG is 3-connected, we hay¥| > 3 by Lemma 5.2(e). Note
that every edge € G, is incident toY by Lemma 5.2(a).

By Lemmas 4.3 and 5.2(cY, contains a node. Sinde is not anM-circuit, G
is not a wheel. Lemma 4.1 implies that we can choose a nawfeG in Y such
thatv is a leaf inG[Y NV3] = Hi[Y NV3], whereVs is the set of nodes db. Let

N(v) = {xy,z}.
Claim 5.5 v does not have three neighbours in X.

Proof: For a contradiction suppod¢(v) C X. Then, by Lemma 5.2(d), we must
haveY = {v}. By the hypothesis of the theorem there exists a pair of neighbours of
v, sayx,y € N(v), such that eithexy ¢ E or xy € E andG — xy is notM-connected.

In the former case splitting on the paivx, vy givesL + xy, which isM-connected

by Lemma 3.9. Thus is an admissible node @. In the latter cas& — xy is a
1-extension of.. ThusG — xyis M-connected by Lemma 3.9, a contradictione
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Claim 5.6 v does not have two neighbours in X.

Proof: Let N(v) N X = {x,y}. If splitting v alongxzor yzis admissible irH; then
by Lemma 5.3 itis an admissible split@& Hence, by Lemma 4.4, we may assume
that there exist two minimal critical se¥§, X in H; with X,z € X; andy,z € X.
Note that the minimality oK; implies that the uniqui!-circuit J in (H, )y satisfies
V(J) = X;. LetC=E(J).

SupposeéXNXi| > 2. ThenXUX; andX N X; are critical andd(X,X;) = 0 by
Lemma 4.2. Sincd(v,XUX;) = 3, Lemma 2.15 now implies thatUX; = H; —v.
Hence(E((H)¥?) —E(X)) C C. SinceX N X is critical, H [X N X4] is connected (it
is eitherK; or is 2-connected by Lemma 2.6(a)) and heB¢E) NC # 0. Thusvis
admissible inG by Lemma 5.3. Henc¥ N X; = {x} and, by symmetryXnX; =
{y}.

If [XaNXz| > 2 thenX;UXp =V (H:) —vand{x,y} is a 2-separator is. This
contradicts the 3-connectivity @ and henceX; N Xp| = 1. Now Lemma 2.2 im-
plies thatd(X, X3, X2) = 0. This again implies th&fx, y} is a 2-separator i, and
gives a contradiction. °

Claim 5.7 There is a v-critical set XC V(H;) such that X is node-critical in H
and XC X'.

Proof: It follows from Claims 5.5, 5.6 that has at most one neighbourXh

Case 1v has exactly one neighbour, sayin X.
Sincev is a leaf inH;[Y NV3], we may assume without loss of generality that
dn, (y) > 4. If splitting v alongxz or yz is admissible inH; then by Lemma 5.3
it is an admissible split is. Hence, by Lemma 4.4, we may assume that there ex-
ist two minimal critical set¥;, X, in H; with x,z€ X3 andy,ze Xp. If [XNX;| > 2
then Lemma 4.2 implies that U X; is the desired-critical, node critical set con-
taining X in H;. Hence

XN Xy = {x}. 7

SupposéX N Xz| > 2. Then Lemma 4.2 implies thxtu X, andX N X; are criti-
cal andd(X,X) = 0. SinceN(v) C XUXp, Lemma 2.15 giveXUXp =V (H;) — V.
Hence the unique circuit = (Xp,C) in (Hy ¥ satisfies(E((H)y*) — E(X)) C C
andE(X) NC # 0 (becauseX N Xy is also critical, soH;[X N Xy] is connected).
Thusv is admissible irG by Lemma 5.3. Hence

IXNXe| <1 (8)
If |X1NXz| > 2 then we may deduce as above tKaty X; =V (H;) — v must
hold. Since|X| > 3, this contradicts either (7) or (8). Thixg N X, = {z}. Since
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Hi [X1], Hi [X2] are minimally rigid, Lemma 2.6(a) implies that eithgr, (z) > 4; or
du, (2) =3, |X1| = 2= |X2| andxz yze E. The second alternative would imply that
{x,y} is a 2-separator i, and contradict the fact th& is 3-connected. Thus
du, (z2) > 4. We now choose a critical ség in Hy with X,y € X3 (if it did not
exist then splittingv alongxy would be admissible ). By symmetry we have
XsNXo| = 1. If [ XN X]| > 2 thenX U X3 is the desiredr-critical, node-critical
set. HenceéXsNX| =1 and Lemma 2.2 gives th& U X, U X3 is critical. Hence
X1UXoUX3 =V (H;) —v. We may now deduce thgX| < 2, sinceX C X3 UXpUX3
andX N (X1 UX3) = {x} and|X N Xz| < 1. This contradicts the fact that| > 3.

Case 2N(v)NX = 0.

We havex,y,z< Y. Sincev is a leaf inH;[Y NV3] we may assume, without loss
of generality, thaty, (x) > 4 anddy,(y) > 4. Lemma 5.3 implies that is not
splittable alongyz or zx.  Thus there exist minimal critical se¥ and X, in H;

on {y,z} and{z x} respectively. If two neighbours afform a 2-separator if;,
then the fact thaH;[X] is connected by Lemma 5.2(c) implies that this will also
be a 2-separator i®. This contradicts the 3-connectivity & Lemma 4.5 now
implies that|X; N Xz| > 2 andX; UX; =V (H;) — v (possibly after renaming,y, z

in the case wheny, (z) > 4). Since|X| > 3, we may assume by symmetry that
|X1NX| > 2. Now Lemma 4.2 implies tha U X; is the required-critical, node
critical set containing. °

Choose a maximal-critical and node-critical seX*  V (H;) with X C X*.
By applying Lemma 4.3 to the critical s&t* U {v}, we deduce thalt; — X* —v
contains a node. Lemma 4.1 now implies that we may choose avlgaH; V3 —
X* —v]. Thenw has at most one neighbour X (otherwiseX* +w would either
contradict Lemma 2.15 or be a largecritical, node critical set thak*.) Thusw
is either a leaf irH[V3] or is a series node with a unique neighboim X*, such
thatr is a node. Using Lemma 4.6, the 3-connectivity@®and the maximality of
X*, we can deduce that is admissible irH; (and hence irG). This proves the
theorem. °

We shall also need

Theorem 5.8 [1, Theorem 3.8] Let G be & connected M-circuit with at least five
vertices. Then either G has three non-adjacent admissible nodes or G has four
admissible nodes.

Theorems 5.4 and 5.8, and Lemmas 3.3 and 3.4 imply the following extension
of [1, Theorem 4.4].
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Corollary 5.9 G = (V,E) is M-connected if and only if G is a connected graph
obtained from disjoint copies of4§ by recursively applying edge additions ahd
extensions within a connected component, and takisigms of different connected
components.

6 Bricks

A graphG is abrick if it is 3-connected an#1-connected. A briclG = (V,E) is
said to beminimalif G— eis not a brick for alle € E. An edgef of G is admissible
if G— f isM-connected. A nodeof Gisfeasiblef G, is a brick for some splitting
Gy of G atv. A fragmentin a 2-connected grapH is a setX C V(H) such that
INH(X)| =2 and 1< |X| < [V(H)|—3. LetSbe a 2-separator iH, x,y € V(H)
ande € E(H). We say thatS separates x and i§ x andy belong to different
components oH — S. We say thatS separates x andiéeither x ande belong to
different components dfl — S, or e is an edge fronsto a component oH — S
which does not contair

Theorem 6.1 Let G= (V,E) be a minimal brick. If G£ K4 then G has a feasible
node.

Proof: We proceed by contradiction. Suppose the theorem is false atdeta
counterexample with as few vertices as possibldés H e is notM-connected for

all e E (in particular, ifG is anM-circuit) thenG has an admissible splittingy;”

by Theorems 5.4 and 5.8. SinGds a counterexample to the theore®,= Gy is

not 3-connected. On the other handGifs not minimallyM-connected, the® has

an admissible edgé. SinceG is a minimal brick,G' = G — f is not 3-connected.

We now consider all possible choices for an admissible splitting and an admissible
edge, and choose one such that some fragiieot the resultingM-connected
graphG’ is minimal with respect to inclusion.

We shall prove thaX contains a feasible node & SinceG’ is M-connected,
G’ has minimum degree at least three and heéX¢e> 2. By Lemma 3.5G’ has
no polygons. LeS:= Ng/(X) = {u,v}. LetH,L be the cleavage graphs obtained
by cleavingG' at{u,v}, whereX =V (H) — {u,v}. Note that the minimality oK
and the fact tha&G’ has no polygons imply thad is a cleavage unit o&’, and the
3-connectivity ofG implies thatL — {u, v} is connected.

If G’ =Gy andN(w) = {x,y,z}, then letV*(H) = X — {x,y,z} andE*(H) =
(E(H)NE(G)). (The 3-connectivity ofs implies that eithex,y € XUSandz ¢
V(L)—S orx,ye V(L) andze X.) On the other hand, & = G— f andf =yz
then letV*(H) = X — {y,z} andE*(H) = E(H) — uv. (The 3-connectivity olG
implies that{y,z} "X # 0 and{y,z} N (V(L) — S) # 0.) Note thatE(H) —E*(H) =
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{uv,xy} if G = Gy’ andx,y € V(H). OtherwiseE(H) —E*(H) = {uv}. Let@ = xy
if G =Gy andxyc E(H), let8 = zif G = Gy’ andxy ¢ E(H), and let8 be the
unique vertex oK which is incident tof in Gif G = G— f.

Claim 6.2 H is 3-connected.

Proof: This follows sinceG’ has no polygons and hence all its cleavage units are
3-connected. °

Claim 6.3 uv¢ E(G).

Proof: Supposeuv e E(G). SinceG' is M-connected, andlu,v} is a 2-separator,
Lemma 3.8 implies tha®’ — uv is M-connected. Sinc& — uv is obtained from
G’ — uv by either an edge addition or a 1-extensi@y- uv is M-connected by
Lemma 3.9. Futhermor&’ — uv contains three internally disjoint~paths (two in
H — uv by Claim 6.2 and one ih — uv). ThusG — uv has three internally disjoint
uv-paths and the 3-connectivity & implies thatG — uvis 3-connected. This con-
tradicts the fact tha® is a minimal brick. °

Claim 6.4 H and L are M-connected.

Proof: This follows from Lemma 3.4 sinc€’ is M-connected antéi andL are
obtained by cleavin@’ along the 2-separatdu, v}. .

Claim 6.5 Suppose that G e is M-connected for someeE*(H). Then H—
{u,Vv,e} is connected.

Proof: SupposeH — {u,v,e} has two componentd;,H,. Choosé € {1,2} such
that® ¢ V(H;) UE(H;). ThenV (H;) is a fragment ofc — e which is properly con-
tained inX. This contradicts the choice & andX. °

Claim 6.6 G— e is not M-connected for alle E*(H).
Proof: Suppose thaB — e is M-connected for some edge= ab € E*(H). Since
G is a minimal brick,G — e is not 3-connected. LeE be a 2-separator i — e.

SinceG is 3-connectedl separateaandb. If G' = GyY then Lemma 2.20 implies
thatw ¢ T.
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SinceG' is M-connected, it is redundantly rigid. Hence the gr&fh=G' —e
is rigid. ThusG” is 2-connected by Lemma 2.6(a). Clearly,and S are 2-
separators irG’. By Lemma 3.6,T and S do not cross inG”. By Claim 6.5,
H — {u,v,e} is connected. Sinca,b € XUSandT separates. andb in G — e,
we haveT N X # 0 andG"[X] is a component 06" — S. SinceT andSdo not
cross, we hav@ N (V — X —S) = 0. SincelL — Sis connected, some componéght
of & —T =G —e—T containsV — X —S. LetJ be the componentdt—e—T
which containd/ — X —S. ThenV — X C V(J) UNg_e(J). Moreover, ifG' = Gy,
then the neighbour(s) efin X are contained iV (J) UNg_¢(J), and, ifG' =G — f
then the endvertex of in X is contained iV (J) UNg_e(J). This implies in both
cases that the vertex set of the componenefe— T distinct fromJ is a proper
subset oiX. This contradicts the minimality of. .

Claim 6.7 H —e is not M-connected for alle E*(H).

Proof: SupposeH — e is M-connected. The®' —e= (H —e) ®,L andG' —eis
M-connected by Claim 6.4 and Lemma 3.3. Since, by Lemma 3.9, the property of
beingM-connected is preserved by edge addition and 1-extension, it follows that
G —eis M-connected. This contradicts Claim 6.6. °

Note that ifp € V*(H) is a node ofs thenp ¢ {u, v} sinceu andv have degree
at least four inG’ by Lemma 2.20, and hence alsoGn

Claim 6.8 Suppose [ V*(H) is a node of G, N(p) = {g,s,t}, and G' is M-
connected. Then @ {u,v} and H5' — {u,v} is connected.

Proof: SupposeHS’t —{u,v} is disconnected. Theid — {u,v} has a 1-separation
(H1,H2) whereV (H1) NV (H2) = {p}, s;t € V(H1) andq € V(Hz2). Choose €
{1,2} such tha® ¢ V(Hi) UE(H;). ThenV (H;) — p is a fragment oG%t which is
properly contained iiX. This contradicts the choice & andX. .

Claim 6.9 G, is not M-connected for all nodes p of G irf{H).

Proof. Suppose thaG, = G%t is M-connected for some nodeof G in V*(H),
with Ng(p) = {qg,s,t}. SinceG is a counterexample to the theore@f?:t is not
3-connected. LeT be a 2-separator ﬁ%t SinceG is 3-connectedl separatest
andgq. If G = G}y then Lemma 2.20 implies that ¢ T.

SinceG' is M-connected, it is redundantly rigid. HenG— pqis rigid. Since
G’ — pis obtained fromG’ — pq by deleting a vertex of degree two, it is rigid by
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Lemma 2.8(b). Sinc&” = (G')} is obtained fromG’' — p by an edge addition,
it is also rigid. ThusG” is 2-connected by Lemma 2.6(a). Cleafly,andS are
2-separators iis”. By Lemma 3.6,T andS do not cross inG”. By Claim 6.8,
Hﬁt —{u,v} is connected. Since s,t € XUSandT separatest andqg in G”, we
haveT NX # 0andG"[X — p] is a component d&” — S. SinceT andSdo not cross,
we must havd N (V — X —§) = 0. Hence some componeditof G" - T =G, - T
containsvV — X — S. LetJ be the component @3' — T which containg/ —X — S
ThusV — X CV(J)UNg,(J). Moreover, ifG' = Gy, then the neighbour(s) f in
X are also contained i (J) UNg,(J), and, ifG' = G — f then the endvertex of
in X is contained iV (J) UNg,(J). This implies in both cases that the vertex set
of the component oG, — T which is distinct fromJ is a proper subset of. This
contradicts the minimality oX. °

Claim 6.10 Hp is not M-connected for all nodes p of G inf{H).

Proof: SupposeH), is M-connected. The, = H, ©2L andGj, is M-connected
by Claim 6.4 and Lemma 3.3. Since the property of bdifhgonnected is pre-
served by edge addition and 1-extension, it follows thais M-connected. This
contradicts Claim 6.9. .

Claim 6.11 H is an M-circuit.

Proof: SupposeH is not anM-circuit. SinceH is M-connected by Claim 6.4,
there exists amM-circuit H; in H which containsuv and8. By Lemma 5.1(b)
we may extendC; = E(H;) to an ear-decomposition @;,Cy,...,C; of M (H).
By Claim 6.7H — e is notM-connected for all but at most two edgestbfsince
E(H) —E*(H) C {uvxy}. Then it follows from Claim 6.2 and Theorem 5.4 that
H; — Ui_1H; contains an admissible nogeof G in V*(H). This contradicts Claim
6.10. .

Claim 6.12 H is isomorphic to i.

Proof: SupposeH is not isomorphic toK4. By Claim 6.10, no node oH in
V*(H) is admissible irH. Sinceuv e E(H), Claim 6.2 and Theorem 5.8 imply
thatG' = Gy, x,y € V(H), andu,Vv,x,y are the only admissible nodeskh We
shall show thak is a feasible node .

Sincex is an admissible node of, Hf’t is M-connected for somgt € Ny ().
Let Nu(x) = {q,s,t}. Sincexyis an edge oH andy is a node oH, we must have
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y € {s,t}. Without loss of generalityy =t. Since(G)y’ = Hg” @ L, Claim 6.4
and Lemma 3.3 imply thatG')y” is M-connected. Sinc&g" is a 1-extension of
(G')%Y and since the property of beirld-connected is preserved by 1-extension
(by Lemma 3.9), it follows thaBy " is M-connected.

SupposeHy” — {u,v} is disconnected. TheHl — {u,v} has a 1-separation
(H1,H2) whereV (H1) NV (Hz2) = {x},s,y € V(H1) andg € V(Hz). ThenV (Hz) —x
is a fragment o5z " which is properly contained iK. This contradicts the choice
of G andX. ThusHy” — {u,v} is connected.

SinceG is a counterexample to the theore®}," is not 3-connected. L&t be
a 2-separator itsy . SinceG is 3-connected] separateswandg. SinceG' is M-
connected, it is redundantly rigid. Hen@— xqis rigid. SinceG’ — x is obtained
from G’ — xq by deleting a vertex of degree two, it is rigid by Lemma 2.8(b). Since
G’ = (G)y is obtained fronG' — x by an edge addition, it is also rigid. Th@&
is 2-connected by Lemma 2.6(a). CleaflyandS are 2-separators i@’ andT
separatesyandq in G”. By Lemma 3.6 andSdo not cross. Sincey” — {u,v}
is connectedq,s,y € XUS, andT separatesyandq in G”, we haveT N X # 0
andG"[X —x] is a component o&” — S. SinceT andSdo not cross, we must have
TN (V—X—9) =0. Hence some componeidftof G’ — T = (G')3Y — T contains
V —X —S LetJ be the component dBy” — T which containd/ —X —S Then
V =X CcV(J)UNgs(J). Moreoverw andy are also contained i (J) UNgsy(J).
This implies that the vertex set of the componen®&f — T which is distinct from
Jis a proper subset of. This contradicts the minimality of. °

Claim 6.13 G' = Gi’, x,y € V(H), and hencd = xy € E(H).

Proof: Suppose that the claim is false. Theris a vertex inX, andV(H) =
{u,v,8,t}. Thent is a node ofG. We shall show thaG;"’ is a brick. Note that
uv ¢ E(G) by Claim 6.3. Note further tha®"" can be obtained frorh by a se-
guence of either one 1-extension and one edge-additio® @ G — f), or two
1-extensions and one edge-addition@f= G}’). SinceL is M-connected by
Claim 6.4, it follows from Lemma 3.9 tha®"" is M-connected. Sinc@ is adja-
cent tou andv, there is no 2-separation separathffom uvin G"'. ThusG"" is
3-connected and hence is a brick. .

Claim 6.14 X # {x,y}.

Proof: Suppose thaX = {x,y}. Thenx,y are nodes ofs. We shall show thaBy"’
is a brick. Note thatvv ¢ E(G) since the neighbour of distinct fromx,y belongs
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toV — X —S. Note further thatGy"’ can be obtained frorh by a sequence of two
1l-extensions. Sinck is M-connected by Claim 6.4, it follows from Lemma 3.9
that Gy'¥ is M-connected. Suppose thak” is not 3-connected. Then there is a
2-separatofl in Gy, separatings andwv. Sinceu,w, andv are all neighbours
of yin G¢¥, we must have € T. SinceGy" is M-connected ang is a node in
Gy, this contradicts Lemma 2.20. ThG&" is 3-connected and hence is a briek.

We can now complete the proof of the theorem. Using Claims 6.13 and 6.14,

and relabelling if necessary, we may suppose ¥hat{x,t} andS= {u,y}. Thus

x is a node ofz. We shall show tha®y" is a brick. Note thaivt ¢ E(G) since the
neighbour ofw distinct fromx,y belongs tov — X — S. Note further thaGy" can

be obtained fronL by a sequence of two 1l-extensions. Sihcis M-connected

by Claim 6.4, it follows from Lemma 3.9 tha&@y" is M-connected. Suppose that
Gy! is not 3-connected. Then there is a 2-separatior G, separatingl andwt.
Sinceut is an edge oGyt, we must havée T. SinceG}’f’t is M-connected antlis

a node inGy", this contradicts Lemma 2.20. Th@&" is 3-connected and hence

is a brick. °

We have the following corollaries:

Theorem 6.15 G = (V,E) is a brick if and only if G can be obtained fromy Ky
1-extensions and edge additions.

Proof: SinceKy is M-connected, sufficiency follows from Lemma 3.9, and the
fact that edge addition and 1-extension preserve 3-connectivity. Necessity follows
easily by induction onE|, using Theorem 6.1. °

We illustrate Theorem 6.15 by constructing the minimal bicls from Ky,
see Figure 6.1.
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Figure 6.1. A construction dfs 5 from K4 using 1-extensions and edge additions.

SinceK3 5 is minimal, the first and last operations used in the construction must be
1-extensions. Sincks s is not anM-circuit, at least one operation in the construc-
tion must be an edge addition. This shows that one may need to alternate between
the two operations of Theorem 6.15 while building up a brick figm

7 Globally rigid graphs in R?2

Theorem 3.2 implies that a graph is a brick if and only if it is redundantly rigid and
3-connected. Thus Theorem 6.15 gives an inductive construction for redundantly
rigid 3-connected graphs. It follows from the result of Connelly [5, Theorem 1.5]
that any graph which can be obtained fré&mby edge additions and 1-extensions

is globally rigid inR2. By using Theorems 6.15 and 1.1 we can now characterise

globally rigid graphs, and hence verifiy Hendrickson’s conjecture, in dimension
two.

Theorem 7.1 Let G be a graph. Then G is globally rigid iR? if and only if
either G is a complete graph on at most three vertices or G-g®nnected and
redundantly rigid.

Note that the special case of Theorem 7.1 whe(G)| = 2|V(G)| — 2 was
proved earlier in [1, Theorem 6.1].
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It follows from Theorem 7.1 that global rigidity of frameworks is a generic
property inR2. Lovasz and Yemini [17] proved that 6-connected graphs are redun-
dantly rigid (and that this bound is best possible). With this result and Theorem 7.1
we can show that sufficiently highly connected graphs are globally rigid. In fact,
the same degree of connectivity suffices.

Theorem 7.2 Let G be6-connected. Then G is globally rigid &

This solves [10, Open question 4.47]. As we noted earlier, there exist effi-
cient algorithms for testing 3-connectivity and redundant rigidity, and hence global
rigidity in R2. See [2] for more details on the algorithmic aspects.
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