
BioMed CentralFibrogenesis & Tissue Repair

ss
Open AcceReview
Organotypic modelling as a means of investigating 
epithelial-stromal interactions during tumourigenesis
Athina-Myrto Chioni and Richard Grose*

Address: Queen Mary University of London, Institute of Cancer, Barts and The London School of Medicine and Dentistry, London, EC1M 6BQ, UK

Email: Athina-Myrto Chioni - a.m.chioni@qmul.ac.uk; Richard Grose* - r.p.grose@qmul.ac.uk

* Corresponding author    

Abstract
The advent of co-culture approaches has allowed researchers to more accurately model the
behaviour of epithelial cells in cell culture studies. The initial work on epidermal modelling allowed
the development of reconstituted epidermis, growing keratinocytes on top of fibroblasts seeded in
a collagen gel at an air-liquid interface to generate terminally differentiated 'skin equivalents'. In
addition to developing ex vivo skin sheets for the treatment of burns victims, such cultures have also
been used as a means of investigating both the development and repair of the epidermis, in more
relevant conditions than simple two-dimensional culture, but without the use of animals. More
recently, by varying the cell types used and adjusting the composition of the matrix components,
this physiological system can be adapted to allow the study of interactions between tumour cells
and their surrounding stroma, particularly with regards to how such interactions regulate invasion.
Here we provide a summary of the major themes involved in tumour progression and consider the
evolution of the approaches used to study cancer cell behaviour. Finally, we review how
organotypic models have facilitated the study of several key pathways in cancer development and
invasion, and speculate on the exciting future roles for these models in cancer research.

Background
Tumourigenesis is a complex process during which
tumour cells acquire a sequence of mutations in genes
that directly or indirectly control processes such as cell
proliferation, survival, migration and invasion. Such
mutations may be activating or inactivating and affect
proto-oncogenes or tumour suppressor genes, respec-
tively. It is becoming increasingly clear that, despite the
accrual of advantageous mutations occurring specifically
in the cancer cells, cells in the stroma can play a critical
role in mediating tumour growth and progression. There-
fore, although simple cell culture studies have given us
amazing insight into the cell and molecular biology
underpinning cancer cell behaviour, researchers are

increasingly turning to more complex and physiologically
relevant cell culture models, where more than one cell
type is present, to better understand the nature of cancer.

Ultimately, tumour metastasis is the major cause of death
for cancer patients. It comprises the formation of second-
ary tumours by cells escaping from a primary tumour, cir-
culating around the body (via lymph or blood) and
becoming lodged at tissue-specific or non-specific sites
some distance away [1]. Metastasis involves intimate
interactions between cancer cells and their environment
at a number of stages [2]. According to the classical 'seed
and soil' model of metastasis, the primary tumour is bio-
logically heterogeneous and only some cells gain meta-
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static ability late in tumourigenesis [3,4]. Furthermore,
subpopulations of cells may have a tissue-specific expres-
sion profile, predetermining the site of metastasis [5].
However, for the purposes of this review, we have focused
on the evolution of techniques to study the relatively early
metastatic events. Before turning to these experimental
models, we consider the main cell types and behaviours
involved in tumour progression.

Cell adhesion
Adhesive interactions between tumour cells and the sur-
rounding substrata are pivotal to metastatic potential,
with decreasing adhesion allowing cancer cells to escape
from the primary tumour and acquire a more motile and
invasive phenotype [6]. Loss of E-cadherin is a hallmark of
epithelial-mesenchymal transition (EMT) and plays a sig-
nificant role in cancer progression [7]. Furthermore, the
transmembrane glycoprotein CD44, that binds princi-
pally to hyaluronic acid and chondroitin sulphate in the
extracellular matrix (ECM) [8], potentiates cell migration,
proliferation and angiogenesis [9]. In addition, CD44
stimulation can rescue cells from apoptosis [10] and
induce upregulation of integrins [11].

Integrins are widely implicated in cancer progression [12-
14]. These heterodimeric transmembrane receptors pro-
vide an essential link between the actin cytoskeleton and
ECM during cell migration [15]. They are implicated in all
of the main stages of cancer cell progression: penetration
of basement membranes; invasion of stromal tissue; intra-
and extra-vasation and formation of secondary tumours
[16]. Integrins can mediate interactions between cancer
cells and a number of ECM components (e.g. laminins,
collagens and fibronectin) as well as binding to intercellu-
lar adhesion molecules and vascular cell adhesion mole-
cules that are expressed on leukocytes and endothelial
cells [17]. Integrin-mediated cell adhesion can trigger a
number of signalling cascades, including activation of the
Rho family of small GTPases and modulation of the actin
cytoskeleton [16,18]. Thus, they facilitate membrane
extrusions that are essential for cell spreading on the ECM,
where integrins and associated proteins are organised into
cell-matrix adhesions in large adhesive multi-protein
aggregates [16]. Integrins and adhesion molecules medi-
ating cell-ECM and cell-cell association also play an
important role in angiogenesis [19].

Angiogenesis
For a cancer to metastasise, it must reach the circulation,
either via the lymphatic system or via capillaries. The for-
mation of new blood vessels not only provides an exit
route for cells into the circulation, it also provides the
metabolically active cancer cells with oxygen and nutri-
ents [20]. Without a new blood vessel supply, tumours
cannot grow more to than about 1 mm diameter [21,22].

Thus, blocking the angiogenic component of carcinogen-
esis can produce a small, non-angiogenic tumour that is
not lethal, despite the high proliferation rate of cancer
cells [23]. Angiogenesis is driven by increased secretion of
mitogenic growth factors such as platelet-derived growth
factor (PDGF), fibroblast growth factor (FGF) and vascu-
lar endothelial growth factor (VEGF) [20] from both can-
cer and stromal cells [19,24].

Cell-cell and cell-matrix interactions during invasion
Cell contact and adhesion are considered to be funda-
mental to metastasis. Invasion occurs initially by cancer
cells breaking their links with adjacent epithelial cells,
migrating through the ECM and invading blood vessels
[14,25]. Matrix metalloproteinases (MMPs), urokinase
plasminogen activator/receptor, integrins, cathepsins,
cadherins, CD44 and many more specific cell-surface-
associated molecules can modulate cell-ECM and cell-cell
interactions and thus control cancer cell invasion [4,26].
Tumour cells communicate with the surrounding stromal
cells, including macrophages, fibroblasts, endothelial
cells and inflammatory cells, as well as between them-
selves, via soluble growth factors and cytokines, and cell
surface proteins, such as cadherins and integrins. Tumour
cells releasing chemotactic factors can attract inflamma-
tory cells, thus raising the level of cytokines and growth
factors produced by the inflammatory cells [17]. These
soluble factors can then act on stromal cells to induce the
release of proteases for the degradation of the ECM [17].

Proteolytic enzymes
Many proteolytic enzymes, including urokinase plas-
minogen activator, cathepsins B and D, plasminogen and
MMPs [17], are involved in matrix degradation and sev-
eral of these are also of prognostic value in cancer [27].
The engagement of cells with ECM proteins is important
for a variety of metastatic cellular processes such as adhe-
sion, proliferation and migration [28] and the secretion of
proteolytic enzymes and subsequent ECM proteolysis are
recurring events in metastasis. MMPs are generally
expressed at moderate levels in normal tissues and their
production/activation is increased greatly during tissue
remodelling [29]. Their important roles in cancer progres-
sion include breaking down local tissue and basement
membranes and enhancing tumour-induced angiogen-
esis, thus allowing tumour invasion and metastasis
[30,31]. MMPs can cleave the majority of ECM compo-
nents and many cell-surface molecules, thus assisting cell
migration, cell-cell and cell-matrix interactions and
thereby contributing to the formation of a permissive
microenviroment [32]. More specifically, MMPs can facil-
itate the activation of growth factors [33], suppression of
tumour cell apoptosis [34], release of angiogenic factors
[35] and even enable cancer cells to escape the host
immune response [36].
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Immune system
Inflammatory cells such as macrophages and mast cells,
which form part of the cancer stroma, not only facilitate
the engulfment of apoptotic cells, angiogenesis and prote-
olytic processes, but can also actively assist other meta-
static cell behaviours. There is increasing evidence that
direct communication between cancer cells and macro-
phages results in increased cell migration, invasion and
metastasis [37-39]. Macrophages can modulate breast
cancer metastasis, with mice lacking colony-stimulating
factor-1 (CSF-1), a macrophage-stimulating factor, show-
ing reduced tumour metastasis in a mouse model of breast
cancer [40,41]. Interestingly, Condeelis and Pollard [38]
state that macrophages in tumours "suppress immune
functions and instead adopt trophic roles found during
development and repair", consistent with the notion that
"tumours are like wounds that do not heal" [22]. Similar
to wound healing, macrophages can secrete growth factors
(e.g. epidermal growth factor (EGF)) during tumour pro-
gression that can alter the behaviour of the tumour cells
possibly by providing a chemoattractive signal [42,43]. In
fact, EGF produced by macrophages has been shown to be
responsible for the recruitment of cancer cells in blood
vessels, thus facilitating metastasis [37]. Furthermore, in
cutaneous malignancies, mast cells have been shown to
be involved in tumourigenesis by suppressing the
immune system, facilitating endothelial cell migration
and participating in the degradation of the ECM [44].

Taking all of the above into account, it is clear that cancer
initiation and progression depend heavily on the active
involvement of the stroma. Although originally it was
believed that stroma primarily played a structural role, it
is now clear that somatic mutations of epithelial cells act
in concert with the microenvironment (that is, stroma,
which is the supportive platform of the epithelial cells) to
drive cancer progression. Stromal components (e.g.
fibroblasts or myofibroblasts, endothelial cells, inflam-
matory cells, adipocytes, smooth muscle cells, nerve cells
and the ECM) produce growth factors, cytokines and ECM
that orchestrate metastatic cell behaviour via paracrine
signals with the epithelial tumour cells [45-48]. Thus,
because of the complexity of tumourigenesis, the develop-
ment of reproducible models that reflect, as accurately as
possible, the in vivo situation is essential.

Evolution of models used in tumour biology
Historically, the easiest and most popular way of studying
cancer cell behaviour in vitro has been two-dimensional
(2-D) monolayer culture. Cells isolated directly from a
primary source or immortal/transformed cell lines have
been grown on plastic or glass surfaces with or without
matrix and used in a variety of assays to gain insight into
their cell biology. Cell migration has been studied in a
number of ways; most simply, a pipette tip is used to gen-

erate a scratch wound in a confluent monolayer culture,
and wounded cultures subsequently fixed at predeter-
mined timepoints and wound closure imaged using time-
lapse microscopy. Pre-treatment of cultures with mitomy-
cin C, to block mitosis, may be used to discern migratory
phenotypes from variations in proliferative capacity.
Scratch wounding is commonly used to assess the effects
of drugs, knock-down or over-expression of genes on the
cellular proliferation and/or migration associated with
wound closure. Equally, cells may simply be plated at low
density and random movements recorded either by time-
lapse microscopy or by coating the surface with colloidal
gold, such that gold particles are phagocytosed by migrat-
ing cells [49]. More complex chemotactic migration can
be modelled through the use of chemotaxis chambers,
such as the Dunn chamber, where cells are imaged as they
migrate up a chemotactic gradient [50]. However, the
above assays are all restricted to monitoring migration in
two dimensions.

More complex cell migration can be assayed in three
dimensions by the use of microporous membranes, first
used in developmental signalling studies more than 50
years ago [51]. This approach has resulted in the develop-
ment of commercially available inserts that can be
inserted into cell culture plates to study migration, the
most widely used being Transwell® inserts. Cells can be
seeded on the top of a such a membrane and left to
migrate to the other side through holes (typically 5 or 8
μm for migration/invasion studies) over a defined time
period (e.g. overnight), and the number of cells on the
underside quantified. Such a system can be used to obtain
an objective numerical readout to assess the effects of
drugs, or the modulation of target gene expression, on cell
migration. Furthermore, by the addition of a matrigel
layer on top of the membrane, this assay can be modified
to measure invasion, such that cells have to invade though
a matrix to reach the underside of the filter [52].

One way to ensure an in vitro model is representative of
normal tissue architecture is to use organ culture. Organ
cultures have been in use since as early as 1897, when
Loeb successfully cultured several rabbit organs, including
liver, kidney, ovary and thyroid, on small plasma clots in
test tubes for up to three days [53]. Organ culture is now
used routinely and can be a powerful tool. For example,
culturing rings from mouse and rat aortae in three-dimen-
sional (3-D) collagen gels has been used extensively to
study angiogenesis [54-56] and many other organs,
including prostate [57] and small intestine [58], have also
been cultured successfully. Although this approach bene-
fits in that epithelial/endothelial cells are cultured in a rel-
atively physiologically normal microenvironment, the
culture period during which the organ remains viable is
limited. Furthermore, a major obstacle remains of how to
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obtain starting material, particularly if the tissue is of
human origin.

Animal models are widely used in research and have the
advantage that experimental procedures may be carried
out in living organisms. Many different diseases, includ-
ing cancer, have been modelled in vivo, and such studies
are beyond the scope of this review [59]. The benefits of
studying cancer in a whole organism are clear, and the rel-
ative ease of genetic manipulation, particularly in mice,
coupled with the fact that tumours can develop and
progress relatively quickly make animal models extremely
powerful. However, there are some disadvantages:
although fast tumour development can be considered an
advantage, at the same time it may not be a true represen-
tation of human tumourigenesis. Furthermore, murine
tumours may differ from human both in biological and
histological features, particularly regarding hormonal
response and metastatic potential [59].

In recent years, 3-D culture models have become increas-
ingly popular in tumour biology. It is clear that cancer is
not a homogeneous disease, but an orchestrated interac-
tion between different cell types that is organ and tissue
specific. Thus, 3-D culture is becoming the model of
choice because it provides a simple and easily manipu-
lated system that shows similar architecture to real tissue
and takes into account cell-cell and cell-matrix interac-
tions. Such models are particularly popular in skin stud-
ies.

Organotypic studies in skin pathology
Advances in biomedical science have allowed the devel-
opment of engineered skin tissue substitutes based on
data published more than 30 years ago [60-62]. Rhein-
wald and Green [59] were the first to isolate and culture
skin keratinocytes in vitro. Bell et al [60] went further and
used a collagen layer enriched with dermal fibroblasts as
a base on which they seeded keratinocytes (as in Figure
1A), which differentiate as in normal epidermis (as in Fig-
ure 1B). In 1981, Burke et al [61] used such artificial skin
for the successful treatment of an extensive burn injury.

In addition to developing ex vivo skin sheets for the treat-
ment of burns victims, such cultures have also been used
as a means of investigating both the development and
repair of the epidermis, in more relevant conditions than
simple 2-D culture, but without the use of animals. Since
the early developments in skin engineering, recent publi-
cations have focused on the use of skin organotypic co-
culture as a model for identifying and investigating the
regulatory mechanisms of cell-cell and cell-matrix interac-
tions in skin development that control cell differentiation,
tissue homeostasis and tissue integrity [63-66]. All of the
above studies have identified the composition and struc-

tural organisation of the ECM (i.e. the number of fibrob-
lasts in the dermal equivalent) as one of the most
important factors for maintaining normal skin tissue
architecture. Interestingly, some studies have been suc-
cessful in using a combination of cells derived from
mouse and human tissues in organotypic skin cultures,
allowing the use of genetically engineered mouse cells to
analyse specific signalling pathways [64,67]. This was
illustrated by elegant studies combining primary human
keratinocytes with mouse embryo fibroblasts (MEFs)
derived from wild-type, junB-/- or c-jun-/- mice [68]. This
allowed the elucidation of the transcriptional control of
an IL-1 dependent pathway whereby IL-1, secreted by
keratinocytes, bound to IL-1R on stromal fibroblasts,
leading to c-Jun dependent expression and secretion of
keratinocyte growth factor (KGF) and granulocyte-macro-
phage colony-stimulating factor (GM-CSF). These growth
factors, in turn, stimulated the proliferation and differen-
tiation of the overlying keratinocytes. Equally, the kerati-
nocyte compartment can be manipulated genetically, as
with studies where keratinocytes expressing mutant RAS,
and marked with a lineage tracer, were mixed with normal
human keratinocytes and allowed to stratify in a 3-D cul-
ture prior to treatment with the tumour promoter TPA
[69]. This study confirmed the clonal expansion of
tumour cells relative to their normal neighbours.

The dermal equivalent in these 3-D cultures can be
enriched not only with fibroblasts but with a number of
different cell types important in the microenvironment,
including myofibroblasts, endothelial cells, inflammatory
cells and adipocytes. Recently, human mesenchymal stem
cells have been added together with dermal fibroblasts in
organotypic skin culture. Wounding studies on these cul-
tures (as in Figure 1C) showed that human mesenchymal
stem cells could contribute to wound healing processes
but they did not differentiate into keratinocytes [70].

In addition, by varying the cell types used and adjusting
the composition of the matrix components, this physio-
logical system can be adapted to allow the study of inter-
actions between tumour cells and their surrounding
stroma, particularly with regard to how such interactions
regulate cell migration and invasion [71]. The Fusenig lab
was the first to use the organotypic skin model to study
invasion of squamous cell carcinoma (SCC) cells [72],
and such studies have shown that loss of E-cadherin is a
key step in SCC progression [73]. Recently, Nystrom et al
[73] have developed an objective and quantitative
method to analyse SCC cell invasion in organotypic cul-
ture. Their data proved the reproducibility of the organo-
typic culture and also the ability of their quantitative
method (the Invasion Index) to measure tumour invasion
either in culture or after organotypic gels have been
implanted in mice, for up to 6 weeks [74]. Organotypic
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Organotypic culture of skin equivalentFigure 1
Organotypic culture of skin equivalent. A. Schematic representation of a skin equivalent organotypic. The stroma con-
sists of collagen and human fibroblasts (5 × 105), with keratinocytes (1 × 106) plated on the top. B. Example of immuno-staining 
for the differentiation markers Keratin14 and Involucrin in a 10 day old culture. C. A timecourse of wound healing in an orga-
notypic culture using HaCaT human keratinocytes. A 5 mm wound was created using a punch biopsy and the epidermis (pink) 
of the organotypic was removed using forceps. Wound closure is shown at different time points (0, 2, 4, 7 days post wound).
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cultures have also been used to assess cancer invasion in
the presence of inhibitors or stimulators of cancer inva-
sion. Pre-treatment of oral SCC cell lines with RNAi (e.g.
against HAX-1 or β6 integrin) or membrane-permeable
peptides (e.g. to block HAX-1 binding) have been used
successfully in organotypic skin cultures [75]. Further-
more, inhibitors (e.g. COX-2 inhibitor) have also been
added to cultures to assess their effect on cell invasion
[76].

Alongside SCC studies, organotypic cultures have been
used widely in understanding melanoma invasion. In vitro
assays of the metastatic behaviour of melanoma cell lines
have yielded contrasting data, dependent on the assay
adopted [77]. By admixing melanoma cells together with
primary human keratinocytes in a standard skin organo-
typic model, invasion of melanoma cells follows a pattern
closely resembling the clinical scenario [78]. Such cultures
represent excellent models with which to screen potential
treatments and have been used successfully to analyse the
therapeutic potential of oncolytic adenoviruses engi-
neered to target melanocytes [79]. Interestingly, this study
also showed the importance of using more than one cell
culture approach, with very different treatment efficacy
observed in submerged versus air-liquid interface culture
conditions. More recently, a similar culture model
showed a pro-invasive role for TGF-β, in cultures where
primary human melanocytes had been immortalised with
SV40 large T antigen and telomerase, prior to further
manipulation by PTEN knockdown and mutant Raf
expression [80]. Aside from the standard organotypic cul-
ture, melanoma cells also have been coated onto micro-
carrier beads and cultured within a stromal compartment,
allowing the development of a novel assay to quantify
invasive capacity [81].

Organotypic cultures in other cancer models
Organotypic cultures have been extended to different
tumour types including breast, prostate and ovarian can-
cer. Similar to the skin approach, human ovarian surface
epithelial cells have been grown at an air-liquid interface
on collagen gels containing NIH3T3-J2 fibroblasts as
feeder cells. Those cultures generated a single layer of flat
cells growing on the collagen surface, similar to cells
growing in vivo [71]. More recently, these 3-D cultures
have been used to study stromal progression and stroma-
induced ovarian cancer by using fibroblastic cell lines
from ovarian tumour samples as well as normal ovarian
fibroblasts [82]. In prostate cancer, similar 3-D models
have also been used [83]. However, small human pros-
tatic adenocarcinoma fragments also were cultured on
collagen sponges for 3 weeks, maintaining the 3-D epithe-
lial and stromal organisation similar to the in vivo tumour
[84].

Organotypic cultures have also been used extensively in
breast cancer research [85-90]. Breast cancer 3-D cultures
have been used to investigate gene expression profiles
[89,91] and to study the interaction of human epithelial
cells with their microenvironment, including fibroblasts,
myofibroblasts and ECM [86]. It has been described pre-
viously that normal human mammary epithelial cells,
when embedded in a 3-D environment, form polarised
spheroids with a central lumen similar to the normal
mammary gland [92,93]. Importantly, mouse mammary
epithelial cells growing in 3-D cultures can respond to lac-
togenic hormones by producing milk proteins [92,94,95].
The importance of 3-D culture was highlighted by the
finding that human epithelial breast cancer cells (MCF-7)
showed less sensitivity to anti-estrogen Tamoxifen treat-
ment when cultured in a 3-D scaffold model compared
with when grown in monolayer culture [96].

Future studies
Organotypic cultures have shown that it is possible to rec-
reate, in the laboratory, a histologically similar tissue
equivalent for several tissue types, using just two cell types
and a matrix. Such relatively basic models are simple to
prepare, taking less than 2 weeks to grow, and can be used
to study cell migration and invasion with relative ease. For
example, skin equivalents can be wounded [97] as illus-
trated (Figure 1C), generating a model of epithelial repair
that is far more realistic than a scratch assay. Cancer cells
can be incorporated as illustrated (Figure 2) allowing the
assessment of their invasive capacity and, as discussed
above, such approaches have already provided valuable
information. Future studies will build on these basic prin-
ciples by increasing the complexity of cell types included
in the cultures. Although it is not possible to mimic blood
flow in these 3-D cultures, the inclusion of endothelial
cells, either together with fibroblasts in the matrix or
beneath the matrix, would allow modelling of angiogen-
esis alongside the study of tumour-stroma interactions.
The addition of immune cells to the culture system is
another area for development, since numerous studies
have highlighted the impact of tumour-associated macro-
phages on cancer cell biology [98]. Studies where cancer
cells have been co-cultured with macrophages on collagen
gel have shown clear evidence of intercellular signalling
loops that control cell movement [99], and similar exper-
iments are achievable with the organotypic culture
approach [100].

One of the challenges facing the field is how to establish
live cell imaging in organotypic cultures. Labelling cells
fluorescently, either through the use of a dye or by trans-
fection with a fluorescent reporter construct, would facili-
tate tracking of cell movement by microscopy, but such a
technique would be difficult in organotypic cultures
grown on grids. More likely, simpler models where cul-
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tures can be grown in multi-well format will prove more
valuable, as has been shown for breast cancer cells grow-
ing as reconstructed organoids, together with fibroblasts,
in a collagen gel [101]. Techniques for imaging cancer
cells in vivo already are proving powerful [102] but, for
high-throughput target validation or drug screening
assays, in vivo studies are neither ethical nor feasible.
Understanding the biological relevance of target mole-
cules, particularly using RNAi-based approaches, will be
possible not only for the cancer cells themselves but also
the stromal cells with which they are associated. This is of
great importance given the growing acceptance of the crit-
ical role the microenvironment plays in tumour progres-
sion. Large-scale functional RNAi screens will be possible,
together with more conventional small molecule screen-
ing, in the hope that future cell culture studies, based on
more physiologically representative models, will be more
readily translated into clinically relevant findings.
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