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Abstract 

 

BACKGROUND: Myocardial mass is a key determinant of cardiac muscle function and hypertrophy. 

Myocardial depolarization leading to cardiac muscle contraction is reflected by the amplitude and 

duration of the QRS complex on the electrocardiogram (ECG). Abnormal QRS amplitude or duration 

reflect changes in myocardial mass and conduction, and are associated with increased risk of heart 

failure and death. 

OBJECTIVE: To gain insights into the genetic determinants of myocardial mass, 

METHODS: We carried out a genome-wide association meta-analysis of 4 QRS traits in up to 73,518 

individuals of European ancestry, followed by extensive biological and functional assessment. 

RESULTS:   We identified 52 genomic loci, of which 32 are novel, reliably associated with one or 

more QRS phenotypes at P<1×10-8. These loci are enriched in regions of open chromatin, histone 

modifications, and transcription factor binding suggesting that they represent regions of the genome that 

are actively transcribed in the human heart. Pathway analyses provide evidence that these loci play a 

role in cardiac hypertrophy. We further highlight 67 candidate genes at the identified loci that are 

preferentially expressed in cardiac tissue and associated with cardiac abnormalities in Drosophila 

melanogaster and Mus musculus. We validated the regulatory function of a novel variant in the 

SCN5A/SCN10A locus in vitro and in vivo.  

CONCLUSIONS: Taken together, our findings provide new insights into genes and biological 

pathways controlling myocardial mass and may help identify novel therapeutic targets. 

 

Keywords:  Genetic association study, QRS, left ventricular hypertrophy, heart failure, 

electrocardiogram, genes 
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Abbreviations list 

DHS  Deoxyribonuclease hypersensitivity sites 

DNase  Deoxyribonuclease 

ECG  Electrocardiogram 

eQTL   Expression quantitative trait locus 

FDR  False Discovery Rate 

GWAS  Genome-wide association study 

LD  Linkage Disequilibrium 

RNAi   Ribonucleic acid interference  

SNP  Single Nucleotide Polymorphisms 

TF  Transcription Factor 
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Introduction 

 

The role of the heart is to provide adequate circulation of blood to meet the body's requirements of 

oxygen and nutrients. The QRS complex on the ECG is the most widely used measurement of cardiac 

depolarization, which causes the ventricular muscle to contract, resulting in pulsatile blood flow. The 

amplitude and duration of the QRS complex reflects the conduction through the left ventricle and is well 

correlated with left ventricular mass as measured by echocardiography (1,2). ECG measurements of the 

QRS complex are important in clinical and preclinical cardiovascular diseases such as cardiac 

hypertrophy, heart failure, and various cardiomyopathies, and can also predict cardiovascular 

mortality(3-6).  

Identification of specific genes influencing the QRS complex may thus enhance our understanding of the 

human heart and ultimately lead to prevention of cardiovascular disease and death. To further our 

understanding of the genetic factors influencing the QRS complex, we carried out a large scale GWAS 

and replication study of 4 related and clinically used QRS traits: the Sokolow-Lyon, Cornell and 12-

lead-voltage duration products (12-leadsum), and QRS duration. We identified 52 loci that were 

subsequently interrogated using bioinformatics and experimental approaches to gain more insights into 

the biological mechanisms regulating cardiac mass and QRS parameters.  

 

Methods 

Additional details on the methods can be found in the Supplementary Note. 

 

Genome wide analyses and replication testing 

Our study design is summarized in Fig. S1. Briefly, we combined summary statistics from 24 studies for 

up to 2,766,983 autosomal SNPs using an inverse-variance fixed-effects meta-analysis for each QRS 

trait. We performed replication testing for loci showing suggestive association (1×10-8<P<5×10-7) (table 

S1 and S2). The threshold for genome-wide significance was set at P<1×10-8. 

 

DNA Functional elements, coding variation and enrichment analyses 

We performed an intersection between SNPs and regions of DHSs, covalently modified histones and 

genomic features (ChromHMM) of cardiac tissues mapped by the National Institutes of Health 
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Roadmap Epigenomics Program, as well as various cardiac transcription factor binding sites (GATA4, 

MEF2, SRF, TBX5, TBX3, GATA4 and Nkx2-5) measured by Chip-seq.  

  

Experimental cardiac enhancer studies 

Single cell suspensions of human ventricular tissue was obtained by dissociation with IKA Ultra Turrax 

T5 FU, followed by dounce homogenization. 4C templates were mixed and sequenced simultaneously in 

one Illumina HiSeq 2000 lane. Enhancer candidate regions with major and minor allele for rs6781009 

were obtained by PCR from human control DNA and cloned into the Hsp68-LacZ reporter vector. DNA 

was injected into the pronucleus of fertilized FVB strain egg and approximately 200 injections per 

construct were performed. Embryos were harvested, stained with X-gal to detect LacZ activity.  

H10 cells, grown in 12-well plates in DMEM supplemented with 10% FCS (Gibco-BRL) and glutamine, 

were transfected using polyethylenimine 25 kDa (PEI, Brunschwick) at a 1:3 ratio (DNA:PEI). 

Transfections were carried out at least three times and measured in triplo. Luciferase measurements 

were performed using a Promega Turner Biosystems Modulus Multimode Reader luminometer. 

  

Identification of candidate genes 

We considered genes to be causal candidates based on 1) the nearest gene and any other gene located 

within 10kb of the sentinel SNP; 2) genes containing coding variants in LD with the ST-T wave SNPs at 

r2>0.8; 3) GRAIL analyses using the 2006 dataset to avoid confounding by subsequent GWAS 

discovery, and 3) genes with an eQTL analyses in cis using 4 independent sets of cardiac left ventricle 

and blood tissues. Ingenuity Pathway Analysis (IPA) Knowledge Base March 2015 (Ingenuity Systems, 

CA, USA) was used to explore molecular pathways between proteins encoded by the 67 candidate genes 

from the 52 genome-wide significant loci. 

 

Drosophila melanogaster and Mus Musculus methods  

We queried a D. melanogaster dataset containing a genome-wide phenotypic screen of cardiac specific 

RNAi-silencing of evolutionarily conserved genes under conditions of stress. We also queried the 

international database resource for the laboratory mouse (MGI-Mouse Genome Informatics) and 

manually curated Mammalian Phenotypes (MP) identifiers related to cardiac phenotypes. To illustrate 

that prioritized genes may play a critical role in heart development we tested CG4743/SLC25A26, 
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Fhos/FHOD3, Cka/STRN, NACα/NACA, EcR/NR1H and Hand/HAND1 by performing heart-specific 

RNAi knockdown with the cardiac Hand4.2-Gal4 driver line.  

 

Gene expression profiling and cardiomyocyte differentiation analysis 

We collected 43,278 raw Affymetrix Human Genome U133 Plus 2.0 Arrays from the Gene Expression 

Omnibus (GEO) containing human gene expression data. RMA was used for normalization and 

subsequently conducted stringent quality control and processing of the data, which resulted in a tissue-

expression matrix. After quality control 37,427 samples remained and assigned 54,675 

different probesets to 19,997 different Ensembl genes used for human tissue expression profiling. To 

explore gene-expression of our candidate genes during cardiac differentiation we performed RNA-

sequencing using E14 Tg(Nkx2-5-EmGFP) mouse embryonic stem cells cultured feeder-free conditions 

and subsequently differentiated.  

 

Results 

 

Large scale meta-analysis of genome wide association studies 

Characteristics of studies, participants, genotyping arrays and imputation are summarized in table S1 

and S2. Together our studies comprise 60,255 individuals of European ancestry ascertained in North 

America and Europe, with a maximum sample size of 54,993 for Sokolow-Lyon, 58,862 for Cornell, 

48,632 for 12-leadsum, and 60,255 for QRS duration. Across the genome, 52 independent loci, 32 of 

which are novel, reached genome-wide significance for association with one or more QRS phenotypes 

(Fig. 1, Fig. S2, table S3 and Supplementary Note). At each locus, we defined a single ‘sentinel’ SNP 

with the lowest P-value against any of the four phenotypes; regional association plots for the 52 loci are 

shown in Fig. S3. Among the 52 loci, 32 were associated with only one QRS phenotype, and 20 with at 

least two phenotypes (Fig. S4). The total number of locus-phenotype associations at P<10-8 was 79 (72 

SNPs), of which 59 are novel (table S3). Full lists of the sentinel SNPs and the SNPs associated with 

any phenotype at P<10-6 are provided in table S4 and S5. All previously known QRS duration loci 

showed evidence for association (P<10-6, table S6). Among the 32 novel loci, 8 demonstrated genome-

wide significant association with Sokolow-Lyon, 9 with Cornell, 20 with 12-leadsum, and 9 with QRS 

duration (table S5). Collectively, the total variance explained by the 52 sentinel SNPs for the QRS traits 
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was between 2.7% (Sokolow-Lyon) and 5.0% (QRS-duration) (table S7). At some loci we found 

evidence for multiple independent associations with QRS phenotypes at P<10-8 in conditional 

analyses(7) (table S8 and Supplementary Note). Among the 52 loci identified 8 have been associated 

previously with PR (reflecting atrial and atrioventricular node function), 5 with QT duration (ventricular 

repolarization) and 2 with heart rate (sinus node function) (table S6), indicating genetic overlap among 

the four cardiac measures studied. We further demonstrated that there was directional consistency of the 

association of common variants identified in this study with QRS phenotypes in other ethnic groups 

(Fig. S1, table S9, and Supplementary note).  

 

Functional annotation of the QRS associations 

To better capture common sequence variants at the 52 loci, we queried the 1000 Genomes Project 

dataset(8), and identified 41 non-synonymous SNPs in 17 genes that are in high LD (r2>0.8) with 12 of 

the sentinel SNPs (table S10), which represent an initial set of candidate variants that may have a 

functional effect on the QRS phenotypes through changes in protein structure and function.  

To assess the potential role of gene expression regulation, we tested the 52 loci for enrichment of 

deoxyribonuclease I (DNase I) hypersensitive sites (DHSs)(9). In an analysis across 349 diverse cell 

lines, cultured primary cells and fetal tissues(10) mapped by the ENCODE project(11) and the National 

Institute of Health Roadmap Epigenomics Program(12), the majority (42 of 52) of sentinel SNPs were 

located in DHSs. In human fetal heart tissue we found that less than half (22 of 52) overlapped DHSs, 

which still represents a ~3.5-fold enrichment compared to the null expectation (P=7.7×10-12, Fig. 2A). 

Further, the enrichment of genome-wide significant SNPs (P<10-8) in DHSs was strongest within the 

first 100 bp around the sentinel variants (Fig. 2B). In addition, there was a strong enrichment for histone 

marks and chromatin states(13) associated with active enhancers, promoters and transcription in human 

heart; by contrast no enrichment was observed for transcriptionally repressive histone marks or states 

(Fig. 2, C and D and Fig. S5). Strikingly, we observed increasing enrichment of activating histone 

marks at the identified QRS loci during the process of differentiating mouse embryonic stem cells into 

cardiomyocytes (Fig. S6). Altogether, these findings are consistent with earlier observations of selective 

enrichment of trait-associated variants within DHSs of specific cell of tissue types(10), and point to a 

regulatory role of the QRS-associated loci during cardiac development.  
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We next surveyed our genome-wide significant SNPs in DHSs for perturbation of transcription factor 

(TF) recognition sequences, since these sites can point directly to binding events (Supplementary 

Note). Of the 22 sentinel SNPs in human fetal heart DHSs, 11 are predicted to alter TF recognition 

sequences (table S11). When considering all genome-wide significant SNPs (P<10-8) as well as those in 

high LD (r2>0.8), 402 SNPs in the co-localizing DHSs perturb transcription recognition sequences, 

including those of important cardiac and muscle developmental regulators like TBX, GATA-4, and 

MEF2. When we intersected the GWAS results with ChIP-seq data from mouse and human cardiac 

tissue(14-16), we found enrichment in enhancers marked by p300, sites bound by RNA Polymerase II 

(RNAP2), and the transcription factors NKX2-5, GATA-4, TBX3, TBX5, and SRF (Fig. 2E). Nine of 

our 52 loci contained not only fetal heart DHSs but also ChIP-seq validated TF binding sites. SNPs 

overlapping TF binding sites were 5.65 fold enriched within DHSs (P=9.0×10-10) but not outside DHSs 

(P=0.20). The associations of the 52 sentinel SNPs with all tested functional elements are summarized in 

Fig. 1. We validated several candidate regulatory regions identified above as heart enhancers in vivo. 

Activity of 4 exemplar novel human cardiac enhancers in embryonic transgenic mice stained for LacZ 

enhancer reporter activity are shown in Fig. 3A. Recently, rs6801957 (Fig. 1) in the SCN5A/SCN10A 

locus was reported to influence the activity of a regulatory element affecting SCN5A expression(16,17). 

Conditional analysis (table S8) revealed that rs6781009 (at 180-kb from the sentinel) is an additional 

novel independent signal at this locus. Our follow-up in silico and experimental results (Fig. 3) indicate 

the presence of in vivo heart enhancers in genome regions associated with QRS traits. 

Identification of candidate genes 

Across the 52 loci, 974 annotated genes are located within 1 Mb of all sentinel SNPs. Among these 

genes, we prioritized potential candidates using an established complementary strategy (18,19); we 

chose (i.) Genes nearest to the sentinel SNP, and any other genes within 10kb (56 genes; Fig. 1); (ii.) 

Genes containing a non-synonymous SNP in high LD (r2>0.8) with the sentinel SNP (11 genes; table 

S10); (iii.) Protein-coding genes with cis-eQTL associated with sentinel SNP (14 genes; table S12), and 

(iv.) GRAIL literature analysis(20) (16 genes table S13) with ‘cardiac’, ‘muscle’ and ‘heart’ as the top 3 

keywords describing the observed functional connections. In total, this strategy identified 67 candidate 

genes at the 52 loci (Fig. 1). Pathway analysis confirmed that the list of 67 candidate genes is strongly 

enriched for genes known to be involved in cardiovascular and muscular system development and 
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function (P=1×10-56; table S14 and S15). We have summarized the available functional annotations for 

all 67 candidates in table S16, including established links from the Online Mendelian Inheritance in 

Man (OMIM) between candidate genes and familial cardiomyopathies (TNNT2, TTN, PLN, MYBPC3) 

and cardiac arrhythmias (CASQ2). We also identified genes that are associated with atrial septal defects 

(TBX20) and more complex syndromes involving cardiac abnormalities such as the Schinzel-Giedion 

midface retraction syndrome (SETBP1)(21) and the ulnar-mammary syndrome (TBX3)(22).  

Insights from gene expression profiling and model organisms 

We explored gene expression profiles of our candidate genes in data derived from 37,427 Affymetrix 

U133 Plus 2.0 arrays across 40 annotated tissues. We could reliably assign a probe for 63 of our 67 

candidate genes. On average expression levels for these transcripts were higher in cardiac-derived 

samples compared to other transcripts in the same sample (P=9.8×10-6 for heart tissue; 

Wilcoxon test; Fig. S7) and also when compared to the same transcripts in other tissues (P=0.005 after 

Bonferroni correction; Fig. S8). To further investigate the potential role of these candidate genes in 

cardiac development, we assessed temporal gene expression patterns during in vitro differentiation of 

mouse embryonic stem cells (ESC) via mesoderm (MD) and cardiac precursor (CP) cells to 

cardiomyocytes (CM). Seven percent of genes are mainly expressed during the ESC stage, 22% during 

MD stage, 7% in the CP stage and 64% in the cardiomyocyte stage. Compared to other genes, the 

candidate genes were more highly expressed in cardiomyocytes (P=5.4×10-8, Wilcoxon test; Fig. S9). 

These results suggest that our candidate gene set is enriched for genes differentially expressed in cardiac 

tissue and increasingly expressed during cardiac development. 

Next, we analyzed data from model organisms to explore the function of the selected candidate genes. 

From cardiac tissue-specific RNAi knockdown data collected in D. melanogaster, we found that the 67 

candidate genes were 2.3-fold enriched for stress-induced cardiac death (9 genes, P=1.84×10-2; Fig. 

S10). To illustrate that prioritized genes may play a critical role in heart development we tested 4 

(CG4743/SLC25A26, Fhos/FHOD3, Cka/STRN, NACα/NACA) of these 9 genes with unknown cardiac 

function by performing heart-specific RNAi knockdown with the cardiac Hand4.2-Gal4 driver line. We 

also re-tested EcR/NR1H, which has multiple homologous genes in mammals, as well as Hand/HAND1 

as this gene was only tested in as a full-knockout in early development but not in adult D. melanogaster 

heart using cardiac specific knockdown. Adult hearts of Cka/STRN, NACα/NACA, and EcR/NR1H 
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RNAi showed severe cardiac defects (Fig. 4). Knockdown of Hand/HAND1 and Cka/STRN both had a 

reduced cardiac heart rate. We also expanded on gene-by-gene analysis and identified 6 further genes 

causing cardiac abnormalities (Supplementary Note and table S17). From the Mouse Genome 

Informatics database, knockout models were annotated for 45 orthologues of the 67 candidate genes, of 

which 18 (40%) revealed a cardiac phenotype (table S16). This represents a 5.2-fold enrichment 

compared to randomly matched sets of 67 genes (P=3.4×10-14; Fig. S10). Given the evolutionary 

conservation the observed heart phenotypes in these model organisms suggest potentially important 

roles for the significant GWAS loci in electrical and contractile properties of the human heart. 

Interestingly, the 11p11.2 locus harbors multiple candidate genes (Fig. 1), including MYBPC3, ACP2, 

MADD, and NR1H3. MYBPC3 deficiency is well established to cause hypertrophic and dilated 

cardiomyopathies in both human and mouse models and thus represents a plausible candidate gene 

(table S16). In addition to MYBPC3, eQTL and histone modification data also suggests a potential role 

for NR1H3 (Fig. S11), as decreased expression of NR1H3 was associated with higher QRS voltages. 

However, NR1H3 deficient mice do not spontaneously develop a cardiac hypertrophic phenotype (MGI: 

1352462). To study the potential cardiac effects of NR1H3, we created a transgenic mouse with cardiac-

specific overexpression of NR1H3 under the control of the Myh6 promoter and found a diminished 

susceptibility to perturbations such as transverse aortic constriction and angiotensin II infusion that 

provoke cardiac hypertrophy(23). This observation is in line with protective effects due to treatment 

with T0901317, a synthetic NR1H3 agonist, in mice challenged with aortic constriction(24). These data 

highlight the importance of systematic approaches to identify causal genes beyond well-known 

candidates. 

 

Insights from Data-Driven Expression-Prioritized Integration for Complex Traits (DEPICT)   

As a complementary approach we employed the newly developed computational tool DEPICT(25) to 

analyze functional connections among associated loci (Supplementary Note). Enrichment of expression 

in 209 particular tissues and cell types identified heart and heart ventricles as the most relevant tissue for 

our association findings (Fig. 5A; table S18) and identified 404 significantly (FDR <5%) enriched gene 

sets (table S19). Comparing the names of these sets with those of the remaining 14,057 gene sets 

showed an over-representation of the common key words ‘Abnormal’, 'Muscle', 'Heart', 'Cardiac', 

'Morphology' (table S20). We investigated similarities among gene sets by clustering them on the basis 
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of the correlation between scores for all genes (Supplementary Note). Many of the resulting 43 meta-

gene sets are correlated and relevant to cardiac biology (Fig. 5B). As an example we show the 

correlation structure within the second most significant meta-gene set “Dilated Heart Left Ventricle” 

(Fig. S12). When prioritizing genes based on functional similarities among genes from different 

associated regions DEPICT identified 35 genes (FDR<5%) at 27 of the 52 loci (Fig. 1, table S21). 

 

Discussion 

 

In this study, we performed a meta-analysis of GWAS in 73,518 individuals for 4 quantitative QRS 

phenotypes and identified 52 independent genetic loci influencing these traits with 79 locus-phenotype 

associations; the majority of these discoveries are novel. Our loci are co-localized with open chromatin, 

histone modification, and TF binding sites specifically in cardiac tissue, and contain in vivo functional 

enhancers. We also provide direct evidence that rs6781009, located in a cardiac enhancer, interacts with 

the promoter of SCN5A to modify expression levels. Based on multiple criteria, we defined a core set of 

67 candidate genes which we believe are likely to influence cardiac mass and function. We have 

provided several exemplar experiments to further support this hypothesis.  

We identified a number of loci containing genes that are directly or indirectly key the function of 

cardiomyocytes and cardiac function. TTN, MYBPC3, TNNT2, SYNPO2L, and MYH7B are essential 

components of the cardiac sarcomere; PLN, CTNNA3, PRKCA, CASQ2, and STRN are also examples of 

genes essential for cardiac myocyte function; while several key cardiac transcription factors are 

prominently involved in cardiac muscle and tissue development such as MEF2D, HAND1, TBX20, TBX3 

and NACA. The abundance of candidate genes known to be involved in cardiac muscle function 

strengthen the hypothesis that the easily obtainable QRS-voltage phenotypes of the electrocardiogram 

are effective in capturing unknown loci that harbor genes that are likely to play an important role in left 

ventricular mass but are currently not well understood. The co-localization of our genetic loci with 

regulatory DNA elements (e.g. enhancers, promoters and transcription factor binding sites) that are 

active in cardiac tissues further support the relevance of the genes within these loci. The current work 

was not designed to provide an explanation for association of each loci and each individual gene. It is 

clear that future translational efforts should be undertaken to resolve the causal genes and exact 

molecular machinery resulting the in the phenotype should consider mapping effect of genetic variants 
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on the these functional elements at each of the identified loci. Nevertheless we have provided some 

exemplar preliminary elements to provide some early insights in strategies that can be undertaken to 

follow-up our findings. For example, we performed a series of experiments to demonstrate in vivo 

effects of rs6781009 on expression. Dedicated experiments might also elucidate loci containing effects 

on multiple plausible genes. In one of our loci we identified a very strong candidate gene (MYBPC3), 

well known to be involved in hypertrophic cardiomyopaties. However, using additional layers of 

information derived from gene expression and histone modifications we also considered NR1H3 and 

were able to link overexpression of this gene to cardiac protection of hypertrophy. These examples fuel 

our expectation that the presented shortlist of SNP associations and the identified candidate genes 

provided in this work are a valuable resource that will help to prioritize and guide future translational 

studies to further our knowledge on the (patho)physiology of cardiac hypertrophy. 

Our findings do have some limitations that warrant consideration. As for all current GWAS, we 

have only studied a finite number (~2.8 million) marker on the genome. Further fine mapping studies 

might be required to narrow the signal of association even further and to identify the potential causal 

variants with higher accuracy. Also additional exome focused arrays or whole genome sequencing might 

lead to a stronger signal within a locus or to multiple additional independent signals within a locus. To 

understand genetic mechanisms and to identify candidate genes, we have studied eQTLs. Although we 

studied the largest set of human cardiac eQTL available to date, the absolute number of studied samples 

is relatively small compared to eQTL data available in easily accessible peripheral blood. Finally, our 

electrocardiographic indices are generally considered markers of cardiac hypertrophy, they may also 

reflect electrical remodeling of the action potential and not mass per se. Nevertheless, the variables 

studied here harbor important prognostic information, independently from cardiac mass parameters as 

assessed by echocardiography(26). This further underscores the relevance of the trait studied and the 

importance of understanding its genetic determinants.  

In conclusion, we have identified 52 genomic loci, of which 32 are novel, associated with electrically 

active cardiac mass, prioritized 67 candidate genes and showed their relevance in cardiac biology using 

bioinformatics approaches and performed in-vitro and in-vivo experiments, going beyond the classical 

GWAS approach. To facilitate and accelerate future studies aimed at a better understanding of cardiac 

hypertrophy, heart failure and related diseases, we made our results of genome-wide associations 

publicly available. 
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Perspectives 

 

COMPETENCY IN MEDICAL KNOWLEDGE: Abnormalities of cardiac mass are underlying many 

cardiovascular diseases such as heart failure. The lack of knowledge surrounding the basis of 

cardiomyocyte dysfunction and heart failure susceptibility is a major roadblock to understand risk for 

heart failure and to designing innovative strategies for therapy. 

 

TRANSLATIONAL OUTLOOK: These findings will be a valuable resource for studying biological 

processes underlying cardiac mass, ultimately leading to prevention of cardiovascular disease and death.  
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Figure legends 
 

Fig. 1 Overlay Manhattan plot showing the results for the genome-wide associations with QRS traits 

amongst Europeans. SNPs reaching genome-wide significance (P<1x10-8) are colored red (novel loci) or 

blue (previously reported loci). Candidate genes have been identified by one or multiple strategies; n 

nearest; c coding non-synonymous variant; g GRAIL tool; e eQTL; d DEPICT tool.  The presence of 

associated eQTL, coding SNPs, DNAse hypersensitivity sites, chromatin states, TF binding sites are 

indicated for lead SNPs (light blue) or those in high (r2>0.8) LD (dark blue). 

  

Fig. 2 (a) The 52 sentinel SNPs are significantly enriched in DHSs of the human fetal heart compared to 

the matched random distribution of HapMap SNPs. (b) The impact of physical distance between SNPs 

that meet genome wide significance (P<1×10-8) on enrichment of fetal heart relative to all other tissues 

at DHs. The enrichment is strongest at the SNP’s location and decreases after 100bp from the SNP sites. 

(c) SNPs associated with QRS traits are enriched for the activating histone modifications H3K27ac, 

H3K4me3, H3K4me1 and H3K36me3 in human left ventricle, which increased at more stringent GWAS 

P-value thresholds. The repressive mark H3K27me3 is not enriched while H3K9me3 is significantly 

reduced, suggesting that QRS-trait loci are predominantly expressed in the left ventricle. (d) To capture 

the greater complexity we performed an integrative analysis in an 18-state ‘expanded’ ChromHMM 

model representative of different functional regions of the genome. The left panel shows the enrichment 

of the 52 loci for the 18-state model using the six core histone marks. The right panel shows the total 

number of the 52 loci overlapped by each feature. (e) SNPs (P<1×10-8) were also significantly enriched 

for various factors in the human heart, mouse heart and the HL-1 cell-line. 

 

Fig. 3 (a) In vivo activity of 4 exemplar human cardiac enhancers in embryonic transgenic mice stained 

for LacZ enhancer reporter activity (dark blue). Additional examples of previously described enhancers 

near lead SNPs are provided in Fig. S13 (b) Position of the regulatory element containing rs6781009 on 

the SCN5A-SCN10A locus. GWAS signals are plotted on -log(P) scale in dark blue. The regulatory 

element is bound by TBX3, TBX5, and P300 (lower black traces) in mouse, and the contact profile of the 

SCN5A promoter obtained by 4C-seq human cardiac ventricular tissue revealed an interaction between 

this regulatory element and the SCN5A promoter (upper black trace and contact profile). Normalized 
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contact intensities (gray dots) and their running median trends (black line) are depicted for the SCN5A 

promoter viewpoint. Medians are computed for 4 kb windows and the gray band displays the 20-80% 

percentiles for these windows. Below the profile statistical enrichment across differently scaled window 

sizes (from 2 kb (top row) to 50 kb (bottom)) is depicted of the observed number of sequenced ligation 

products over the expected total coverage of captured products, with the latter being estimated based on 

a probabilistic background model. Local changes in color codes indicate regions statistically enriched 

for captured sequences.  The lowest box shows the linkage disequilibrium pattern for the HapMap CEU 

population. (c) Luciferase assay performed in H10 cells showing a high constitutive activity for the 

enhancer core element (0.6kb) containing the major allele for rs6781009, which is reduced for the minor 

allele in both a large enhancer construct (1.5kb), as well as in the core enhancer element (0.6kb) 

*P<0.01 (d) Dorsal views of hearts containing the human regulatory element with the major vs minor 

allele for rs6781009 in a LacZ reporter vector, showing specific expression of the enhancer in the 

interventricular septum (ivs) for the major allele, which is absent for the minor allele *P<0,05. ra, right 

atrium; la, left atrium; rv, right ventricle; lv, left ventricle. 

 

Fig. 4 Cardiac defects upon heart-specific RNAi knockdown in Drosophila. (a) Wild-type dorsal heart 

tube stained with the F-actin stain phalloidin. Magnified region (right) is highlighted. Arrowheads point 

to ostia (inflow tracks), arrow shows the circumferential orientation of myofibrils. (b) Cka/Striatin 

RNAi induces myofibrillar disarrangement. Myofibrils are oriented in a disorganized, mainly anterior-

posterior orientation with gaps in between (arrow). (c) Knockdown of NACα/NACA causes severe 

cardiac tissue disintegration. Adult cardiomyocyte tissue may be completely absent (asterisk), while 

some heart-associated longitudinal muscles are still present (arrowheads). At larval stages the heart is 

much less affected, suggesting maturation or remodeling defect. (d) Knockdown of EcR/NR1H blocks 

cardiac remodeling and causes myofibrillar disarray (arrow). Ventral longitudinal muscles are also 

abnormal (arrowhead). 

 

Fig. 5 DEPICT analysis. (a) Plots showing the enrichment of loci associated with QRS traits in specific 
physiological systems. (b) Graphical display of DEPICT gene set enrichment analysis. Gene meta-sets 
are represented by nodes colored according to statistical significance, and similarities between them are 
indicated by edges scaled according to their correlation (only correlations with r >0.3 are shown). 
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