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INTRODUCTION  

CHAPTER 1 
 
 
 
 
 
 
 

1.1. Productivity in human speech 

Language is often referred to as the one truly unique human capacity. Different 

species have evolved a variety of communication systems, which serve a variety of 

communicative needs, such as warning, attracting the attention of potential mates, 

claiming one's territory. When compared to human languages, animal 

communicative systems differ in several crucial respects. One apparent difference 

is that they contain substantially fewer units, most of which are either iconic 

(directly representative of what they express) or indexical (drawing attention 

directly to what they express), but rarely symbolic. A symbolic unit represents its 

referent and can be used to give information about that referent, regardless of 

whether the latter is physically present or remote in space or time. Human 

language units are almost always symbolic, providing unlimited potential for 

communication. Another difference is that units in animal communicative systems 

do not typically combine with other units to form new meaningful entities, while 

human languages are very productive. A finite number of basic elements (words or 

morphemes) can be combined to form an unlimited number of expressions to 

communicate ideas.  

Remarkably, all that people are usually aware of when speaking their 

mother tongue is the thought that they wish to express and the sentence they hear 

themselves articulate almost immediately afterwards. What happens in between 

remains largely subconscious. When we want to learn more about the 

phenomenon of human language production, we need to take a closer look at the 

structures and processes involved. In this doctoral dissertation, I focus on speech 

production at the level of words. 
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 Words are the central units of language. It is the word that carries meaning. 

Words consist of phonemes (which do not themselves contain any meaning), and 

can be combined to form sentences (which turn out to be more or less meaningful). 

Adult speakers in our society know an estimated 50,000 to 100,000 words in their 

mother tongue. Considering words such as rainbow, rainy, rained, and snowball, 

snowy, snowed, it is evident that some words seem to be related to one-another by 

rules. Indeed, this often involves structural units smaller than the word: the 

morpheme.  

 Some morphemes can occur as independent words (free morphemes), 

whereas others cannot (bound morphemes). Words that contain only one 

morpheme (e.g., dog) are referred to as monomorphemic or morphologically 

simplex words. Words that contain two or more morphemes are referred to as 

morphologically complex words. Any given morphologically complex word belongs 

to one of the following three categories: a) compounds, b) derived words, or c) 

inflected words. Looking again at our examples (rainbow, rainy, rained, snowball, 

snowy, snowed), there are representatives of all three categories. Simply 

expressed, compounds are a combination of two (or more) independent words 

(e.g., rain+bow; snow+ball). In derivation, a free morpheme (stem) is combined 

with (at least) one bound morpheme (affix) to construct a new word (e.g., rain+y, 

snow+y). This derived word is related to its stem, but may belong to a different 

word class. In inflections, a free morpheme (stem) is combined with (at least) one 

bound morpheme (affix) to construct a new form of the same word (e.g., rain+ed, 

snow+ed), without changing word class.  

 Languages differ in their morphological complexity. Dutch is of higher 

morphological complexity than English, but still relatively low on the continuum of 

morphological complexity. Agglutinating languages (such as Turkish, Finnish, and 

Swahili) tend to have a high rate of morphemes per word 'glued together'. Some 

agglutinating languages, such as Turkish, are highly regular. Generally, 

morphological regularity refers to the fact that, when a given affix is glued to stems, 

all stems will undergo the same transformation in meaning. In other words, the 

morphologically complex words formed by the same affixation will all have the 

same relationship to their stems. Therefore, it is even possible to attach an affix to 
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newly created words or words that are adopted from other languages, and to 

efficiently communicate the intended change in meaning. Any proficient listener of 

Dutch will understand the word downloadbaar as can be downloaded (even, if the 

meaning of to download is unknown). Likewise, speakers of Dutch can inflect a 

newly created verb or a verb that is adopted from another language and use it 

appropriately in the syntactical context of Dutch (e.g., 'ge-sms-t'). Thus, 

morphological rules define possible new complex words in a language (Aronoff, 

1994) and also condition how a word fits into a sentence. While the source of some 

of the morphological variation is the grammar of word combination, the focus of my 

study is on the production of isolated, morphologically complex words. 

 In the case of compounding, there are rules about the combination of base 

morphemes to define the meaning of the new word. In Dutch (as in English), 

regularly, the rightmost morpheme is the head of the compound. A head 

determines the semantic class of a compound, its word class, case, and gender, 

etc. A modifier specifies that semantic class, while the type of specification varies 

between compounds ('is made of', 'is used as', 'is shaped as', 'is found in', etc.). 

Morphological rules enable speakers to form and understand new morphologically 

complex words, which increases the productivity of their language. 

1.2. Morphologically complex words 

Based on the fact that morphologically complex words have internal structure, the 

following question arises: Are morphologically complex words stored in the mental 

lexicon as complex words? In some cases this is likely to be the case at some 

level. For example, not all compounds are transparent in a sense that their 

meaning can be directly inferred from the meaning of their constituents (opaque 

compound such as honeymoon). In fully transparent compounds or at levels 

beneath conceptualization, storage of morphemes could be sufficient as complex 

words can be assembled from their constituting morphemes. The extra processing 

load of building complex words during production might be made up for by the 

advantage of a smaller store of memorized forms to search through.  

 Full-storage models of speech production (e.g., Butterworth, 1983) assume 

that all words (morphologically simplex or complex) are stored in the same way, as 
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separate nodes at the word form level. In contrast, no separate stored form 

representations for complex words are assumed in the production model of Levelt, 

Roelofs and Meyer (1999). For all words, simplex or complex, transparent or 

opaque, activation spreads from concepts to lexical representations (lemmas). A 

lemma contains all syntactic information about the word but no phonological 

information. This process, following conceptualization and resulting in the selection 

of one lemma, is part of grammatical encoding. After the selection of the lemma, 

phonological encoding starts with access to the word form level. According to 

Levelt et al. (1999), the word form level contains morphemes, and words that share 

a morpheme (snow, snowflake, snowy, etc.) all involve access to the same form 

node for the shared morpheme (snow).  

 The idea of a lexical level, containing individual representations (lemmas), 

and a form level, containing shared, morphemic nodes, becomes most clear in the 

case of homophones. Homophones are words that differ in meaning but sound the 

same (e.g., bank). Levelt et al. (1999) assume homophones to have their own 

lemmas but to access the same word form (Jescheniak & Levelt, 1994; 

Jescheniak, Meyer, & Levelt, 2003; but see Caramazza & Miozzo, 1998; 

Carmazza, Costa, Miozzo, & Bi, 2001; Shatzman & Schiller, 2004). Similarly, 

opaque compounds and derived words that are not fully decompositional are 

assumed to have their own representations at higher levels, but to access nodes at 

the word form level in no other way than transparent complex words do. Indeed, 

there is converging evidence from different paradigms that the constituents of 

complex words are involved in speech production irrespective of whether the 

complex word is semantically transparent or not (Zwitserlood, Bölte, & Dohmes, 

2000; Roelofs & Baayen, 2002; Melinger, 2003; Dohmes, Zwitserlood, & Bölte, 

2004; Gumnior, Bölte, & Zwitserlood, 2006).  

 Roelofs (1996) addressed the question whether the form lexicon underlying 

speech production contains morphologically decomposed entries (decomposition 

hypothesis vs. full listing hypothesis). If compounds such as schuimbad (foam 

bath) and schoolbel (school bell) are stored in a decomposed fashion, individual 

nodes for schuim, bad, school, and bel will be accessed. To test this hypothesis, 

Roelofs made use of a reliable effect in speech production: the frequency effect. In 
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a seminal study, Oldfield and Wingfield (1965) had found that pictures with low-

frequency names (e.g., syringe) took longer to name than pictures with high-

frequency names (e.g., basket). Many studies thereafter have found effects of word 

frequency on speech onset latencies to be replicable and robust (Jescheniak et al., 

1994; Levelt, Praamstra, Meyer, Helenius, & Salmelin, 1998). Jescheniak et al. 

(1994) located the word frequency effect at the word form level. Using the lemma 

based task of gender decision a frequency effect was found, but one that 

diminished over repetitions. In contrast, a frequency effect in word form access 

was shown to be robust over repetitions. Assuming, first, that the frequency effect 

is located at the word form level, and, second, that compounds are stored in a 

decomposed fashion, individual nodes for the constituents should be accessed 

with their individual frequencies. Roelofs (1996) used the implicit priming paradigm 

(Meyer, 1990, 1991), in which subjects produce words from learned paired-

associates. The compounds were presented in either homogeneous or 

heterogeneous response sets, with homogeneity referring to an overlap of the first 

morpheme (e.g., schuimbad, schuimkop, schuimspaan). Stimulus presentation in 

the homogenous response sets resulted in shorter onset naming latencies than 

presentation in heterogeneous response sets, due to a preparation effect for the 

modifier. Crucially, this preparation effect was larger for low-frequency modifiers 

(e.g., schuim) than for high-frequency modifiers (e.g., school) suggesting that it is 

the constituents rather than the entire compound word that is accessed at the word 

form level. 

 In this dissertation, I study the production of morphologically complex words 

in Dutch. Based on the assumption that frequency effects arise at the lexical level, 

the retrieval of wordforms is informative with respect to the storage of wordforms. I 

focus on the production of one subtype of each of the three types of 

morphologically complex words: compounds (noun-noun compounds such as 

handtas (handbag)) in Chapter 2, derived words (deverbal adjectives such as 

drinkbaar (drinkable)) in Chapter 3, and inflected words (inflected, regular verbs 

such as draaiend (spinning)) in Chapter 4. 



INTRODUCTION 

 8 

1.3. Predictors 

A chronometric paradigm measures the speech onset latencies of the participants. 

These reaction times are the dependent variables for the statistical analyses. 

Among the independent variables, I distinguish between two kinds of predictors: 

control variables and critical variables.  

 I measure the speech onset latencies to learn more about the effects of 

variables that are of particular interest (the critical variables). When measuring 

speech onset latencies, however, one needs to be aware of the fact that a number 

of other variables, one is not particularly interested in, might also influence the 

latencies. I will refer to these variables as control variables, as it is my aim to bring 

these unwanted sources of variation under experimental control. One such variable 

is REPETITION. In my experiments, I measure ten latencies per word per participant 

in sequence. The number of repetitions might influence the latency as some 

participants could become faster (due to practice) or slower (due to fatigue) within 

the sequence. Another control variable relates to acoustic characteristics of a 

word's initial phoneme. As the onset latencies are recorded via microphone, some 

prevoicing might not be detected by the voice key (Kessler, Treiman, & Mullennix, 

2002). This potentially leads to longer onset latencies for words which start with a 

plosive. Therefore, a first action of control is taken at the stage of material 

selection. I try to reach a fair distribution of initial phonemes and characteristics 

over conditions and over the distribution of other variables. In addition, I include the 

variables PLOSIVE (plosive, fricative, or other initial phoneme) and VOICED (voiced 

or unvoiced initial phoneme) in the statistical analyses. 

 Of theoretical interest are the following three groups of variables: a) 

Frequency Variables (1.3.1), b) Morphological Variables (1.3.2.), and c) 

Phonological Variables (1.3.3.). The first set of predictors brings together the 

variables SURFACE FREQUENCY OF THE COMPLEX WORD, CUMULATIVE STEM 

FREQUENCY, LEMMA FREQUENCIES, and POSITIONAL FREQUENCY. The morphological 

group includes the variables POSITIONAL ENTROPY, DERIVATIONAL ENTROPY, and 

INFLECTIONAL ENTROPY. The phonological group contains the variables 

PHONOLOGICAL WORD LENGTH, NEIGHBORHOOD DENSITY, POSITION-SPECIFIC 

NEIGHBORHOOD DENSITIES, and COHORT ENTROPIES. In what follows, we will take a 
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closer look at these variables, the motivation to study them and the expectations 

concerning their effects on the production onset latencies of morphologically 

complex words. 

1.3.1. Frequency Variables 

Surface Frequency of the Complex Word  

A first frequency measure to consider in the analysis of the speech onset latencies 

of morphologically complex words is the frequency of occurrence of the complex 

word as it is actually produced. I will refer to this frequency as the SURFACE 

FREQUENCY OF THE COMPLEX WORD. According to fully non-decompositional models 

of speech production (e.g., Butterworth, 1983), morphologically complex words are 

stored in the same way as morphologically simplex words, with individual nodes at 

the word form level. If the production of a complex word involves the activation of a 

separate word form node for the complex word, the production latency of a 

complex word should relate to its own frequency of occurrence.  

Lemma Frequency 

Both for morphologically complex words as well as for compound constituents, I 

further include the LEMMA FREQUENCY measure (e.g., Jescheniak et al., 1994), 

defined as the summed frequencies of a word’s inflectional variants (i.e. the 

summed frequencies of the inflectional paradigm). In the case of noun-noun 

compounds, their constituents, and deverbal adjectives, it is the frequency of the 

singular form plus the frequency of the plural form (e.g., handbag, handbags). In 

the case of inflected verbs, it is the sum of the frequencies of all inflections (e.g., 

dream, dreaming, dreamed). 

Cumulative Stem Frequency 

In contrast to fully non-decompositional models, fully decompositional models of 

speech production assume that all morphologically complex words are assembled 

from their constituting morphemes at the form level. Decompositional models, 

therefore, predict frequency effects for the constituents rather than the full word. 

Based on the assumption that the production of any word containing a given 



INTRODUCTION 

 10

morpheme (be it compounded, derived, inflected or morphologically simplex) 

involves access to the very same morpheme node, the relevant frequency for fully-

decompositional models is the sum of all occurrences of the given morpheme. I will 

refer to this sum of frequencies of all contextual variants of a morpheme as the 

CUMULATIVE STEM FREQUENCY (e.g., Laudanna & Burani, 1985; Burani & 

Caramazza, 1987; Schreuder & Baayen, 1997).  

 While the prediction of a frequency effect for the initial morpheme follows 

straightforwardly for decompositional models of speech production, the prediction 

of a frequency effect for later morphemes depends on the notion of incrementality. 

Levelt et al. (1999) assume that the morphemes of a morphologically complex 

word are retrieved one after the other from beginning to end. The consecutive 

process of phonological encoding can start as soon as the initial morpheme of the 

compound has been retrieved. Assuming both decompositionality and 

incrementality, Levelt et al. (1999), therefore, predict frequency effects for initial 

morphemes only. 

Positional Frequencies 

An intermediate position between fully decompositional models and fully non-

decompositional models of speech production is the assumption of some form of 

structured storage, in which morphemes might be stored as separate entities with 

information about their composability. In such a model, the frequency in which a 

morpheme (e.g., hand) occurs as a modifier in a compound (e.g., handbag, 

handcuff, etc.) might be considered a better predictor of the production latency of 

one of these compounds (e.g., handbag) than the frequency of occurrence of the 

morpheme (e.g., hand) as an independent word or as a constituent in any 

morphologically complex word.  

Next to the cumulative stem frequency and the constituent lemma frequency 

(both of which are position-independent), I, therefore, compute the POSITIONAL 

FREQUENCY, defined as the sum of the frequencies of all members in the 

constituent family (Krott, Baayen, & Schreuder, 2001). For hand in handbag, it is 

the sum of the frequencies of all compounds that contain hand as modifier.  

While the cumulative stem frequency is an unconditional frequency, both the 

lemma frequency and the positional frequency are conditional frequencies: the 
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former is syntactically conditioned with respect to the word, the latter is structurally 

conditioned with respect to position.  

1.3.2. Morphological Variables 

As described above, words are also members of paradigms and the frequencies 

within the paradigms may influence the production latency of a word. Next to the 

sums of frequencies defined in the previous section, I include three measures 

applying Shannon’s entropy (Shannon, 1948; Shannon & Weaver, 1949). The 

crucial difference between the sums of frequencies and the corresponding 

entropies over the distributions of these frequencies is that the entropies capture 

aspects of both type and token frequencies. As token-weighted counts of types 

(Moscoso del Prado Martín, Kostic, & Baayen, 2004; Baayen, Schreuder, & 

Feldman, 2006), the entropy is affected both by the size of the paradigm (i.e., the 

number of tokens) and their relative frequencies. All tokens being evenly frequent, 

the entropy is high. From the comprehender’s point of view, the concept of entropy 

can be understood as a measure of uncertainty. From the speaker’s point of view, 

a high entropy characterizes a paradigm full of equally likely forms. 

Positional Entropies 

Constituent families are the basis for calculating both the previously presented 

variable positional frequency and the variable POSITIONAL ENTROPY. Rather than 

summing up the frequencies of the constituent family members (as done to 

compute the positional frequency), we now compute Shannon's entropy (Shannon, 

1948; Shannon & Weaver, 1949). Generally, high positional entropies indicate 

constituent families with many members, or constituent families with members that 

are of similar frequency, while low positional entropies translate to constituent 

families with only a few members or constituent families with a large variation in 

frequency. Therefore, the POSITIONAL ENTROPY of hand in handbag reflects the 

frequency distribution of all compounds that share hand as a modifier.  

Derivational Entropy 

Next to a position-specific measure of entropy, I look at the predictive value of an 

entropy measure that is position-independent. The DERIVATIONAL ENTROPY of hand 



INTRODUCTION 

 12

in handbag reflects the frequency distribution of all morphologically complex words 

that share hand as a constituent, independent from its position within the word. 

Inflectional Entropy 

Words differ not only in the summed frequencies of their inflectional variants (the 

LEMMA FREQUENCY) but also in the distribution of these frequencies. While Dutch 

verbs have seven inflectional variants, compounds and derived words have only 

two (the singular and plural form). For verbs, I include the predictor INFLECTIONAL 

ENTROPY, defined as Shannon's entropy estimated by the relative frequencies of a 

verb's inflectional variants. A high inflectional entropy indicates that a given verb 

stem (e.g., dromen (to dream)) is actually used in many or all of its infected forms 

(droom, droomt, dromen, dromend, droomde, droomden, gedroomd), and that 

these inflections are of similar frequencies. Under these circumstances, the 

production of a specific inflected form might be relatively harder than when the 

forms in the inflectional paradigm are few and of different frequencies. 

1.3.3. Phonological Variables 

Phonological Word Length 

Effects of word length have been shown to exist in production research (e.g., 

Meyer, Roelofs, Levelt, 2003). As speech unfolds over time, the time required for 

the mere articulation as well as perception of a word increases with the number of 

phonemes. Although the perception of a word is a prerequisite for its recognition, 

comprehension research has shown that (depending on the location of the 

uniqueness point (e.g., Marslen-Wilson, 1990) a word may be recognized even 

before its last phoneme has been perceived. Similar to the difference between 

perception and recognition, there might be a difference between articulation and 

the planning of articulation with respect to the number of phonemes. If a word is 

fully planned before the onset of articulation and if the time required for planning 

increases with the number of phonemes, PHONOLOGICAL WORD LENGTH might affect 

not only the mere articulation time, but also the speech onset latency. If 

PHONOLOGICAL WORD LENGTH explains a significant portion of the variance in the 

speech onset latencies, I, therefore, expect it to be inhibitory. 
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Neighborhood Density 

Phonological Neighbors are words that can be transformed into one another by 

substituting a single phoneme (Greenberg & Jenkins, 1964; Coltheart, Davelaar, 

Jonasson, & Besner, 1977). Effects of the number of phonological neighbors of a 

word (a word's NEIGHBORHOOD DENSITY) have been encountered in both 

comprehension and production studies, however, typically inhibitory in the former 

and facilitatory in the latter (e.g., Luce & Pisoni, 1998; Vitevitch, 2002; but see 

Vitevitch & Stamer, 2006, for contrasting results in Spanish). 

 In studies on auditory word recognition, dense neighborhoods were found to 

slow processing and reduce identification accuracy. According to the 

Neighborhood Activation Model (Luce et al., 1998), effects of word frequency are 

directly tied to the number and nature of phonologically similar words activated by 

a stimulus input. The relative ease of word recognition depends on the word's 

neighborhood density and its frequency relative to the frequencies of its neighbors. 

A high-frequency word with many or high-frequency neighbors might be relatively 

harder to recognize than a low-frequency word with a few or low-frequency 

neighbors. Recently, facilitative effects of neighborhood density were also found in 

studies on speech production. Vitevitch (2002) found words with dense 

neighborhoods to be produced more quickly than words with sparse 

neighborhoods and explains his finding by a co-activation of phonologically similar 

words that increases the activation of the target word. Scarborough (2004) showed 

that vowel-to-vowel co-articulation is more likely in words with sparse phonological 

neighborhoods.  

 Neighborhood Density effects in speech production are crucial with respect 

to the notion of joint activation at the word form level. In the speech production 

model of Levelt et al. (1999), several concepts can be activated at the conceptual 

level, but only one lemma will be eventually selected and activate its word form. 

Therefore, beneath the level of lemma selection, the model predicts no interference 

by irrelevant, non-selected word forms. Other models of speech production (e.g., 

Dell, 1986) assume spreading activation and competition also at the word form 

level. Findings of neighborhood effects in the production of words may help to 

distinguish between these theories. 
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 Given that long or morphologically complex words tend to have few or no 

neighbors, I only include the neighborhood densities for the constituent 

morphemes.  

Position-Specific Neighborhood Densities 

The idea to take into consideration the phonological neighbors of a word originally 

comes from studies that involved reading, presenting whole words at once. 

Relatively short complex words can be read based on a single fixation. However, 

as the speech signal unfolds over time, both in speaking and listening, words are 

processed from beginning to end. I, therefore, look at the influence of phonological 

neighbors in an additional, more specific and hopefully suitable way: I count the 

number of neighbors exchanging the first, second, third, etc. phonemes separately 

(Sevald & Dell, 1994, for initial neighbors). These POSITION-SPECIFIC 

NEIGHBORHOODS (N1, N2, N3, etc.) add up to the total number of phonological 

neighbors of a word.  

As with the neighborhood densities presented above, I compute the 

position-specific neighborhood densities for the constituent morphemes but not for 

the morphologically complex words, because the latter tend to be zero. Likewise, I 

include the specific neighborhoods of only the first three positions (N1-N3), 

because N4 is often zero (some morphemes consist of only three phonemes).  

Cohort Entropies 

A second group of variables based on the notion of incremental speech processing 

are the COHORT ENTROPIES (H1, H2, H3, etc), defined as the likelihood of a word 

given all other words beginning with the same first (H1), first two (H2), first three 

(H3), and so on phonemes. Recent speech corpora studies on fine phonetic detail 

(Van Son & Pols, 2003; Van Son & Van Santen, 2005; Kuperman, Pluymakers, 

Ernestus, & Baayen, subm) found greater reduction of segments with small 

information loads in their production cohort compared to segments with great 

information loads, strongly suggesting influences of other word forms on the 

production of the intended word form. Cohort entropies and position-specific 

neighborhoods tend to be negatively correlated.  
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1.4. Statistical analyses  

In this doctoral dissertation, I present analyses of variance (Chapter 2), as well as 

two different types of multiple regression analyses (Chapter 2-5). As presented in 

Chapter 2, the structure of noun-noun compounds allowed for a matching of 

frequencies and the application of analysis of variance designs. The additional 

application of a stepwise multilevel analysis of covariance with participant as main 

grouping factor (Pinheiro & Bates, 2000; Baayen, Tweedie, & Schreuder, 2002; 

Quené & Van den Bergh, 2004) on the same data provided valuable insight with 

respect to the predictive values of other variables of interest. In morphologically 

complex words that contain bound morphemes (such as the studied deverbal 

adjectives and inflected verbs), a similar matching of frequencies for analysis of 

variance designs was unfeasible (see Cutler, 1981 for a discussion of difficulties in 

matching of item sets in psycholinguistics). In Chapters 3, 4 (and 5), I, therefore, 

exclusively used multiple regression analyses.  

1.4.1. Statistical Analysis of multiple regression 

Very recently, a new technique for the analyses of data with repeated 

measurements has become available: the multilevel analysis of covariance with 

subject and word as crossed random effects (Bates, 2005; Bates & Sarkar, 2005; 

Baayen, in press). The superiority of mixed-effects models has convinced me to 

reanalyze all datasets in this fashion. In the following section, I elaborate why I 

chose for this newly available mixed-effects modeling with Subject and Word as 

crossed random effects by comparing different statistical analyses of multiple 

regression.  

By-Item regression 

Multiple regression with Subjects and Words can be done in several different ways. 

One possibility is to average over Subjects to obtain by-Word means, and to use 

these by-Word means as the dependent variable in a standard ordinary least 

squares regression with by-Word predictors such as FREQUENCY and LENGTH. I 

refer to this procedure as a by-Item regression (our Items are Words). 
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By-Subject regression 

A second possibility is to fit separate regression models to the response latencies 

of the individual subjects. For an experiment with 20 subjects, this technique 

results in 20 regression models, with 20 estimates for each coefficient (FREQUENCY, 

LENGTH, etc.). Intercepts and slopes for the population are estimated by averaging 

over the 20 estimates. Significance is assessed by means of one-sample t-tests 

applied to the 20 estimates for the intercept and to the 20 estimates for each slope 

in the model. These t-tests evaluate whether a given coefficient is significantly 

different from zero, i.e., whether the associated predictor has a non-zero slope. 

This regression technique, to which I will refer as by-subject regression, was 

advocated by Lorch and Myers (1990). This regression technique has become the 

gold standard in psycholinguistic research. 

Mixed-effects models 

With the advent of mixed-effects modeling (Pinheiro et al., 2000; Baayen et al., 

2002; Bates, 2005; Bates & Sarkar, 2005; Baayen, in press), new possibilities for 

regression analysis have become available. Mixed-effects models are models 

which incorporate two kinds of predictors, fixed effects and random effects. The 

distinction between fixed effects and random effects pertains to factorial predictors. 

Factors with a fixed, usually small number of levels, such as Sex (male versus 

female) or Animate (animate versus inanimate), are fixed effects. When the levels 

of a factor represent a sample from a larger population, we are dealing with a 

random effect. Examples of random effects are Subject (the subjects in an 

experiment usually do not exhaust the population of speakers) and Word (the 

words in an experiment usually represent an (ideally random) sample from the 

words in use in a given language community). Technically, random effects are 

modeled as random variables that follow a normal distribution with a mean equal to 

zero and some unknown standard deviation that is to be estimated from the data. 

Let us look at a model with Subject as random effect 

 

For an experiment with four words, and with FREQUENCY and LENGTH as predictors, 

Xi represents the data matrix for subject i. 
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The transposed vector of population coefficients T = ( 0, 1, 2) specifies the 

intercept and the slopes for FREQUENCY and LENGTH. The product of Xi  represents 

the expected values for an unseen subject. 

 

In a mixed-effects model, the intercept and slopes are calibrated to provide more 

accurate fits for the subjects in the experiment. Calibration for the intercept implies 

that the average speed with which a subject responds is allowed to vary from 

subject to subject. Calibration with respect to the slope of a predictor relaxes the 

assumption that the effect of the predictor is identical for all subjects. In what 

follows, we assume that subjects differ substantially with respect to their average 

speed and that they are differently sensitive to the effect of FREQUENCY. We also 

assume that they all show the same effect of LENGTH. Therefore, in the present 

example, we assume that calibration is required for the intercept and for the slope 

of FREQUENCY
1. The random effects for subject i are modeled formally by defining 

Zi to contain the first two columns of Xi, 

 

and by introducing a (transposed) vector with the adjustments to intercept and 

slope for subject i, bi
T = (b0i, b1i). The product of Zi and bi is  

                                                           
1 A mixed-effect model has minimally random intercepts for one random effect. Given a model with 

one random grouping factor (here, Subject), one must have random intercepts, and can have one or 

more random slopes. Addition of more random grouping factors (e.g., Items) will lead to more 

random intercepts, and possibly to more random slopes. 
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with b0i bringing individual differences with respect to the intercept into the model, 

and F1b1i representing the fine-tuning of the slope for FREQUENCY. It follows 

straightforwardly from (1), (3), and (5) that 

 

In this model, we have in all three random effects: b0i ~ (0, b0) and b1i ~ (0, 

b1), and the residual error k ~  (0, 2). It can be described as a mixed-effects 

model with random intercepts and with random slopes for FREQUENCY. As can be 

seen from (7), a mixed-effects regression model with random intercepts and 

random slopes for FREQUENCY is similar to a by-subject regression, with as key 

difference that the non-significant differences in the slopes for LENGTH have been 

made part of the error term. One of the advantages of mixed-effects modeling is 

that more precise estimates of the adjustments b0i and b1i are obtained thanks to 

shrinkage2, which allows more precise prediction. Another advantage is that 

longitudinal effects due to, for instance, familiarization or fatigue, can be brought 

into the model. 

The multi-level analysis reported in 2.4 was carried out using a model with 

the overall structure of (1). As in the by-subject regression advocated by Lorch et al 

                                                           
2 The concept of shrinkage can be best explained considering an example. In random regression 

(Lorch and Meyer, 1990), subjects that are extremely fast or extremely slow in one experiment, 

cause a wide range of estimates for the intercept. However, it is known that in repetition estimates 

tend to regress towards the mean. In a repetition, subjects are likely to cause less extreme 

estimates. Mixed-effect regression anticipates this shrinkage towards the mean and brings it into 

the model. Random regression, therefore, provides a (too) tight fit to the data, while mixed-effect 

regression provides better predictions.  
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(1990), this model does not bring variability that is linked to the words into the 

model. At the time that the PNAS paper (sections 1 to 5 of Chapter 2) was written, 

the only way in which Word could be brought into the model equation was by 

nesting Word under Subject, as mixed-effects models were initially developed for 

nested hierarchical designs (e.g., for data with pupils nested under schools nested 

under towns). Such models are often referred to as hierarchical linear models 

(HLMs). Although it has been argued that nesting of Word under Subject is exactly 

the right thing to do (e.g., Quené et al., 2004), recent studies (e.g., Baayen, in 

press) suggest that ignoring by-item variance that is crossed with rather than 

nested under Subject may lead to Type I error rates that are as high as 25% to 

30%. By nesting Word under Subject, the model fitting algorithm is not constrained 

to assigning a given word a constant effect, however small, across all subjects. 

Effectively, the model is free to consider the set of experimental words as 

completely different items for each subject. This freedom also characterizes the by-

subject regression. 

 This can be demonstrated by considering two experimental designs. In one 

design, we expose all subjects to the same set of words, with FREQUENCY and 

LENGTH as predictors. In the other design, we expose each subject to a set of 

words that has no overlap with the sets of words shown to other subjects. Again, 

FREQUENCY and LENGTH are considered as predictors. The assessment of the 

significance of FREQUENCY and LENGTH in a random regression model as 

advocated by Lorch et al. (1990) proceeds in exactly the same way for both 

designs, even though the variance due to the words is much more constrained in 

the first design.  

In general, random regression, mixed-effects regression with Subject as 

random effect, and mixed-effects regression with Word nested under Subject 

perform with nearly identical high Type I error rates when the data are 

characterized by an independent random effect for Word (Baayen, in press; 

Baayen, Davidson, & Bates, subm.). 

Mixed-effects models with Subject and Word as crossed random effects  

It has recently become possible to fit mixed-effects models which contain 

independent random effects for Subject and for Word. Such models are referred to 
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as including crossed random effects. The structure of the new mixed-effects 

models that I have considered in this doctoral dissertation is described by the 

following equation (i denotes subjects, j denotes items). 

 

In the analyses, Wj was always a vector of ones and wj, therefore, was always 

restricted to a by-item adjustment to the intercept. Hence, continuing with the 

above example, the expected onset latencies for this model are 

 

Mixed-effects models with Subject and Item as crossed random effects are much 

more conservative than the corresponding by-subject regression models, and in 

fact tend to report significance levels that are similar to those obtained with by-item 

regression models.  

To summarize, mixed-effects models, in general, offer the advantage of 

shrinkage estimates for the by-Subject and by-Item adjustments to slopes and 

intercept, as well as the possibility to bring longitudinal effects under control. The 

newly available mixed-effects models with crossed random effects for Subject and 

Item are superior to other mixed-effects models, because they are not prone to 

increased Type I error rates. Therefore, the statistical analyses reported in 

Chapters 3-5 all make use of the general model defined in (10). At the end of 

Chapter 2, I present a reanalysis of the data reported in Bien, Levelt and Baayen 

(2005) which had been analyzed there with only Subject as random effect. The 

reanalysis includes Word as random effect, and leads to a more parsimonious 

model. 
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FREQUENCY EFFECTS IN COMPOUND PRODUCTION  

CHAPTER 2 
 

Heidrun Bien, Willem J. M. Levelt, & R. Harald Baayen 1 

 

 

Abstract 

Four experiments investigated the role of frequency information in compound 

production by independently varying the frequencies of the first and second 

constituent as well as the frequency of the compound itself. Pairs of Dutch noun-

noun compounds were selected, such that there was a maximal contrast for one 

frequency, while matching for the other two frequencies. In a position-response 

association task, participants first learned to associate a compound with a visually 

marked position on a computer screen. In the test phase, participants had to produce 

the associated compound in response to the appearance of the position mark and we 

measured speech onset latencies. 

The compound production onset latencies varied significantly according to 

factorial contrasts in the frequencies of both constituting morphemes, but not 

according to a factorial contrast in compound frequency, providing further evidence 

for decompositional models of speech production. In a stepwise regression analysis 

of the joint data of all four Experiments, however, compound frequency was a 

significant non-linear predictor, with facilitation in the low-frequency range and a 

trend towards inhibition in the high-frequency range. Furthermore, a combination of 

structural measures of constituent frequencies and entropies explained significantly 

more variance than a strict decompositional model including cumulative stem 

                                                           
1 This chapter (section 2.1-5) originally appeared in Proceedings of the National Academy of Science 

(2005), 102, 17876-17881. In section 2.6, I present an additional analysis of the compound naming 

latencies with crossed random effects for subject and item. 
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frequency as the only measure of constituent frequency, suggesting a role for 

paradigmatic relations in the mental lexicon. 

2.1. Introduction 

High-frequency words are produced more quickly than low-frequency words. Since 

the seminal study of Oldfield and Wingfield (1965), the effect of word-frequency has 

emerged to be replicable and robust. In their series of timed picture naming studies in 

seven languages, Bates, D’Amico, Jacobsen, Szekely, Andonova, Devescovi, 

Herron, ChingLu, Pechmann, Pl’eh et al. (2003) found large frequency effects in all 

the seven languages studied. Jescheniak and Levelt (1994) observed that the 

frequency effect for lemma retrieval diminished quickly over repetition, but that the 

frequency effect for a word's form (lexeme) remained stable across repetitions. The 

cumulative homophone effect reported in that study suggests that the effect of word 

frequency arises at the level of word form, rather than conceptualization or 

articulation. Word frequency has, therefore, been attributed (Levelt, Roelofs, & 

Meyer, 1999) to the access of a word's phonological code (but see Caramazza, 

Costa, Miozzo, & Bi, 2001; Jescheniak, Meyer, & Levelt, 2003). The general finding 

that a word's frequency is correlated with its production latency has become a 

powerful experimental tool. 

In this study, we address frequency effects in the production of Dutch 

compounds in order to distinguish decompositional from non-decompositional models 

of production. Fully non-decompositional theories predict frequency effects for each 

individual form of occurrence. In such theories, only the specific frequency of 

morphologically complex words such as handbag is expected to be predictive of their 

production latency. We will refer to this form-specific frequency as the word form 

frequency. In the case of compounds such as handbag, fully non-decompositional 

theories distinguish the word form frequency of the singular handbag from the word 

form frequency of the plural handbags. 

In a fully decompositional model such as (Levelt et al., 1999; Levelt, 2001) and 

its computer simulation WEAVER++ (Roelofs, 1997), all complex words are 

assembled from their constituent morphemes. The more often a morpheme has been 
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used, the lower its activation threshold. Hence, the proper frequency measure for 

predicting production onset latencies in WEAVER++ for words such as hand is the 

summed frequency of all variants of that word, whether part of inflected (hands), 

derived (handy) or compound words (handbag). Each of those occurrences is 

assumed to leave a frequency trace on the stem hand. In what follows, we will refer 

to the summed frequencies of a word as its CUMULATIVE STEM
2
 FREQUENCY (see 

Laudanna & Burani, 1985; Burani & Caramazza, 1987; Schreuder & Baayen, 1997) 

for CUMULATIVE STEM FREQUENCY effects reported for comprehension). 

According to WEAVER++ (Roelofs, 1997), the CUMULATIVE STEM FREQUENCIES 

of the constituents hand and bag should be the relevant frequency measures for 

predicting the production latency of a compound such as handbag. Roelofs (1996), 

using the implicit priming paradigm (Meyer, 1990, 1991), addressed the question of 

whether the form lexicon underlying speech production contains morphologically 

decomposed entries. In this paradigm, subjects produce words from learned paired-

associates. Homogenous response sets, in which all response words began with the 

same morpheme, resulted in shorter naming onset latencies than heterogeneous 

response sets, in which all initial morphemes of response words were different. 

Crucially, this preparation effect was larger for words with initial low-frequency 

morphemes than for ones with high-frequency morphemes and the effect was stable 

in repeated measurements. This is because low-frequency morphemes have more to 

gain from implicit priming than high-frequency morphemes. This finding supports 

decompositional theories in which the constituents of words like handbag are 

individually accessed during the production process. Currently, WEAVER++ 

implements the most parsimonious decompositional theory, by assuming that the 

form representation for hand in handbag is the same as the one for the word hand 

itself. 

An intermediate position between non-decompositional and fully 

decompositional models is to assume structured storage. Instead of storing handbag 

at the form level as two independent monomorphemes, it might be stored with 

information about their combination. In a model with structured storage, the 

                                                           
2 CUMULATIVE STEM FREQUENCY and CUMULATIVE ROOT FREQUENCY denote the same variable 
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frequencies of hand as the first constituent of any compound or bag as head of any 

compound can be more precise predictors than their frequencies as independent 

words. We will refer to a set of compounds sharing the same left (or right) constituent 

as the left (or right) constituent family, following (Krott, Baayen, & Schreuder, 2001). 

For each constituent family, we have a distribution of the compound frequencies of its 

members. One way to obtain a point estimator of such a distribution is to sum the 

frequencies of its members (henceforth, POSITIONAL FREQUENCY). Another point 

estimator of this distribution is to compute Shannon's entropy for the probability 

distribution estimated by the relative frequencies (the frequencies normalized with 

positional frequency, henceforth, POSITIONAL ENTROPY) (Shannon, 1948; Shannon, & 

Weaver, 1949).  

Both the POSITIONAL FREQUENCY and the POSITIONAL ENTROPY are measures 

calculated for the range of alternative compounds sharing the same morpheme in the 

same position. While the POSITIONAL FREQUENCY adds up the frequencies of the 

constituent family members, the POSITIONAL ENTROPY takes into account the 

probability distribution within the family. Other constituent frequency measures that 

are of potential interest are the summed frequencies of all other complex words in 

which the constituent appears (henceforth, COMPLEMENT FREQUENCY) and the entropy 

of the constituents calculated over the full range of morphologically complex words in 

which the constituent appears (henceforth, DERIVATIONAL ENTROPY).  

Finally, we define the summed frequencies of a word's inflectional variants as 

LEMMA FREQUENCY. In the case of a simple or complex noun, the inflectional variants 

are the singular and the plural forms. The CONSTITUENT LEMMA FREQUENCY of hand in 

handbag, therefore, refers to the sum of the frequencies of hand and hands, while 

the lemma frequency of the compound (henceforth, COMPOUND FREQUENCY) refers to 

the sum of the frequencies of handbag and handbags, respectively. In general, the 

LEFT (or RIGHT) CONSTITUENT LEMMA FREQUENCY, CUMULATIVE STEM FREQUENCY, 

POSITIONAL FREQUENCY, POSITIONAL ENTROPY, COMPLEMENT FREQUENCY and 

DERIVATIONAL ENTROPY are strongly correlated.  
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2.1.1 Key questions 

In this paper we address three key questions. First, can separate frequency effects 

for the constituents of compounds be ascertained? Constituent frequency effects 

would provide further evidence against full unstructured storage models. Roelofs 

(1996) observed constituent frequency effects for the left constituent using implicit 

priming. We seek to replicate this finding, using immediate naming. In addition, we 

examine whether a similar frequency effect can be found for the right constituent. It is 

not self-evident that a frequency effect for the right constituent should exist, even 

within decompositional theories. Various studies (Roelofs, 1996; Cholin, Schiller, & 

Levelt, 2004) have shown that production proceeds incrementally, suggesting that 

the frequency of the second constituent might become relevant only after completion 

of the planning and initiation of the articulation of the first constituent. However, there 

are circumstances in which the length of the word co-determines object naming onset 

latencies (Meyer, Roelofs, & Levelt, 2003), indicating that speakers may plan the 

complete phonological word before speech onset. This evidence is in line with recent 

studies addressing the acoustic realization of complex words. Stems pronounced in 

isolation tend to have longer durations, and tend to be produced with a different 

intonation contour, than the same stems appearing as the initial constituents of 

complex words, both for inflection and derivation (Kemps, Ernestus, Schreuder, & 

Baayen, 2005; Kemps, Wurm, Ernestus, Schreuder, & Baayen, 2005; Koester, 

Gunter, Wagner, & Friederici, 2004). This suggests that the planning of the 

articulation of the first constituent is to some extent dependent on the presence of a 

second constituent. 

Second, does the frequency of the compounds contribute to its response 

latency? In non-decompositional models, compound frequency should be the only 

relevant measure. But in strict decompositional models, it should be irrelevant. In a 

model with structured storage a compound frequency effect cannot be ruled out, but 

it might be strongly modulated by the role of the constituent families. 

Third, are constituent frequency effects on response latency best predicted 

from the cumulative stem frequencies of the constituents, or do we rather see 

different effects of the more specific frequencies measures, including positional 
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measures based on the constituent families? This comparison allows us to 

distinguish between full decomposition as in WEAVER++ and structured storage. 

In our experiments, we systematically manipulated the frequency of the first 

morpheme, of the second morpheme, and of the compound itself, to examine their 

individual influences on compound production latency. For each experiment, we 

selected pairs of Dutch compounds as targets, such that there was a maximal 

contrast for one frequency factor, while the other two (exception: Exp 3) were 

matched. The contrasts were constructed in terms of lemma frequency but coincided 

with a range of additional contrasts such as cumulative stem frequency, positional 

frequency or derivational entropy for the constituents. Following the factorial analyses 

of Experiments 1-4, we present a regression analysis addressing the question, which 

of these frequency measures are the appropriate predictors. 

All compounds used in this study are semantically transparent Dutch noun-

noun compounds, with the first constituent being the modifier and the second 

constituent being the head noun. 

2.2. Material and Method 

From the CELEX lexical database (Baayen, Piepenbrock, & Guliker, 1995, CD-

ROM), we selected Dutch noun-noun compounds on the basis of three frequency 

counts: the lemma frequency (the summed frequencies of the word's inflectional 

variants) of the compound3, the lemma frequency of its left constituent, and the 

lemma frequency of its right constituent. (All CELEX frequencies reported here and 

below are counts based on a corpus of 42 million words.) For each experiment, we 

selected 32 compounds which consisted of 16 pairs. 

2.2.1. Pairs in Experiment 1: The frequency of the head noun 

In Experiment 1, the compounds in a pair shared the first morpheme (e.g., luchtbrug - 

luchtbuks, airlift - airgun), they were matched for compound frequency, and differed 

with respect to the frequency of the second constituent, which was either high (mean: 

                                                           
3 For all compounds we additionally collected familiarity ratings of 16 participants and the frequencies 

with which the compounds appear in Google, to double check the CELEX frequencies. 
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13354, median: 5731, range: 437-50439) or low (mean: 145, median: 61, range: 1-

867).  

The sixteen compounds with low-frequency second constituents were 

arranged into eight pairs (e.g., luchtbuks - broodkruim) with the constraint that the 

pair mates had minimal phonological overlap, no obvious semantic relation, and had 

similar compound frequencies. The same was done for the sixteen compounds with 

high-frequency second constituents. Presentation was blocked by condition and the 

order of the blocks was counterbalanced. Half of the participants started out with the 

eight pairs with low-frequency second constituents, the other half began with the 

eight pairs with high-frequency heads. We blocked the conditions in order to 

minimize effects of criterion-setting that would lead to elongated responses for 

otherwise short reaction times and to speeded responses for otherwise long reaction 

times (Meyer et al., 2003; Lupker, Brown, & Colombo, 1997). The sixteen subsets of 

target compounds were complemented by three practice subsets, with compounds of 

similar structure and frequency.  

2.2.2. Pairs in Experiment 2: The frequency of the modifier 

In Experiment 2, the compounds in a pair shared the second morpheme, and were 

matched for compound frequency. The first morpheme carried a factorial contrast 

between high (mean: 8072, median: 7111, range: 1424-23062) and low (mean: 660, 

median: 356, range: 39-2645) frequency. As described for Experiment 1, we blocked 

the conditions by rearranging the items into eight subsets of compounds with low-

frequency modifiers and eight subsets of compounds with high-frequency modifiers 

and added three practice subsets of similar structure and frequency.  

2.2.3. Pairs in Experiment 3: Frequency contrasts for head and modifier 

In Experiment 3, we selected thirty-two compounds, pairwise-matched for compound 

frequency. Within a pair, one compound had high-frequency constituents (mean: 

10400, median: 7213, range: 409-48452) and the other low-frequency constituents 

(mean: 618, median: 291, range: 4-4416). A given constituent appeared in only one 

compound. We used the same blocking strategy as described for the Experiments 1 
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and 2 and complemented the resulting sixteen subsets of condition-intern repairings 

by three practice subsets of similar structure and frequency.   

2.2.4. Pairs in Experiment 4: The frequency of the compound 

In Experiment 4, thirty-two compounds were selected, pairwise-matched both 

according to the frequency of the first morpheme and according to the frequency of 

the second morpheme, while the frequency of the compound was either high (mean: 

973, median: 897, range: 516-2369) or low (mean: 48, median: 39, range: 6-132). As 

described for the previous experiments, we blocked the conditions, creating eight 

subsets of low-frequency compounds and eight subsets of high-frequency 

compounds that were complemented by three similar practice subsets.  

2.2.5. Participants 

For each experiment, twenty-four native speakers of Dutch4 were recruited from the 

subject pool of the Max Planck Institute for Psycholinguistics. None of them took part 

in more than one of the experiments. They received  5 for their participation. 

2.2.6. Position-Response Association Task 

Participants were tested individually in a dimly lit sound-attenuated booth. They were 

comfortably seated in front of a CRT computer screen, a Sennheiser microphone and 

a cordless mouse and they were wearing headphones. On average, a session lasted 

45 min. 

We used a position-response association task (Cholin, Levelt, & Schiller, 

2006), in which participants learned to associate the two compounds in a subset with 

visually marked positions on the left and right part of a computer screen. For each 

subset, the experimental procedure consisted of a learning phase, a practice phase 

and a test phase. Each phase was introduced by an attention signal presented on the 

screen for two seconds, and ended with a pause signal that remained on the screen 

until the following phase was initiated by the experimenter. 

                                                           
4 The gender of the participants was as follows: Experiment 1: 20 female, 4 male; Experiment 

2: 19 female, 5 male; Experiment 3: 17 female, 7 male; 19 female, 5 male. 
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In the learning phase, participants were presented with the two compounds 

over headphones. Simultaneously with hearing the first compound, they saw the icon 

of a loudspeaker appearing on the left side of the screen. Simultaneously with 

hearing the second compound, the same icon appeared on the right side of the 

screen. This procedure was repeated once. 

In the practice phase, both icons (left and right) were visible with the cursor of 

the mouse in the center of the screen. The subject was then acoustically presented 

with one of the two compounds and had to click on the associated icon. Both 

compounds were presented twice and in random order. We provided the participants 

with feedback on their accuracy by displaying the number of errors (0-4) on the 

screen. 

In the test phase, 20 trials of a distractor task alternated with 20 trials of the 

experimental task. A test phase always began with a distractor trial. In a distractor 

trial, one of five single-digit numbers (1, 2, 3, or 6) was presented in the center of the 

screen and had to be named as fast and correctly as possible. We included those 

distractor trials to avoid that participants would have to produce exactly the same 

word during consecutive trials. In other words, the insertion of distractor trials made it 

difficult for participants to use the break between two experimental trials to already 

prepare one of the target words. In an experimental trial, the icon of a loudspeaker 

was presented either on the left or right position of the screen, prompting the 

participant to say aloud the associated compound, again as fast and correctly as 

possible. Each position appeared a total of ten times. The two positions were 

presented in pseudo-random order with the restriction of a maximum of four 

consecutive repetitions of one position. 

Simultaneous with the presentation of the icon, the voice key was activated for 

1500 ms. Naming onset latencies longer than 1500 ms were counted as time-outs. 

The experimenter monitored the participant's responses through headphones and 

took notes of incorrect naming, hesitations and voice key errors. 
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2.3. Results 

Only those compounds for which a correct response was obtained were included in 

the analysis. Time-out trials (>1500 ms) and extreme outliers (i.e., latencies outside a 

range of two standard deviations around the mean latency for each subject per 

condition (high or low) as well as for each item) were also removed from the analysis. 

2.3.1. Results Experiment 1: The frequency of the head noun 

Altogether, 421 trials were excluded (5%) in Experiment 1. Mean onset latencies, 

standard deviations, and error rates are summarized in Table 2.1. 

We analyzed the onset latencies both by subjects and by items, with 

FREQUENCY as a within participants factor, and ORDER as a between participants 

factor. Compounds with a high right constituent frequency elicited shorter onset 

latencies (on average 14 ms) than compounds with a low-frequency head, both in the 

analysis by participants (F1(1,22) = 5.8 , p = 0.025), and in the analysis by items 

(F2(1,30) = 18.1, p <.001). There was no effect of ORDER in the by-participant 

analysis (F(1,22) = 2.1, p = 0.16) and no interaction of ORDER by FREQUENCY (F(1,22) 

= 1.8, p = 0.19). In the by-item analysis, ORDER emerged as a significant main effect 

(F(1,30) = 16.9, p < 0.001) in interaction with FREQUENCY (F(1,30) = 5.9, p = 0.021). 

The interaction points to a significant difference between the 6 ms FREQUENCY effect 

for the high-low block order, and the 21 ms FREQUENCY effect for the low-high block 

order. An analysis of the error scores revealed no significant main effects, nor any 

interactions. 

  Apparently, the blocking strategy, which was chosen in order to avoid criterion 

setting, created an alternative problem, the interaction of frequency and practice. Due 

to practice, participants became faster, leading to shorter onset latencies in the 

second block compared to the first block. The speeding up was strong in the 

otherwise slow low-frequency set, while the already fast production of high-frequency 

items may benefit less from an additional effect of practice, underestimating the 

difference between low- and high-frequency items in the high-low order of 

presentation.  
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In short, the frequency of the head noun co-determines production onset 

latencies, even though it is not the initial constituent of a compound, providing 

evidence for decompositionality as well as evidence against strict incrementality. 

Apparently, articulation is not initiated before the phonological code of the head noun 

has been retrieved. Experiment 2 investigates the predictivity of the frequency of the 

initial constituent. 

Table 2.1: Mean onset latencies in ms for Experiments 1-4 for the main effect of frequency 

(with standard deviations and error percentages) and for the Block Orders LH (first block low-

frequency items, second block high-frequency items) and HL (first block high-frequency 

items, second block low-frequency items). 

Exp Freq Mean In LH In HL 

1 high 457 (111, 3) 437 476 

 low 471 (116, 2) 458 482 

2 high 443 (118, 5) 439 447 

 low 468 (129, 5) 487 450 

3 high 414 (105, 6) 405 424 

 low 441 (115, 5) 445 437 

4 high 442 (108, 4) 430 454 

 low 434 (104, 4) 433 435 

 

2.3.2. Results Experiment 2: The frequency of the modifier 

Altogether, 814 trials (10%) were removed from the analysis following the criteria 

described above. 

Compounds with a high LEFT CONSTITUENT FREQUENCY elicited shorter onset 

latencies (on average 25 ms) than compounds with a low-frequency modifier, both in 

the analysis by participants (F1(1,22) = 19.4, p <.001), and in the analysis by items 

(F2(1,30) = 48.5 , p <.001). In the by-participant analysis, there was no main effect of 

ORDER (F(1,22) = 0.2, p = 0.675) but an interaction of ORDER by FREQUENCY (F(1,22) 

= 13.5, p = 0.001). In the by-item analysis, ORDER emerged as a significant main 
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effect (F(1,30) = 9.0, p = 0.005) in interaction with FREQUENCY (F(1,30) = 37.7, p 

<.001). As in Experiment 1, the difference between the high and low frequency 

conditions was bigger in the low-high block order (48 ms) than in its reverse (3 ms). 

An error analysis revealed no significant main effects, nor interactions. 

In short, this experiment shows that the frequency of the initial constituent 

affects compound production, as expected in a decompositional theory of compound 

production. We next investigated whether constituent frequency effects can be 

observed in the absence of compounds in the experiment that share head or 

modifier. In order to maximize constituent effects, only two conditions were tested: 

high versus low frequency for both constituents. 

2.3.3. Results Experiment 3: Frequency contrasts for head and modifier 

Time-out trials, voice key errors, extreme outliers, and incorrect naming responses 

were removed from the data set (863 trials, 11%). 

Analyses of variance with FREQUENCY as a within factor and ORDER as a 

between factor revealed that compounds with high-frequency constituents elicited 

shorter onset latencies (on average 27 ms) than compounds with low-frequency 

constituents (F1(1,22) = 20.7 , p <.001; F2(1,30) = 42.7 , p <.001). There was no 

main effect of ORDER (F1(1,22) = 0.2, p = 0.631; F2(1,30) = 1.4, p = 0.241), but an 

interaction of ORDER by FREQUENCY (F1(1,22) = 8.5, p = 0.008; F2(1,30) = 11.1, p = 

0.002). As before, the interaction suggested that the difference between the high and 

low frequency conditions was more prominent in the Low-High block order (40ms) 

than in the High-Low block order (13ms). Analysis of the error scores revealed no 

significant main effects, nor any interactions. 

This experiment provides further support for the constituent frequency effects 

of Experiments 1 and 2, though not differentiating between the frequency effects of 

the first and of the second morpheme. It also rules out the possibility of a confound 

due to prior experience with a head or a modifier in the experiment. 

In our final experiment we addressed the question of whether the production 

latency of a compound might be additionally affected by the compound's own 

frequency of occurrence.  
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2.3.4. Results Experiment 4: The frequency of the compound 

A total of 652 trials (8%) was excluded from the analyses following the criteria 

defined above. 

We analyzed the onset latencies with analyses of variance both by 

participants and by items. FREQUENCY was a within factor, and ORDER was a between 

factor. On average, the high-frequency compounds elicited onset latencies that were 

8 ms longer than the low-frequency compounds. This difference in the direction of an 

anti-frequency effect did not reach full significance in the by-participants analysis 

(F1(1,22) = 3.5 , p = 0.074), but reached significance in the by-item analysis 

(F2(1,30) = 6.8 , p = 0.014).  

In the analysis by participants, there was no main effect of ORDER (F(1,22) = 

0.4, p = 0.515) but an interaction of ORDER by FREQUENCY (F(1,22) = 5.6, p = 0.028). 

In the analysis by items, ORDER emerged as a significant main effect (F(1,30) = 9.9, 

p= 0.004) in interaction with FREQUENCY (F(1,30) = 11.7, p =0.002).  

The interaction points to a significant difference between the 19 ms anti-

frequency effect for the high-low block order, and the 3 ms frequency effect for the 

low-high order. We have argued so far that the interaction of block order and 

frequency reflects a practice effect, which leads to an underestimation of the 

frequency effect, when the slow block is presented last. In Experiment 1-3, the slower 

block clearly was the block with the items of the low-frequency condition. Here, the 

situation seems to be reversed, with the items of high compound-frequency 

displaying a practice effect. If so, the anti-frequency effect would be underestimated 

in the low-high block order. An analysis of the error scores revealed no effects. 

In summary, high-frequency compounds were not produced any faster than 

low-frequency compounds. If anything, they elicited longer naming onset latencies. 

2.4. Comparing Frequency Measures 

Material selection for the Experiments 1-4 was based on LEMMA FREQUENCY. Table 

2.2 shows for Experiments 1-3, that the high versus low frequency conditions for the 

constituents implemented contrasts in all the different measures of constituent 

frequency and entropy that we defined in the introduction.  
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Table 2.2: The frequency characteristics of the material in Experiments 1-3 (log-transformed) 

for the left/right constituent. CUMULATIVE STEM FREQUENCY (CumFreq), LEMMA FREQUENCY 

(LemFreq), COMPLEMENT FREQUENCY (ComplFreq), POSITIONAL FREQUENCY (PosFreq), 

POSITIONAL ENTROPY (PosEntr), DERIVATIONAL ENTROPY (DerEntr). 

CumFreq LemFreq ComplFreq PosFreq PosEntr DerEntr 
 

left right left right left right left right left right left right 

Exp  high 9.44 10.01 8.89 9.59 8.59 8.95 8.00 7.89 13.87 10.47 21.39 14.78 

1 low 9.44 6.88 8.89 5.76 8.59 6.49 8.00 5.91 13.87 2.46 21.39 9.36 

Exp  high 9.61 9.59 9.00 9.01 8.73 8.59 7.90 7.99 12.30 12.97 22.98 16.86 

2 low 7.29 9.59 6.50 9.01 6.64 8.59 6.28 7.99 7.27 12.97 9.31 16.86 

Exp  high 9.99 9.82 9.43 9.03 9.04 8.99 7.77 7.90 13.12 11.32 22.80 18.24 

3 low 7.25 7.86 6.42 6.44 6.65 6.95 5.68 6.64 6.00 6.17 12.79 12.26 

 

To further examine their predictivity, we included these measures in a stepwise 

regression analysis of the joint data of Experiments 1-4, along with NEIGHBORHOOD 

DENSITY (Vitevitch, 2002), defined as the number of words that are similar to a target 

on the basis of the substitution of a single phoneme only (Coltheart, Davelaar, 

Jonasson, & Besner, 1977) and factors controlling for the sensitivity of the voicekey, 

addressing the nature of the onset phoneme. We started out with a variety of 

specifications such as voicing, fricative, nasal etc., but only the factor PLOSIVE vs. 

non-plosive turned out to be a significant predictor. Figure 2.1 visualizes the partial 

effects of the covariates.  

A stepwise multilevel analysis of covariance (Pinheiro & Bates, 2000; Baayen, 

Tweedie, & Schreuder; 2002; Baayen, 2004; Quené, & Van den Bergh, 2004) with 

participant as main grouping factor revealed effects of the manner of articulation of 

the initial consonant (  = 0.0240, t(28822) = 7.5595, p < 0.0001), PLOSIVES elicited 

longer naming onset latencies (Panel 9), probably an artifact of the voicekey.  

Panels 1 and 4 illustrate the facilitatory, linear effects of the left and right 

positional entropies adjusted for the effects of the other covariables (LEFT POSITIONAL 

ENTROPY:  = -0.0081, t(28822) = -4.1796, p < 0.0001; RIGHT POSITIONAL ENTROPY:  

= -0.0098,  t(28822) = -4.1716, p < 0.0001). Panel 2 and 5 picture the facilitatory, 

linear effect of the LEFT COMPLEMENT FREQUENCY (  = -0.0077, t(28822) = -6.2234, p 

< 0.0001), and the inhibitory, linear effect of the RIGHT COMPLEMENT FREQUENCY (  = 
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0.0055, t(28822) = 3.7080, p = 0.0002). Notice, that this effect of complement 

frequency is significant for both head and modifier, but in the opposite direction. 

 

 

Figure 2.1: Partial effects of the predictors in the multilevel covariance analysis of the data of 

Experiments 1–4. The left vertical axis shows the effect in log units; the right axis shows the 

effect in milliseconds. Values pertain to words that do not begin with a plosive and are 

adjusted for the effects of the other covariates at their median value. 

  

The more often the modifier appears as a constituent in other complex words, 

independent from its position within those words, the faster the compound is named. 
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In contrast, the more often the head constituent appears within other complex words, 

the slower the compound is named. For the head, and only for the head, however, 

we also observe an effect of lemma frequency, and this effect is facilitative (RIGHT 

LEMMA FREQUENCY,  = -0.0036, t(28822) = -2.9686, p = 0.0030).  

The higher the frequency of the head as an independent word, the faster the 

compound is named (Panel 3). For the modifier, we further observe a linear, 

facilitatory effect of derivational entropy (  = -0.0071, t(28822) = -3.8231, p = 0.0001, 

LEFT DERIVATIONAL ENTROPY) as plotted in Panel 6.  

Panel 7 shows the nonlinear curve for the neighborhood density of the initial 

constituent (  = 0.0041, t(28822) = 5.2589, p < 0.0001 for the linear component of 

the LEFT NEIGHBORHOOD Density, for its quadratic component,  = -0.0001, t(28822) = 

-4.9338, p < 0.0001), suggesting facilitation for left constituents with very sparse or 

very dense phonological similarity neighborhoods. There was no effect of the 

neighborhood density of the right constituent. Panel 8 illustrates the nonlinear curve 

for COMPOUND FREQUENCY (  = -0.0351, t(28822) = -6.3141, p < 0.0001 for its linear 

component,  = 0.0041, t(28822) = 6.5850, p < 0.0001 for its quadratic component).  

While in the lower range of compound frequencies we see a facilitatory effect, 

this effect levels off and turns into inhibition in the higher range of compound 

frequencies. The two grey, vertical lines in this panel mark the averages of the low- 

and high-frequency conditions used in Experiment 3, illustrating why we did not 

observe a reliable effect of COMPOUND FREQUENCY in that experiment. The factorial 

contrast tended to balance low-frequency facilitation and high-frequency inhibition.  

Finally, we compared the predictivity of our model with the predictivity of a 

strict decompositional model, a model in which the CUMULATIVE STEM FREQUENCIES of 

the left and right constituents were the only measures of constituent frequency 

entered into the regression equation. Both models included the non-frequency 

predictors NEIGHBORHOOD DENSITY and PLOSIVE. The more complex model explained 

significantly more variance than the strict decompositional model (Log-likelihood ratio 

test, p < 0.001) with a 61 percent increase in the variance explained by linguistic 

predictors.  
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Summing up, the factorial analyses of Experiments 1-4 showed that the 

naming latency of a compound was affected by the frequencies of its constituents. 

The regression analysis revealed that the naming latency of a compound is affected 

by a combination of different measures of frequency and entropy for both 

constituents. Interestingly, a qualitative difference emerged with respect to how the 

left and right constituents were affected. While for the modifier all significant effects of 

frequencies and entropies are facilitative, there is facilitation as well as inhibition for 

the head-constituent. The total outcome is facilitation in both cases, with greater 

facilitation for the modifier. In the regression analysis, we also observed that 

compound frequency was one of the factors with explanatory value. The nonlinear 

effect of COMPOUND FREQUENCY suggests facilitation within the lower frequency 

range, combined with inhibition in the higher frequency range. This inhibition might 

represent a floor effect, however, as it might be an artifact of modeling nonlinearity 

with a simple, quadratic polynomial. 

2.5. Discussion 

This study addressed three key questions concerning the role of frequency in 

compound production. First, are there separate frequency effects for the constituents 

of a compound? Second, does the frequency of the compound itself affect its naming 

latency? Third, if we find effects of constituent frequency, which measures of 

frequency and entropy are the best predictors for the compound production onset 

latencies? 

Experiments 1-3 addressed the first question by means of factorial contrasts. 

For pairs of compounds matched for COMPOUND FREQUENCY and sharing one 

constituent, a frequency contrast on the other constituent affected the production 

onset latencies. Both for the head (Experiment 1) and for the modifier (Experiment 2), 

a higher CONSTITUENT FREQUENCY led to shorter naming onset latencies. This 

advantage of high frequency constituents persisted in Experiment 3, in which both 

constituents were of either high or of low frequency. These results allowed us to 

conclude that the frequencies of both constituents indeed codetermine the production 

latency of a compound.  
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Experiment 4 addressed the second question by means of a factorial contrast, 

matching for CONSTITUENT FREQUENCIES and contrasting COMPOUND FREQUENCIES. 

High frequency compounds were not produced any faster than their matched 

counterparts with low frequencies. In fact, there was an indication that a high 

COMPOUND FREQUENCY might be inhibitory, but this inhibitory effect was small and not 

fully significant. 

In order to ascertain which frequency or entropy measures are the optimal 

predictors for the naming onset latencies, we analyzed the joint data of Experiments 

1-4 by means of a multilevel regression analysis, which revealed that the production 

onset latencies were best predicted not by the constituent's CUMULATIVE STEM 

FREQUENCY but rather by a combination of different, partly position-specific frequency 

and entropy measures and compound frequency. 

These results shed new light on the role of decompositionality and 

incrementality in production. If compounds were similar to monomorphemic words, as 

in full-listing models, their naming onset latencies should depend on COMPOUND 

FREQUENCY only. Our experiments show, however, that COMPOUND FREQUENCY plays 

a minor role only, leading to facilitation only for the lowest ranges of compound 

frequencies, and possibly to inhibition for the higher frequency ranges. The presence 

of an effect of COMPOUND FREQUENCY in the regression analysis shows that the 

position-response association task is, in fact, sensitive to word frequency, which has 

been demonstrated before (Cholin, 2004). Since the effects that we observed for 

constituent frequencies were both larger and more robust, we conclude that our data 

challenge models with only unstructured storage and no decomposition for complex 

words (see Ayala & Martin, 2002; Mondini, Luzzatti, Saletta, Allamano, & Semenza, 

2005 for similar conclusions based on aphasic speakers).  

The CONSTITUENT FREQUENCY effects observed for the left constituent replicate 

the frequency effect reported for initial constituents in (Roelofs, 1996). The frequency 

effects observed for the right constituent provide further support for the possibility 

that production onset latencies are determined not only by the first morpheme or 

syllable, but also by subsequent parts of the word as mentioned in (Meyer et al., 

2003). The observation that frequency effects for the first constituent are more 



CHAPTER 2 

 

 

45 

facilitatory than for the second constituent supports theories of incremental 

morphological processing in production. However, the effect of the second 

constituent argues against full incrementality. Speakers apparently plan the 

articulation of the first constituent with an eye on what is to be produced next. This 

look-ahead may also shape the details of the acoustic realization (Kemps et al., 

2005a, 2005b; Koester et al., 2004). 

The finding that the general frequency effects of the left and right constituents 

can be made more precise in terms of structural measures of constituent frequency 

and entropy offers new insights into the details of morphological processing in lexical 

access that invite further theoretical reflection. Our data suggest that the mental 

lexicon is highly sensitive to the specific morphophonological context in which a word 

has to be articulated. 

The CUMULATIVE STEM FREQUENCY is a context-independent predictor of the 

speaker's familiarity with a given word form (e.g., hand), whereas position-specific 

measures are contextually conditioned predictors (e.g., hand in handbag or 

handcuff). This contextual sensitivity may well reflect the differences in the phonetic 

details of the production of hand by itself versus the production of hand as a head or 

a modifier. The POSITIONAL FREQUENCY effects are in line with the predictions of 

decompositional models with structured storage. 

The POSITIONAL ENTROPY effects provide further evidence for the role of 

paradigmatic relations (the links between morphologically related words) in the 

mental lexicon (Ernestus & Baayen, 2004; Krott et al., 2001). Paradigmatic effects in 

lexical processing show that words are not isolated processing units, but rather 

structured units participating in networks of morphological relations. For instance, our 

POSITIONAL ENTROPY effects argue for structured storage, because the more often 

constituents appear in other compounds in the same structural position the faster are 

their production onset latencies in immediate naming. 

The similarity in the magnitude of the POSITIONAL ENTROPY effects for the left 

and right constituents suggests that the paradigmatic effects do not differentiate 

between the constituent that has to be pronounced first, and the constituent that has 

to be pronounced last. However, from the perspective of incremental processing, 
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simultaneous activation of the head with the modifier should be disadvantageous. In 

fact, there is evidence for some disadvantage associated with co-activation of the 

head: the inhibitory effect of the RIGHT COMPLEMENT FREQUENCY. For the initial 

constituent, the modifier, all measures of frequency and entropy are facilitatory, but 

for the final constituent, the head, the inhibitory effect of the RIGHT COMPLEMENT 

FREQUENCY modulates the facilitatory effects of the other measures. Apparently, 

selecting the target's first constituent is the harder, the more other morphologically 

complex non-compound words include the head constituent. Consequently, the 

overall frequency effect for the modifier emerged as stronger than the overall 

frequency effect for the head. 

Considered jointly, our experiments support decompositional models of 

speech production, in which the paradigmatic relations entertained by the 

constituents of a compound with other morphologically complex words containing the 

constituents, as well as their structural position within those other words co-

determine the details of the planning and articulation of the compound.  

2.6. A reanalysis of the compound naming latencies with crossed 

random effects for subject and item5  

A multilevel analysis of covariance with subject and item as crossed random effects 

(Bates, 2005; Bates & Sarkar, 2005; Baayen, in press) was fitted to the compound 

data, using a stepwise variable selection procedure.  

2.6.1. Results 

Inspection of the distribution of the residuals of the fitted model showed clear 

divergences from normality. Therefore, outliers with an absolute standardized 

residual exceeding 2.5 standard deviations from the mean were removed from the 

data (2.0 % of the correct namings within the time limit), after which the model was 

                                                           
5 For a short introduction to this newly available technique, its advantages and our rational for 

using it, the reader is referred to section 4 of Chapter 1. 
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refitted. Model criticism by means of quantile-quantile plots6 did not reveal problems 

with the goodness of fit of the trimmed model. In the previous regression analysis 

reported in 2.4, a relatively higher number of outliers was excluded (2.4 % of all 

correct namings within the time limit), applying the same threshold for outliers. Fewer 

outliers indicate a better fit between model and data.  

Table 2.3: Fixed effects of the multilevel regression model with subject and stem as crossed 

random effects. 

 Estimate Std.Error DF t-value p-value 

Intercept 6.2757 0.0457 28935 137.457 0.0000 

Repetition 0.0015 0.0005 28935 3.281 0.0010 

Plosive 0.0239 0.0083 28935 2.885 0.0039 

Left Derivational Entropy -0.0104 0.0044 28935 -2.385 0.0171 

Left CumStem Frequency -0.0093 0.0029 28935 -3.173 0.0015 

Right Positional Entropy -0.0081 0.0044 28935 -1.819 0.0689 

Compound Frequency -0.0396 0.0146 28935 -2.711 0.0067 

Compound Frequency2 0.0046 0.0016 28935 2.811 0.0049 

 

In what follows, I concentrate on the coefficients and associated statistics for 

this refitted model (see Table 2.3). Panels 1 to 6 of Figure 2.2 illustrate the partial 

effect of the predictors adjusted for the means of the other covariables.  

Naming onset latencies increased with REPETITION (  = 0.0015, t(28935) = 

3.281, p = 0.0010; see Panel 4 of Figure 2.2), and were also longer for words 

                                                           
6 In a quantile-quantile plot, the quantiles of the data set are plotted against the theoretical 

quantiles of the standard normal distribution. If the points fall roughly along a straight line, the 

data set can be considered as a sample from a normal population. Systematic deviations 

from a line indicate length of tails and skewness of distribution, suggesting the removal of 

extreme outliers. 
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beginning with a PLOSIVE as opposed to words beginning with a non-plosive (see 

Panel 6).   

COMPOUND FREQUENCY was a non-linear predictor with similar shape as 

observed in the previous analysis (2.4), with facilitation for lower and inhibition for 

higher frequencies (linear component:  = -0.0396, t(28935) = -2.711, p = 0.0067; 

nonlinear component:  = 0.0046, t(28935) = 2.811, p = 0.0049; see Panel 2).    

 

Figure 2.2: Partial effects of the predictors adjusted for the effects of the other covariables. 

 

The cumulative stem frequency of the left constituent, summed over all its 

occurrences across the lexicon independent of position, revealed a facilitatory effect 

(  = -0.00934, t(28935) = -3.173, p = 0.0015); see Panel 1, LEFT CUMULATIVE STEM 

FREQUENCY). In addition, two entropy measures emerged as significant predictors: 
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Shannon's entropy calculated over the frequency distribution underlying the 

cumulative frequency count for the modifier (  = -0.0104, t(28935) = -2.385, p = 

0.0171, Panel 3,  LEFT DERIVATIONAL ENTROPY) and the positional entropy of the right 

constituent (  = -0.0081, t(28935) = -1.819, p = 0.0689, see Panel 5, RIGHT 

POSITIONAL ENTROPY), i.e., Shannon's entropy estimated for the frequency distribution 

of the compounds in which the right constituent occurs as right constituent. None of 

the other predictors of the earlier model were significant. 

The model incorporated three random effects: random intercepts for word and 

for subject, and the residual error. The standard deviations of these random effects 

were 0.036 for word, 0.164 for subject, and 0.226 for the residual error. The inclusion 

of word as random effect in the model was strongly supported by a likelihood ratio 

test7 (Chi2(1) = 446.15, p < 0.0001). The model with both subject and word as 

crossed random effects captures a substantial by-item variation that is not captured 

by the item-specific predictors in a model with subject as random effect only. 

2.6.2. Discussion 

When comparing this new model to our previous model, it is evident that the number 

of significant predictors is reduced from nine to six. The total number of parameters is 

reduced by two, because the new model contains three fixed effects less, but an 

extra random effect for word. Even though the more conservative model reports 

fewer significant predictors, it explains a higher proportion of variance (r-squared: 

0.355 (new model) versus 0.341 (previous model). Following Occam’s razor, the 

new, parsimonious model clearly is to be preferred.  

Taking a closer look at the significant predictors of the two models, four 

variables turn out to be significant predictors in both models. Next to these four 

shared variables, the new model proposes significant effects for two new variables, 

replacing a total of five variables of the previous model.  

                                                           
7 The likelihood ratio test compares a relatively more complex model to a simpler model to see if it fits 

a particular dataset significantly better. The more complex model must differ from the simple model 

only by the addition of parameters. Although adding parameters will always result in a higher likelihood 

score, there comes a point when it is no longer justified in terms of significant improvement. 
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As before, PLOSIVE-initial words evoke significantly longer naming onset latencies 

compared to non-plosive initial words. There still is a non-linear effect of COMPOUND 

FREQUENCY, with shortest naming onset latencies for words of medium frequencies. 

An effect of NEIGHBORHOOD DENSITY (nonlinear in the previous model) is no longer 

present.  

Instead of three frequency measures for the left constituent (LEFT 

DERIVATIONAL ENTROPY, LEFT POSITIONAL ENTROPY, and LEFT COMPLEMENT 

FREQUENCY), the new model reports two (LEFT DERIVATIONAL ENTROPY and LEFT 

CUMULATIVE STEM FREQUENCY). Instead of three measures for the right constituent 

(RIGHT POSITIONAL ENTROPY, RIGHT COMPLEMENT FREQUENCY and RIGHT LEMMA 

FREQUENCY), the new model reports one (RIGHT POSITIONAL ENTROPY). All 

constituent-specific effects in the new model are facilitatory.  

In the new analysis, I also checked for effects of position-specific 

neighborhoods and cohort entropies (see Chapter 1), two variables that we had not 

yet included in the previous analysis. The model reveals no significant effects of 

position-specific neighborhoods or cohort entropies.  

 While the new model draws a somewhat simpler picture of the variables which 

affect the production onset latencies of morphologically complex words, it 

nevertheless supports the main conclusions drawn from the previous analysis. The 

model argues against both full-storage and full-decomposition and supports the 

relevance of paradigmatic structure for speech production. 

In a full-storage model, the frequency of the compound should be the only 

frequency that affects its naming latency. The data clearly show that this is not the 

case as we find constituent-specific effects of frequency and entropy.  

In a full-decomposition model of speech production, the naming latency of 

morphologically complex words should be determined by constituent frequency, and 

perhaps constituent entropy, only. A model that assumes both decomposition and 

incremental processing (Levelt et al., 1999) predicts a frequency effect of the first 

constituent only. Fully decompositional models are challenged by the finding that the 

frequency of a compound codetermines its production latency. 
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In addition, full-storage and full-decomposition approaches are likewise 

challenged by the following findings, both of which suggest a role for paradigmatic 

structures in the mental lexicon and an influence of these paradigmatic structures on 

word production onset latencies. First, the positional entropy of the right constituent 

(RIGHT POSITIONAL ENTROPY) suggests context-sensitive processing of a compound’s 

head. Second, the entropy effect of the modifier (LEFT DERIVATIONAL ENTROPY), which 

is significant beyond its frequency effect, demonstrates that all words are involved in 

the production of one word.  

 To summarize, the more conservative model with subject and word as crossed 

random effects explains more variance using fewer predictors. Drawing a somewhat 

simpler picture, the new analysis supports the main conclusions of the previous 

analysis, challenging models of full storage as well as models of full decomposition 

and suggesting that paradigmatic structure affected the production onset latencies of 

these transparent Dutch noun-noun compounds. 

I want to conclude this chapter with a word of caution with respect to drawing 

conclusions about the significance and non-significance of specific paradigmatic 

variables. Some of our variables have not yet been used in prior studies of speech 

production and for other variables, our studies are among the first to include them. 

Replications are required, also for the following reason. Some of the paradigmatic 

variables show relatively high correlations. A non-significant predictor is not 

necessarily of zero predictivity and may even be a candidate to replace a significant 

predictor in a replication study. Therefore, I would like to see the effects of the 

present study replicated and focus at this stage on the more general conclusion that 

paradigmatic structure plays a role in the production of transparent noun-noun 

compounds in Dutch.  
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Appendix: Compounds 

For each experiment, the 16 pairs of compounds are listed in 16 cells with the compound of 
the low-frequency condition on top of the compound of the high-frequency condition. The 
labels (low frequency, L1–L8; high frequency, H1–H8) assign each compound to one of the 
frequency–intern repairings (e.g. Exp. 1: L1, marktkraam–slagpin) as presented in the task. 
 

Exp. 1 Exp. 2 Exp. 3 Exp. 4 
(L1) marktkraam (L1) zeepkist (L1) schildklier (L1) deelstaat 
(H1) marktvrouw (H2) geldkist (H1) deelstaat (H2) vraagstuk 

(L1) slagpin (L1) strozak (L1) dwangsom (L1) straatweg 
(H8) slagkracht (H7) zandzak (H1) straatweg (H7) zeeman 

(L2) bedstee (L2) rijstveld (L2) strohoed (L2) wijnglas 
(H2) bedrust (H3) krachtveld (H2) wijnglas (H4) voetstap 

(L2) aardkluit (L2) prachtstuk (L2) viltstift (L2) bankstel 
(H5) aardschok (H8) kunststuk (H3) keelgat (H5) zakdoek 

(L3) hoofdtooi (L3) bronstijd (L3) lintworm (L3) plaatsnaam 
(H4) hoofdtaak (H1) steentijd (H3) plaatsnaam (H3) dagboek 

(L3) eindsprint (L3) darmwand (L3) mestvaalt (L3) keelgat 
(H6) eindstrijd (H4) glaswand (H2) bankstel (H8) tandarts 

(L4) regenscherm (L4) halsband (L4) vloedlijn (L4) huisvriend 
(H1) regentijd (H3) stemband (H4) huisvriend (H2) hoofdstad 

(L4) appelmoes (L4) prooidier (L4) kruitdamp (L4) slagzin 
(H3) appeltaart (H8) lastdier (H4) slagzin (H3) zonlicht 

(L5) postgiro (L5) kleilaag (L5) poolkap (L5) kernbom 
(H3) postmeester (H1) luchtlaag (H6) landmacht (H6) vakbond 

(L5) huissloof (L5) rumboon (L5) maiskolf (L5) ijsbaan 
(H8) huisman (H6) tuinboon (H5) ijsbaan (H8) noodlot 

(L6) kruisspin (L6) kropsla (L6) hooimijt (L6) landmacht 
(H7) kruisvuur (H7) veldsla (H7) jaarbeurs (H7) grondwet 

(L6) bloemtros (L6) vilthoed (L6) muilkorf (L6) koprol 
(H4) bloemvorm (H4) punthoed (H8) geldprijs (H1) standpunt 

(L7) voetveeg (L7) tolweg (L7) roomsaus (L7) ringslang 
(H5) voetsteun (H6) ringweg (H7) ringslang (H5) maatstaf 

(L7) grasspriet (L7) roomsaus (L7) windhoos (L7) jaarbeurs 
(H2) grasland (H2) wijnsaus (H8) nachtploeg (H1) tijdschrift 

(L8) broodkruim (L8) loonsom (L8) kropsla (L8) nachtploeg 
(H7) broodheer (H5) hoofdsom (H5) kernbom (H4) rechtspraak 

(L8) luchtbuks (L8) grasmat (L8) rumboon (L8) geldprijs 
(H6) luchtbrug (H5) deurmat (H6) koprol (H6) weekblad 
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FREQUENCY EFFECTS IN THE PRODUCTION OF DUTCH 

DEVERBAL ADJECTIVES 

CHAPTER § 
 
 
 
 
 
 
 

3.1. Introduction 

In this chapter, I study the role of frequency information in the production of a 

second type of morphologically complex words: derivations. In particular, I look at 

one subcategory of derivational morphology: deverbal adjectives. In derivational 

morphology, new words (lexemes) are formed through affixation. Affixation, the 

attachment of bound1 morphemes to words, is the formal operation subserving 

both inflection and derivation, but it is only in derivation that the outcome is a new 

lexeme. In contrast, the outcome of inflection is a syntactically appropriate variant 

of the same lexeme. The derived word (the output word) can be of the same or of a 

different word class (noun, adjective, verb) than its base word (the input word). 

Booij (2002) presents examples for nine input-output word class relations in Dutch. 

As Figure 3.1 illustrates, input words of each word class can be derived to output 

words of each class. It follows straight-forwardly, that in six of these nine input-

output combinations, the word class is changed.  

All examples presented in Figure 3.1 involve the attaching of a suffix (an 

affix attaching to the end of a word stem). Dutch derivational affixation is, however, 

not restricted to suffixation. Five of the nine input-output combinations can be also 

formed through the attaching of a prefix (an affix attaching to the beginning of a 

word stem), such as in ver-slaaf (to addict to). In what follows, we will take a closer 

look at the case of deverbal adjectives (e.g., lees-baar, readable). 

                                                           
1 Bound (as opposed to free) morphemes do not exist as independent words. 
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Figure 3.1: In Dutch derivational morphology, nine input-output word class combinations 

are found (N for noun, A for adjective, V for verb). The examples are taken from Booij 

(2002).  

3.1.1. Deverbal adjectives 

A Dutch deverbal adjective is formed by the attachment of an adjectival suffix (not 

prefix) to a verbal stem (see Table 3.1). As a result of the attachment, the word 

class is changed from verb to adjective, while the particular change in meaning 

depends on the particular suffix.  

Table 3.1: Examples for the formation of deverbal adjectives in Dutch: A case of word 

class change during derivational affixation. 

verb: grijpen  (to grab) werken (to work) schrapen (to scratch) 

verb stem: grijp werk schraap 

adjectival suffix: -baar -zaam -erig 

deverbal adjective: 
grijpbaar  

(tangible) 

werkzaam  

(effective) 

schraperig  

(avaricious) 

 

In Dutch, the following nine adjectival suffixes form deverbal adjectives: -achtig, -

baar, -erig, -elijk, -ig, -lijk, -loos, -s, and -zaam. It is not clear whether the suffixes -
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elijk and -lijk should be considered as two different suffixes or not. They might very 

well be two phonological versions of the same underlying suffix, thereby reducing 

the number of deverbal adjectival suffixes to eight. However, -elijk and -lijk differ in 

the number of syllables. I, therefore, list -elijk and -lijk separately and treat them as 

different suffixes in the analyses.  

As described above, the attaching of an adjectival suffix to a verbal stem 

always results in an adjective. However, these adjectival suffixes are not 

interchangeable. There are restrictions as to which adjectival suffix can be 

attached to which type of verb (for example transitive vs. intransitive verbs). 

Furthermore, each adjectival suffix brings along its own meaning as Table 3.2 

illustrates.  

Table 3.2: The attachment of a specific adjectival suffix determines the meaning of the 

resulting adjective.  

 verb: werken (to work) 

verb stem: werk 

adjectival suffix: -zaam -loos -baar -elijk 

deverbal adjective: 
werkzaam 

(effective) 

werkloos 

(unemployed) 

werkbaar 

(useful) 

werkelijk 

(truly) 

 

The attachment of a particular adjectival suffix to different verb stems, changes 

their meaning in the same way: Werkzaam (laborious) relates to werken (to work) 

as voedzaam (nutritious) relates to voeden (to feed), grijpbaar (touchable) relates 

to grijpen (to grab) as drinkbaar (drinkable) relates to drinken (to drink), and so on. 

Therefore, it is even possible to attach adjectival suffixes to new verbs or verbs of 

other languages, and to efficiently communicate the intended change in meaning. 

Any Dutch proficient listener will interpret an unknown word that ends in –baar 

(e.g., downloadbaar) as an adjective expressing ‘something is able to be V-ed’ 

(here: ‘something is able to be download-ed’, even if the listener does not know the 

exact meaning of the verb to download). 
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3.1.2. Research question 

This doctoral dissertation studies the role of frequency information in the 

production of morphologically complex words in Dutch. In the previous chapter, I 

have looked at compounds, in particular at noun-noun compounds, which are 

morphologically complex words that consist of two free morphemes, each of which 

can in principal be head or modifier of a compound. It is only in the compound, that 

one (the initial) constituent becomes the modifier and the other (the final) becomes 

the head. In principal, any noun can take any position in a compound. There are 

even pairs of compounds, in which modifier and head are switched (e.g., vraagprijs 

- prijsvraag, asking price – price contest). Crucially, in contrast to noun-noun 

compounds, the constituting morphemes of derived words can not switch place. 

While the verbal stem is a free morpheme, the adjectival suffix is a bound 

morpheme that attaches to the end of the verbal stem, never to its beginning. 

Factorial analyses of the compound naming onset latencies revealed 

frequency effects of both constituents but not of the compound itself, suggesting 

composition during production. Stepwise regression analyses of the joint data of 

the compound experiments revealed a superior predictivity of structural frequency 

and entropy measures, challenging full decomposition and suggesting a role for 

paradigmatic structure in speech production. I am curious to see, to what extent 

these findings replicate using a different type of morphologically complex words, 

deverbal adjectives.  

With the deverbal adjectives, I do not run any factorial experiments, but 

immediately analyze the naming onset latencies of a wide range of deverbal 

adjectives with stepwise regression modeling. As with the compounds (Chapter 2), 

the main question is whether the naming latency of a morphologically complex 

word (here a deverbal adjective, e.g., grijpbaar) can be predicted by its own 

frequency of occurrence or by the frequency of its first or / and second constituent 

(e.g., grijp, baar). Other than with the compounds, however, it is impossible to find 

pairs of deverbal adjectives that are matched in two of these frequencies while 

having a contrast in the third frequency. Thus, no individual factorial experiments 

are run, which address the effect of one frequency variable at a time. The 
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constituent and whole-word frequency variables are rather included along with 

other predictors in a stepwise multilevel analysis of covariance. 

3.1.3. Predictors 

As introduced in Chapter 1, variables from four groups are included in the 

analyses: control variables, frequency variables, morphological variables, and 

phonological variables. All variables were introduced and defined in Chapter 1, 

where I also described in more detail the motivation to include each variable. 

In stepwise covariance modeling, a number of variables can be used 

simultaneously to predict the response latencies in the experiment. Variables that 

add no or very little predictive value, can be taken out step by step, thereby 

reducing the number of variables until a small set of good predictors is left. The 

final model will be the best trade-off between the two goals of trying to explain as 

much variance as possible while using as few predictors as possible. Sometimes a 

variable is taken out even though it has predictive value. This is the case whenever 

another variable is present that is strongly correlated with and a better predictor 

than the first. In the presence of the stronger, correlated predictor, the first 

predictor simply does not add sufficient information to secure its place in the 

model. Therefore, only the stronger predictor will appear in the final model of 

covariance. In such cases, discussing the remaining variables with an eye on the 

excluded ones can be very informative and enhance the general understanding of 

the model. 

As control variables, I include REPETITION (see task description in 3.2.3.) and 

PLOSIVE, both of which helped to explain a significant proportion of variance in the 

previous analyses. Furthermore, the control variable VOICED is included.  

Next to the above mentioned variables FREQUENCY OF THE DEVERBAL 

ADJECTIVE (e.g., grijpbaar) CUMULATIVE STEM FREQUENCY (e.g., grijp), and 

FREQUENCY OF THE SUFFIX (e.g., baar), I take along the POSITIONAL FREQUENCY OF 

THE STEM (e.g., grijp as initial constituent of a morphologically complex word). There 

was a positional frequency effects with the noun-noun compounds (e.g., grijp as 

initial constituent).  
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Furthermore, the morphological variable DERIVATIONAL ENTROPY is included, 

which refers to the token-weighted count of the numbers of types in which the stem 

(e.g., grijp) occurs as a constituent. The DERIVATIONAL ENTROPY is a measure of the 

amount of information carried by the stem’s derivational paradigm. 

As phonologically related predictors, I take along the PHONOLOGICAL WORD 

LENGTH, which is the number of phonemes of the deverbal adjective. Longer words 

tend to elicit longer naming onset latencies (e.g., Meyer, Roelofs, & Levelt, 2003).  

Another phonological variable is the number of phonological neighbors, the 

NEIGHBORHOOD DENSITY (e.g., Vitevitch, 2002, 2006). Phonological neighbors are 

words that can be transformed into one another by exchanging only one phoneme 

(Greenberg & Jenkins, 1964; Coltheart, Davelaar, Jonasson, & Besner, 1977). 

NEIGHBORHOOD DENSITY effects in production are a curious finding, as they suggest 

a simultaneous activation of several word forms as discussed in the first Chapter. I 

have myself found a NEIGHBORHOOD DENSITY effect in the compound production 

onset latencies in the analysis presented in section 4 of Chapter 2, but not in the 

more conservative analysis presented in section 6 later in that chapter. Therefore, I 

am curious to see whether an effect of NEIGHBORHOOD DENSITY shows up in the 

production of deverbal adjectives.  

Next to the total number of phonological neighbors, I take into account the 

number of neighbors exchanging the first, second, third, etc. phonemes separately 

(e.g., Sevald & Dell, 1994, for initial neighbors), because words are produced over 

time from the initial to the final phoneme. As a consequence, neighborhoods at 

different positions might enter the production process at different points in time. 

These POSITION-SPECIFIC NEIGHBORHOODS (N1, N2, N3, etc.) add up to (and are 

therefore correlated with) the total number of phonological neighbors of a word. 

The position-specific neighborhoods quickly decrease from initial to final phoneme, 

and many of the constituting morphemes in the material have zero neighbors at the 

fourth phoneme. Hence, only the POSITION-SPECIFIC NEIGHBORHOOD DENSITIES N1, 

N2 and N3 are included.  

Based on a similar rationale, I include the COHORT ENTROPIES, which 

represent the specific amount of information that is carried by each additional 

phoneme (Van Son & Pols, 2003). COHORT ENTROPIES are the entropies estimated 
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for the probability distributions of all words beginning with the same first (H1), first 

two (H2), first three (H3) phonemes.  

3.2. Material and Method 

3.2.1. Material selection 

From the CELEX lexical database (Baayen, Piepenbrock, & Guliker, 1995, CD-

rom), 124 Dutch deverbal adjectives (e.g., drinkbaar (drinkable)) were selected. 

The selection procedure was based on five criteria. First, all the nine suffixes 

forming deverbal adjectives in Dutch (-achtig, -baar, -elijk, -erig, -ig, -lijk, -loos, -s, -

zaam) should be represented in the material. Second, each verbal stem should 

occur only once in the experiment. Third, the CELEX frequencies of both the 

deverbal adjectives and their verbal stems were required to be greater than zero. 

All CELEX frequencies reported here and below are counts based on a corpus of 

42 million words. Fourth, no item should show unreasonable divergence in its 

CELEX frequency, its Google frequency and an average familiarity rating2 based 

on 27 Dutch participants. Finally, selection was done in such a way that both the 

deverbal adjectives and their verbal stems were fairly distributed over a wide range 

of frequencies. 

Table 3.4 lists the absolute and relative CELEX-frequencies of each 

deverbal suffix as well as their number and percentage of items used in the 

experiment. Figure 3.2 presents the frequency distributions of both the lemma 

frequencies of the deverbal adjectives (a) and the cumulative verbal stem 

frequencies (b) for the selected set of items.  

Equal-sized groups of items per suffix were unfeasible, given both the 

selection criteria and the huge variation in frequency of occurrence of the deverbal 

suffixes. Compared to their CELEX token-frequencies, lower-frequency suffixes are 

overrepresented and higher-frequency suffixes are underrepresented in the 

                                                           
2 On a 7 point scale, the mean rating for the selected material was 4.3, with a standard 

deviation of 2.0. 
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material. All selected items are listed in the Appendices A (grouped by suffixes) 

and B (assigned to item sets). 

a) 

 

b) 

 

Figure 3.2: The selected deverbal adjectives were fairly distributed over a wide range of 

both the lemma frequencies of the deverbal adjectives (a) and cumulative stem 

frequencies (b). 

 

Table 3.4: The nine suffixes forming deverbal adjectives in Dutch, their occurrence in the 

CELEX lexical database and in the experiment. 

 

 

 

 

 

 

 

 

 

 

 

CELEX Experiment 
Frequency % Suffix  

Token Type Token Type 
Number 
of items 

%  
of items 

(1) -achtig 9316 251 2 15 10 8 
(2) -baar 19869 185 4 11 33 27 
(3) -elijk 148443 228 31 13 13 11 
(4) -erig 5054 130 1 8 32 25 
(5) -ig 134216 529 28 31 11 9 
(6) -lijk 112976 136 24 8 4 3 
(7) -loos 11532 108 2 6 2 2 
(8) -s 23593 118 5 7 4 3 
(9) -zaam 7711 32 2 2 15 12 
Total 472710 1717 100% 100% 124 100% 
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3.2.2. Experimental lists 

The selected adjectives were arranged into 61 sets of two (e.g., drinkbaar - 

buigzaam, (drinkable – pliable)) with the constraint that the two adjectives within a 

set had minimal phonological overlap and no obvious semantic relation. Based on 

this first basic list of the 61 sets, I created three additional basic lists, balancing the 

order3 of adjectives within the sets. The second basic list was created by 

exchanging the order within all 61 sets (e.g., buigzaam - drinkbaar, (pliable – 

drinkable)). To form the third (fourth) basic list, I exchanged the order of the 

adjectives within the first (last) 31 sets only, leaving the last (first) 30 sets as they 

were.  

For each of the four basic lists, I then constructed 6 randomizations of the 

order of sets, creating a total of 24 different experimental lists. As the experiment 

had to be divided over two sessions, each experimental list was finally cut into two 

parts, one containing 31 sets, the other containing 30 sets. The sets of target 

adjectives within each part were preceded by three practice sets, which contained 

adjectives of similar structure and frequency. 

3.2.3. Position-Response Association Task 

Participants were tested individually in a dimly lit sound-attenuated booth. They 

were comfortably seated in front of a CRT computer screen, a Sennheiser 

microphone and button box and they were wearing headphones. On average, a 

single session lasted 70 min. Participants, who wanted to complete both parts on 

one day had to take a minimal break of 90 min in between the two sessions.   

I used a position-response association task (Cholin, Levelt, & Schiller, 

2006), in which participants learned to associate the two adjectives in a set with a 

position mark on the left or right side of the computer screen. For each set, the 

                                                           
3 The order of the two adjectives within a set was important for the task (see 3.x.). The first 

target was presented first and had to be associated with an icon on the left side of the 

screen, while the second target was presented second and associated with an icon on the 

right side of the screen. This difference in presentation might have an effect on task 

performance. By balancing out the order of adjectives between lists (that is between 

subjects), such effects should be cancelled out in the overall analyses of naming latencies. 



DERIVATIONS 

 68

experimental procedure consisted of a learning phase and a test phase.  Both 

phases were introduced by an attention signal presented on the screen for 2 

seconds, and ended with a pause signal that remained on the screen until the 

participant initiated the following phase. 

In the learning phase, participants were presented with the two adjectives 

over headphones. Simultaneously with hearing the first adjective, they saw the icon 

of a loudspeaker appearing on the left side of the screen. Simultaneously with 

hearing the second adjective, the same icon appeared on the right side of the 

screen. This procedure was repeated once. As a result, the participants 

established associations between the icon on the left (right) side of the screen and 

the first (second) adjective.  

In the immediately following test phase, participants were repeatedly 

presented with the left or right icon as a prompt to name the associated adjective. 

Prompting was pseudo-randomized with maximally 4 consecutive repetitions of the 

same target. Each adjective was prompted ten times. I included distractor trials to 

make it difficult for participants to prepare one of the target words. In a distractor 

trial, participants named a single-digit number (1, 2, 3, or 6) which was presented 

in the center of the screen. In total, 20 distractor trials alternated with 20 

experimental trials. The participants were instructed to name each target as quickly 

and correctly as possible and I measured the naming onset latencies as following. 

Simultaneously with the presentation of a prompt the voice key was activated for 

1500 ms. Naming onset latencies longer than 1500 ms were counted as time-outs. 

I monitored the participant's responses through headphones and took notes of 

incorrect naming, hesitations and voice key errors. 

3.2.4. Participants 

From the subject pool of the Max Planck Institute for Psycholinguistics 24 native 

speakers of Dutch (20 females, 4 males) were recruited. A total of 17 participants 

completed both sessions within the same day, 7 participants took part on two 

different days. Each participant received a total of  15 for completing both 

sessions. 
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3.3. Results 

Due to computer problems, the onset latencies of one participant were not 

recorded correctly and excluded from the analyses. Furthermore, the list of 

selected items, mistakenly, contained two phonological neighbors (zweterig and 

zweverig). On top of that, the wav-file for zweverig was, accidentally, presented 

also in the learning phase of zweterig, collecting twice as many naming onset 

latencies for the former item and no latencies for the latter item. We, therefore, 

excluded both items from the analysis. Of the remaining 28060 experimental trials 

(23 participants producing 122 items, each ten times), a total of 959 (3%) time out 

trials (onset latencies >1500 ms), hesitations, wrong namings and voice key errors 

was removed prior to analyses. 

The naming onset latencies were analyzed via a mixed-effects regression 

analysis with subject and item as crossed random effects (Pinheiro & Bates, 2000; 

Baayen, Tweedie, & Schreuder, 2002; Bates, 2005; Bates & Sarkar, 2005; Baayen, 

in press). Following a stepwise variable selection procedure, model criticism led to 

the removal of 2% data points with absolute standardized residuals exceeding 2.5 

standard deviations from the mean. 

Table 3.5: Fixed effects of the multilevel regression model with subject and stem as 

crossed random effects. 

 Estimate Std.Error DF t.value p.value 

INTERCEPT 6.07770 0.03288 26500 184.870 0.00000 

REPETITION 0.00515 0.00049 26500 10.459 0.00000 

VOICED  unvoiced -0.01875 0.00869 26500 -2.159 0.03086 

PLOSIVE  other -0.00662 0.01156 26500 -0.572 0.56733 

  plosive 0.02241 0.00837 26500 2.677 0.00743 

N1 0.00251 0.00112 26500 2.246 0.02471 

H2 -0.00550 0.00238 26500 -2.314 0.02068 

CUM. STEM FREQUENCY -0.00399 0.00191 26500 -2.089 0.03672 
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The final model incorporated three random effects: random intercepts for 

stem (STD = 0.034) and for subject (STD = 0.12), and the residual error (STD = 

0.22). Table 3.5 summarizes the fixed-effect structure of the final model, including 

beta weights, standard errors, t-values and significance levels. Panels 1 to 6 of 

Figure 3.3 illustrate the partial effects of each predictor, adjusted for the effects of 

the other covariates at their medians.  

 

 

Figure 3.3: Deverbal adjectives: Partial effects of the predictors adjusted for the effects of 

the other covariables (panel 3: p=plosives, f=fricatives, o=other initial phonemes). 

 

As in all experiments reported in the previous chapters, the participants 

started relatively fast within the test phases and slowed down towards their ends. 

The inhibitory effect of the control variable REPETITION (  = 0.00515, t(26500) = 

10.459, p < 0.0001) is shown in panel 1 of Figure 3.3. Words with unvoiced initial 

segments were named faster than words with voiced initial segments (  = -

0.01875, t(26500) = -2.159, p = 0.03086, panel 2, for VOICE) and PLOSIVE-initial 

words elicited longer onset latencies than words beginning with non-plosives (F(2, 
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26500) = 5.7625, p = 0.00315, for plosive, illustrated in panel 3, where label ‘f’ 

denotes fricatives and label ‘o’ denotes other initial phonemes). 

Among the phonological variables, there was an inhibitory effect for N1, the 

POSITION-SPECIFIC NEIGHBORHOOD DENSITY of the initial phoneme (  = 0.00251, 

t(26500) = 2.246, p = 0.02471, panel 4). No other POSITION-SPECIFIC NEIGHBORHOOD 

DENSITY was significant, nor was there an effect of the overall NEIGHBORHOOD 

DENSITY. Panel 5 shows the facilitatory effect of the COHORT ENTROPY for the 

second phoneme (  = -0.00550, t(26500) = -2.314, p = 0.02068). No other COHORT 

ENTROPY was significant. 

The model further reveals one predictor among the frequency variables: a 

facilitatory, linear effect of the CUMULATIVE STEM FREQUENCY (  = -0.00399, t(26500) 

= -2.089, p = 0.03672). The more often the verbal stem occurs anywhere in the 

lexicon, individually or as part of any morphologically complex word, the faster the 

deverbal adjective is named (Panel 6). 

3.4. Discussion 

The experiment collected a total of 29280 naming onset latencies of 124 Dutch 

deverbal adjectives. The statistical model that predicts these naming latencies best 

includes three linguistic variables (the POSITION-SPECIFIC NEIGHBORHOOD DENSITY 

N1, the COHORT ENTROPY H2 and the CUMULATIVE FREQUENCY OF THE STEM) next to 

three control variables (REPETITION, PLOSIVE (plosive versus non-plosive initial 

phoneme) and VOICE (voiced versus unvoiced initial phoneme)).  

Starting relatively fast within each item block, the participants slowed down 

towards the end of each block. The same inhibitory effect of REPETITION occurred in 

the compound experiment4, applying basically the same task (identical in the 

learning and test phase, but with an additional practice phase in the compound 

experiments). It might be argued that, if anything, repeated namings of the same 

word should lead to shorter, rather than longer onset latencies. However, the 

response-association task seems to be rather boring and cause a decrease in 

motivation or alertness from the first naming to the last repetition.  

                                                           
4 in the analysis of covariance with subject and word as crossed random effects 
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Our analysis of covariance reveals a disadvantage of words starting with a 

PLOSIVE as opposed to non-plosives (fricatives and other initial phonemes). This 

disadvantage for plosive initial words emerged in both regression analyses of 

Chapter 2. It is most likely an artifact of the voice key, which is not activated by the 

prevoicing of plosives. In the present study, words with unvoiced initial phonemes 

are found to be produced faster than words with voiced initial phonemes. Studies 

that use voice key measurements generally tend to find the opposite pattern, i.e. 

shorter onset latencies for voiced initial segments than for unvoiced segments. As 

discussed by Kessler, Treiman and Mullennix (2002), this tendency actually 

reflects differences in loudness and is caused by voice keys which have a low 

sensitivity or which are set to a high triggering threshold. Furthermore, Kessler et al 

report that this tendency does not hold for all individual phonemes and some 

unvoiced phonemes are detected faster than voiced phonemes. 

In Chapter 2, I had included the variable NEIGHBORHOOD DENSITY in the 

regression analysis of the compound naming onset latencies, to see whether 

recent findings of neighborhood effects in production could be replicated. As the 

speech signal unfolds over time, from initial to last phoneme, a whole-word count 

of NEIGHBORHOOD DENSITY seemed, however, not perfectly suitable for speech 

studies that involve acoustic stimuli. For the later analysis, I, therefore, additionally 

computed the POSITION-SPECIFIC NEIGHBORHOOD DENSITIES (N1, N2, N3, etc.), 

representing the number of neighbors a word has, when particularly the first, 

second, third, etc. phoneme is exchanged. Notice, that the overall NEIGHBORHOOD 

DENSITY is the sum of, and, therefore, correlated with, the POSITION-SPECIFIC 

NEIGHBORHOODS. As described in the introduction, a dense (absolute) 

neighborhood is generally assumed to be detrimental for comprehension but has 

been found facilitative for speech production (e.g., Vitevitch, 2002, 2006). My 

findings are not in line with a general facilitation of neighborhoods in production. 

The overall effect of neighborhood density in the subject as random effect analysis 

of Chapter 2 was non-linear.  The breaking down of the overall density count into 

position-specific counts yielded results which suggest different effects for different 

phoneme positions. There was an inhibitory effect of the POSITION-SPECIFIC 

NEIGHBORHOOD DENSITY for the initial phoneme (N1). The non-significant densities 
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N2 and N3 showed clear trends of facilitation. In the presence of the position-

specific neighborhood counts, the overall NEIGHBORHOOD DENSITY dropped out of 

the model. As mentioned previously, predictors falling out during stepwise analysis 

of covariance are not necessarily of zero predictivity. In the presence of the 

stronger, correlated predictor, they may simply not add sufficient information to 

secure their place in the model, where only the stronger predictors remain. After 

all, stepwise analysis of covariance aims to explain as much variance as possible 

using as few predictors as possible.  

The results underline the importance of NEIGHBORHOOD DENSITIES for speech 

production onset latencies. The inclusion of neighborhoods computed for specific 

positions within the word was fruitful. The position-specific density N1 is a stronger 

predictor than the overall density count. A high neighborhood density of the initial 

phoneme slows the naming latency of the deverbal adjective. The more rhyme 

neighbors a word has (sharing all but the first phoneme), the harder it is to produce 

the target word. Sevald and Dell (1994) report that it is easier to produce a 

sequence of rhyme words (such as pick, tick) than a sequence of cohorts (such as 

pick, pin). While overlapping segments generally help when sequences of words 

are produced, there is an inhibitory component overlapping initial phonemes. In 

their sequential cuing model, Sevald et al propose that shared segments miscue 

the production of later sounds, explaining why miscuing can happen in sequences 

such as pin, pick, but not in sequences such as pick, tick. The results of the 

present study suggest that, when N1-neighbors are produced in sequence (as in 

pick, tick), they not only benefit from their segmental overlap, they also co-activate 

each other as N1-neighbors. Under these circumstances, the disadvantage of a big 

N1-neighborhood (representing a miscuing in a much broader sense) turns into an 

advantage. When rhyme neighbors are not produced in sequence, however, bigger 

N1-neighborhoods mean more coactivation, making it harder to select the to-be-

produced initial phoneme. 

While the existence of many rhyme neighbors makes the production of a 

deverbal adjective more difficult, the existence of many words starting with the 

same two phonemes tends to facilitate its production. Naming is the fastest (i.e. the 

COHORT ENTROPYH2 is the highest) when the number of words in the cohort sharing 
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the initial two phonemes is high and when these words have little variation in 

frequency. Converging evidence for an influence of the probability distribution in a 

production cohort on speech production stems from speech corpora studies 

analyzing the relative length of segments within words (Van Son & Pols, 2003, Van 

Son & Van Santen, 2005; Kuperman, Pluymakers, Ernestus, & Baayen, subm). 

The information load in a production cohort was found to be negatively correlated 

with the amount of reduction of segments. The results of the present study suggest 

that the frequency distribution in a production cohort does not only affect the length 

with which segments of the word are produced, but also the time it takes to plan 

the word. The higher the entropy over all words sharing the first and second 

phoneme with the deverbal adjective, the faster the adjective is named. 

Among the frequency variables, it is the CUMULATIVE STEM FREQUENCY that 

remains in the final model. The FREQUENCY OF THE ADJECTIVAL SUFFIX is not a 

significant predictor for the naming latency of the deverbal adjective. Notice that 

the naming onset latencies of noun-noun compounds were affected by the 

positional entropy of the right constituent. The absence of a suffix-frequency effect 

may have several reasons. First, the frequency of the suffix might indeed have no 

effect on the naming latency. The encoding of a deverbal suffix might be easy 

enough to be done on the fly so that production can start after the encoding of the 

verbal stem. As a second explanation, the number of different suffixes used (nine) 

might be too small to show an effect. Third, each adjectival suffixes was contained 

in several items (see Table 3.4), while constituents in the compound experiment 

occurred only once. The repeated usage of the deverbal suffixes might have 

masked actual frequency differences. 

The frequency of occurrence of the deverbal adjective itself dropped out off 

the model early on, while the frequency of the verbal stem stays a significant 

predictor. To underline that no variable is disregarded simply because it can not 

explain a significant proportion of variance in the presence of better predictors I 

present how non-significant these variables are even under the most inviting 

circumstances. Being included as the only predictor next to the significant control 

variables of the final model (REPETITION, VOICING, and PLOSIVE), none of the 

following variables yielded a significant fixed effect: SURFACE FREQUENCY (  = -
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0.00187, t(26504) = -0.80, p = 0.42372); LEMMA FREQUENCY (  = -0.00236, 

t(26504) = -0.96, p = 0.33706); NEIGHBORHOOD DENSITY (  = 0.00080, t(26504) = 

1.73, p = 0.08364). The only competitor for the CUMULATIVE STEM FREQUENCY was 

the POSITIONAL FREQUENCY (  = -0.00619, t(26504) = -2.69, p = 0.00715). However, 

in the presence of the POSITION-SPECIFIC NEIGHBORHOOD N1 and the COHORT 

ENTROPY H2, the CUMULATIVE STEM FREQUENCY was a better predictor and helped 

to explain more of the variance in the naming onset latencies of the deverbal 

adjectives. 

To summarize, it is not the frequency of occurrence of the adjective itself, 

but the frequency of the verbal stem that predicts the latency with which a deverbal 

adjective is named. The more often grijp occurs in any form (independently or as 

part of a compounded, derived of inflected word), the shorter the naming latency of 

grijpbaar. The data are in line with the assumption of decomposition in the 

production of Dutch deverbal adjectives and challenge the assumption that 

morphologically complex words are fully listed at the word form level. 

Chapter 5 presents a joint analysis of the naming onset latencies of the 

deverbal adjectives and the naming onset latencies of regular Dutch inflected verbs 

(Chapter 4). A merged analysis of these naming latencies (there is a high overlap 

in the verb stems in the item pools) provides the chance to directly compare how 

particular variables influence the production of these two types of morphologically 

complex words. 
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Appendix: Deverbal adjectives 

 

 

a) The 124 deverbal adjectives grouped by suffix 

vloeibaar jeukerig woelig -achtig (10) 
voelbaar kloterig 

beuzelachtig vindbaar kruiperig 
-lijk (4) 

huichelachtig tastbaar jankerig deerlijk 
kittelachtig toonbaar kleverig draaglijk 
twijfelachtig vatbaar krakerig klaaglijk 
tekenachtig plooibaar lacherig heuglijk 
toverachtig vangbaar hangerig 
schilderachtig kwetsbaar tobberig 

-loos (2) 

regenachtig splijtbaar plagerig weerloos
weigerachtig wendbaar pruilerig reddeloos 
weifelachtig huilerig -elijk (13) 

pronkerig 
-s (4) 

-baar (33) 
hopelijk slaperig Broeds 

brandbaar gruwelijk rillerig Speels 
breekbaar hatelijk pestering Waaks 
drinkbaar denkelijk plakkerig Sleets 
draaibaar schromelijk snauwerig 
deelbaar merkelijk soezerig 

-zaam (15) 

huwbaar sterfelijk piekerig buigzaam 
laakbaar vreselijk springerig handzaam 
leesbaar plaatselijk schraperig minzaam 
haalbaar schadelijk zweterig5 raadzaam
kneedbaar schrikkelijk zweverig4 lijdzaam 
rekbaar smakelijk duldzaam 
scheidbaar wenselijk

-ig (11) 
duurzaam

smeerbaar roezig leerzaam 
houdbaar 

-erig (31) 
flossig volgzaam 

leefbaar beverig knorrig zorgzaam 
meetbaar broeierig happig spaarzaam
misbaar brommerig vluchtig voegzaam 
hoorbaar dromerig stellig voedzaam 
strijdbaar druilerig morsig werkzaam 
strafbaar dweperig willig zwijgzaam 
telbaar hebberig zwierig 
grijpbaar hijgerig warrig 

 

 

 

 

 

                                                           
5 The phonological neighbors zweverig and zweterig were excluded from the analysis. 
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b) The 62 items sets 

The 124 deverbal adjectives assigned to 62 item sets for presentation in the 
position-response association task. The nine Dutch deverbal suffixations are 
labeled in parenthesis (-achtig (1), -baar (2), -elijk (3), -erig (4); -ig (5), -lijk (6), -loos 
(7), -s (8), -zaam (9)). 
 

sets 1-21 sets 22-42 sets 43-63 
sleets (8) twijfelachtig (1) plagerig (4) 1 
willig (5) 

22 
meetbaar (2) 

43 
vatbaar (2) 

weerloos (7) duurzaam (9)  huichelachtig (1) 2 minzaam (9) 23 lacherig (4) 44 kleverig (4) 
morsig (5) toonbaar (2) voegzaam (9) 3 
denkelijk (3) 

24 
zwijgzaam (9) 

45 
snauwerig (4) 

woelig (5) leefbaar (2) jeukerig (4) 4 krakerig (4) 25 huilerig (4) 46 Voelbaar (2) 
dweperig (4) piekerig (4) hoorbaar (2) 5 
broeds (8) 

26 
rillerig (4) 

47 
flossig (5) 

lijdzaam (9) happig (5) wenselijk (3) 6 kruiperig (4) 27 rekbaar (2) 48 houdbaar (2) 
splijtbaar (2) sterfelijk (3) waaks (8) 7 
pronkerig (4) 

28 
duldzaam (9)  

49 
Leesbaar (2) 

roezig (5) gruwelijk (3) scheidbaar (2)8 kloterig (4) 29 wendbaar (2) 50 Hangerig (4) 
klaaglijk (6) smakelijk (3) Misbaar (2) 9 
huwbaar (2) 

30 
vindbaar (2) 

51 
zorgzaam (9) 

zwierig (5) schadelijk (3) Hebberig (4) 10 plaatselijk (3)  31 telbaar (2)  52 weifelachtig (1) 
vluchtig (5) deerlijk (6) warrig (5) 11 
draaglijk (6) 

32 
schraperig (4) 

53 
Grijpbaar (2) 

broeierig (4) werkzaam (9) vloeibaar (2) 12 speels (8)  33 beuzelachtig (1) 54 Zweterig6 (4) 
pruilerig (4) soezerig (4) Haalbaar (2) 13 
spaarzaam (9) 

34 
laakbaar (2) 

55 
Plakkerig (4) 

raadzaam (9) schrikkelijk (3)  heuglijk (6) 14 pesterig (4) 35 weigerachtig (1) 56 kwetsbaar (2) 
dromerig (4) stellig (5) hatelijk (3) 15 
plooibaar (2) 

36 
brommerig (4) 

57 
brandbaar (2) 

slaperig (4) kittelachtig (1) breekbaar (2) 16 vreselijk (3) 37 springerig (4) 58 druilerig (4) 
tastbaar (2) schilderachtig (1) buigzaam (9)17 
volgzaam  (9) 

38 
merkelijk (3)  

59 
drinkbaar (2) 

knorrig (5) schromelijk (3) regenachtig (1) 18 voedzaam (9) 39 handzaam (9) 60 draaibaar (2)  
jankerig (4) toverachtig (1) Zweverig6(4) 19 
vangbaar (2) 

40 
beverig (4) 

61 
kneedbaar (2) 

leerzaam (9) tobberig (4) hopelijk (3) 20 deelbaar (2) 41 reddeloos (7) 62 smeerbaar (2) 
hijgerig (4) tekenachtig (1)  21 
strafbaar (2) 

42 
strijdbaar (2) 
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FREQUENCY EFFECTS IN THE PRODUCTION OF 

INFLECTED VERBS  

CHAPTER 4 
 
 
 
 
 
 
 

4.1. Introduction 

After having looked at frequency effects in the production of compounds (Chapter 

2) and derivations (Chapter 3), we now turn to the third type of morphologically 

complex words: inflections. In particular, we look at one subcategory of inflections: 

the production of inflected verbs.  

All three types of morphologically complex words (compounds, derivations, 

and inflections) contain multiple morphemes. Among the morphologically complex 

words, compounds are unique as they generally1 consist of free morphemes, while 

both derivation and inflection involve the attaching of bound morphemes (such as 

the Dutch -laar, -lijk, -en, -t, etc). Bound morphemes, in contrast to free 

morphemes, cannot exist as independent words. The attaching of a bound 

morpheme to a word is called affixation. Derivations and inflections differ with 

respect to the outcome of the affixation. In derivational morphology, affixation 

always forms a new word. As described in the previous chapter, the derived word 

can be of a different word class (noun, verb, adjective) than its base. In contrast, in 

inflectional morphology, affixation does not form a new word, but a syntactically 

appropriate variant of the same word. 

                                                           
1There are a few exceptions to this rule. Some compounds (such as aardbei) contain a 

constituent that does not exist as a free morphemes (aard is a free morpheme, bei is not). 
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4.1.1. Inflected verbs 

In Dutch, the attaching of a particular inflectional affix to different verb stems forms 

variants that are appropriate for the same syntactical context (similar to the same 

change in meaning described for the attaching of particular deverbal suffixes in 

Chapter 3). Syntactically, gedroomd (has/have dreamt) relates to dromen (to 

dream) as gemist (has/have missed) relates to missen (to miss), dromend 

(dreaming) relates to dromen (to dream) as missend (missing) relates to missen (to 

miss), and so on. Speakers are, therefore, also able to inflect unknown words or 

words that are adopted from other languages and use them appropriately in any 

syntactical context (e.g., ge-sms-t). Table 4.1 lists the seven different verbal 

inflections that are used in Dutch. 

Table 4.1: Verbal inflections in Dutch 

examples syntactically  
appropriate variant affixation missen  

(to miss) 
dromen 
(to dream)

1st p - mis droom 
2nd p sg 

3rd p 
-t / -d mist droomt 

1st p 

2nd p 

Present Tense: 

pl 

3rd p 

Infinitive 

-en missen dromen 

Present Participle -end missend dromend 
1st p 

2nd p sg 

3rd p 

-de / -te miste droomde 

1st p 

2nd p 

Past Tense:  

pl 

3rd p 

-den / -ten misten droomden 

Past Participle ge-…- t / -d gemist gedroomd 

4.1.2. Research question 

Ever since the seminal study of Oldfield and Wingfield (1965), it is known that 

words of higher frequency of occurrence can be named faster than words of lower 

frequency of occurrence. This correlation of word frequency and naming latency is 

generally referred to as the word frequency effect. In addition to their own 

frequency of occurrence, morphologically complex words have constituent 
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morphemes each of which has its own frequency. Models of speech production 

differ with respect to the predictions they make about frequency effects in 

morphologically complex words. If morphologically complex words are stored in, 

and retrieved from, the mental lexicon in the same way as morphologically simplex 

words are, their naming onset latencies should be related to their frequency of 

occurrence as complex words. If, however, morphologically complex words are 

assembled from their constituents during production, their naming onset latencies 

should instead be related to the frequencies of these constituents. After having 

looked at noun-noun compounds (where there were both compositional and non-

compositional effects, Chapter 2) and deverbal adjectives (which behaved 

compositionally, Chapter 3), I study the naming onset latencies of Dutch regularly 

inflected verbs. 

According to Pinker’s (1999) words and rules approach, regular inflections 

are generated by a rule. Other than irregular words, they don’t supply a past-tense 

form from memory. The regular rule, therefore, applies by default. If regular 

inflections are computed on the fly, one expects to find a frequency effect for the 

verbal stem. Similarly, Levelt, Roelofs, and Meyer (1999) assume that a regular 

inflected form (e.g., escorting) is generated from the lemma (e.g., escort), which is 

marked for the relevant regular inflection (e.g., +progressive), activating the form 

nodes <escort> and <-ing>. The selection of a lemma of an irregular verb (e.g., go) 

+past is assumed to activate the form node <went>. Both approaches assume that 

the lexical representation of regularly inflected verbs is a representation in which 

the stem and the inflectional affix are composed at the word form level. Assuming 

that frequency effects are located at the word form level, both approaches, 

therefore, predict stem frequency effects in regular inflections. In contrast, full-

listing models (e.g., Butterworth, 1983) predict that the naming latency with which 

an inflected verb is produced correlates with its frequency of occurrence as a 

complex word. It is further possible that high-frequency regular variants are stored 

as complex words, while low-frequency regular inflections are always composed 

from their constituents (e.g., Stemberger & MacWhinney, 1986). Finally, one can 

assume that inflected verbs, such as complex words in general, are stored with 
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structural information, i.e., with links between constituting morphemes that reflect 

the probabilities with which these morphemes tend to be combined. 

 Compared to compounds and derivations, inflections are morphologically 

complex words that differ least from their stems. Compounds are combinations of 

two free morphemes, each of which can in principle occupy the slot of head or 

modifier. The result of compounding is a new word. Derivations are new words, 

formed through affixation of bound morphemes. Still, some derivational affixes 

(such as 'zaam', 'baar', 'erig') are phonological words. Affixation in inflection, in 

contrast, does not form a new word, but a syntactically appropriate variant of the 

same word. Dutch inflectional affixes are not phonological words and are very short 

(they consist of maximally three phonemes). Therefore, on a continuum of 

constituent similarity, compounds would score the highest, inflections would score 

the lowest. 

The dissimilarity of the constituent morphemes in inflected verbs and the 

very limited number of verbal inflectional affixes make it unfeasible to construct 

item pairs that carry a factorial contrast in one frequency while other frequencies 

are matched (as done with the noun-noun compounds in Chapter 2). I, therefore, 

collected naming onset latencies of inflected verbs that are distributed over a wide 

range of frequencies to analyze in stepwise analyses of covariance.  

4.1.3. Predictors 

As introduced in the first chapter, several predictors can be analyzed 

simultaneously using stepwise analysis of covariance. All variables used in this 

experiment, are defined and motivated in the first chapter of this thesis. Based on 

the reasons presented there and based on the experience with the previous 

experiments, I am interested in four kinds of predictors: control variables, 

frequency variables, morphological variables, and phonological variables.  

More specifically, the control variables REPETITION (namings one to ten in 

the test phase, see 4.2.3.), PLOSIVE (plosive versus non-plosive initial phoneme) 

and VOICED (voiced versus unvoiced initial phoneme) are included. 

In the frequency domain, I study the LEMMA FREQUENCY of the verb (the 

summed frequency of all inflectional variants of that word), its CUMULATIVE STEM 



CHAPTER 4 

 

 

85

FREQUENCY (the summed frequency of all words containing the verb stem), and its 

POSITIONAL STEM FREQUENCY (the summed frequency of all morphologically 

complex words containing the verb stem as initial constituent).     

From the group of morphological variables, I include the INFLECTIONAL 

ENTROPY, defined as Shannon's entropy estimated by the relative frequencies of a 

verb's inflectional variants. It is the token-weighted count of the numbers of types of 

inflectional variants. A high INFLECTIONAL ENTROPY indicates that a particular verb 

stem is actually used in many or all of its inflectional variants, and that these 

inflections occur with similar frequency. When the entropy in an inflectional 

paradigm is high, the production of a specific inflected form might be relatively 

harder than when the INFLECTIONAL ENTROPY is low.  

As a first phonological variable, the PHONOLOGICAL WORD LENGTH is included 

in the stepwise analyses of covariance. In research of speech production, longer 

words have been observed to elicit longer naming onset latencies (e.g., Meyer, 

Roelofs, & Levelt, 2003). However, PHONOLOGICAL WORD LENGTH was not a 

significant predictor in the previous analyses presented in Chapters 2 and 3. 

We further take along the two-level factor PREFIX. One of the seven types of 

Dutch verbal inflections, the past participle, contains a prefix (ge-). I am curious to 

see, whether the presence or absence of a prefix has an effect on the production 

onset latencies, independent of PHONOLOGICAL WORD LENGTH. The factor PREFIX 

contains two levels: prefixed (all past participle forms) versus unprefixed (all other 

inflections). 

As with the noun-noun compounds and deverbal adjectives, I take along the 

number of phonological neighbors of the inflected verbs. Both the whole-word 

NEIGHBORHOOD DENSITY and the POSITION-SPECIFIC NEIGHBORHOODS (N1, N2, and 

N3) are computed. Phonological neighbors are words that can be transformed into 

one another by exchanging only one phoneme (Greenberg & Jenkins, 1964; 

Coltheart, Davelaar, Jonasson, & Besner, 1977). A word’s neighborhood density 

refers to the total number of neighbors the word has. Position-specific neighbors 

refer to all words that differ from the to-be-pronounced word in exactly the first, 

second, third, etc. phoneme.  
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We, finally, include the COHORT ENTROPIES H1, H2, and H3, which are 

entropy measures based on the production cohort. The COHORT ENTROPIES 

represents the likelihood of the target word given all other words beginning with the 

same first (H1), first two (H2), first three (H3), etc. phonemes. When a cohort has 

many members and when these members are of similar frequencies, COHORT 

ENTROPIES are the highest. I observed significant effects for a POSITION-SPECIFIC 

NEIGHBORHOOD (N1) and a COHORT ENTROPY (H2) with the deverbal adjectives 

(Chapter 3) but not with the noun-noun compounds (Chapter 2).  

4.2. Materials and Method 

4.2.1. Material selection 

We selected 126 Dutch verb stems from the CELEX lexical database (Baayen, 

Piepenbrock, & Guliker, 1995). I tried to use as many verb stems as possible that 

had also been used in the study on deverbal adjectives (Chapter 3). On the one 

hand, I want to study particular effects in the production of inflected verbs. On the 

other hand, I want to compare the particular effects in the production of the 

different types of morphologically complex words (see comparative analyses in 

Chapter 5). The higher the overlap in verb stems between the study on deverbal 

adjectives and the study on inflected verbs, the higher their comparability. I did, 

however, not reuse all verbal stems as I had a mayor restriction on material 

selection for the study on the production of inflected verbs: I wanted to use regular 

verbs only. Irregular inflections differ from regular inflections in several aspects. 

Some irregular inflections undergo vowel changes. Furthermore, inflectional 

variants of irregular verbs often differ in the number of syllables from inflectional 

variants of regular verbs. We, therefore, decided to not mix regular with irregular 

verbs in this study, but rather focus on the role of frequency information in the 

inflection of regular Dutch verbs. 

Starting from the item pool of the derivation study, all stems of irregular 

verbs were excluded and replaced by about the same number of regular verbal 

stems that had not been used in the derivational study. The final overlap of the two 

items sets was 76%. For the benefit of statistical analyses the selection procedures 
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for the previous experiments aimed to compile sets of items that are fairly 

distributed over a wide range of frequencies. The same intent guided the selection 

of the new items. Adding 32 new regular verb stems, a total number of 126 items 

was reached, which is comparable to the total number of items used in the 

previous experiments (128 in the compound study, 124 in the derivation study). For 

all selected verbs, CELEX2 stem frequencies were greater than zero. I additionally 

collected the Google frequencies of all items as well as familiarity ratings3 from 46 

participants, both of which were well in line with the CELEX frequencies.  

Table 4.2: 126 regular verbal stems were pseudo-randomly assigned to the seven types of 

Dutch verbal inflections (1-7), 18 items per type of inflection.  

(1) (2) (3) (4) (5) (6) (7) 
present 
1st      
singular 
 

present 
2nd, 3rd  
singular 
 

present     
1st, 2nd, 3rd  
plural   
/ infinitive 

present 
participle 
 
 

past 
1st, 2nd, 3rd 
singular 
 

past 
1st, 2nd, 3rd 
plural 
 

past 
participle 
       
 

bouw bakt broeden brandend beefde beuzelden geacht 
broei droomt brommen draaiend deerde daalden gedeeld 
duld gunt gruwen3 durend hapte dweepten gehaald 
huil huichelt haten hopend klaagde hijgden gehoord 
kneed kleeft knorren jankend lachte jeukten gehuwd 
leer left linen krakend pestte kookten gekwetst 
maak merkt minnen pakkend piekte morsten gemist 
plak plaatst plagen plooiend rekte pleegden gepronkt4 
ren regent remmen redden rustte pruilden geraakt 
scheur schaatst scheiden rillend schudde schaadden geruimd 
snauw smeert smaken schrapend spoelde schroomden geschilderd 
sticht stelt staken soezend stuitte speelden gespaard 
tel tekent tasten stoppend trachtte straften gestoord 
veeg twijfelt toveren tobbend voedde3 toonden getild 
volg voelt voegen vloekend weerde vluchtten gevloeid 
weiger weifelt walgen wakend woelde vulden gevreesd 
zaai zaagt wenden werkend zoemde wensten gewist 
zeur zoent zweven zwetend zwierde zorgden gezet 

 

The 126 selected verbal stems were evenly distributed over the seven types of 

Dutch verbal inflections introduced in Table 4.1 The assignment to a particular type 

                                                           
2 All CELEX frequencies reported are based on a corpus of 42 million words. 
3 Familiarity was rated on a 7 point scale, yielding a mean of 4.4 and a standard deviation of 1.8 for 

the selected item pool. 
4 The items gepronkt, gruwen, and voedde were not included in the analyses (see 4.3) 
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of inflection was pseudo-randomized with two restrictions: First, the frequency of 

the inflected form had to be greater than zero. Second, initial phonemes should be 

fairly distributed over the seven groups, especially with respect to features such as 

plosiveness and voice. Table 4.2 lists all inflected verbs used in the experiment. A 

complete list of items, as paired in the position-response association task (see 

4.2.3), is provided in the Appendix. Figure 4.1 shows, in logarithmic scale, that the 

selected set of items was fairly distributed over a wide range of both lemma 

frequencies and cumulative stem frequencies.  

(a) 

 

(b) 

 

Figure 4.1: The distribution of LEMMA FREQUENCIES (a) and CUMULATIVE STEM 

FREQUENCIES (b) in the material. 

4.2.2. Experimental lists 

A total of 24 experimental lists was constructed, one list for each participant. In a 

first step, the 126 inflected verbs were assigned to 63 sets of two items each (item 

A and B), applying the following restrictions: The verbs within a set had to be of a 

different inflection, they had to have minimal phonological overlap and not be 

semantically related.  

 In a second step, I constructed four basic lists, each of which contained the 

63 item sets in the same order (see table 4.3). The basic lists differed with respect 

to the order of the two items within the sets. This order plays an important role in 

the position-response association task used which is described in more detail in 

4.2.3. In this task, the first item is presented first and associated with an icon on the 

left side of the screen, while the second item is presented second and associated 
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with an icon on the right side of the screen. As this difference in presentation might 

affect the production onset latencies, I balanced the order of items within the sets, 

so that every item is presented left to one half of the participants and right to the 

other half of the participants. 

Table 4.3: The four basic lists counterbalanced the left / right presentation of items in the 

position-response association task. 

 Item sets 1 - 32 Item sets 33-63 

 item A item B item A item B 

Basic List 1 left right left right 

Basic List 2 right left right left 

Basic List 3 left right right left 

Basic List 4 right left left right 

 

As shown in Table 4.3, basic list 1 assigned all A-items to be presented on the left 

side, all B-items to be presented on the right side.  In basic list 2, I reversed the 

order in all 63 sets, assigning all A-items to the right side and all B-items to the left 

side. For basic list 3, I reversed the order of items within the sets 1-32 only. For the 

final basic list (4), I reversed the order within the sets 33-63 only. In a third step, six 

randomizations of the order of sets within each basic list were constructed. To 

summarize, I constructed a total of 24 experimental lists with randomized set order 

and balanced order of items within each set. 

As with the derivational experiment reported in the previous Chapter, a 

complete experimental list containing all 63 sets would be too long to be presented 

in one session. After randomization of set order, I therefore split each experimental 

list into two semi-lists, the first one containing 32 sets, the second one containing 

31 sets. Finally, three practice sets with inflected verbs of similar structure were 

added to precede the experimental sets on each semi-list. 

4.2.3. Position-Response Association Task 

In order to measure the production onset latencies of the inflected verbs, I used a 

position-response association task (Cholin, Levelt, & Schiller, 2006), in which the 

two inflected verbs of a set are associated with a position mark on the left or right 
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side of the computer screen. Each participant was tested individually in a sound-

attenuated booth. The participant wore headphones and was comfortably seated in 

front of a Sennheiser microphone, a button box, and a CRT computer screen.  

 The position-response association task used in this experiment was 

identical to the one used with the deverbal adjectives (Chapter 3). The position-

response association task that I used with the compounds (Chapter 2) included an 

additional practice phase between the learning and the test phase. In this 

experiment, I decided against the inclusion of a practice phase for three reasons. 

First, the participants had shown a close to zero error rate during the practice 

phases of the compound experiments, suggesting that they would have done well 

during the test phase without going through the practice phase. Second, leaving 

out the practice phase in the experiment on deverbal adjectives (Chapter 3) did not 

increase the percentage of hesitation, wrong naming, time outs, etc. during the test 

phase. Third, leaving out the practice phase freed valuable minutes that could be 

rather used to test additional item sets.  

 The experimental procedure consisted of learning phases followed by test 

phases for each set individually. The learning and test phase of one set form a 

block. Both the learning and the test phase started with the word 'ATTENTION' 

(attention) being presented in the center of the screen for two seconds. Both the 

learning and the test phase ended with the word 'PAUZE' (pause) being presented 

in the center of the screen. The pause signal remained on the screen until the 

participant initiated the following phase by pressing a button. 

In the learning phase, participants established an association between the 

two inflected verbs of a given set and an icons appearing on the left versus right 

side of the computer screen. This association was established in the following way: 

The first item was presented over headphones. Simultaneously, an icon of a 

loudspeaker was presented on the left side of the screen. Then, the second item 

was presented over headphones with a simultaneous presentation of the 

loudspeaker item on the right side of the screen. This procedure was repeated 

once.  

Having learned the association between the two inflected verbs and the 

icons on the two sides of the screen, participants could then be prompted by an 
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icon to produce the associated inflected verb in the test phase. For each set, the 

test phase immediately followed the learning phase. In the test phase, each item 

was prompted ten times (20 experimental trials in total within each test phase). The 

order of prompting of the two items was pseudo-randomized with as restriction that 

no more than 4 consecutive repetitions of the same item were allowed.  

A total of 20 distractor trials were added, each of which preceded an 

experimental trial. I included distractor trials to make it difficult for the participants 

to prepare one of the inflected words before a prompt was presented and to avoid 

immediate consecutive naming of the same item. In a distractor trial, participants 

simply named a single-digit number (1, 2, 3, or 6) that was presented in the center 

of the screen.  

 Participants were instructed to name each item and each number as quickly 

and correctly as possible. Simultaneously with the presentation of a prompt or a 

number the voice key was activated for 1500 ms. A triggering of the voice key 

within 1500 ms (due to the participant producing the prompted item or due to any 

other, loud enough sound) was automatically registered. The experimenter 

monitored the participant's responses through headphones and took notes of 

incorrect naming, hesitations and voice key errors for later exclusion of these trials. 

Naming onset latencies longer than 1500 ms were registered as time-outs. 

 Each participant took part in two sessions with semi-list A being presented 

in the first, and semi-list B being presented in the second session. A single session 

lasted 70 min on average. Participants had to take a minimal break of 90 min in 

between their two sessions. 16 of the 24 participants took part on two different 

days.  

4.2.4. Participants 

24 native speakers of Dutch (21 female, 3 male) were recruited from the subject 

pool of the Max-Planck Institute for Psycholinguistics, Nijmegen. eight participants 

completed both sessions on the same day, sixteen completed them on two 

different days. For completing both sessions of the experiment, each participant 

received  15. 
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4.3. Results 

Some naming latencies had to be excluded prior to the analyses. One participant 

did not complete the experiment. I included none of his latencies in the analyses, 

reducing the actual number of participants to 23. I further excluded all latencies of 

the experimental item gruwen. Many participants seemed to have problems 

recognizing this item via headphones, causing an unusual high number of 

hesitations, time outs trials and false naming responses. These latencies could, 

therefore, not be considered as proper production onset latencies for the intended 

item. 

Furthermore, all onset latencies of the experimental item voedde were 

excluded, because this item accidentally appeared in two sets, once replacing the 

item gepronkt. Producing a single item twice as often as all other items, or coming 

across the item in two sets, while all other items appear in one set only, might 

affect the naming onset latencies measured for this item. I, therefore, decided to 

take no risk and exclude all naming latencies for this item from the analysis.  

Of the remaining 28290 experimental trials, we included only those trials in 

the analyses that were named both correctly and within a latency of 1500 ms. A 

total of 1307 (4.6%) time out trials (onset latencies >1500 ms), hesitations, wrong 

naming and voice key errors was removed prior to the analysis. During the 

analysis, an additional 284 (1 %) extreme outliers (data points with absolute 

standardized residuals exceeding 2.5 standard deviations from the mean) were 

identified and excluded. 

We analyzed the data using a stepwise multilevel analysis of covariance with 

subject and word as crossed random effects (Pinheiro & Bates, 2000; Baayen, 

Tweedie, & Schreuder, 2002; Bates, 2005; Bates & Sarkar, 2005; Baayen, in 

press) with participant as main grouping factor. Given the number of items used, 

no more than eight item-based parameters should be included in the model to 

avoid the risk of overfitting5.  

                                                           
5 As a rule of thumb to avoid overfitting, the number of item-based predictors should not exceed the 

number of items divided by 15. 
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The analysis resulted in a model with four predictors (including two 

interacting control variables). Table 4.4 summarizes the fixed-effects statistics, 

including beta weights, standard errors, t-values and p-values. Figure 4.2 pictures 

the partial effects of the significant predictors, each adjusted for the effects of the 

other covariables. As random effects the model incorporated random intercepts for 

word stem (STD = 0.038) and for subject (STD = 0.122), and the residual error 

(STD = 0.219).      

Table 4.4: Multilevel analysis of covariance with subject and word as random effects 

resulted in these fixed effects. For the Predictor INITIAL PHONEME, there are adjustments for 

plosives and other initial phonemes, the fricatives lie on the intercept. 

 Estimate Std.Error DF t.value p.value

INTERCEPT 6.0171 0.0289 26699 208.465 0.0000 

REPETITION 0.0055 0.0007 26699 8.236 0.0000 

other 0.0561 0.0124 26699 4.522 0.0000 
INITIAL PHONEME 

plosive 0.0645 0.0109 26699 5.929 0.0000 

other -0.0046 0.0012 26699 -3.795 0.0002 REPETITION by  

INITIAL PHONEME  plosive -0.0020 0.0011 26699 -1.835 0.0665 

H2 -0.0080 0.0024 26699 -3.315 0.0009 

PREFIXED 0.0941 0.0146 26699 6.458 0.0000 

 

Like in the experiments reported in the previous chapters, the participants started 

relatively fast within the test phases and slowed down towards their end. The 

inhibitory effect of the control variable REPETITION (  = 0.0055, t(26699) = 8.236, 

p<0.0001) interacts with the control variable INITIAL PHONEME in such a way that 

words starting with a fricative (f) or a plosive (p) are produced slower over 

repetitions, while there is no slowing down for words containing other (o) initial 

phonemes (F(2,26697) = 7.2966, p = 0.0007, panel 1 of figure 4.2).  

The model reveals a disadvantage of prefixed inflections as opposed to 

inflections that involve no prefixation (  = 0.0941, t(26699) = 6.458, p<0.0001). The 

only Dutch verbal inflection carrying a prefix is the past participle form (ge-…-t). 
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Picturing the effect of PREFIX, panel 2, therefore, simultaneously contrasts the 

slower onset latencies for past participle items (right) as opposed to the items of all 

other verbal inflections (left). 

 

Figure 4.2: The partial effects of the significant predictors, adjusted for the effects of the 

other covariates. Panel 1, pictures the interaction of REPETITION and INITIAL PHONEME 

(plosive (-p-), fricative (-f-), other (-o-)).  

 

We further observe a facilitative effect of the COHORT ENTROPY H2 (  = -0.0080, 

t(26699) = -3.315, p=0.0009). The more words exist that start with the same two 

phonemes as the target word, the faster the target word can be named (panel 3).  

4.4. Discussion 

Stimulated by previously associated visually presented symbols, 24 native 

speakers of Dutch repeatedly produced 126 Dutch inflected verb forms. The 

variance in the collected naming onset latencies is best modeled using the 

following information: how often has the item been produced previously in the 

experiment by the same participant (REPETITION), whether or not the item contains 

a prefix (PREFIX), and, finally, on the entropy in the production cohort H2. 

 Like in the previous experiments, the inhibitory effect of REPETITION seems 

to suggest that the test-phases of the position-association learning task failed too 

maintain the initial alertness and motivation over all 40 trials (20 namings of 

experimental items and 20 namings of random numbers). The interaction with 

INITIAL PHONEME can be interpreted as follows: repetitive articulations of fricatives 

and plosives are more tiring than repetitive articulations of other initial phonemes. 
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As an alternative explanation, the two experimental items within a test phase could 

become more activated and, therefore, stronger competitors with increasing 

number of repetition. After all, the task is very predictable with respect to the 

moment in which the trigger of an experimental item is presented (unpredictable is 

its position). Participants might, therefore, prepare both experimental items while 

waiting for the trigger.  

 Information on the PHONOLOGICAL WORD LENGTH or NEIGHBORHOOD DENSITIES 

(overall or position-specific) does not help to explain a significant proportion of 

variance in the naming onset latencies of the inflected verbs. Also not among the 

best predictors are the frequency of occurrence of the inflected verb form, the 

summed frequency of all inflectional variants of verb (LEMMA FREQUENCY), or 

Shannon's entropy estimated by the relative frequencies of a these inflectional 

variants (INFLECTIONAL ENTROPY). Neither do I find an effect of CUMULATIVE or 

POSITIONAL STEM FREQUENCY. 

 

 

Figure 4.3: In Dutch verbal inflections, the LEMMA FREQUENCY and the CUMULATIVE STEM 

FREQUENCY are highly correlated (here, r = 0.85).  
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Generally, the LEMMA FREQUENCY is part of the CUMULATIVE STEM FREQUENCY. 

In the case of inflected verbs, the CUMULATIVE STEM FREQUENCY is little more than 

the LEMMA FREQUENCY. Therefore, these two measures of frequency are correlated 

(r = 0.85 in this item pool). The scatter plot shown in Figure 4.3 pictures the 

correlation between LEMMA FREQUENCY and CUMULATIVE STEM FREQUENCY in the 

present sample.  

In multivariate regression analyses, highly correlated predictors cause a 

high colinearity. To test, whether the high correlation between the CUMULATIVE 

STEM FREQUENCY and the LEMMA FREQUENCY in the material is responsible for the 

absence of a frequency effects, I computed a new variable, to which I will refer as 

OTHER FREQUENCY. This variable represents the unique part of the CUMULATIVE 

STEM FREQUENCY that does not overlap with the LEMMA FREQUENCY. In other words, 

it is the summed frequency of all words containing the verbal stem, excluding its 

inflectional variants. There was no significant effect for OTHER FREQUENCY. 

Given the general colinearity between the predictors, I further checked the 

predictive values of the most interesting nonsignificant predictors under the most 

inviting circumstances. Being included as the only predictor next to the control 

variables, the CUMULATIVE STEM FREQUENCY was still far from significance. The 

same is true for the POSITIONAL STEM FREQUENCY, the LEMMA FREQUENCY and 

SURFACE FREQUENCY. Significant in the absence of other predictors6 was the 

NEIGHBORHOOD DENSITY (  = 0.00120, t(26701) = 2.36, p=0.0183), as well as the 

POSITIONAL NEIGHBORHOOD N1 (  = 0.00327, t(26701) = 3.29, p=0.0010). 

Frequency counts play a role only in the facilitative effect of COHORT 

ENTROPY H2 (Van Son & Pols, 2003; Van Son & Van Santen, 2005). Note that the 

same effect explained a significant proportion of variance in the production onset 

latencies of deverbal adjectives (Chapter 3), but not in the latencies of noun-noun 

compounds (Chapter 2). The production of an inflected verb is affected by the size 

of, and the frequency distribution within, the cohort that shares the initial two 

phonemes. For verbs, this cohort contains all the inflected variants, leaving out the 

past participle form which carries a prefix. Given that there is no extreme variation 

in the size of the cohorts, it is mostly the distribution of frequencies within the 

                                                           
6 with the exception of the control variables that had been significant in the final model 
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cohorts that determines their entropies. A cohort with little frequency variation 

speeds up the production latency of any member of the cohort. Taken together with 

corpora studies on fine phonetic detail (Van Son & Pols, 2003; Van Son & Van 

Santen, 2005; Kuperman, Pluymakers, Ernestus, & Baayen, subm) this finding 

suggests that the probability distribution in a production cohort affects both the 

length with which segments are produced within the word as well as the naming 

latency of the word. 

Back to the question of how regularly inflected verbs are represented in the 

mental lexicon. The surface frequency of the inflected verb does not affect the 

frequency with which the verb is named, challenging model that assume a full 

listing of complex words (e.g., Butterworth, 1983). Neither does the frequency of 

the stem correlate with the naming onset latencies measured in the present study. 

Stem frequency effects are predicted in the decompositional model of Levelt et al 

(1999). They are likewise expected under the assumption that regular inflections 

are computed on the fly (Pinker, 1999). Even as the only predictor next to the 

control variables, no significant proportion of variance in the naming onset 

latencies was explained by either the frequency of the stem or by the frequency 

with which the surface form occurs. 

Taken together, there is mixed evidence with respect to the 

decompositionality of morphologically complex words in speech production. While 

the naming onset latencies of transparent noun-noun suggest structured storage of 

constituting morphemes, the onset latencies of deverbal adjectives are predicted 

by the frequency of the verbal stem, arguing for decomposition. The onset 

latencies with which the regularly inflected verbs were named in the present study 

are neither related to the frequency of the stem not to the frequency of the complex 

word but reflect the frequency distribution within the cohort sharing the initial two 

phonemes. The following chapter is denoted to a joint analysis of naming onset 

latencies of the deverbal adjectives and the inflected verbs (which overlap in 76% 

in their verbal stems). The greater power of the joint analysis makes it possible to 

reveal more of the underlying structure that determines the onset latencies with 

which these two types of morphologically complex words are named. 
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Appendix: Inflected verbs 

Equally distributed over the seven types of Dutch verbal inflections ((1) 1st P. sg., present 
tense; (2) 2nd, 3rd P. sg., present tense; (3) 1st- 3rd P. pl., present tense / infinitive; (4) 
present participle; (5) 1st- 3rd P. sg., past tense; (6) 1st- 3rd P. pl., past tense; (7) past 
participle), the 126 items were assigned to 63 sets for presentation in the position-
response association task.  
 
 

sets 1-16 sets 17-32 sets 33-48 sets 49-63 
bouw (1) trachtte (5) schudde (5) remmen (3) 1 voelt (2) 17 gezet (7) 33 draaiend (4) 49 kleeft (2) 
kookten (6) haten (3) gehaald (7) gekwetst (7) 2 staken (3) 18 gewist (7) 34 minnen (3) 50 speelden (6) 
gruwen (3) weifelt (2) gunt (2) klaagde (5)3 pakkend (4) 19 plagen (3) 35 morsten (6) 51 zaai (1) 
tekent (2) reddend (4) geraakt (7) stoppend (4) 4 zorgden (6) 20 jeukten (6) 36 jankend (4) 52 zoent (2) 
durend (4) hapte (5) toonden (6) lenen (3)5 merkt (2) 21 gemist (7) 37 smaken (3) 53 sticht (1) 
ren (1) toveren (3) tasten (3) pruilden (6) 6 gehuwd (7) 22 snauw (1) 38 zwetend (4) 54 lachte (5) 
dweepten (6) tobbend (4) hijgden (6) hopend (4) 7 maak (1) 23 spoelde (5) 39 zaagt (2) 55 wenden (3) 
broeden (3) gehoord (7) weiger (1) geacht (7) 8 weerde (5) 24 zoemde (5) 40 plaatst (2) 56 volg (1) 
walgen (3) scheur (1) beefde (5) pestte (5) 9 rekte (5) 25 brommen (3) 41 vluchtten (6) 57 stelt (2) 
gestoord (7) bakt (2) scheiden (3) twijfelt (2) 10 zweven (3) 26 voegen (3) 42 daalden (6) 58 geschilderd (7) 
huil (1) tel (1) regent (2) getild (7)11 wensten (6) 27 zwierde (5) 43 kneed (1) 59 schroomden (6) 
geruimd (7) vulden (6) schaatst (2) voedde (5) 12 droomt (2) 28 plooiend (4) 44 deerde (5) 60 smeert (2) 
leer (1) schaadden (6) rillend (4) veeg (1) 13 soezend (4) 29 gedeeld (7) 45 broei (1) 61 schrapend (4) 
brandend (4) duld (1) wakend (4) beuzelden (6)14 gevloeid (7) 30 piekte (5) 46 gepronkt (7) 62 vloekend (4) 
huichelt (2) rustte (5) woelde (5) krakend (4) 15 werkend (4) 31 norren (3) 47 pleegden (6) 63 stuitte (5) 
straften (6) leeft (2) gevreesd (7)   16 zeur (1) 32 gespaard (7) 

48 
 plak (1)   
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A JOINT ANALYSIS OF THE DEVERBAL ADJECTIVES 

AND INFLECTED VERBS  

CHAPTER 5 
 
 
 
 
 
 
 

5.1 Revealing more of the underlying structure 

The deverbal adjectives1 studied in Chapter 3 and the inflected verbs studied in 

Chapter 4 have in common that they both contain verb stems. With respect to the 

specific verb stems, the two item pools overlap in 76%. I created this overlap on 

purpose to allow for additional comparative analyses of variables which influence 

the production of the two kinds of morphologically complex words. The overlap 

between the item pools is incomplete, because the pool of deverbal adjectives 

contains about one fourth of irregular verb stems, which were replaced by 

additional regular stems in the inflectional study (see 4.2.1 for the reasons to 

restrict Experiment 5 to regular verbs). 

In parallel to the regression analysis of the joint data of four experiments 

reported in Chapter 2, I conducted a joint analysis of the data presented in 

Chapters 3 and 4. The two data sets were merged and a mixed-effects regression 

analysis with subject and item as crossed random effects was carried out (Pinheiro 

& Bates, 2000; Baayen, Tweedie, & Schreuder, 2002; Bates, 2005; Bates & 

Sarkar, 2005; Baayen, in press). While the joint analysis started fresh from the raw 

data, a number of latencies had to be excluded prior to the analysis. These 

latencies are identical to those excluded prior to the individual analyses in 

                                                           
1 Dutch derivational morphology knows nine variants of input - output relations, because all word 

classes (noun, adjective, verb) can be derived from one another. Deverbal adjectives are the 

specific type of derivational morphology in which adjectives are derived from verbal stems through 

suffixation. 
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Chapters 3 and 4. Taking both data sets together, I excluded all latencies of two 

participants and five items (zweterig; zweverig; gruwen voedde, gepronkt)2. In 

addition, I excluded a total of 2266 (4%) specific trials, each of which qualified as 

one of the following: time out trial (latency >1500 ms), hesitation, wrong naming or 

voice key error. Of the original 57500 latencies measured, 54084 (94%) entered 

the analysis. 

Following a stepwise variable selection procedure, model criticism led to the 

removal of an additional 2% of data points with standardized residuals exceeding 

2.5. The model that was refitted to the data incorporated random intercepts for 

word stem (STD = 0.038) and for subject (STD = 0.122), and the residual error 

(STD = 0.225) and revealed the fixed-effects structure presented in Table 5.1. 

As before, naming onset latencies slowed with REPETITION (  = 0.0057, 

t(53181) = 11.17, p < 0.0001), and PLOSIVE-initial words elicited longer onset 

latencies than words beginning with non-plosives. These main effects were 

modulated by an interaction. The repetition effect was strongest for fricatives (f) 

compared to plosives (p) and other initial segments (o). Furthermore, words with 

unvoiced initial segments were named faster than words with VOICED initial 

segments (  = -0.0171, t(53181) = -2.36, p = 0.0183). As before, we interpret these 

phonological effects as artifacts of the voice key (e.g., Kessler, Treiman, & 

Mullennix, 2002, see 3.4 for a discussion of the direction of the effect). 

Word formation TYPE (inflection versus derivation) interacted with the 

INFLECTIONAL ENTROPY of the verbal stem. Inflected words elicited shorter onset 

latencies than derived words (  = -0.1088, t(53181) = -2.58, p = 0.0099), while only 

for the inflections, there was an inhibitory effect of INFLECTIONAL ENTROPY (  = 

0.0430, t(53181) = 3.63, p = 0.0003 for the interaction, net effect of INFLECTIONAL 

ENTROPY:  = -0.0085 + 0.0430 = 0.0345). 

There was a facilitatory effect of the Cohort Entropy H2 (  = -0.0054, 

t(53181) =  -2.80, p = 0.0051) and an inhibitory effect of the positional 

neighborhood size for the initial phoneme (  = 0.0018, t(53181) = 2.06, p = 

0.0394). 

                                                           
2 For a detailed description on why these latencies were taken out prior to the analysis, the reader is 

referred to the subsections 3.3 and 4.3. 
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Table 5.1: Fixed effects of the multilevel regression model with subject and stem as 

crossed random effects (DF=53181). The final model contains five numerical predictors 

(REPETITION, INFLECTIONAL ENTROPY, COHORT ENTROPY H2, POSITIONAL ENTROPY N1, and 

LEMMA FREQUENCY), and five factors (levels in parentheses, with the reference level in 

italics3: PLOSIVE (fricative, other, plosive), VOICED (voiced, unvoiced), TYPE (derivation, 

inflection), PREFIXED (unprefixed, prefixed), ge-FREE SET (non-ge-free set, ge-free set)).  

 

                                                           
3 In the case of factorial variables, one level is generally modeled to lie on the intercept. The table, 

therefore, only lists the adjustment(s) for the other level(s). 

 Estimate Std Error t-value p-value 

INTERCEPT 6.0305 0.0301 200.51 0.0000 

REPETITION 0.0057 0.0005 11.17 0.0000 

other 0.0125 0.0106 1.18 0.2380 
PLOSIVE 

plosive 0.0379 0.0083 4.59 0.0000 

other -0.0026 0.0009 -2.92 0.0035 REPETITION by  

PLOSIVE plosive -0.0016 0.0008 -2.04 0.0414 

VOICED unvoiced -0.0171 0.0072 -2.36 0.0183 

 TYPE inflection -0.1088 0.0422 -2.58 0.0099 

INFLECTIONAL ENTROPY -0.0085 0.0067 -1.26 0.2077 

INFL. ENTROPY by TYPE  inflection 0.0430 0.0119 3.63 0.0003 

COHORT ENTROPY H2 -0.0054 0.0019 -2.80 0.0051 

POSITIONAL NEIGHBORHOOD N1 0.0018 0.0009 2.06 0.0394 

PREFIXED prefixed 0.0613 0.0113 5.44 0.0000 

ge-FREE SET ge-free set 0.0750 0.0284 2.65 0.0081 

linear 0.0035 0.0042 0.83 0.4065 
LEMMA FREQUENCY 

quadratic 0.0000 0.0004 0.04 0.9681 

linear -0.0222 0.0089 -2.51 0.0121 ge-FREE SET by  

LEMMA FREQUENCY quadratic 0.0015 0.0007 2.19 0.0285 
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Most items entered in this joint analysis carry their stem in initial position, followed 

by a suffix. Only one of the sixteen conditions, the past participle inflection, carries 

a prefix (ge-). The subset of PREFIXED words elicited longer response onset 

latencies (  = 0.0613, t(53181) = 5.44, p < 0.0001) than the complement set of 

unprefixed words. However, the effect of shorter onset latencies for unprefixed 

words only holds within those item sets that contain both a prefixed and an 

unprefixed form (non-ge-free sets), because there is a complementary inhibitory 

effect for items in ge-FREE SETS (  = 0.07501, t(53181) = 2.65, p = 0.0081). In other 

words, only in the presence of a prefixed item set partner, unprefixed forms are 

produced significantly faster. 

Within the ge-FREE SETS, the LEMMA Frequency (specific to verbs, excluding 

homonymous nouns), emerged as a non-linear effect with shortest naming onset 

latencies for medium lemma frequencies (for the linear component:  = -0.0222, 

t(53181) = -2.51, p = 0.0121; for the quadratic component of the interaction:  = 

0.0015, t(53181) = 2.19, p = 0.0285). 

5.1.1 The partial effects for a subsets of items 

Because of the complexity of this joint model, understanding is not enhanced by 

graphically displaying all partial effects and interactions as done in the previous 

chapters. It is, however, possible to graphically display the partial effects as they 

occur in a subset of the data.  

Figure 5.1 presents the partial effects for those inflectional items, which had 

been presented in ge-FREE SETS
4. In the following discussion of these partial effects 

displayed, I compare them both to the partial effects in other subsets of items as 

well as to effects found in analyses which were presented earlier in this thesis. 

For the inflected verbs produced in ge-FREE SETS, Panel 1 of Figure 5.1 

pictures the overall inhibitory effect of REPETITION (over all phonetic classes of the 

onset phonemes). The elongation of the production onset latencies within the 

individual test phases (from the first production of an item to its tenth production) is 

                                                           
4 Excluded are all 36 inflectional items that either carry a prefix themselves or were tested with an 

item set partner that carries a prefix. Separate lists of all items produced in ge-FREE-SETS and items 

produced in non-ge-free sets are provided in the Appendices A and B. 
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a reliable, most likely task-specific, effect that occurred in all the position-response 

association learning task experiments conducted in the present study. 

 

 

Figure 5.1: The partial effects for the subset of the 90 inflected verbs, which had been 

produced in ge-FREE SETS in the position-learning association task. 

 

Panel 2 of Figure 5.1 shows the inhibitory effect of INFLECTIONAL ENTROPY as it 

occurs for the subset of inflected verbs produced in ge-FREE SETS. INFLECTIONAL 

ENTROPY had not emerged as a significant factor in the analysis of (all) the inflected 

verbs in Chapter 3. Analyzing the merged data set increases the statistical power 

and makes it possible to reveal more of the underlying structure that influences the 

production onset latencies of these morphologically complex words. 
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The facilitatory effect of the COHORT ENTROPY H2 (Panel 3) is familiar from 

both Chapter 3 ((all) inflected verbs) and Chapter 4 (the deverbal adjectives). With 

the transparent noun-noun compounds studied in Chapter 2, it was not the entropy 

of a positional cohort that facilitated production onset latencies, but rather both the 

derivational entropy of the initial constituent and the positional entropy of the head.  

Panel 4 of Figure 5.1 pictures the inhibitory effect of the POSITIONAL 

NEIGHBORHOOD SIZE N1 for the subset of inflectional items produced in ge-FREE SETS. 

The same effect appeared in the analysis of the deverbal adjectives in Chapter 4 

and is significant over all items in the merged model (see Table 5.1).  

The analysis further revealed a non-linear effect of LEMMA FREQUENCY within 

the ge-FREE SETS (pictured in Panel 5). With shortest onset latencies for medium 

frequencies, this non-linear effect is very similar to the COMPOUND FREQUENCY 

effect presented in Chapter 2. 

Note that the LEMMA FREQUENCY is computed over verbs only. It is the sum of 

frequencies of the inflectional variants of a verb. In Dutch, as in English, for some 

verbs the first person singular forms are homophonous to singular nouns (such as 

in draai, teken, wens). When only the frequencies of the inflectional variants are 

added up, the resulting sum of frequencies is a significant predictor for the latency 

in which an inflected verb is produced. When the frequency of the homophonous 

noun is added up along with the frequencies of the verb’s inflectional variants, the 

resulting sum is not predictive. Note that besides the naming of single digit 

numbers as distracter trials, all items produced in the inflectional experiment were 

verb forms. 

5.2 Differences and similarities in the production of deverbal 

adjectives and inflected verbs 

The joint analysis reported in 5.2 is the most powerful of all mixed-effects modeling 

reported in this dissertation, because it is based on twice as many items (and data 

points) as the mixed-effects models presented in the previous chapters. A merging 

of the data sets of deverbal adjectives and inflected verbs is meaningful, because 

both types of morphologically complex words contain verbal stems. Tripling the 

power by merging also the compound data is not meaningful, because the chosen 



CHAPTER 5 

 

 

107

noun-noun compounds differ too much both in their structure and in their set of 

predictors. Thanks to its greater power, the joint analysis was able to not only 

reveal some effects that had not appeared in the separate analysis but also to 

compare how specific predictors affect the production onset latencies of these two 

types of morphologically complex words. 

 In the following, I discuss five aspects of the joint model in more detail. First, 

is the production of an inflected verb form easier than the production of a deverbal 

adjective? Second, what to think of the disadvantage for prefixed forms.  Third, 

why is there a paradigmatic effect of inflectional entropy that is predictive for 

inflected verbs, but not for deverbal adjectives? Fourth, what do inhibitory effects of 

the positional neighborhood size N1 imply? And finally, how to look at the non-

linear effect of the lemma frequency of the morphologically complex word. 

5.2.1 Shorter naming onset latencies for inflected verbs than for 
deverbal adjectives 

Inflected verbs were produced with shorter onset latencies than deverbal 

adjectives. Note, that these two types of morphologically complex words were 

tested in separate experiments with different participants. Under such 

circumstances, the faster production onset latencies for the inflected verbs could 

be attributed to faster responding participants in that experiment. To examine 

whether inflected verbs are produced with shorter onset latencies than deverbal 

adjectives, both types need to be tested within the same experiment using the 

same participants. The decision to test them in separate experiments was based 

on several reasons, among which a better comparison to the compound 

experiments, the total length of the experiment, and most prominent, the avoidance 

of repeated verb stems given their 76% overlap in the experiments. While the joint 

analysis of the two experiments is fruitful with respect to all other factors and 

numerical predictors, the confounding clearly restricts the interpretation of a main 

effect of TYPE (inflection, derivation). 

Nevertheless, I want to discuss some explanations of why the onset 

latencies for inflected verbs could indeed be shorter than the onset latencies for 

deverbal adjectives. A first explanation might point to the fact that the production of 

inflections systematically involves the planning of only one phonological word, 
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while some of the deverbal adjectives contain suffixes that are phonological words 

(such as -achtig and -loos). The planning of two phonological words might take 

longer than the planning of just one phonological word resulting in significantly 

shorter onset latencies for inflected verbs. If this explanation holds, the onset 

latencies should also differ for those deverbal adjectives that do contain a 

phonological-word suffix and those that do not. To test this hypothesis, I included a 

factor PHONOLOGICAL-WORD SUFFIX in the analysis of the deverbal adjectives. This 

factor was not significant. 

One might further suspect that a difference in the onset latencies for the two 

types of morphologically complex words is caused by a difference in word length. 

This explanation doesn’t hold. First, the difference in phonological word length 

between the item pools is small (means are 6.9 for the deverbal adjectives, and 5.4 

for the inflected verbs). Second, phonological word length was taken along as a 

predictor in all analyses conducted in this thesis, but never explained a significant 

proportion of variance in a final model. 

The item pools of deverbal adjectives and inflected verbs do, however, differ 

with respect to their average LEMMA FREQUENCIES (means and standard deviations 

in logarithmic scale: 4.2 (1.5), for the deverbal adjectives, and 6.8 (1.7) for the 

inflected verbs). As with the above mentioned variables, a predictor can only be 

assumed to cause a difference in the naming onset latencies between the groups, 

if that predictor is found to affect the latencies also within the groups. The LEMMA 

FREQUENCY was a significant predictor only for the naming onset latencies of the 

inflected verbs. Even under the most optimal statistical circumstances (when it was 

the only predictor included in the model next to the control variables), LEMMA 

FREQUENCY was not significant at all for the deverbal adjectives (see 3.4).  

Another possible explanation is that the production of a regular inflected 

verb is generally an easier task than the production of a deverbal adjective, 

because the former is more regular.   

5.2.2 A disadvantage for prefixed forms in mixed pairs 
 

The only prefixed forms present in these two experiments are past participles. 

Prefixed words starting with ge- differ from unprefixed words in several aspects. 
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First, past participles contain two affixes (prefix ge- and suffix -t), rather than one. 

Second, given that all past participles forms share their initial diphone, one might 

suspect differences with respect to bigger cohorts for prefixed inflections. Next to 

the distribution of relative frequencies within a cohort, the size of a cohort 

influences its entropy. In our sample, the past participles differed from the other 

inflectional variants with respect to their cohort entropies. The mean logged cohort 

entropies H1, H2, H3 were 9.1, 9.1, 5.4 for the prefixed inflections versus 7.5, 5.4, 

3.8 for the unprefixed inflections. The analysis revealed, however, that a higher 

cohort entropy H2 is negatively correlated with naming onset latencies, both for the 

deverbal adjectives and the inflected verbs. As a third difference, past participles 

begin with an unstressed, rather than a stressed syllable. Their longer naming 

onset latencies are in line with recent findings by Schiller, Fikkert, and Levelt 

(2004). Using picture naming, they observed longer onset latencies for stress-initial 

targets as opposed to stress-final targets. Finally, only one subtype of inflected 

verbs and none of the deverbal adjective carried a prefix, which might have created 

a kind of oddball out status for prefixed items in the experiment. To study whether 

the presence of a prefix generally elongates production onset latencies in 

morphologically complex words, a higher proportion of prefixes as well as different 

inflectional and derivational5 prefixes should be included.  

5.2.3 The stem’s inflectional entropy is predictive for inflected verbs, 
but not for deverbal adjectives  
 

The joint analysis reveals that the naming latency of an inflected verb form is 

affected by the verb’s INFLECTIONAL ENTROPY. That is, the onset latencies with 

which inflected forms such as miste or gemist are named are a reflection of the 

entropy over the verb’s inflectional paradigm (the frequency distribution of the 

inflectional variants: mis, mist, missen, missend, miste, misten, and gemist). In a 

deverbal adjective, however, the INFLECTIONAL ENTROPY of the verbal stem is no 

significant predictor for the latency with which the adjective (e.g. misbaar) is 

produced.  

                                                           
5 While deverbal adjectives are restricted to suffixation, five of the nine types of Dutch derivations 

can be formed through either prefixation or suffixation (see 3.1). 
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This observation poses two questions. First, why is the INFLECTIONAL 

ENTROPY of a verb reflected in the latency with which an inflectional variant of that 

verb is named but not in the latency with which a derivation is named that contains 

the verb as stem? Remember, that the two item pools overlapped in 76% with 

respect to the verb stems.  

While all items produced in the inflectional experiment were inflected verb 

forms, all items produced in the deverbal adjective experiment contained the stems 

in their uninflected forms. The naming of a deverbal adjective does not involve an 

inflection of the verbal stem. The actual production of inflected verb forms leads to 

a strong activation of the verbs’ inflectional paradigms and to an effect of 

INFLECTIONAL ENTROPY. The verbal stems’ inflectional paradigms play no role in the 

naming of deverbal adjectives. Note, that each deverbal adjective (e.g. misbaar) 

has an inflectional entropy of its own, computed over its singular and plural form. 

This entropy was no significant predictor of the naming onset latencies of the 

deverbal adjectives, all of which had been produced in their singular forms. 

Obviously INFLECTIONAL ENTROPY can be observed only when the inflectional 

paradigm is indeed relevant in performing the task. 

Second, why is the effect of INFLECTIONAL ENTROPY inhibitory? The 

INFLECTIONAL ENTROPY of a verb is highest, when its inflectional variants are 

produced equally frequently. Under these circumstances, the production of a 

specific inflectional variant seems the hardest. Note, that there is just one entropy-

value for all variants in a given inflectional paradigm, affecting the onset latencies 

with which higher- and lower-frequency variants are named in the same way.  

An effect of inflectional entropy in production is not trivial because it 

suggests an influence of paradigmatic relations in the mental lexicon on the 

production of a selected word form. According to Levelt, Roelofs, and Meyer 

(1999), the spreading of activation is restricted to the levels of conceptualization 

and lemma selection. Once a lemma is selected, it directly activates its word form 

and no other word forms receive activation. The position-response association 

learning task I used in the present study taps in at the level of word form encoding. 

Next to other paradigmatic effects, the effect of INFLECTIONAL ENTROPY strongly 

suggests the co-activation of other word forms during production.  
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While an effect of INFLECTIONAL ENTROPY could be explained by an extension 

of the WEAVER++ model that assumes word-form representations for inflectional 

variants, all of which would be activated by a selected lemma, such architecture 

could still not explain the paradigmatic effects of neighborhood density and cohort 

entropy. The diversity of paradigmatic effects strongly suggests that word forms 

are in general connected to one-another, with stronger links within closer 

paradigms. 

5.2.4 Inhibitory effects of the positional neighborhood N1 
 

In Chapter 2, I had included the variable neighborhood density in the analysis of 

the compound naming onset latencies, to see whether I could replicate recent 

findings of neighborhood effects in production (Vitevitch, 2002, 2006). The first 

analysis of covariance reported in Chapter 2 suggested a nonlinear effect of 

neighborhood density. However, as the speech signal unfolds from initial to final 

phoneme, a whole-word count of neighborhood density seemed inadequate for 

production (and comprehension) research. In the later analyses, I therefore also 

included position-specific neighborhoods and found inhibitory effects of N1, both in 

the individual analysis of the deverbal adjective onset latencies and as an overall 

effect in the joint analysis presented earlier in this chapter.  

 If the mental lexicon contains many words that differ from the to-be-

produced word in only the initial phoneme, production gets hard. In other words, it 

is difficult to produce a word that has many rhyme neighbors. Sevald and Dell 

(1994) had participants produce as many repetitions of sequences of overlapping 

words as possible within a given time. They found that it was generally easier to 

produce a sequence of rhyme words (such as pick, tick) than to produce a 

sequence of cohorts (such as pick, pin). While overlap is generally facilitative, there 

is an additional inhibitory component in the overlap of the initial phoneme. Sevald 

et al (1994) explain this inhibitory effect by the sequential cuing model, which 

assumes that, in such sequences, shared segments miscue the production of later 

sounds. Miscuing can happen in sequences such as pin, pick, but not in 

sequences such as pick, tick. The inhibitory effect of the positional neighborhood 

size of the initial phoneme found in the naming onset latencies of the deverbal 
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adjectives and inflected verbs might add an explanation of why it is easier to repeat 

sequences such as pick, tick than it is to repeat sequences such as pick, pin. The 

positional neighborhood size effect N1 suggests that during the activation of a 

given word form, its rhyme neighbors are co-activated. When it is the task to 

produce an isolated word (as done in this dissertation), the co-activation elongates 

the production latency of the intended word form. When, however, it is the task to 

produce and repeat a sequence of rhyme neighbors (as done in Sevald et al, 

1994), the co-activation is also a pre-activation that shortens the production onset 

latencies. Therefore, rhyme neighbors might benefit production only when they are 

actually produced. When they are not produced, they make the selection of the 

intended word form harder. 

5.2.5 Non-linear effects for the lemma frequency of the morphologically 
complex word 
 

For the inflected verbs, there is a non-linear effect of the LEMMA FREQUENCY of the 

complex word with the same shape as the COMPOUND FREQUENCY effect reported 

in Chapter 2. There is facilitation within the lower frequency range that turns into 

inhibition in the higher frequency range. At the time the Proceedings of the National 

Academy of Science Paper was written, I and my co-authors were cautious as to 

whether the trend of inhibition might be an artifact created by the model (using a 

quadratic polynomial), thereby actually covering a floor-effect. The same caution is 

appropriate when looking at the non-linear effect of LEMMA FREQUENCY presented 

above, though there is a more pronounced inhibition with the inflected verbs (there 

is relatively less facilitation in the linear component). Even if modeling has forced 

these LEMMA FREQUENCY effects of the complex words to appear more evenly 

curved than they actually are, something significant seems to be replicated here. 

Like with the compounds, the LEMMA FREQUENCY of an inflected verb co-affects its 

naming latency, with shortest onset latencies for medium frequencies. 

When trying to understand this effect, it seems important to again 

differentiate between the LEMMA FREQUENCY of the complex word and the SURFACE 

FREQUENCY of the complex word. Crucially, it is an effect of the frequency of the 

lemma, which is the summed frequency of the inflectional variants of a word. The 
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SURFACE FREQUENCY, the frequency of occurrence of the articulated word form, 

was far from significance in all models presented in this thesis. In their localization 

of (morphologically simplex) word frequency effects in speech production, 

Jescheniak and Levelt (1994) had found an effect of lemma frequency, which was 

weaker than the effect of word form frequency and diminished quickly over 

repetition. The position association learning task used in the present study is 

clearly form based and the effects for the sum of frequencies of the inflectional 

variants are stable over repetition. Though, at this point, I can not provide a sound 

explanation of how these effects might arise, I want to speculate on it. Assume that 

inflectional variants have their own word form representations (see 5.2.3), all of 

which are linked to one-another and activated by a selected lemma. Imagine two 

low-frequent inflected verbs (a) and (b), belonging to the inflectional paradigms A, 

and B, respectively. While all variants in paradigm A are low-frequent, paradigm B 

contains variants of higher frequency. Verb (b) benefits more from co-activation in 

its paradigm than verb (a) does, resulting in shorter naming onset latencies for 

higher LEMMA FREQUENCIES. Why, however, does facilitation turn into inhibition in 

the higher range of LEMMA FREQUENCIES? It seems unlikely that a high summed 

frequency of the inflectional variants within a paradigm is beneficial up to a certain 

degree after which it causes competition. It seems more likely that the co-activation 

in the inflectional paradigm is in general beneficial (potentially reaching a ceiling), 

but that something else is different about high-frequency inflectional variants. 

Higher frequency might lead to more well-established representations (e.g., 

Stemberger & MacWhinney, 1986), even in perfectly composable regular 

inflections. If an inflectional paradigm contains representations of high-frequency 

variants with tight links between their constituting morphemes, co-activation could 

be less beneficial than in a paradigm, in which the constituting morphemes are 

more distinct. Note that this effect would affect the whole inflectional paradigm as it 

is visible in the effect of LEMMA FREQUENCY. It would be interesting to study, 

whether high-frequency inflected verbs are produced less incrementally than low-

frequency inflected verbs. 
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Appendix: The merged data set 

The items are listed in alphabetical order. For details on the assignments to item 

sets and for details on the morphological subtypes, the reader is referred to the 

Appendices of the Chapters 3 and 4. 

 

a) Deverbal adjectives (124) 

 

beuzelachtig, beverig, brandbaar, breekbaar, broeds, broeierig, brommerig, 

buigzaam, deelbaar, deerlijk, denkelijk, draaglijk, draaibaar, drinkbaar, dromerig, 

druilerig, duldzaam, duurzaam, dweperig, flossig, grijpbaar, gruwelijk, haalbaar, 

handzaam, hangerig, happig, hatelijk, hebberig, heuglijk, hijgerig, hoorbaar, 

hopelijk, houdbaar, huichelachtig, huilerig, huwbaar, jankerig, jeukerig, kittelachtig, 

klaaglijk, kleverig, kloterig, kneedbaar, knorrig, krakerig, kruiperig, kwetsbaar, 

laakbaar, lacherig, leefbaar, leerzaam, leesbaar, lijdzaam, meetbaar, merkelijk, 

minzaam, misbaar, morsig, pesterig, piekerig, plaatselijk, plagerig, plakkerig, 

plooibaar, pronkerig, pruilerig, raadzaam, reddeloos, regenachtig, rekbaar, rillerig, 

roezig, schadelijk, scheidbaar, schilderachtig, schraperig, schrikkelijk, schromelijk, 

slaperig, sleets, smakelijk, smeerbaar, snauwerig, soezerig, spaarzaam, speels, 

splijtbaar, springerig, stellig, sterfelijk, strafbaar, strijdbaar, tastbaar, tekenachtig, 

telbaar, tobberig, toonbaar, toverachtig, twijfelachtig, vangbaar, vatbaar, vindbaar, 

vloeibaar, vluchtig, voedzaam, voegzaam, voelbaar, volgzaam, vreselijk, waaks, 

warrigweerloos, weifelachtig, weigerachtig, wendbaar, wenselijk, werkzaam, willig, 

woelig, zorgzaam, zweterig6, zweverig6, zwierig, zwijgzaam 

 

b) Inflected verbs tested in ge-free sets (90) 

 

bakt, beefde, beuzelden, bouw, broeden, broei, brommen, daalden, deerde, 

draaiend, duld, durend, dweepten, gruwen6, gunt, hijgden, hopend, huichelt, huil, 

jeukten, klaagde, kleeft, kneed, kookten, krakend, lachte, leer, lenen, maak, merkt, 

morsten, knorren, pakkend, pestte, piekte, plaatst, plagen, pleegden, plooiend, 

                                                           
6 These items were excluded from the analysis 
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pruilden, reddend, regent, rekte, remmen, rillend, rustte, schaatst, scheiden, 

scheur, schrapend, schudde, smaken, smeert, snauw, soezend, spoelde, staken, 

stelt, sticht, stoppend, straften, stuitte, tasten, tekent, tel, tobbend, toonden, 

toveren, veeg, vloekend, vluchtten, voedde6, voegen, voelt, vulden, walgen, 

weerde, weifelt, weiger, wenden, wensten, werkend, woelde, zaagt, zaai, zeur, 

zoent, zorgden, zwetend, zwierde 

 

c) Inflectional items tested in non-ge-free sets (36) 

 

gehoord, brandend, droomt, geacht, gedeeld, gehaald, gehuwd, gekwetst, gemist, 

gepronkt6, geraakt, geruimd, geschilderd, gespaard, gestoord, getild, gevloeid, 

gevreesd, gewist, gezet, hapte, haten, jankend, leeft, minnen, plak, ren, 

schaadden, schroomden speelden, trachtte, twijfelt, volg, wakend, zoemde, 

zweven 

  

d) The regular verbal stems used in both Experiment 5 and 6 

 

beuzel, beef, brand, broed, broei, brom, deel, deer, draai, droom, duld, duur, 

dweep, gruw, haal, hap, haat, hijg, hoor, hoop, huichel, huil, huw, jank, jeuk, klaag, 

kleef, kneed, knor, kraak, kwets, lach, leef, leer, merk, min, mis, mors, pest, plak, 

piek, plaats, plaag, plooi, pronk, pruil, red, regen, rek, ril, schaad, scheid, schilder, 

schraap, schroom, smaak, smeer, snauw, soes, spaar, speel, stel, straf, tast, 

teken, tel, tob, toon, tover, twijfel, vlucht, voed, vloei, voeg, voel, volg, vrees, waak, 

weer, weifel, weiger, wend, wens, werk, woel, zorg, zweet, zweef, zwier 
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SUMMARY 

 
 
 
 
 
 
 

In a series of experiments, I studied the production of Dutch morphologically 

complex words, with special attention to effects of frequency, as a core issue in 

form retrieval. Models of speech production assume that on the way from 

conceptualization to articulation, word forms are accessed in the mental lexicon. 

Models disagree with respect to the way morphologically complex words are stored 

at the word form level. Full-listing approaches (e.g., Butterworth, 1983) assume 

that there is no qualitative difference between morphologically simplex and 

complex words. Fully decompositional models (e.g., Levelt, Roelofs, & Meyer, 

1999) assume that the word form level contains only morphemes, and that these 

morphemes are accessed in the production of morphologically complex words. 

Clearly, the meaning of morphologically complex words must either be a 

predictable function of its components or it must be stored. Levelt et al (1999) 

assume that opaque complex words have their own lemmas, but that their 

constituting morphemes are nevertheless accessed at the word form level. While 

transparency seems to be a more gradient feature and the proportion of complex 

words with own lemmas might be high, there is converging evidence that the 

production of complex words involves access to the constituting morphemes 

irrespective of transparency (e.g., Zwitserlood, Bölte, & Dohmes, 2000; Roelofs & 

Baayen, 2002; Melinger, 2003; Dohmes, Zwitserlood, & Bölte, 2004; Gumnior, 

Bölte, & Zwitserlood, 2006). However, as stated by Butterworth (1983), it is 

possible in a full listing for all forms to have an internal structure marking 

morpheme boundaries.  

The frequency with which a word occurs in a language has been found (e.g., 

Oldield & Wingfield, 1965) to correlate with its naming onset latency (i.e. the time 

passing from the moment a word is triggered to the start of articulation). Higher-

frequency words have shorter naming onset latencies than lower-frequency words. 
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The word frequency effect has proven to be replicable in a wide range of tasks and 

has been attributed to the word form level (e.g., Jescheniak & Levelt, 1994). If 

morphologically complex words are fully listed at the word form level, the latency 

with which a morphologically complex word is produced should correlate with its 

frequency of occurrence as a complex word. If the production of morphologically 

complex word, however, involves access to the word forms of the constituting 

morphemes, naming onset latencies should correlate with the frequencies of 

occurrence of the constituting morphemes. Under the assumption of both 

decompositionality and incrementality, one predicts frequency effects for initial 

constituents only, because processing at the consecutive level starts as soon as 

the word form of the initial constituent has been accessed. 

To measure the naming onset latencies of words, I made use of a position-

response association task (Cholin, Levelt, & Schiller, 2006) in which participants 

first learned to associate a morphologically complex word with a visually marked 

position on a computer screen. Participants then had to produce the associated 

word in response to the appearance of the position mark and the speech onset 

latencies were measured. Each item was produced ten times by each participant. 

Testing 24 participants in each experiment, I measured 240 naming onset latencies 

of each item. In total, I collected naming onset latencies of 128 transparent noun-

noun compounds (e.g., wijnglas), 124 deverbal adjectives (e.g., grijpbaar) and 126 

regular inflected verbs (e.g., draaiend).  

Chapter 2 presents experiments on the production of Dutch transparent 

noun-noun compounds. I independently varied the frequencies of the compound 

itself, its initial constituent (modifier), and its final constituent (head) to study their 

individual effects on the compound naming latency. Analyses of variance were 

conducted. In Experiment 1, pairs of compounds were matched in compound 

frequency and shared the modifier (e.g., marktvrouw is as frequent as 

marktkraam). The compound with the higher-frequency head (e.g., vrouw) was 

produced significantly faster (14ms) than the compound with the lower-frequency 

head (e.g., kraam). In Experiment 2, pairs of compounds sharing the head 

constituent were matched in compound frequency ((e.g., steentijd and bronstijd). 

Within the pairs, the compound with the higher-frequency modifier (e.g., steen) was 
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produced significantly faster than the compound with the lower-frequency modifier 

(e.g., brons). The latency difference was on average 25 ms. In Experiment 3, pairs 

of compounds were matched in compounds frequency, while the frequency of both 

head and modifier was high in one compound and low in the other (e.g., ringslang 

and roomsaus). With an average difference of 27 ms, compounds containing the 

high-frequency constituents were named significantly faster than their matches. In 

Experiment 4, pairs of compounds were matched according to the frequencies of 

their modifiers and according to the frequencies of their heads, while there was a 

contrast in the frequency of the compound itself (e.g., hoofdstad and huisvriend). 

There was no significant difference in the naming latency. Taken together, the 

results suggest that the production latency of a compound is not influenced by its 

frequency of occurrence as a compound, but rather varies according to the 

frequencies of its constituting morphemes.  

In addition to the separate ANOVAs, stepwise mixed-effects modeling was 

conduced on the joint data of the Experiments 1-4 (Pinheiro & Bates, 2000; 

Baayen, Tweedie, & Schreuder, 2002; Bates, 2005; Bates & Sarkar, 2005; Baayen, 

in press). The results challenge the assumption of full-listing as well as the 

assumption of full-decomposition and support the relevance of paradigmatic 

structure in the mental lexicon. For the modifier, there was an effect of the 

cumulative frequency of the constituent (as predicted by full decomposition) but 

there was an additional effect of its derivational entropy, which represents the 

frequency distribution of all words containing the modifier constituent. The naming 

latency of a compound is also affected by its head constituent. However, it is not 

the cumulative frequency with which the head appears in the lexicon but the 

entropy in the group of compounds sharing the same head constituent. The more 

often the head is head in other compounds and the less frequency variation there 

is within this compound family, the faster the compound is named. Though 

compounds contain two free morphemes, each of which can in principle take the 

place of a modifier or a head in a compound, access seems to be position-specific. 

In addition, there is a non-linear effect of the lemma frequency of the compound, 

with shortest naming onset latencies for medium frequencies. Taken together, the 

analyses presented in Chapter 2 suggest that the production of Dutch transparent 
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noun-noun compounds involves access to the word forms of their constituting 

morphemes and is affected by paradigmatic relations between these morphemes.  

With deverbal adjectives and inflected verbs, it was impossible to 

independently vary constituent and whole word frequencies within matched pairs. 

Therefore, I collected item sets that were distributed over a broad range of 

frequencies. Chapter 3 presents a stepwise mixed-effects modeling with subject 

and word as crossed random effects of the naming onset latencies of 124 Dutch 

deverbal adjectives. The results show that the latency with which a deverbal 

adjective is named is affected by the cumulative frequency of its verbal stem. The 

more often the verbal stem (e.g., grijp) occurs anywhere in the lexicon 

(independent or as part of a compounded, derived, or inflected word), the faster the 

deverbal adjective (e.g., grijpbaar) is named. The frequency of the deverbal 

adjective itself was not predictive of its naming latency, as were all other measures 

of frequency and entropy. The only compatible predictor was the positional 

frequency of the verbal stem, but the positional frequency of the stem is highly 

correlated with its cumulative frequency. The naming latency of the deverbal 

adjective was further affected by two phonological variables. The more words exist 

that differ from the deverbal adjective only in the initial phoneme, the longer it takes 

to name the adjective. While the existence of many rhyme neighbors elongates the 

naming latency, the existence of many other words that share the initial two 

phonemes, shortens the naming onset latencies. The onset latencies are shortest, 

when the cohort of words sharing the initial two phonemes is big and has a small 

variation in frequencies. These effects of neighborhood density and cohort entropy 

again suggest paradigmatic relations in the mental lexicon, and that the production 

of a word is affected by many other words in the lexicon. The finding that the 

production latency of a deverbal adjective is affected by the cumulative frequency 

of its verbal stem and unaffected by the frequency of occurrence of the deverbal 

adjective itself argues for decomposition and against full-listing.  

Chapter 4 presents a stepwise mixed-effects modeling with subject and 

word as crossed random effects of the naming onset latencies of 126 regular 

inflected verbs in Dutch. The results show that the production of prefixed inflections 

(past participle forms) was significantly slower than the production of unprefixed 
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forms. There was no effect of frequency or entropy related to either the constituting 

morphemes or the inflected verb itself, but there was a facilitative effect of the 

entropy over the cohort sharing the first two phonemes. The more words exist that 

start with the same two phonemes as the to-be-produced inflected verbs, the faster 

the verb can be named. The results presented in Chapter 4, neither fit the 

prediction of full listing nor do they fit the prediction of full decomposition, because 

there were no significant constituent of surface frequency effects. A joint analysis 

of the naming onset latencies of the deverbal adjectives and the inflected verbs 

revealed more of the underlying structure of the production of inflected verbs 

(Chapter 5).  

The deverbal adjectives and inflected verbs were selected such as that 

there was a high overlap (76%) in the verbal stems used in the two studies. 

Chapter 5 presents a joint analysis of the naming onset latencies of the deverbal 

adjectives and inflected verbs to directly compare how particular variables 

influence the production of these two types of morphologically complex words. The 

facilitative effect of the cohort entropy H2 (found in both separate analysis) was 

significant over all items. The inhibitory effect of the position-specific neighborhood 

N1 (present in the separate analysis of the deverbal adjectives but not in the 

separate analysis of the inflected verbs) was also significant over all items. Both 

types of words are named the faster, the fewer rhyme neighbors they have and the 

more evenly frequent words exist which share their initial two phonemes. Only for 

the inflected verbs, there was an inhibitory effect of inflectional entropy. The higher 

the sum of frequencies of the inflectional variants of a verb, the longer it takes to 

prepare a specific inflectional variant. In the joint analysis, it became evident that 

prefixed verbs were not only produced slower compared to unprefixed words, but 

also affected the naming onset latencies of their unprefixed item set partners. For 

the subset of inflected verbs that neither carried a prefix nor had a prefixed item set 

partner, there was a non-linear effect of the lemma frequency of the inflected 

verbs. Yielding shortest latencies for medium frequencies, this effect seems to 

replicate the lemma frequency effect in transparent noun-noun compounds 

reported in Chapter 2).  
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Taken together, the naming onset latencies of the deverbal adjectives and 

the inflected verbs argue against full listing, as the frequency of occurrence of the 

complex word was far from significance in all analyses. For the deverbal 

adjectives, the results are in line with the assumption of decomposition, but there is 

no effect of the frequency of the verbal stem on the naming latency of regular 

inflected verbs. The non-linear effect of the lemma frequency of the inflected verb 

suggests that high-frequency inflectional variants might have more well-established 

representations and be produced less incrementally than variants of lower 

frequency. Neighborhood and cohort entropy effects reflect paradigmatic relations 

in the mental lexicon and suggest that all word forms influence the production of 

one word. 

To summarize, the data of the present study suggest that the word form 

level does not contain full-listings or strictly separated morphemes but morphemes 

with links to other morphemes. Morphologically and phonolgically related forms 

influence the speed with which morphemes can be retrieved for the production of 

morphologically complex words. 
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In een reeks van experimenten heb ik onderzoek gedaan naar de productie van 

morfologisch complexe woorden in het Nederlands en de rol die frequentie daarbij 

speelt. Spraakproductiemodellen gaan ervan uit dat bij het proces van 

conceptualisatie naar articulatie woordvormen worden opgehaald uit het mentale 

lexicon. Er zijn verschillende theorieën over de manier waarop morfologisch 

complexe woorden op het vormniveau zijn opgeslagen. Terwijl full-listing modellen 

(bv. Butterworth, 1983) voorstellen dat er geen kwalitatief onderscheid bestaat 

tussen morfologisch eenvoudige en morfologisch complexe woorden, gaat men er 

in een decompositioneel model vanuit dat het woordvormniveau alleen morfemen 

bevat, die ook gebruikt worden voor de productie van morfologisch complexe 

woorden (bijv. Levelt, Roelofs, & Meyer, 1999). Als de betekenis van een 

morfologisch complex woord niet kan worden afgeleid uit de betekenis van de 

individuele morfemen, is het noodzakelijk dat de betekenis apart is opgeslagen. 

Levelt et al. (1999) stellen voor dat opake complexe woorden een eigen lemma 

hebben maar, net als transparante complexe woorden, op het vormniveau uit losse 

morfemen worden opgebouwd. Hoewel transparantie een graduele eigenschap 

blijkt te zijn en het aantal complexe woorden met behoefte aan een eigen lemma 

daarom vermoedelijk hoog is, is er evidentie dat morfemen geactiveerd zijn 

wanneer morfologisch complexe woorden geproduceerd worden, onafhankelijk van 

hun mate van transparantie (bv. Zwitserlood, Bölte, & Dohmes, 2000; Roelofs & 

Baayen, 2002; Melinger, 2003; Dohmes, Zwitserlood, & Bölte, 2004; Gumnior, 

Bölte, & Zwitserlood, 2006). Zoals Butterworth (1983) aangeeft, zou het ook in een 

full-listing model mogelijk kunnen zijn dat woordvormen een interne 

morfeemstructuur hebben.  

Onderzoek heeft aangetoond (bijv. Oldield & Wingfield, 1965) dat de 

frequentie van een woord (i.e., hoe vaak een woord gebruikt wordt) samenhangt 
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met de spraak-onset-latentie van het woord (i.e., de tijd die verstrijkt vanaf het 

moment dat de spreker weet welk woord hij/zij wil noemen tot het begin van de 

articulatie). Hoogfrequente woorden hebben kortere spraak-onset-latenties dan 

laagfrequente woorden. Dit woordfrequentie-effect is in verschillende 

onderzoeksparadigmas gevonden en wordt aan het woordvormniveau 

toegeschreven (bijv. Jescheniak & Levelt, 1994).  

Als morfologisch complexe woorden op het woordvormniveau als hele 

woorden opgeslagen zijn, dan zou de spraak-onset-latentie moeten samenhangen 

met de frequentie van het complexe woord. Maar als in plaats van een kant-en-

klare woordvorm losse morfemen worden opgehaald, dan zou de latentie moeten 

samenhangen met de frequentie van die morfemen. Als we aannemen dat 

spraakproductie zowel decompositioneel als incrementeel verloopt, verwacht men 

alleen een frequentie effect van de eerste constituent te zien. In dat geval kunnen 

namelijk de volgende processen al starten, zodra de vorm van de eerste 

constituent is opgehaald. 

Voor het meten van de spraak-onset-latenties van morfologisch complexe 

woorden, heb ik gebruik gemaakt van een Symbool Positie Associatie Leertaak 

(Cholin, Levelt, & Schiller, 2006). Daarbij leert een proefpersoon eerst om een 

woord met een visueel gemarkeerde positie op het beeldscherm te associëren, en 

produceert zij/hij later het geassocieerde woord als antwoord op het verschijnen 

van de visuele marker. Hierbij wordt de spraak-onset-latentie gemeten. Per 

proefpersoon heb ik voor elk woord tien latenties gemeten. Met 24 proefpersonen 

per experiment levert dat 240 latenties voor elk woord. In totaal heb ik de latenties 

van 128 transparante naamwoord-naamwoord samenstellingen (bijv. wijnglas), 124 

deverbale adjectieven (bijv. grijpbaar) en 126 regelmatige werkwoorden (bijv. 

draaiend)  kunnen verzamelen. 

In Hoofdstuk 2 presenteer ik onderzoek naar de productie van Nederlandse 

transparante samenstellingen die uit twee zelfstandige naamwoorden bestaan. Om 

hun eigen bijdrage aan de spraak-onset-latenties te kunnen bestuderen, heb ik de 

frequenties van de samenstellingen en van de constituenten onafhankelijk van 

elkaar gevarieerd. Voor het eerste experiment heb ik paren van samenstellingen 

gezocht die, als geheel woord, even frequent zijn (bijv. marktvrouw komt even vaak 
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voor als marktkraam) en die dezelfde modifier en daarom ook dezelfde modifier-

frequentie hebben (hier: markt). Binnen dergelijke paren, werd de samenstelling 

met het frequente hoofd (bijv. vrouw) met een significant kortere latentie genoemd 

(gemiddeld 14 ms) dan de samenstelling met het minder frequentere hoofd (bijv 

kraam). Voor Experiment 2 heb ik paren van even frequente samenstellingen 

gezocht met eenzelfde hoofd ((bijv. steentijd and bronstijd). Weer was er een 

significant verschil in de latenties. De samenstelling met de frequentere modifier 

(bijv. steen) had een kortere latentie (gemiddeld 25 ms) dan de samenstelling met 

de minder frequente modifier (bijv. brons). In Experiment 3 waren de 

samenstellingen binnen elk paar even frequent, terwijl de modifier en het hoofd van 

de ene samenstelling hoger frequent waren dan die van de andere samenstelling 

(e.g., ringslang en roomsaus). Met gemiddeld 27 ms waren de spraak-onset-

latenties van de samenstellingen met de frequentere morfemen significant korter 

dan de latenties van de even frequente samenstellingen met de minder frequente 

morfemen. De paren in Experiment 4 hadden zowel even frequente modifiers als 

even frequente hoofden, terwijl de ene samenstelling frequenter was dan de 

andere (e.g., hoofdstad en huisvriend). In dit experiment was er geen verschil in de 

latenties. Samengevat wijzen deze resultaten erop dat de spraak-onset-latentie 

van een transparante samenstelling niet samenhangt met de frequentie van de 

samenstelling zelf, maar met de frequentie van zijn morfemen. 

Naast de aparte analyses heb ik alle in net genoemde experimenten 

verzamelde latenties middels een stepwise mixed-effects model geanalyseerd 

(Pinheiro & Bates, 2000; Baayen, Tweedie, & Schreuder, 2002; Bates, 2005; Bates 

& Sarkar, 2005; Baayen, in press). De resultaten hiervan zijn noch door een full-

listing model noch door een strikt decompositioneel model gemakkelijk te verklaren 

en duiden op paradigmatische structuren in het mentale lexicon. Zoals een 

decompositoneel model voorspelt was de cumulatieve frequentie van het eerste 

morfeem (bijv. hoe vaak kom je het morfeem markt tegen in het Nederlands) een 

significante voorspeller voor de spraak-onset-latentie. Maar naast dit cumulatieve 

frequentie-effect, was er ook een significant effect voor de derivationele entropie 

van het eerste morfeem (een maat voor de frequentieverdeling binnen de groep 

complexe woorden waarin het morfeem markt voorkomt). Ook het tweede morfeem 
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(het hoofd) had invloed op de latenties. De sterkste voorspeller was daarbij echter 

niet de absolute frequentie van het morfeem (bijv. vrouw) maar hoe veel 

samenstellingen er bestaan met hetzelfde hoofd (vrouw) en hoe de frequenties 

binnen die groep verdeeld zijn. Hoe groter de groep en hoe kleiner de variantie in 

de frequenties, des te korter was de spraak-onset-latentie. Hoewel 

samenstellingen uit vrije morfemen bestaan en een vrij morfeem in verschillende 

samenstellingen zowel modifier als hoofd kan zijn, blijkt de positie een belangrijke 

rol te spelen bij het ophaalproces op het woordvormniveau. Ten slotte, had ook de 

lemmafrequentie van de samenstelling een significant effect op de latenties. 

Samengevat wijzen de in Hoofdstuk 2 gepresenteerde resultaten erop dat voor de 

productie van Nederlandse transparante samenstellingen morfemen worden 

opgehaald onder invloed van paradigmatische relaties tussen de morfemen. 

Voor het onderzoek naar de productie van deverbale adjectieven en 

vervoegde werkwoorden was het niet mogelijk om binnen paren de frequentie van 

de morfemen en van het complexe woord onafhankelijk te variëren. Daarom heb ik 

voor deze typen morfologisch complexe woorden itemsets samengesteld, die ten 

opzichte van belangrijke variabelen breed verdeeld zijn en hun invloed op de 

spraak-onset-latenties met behulp van stepwise mixed-effects modellen 

geanalyseerd. In het derde Hoofdstuk presenteer ik een analyse van de spraak-

onset-latenties van 124 Nederlandse deverbaal adjectieven. De resultaten tonen 

aan dat de latentie, waarmee een deverbaal adjectief genoemd wordt, beïnvloed 

wordt door de frequentie van de stam. Hoe vaker de stam (bijv. grijp) voorkomt 

(zelfstandig of binnen een samenstelling, een derivatie, of een vervoeging), des te 

sneller begon de articulatie van het deverbale adjectief (bijv. grijpbaar). De 

frequentie van het adjectief zelf was geen voorspeller van de latentie en ook 

andere frequentie- en entropiematen waren geen geschikte voorspellers, met 

uitzondering van de positionele stamfrequentie, die echter hoog correleerde met de 

cumulatieve stamfrequentie. Ook fonologische maten hadden een invloed op de 

latenties. Hoe meer woorden enkel in het eerste foneem van het deverbaal 

adjectief verschilden (rijmburen), des te langer duurde het voordat het adjectief 

gearticuleerd kon worden. Hoe meer woorden er bestaan die met dezelfde twee 

fonemen beginnen, des te korter was de latentie, waarbij ook de 
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frequentieverdeling binnen het cohort van belang was. De latenties waren het 

kortst voor grote cohorten met weinig variantie in de frequenties. Buurt- en 

cohorteffecten duiden op paradigmatische relaties in het mentale lexicon en op een 

invloed van alle woorden op de productie van een woord. Dat de spraak-onset-

latentie van de adjectieven niet samenhangt met de frequentie waarmee het 

deverbale adjectief geproduceerd wordt, maar wel met de cumulatieve frequentie 

van de stam, spreekt tegen full-listing en voor decompositionaliteit. 

In Hoofdstuk 4 heb ik de spraak-onset-latenties van 126 regelmatig 

vervoegde Nederlandse werkwoorden geanalyseerd. De resultaten laten zien dat 

de tijd voor het begin van de articulatie langer is voor geprefigeerde vormen dan 

voor ongeprefigeerde vormen. Net als bij de deverbale adjectieven, was er een 

significant effect voor de cohortentropie H2. Hoe meer woorden met dezelfde twee 

fonemen beginnen als het woord dat de proefpersoon noemt, des te korter is de 

latentie voor het begin van de articulatie. Omdat er geen significante frequentie 

effecten waren, sluiten de resultaten van Hoofdstuk 4 niet aan bij de voorspellingen 

van het full-listing model en evenmin bij de voorspellingen van het 

decompositionele model. Een gezamenlijke analyse van de in de Experimenten 5 

en 6 verzamelde data (Hoofdstuk 5) leverde nieuwe informatie op over de 

productie van een vervoegd werkwoord. 

In de gezamenlijke analyse van de spraak-onset-latenties van de deverbale 

adjectieven en de vervoegingen van de regelmatige werkwoorden heb ik 

onderzocht hoe bepaalde factoren de productie van deze twee typen morfologisch 

complexe woorden beïnvloeden. Het faciliterende effect van de cohortentropie H2 

(gevonden in beide afzonderlijke analyses) was hier eveneens significant. Het 

inhiberende effect van de positiespecifieke buurt N1 (eerder alleen significant voor 

de adjectieven) was in deze analyse significant voor alle woorden. Hoe minder 

rijmburen ze hebben en hoe meer woorden met dezelfde twee fonemen beginnen, 

des te sneller worden ze genoemd. Alleen voor de vervoegingen was er een 

inhiberend effect van de inflectionele entropie. Hoe groter de som van de 

frequenties van de vervoegingen, hoe langer het duurt voordat één van de 

vervoegingen gearticuleerd kan worden. Verder heeft de gezamenlijke analyse 

duidelijk gemaakt dat geprefigeerde vormen niet alleen maar trager worden 
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genoemd dan ongeprefigeerde vormen, maar dat ze in de gebruikte taak ook de 

latentie van hun setpartner beïnvloeden. Als er uitsluitend wordt gekeken naar de 

ongeprefigeerde vormen met een ongeprefigeerde setpartner, wordt een niet-

lineair effect van de lemmafrequentie van het werkwoord zichtbaar. Met de kortste 

latenties voor de gemiddeld-frequente werkwoorden, lijkt dit effect op het 

lemmafrequentie-effect in Hoofdstuk 2.  

Samengevat zijn de onderzoeksresultaten met betrekking tot de productie 

van de adjectieven en de vervoegingen niet gemakkelijk verklaarbaar met het full-

listing model omdat de frequenties van de complexe woorden geen significant 

effect lieten zien. De resultaten met betrekking tot de deverbale adjectieven 

ondersteunen een decompositioneel model, terwijl er voor de vervoegde 

werkwoorden geen effect was voor de stamfrequentie. Het niet-lineare effect van 

de lemmafrequentie van de werkwoorden duidt erop dat hoogfrequente 

werkwoorden sterker gerepresenteerd zijn en minder incrementeel geproduceerd 

worden dan minder frequente werkwoorden. Buurt- en cohorteffecten 

weerspiegelen paradigmatische relaties in het mentale lexicon en wijzen erop dat 

alle woordvormen invloed hebben op de productie van een woord.  

Samengevat duiden de resultaten van het onderzoek erop dat het mentale 

lexicon noch uit gehele vormen voor morfologisch complexe woorden noch uit 

losse morfemen bestaat, maar uit met elkaar verbonden morfemen. Morfologisch 

en fonologisch gerelateerde vormen beïnvloeden de snelheid waarmee de 

morfemen kunnen worden opgehaald voor de productie van morfologisch 

complexe woorden. 
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