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Abstract

An intensional model for the programming language PCF is described, in which the
types of PCF are interpreted by games, and the terms by certain “history-free” strategies.
This model is shown to capture definability in PCF. More precisely, every compact strat-
egy in the model is definable in a certain simple extension of PCF. We then introduce an
intrinsic preorder on strategies, and show that it satisfies some striking properties, such
that the intrinsic preorder on function types coincides with the pointwise preorder. We
then obtain an order-extensional fully abstract model of PCF by quotienting the inten-
sional model by the intrinsic preorder. This is the first syntax-independent description of
the fully abstract model for PCF. (Hyland and Ong have obtained very similar results by
a somewhat different route, independently and at the same time).

We then consider the effective version of our model, and prove a Universality Theorem:
every element of the effective extensional model is definable in PCF. Equivalently, every
recursive strategy is definable up to observational equivalence.

Keywords Game semantics, full abstraction, sequentiality, PCF, functional computa-
tion, programming language semantics, Linear Logic.

1 Introduction

The Full Abstraction Problem for PCF [Plo77, Mil77, BCL85, Cur92b] is one of the
longest-standing problems in the semantics of programming languages. There is quite
widespread agreement that it is one of the most difficult; there is much less agreement as
to what exactly the problem is, or more particularly as to the precise criteria for a solution.
The usual formulation is that one wants a “semantic characterization” of the fully abstract
model (by which we mean the inequationally fully abstract order-extensional model, which
Milner proved to be uniquely specified up to isomorphism by these properties [Mil77]).
The problem is to understand what should be meant by a “semantic characterization”.

Our view is that the essential content of the problem, what makes it important, is
that it calls for a semantic characterization of sequential, functional computation at higher
types. The phrase “sequential functional computation” deserves careful consideration. On
the one hand, sequentiality refers to a computational process extended over time, not a
mere function; on the other hand, we want to capture just those sequential computations
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in which the different parts or “modules” interact with each other in a purely functional
fashion.

There have, to our knowledge, been just four models of PCF put forward as embody-
ing some semantic analysis. Three are domain-theoretic: the “standard model” based on
Scott-continuous functions [Plo77]; Berry’s bidomains model based on stable functions
[Ber79]; and the Bucciarelli-Ehrhard model based on strongly stable functions [BE91].
The fourth is the Berry-Curien model based on sequential algorithms [BC82].1 Of these,
we can say that the standard model gives a good account of functional computation at
higher types, but fails to capture sequentiality, while the sequential algorithms model gives
a good analysis of sequential computation, but fails to capture functional behaviour. In
each case, the failure can calibrated in terms of definability: the standard model includes
parallel functions; the sequential algorithms model includes algorithms which compute
“functionals” which are sensitive to non-functional aspects of the behaviour of their argu-
ments. The bidomains model also contains non-sequential functions; while the strongly
stable model, in the light of a recent result by Ehrhard [Ehr], can be seen as the “ex-
tensional collapse” of the sequential algorithms model. In short, all these models are
unsatisfactory because they contain “junk”. On the other side of the coin, we have Mil-
ner’s result that an order-extensional model is fully-abstract iff all its compact elements
are definable.

Intensional Full Abstraction

This suggests that the key step towards solving the Full Abstraction problem for PCF is
to capture PCF definability. This motivates the following definition. A model M (not
necessarily extensional) is intensionally fully abstract if it is algebraic, and all its compact
elements are definable in PCF. In support of this terminology, we have the fact that the
fully abstract model can be obtained from an intensionally fully abstract model M in
the following canonical fashion. Firstly, define a logical relation on M induced by the
ordering on the ground types (which are assumed standard, i.e. isomorphic to the usual
flat domains of natural numbers and booleans). Because of the definability properties of
M, this relation is a preorder at all types. In particular, it is reflexive at all types. This
says that all elements of the model have extensional (functional) behaviour—there is no
junk.

We can now apply Theorem 7.2.2 of [Sto88] to conclude that M can be collapsed
by a continuous homomorphism to the fully abstract model. In short, the fully abstract
model is the extensional collapse of any intensionally fully abstract model. Moreover,
note that the collapsing map is a homomorphism, and in particular preserves application.
This contrasts sharply with “collapses” of the standard model to obtain the fully abstract
model, as in the work of Mulmuley [Mul87] and Stoughton and Jung [JS93], which are
only homomorphic on the “inductively reachable” subalgebra.

Thus we propose that a reasonable factorization of the full abstraction problem is to
look for a semantic presentation of an intensionally fully abstract model, which embodies
a semantic analysis of sequential functional computation. The construction of such a
model is our first main result; it is described in Sections 2 and 3.

We have explained how the (order-extensional, inequationally) fully abstract model
can be obtained from any intensionally fully abstract model by means of a general con-
struction, described in [Sto88]. However, this description of the fully abstract model leaves
something to be desired. Firstly, just because the construction in [Sto88] is very general,

1Cartwright and Felleisen’s model without error values turns out to be equivalent to the sequential algo-
rithms model [CF92, Cur92a]. The main result in [CF92, Cur92a] is that the sequential algorithms model with
errors is fully abstract for SPCF, an extension of PCF with a catch construct and errors. This is a fine result,
but SPCF has a rather different flavour to PCF, and arguably is no longer purely functional in character.
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it is unlikely to yield any useful information about the fully abstract model. Secondly, it
is not entirely syntax-free: it refers to the type structure of PCF.

What would the ideal form of description of the fully abstract model be? We suggest
that it should comprise the specification of a cartesian closed category whose objects are
certain cpo’s, given together with certain additional “intensional” structure, to be used
to characterize sequentiality; and whose morphisms are continuous functions between
these cpo’s—not all continuous functions, of course, but only the sequential ones, as
determined by the intensional structure. The interpretation of PCF generated from this
category should then be the fully abstract model. Most of the attempts at solving the full
abstraction problem of which we are aware, including Berry’s bidomains, Curien’s bicds,
and Bucciarelli and Erhard’s strongly stable functions, clearly fall within this general
scheme. (Thus for example the intensional structure in bidomains is the stable ordering;
for domains with coherence it is the coherence.)

In Section 4, we will explain how the category of games described in Section 2 does
indeed give rise to a category of sequential domains in exactly this sense. This yields the
first syntax-independent description of the fully abstract model for PCF.

A still more stringent requirement on a description of the fully abstract model is
that it should yield effective methods for deciding observation equivalence on terms. For
example, consider “Finitary PCF”, i.e. PCF based on the booleans rather than the
natural numbers. The interpretation of each type of Finitary PCF in the fully abstract
model is a finite poset. A natural question is whether these finite posets can be effectively
presented. Suppose that we have a category of sequential domains as described in the
previous paragraph, yielding a fully abstract model of PCF. If the “intensional structure”
part of the interpretation of each type could itself be specified in a finite, effective fashion,
then such a model would immediately yield a positive solution to this problem. Because
of its intensional character, our model does not meet this requirement: there are infinitely
many strategies at each functional type of Finitary PCF. The same point occurs in one
form or another with all the currently known descriptions of the fully abstract model for
PCF. A remarkable result by Ralph Loader [Loa96] shows that this is in fact inevitable.
Loader proved that observation equivalence for Finitary PCF is undecidable. This shows
that an intensional description of the fully abstract model is the best that we can hope
to do.

Related Work

The results in the present paper were obtained in June 1993 (the results on Intensional
Full Abstraction in Section 3) and September 1993 (the results on the intrinsic preorder
and (extensional) Full Abstraction in Section 4). They were announced on various elec-
tronic mailing lists in June and September 1993. An extended abstract of the present
paper appeared in the Proceedings of the Second Symposium on Theoretical Aspects of
Computer Science, which was held in Sendai in April 1994 [AJM94].

Independently, and essentially simultaneously, Martin Hyland and Luke Ong gave a
different model construction, also based on games and strategies, which led to the same
model of PCF, and essentially the same results on Intensional Full Abstraction. Following
our work on the intrinsic preorder, they showed that similar results held for their model.
What is interesting is that such similar results have been obtained by somewhat different
routes. Hyland and Ong’s approach is based on dialogue games and innocent strategies,
in the tradition of Lorentzen’s dialogue interpretations of logical proofs [Lor60, Lor61],
and the work by Kleene and Gandy on the semantics of higher-type recursion theory
[Gan93], while our approach is closer to process semantics and the Geometry of Interaction
[AJ94a, Mal93]. Further work is needed to understand more fully the relationship between
the two approaches.
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Independently, Hanno Nickau obtained essentially the same model and results as Hy-
land and Ong [Nic94]. A very different description of the fully abstract model for PCF
was obtained by Peter O’Hearn and Jon Riecke, using Kripke logical relations [OR95].
This construction is very interesting, and probably of quite general applicability, but does
not appear to us to embody a specific semantic analysis of sequentiality.

Since the results described in this paper were obtained, there has been significant fur-
ther progress in the use of game semantics to give fully abstract models for programming
languages. These results all build on the concepts, methods and results developed in
the present paper, and that of Hyland and Ong. For an expository account of some of
these results, and some references, see [AM99]; there is an overview in [Abr97]. The main
results of the present paper are recast in an abstract, axiomatic form in [Abr00]. There
have also been some significant applications of game semantics, notably [MH99, GM00].

2 The Model

We shall refer to [AJ94a] for general background and motivation on game semantics.
We begin by fixing some notation. If X is a set, we write X⋆ for the set of finite

sequences (words, strings) on X . We shall use s, t, u, v and primed and subscripted
variants of these to denote sequences, and a, b, c, d, m, n and variants to denote elements
of these sequences. Concatenation of sequences will be indicated by juxtaposition, and we
will not distinguish notationally between an element and the corresponding unit sequence.
Thus e.g. as denotes a sequence with first element a and tail s. If f : X → Y , then
f⋆ : X⋆ → Y ⋆ is the unique monoid homomorphism extending f . We write |s| for the
length of a finite sequence, and si for the i’th element of s, 1 ≤ i ≤ |s|. Given a set S of
sequences, we write Seven for the subset of even length sequences and Sodd for the subset
of odd length sequences. If Y ⊆ X and s ∈ X⋆, we write s↾Y for the result of deleting all
occurrences of symbols not in Y from s. We write s ⊑ t if s is a prefix of t, i.e. for some u,
su = t. We always consider sequences under this prefix ordering and use order-theoretic
notions [DP90] without further comment.

Given a family of sets {Xi}i∈I we write
∑

i∈I Xi for their disjoint union (coproduct);
we fix ∑

i∈I

Xi = {(i, x) | i ∈ I, x ∈ Xi}

as a canonical concrete representation. In particular, we write X1 +X2 for
∑

i∈{1,2} Xi.

If s ∈ (
∑

i∈I Xi)
⋆ and i ∈ I, we define s↾i ∈ Xi inductively by:

ǫ↾i = ǫ

((j, a)s)↾i =

{
a(s↾i), i = j
s↾i, i 6= j.

We use fst and snd as notation for first and second projection functions. Note that with
s as above, fst⋆(s) is a sequence of indices i1 · · · ik ∈ I⋆ tracking which components of
the disjoint union the successive elements of s are in.

We will also need some notation for manipulating partial functions. We write f : X ⇀
Y if f is a partial function from the set X to the set Y ; and fx � y for “fx is defined
and equal to y”. If f : X ⇀ Y is an injective partial function, we write f∗ : Y ⇀ X for
the converse, which is also an injective partial function. (NB: the reader should beware
of confusing f⋆ with f∗. In practice, this should not be a problem.) If f, g : X ⇀ Y are
partial functions with disjoint domains of definition, then we write f ∨ g : X ⇀ Y for the
partial function obtained by taking the union of (the graphs of) f and g. We write 0X
for the everywhere-undefined partial function on X and sometimes idX , sometimes 1X
for the identity function on X . We shall omit subscripts whenever we think we can get
away with it.
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2.1 Games

The games we consider are between Player and Opponent. A play or run of the game
consists of an alternating sequence of moves, which may be finite or infinite. Our plays
are always with Opponent to move first.

A game is a structure A = (MA, λA, PA,≈A), where

• MA is the set of moves.

• λA : MA → {P,O} × {Q,A} is the labelling function.

The labelling function indicates if a move is by Player (P) or Opponent (O), and if
a move is a question (Q) or an answer (A). The idea is that questions correspond
to requests for data, while answers correspond to data (e.g. integer or boolean
values). In a higher-order context, where arguments may be functions which may
themselves be applied to arguments, all four combinations of Player/Opponent with
Question/Answer are possible. λA can be decomposed into two functions λPO

A :

MA → {P,O} and λQA
A : MA → {Q,A}.

We write
{P,O} × {Q,A} = {PQ,PA,OQ,OA}

〈λPO
A , λQA

A 〉 = λA,
MP

A = λ−1
A ({P} × {Q,A}),

MO
A = λ−1

A ({O} × {Q,A}),

MQ
A = λ−1

A ({P,O} × {Q}),
MA

A = λ−1
A ({P,O} × {A})

etc., and define
P = O, O = P,

λPO
A (a) = λPO

A (a), λA = 〈λPO
A , λQA

A 〉.

• Let M⊛

A be the set of all finite sequences s of moves satisfying:

(p1) s = at =⇒ a ∈MO
A

(p2) (∀i : 1 ≤ i < |s|) [λPO
A (si+1) = λPO

A (si)]

(p3) (∀t ⊑ s) (|t↾MA
A | ≤ |t↾M

Q
A |).

Then PA, the set of valid positions of the game, is a non-empty prefix closed subset
of M⊛

A .

The conditions (p1)–(p3) can be thought of as global rules applying to all games.
(p1) says that Opponent moves first, and (p2) that Opponent and Player alternate.
(p3) is known as the bracketing condition, and can be nicely visualised as follows.
Write each question in a play as a left parenthesis “(”, and each answer as a right
parenthesis “)”. Then the string must be well-formed in the usual sense, so that
each answer is associated with a unique previous question—the most recently asked,
as yet unanswered question. In particular, note that a question by Player must be
answered by Opponent, and vice versa.

• ≈A is an equivalence relation on PA satisfying

(e1) s ≈A t =⇒ λ⋆
A(s) = λ⋆

A(t)
(e2) s ≈A t, s′ ⊑ s, t′ ⊑ t, |s′| = |t′| =⇒ s′ ≈A t′

(e3) s ≈A t, sa ∈ PA =⇒ ∃b. sa ≈A tb.

Note in particular that (e1) implies that if s ≈A t, then |s| = |t|.

For example, the game for Nat has one possible opening move ∗ (request for data), with
λNat(∗) = OQ; and for each n ∈ ω, a possible response n with λNat(n) = PA. ≈Nat is
the identity relation on PNat. The game for Bool is defined similarly.
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2.2 Strategies

A strategy for Player in A is a non-empty subset σ ⊆ P even

A such that σ = σ ∪ dom(σ) is
prefix-closed, where

dom(σ) = {sa ∈ P odd

A | ∃b. sab ∈ σ}.

We will be interested in a restricted class of strategies, the history-free (or history inde-
pendent, or history insensitive) ones. A strategy σ is history-free if it satisfies

• sab, tac ∈ σ =⇒ b = c

• sab, t ∈ σ, ta ∈ PA =⇒ tab ∈ σ (equivalently, ta ∈ dom(σ)).

Henceforth, “strategy” will always by default mean “history-free strategy”.
Given any strategy σ, we can define fun(σ) : MO

A ⇀ MP
A by

fun(σ)(a) � b iff (∃s) [sab ∈ σ].

Conversely, given f : MO
A ⇀ MP

A we can define traces(f) ⊆ (M⊛

A )even inductively by:

traces(f) = {ǫ} ∪ {sab | s ∈ traces(f), sa ∈ PA, f(a) � b}.

We say that f induces the strategy σf = traces(f), if traces(f) ⊆ PA. Note that if τ is
a strategy, we have

fun(σf ) ⊆ f, σfun(τ) = τ

so there is always a least partial function on moves canonically inducing a (history-free)
strategy.

Proposition 2.1 If f : MO
A ⇀ MP

A is any partial function, then traces(f) ⊆M⊛

A .

Proof Certainly any s ∈ traces(f) satisfies “O moves first” and the alternation con-
dition. We show that it satisfies the bracketing condition by induction on |s|. If s = tab,
then since ta ∈ PA and |ta| is odd, the number of questions in ta must exceed the number
of answers; hence s satisfies the bracketing condition. �

The equivalence relation on positions extends to a relation on strategies, which we
shall write as ⊏≈.
σ ⊏
≈ τ iff:

sab ∈ σ, s′ ∈ τ, sa ≈ s′a′ =⇒ ∃b′. [s′a′b′ ∈ τ ∧ sab ≈ s′a′b′]. (1)

By abuse of notation we write the symmetric closure of this relation as ≈:

σ ≈ τ iff σ ⊏
≈ τ ∧ τ ⊏

≈ σ.

Interpreting the equivalence on positions as factoring out coding conventions, σ ≈ τ
expresses the fact that σ and τ are the same modulo coding conventions. σ ≈ σ expresses
a “representation independence” property of strategies.

Proposition 2.2 (Properties of ⊏≈)
⊏
≈ is a partial preorder relation (i.e. transitive) on strategies. Hence ≈ is a partial

equivalence relation (i.e. symmetric and transitive).

Proof Suppose σ⊏
≈ τ and τ ⊏≈υ, and s ∈ σ, u ∈ υ, sab ∈ σ and sa ≈ ua′′. By induction

on |sa| using the definition of σ⊏
≈ τ and (e3), there is ta′b′ ∈ τ with sab ≈ ta′b′. But then

ta′ ≈ ua′′, and since τ ⊏
≈ υ, ua′′b′′ ∈ υ with ta′b′ ≈ ua′′b′′ and hence sab ≈ ta′b′ ≈ ua′′b′′

as required. �
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¿From now on, we are only interested in those history-free strategies σ such that
σ ≈ σ.We write Str(A) for the set of such strategies over A. If σ is such a strategy for
a game A, we shall write σ : A. We write Â for the set of partial equivalence classes of
strategies on A, which we think of as the set of “points” of A. We write [σ] = {τ | σ ≈ τ}
when σ ≈ σ.

2.3 Multiplicatives

Tensor The gameA⊗B is defined as follows. We call the gamesA andB the component

games.

• MA⊗B = MA +MB, the disjoint union of the two move sets.

• λA⊗B = [λA, λB], the source tupling.

• PA⊗B is the set of all s ∈M⊛

A⊗B
such that:

1. Projection condition: The restriction to the moves in MA (resp. MB) is in PA

(resp. PB).

2. Stack discipline: Every answer in s must be in the same component game as
the corresponding question.

• s ≈A⊗B t iff s↾A ≈A t↾A ∧ s↾B ≈B t↾B ∧ fst⋆(s) = fst⋆(t).

We omit the easy proof that ≈A⊗B satisfies (e1)–(e3). Note that, if the equivalence
relations ≈A and ≈B are the identities on PA and PB respectively, then ≈A⊗B is the
identity on PA⊗B.

The tensor unit is given by

I = (∅,∅, {ǫ}, {(ǫ, ǫ)}).

Linear Implication The game A⊸B is defined as follows. We call the games A and
B the component games.

• MA⊸B = MA +MB, the disjoint union of the two move sets.

• λA⊸B = [λA, λB ].

• PA⊸B is the set of all s ∈M⊛

A⊸B
such that:

1. Projection condition: The restriction to the moves in MA (resp. MB) is in PA

(resp. PB).

2. Stack discipline: Every answer in s must be in the same component game as
the corresponding question.

• s ≈A⊸B t iff s↾A ≈A t↾A ∧ s↾B ≈B t↾B ∧ fst⋆(s) = fst⋆(t).

Note that, by (p1), the first move in any position in PA⊸B must be in B.
We refer to the condition requiring answers to be given in the same components as the

corresponding questions as the stack discipline. It ensures that computations must evolve
in a properly nested fashion. This abstracts out a key structural feature of functional
computation, and plays an important rôle in our results.

Proposition 2.3 (Switching Condition) If a pair of successive moves in a position
in A⊗B are in different components, (i.e. one was in A and the other in B), then the
second move was by Opponent (i.e. it was Opponent who switched components). If two
successive moves in A⊸B are in different components, the second move was by Player
(i.e. it was Player who switched components).

7



Proof Each position in A⊗B can be classified as in one of four “states”: (O,O), i.e. an
even number of moves played in both components, so Opponent to move in both; (P,O),
meaning an odd number of moves played in the first component, so Player to move there,
and an even number of moves played in the second component, so Opponent to play there;
(O,P ); and (P, P ). Initially, we are in state (O,O). After Opponent moves, we are in
(P,O) or (O,P ), and Player can only move in the same component that Opponent has
just moved in. After Player’s move, we are back in the state (O,O). A simple induction
shows that this analysis holds throughout any valid play, so that we can never in fact reach
a state (P, P ), and Player must always play in the same component as the preceding move
by Opponent. A similar analysis applies to A⊸B; in this case the initial state is (P,O),
after Opponent’s move we are in (P, P ), and after Player’s response we are in (O,P ) or
(P,O). �

Note that, by comparison with [AJ94a], the Switching Condition is a consequence
of our definition of the multiplicatives rather than having to be built into it. This is
because of our global condition (p1), which corresponds to restricting our attention to
“Intuitionistic” rather than “Classical” games. Note also that the unreachable state (P, P )
in A⊗B is precisely the problematic one in the analysis of Blass’ game semantics in
[AJ94a].

2.4 The Category of Games

We build a category G:

Objects : Games

Morphisms : [σ] : A→ B is a partial equivalence class [σ] ∈ Â⊸B

We shall write σ : A→ B to mean that σ is a strategy in A⊸B satisfying σ ≈ σ.
There are in general two ways of defining a (history-free) strategy or operation on

strategies: in terms of the representation of strategies as sets of positions, or via the partial
function on moves inducing the strategy. Some notation will be useful in describing these
partial functions. Note that the type of the function f inducing a strategy in A⊸B is

f : MP
A +MO

B ⇀ MO
A +MP

B .

Such a function can be written as a matrix

f =

(
f1,1 f1,2
f2,1 f2,2

)

where
f1,1 : MP

A ⇀ MO
A f1,2 : MO

B ⇀ MO
A

f2,1 : MP
A ⇀ MP

B f2,2 : M
O
B ⇀ MP

B .

For example, the twist map

MP
A +MO

A
∼= MO

A +MP
A

corresponds to the matrix
(

0 idMO
A

idMP
A

0

)

where 0 is the everywhere-undefined partial function. (Compare the interpretation of
axiom links in [Gir89a].) The strategy induced by this function is the copy-cat strategy
as defined in [AJ94a]. As a set of positions, this strategy is defined by:

idA = {s ∈ P even

A⊸A | s↾1 = s↾2}.

In process terms, this is a bi-directional one place buffer [Abr94]. These copy-cat strategies
are the identity morphisms in G.

8



Composition The composition of (history-free) strategies can similarly be defined
either in terms of the set representation, or via the underlying functions on moves inducing
the strategies. We begin with the set representation. Given σ : A → B, τ : B → C, we
define

σ‖τ = {s ∈ (MA +MB +MC)
⋆ | s↾A,B ∈ σ, s↾B,C ∈ τ}

σ; τ = {s↾A,C | s ∈ σ‖τ}even.

This definition bears a close resemblance to that of “parallel composition plus hiding” in
the trace semantics of CSP [Hoa85]; see [AJ94a] for an extended discussion of the analogies
between game semantics and concurrency semantics, and [Abr94] for other aspects.

We now describe composition in terms of the functions inducing strategies. Say we
have σf : A → B, σg : B → C. We want to find h such that σf ;σg = σh. We shall
compute h by the “execution formula” [Gir89b, Gir89a, Gir88]. Before giving the formal
definition, let us explain the idea, which is rather simple. We want to hook the strategies
up so that Player’s moves in B under σ get turned into Opponent’s moves in B for τ , and
vice versa. Consider the following picture:

✲✛

✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁✁❆

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆❆ ❄

❄

❄

❄

❄❄

❄❄

MP
C

MO
C

MO
B

MP
B

MP
B

MO
B

MO
A

MP
A

gf

Assume that the Opponent starts in C. There are two possible cases:

• The move is mapped by g to a response in C: In this case, this is the response of
the function h.

• The move is mapped by g to a response in B. In this case, this response is interpreted
as a move of the Opponent in B and fed as input to f . In turn, if f responds in A,
this is the response of the function h. Otherwise, if f responds in B, this is fed back
to g. In this way, we get an internal dialogue between the strategies f and g.

It remains to give a formula for computing h according to these ideas. This is the
execution formula:

h = EX(f, g) =
∨

k∈ω

mk.

The join in the definition of h can be interpreted concretely as union of graphs. It is well-
defined because it is being applied to a family of partial functions with pairwise disjoint
domains of definition. The functions mk : MP

A +MO
C ⇀ MO

A +MP
C are defined by

mk = π⋆ ◦ ((f + g) ◦ µ)k ◦ (f + g) ◦ π.

The idea is that mk is the function which, when defined, feeds an input from MP
A or MO

C

exactly k times around the channels of the internal feedback loop and then exits from
MO

A or MP
C . The retraction

π : MA +MC ⊳MA +MB +MB +MC : π⋆

9



is defined by
π⋆ = [inl, 0, 0, inr] π = [in1, in4]

and the “message exchange” function µ : MO
A +MP

B +MO
B +MP

C ⇀ MP
A +MO

B +MP
B +MO

C

is defined by
µ = 0 + [inr, inl] + 0.

Here, 0 is the everywhere undefined partial function.
The fact that this definition of composition coincides with that given previously in

terms of sets of positions is proved in [AJ94a, Proposition 3].

Proposition 2.4 Composition is monotone with respect to ⊏
≈:

σ, σ′ : A→ B, τ, τ ′ : B → C, σ ⊏
≈ σ′, τ ⊏

≈ τ ′ =⇒ σ; τ ⊏
≈ σ′; τ ′.

Proof We follow the analysis of composition given in the proof of Proposition 1 of
[AJ94a]. Suppose σ ⊏

≈ σ′, τ ⊏
≈ τ ′, ca ∈ σ; τ and c ≈ c′. Then ca = u↾A,C for uniquely

determined u = cb1 · · · bka such that u↾A,B ∈ σ, u↾B,C ∈ τ . We must have c ∈ MC .
Since τ ⊏

≈ τ ′, c′b′1 ∈ τ ′ for unique b′1, and cb1 ≈ c′b′1. Now b1 ∈ dom(σ) and σ ⊏
≈ σ′ implies

that b′1b
′
2 ∈ σ′ for unique b′2, and b1b2 ≈ b′1b

′
2. Continuing in this way, we obtain a uniquely

determined sequence u′ = c′b′1 · · · b
′
ka

′ such that u′↾A,B ∈ σ′, u′↾B,C ∈ τ ′, and ca ≈ c′a′,
as required. This argument is extended to general strings s ∈ σ; τ by an induction on |s|.

�

We say that a string s ∈ (MA1
+ . . .+MAn

)⋆ is well-formed if it satisfies the bracketing
condition and the stack discipline; and balanced if it is well-formed, and the number of
questions in s equals the number of answers. Note that these properties depend only
on the string s̄ obtained from s by replacing each question in A1, . . . , An by (1, . . . , (n
respectively, and each answer in A1, . . . , An by )1, · · · , )n respectively.

Lemma 2.5 The balanced and well-formed strings in (MA1
+ · · ·+MAn

)⋆ are generated
by the following context-free grammar:

bal ::= ǫ | bal bal | (i bal )i (i = 1, . . . , n)

wf ::= ǫ | bal wf | (i wf (i = 1, . . . , n).

(More precisely, s is well-formed (balanced) iff s̄ is derivable from wf (bal) in the above
grammar.)

Proof It is easy to see that the terminal strings derivable from bal are exactly the
balanced ones, and that strings derivable from wf are well-formed. Now suppose that
s is well-formed. We show by induction on |s| that s is derivable from wf. If s is non-
empty, it must begin with a question, s = (it. If this question is not answered in s,
then t is well-formed, and by induction hypothesis t is derivable from wf, hence s is
derivable via the production wf → (iwf. If this question is answered, so s = (iu)iv,
then (iu)i is balanced, and hence derivable from bal, and v is well-formed, and so by
induction hypothesis derivable from wf. Then s is derivable from wf via the production
wf→ bal wf. �

Lemma 2.6 (Projection Lemma) If s ∈ (MA1
+ · · · + MAn

)⋆ is well-formed (bal-
anced), then so is s↾Ai1 , . . . , Aik for any subsequence Ai1 , . . . , Aik of A1, . . . , An.

Proof We use the characterization of well-formed and balanced strings from the pre-
vious lemma, and argue by induction on the size of the derivation of s from wf or bal.
Suppose s is well-formed. If s is empty, the result is immediate. If s is derivable via
wf→ bal wf, so s = tu where t is balanced and u is well-formed, then we can apply the
induction hypothesis to t and u. Similarly when s = (it where t is well-formed, we can
apply the induction hypothesis to t. The argument when s is balanced is similar. �
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Lemma 2.7 (Parity Lemma) If s ∈ σ‖τ is such that s = tmun, where m, n are
moves in the “visible” components A and C, then:

• if m, n are in the same component, then |u↾B| is even.

• if m, n are in different components, then |u↾B| is odd.

Proof Firstly, we consider the case where all moves in u are in B. Suppose for example
that m and n are both in A. Then the first move in u is by σ, while the last move is by
τ , since it must have been σ which returned to A. Thus |u| is even. Similarly if m and n
are both in C. Now suppose that m is in A while n is in C. Then the first and last moves
in u were both by σ, so |u| is odd; and similarly if m is in C and n is in A.

Now we consider the general case, and argue by induction on |u|. Suppose m and n
are both in A. Let u = u1m1u2, where all moves in u1 are in B. Suppose firstly that m1

is in A; then |u1| is even, and by induction hypothesis |u2↾B| is even, so |u↾B| is even. If
m1 is in C, then |u1| is odd, and by induction hypothesis |u2↾B| is odd, so |u↾B| is even.
The other cases are handled similarly. �

Proposition 2.8 If σ : A → B and τ : B → C, then σ; τ satisfies the bracketing
condition and the stack discipline.

Proof By the Projection Lemma, it suffices to verify that every s ∈ σ‖τ is well-formed.
We argue by induction on |s|. The basis is trivial. Suppose s = tm. If m is a question,
it cannot destroy well-formedness. If m is an answer with no matching question, then
by induction hypothesis t is balanced. Suppose m is in A or B; then by the Projection
Lemma, t↾A,B is balanced, so m has no matching question in s↾A,B = (t↾A,B)m,
contradicting s↾A,B ∈ σ. A similar argument applies when m is in B or C.

So we need only consider s = umvn where m, n are a matching question-answer pair.
It remains to show that m and n must be in the same component. Suppose firstly that m
and n both occur in A or B. Note that v is balanced, and then by the Projection Lemma,
so is v↾A,B. So m and n will be paired in s↾A,B ∈ σ, and hence they must be in the
same component. Similarly when m and n are both in B or C.

The final case to be considered is when m and n both occur in A or C. Since v is
balanced, by the Projection Lemma so is v↾B. It follows that |v↾B| is even, so by the
Parity Lemma, m and n must be in the same component. �

Combining Propositions 2.4.2 and 2.4.6 with Proposition 2 from [AJ94a], we obtain:

Proposition 2.9 G is a category.

2.5 G as an autonomous category

We have already defined the object part of the tensor product A⊗B, linear implication
A⊸B, and the tensor unit I. The action of tensor on morphisms is defined as follows.
If σf : A → B, σg : A′ → B′, then σf⊗σg : A⊗A′ → B⊗B′ is induced by the partial
function

(MP
A +MP

A′) + (MO
B +MO

B′)

∼= (MP
A +MO

B ) + (MP
A′ +MO

B′)
f+g
⇀ (MO

A +MP
B ) + (MO

A′ +MP
B′)

∼= (MO
A +MO

A′) + (MP
B +MP

B′).

The natural isomorphisms for associativity, commutativity and unit of the tensor product:

assocA,B,C : (A⊗B)⊗C ∼= A⊗(B⊗C)
symmA,B : A⊗B ∼= B⊗A
unitA : A⊗I ∼= A

11



are induced by the evident bijections on the sets of moves:

((MP
A +MP

B )+MP
C )+(MO

A +(MO
B +MO

C )) ∼= ((MO
A +MO

B )+MO
C )+(MP

A +(MP
B +MP

C ))

(MP
A +MP

B ) + (MO
B +MO

A ) ∼= (MO
A +MO

B ) + (MP
B +MP

A )

(MP
A +∅) +MO

A
∼= (MO

A +∅) +MP
A .

The application morphism AppA,B : (A⊸B)⊗A→ B is induced by

((MO
A +MP

B ) +MP
A ) +MO

B
∼= ((MP

A +MO
B ) +MO

A ) +MP
B .

❄❄❄❄

❄❄❄❄
✜

✜
✜

✜
✜

✜
✜

✜
✜✜

❭
❭
❭
❭
❭
❭
❭
❭
❭❭

✜
✜

✜
✜

✜
✜

✜
✜

✜✜

❭
❭
❭
❭
❭
❭
❭
❭
❭❭

MO
B

MO
B

MP
A

MP
A

MP
B

MP
B

MO
A

MO
A

This “message switching” function can be understood in algorithmic terms as follows.
A demand for output from the application at MO

B is switched to the function part of the
input, A⊸B; a demand by the function input for information about its input at MO

A is
forwarded to the input port A; a reply with this information about the input at MP

A is
sent back to the function; an answer from the function to the original demand for output
at MP

B is sent back to the output port B. Thus, this strategy does indeed correspond to
a protocol for linear function application—linear in that the “state” of the input changes
as we interact with it, and there are no other copies available allowing us to backtrack.

As for currying, given σf : A⊗B → C, Λ(σf ) : A→ (B⊸C) is induced by

MP
A + (MP

B +MO
C ) ∼= (MP

A +MP
B ) +MO

C

f
⇀ (MO

A +MO
B ) +MP

C
∼= MO

A + (MO
B +MP

C ).

For discussion of these definitions, and most of the verification that they work as
claimed, we refer to Section 3.5 of [AJ94a].

Proposition 2.10 1. If σ ≈ σ′ and τ ≈ τ ′ then σ⊗τ ≈ σ′⊗τ ′.

2. σ⊗τ satisfies the stack discipline.

Proposition 2.11 G is an autonomous category.
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2.6 Products

The game A&B is defined as follows.

M
A&B

= MA +MB

λ
A&B

= [λA, λB]

P
A&B

= PA + PB

≈
A&B

= ≈A + ≈B .

The projections

A
fst

←− A&B
snd

−→ B

are induced by the partial injective maps

(MP
A +MP

B ) +MO
A ⇀ (MO

A +MO
B ) +MP

A

(MP
A +MP

B ) +MO
B ⇀ (MO

A +MO
B ) +MP

B

which are undefined on MP
B and MP

A respectively. Pairing cannot be defined in general
on history-free strategies in G; however, it can be defined on the co-Kleisli category for
the comonad !, as we will see.

2.7 Exponentials

Our treatment of the exponentials is based on [AJ93]. The game !A is defined as the
“infinite symmetric tensor power” of A. The symmetry is built in via the equivalence
relation on positions.

• M!A = ω ×MA =
∑

i∈ω MA, the disjoint union of countably many copies of the
moves of A. So, moves of !A have the form (i,m), where i is a natural number,
called the index, and m is a move of A.

• Labelling is by source tupling:

λ!A(i, a) = λA(a).

• We write s↾i to indicate the restriction to moves with index i. P!A is the set of all

s ∈M⊛

!A
such that:

1. Projection condition: (∀i) [s↾i ∈ PA].

2. Stack discipline: Every answer in s is in the same index as the corresponding
question.

• Let S(ω) be the set of permutations on ω.

s ≈!A t ⇐⇒ (∃π ∈ S(ω))[(∀i ∈ ω. s↾i ≈A t↾π(i)) ∧ (π ◦ fst)∗(s) = fst∗(t)].

Dereliction For each game A and i ∈ ω, we define a strategy

deriA : !A→ A

induced by the partial function hi:

hi(j, a) =

{
a, i = j
undefined, i 6= j

hi(a) = (i, a).

In matrix form

hi =

(
0 ini
in∗i 0

)

.

13



Proposition 2.12 1. For all i, j:

deriA ≈ der
j
A.

2. deriA satisfies the stack discipline.

By virtue of this Proposition, we henceforth write derA, meaning deriA for arbitrary
choice of i.

Promotion A pairing function is an injective map

p : ω × ω  ω.

Given σf : !A → B and a pairing function p, we define σ†
p : !A → !B as the strategy

induced by the partial function f †
p defined by:

f †
p(p(i, j), a) =

{
(p(i, j′), a′), f(j, a) = (j′, a′)
(i, b), f(j, a) = b

f †
p(i, b) =

{
(p(i, j), a), f(b) = (j, a)
(i, b′), f(b) = b′.

In matrix form

f †
p =

(
t ◦ (1× f1,1) ◦ t

∗ t ◦ (1× f1,2)
(1× f2,1) ◦ t∗ 1× f2,2

)

where
t(i, (j, a)) = (p(i, j), a).

Proposition 2.13 1. If σ, τ : !A → B, σ ≈ τ , and p, q are pairing functions, then
σ†
p ≈ τ†q .

2. σ†
p satisfies the stack discipline.

By virtue of this Proposition, we shall henceforth write σ†, dropping explicit reference to
the pairing function.

Proposition 2.14 For all σ : !A→ B, τ : !B → C:

(m1) σ†; τ† ≈ (σ†; τ)†

(m2) der
†
A;σ ≈ σ

(m3) σ†; derB ≈ σ.

As an immediate consequence of this Proposition and standard results [Man76]:

Proposition 2.15 (!, der, (·)†) is a comonad in “Kleisli form”. If we define, for σ :

A → B, !σ = (derA;σ)
† : !A→ !B, and δA : !A → !!A by δA = id

†

!A
, then (!, der, δ) is a

comonad in the standard sense.

Contraction and Weakening For each game A, we define weakA : !A → I by
weakA = {ǫ}.

A tagging function is an injective map

c : ω + ω  ω.

Given such a map, the contraction strategy concA : !A→ !A⊗!A is induced by the function
(

0 (r × 1) ◦ inl∗ ∨ (s× 1) ◦ inr∗

inl ◦ (r∗ × 1) ∨ inr ◦ (s∗ × 1) 0

)

where r = ω
inl

−→ ω + ω
c
−→ ω, s = ω

inr

−→ ω + ω
c
−→ ω.

Again, it is easily verified that concA ≈ conc
′

A for any tagging functions c, c′.

14



Proposition 2.16 conA, weakA are well-defined strategies which give a cocommutative
comonoid structure on !A, i.e. the following diagrams commute:

!A
[conA]

✲ !A⊗!A

!A⊗!A

[conA]

❄

[conA⊗idA]
✲ (!A⊗!A)⊗!A

[assocA]
✲ !A⊗(!A⊗!A)

[idA⊗conA]

❄

!A
[conA]

✲ !A⊗!A

!A

[idA]

❄

✛

[unitA]
!A⊗I

[idA⊗weakA]

❄

!A
[conA]

✲ !A⊗!A

!A⊗!A

[symmA,A]

❄

[con
A ]

✲

2.8 The co-Kleisli category

By Proposition 2.7.4, we can form the co-Kleisli category K!(G), with:

Objects The objects of G.

Morphisms K!(G)(A,B) = G(!A,B).

Composition If σ : !A→ B and τ : !B → C then composition in K!(G) is given by:

σ # τ = σ†; τ.

Identities The identity on A in K!(G) is derA : !A→ A.

Exponential laws

Proposition 2.17 1. There is a natural isomorphism eA,B : !(A&B) ∼= !A⊗!B.

2. !I = I.

Proof

1. We define eA,B :!(A&B)⊸!A⊗!B as (the strategy induced by) the map which
sends inl(a, i) ∈ !A⊗!B to (inl(a), i) ∈ !(A&B), (inl(a), i) ∈ !(A&B) to inl(a, i) ∈
!A⊗!B and similarly sends inr(b, i) ∈ !A⊗!B to (inr(b), i) ∈ !(A&B), (inr(b), i) ∈
!(A&B) to inr(b, i) ∈ !A⊗!B.

We define e−1
A,B : (!A⊗!B)⊸!(A&B) as (the strategy induced by) the map which

sends inl(a, 2i) ∈ !A⊗!B to (inl(a), i) ∈ !(A&B), (inl(a), i) ∈ !(A&B) to inl(a, 2i) ∈
!A⊗!B and (inr(b), i) ∈ !(A&B) to inr(b, 2i + 1) ∈ !A⊗!B, inr(b, 2i + 1) ∈ !A⊗!B
to (inr(b), i) ∈ !(A&B).

It is straightforward to check that eA,B, e
−1
A,B are strategies. Let’s prove that eA,B, e

−1
A,B

define the required isomorphism.

• For eA,B; e
−1
A,B : (!A2⊗!B2)⊸(!A1⊗!B1) (we have used different subscripts for

different copies of the same game) we have that inl(a, i) ∈ (!A1⊗!B1) is sent
to inl(a, 2i) ∈ (!A2⊗B2) and inr(b, j) ∈ (!A1⊗!B1) is sent to inr(b, 2j + 1) ∈
(!A2⊗B2) . This strategy is equivalent to the identity. The automorphism
which witnesses the equivalence is the map which sends i in !A1 to 2i and j in
!B1 to 2j + 1 (and is the identity elsewhere).
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• For e−1
A,B; eA,B the same map as above witnesses the equivalence of e−1

A,B; eA,B

with the identity.

2. Immediate by definition.
�

Products in K!(G)

Proposition 2.18 I is terminal in K!(G).

Proof For any game A there is only one strategy in !A⊸I, namely {ǫ}. This is because
I has an empty set of moves and for any opening move a in !A we have λ!A⊸I(a) = P so
that Opponent has no opening move in !A⊸I. �

Proposition 2.19 A
π1←− A&B

π2−→ B is a product diagram in K!(G), where

π1 = !(A&B)
der

−→ A&B
fst

−→ A

π2 = !(A&B)
der

−→ A&B
snd

−→ B.

If σ :!C⊸A, τ :!C⊸B then their pairing 〈σ, τ〉 :!C⊸A&B is defined by

〈σ, τ〉 =!C
con
✲ !C⊗!C

σ† ⊗ τ†
✲ !A⊗!B

e
✲ !(A&B)

der
✲ A&B.

In fact, we have:

Proposition 2.20 K!(G) has countable products.

Cartesian closure We define A⇒ B ≡ !A⊸B.

Proposition 2.21 K!(G) is cartesian closed.

Proof We already know that K!(G) has finite products. Also, we have the natural
isomorphisms

K!(G)(A&B,C) = G(!(A&B), C)
∼= G(!A⊗!B,C)
∼= G(!A, !B⊸C)
= K!(G)(A,B ⇒ C).

Thus K!(G) is cartesian closed, with “function spaces” given by ⇒. �

We shall write I = K!(G), since we think of this category as our intensional model.

2.9 Order-enrichment

There is a natural ordering on strategies on a game A given by set inclusion. It is easily
seen that (history-free) strategies are closed under directed unions, and that {ǫ} is the
least element in this ordering. However, morphisms in G are actually partial equivalence
classes of strategies, and we must define an order on these partial equivalence classes.

We define:

[σ] ⊑A [τ ] iff σ ⊏
≈ τ.

Proposition 2.22 ⊑A is a partial order over Â. The least element in this partial order
is [{ǫ}].
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We have not been able to determine whether (Â,⊑A) is a cpo in general. However, a
weaker property than cpo-enrichment suffices to model PCF, namely rationality, and this
property can be verified for K!(G).

A pointed poset is a partially ordered set with a least element. A cartesian closed
category C is pointed-poset enriched (ppo-enriched) if:

• Every hom-set C(A,B) has a ppo structure (C(A,B),⊑A,B,⊥A,B).

• Composition, pairing and currying are monotone.

• Composition is left-strict: for all f : A→ B,

⊥B,C ◦ f = ⊥A,C .

C is cpo-enriched if it is ppo-enriched, and moreover each poset

(C(A,B),⊑A,B)

is directed-complete, and composition preserves directed suprema. C is rational if it is
ppo-enriched, and moreover for all f : A×B → B:

• The chain (f (k) | k ∈ ω) in C(A,B) defined inductively by

f (0) = ⊥A,B, f (k+1) = f ◦ 〈idA, f
(k)〉

has a least upper bound, which we denote by f▽.

• For all g : C → A, h : B → D,

g ◦ f▽ ◦ h =
⊔

k∈ω

g ◦ f (k) ◦ h.

Altough the standard definition of categorical model for PCF is based on cpo-enriched
categories, in fact rational categories suffice to interpret PCF, as we will see in Section 2.10.

Strong completeness and continuity Let A be a game, and (Λ,6) a directed
set. A family {[σλ] | λ ∈ Λ} is said to be strongly directed if there exist strategies σ′

λ for
each λ ∈ Λ such that σ′

λ ∈ [σλ] and λ 6 µ ⇒ σ′
λ ⊆ σ′

µ.

Proposition 2.23 A strongly directed family is ⊑-directed. Every strongly directed fam-
ily has a ⊑-least upper bound.

Now consider the constructions in G we have introduced in previous sections. They
have all been given in terms of concrete operations on strategies, which have then been
shown to be compatible with the partial preorder relation ⊏

≈, and hence to give rise to
well-defined operations on morphisms of G. Say that an n-ary concrete operation Φ on
strategies is strongly continuous if it is monotone with respect to ⊏

≈, and monotone and
continuous with respect to subset inclusion and directed unions:

• σ1
⊏
≈ τ1, . . . , σn

⊏
≈ τn =⇒ Φ(σ1, . . . , σn)⊏≈ Φ(τ1, . . . , τn)

• Φ(
⋃
S1, . . . ,

⋃
Sn) =

⋃
{Φ(σi, . . . , σn) | σi ∈ Si, i ∈ 1, . . . , n}

for directed S1, . . . , Sn. (Note that for n = 0, these properties reduce to Φ ≈ Φ.)

Proposition 2.24 Composition, tensor product, currying and promotion are strongly
continuous.

Proposition 2.25 K!(G) is a rational cartesian closed category.
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2.10 The model of PCF

PCF is an applied simply-typed λ-calculus; that is, the terms in PCF are terms of the
simply-typed λ-calculus built from a certain stock of constants. As such, they can be
interpreted in any cartesian closed category once we have fixed the interpretation of the
ground types and the constants. The constants of PCF fall into two groups: the ground
and first-order constants concerned with arithmetic manipulation and conditional branch-
ing; and the recursion combinators YT : (T ⇒ T )⇒ T for each type T . These recursion
combinators can be canonically interpreted in any rational cartesian closed category C.
Indeed, given any object A in C, we can define ΘA : 1× (A⇒ A)⇒ A −→ (A⇒ A)⇒ A
by

ΘA = JF : (A⇒ A)⇒ A ⊢ λfA⇒A.f(Ff) : (A⇒ A)⇒ AK.

Now define YA = Θ▽
A : 1 −→ (A⇒ A)⇒ A. Note that

YA =
⊔

k∈ω

Θ
(k)
A =

⊔

k∈ω

JY
(k)
A K,

where
Y

(0)
A = λfA⇒A.⊥A Y

(k+1)
A = λfA⇒A.f(Y

(k)
A f).

These terms Y
(k)
A are the standard “syntactic approximants” to YA.

Thus, given a rational cartesian closed category C, a model M(C) of PCF can be
defined by stipulating the following additional information:

• For each ground type of PCF, a corresponding object of C. This suffices to determine
the interpretation of each PCF type T as an object in C, using the cartesian closed
structure of C. (For simplicity, we shall work with the version of PCF with a single
ground type N .)

• For each ground constant and first-order function of PCF, say of type T , a morphism
x : 1 → A in C, where 1 is the terminal object in C, and A is the object in C
interpreting the type T . (x is a “point” or “global element” of the type A.)

We say that M(C) is a standard model if C(1, N) ∼= N⊥, the flat cpo of the natu-
ral numbers, and moreover the interpretation of the ground and first-order arithmetic
constants agrees with the standard one. We cite an important result due to Berry
[Ber79, BCL85].

Theorem 2.26 (Computational Adequacy) IfM(C) is a standard model, then it is
computationally adequate; i.e. for all programs M and ground constants c,

M −→∗ c ⇐⇒ JMK = JcK

and hence the model is sound: for all terms M,N : T ,

JMK ⊑ JNK =⇒ M ⊑obs N.

(Berry stated his result for models based on cpo-enriched categories, but only used rational
closure.)

Thus to obtain a model M(K!(G)) it remains only to specify the ground types and
first-order constants. The interpretation of N as Nat has already been given at the end
of Section 2.1. It is readily seen that N̂at ∼= N⊥.

Ground constants For each natural number n, there is a strategy n : I → Nat,
given by

n = {ǫ, ∗n}.

Also, ΩNat = [{ǫ}].
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Arithmetic functions For each number-theoretic partial function f : N ⇀ N there
is a strategy

σf = {ǫ, ∗2∗1} ∪ {∗2 ∗1 n1m2 | f(n) � m}.

Conditionals The strategy κ interpreting if0 : N ⇒ N ⇒ N ⇒ N is defined as
follows: in response to the initial question, κ interrogates its first argument; if the answer
is 0, then it interrogates the second argument, and copies the reply to the output; if the
answer is any number greater than 0, it interrogates the third argument, and copies the
reply to the output.

Proposition 2.27 M(K!(G)) is a standard model of PCF.

3 Intensional Full Abstraction

3.1 PCFc

In order to obtain our intensional full abstraction result, it turns out that we need to
consider an extension of PCF. This extension is quite “tame”, and does not change the
character of the language. It consists of extending PCF with a family of first order
constants

casek : N ⇒ N ⇒ · · · ⇒ N
︸ ︷︷ ︸

k

⇒ N

for each k ∈ ω. The functions that these constants are intended to denote are defined by:

casek ⊥ n0 n1 . . . nk−1 = ⊥
casek i n0 n1 . . . nk−1 = ni, 0 ≤ i < k
casek i n0 n1 . . . nk−1 = ⊥, i ≥ k.

The interpretation of casek as a strategy is immediate: this strategy responds to the
initial question by interrogating its first input; if the response is i, with 0 ≤ i < k, it
interrogates the i + 1’th input and copies the answer to the output; otherwise, it has no
response.

To see how harmless this extension, which we call PCFc, is, note that each term in
PCFc is observationally equivalent to one in PCF. Specifically,

casek ≡obs λxN .λyN0 . . . . λyNk−1.
if0 x y0
(if0 (pred x) y1
...
(if0 (pred pred pred

︸ ︷︷ ︸

k

x) yk−1 Ω) . . .).

The point is that our intensional model is sufficiently fine-grained to distinguish between
these observationally equivalent terms. However, note that our results in Section 4 apply
directly to PCF.

3.2 Evaluation Trees

We shall now describe a suitable analogue of Böhm trees [Bar84] for PCFc. These give an
(infinitary) notion of normal forms for PCFc terms, and provide a bridge between syntax
and semantics.

We use Γ,∆ to range over type environments x1 : T1, . . . , xk : Tk. We define FET(Γ, T ),
the finite evaluation trees of type T in context Γ, inductively as follows:
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•
M ∈ FET(Γ, x : T, U)

λxT .M ∈ FET(Γ, T ⇒ U)
•

Ω, n ∈ FET(Γ, N)

•

Γ(x) = T1 ⇒ . . . Tk ⇒ N,
Pi ∈ FET(Γ, Ti), 1 ≤ i ≤ k,
Qn ∈ FET(Γ, N), n ∈ ω,
∃n ∈ ω. ∀m ≥ n. Qn = Ω

case(xP1 . . . Pk, (Qn | n ∈ ω)) ∈ FET(Γ, N)

We regard these evaluation trees as defined “up to α–equivalence” in the usual sense.
Note that if we identify each

case(xP1 . . . Pk, (Qn | n ∈ ω))

with
casel(xP1 . . . Pk, Q0, . . . , Ql−1)

for the least l such that Qn = Ω for all n ≥ l, then every finite evaluation tree is a term
in PCFc.

We order FET(Γ, T ) by the “Ω–match ordering”: M⊑N if N can be obtained from
M by replacing occurrences of Ω by arbitrary finite evaluation trees.

Proposition 3.1 (FET(Γ, T ),⊑) is a pointed poset with non-empty meets. Every prin-
cipal ideal is a finite distributive lattice.

Now we define ET(Γ, T ), the space of evaluation trees, to be the ideal completion of
FET(Γ, T ). As an immediate consequence of proposition 3.1, we have

Proposition 3.2 ET(Γ, T ) is a dI-domain. The compact elements are terms of PCFc.

Strictly speaking, the compact elements of ET(Γ, T ) are principal ideals ↓(M), where M
is a finite evaluation tree, which can be identified with a term in PCFc as explained above.

3.3 The Bang Lemma

We now prove a key technical result. This will require an additional hypothesis on games.
Say that a game A is well-opened if the opening moves of A can only appear in opening
positions. That is, for all a ∈MA if a ∈ PA then

sa ∈ PA ⇒ s = ǫ.

It is easy to see that N and I are well-opened, that if A and B are well-opened so is A&B
and that if B is well-opened so is A ⇒ B. Here and henceforth we blur the distinction
between the type N and the game it denotes. Thus the category of well-opened games is
cartesian closed, and generates the same PCF modelM(I).

Now let A be well-opened and consider s ∈ P even

!A⊸!B. Using the switching condition,
we see that s can be written uniquely as

s = β1 · · ·βk

where each “block” βj has the form (ij , bj)tj , i.e. starts with a move in !B; every move in
!B occurring in βj has the form (ij , b

′) for some b′, i.e. has the same index as the opening
move in βj ; if βi, βj are two adjacent blocks then i 6= j; and |βj | is even (so each block
starts with an O-move). We refer to ij as the block index for βj . For each such block
index i we define si to be the subsequence of s obtained by deleting all blocks with index
i′ 6= i.
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Some further notation. For s ∈M∗
!A⊸!B, we define

FST(s) = {i | ∃a.(i, a) occurs in s}

i.e. the set of all indices of moves in !A occurring in s. Also, we write s↾A, j for the
projection of s to moves of the form (j, a), i.e. moves in !A with index j; and similarly
s↾B, j.

Lemma 3.3 For all σ :!A⊸!B with A well-opened, s ∈ σ, and block indices i, j occurring
in s:

(i) si ∈ σ,

(ii) i 6= j implies FST(si) ∩ FST(sj) = ∅.

Proof By induction on |s|. The basis is trivial. For the inductive step, write s =
β1 . . . βkβk+1, t = β1 . . . βk, umm′ = βk+1. Let the index of βk+1 be i. We show firstly
that (tu)im ∈ P!A⊸!B. By the induction hypothesis, for all j ∈ FST((tu)i), (tu)i↾A, j =
tu↾A, j, while obviously (tu)i↾B, i = tu↾B, i. Also, m is either a move in !B with index
i, or a move in !A. In the latter case, by the switching condition the index of m is in
FST((tu)i). Hence the projection conditions are satisfied by (tu)im. Moreover (tu)im is
well-formed by the Projection Lemma 2.4.4. Thus (tu)im ∈ P!A⊸!B as required.

By induction hypothesis, (tu)i ∈ σ, and since σ = σf is a well-defined history-free
strategy, with f(m) = m′ since tumm′ ∈ σ we conclude that (tumm′)i = (tu)imm′ ∈ σ.
Moreover, for j 6= i, (tumm′)j = (tu)j ∈ σ by induction hypothesis. This establishes (i).

Now note that, if tu satisfies (ii), so does tum by the switching condition. Suppose
for a contradiction that tumm′ does not satisfy (ii). This means that m′ = (j, a), where
j ∈ FST((tu)i′ ) for some i′ 6= i and hence that s↾A, j = s′a where s′ 6= ǫ, so that a is a
non-opening move in A. But we have just shown that (tu)imm′ ∈ σ ⊆ P!A⊸!B and hence
that (tu)imm′↾A, j ∈ PA. By induction hypothesis

FST((tu)i) ∩ FST((tu)i′) = ∅

and hence (tu)imm′↾A, j = a. Thus a is both an opening and a non-opening move of A,
contradicting our hypothesis that A is well opened. �

With the same notation as in lemma 3.3:

Corollary 3.4 (i) ∀j ∈ FST(si) si↾A, j = s↾A, j.

(ii) ∀j 6∈ FST(si) si↾A, j = ǫ.

(iii) si↾B, i = s↾B, i.

(iv) j 6= i implies si↾B, j = ǫ.

Lemma 3.5 Let σ, τ :!A⊸!B with A well-opened. If σ; derB ≈ τ ; derB then σ ≈ τ .

Proof We prove the contrapositive. Suppose σ 6≈ τ . Then w.l.o.g. we can assume that
there exist positions sab, s′a′ such that sab ∈ σ, s′ ∈ τ , sa ≈ s′a′, and either s′a′ 6∈ dom(τ)
or s′a′b′ ∈ τ and sab 6≈ s′a′b′. Let the block index of a in sa be i, and of a′ in s′a′ be i′.
Note that the block index of b in sab must also be i.

By Lemma 3.3, (sab)i ∈ σ and s′i′ ∈ τ . We claim that (sa)i ≈ (s′a′)i′ . Indeed, if
s = β1 . . . βk, s

′ = β′
1 . . . β

′
k′ , then by definition of ≈!A⊸!B we must have k = k′ and

the permutation π = [πA, πB] witnessing sa ≈ s′a′ must map the block index of each
βj to that of β′

j , so that in particular sa↾B, i ≈ s′a′↾B, i′. Moreover, πA must map
FST((sa)i) bijectively onto FST((s′a′)i′ ). Using Corollary 3.4 for each j ∈ FST((sa)i),
(sa)i↾A, j = sa↾A, j ≈ s′a′↾A, πA(j) = (s′a′)i′↾A, πA(j).

Now let tcd be defined by replacing each (i,m) ∈!B in siab by m; and t′c be defined

by replacing each (i′,m′) ∈!B in s′ia
′ by m′. Then tcd ∈ σ; derB

i, t′ ∈ τ ; derB
i′ and
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tc ≈ t′c′. We wish to conclude that tcd, t′c′ witness the non equivalence σ; derB 6≈ τ ; derB.
Suppose for a contradiction that for some d′, t′c′d′ ∈ τ ; derB

i′ and tcd ≈ t′c′d′. This
would imply that for some b′, s′i′a

′b′ ∈ τ and siab ≈ s′i′a
′b′. Since s′a′ ∈ P!A⊸!B and

τ is a well-defined history-free strategy, this implies that s′a′b′ ∈ τ . Using Lemma 3.3
and Corollary 3.4 as above, sab ≈ s′a′b′. This yields the required contradiction with our
assumptions on sab, s′a′. �

Proposition 3.6 (The Bang Lemma) For all σ : !A⊸!B with A well opened,

σ ≈ (σ; derB)
†.

Proof By the right identity law (Prop. 2.11 (m3)), σ; derB ≈ (σ; derB)
†; derB. By

Lemma 3.5, this implies that σ ≈ (σ; derB)
†. �

3.4 The Decomposition Lemma

In this section we prove the key lemma for our definability result. We begin with some
notational conventions. We will work mostly in the cartesian closed categoryM(K!(G)).
We write arrows in this category as σ : A ⇒ B and composition e.g. of σ : A ⇒ B and
τ : B ⇒ C as τ ◦ σ. We will continue to write composition in the Linear Category G in
diagram order denoted by ; . We write

Ap : (A⇒ B)&A⇒ B

for the application in the cartesian closed category, and “linear” application in G as

LAPP : (A⊸B)⊗A→ B

All games considered in this section are assumed to be well-opened. If s ∈ M∗
D⇒B, we

write
FST(s) = {i | ∃d .(i, d) occurs in s}

i.e. the set of all indices of moves in !D occurring in s.
Now we define a strategy

χ : N&Nω ⇒ N

corresponding to the case construct. It will actually be most convenient to firstly define
the affine version

χa : N1⊗N
ω
2 ⊸N0

where we have tagged the occurrences of N for ease of identification;

χa = Pref{∗0 ∗1 n1 ∗2,n m2,nm0 | n,m ∈ ω}

i.e. χa responds to the initial question by interrogating its first input; if it gets the
response n it interrogates the n’th component of its second input, and copies the response
as its answer to the initial question.

Now we define

χ = !(N&Nω)
eN,Nω

−→ !N⊗!Nω derN⊗derNω

−→ N⊗Nω χa
−→ N

We will now fix some notation for use in the next few lemmas. Let

σ : C&(A⇒ N2)⇒ N1

be a strategy where we have tagged the two occurrences of N for ease of identification.
We assume that σ’s response to the initial question ∗1 in N1 is to interrogate its second
input, i.e. to ask the initial question ∗2 in N2. Thus any non-empty position in σ must
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have the form ∗1 ∗2 s. Moreover by the stack discipline any complete position in σ, i.e.
one containing an answer to the initial question ∗1, must have the form

∗1 ∗2 s n2 t n1

where n2 is the answer corresponding to the question ∗2 (this is the sole—albeit crucial—
point at which the stack condition is used in the definability proof). Thus a general
description of non-empty positions in σ is that they have the form

∗1 ∗2 s n2 t

where n2 is the answer corresponding to ∗2, or

∗1 ∗2 s

where ∗2 is not answered in s.

Lemma 3.7 For all ∗1 ∗2 s n2 t ∈ σ

(i) ∗1 ∗2 n2t ∈ σ

(ii) FST(s) ∩ FST(t) = ∅.

Proof By induction on |t|, which must be odd. (The proof follows very similar lines
to that of Lemma 3.1 in the previous section). The basis is when t = m, and f(n2) = m,
where σ = σf . Then (i) follows because σ is a well-defined history-free strategy, and (ii)
holds because otherwise m = (j, d) where d is both a starting move, using ∗1 ∗2 n2m ∈ σ,
and a non-starting move, using ∗1∗2sn2t ∈ σ, contradicting well-openedness. If t = umm′,
then we firstly show that

∗1 ∗2 n2um ∈ P
C&(A⇒N)⇒N

By the induction hypothesis and the switching conditions, for all j ∈ FST(um)

∗1 ∗2 n2um↾C&(A⇒ N), j = ∗1 ∗2 sn2um↾C&(A⇒ N), j

so ∗1 ∗2 n2um satisfies the projection conditions because ∗1 ∗2 sn2um does. Also, ∗2sn2 is
balanced so by the Parity Lemma 2.4.3 ∗1 t is well formed, and hence ∗1 ∗2 n2um is well
formed. Thus

∗1 ∗2 n2um ∈ P
C&(A⇒N)⇒N

Now since σ = σf is a well-defined history-free strategy with f(m) = m′, and ∗1∗2n2u ∈ σ
by induction hypothesis, we must have ∗1 ∗2 n2umm′ ∈ σ, establishing (i).

For (ii) suppose for a contradiction that m′ = (j, d) for j ∈ FST(s). Then ∗1 ∗2
sn2t↾C&(A⇒ N), j = s′d ∈ P

C&(A⇒N), where s′ 6= ǫ. On the other hand, by induction

hypothesis ∗1∗2n2umm′↾C&(A⇒ N), j = d, and by (i), d ∈ P
C&(A⇒N). This contradicts

our assumption that games are well-opened. �

Now we define

σ′ = {∗1 ∗2 s n2n1 | ∗1 ∗2 s n2 ∈ σ} ∪ {∗1 ∗2 s | ∗1 ∗2 s ∈ σ, ∗2 not answered in σ}

and for all n ∈ ω
τn = {∗1t | ∗1 ∗2 n2 t ∈ σ}

Lemma 3.8 σ′ : C&(A ⇒ N) ⇒ N and τn : C&(A ⇒ N) ⇒ N (n ∈ ω) are valid
strategies.

Proof The fact that each τn is a set of valid positions follows from Lemma 3.7. That
σ′, τn are history-free and satisfy the partial equivalence relation follows directly from
their definitions and the fact that σ is a valid strategy. �
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Lemma 3.9 σ ≈ conC ;σ
′⊗〈τn | n ∈ ω〉;χa.

Proof Unpacking the definition of the RHS τ = conC ;σ
′⊗〈τn | n ∈ ω〉;χa we see

that the second and third moves of χa synchronize and cancel out with the first and last
moves of σ′ respectively, and the fourth and fifth moves of χa cancel out with the first
and last moves of the appropriate τn. Thus positions in τ have the form

∗1 ∗2 s
′n2t

′ or ∗1 ∗2s
′

where ∗1 ∗2 sn2t, ∗1 ∗2 s are positions in σ, and s′, t′ are bijectively reindexed versions of
s and t, with the property that FST(s′) ∩ FST(t′) = ∅. However, by Lemma 3.7 we know
that FST(s) ∩ FST(t) = ∅, and hence

∗1 ∗2 s
′n2t

′ ≈ ∗1 ∗2 sn2t

and σ ≈ τ as required. �

Lemma 3.10 σ ≈ χ ◦ 〈σ′, 〈τn | n ∈ ω〉〉

Proof

χ ◦ 〈σ′, 〈τn | n ∈ ω〉〉 = definition
(con; (σ′†⊗〈τn | n ∈ ω〉†; e; der)†; e−1; der⊗der;χa ≈ Bang Lemma
con; (σ′†⊗〈τn | n ∈ ω〉†); e; e−1; der⊗der;χa ≈
con; (σ′†⊗〈τn | n ∈ ω〉†); der⊗der;χa ≈
con; (σ′†; der⊗〈τn | n ∈ ω〉†; der);χa ≈
con; (σ′⊗〈τn | n ∈ ω〉);χa ≈ Lemma 3.9
σ.

�

We continue with our decomposition, and define

σ′′ = {s | ∗1 ∗2 s ∈ σ, ∗2 not answered in s}

Lemma 3.11 σ′′ : C&(A⇒ N)⇒!A is a well-defined strategy, and

σ′ ≈ con
C&(A⇒N);π2⊗σ

′′; LAPP. (†)

Proof We must firstly explain how moves in σ′′ can be interpreted as being of type
C&(A ⇒ N) ⇒!A. Let the index in !(C&(A ⇒ N)) of the response by σ to the initial
question ∗1 be i0. Then we regard all moves in s ∈ σ′′ with index i0 as moves in the
target !A , and all moves with index i 6= i0 as moves in the source !(C&(A ⇒ N)). The
projection conditions and stack discipline are easily seen to hold for s with respect to this
type. The fact that σ′′ is history-free and satisfies the partial equivalence relation follows
directly from its definition and the fact that σ′ is a valid strategy.

Now write τ for the RHS of (†). We diagram τ , tagging occurrences of the types for
ease of reference.
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!(C0&(!A0⊸N0))

!(C1&(!A1⊸N1))⊗!(C2&(!A2⊸N2))

con

❄

(!A3⊸N3)⊗ !A4

π2⊗σ
′′

❄

N5

LAPP

❄

From the definitions LAPP plays copy-cat strategies between N3 and N5 and !A3 and
!A4; π2 plays a copy-cat strategy between !A3⊸N3 and a single index i0 in !(C1&(!A1⊸N1));
con splits !(C0&(!A0⊸N0)) into two disjoint address spaces !(C0&(!A0⊸N0))L and !(C0&(!A0⊸N0))R
and plays copy-cat strategies between !(C0&(!A0⊸N0))L and !(C2&(!A2⊸N2)) and be-
tween !(C0&(!A0⊸N0))R and !(C2&(!A2⊸N2)). Thus we see that the opening move in
N5 is copied to (i0, N0)L via N3 and (i0, N1), and any response in (i0, N0)L is copied
back to N5. Similarly, O’s moves (i0, !A0)L are copied to !A4 via (i0, !A1) and !A3; and
P’s responses in !A4 following σ′′ are copied back to (i0, !A0)L. Finally, O’s moves in
!(C0&(!A0⊸N0))R are copied to !(C2&(!A2⊸N2)), and P’s responses following σ′′ are
copied back to !(C0&(!A0⊸N0))R.

As regards sequencing, the initial move ∗5 is copied immediately as ∗i0,L. Opponent
may now either immediately reply with ni0,L, which will be copied back as n5, completing
the play; or move in (i0, !A0)L— the only other option by the switching condition. Play
then proceeds following σ′′ transposed to

σ′′ : !(C0&( !A0⊸N0))R → (i0, !A0)L,

until Opponent replies with some ni0,L to ∗i0,L. Thus positions in τ have the form

∗5 ∗i0,L s′ ni0,L n5 or ∗5 ∗i0,L s′

where s′ is a bijectively reindexed version of s ∈ σ′′, with s ≈ s′. Clearly σ′′ ≈ σ′′, and
hence σ′ ≈ τ .

�

We now prove a useful general lemma.

Lemma 3.12 For all strategies γ : C ⇒ (A⇒ B), δ : C ⇒ A

Ap ◦ 〈γ, δ〉 ≈ conC ; (γ⊗δ
†); LAPP.

Proof

Ap ◦ 〈γ, δ〉 = definition
(conC ; γ

†⊗δ†; e; der(A⇒B)⊗A)
†; e−1; derA⇒B⊗idA; LAPP ≈ Bang Lemma

conC ; γ
†⊗δ†; e; e−1; derA⇒B⊗idA; LAPP ≈

conC ; γ⊗δ†; LAPP.

�
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Now consider a game
(A1& . . .&Ak)⇒ N

where
Ai = (Bi,1& . . .&Bi,li)⇒ N, 1 ≤ i ≤ k.

Let Ã = A1& . . .&Ak, B̃i = Bi,1& . . .&Bi,li , 1 ≤ i ≤ k.

We define ⊥Ã : Ã ⇒ N by ⊥Ã = {ǫ} and KÃn : Ã ⇒ N (n ∈ ω) by KÃn =

{ǫ, ∗n}.Thus ⊥Ã is the completely undefined strategy of type Ã ⇒ N while KÃn is the
constant strategy which responds immediately to the initial question in N with the answer
n.

Finally, if 1 ≤ i ≤ k, and for each 1 ≤ j ≤ li

σj : Ã⇒ Bi,j

and for each n ∈ ω
τn : Ã⇒ N

we define
Či(σ1, . . . , σli , (τn | n ∈ ω)) : Ã⇒ N

by
Či(σ1, . . . , σli , (τn | n ∈ ω)) = χ ◦ 〈Ap ◦ 〈πi, 〈σ1, . . . , σli〉〉, 〈τn | n ∈ ω〉〉.

Lemma 3.13 (The Decomposition Lemma (uncurried version)) Let σ : (A1& . . .&An)⇒
N be any strategy, where

Ai = (Bi,1& . . .&Bi,li)⇒ N, 1 ≤ i ≤ k.

Then exactly one of the following three cases applies:

(i) σ = ⊥Ã.

(ii) σ = KÃn for some n ∈ ω.

(iii) σ ≈ Či(σ1, . . . , σli , (τn | n ∈ ω))

where 1 ≤ i ≤ k, σj : Ã⇒ Bi,j , 1 ≤ j ≤ li, τn : Ã⇒ N, n ∈ ω .

Proof By cases on σ’s response to the initial question. If it has no response, we are
in case (i). If its response is an immediate answer n for some n ∈ ω, we are in case
(ii). Otherwise, σ must respond with the initial question in the i’th argument, for some
1 ≤ i ≤ k. In this case, write C = A1& . . .&Ai−1&Ai+1& . . .&Ak. We have the natural
isomorphism

α : !(C&Ai) ∼= !Ã : α−1

so we can apply Lemma 3.10 to conclude that

α;σ ≈ χ ◦ 〈σ′, 〈τn | n ∈ ω〉〉

By Lemma 3.11
σ′ ≈ con;π2⊗σ

′′; LAPP

where σ′′ : C&Ai ⇒!B̃i. By the Bang Lemma,

σ′′ ≈ (σ′′; der)†.

Moreover
σ′′; derB : C&Ai ⇒ (Bi,1& . . .&Bi,li)
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so by the universal property of the product,

σ′′; derB ≈ 〈σ1, . . . , σli〉

where σj : C&Ai ⇒ Bi,j , 1 ≤ j ≤ li.
Thus σ′ ≈ con;π2⊗〈σ1, . . . , σli〉

†; LAPP and by Lemma 3.12,

σ′ ≈ Ap ◦ 〈π2, 〈σ1, . . . , σli〉〉

Thus
σ ≈ α−1;α;σ
≈ α−1; (χ ◦ 〈Ap ◦ 〈π2, 〈σ1, . . . , σli〉〉, 〈τn | n ∈ ω〉〉
≈ χ ◦ 〈Ap ◦ 〈πi, 〈α

−1;σ1, . . . , α
−1;σli〉〉, 〈α

−1; τn | n ∈ ω〉〉
= Či(α

−1;σ1, . . . , α
−1;σli , (α

−1; τn | n ∈ ω)).

�

The Decomposition Lemma in its uncurried version is not sufficiently general for our
purposes. Suppose now that we have a game

(A1& . . .&Ak)⇒ N

where
Ai = Bi,1 ⇒ . . . Bi,li ⇒ N, (1 ≤ i ≤ li).

If for some 1 ≤ i ≤ k and each 1 ≤ j ≤ li we have

σj : Ã⇒ Bi,j

and for each n ∈ ω
τn : Ã⇒ N

then we define
Ci(σ1, . . . , σli , (τn | n ∈ ω)) : Ã⇒ N

by

Ci(σ1, . . . , σli , (τn | n ∈ ω)) = χ ◦ 〈Ap ◦ 〈. . . Ap ◦ 〈πi, σ1〉, . . . , σli〉, 〈τn | n ∈ ω〉〉.

To relate Ci and Či, consider the canonical isomorphisms

αi : Bi,1 ⇒ . . . Bi,li ⇒ N ∼= (Bi,1& . . .&Bi,li)⇒ N : α−1
i (1 ≤ i ≤ k)

Let α̃ =!(α1& . . .&αk) so

α̃ :!(A1& . . .&Ak) ∼=!(Au
1& . . .&Au

k)

where Au
i = (Bi,1& . . .&Bi,li)⇒ N is the uncurried version of Ai. Then

Ci(σ1, . . . , σli , (τn | n ∈ ω)) ≈ α̃; Či(α̃;σ1, . . . , α̃;σli , (α̃; τn | n ∈ ω)) (1)

In terms of λ−calculus, this just boils down to the familiar equations

Curry(f)xy = f(x, y)

Uncurry(g)(x, y) = gxy

To see the relationship between the combinators ⊥,Kn and C and the syntax of PCF,
we use the combinators to write the semantics of finite evaluation trees.

Given P ∈ FET(Γ, T ) where Γ = x1 : T1, . . . , xk : Tk, we will define

S(Γ ⊢ P : T ) : (S(T1)& . . .&S(Tk))⇒ S(T )
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• S(Γ ⊢ λxT .P : T ⇒ U) = Λ(S(Γ, x : T ⊢ P : U))

• S(Γ ⊢ Ω : N) = ⊥T̃

• S(Γ ⊢ n : N) = KT̃n

• S(Γ ⊢ case(xiP1 . . . Pli , (Qn | n ∈ ω)) : N) = Ci(σ1, . . . , σli , (τn | n ∈ ω)) where

Ti = Ui,1 ⇒ . . . Ui,li ⇒ N,

σj = S(Γ ⊢ Pj : Ui,j), 1 ≤ j ≤ li,

τn = S(Γ ⊢ Qn : N), n ∈ ω.

We can now prove the general form of the Decomposition Lemma:

Proposition 3.14 (Decomposition Lemma) Let σ : (A1& . . .&Ap) ⇒ (Ap+1 ⇒
. . . Aq ⇒ N) be any strategy, where

Ai = Bi,1 ⇒ . . . Bi,li ⇒ N, 1 ≤ i ≤ q

We write C̃ = A1, . . . , Ap, D̃ = Ap+1, . . . , Aq. (Notation : if τ : C̃, D̃ ⇒ N , then

ΛD̃(τ) : C̃ ⇒ (Ap+1 ⇒ · · · ⇒ Aq ⇒ N).)
Then exactly one of the following three cases applies.

(i) σ = ΛD̃(⊥C̃,D̃).

(ii) σ = ΛD̃(KC̃,D̃n) for some n ∈ ω.

(iii) σ = ΛD̃(Ci(σ1, . . . , σli , (τn | n ∈ ω))), where 1 ≤ i ≤ q, and

σj : C̃, D̃ ⇒ Bi,j , 1 ≤ j ≤ li,

τn : C̃, D̃ ⇒ N, n ∈ ω.

Proof Let αi : Ai
∼= Au

i : α−1 be the canonical isomorphism between Ai and its
uncurried version

Au
i = (Bi,1& . . .&Bi,li)⇒ N

for each 1 ≤ i ≤ q.
Let

α̃ =!(α1& . . .&αp&αp+1& . . .&αq).

Note that
⊥C̃,D̃ = α̃;⊥C̃u,D̃u (2)

KC̃,D̃n = α̃;KC̃u,D̃un (3).

We can apply Lemma 3.13 to σ̌ = α̃−1; Λ−1

D̃
(σ) : C̃u, D̃u ⇒ N . The result now follows

from equations (1)–(3) since
σ ≈ ΛD̃(α̃; σ̌).

�

With the same notations as in the Decomposition Lemma:

Lemma 3.15 (Unicity of Decomposition) (i) If σ ≈ ⊥C̃,D̃ then σ = ⊥C̃,D̃.

(ii) If σ ≈ KC̃,D̃n then σ = KC̃,D̃n.

(iii) If Ci(σ1, . . . , σli , (τn | n ∈ ω))⊏≈Ci(σ
′
1, . . . , σ

′
li
, (τ ′n | n ∈ ω)) then

σj
⊏
≈ σ′

j , 1 ≤ j ≤ li,

τn ⊏
≈ τ ′n, n ∈ ω.

Proof (i) and (ii) are trivial.
For (iii) write σ = Ci(σ1, . . . , σli , (τn | n ∈ ω)) and τ = Ci(σ

′
1, . . . , σ

′
li
, (τ ′n | n ∈ ω)).

Suppose firstly that s ∈ τn. Then ∗1 ∗2n2s ∈ σ, so since σ⊏≈τ , for some t, ∗1 ∗2n2t ∈ τ
and ∗1 ∗2 n2s ≈ ∗1 ∗2 n2t. This implies that t ∈ τ ′n and s ≈ t. We conclude that τn ⊏

≈ τ ′n.
Now suppose that s ∈ σj . Then ∗1 ∗2 s′ ∈ σ where s′ is a reindexed version of s with

s ≈ s′. Since σ ⊏
≈ τ , there exists t′ such that ∗1 ∗2 t′ ∈ τ and ∗1 ∗2 s′ ≈ ∗1 ∗2 t′. This

implies that there exists t ∈ σ′
j with s ≈ t. We conclude that σj

⊏
≈ σ′

j . �
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3.5 Approximation Lemmas

The Decomposition Lemma provides for one step of decomposition of an arbitrary strategy
into a form matching that of the semantic clauses for evaluation trees. However, infinite
strategies will not admit a well-founded inductive decomposition process. Instead, we
must appeal to notions of continuity and approximation, in the spirit of Domain Theory
[AJ94b].

We define a PCF type-in-context ([Cro94]) to be a type of the form

(T1& . . .&Tp)⇒ U

where T1, . . . , Tp, U are PCF types. Given such a type-in-context T , we will write Str(T )
for the set of strategies on the game S(T ).

The Unicity of Decomposition Lemma says that decompositions are unique up to
partial equivalence. Referring to the Decomposition Lemma, Prop. 3.14, note that the
proof of the decomposition

σ ≈ Ci(σ1, . . . , σli , (τn | n ∈ ω))

involved defining specific strategies σ1, . . . , σli , (τn | n ∈ ω) from the given σ. If we
also fix specific pairing and tagging functions and dereliction indices in the definition of
promotion, dereliction, contraction etc.( and hence in theM(I) operations of composition,
pairing, currying etc.), we obtain an operation Φ on strategies such that

Φ(σ) =







1 in case (i)
(2, n) in case (ii)
(3, σ1, . . . , σli , (τn | n ∈ ω)) in case (iii)

according to the case of the Decomposition Lemma which applies to σ. We shall use Φ to
define a family of functions

pk : Str(T )→ Str(T ) (k ∈ ω)

inductively as follows:

• p0(σ) = ΛŨ (⊥T̃ ,Ũ )

•

pk+1(σ) =







ΛŨ (⊥T̃ ,Ũ ), Φ(σ) = 1

ΛŨ (KT̃ ,Ũn), Φ(σ) = (2, n)

ΛŨ (Ci(pk(σ1), . . . , pk(σli), (τ
′
n | n ∈ ω))), Φ(σ) = σ0

where
σ0 = (3, σ1, . . . , σli , (τn | n ∈ ω))

and

τ ′n =

{
pk(τn), 0 ≤ n ≤ k
ΛŨ (⊥T̃ ,Ũ ), n > k.

The principal properties of these functions are collected in the following Lemma.

Lemma 3.16 (Approximation Lemma for Strategies) For all k ∈ ω:

(i) σ ⊆ τ implies pk(σ) ⊆ pk(τ)

(ii) If σ0 ⊆ σ1 ⊆ . . . is an increasing sequence,

pk(
⋃

l∈ω

σl) =
⋃

l∈ω

pk(σl)
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(iii) σ ⊏
≈ τ implies pk(σ) ⊏≈ pk(τ)

(iv) pk(σ)⊏≈ σ

(v) ∀s ∈ σ. |s| ≤ 2k ⇒ ∃t ∈ pk(σ). s ≈ t

(vi) pk(σ) ⊆ pk+1(σ)

(vii)
⋃

l∈ω pl(σ) ≈ σ

(viii) pk(pk(σ)) ≈ pk(σ)

Proof Firstly, consider the operation Φ(σ). In case (iii), where

Φ(σ) = (3, σ1, . . . , σli , (τn | n ∈ ω))

Φ(σ) is obtained by firstly defining σ′ and the τn from σ, then σ′′ from σ′, and finally

σj = (σ′′; der)†;πj .

Note that σ′;σ′′ and the τn are defined locally, i.e. by operations on positions applied
pointwise to σ and σ′ respectively. Together with the ⊆ −monotonicity and continuity
of Promotion, Dereliction, Contraction etc. (Proposition 2.9.4) this implies (i) and (ii).
Now note that Ci is ⊆ − and ⊏

≈A monotonic by Proposition 2.9.3. A straightforward
induction using ⊏

≈−monotonicity and ⊆ −monotonicity of Ci respectively and the Unicity
of Decomposition Lemma yelds (iii). Similarly routine inductions using ⊏

≈−monotonicity
and ⊆ −monotonicity of Ci respectively prove (iv) and (vi).

We prove (v) by induction on k. The basis is trivial as are cases (i) and (ii) of the
Decomposition Lemma at the inductive step. Suppose we are in case (iii), with

σ ≈ Ci(σ1, . . . , σli , (τn | n ∈ ω))

Consider firstly s ∈ σ where s = ∗1 ∗2 s′ with ∗2 not answered in s′. Then s′ ∈ σ′′

where σ′′ is derived from σ′ and σ′ from σ as in the proof of the Decomposition Lemma.
Since 〈σ1, . . . , σli〉

† ≈ σ′′, s′ can be decomposed into subsequences sj,1, . . . , sj,pj
with

s′j,q ≈ sj,q ∈ σj , 1 ≤ j ≤ li, 1 ≤ q ≤ pj.
Since |sj,q| < |s|, we can apply the induction hypothesis to conclude that sj,q ≈ uj,q ∈

pk(σj), and hence that there is ∗1 ∗2 u ∈ pk+1(σ) with s ≈ ∗1 ∗2 u. The case where
s = ∗1 ∗2 s′n2t is similar.

To prove (vii), note firstly that the union
⋃

l∈ω pl(σ) is well-defined by (vi). Now
⋃

l∈ω pl(σ)⊏≈ σ follows from (iv), while σ ⊏
≈
⋃

l∈ω pl(σ) follows from (v).
Finally (viii) can be proved by induction on k and (iii) using the Unicity of Decom-

position Lemma. �

We now turn to evaluation trees. Let Γ = x1 : T1, . . . , xk : Tk. We define a family of
functions

qk : ET(Γ, U)→ ET(Γ, U) (k ∈ ω)

inductively by

q0(P ) = λx̃Ũ .Ω

qk+1(λx̃
Ũ .Ω) = λx̃Ũ .Ω

qk+1(λx̃
Ũ .n) = λx̃Ũ .n

qk+1(λx̃
Ũ .case(xiP1 . . . pli , (Qn | n ∈ ω)))

= λx̃Ũ .case(xiqk(P1) . . . qk(Pli), (Q
′
n | n ∈ ω))

where

Q′
n =

{
qk(Qn), 0 ≤ n ≤ k

λx̃Ũ .Ω, n > k

The following is then standard:
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Lemma 3.17 (Approximation Lemma for Evaluation Trees) The (qk | k ∈ ω)
form as increasing sequence of continuous functions with

⊔

k∈ω qk = idET(Γ,U). Each qk
is idempotent and has finite image.

3.6 Main Results

We are now equipped to address the relationship between strategies and evaluation trees
directly. Let Γ = x1 : T1, . . . , xk : Tk. We define a map

ς : FET(Γ, U)→ Str(T̃ ⇒ U)

this map is a concrete version of the semantic map defined in section 2.4. That is, we fix
choices of pairing functions etc. as in the definition of Φ in 2.5, and define ς(Γ ⊢ P : U) as
a specific representative of the partial equivalence class S(Γ ⊢ P : U). Thus we will have

S(Γ ⊢ P : U) = [ς(Γ ⊢ P : U)].

We were sloppy about this distinction in 2.4; we give the definition of ς explicitly for
emphasis:

ς(Γ ⊢ λxT .P : T ⇒ U) = Λ(ς(Γ, x : T ⊢ P : U))
ς(Γ ⊢ Ω : N) = ⊥T̃

ς(Γ ⊢ n : N) = KT̃n
ς(Γ ⊢ case(xiP1 . . . Pli , (Qn | n ∈ ω)) = Ci(σ1, . . . , σli , (τn | n ∈ ω))

where
Ti = Bi,1 ⇒ . . .⇒ Bi,li ⇒ N,
σj = ς(Γ ⊢ Pj : Bi,j), 1 ≤ j ≤ li,
τn = ς(Γ ⊢ Qn : N), n ∈ ω.

Lemma 3.18 If P ⊑ Q then ς(Γ ⊢ P : U) ⊆ ς(Γ ⊢ Q : U)

Proof By induction on the construction of P , using ⊆–monotonicity of Ci. �

Let T̃ = T1, . . . , Tl, and Con(T̃ ) be the set of all T̃−contexts x1 : T1, . . . , xp : Tp. For
each k ∈ ω, we define a map

ηk : Str(T̃ ⇒ U)→ ΠΓ∈Con(T̃ )FET(Γ, U)

inductively by:

η0(σ)Γ = λỹŨ .Ω

ηk+1(σ)Γ =







λỹŨ .Ω, σ = ΛŨ (⊥T̃ ,Ũ )

λỹŨ .n, σ = ΛŨ (KT̃ ,Ũn)

λỹŨ .case(ziP1 . . . Pli , (Qn | n ∈ ω)),
σ ≈ ΛŨ (Ci(σ1, . . . , σli , (τn | n ∈ ω)))

where
Γ = x1 : T1, . . . , xp : Tp,
∆ = y1 : U1, . . . , yq : Uq

z̃ = x1, . . . , xp, y1, . . . , yq,
Pj = ηk(σj)Γ,∆, 1 ≤ j ≤ li

and

Qn =

{
ηk(σj)Γ,∆, 0 ≤ n ≤ k

Ω n > k
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Lemma 3.19 For all k ∈ ω :

(i) σ ⊏
≈ τ implies ηk(σ)Γ ⊑ ηk(τ)Γ .

(ii) If σ0 ⊆ σ1 ⊆ . . . is an increasing sequence,

ηk(
⋃

l∈ω

σl)Γ =
⊔

l∈ω

ηk(σl)γ.

(iii) ηk(σ)Γ ⊑ ηk+1(σ)Γ

(iv) qk(ηl(σ)Γ) = ηk(σ)γ, l ≥ k

Proof (i) is proved similarly to part (iii) of the Approximation Lemma for strategies;
(ii) is proved similarly to part (ii); and (iii) to part (vi); (iv) is proved by a routine
induction on k. �

Lemma 3.20 For all P ∈ FET(Γ, U), σ ∈ Str(T̃ ⇒ U), k ∈ ω :

(i) ηk(ς(Γ ⊢ P : U))Γ = qk(P )

(ii) ς(Γ ⊢ (ηk(σ)Γ) : U) ≈ pk(σ)

Proof Both parts are proved by induction on k. The induction bases are trivial as are
cases (i) and (ii) of the Decomposition Lemma at the inductive step, and the correspond-
ing cases on the construction of P

(i)

ηk+1(ς(Γ ⊢ λỹŨ .case(ziP1 . . . Pli , (Qn | n ∈ ω)))) =

λỹŨ .case(ziP
′
1 . . . P

′
li
, (Q′

n | n ∈ ω))

where
P ′
j = ηk(ς(Γ,∆ ⊢ Pj : Bi,j))Γ,∆

= ind.hyp qk(Pj)

Q′
n =

{
ηk(ς(Γ,∆ ⊢ Qn : N))Γ,∆, 0 ≤ n ≤ k

Ω n > k

= ind.hyp

{
qk(Ω) 0 ≤ n ≤ k
Ω n > k

(ii)
ς(Γ ⊢ ηk+1(Ci(σ1, . . . , σli , (τn | n ∈ ω)))Γ : U ≈
ΛŨ (Ci(σ

′
1, . . . , σ

′
li
, (τ ′n | n ∈ ω)))

where
σ′
j ≈ ς(Γ,∆ ⊢ (ηk(σj)Γ,∆) : U)
≈ind.hyp pk(σj)

τ ′n ≈

{
ς(Γ,∆ ⊢ (ηk(τn)Γ,∆) : N) 0 ≤ n ≤ k

⊥T̃ ,Ũ n > k

≈ind.hyp

{
pk(τn) 0 ≤ n ≤ k
⊥T̃ ,Ũ n > k

�
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Now we define functions

S : ET(Γ, U)→ Str(T̃ , U)

E : Str(T̃ , U)→ ET(Γ, U)

by:

S(P ) =
⋃

k∈ω

ς(Γ ⊢ qk(P ) : U)

E(σ) =
⊔

k∈ω

ηk(σ)Γ

By Lemma 3.18 and the Approximation Lemma for evaluation trees, (ς(Γ ⊢ qk(P ) : U) |
k ∈ ω) is an ⊆ −increasing sequence of strategies, so S is well-defined. Similarly, by
Lemma 3.19 E is well-defined.

We now prove the key result on definability.

Theorem 3.21 (Isomorphism Theorem) (i) For all P ∈ ET(Γ, U)

E ◦ S(P ) = P

(ii) For all σ ∈ Str(T̃ ⇒ U),
S ◦ E(σ) ≈ σ

(iii) Let T = T̃ ⇒ U . Then there is an order-isomorphism

S≈ : ET(Γ, U) ≃ S(T̂ ) : E≈

where S≈(P ) = [S(P )] (i.e. the partial equivalence class of S(P )), and E≈([σ]) =
E(σ).

Proof
(i)

E ◦ S(P )
= definition

⊔

k∈ω ηk(
⋃

l∈ω ς(Γ ⊢ ql(P ) : U))Γ
= Lemma 3.19(ii)

⊔

k∈ω

⊔

l∈ω ηk(ς(Γ ⊢ ql(P ) : U))Γ
=

⊔

n∈ω ηn(ς(Γ ⊢ qn(P ) : U))Γ
= Lemma 3.20

⊔

n∈ω qn ◦ qn(P )
= Lemma 3.17 P.

(ii)

S ◦ E(σ)
=

⋃

k∈ω ς(Γ ⊢ qk(
⊔

l∈ω ηl(σ)Γ) : U)
= continuity of qk

⋃

k∈ω ς(Γ ⊢
⊔

l∈ω qk(ηl(σ)Γ) : U)
= Lemma 3.19(iv)

⋃

k∈ω ς(Γ ⊢ (ηk(σ)Γ) : U)
≈ Lemma 3.20

⋃

k∈ω pk(σ)
≈ Lemma 3.16 σ.

(iii) Firstly E≈ is well-defined and monotone by Lemma 3.19(i). Also, S≈ is monotone
by Lemma 3.18. By (i) and (ii), E≈ = S−1

≈ . �
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As an immediate corollary of the Isomorphism Theorem and Proposition 3.2.2:

Proposition 3.22 For each PCF type T , S(T̂ ) is a dI-domain. Hence M(I) is an
algebraic cpo-based model.

Thus although a priori we only knew that M(I) was a rational model, by virtue of the
Isomorphism theorem we know that the carrier at each PCF type is an algebraic cpo.
Hence the notion of intensional full abstraction makes sense for M(I). Recall from the
introduction that a model is intensionally fully abstract for a language L if every compact
element of the model is denoted by a term of L.

We can now prove the culminating result of this section.

Theorem 3.23 (Intensional Full Abstraction) M(I) is intensionally fully abstract
for PCFc.

Proof Consider any PCF type T . By the Isomorphism Theorem, the compact elements
of S(T ) are the image under S≈ of the compact elements of ET(Γ0, T ) (where Γ0 is the
empty context). But the compact elements of ET(Γ0, T ) are just the finite evaluation
trees FET(Γ0, T ) and the restriction of S≈ to FET(Γ0, T ) is the semantic map S(.) on
finite evaluation trees qua terms of PCFc. �

4 Extensional Full Abstraction

4.1 The Intrinsic Preorder

We define the Sierpinski game Σ to be the game

Σ = ({q, a}, {(q, OQ), (a, PA)}, {ǫ, q, qa}, idPΣ
)

with one initial question q, and one possible response a. Note that Σ̂ is indeed the usual
Sierpinski space. i.e. the two-point lattice ⊥ < ⊤ with ⊥ = {ǫ},⊤ = {ǫ, qa}.

Now for any game A we define the intrinsic preorder .A on Str(A) by:

x .A y ⇐⇒ ∀α : A→ Σ. x;α⊏
≈ y;α

Note that if we write x↓ ≡ x = ⊤ and x↑ ≡ x = ⊥, then:

x .A y ⇐⇒ ∀α : A→ Σ. x;α↓ ⊃ y;α↓

It is trivially verified that .A is a preorder.

Lemma 4.1 (Point Decomposition Lemma) (i) ∀x ∈ Str(!A). x ≈ (x; derA)
† =

!(x; derA)

(ii) ∀x ∈ Str(A&B). x ≈ 〈x; fst, x; snd〉

(iii) ∀x ∈ Str(A⊗B). ∃y ∈ Str(A), z ∈ Str(B). x ≈ y ⊗ z

Proof Firstly we must explain the notation. We think of a strategy σ in A indifferently
as having the type σ : I → A. Now since !I = I, we can regard !σ :!I →!A as in
Str(!A). Similarly, since I ⊗ I = I, we can regard σ ⊗ τ as in Str(A ⊗ B), where
σ ∈ Str(A), τ ∈ Str(B). Finally, using !I = I again we can form 〈σ, τ〉 ∈ Str(A&B)
where σ ∈ Str(A), τ ∈ Str(B).

Next we note that (i) is a special case of the Bang Lemma, while (ii) follows from the
universal property of the product.

Finally, we prove (iii). Given x ∈ Str(A⊗ B), write x = σf , where f : MO
A +MO

B ⇀
MP

A + MP
B . By the switching condition, we can decompose f as f = g + h, where

g : MO
A ⇀ MP

A , and h : MO
B ⇀ MP

B . Now define y = σg, z = σh. It is clear that y and z
are well-defined strategies, and

x = σf = σg+h ≈ σg ⊗ σh = y ⊗ z.

�
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Now we characterise the intrinsic preorder on the Linear types. The general theme is
that “intrinsic = pointwise”. This is analogous to results in Synthetic Domain Theory and
PER models, although the proofs are quite different, and remarkably enough no additional
hypotheses are required.

Lemma 4.2 (Extensionality for Tensor) For all x⊗ y, x′ ⊗ y′ ∈ Str(A⊗B)

x⊗ y .A⊗B x′ ⊗ y′ ⇐⇒ x .A x′ ∧ y .B y′

Proof (⇒). If x⊗ y .A⊗B x′ ⊗ y′ and x;α↓, then x⊗ y;β↓ where

β = A⊗B
idA ⊗⊥B,I

✲ A⊗ I
∼

✲ A
α

✲ Σ,

⊥B,I = {ǫ}. This implies that x⊗ y;β↓, and hence that x′;α↓. This shows that x .A x′;
the proof that y .B y′ is similar.

(⇐). Suppose that x .A x′, y .B y′ and x⊗ y; γ↓ where γ : A⊗B → ±. Then define
α : A→ Σ by:

α = A
∼
✲ A⊗ I

idA ⊗ y
✲ A⊗B

γ
✲ Σ

Then x;α ≈ x⊗y; γ↓, so x′;α ≈ x′⊗y; γ↓ since x .A x′. This shows that x⊗y .A⊗B

x′ ⊗ y. A similar argument shows that x′ ⊗ y .A⊗B x′ ⊗ y′, and so

x⊗ y .A⊗B x′ ⊗ y .A⊗B x′ ⊗ y′.

�

Lemma 4.3 (Extensionality for Product) For all 〈x, y〉, 〈x′, y′〉 ∈ Str(A&B)

〈x, y〉 .
A&B

〈x′, y′〉 ⇐⇒ x .A x′ ∧ y .B y′

Proof By the definition of A&B, any γ : A&B → Σ must factor as

γ = A&B
fst

✲ A
α

✲ Σ

or as

γ = A&B
snd

✲ B
β

✲ Σ

This shows the right-to-left implication. Conversely, given α : A→ Σ we can form

A&B
fst

✲ A
α

✲ Σ

and similarly for β : B → Σ. �

Lemma 4.4 (Linear Function Extensionality) For all f, g ∈ Str(A⊸B)

f .A⊸B g ⇐⇒ ∀x ∈ Str(A), x; f .B x; g

Proof (⇒) Suppose f .A⊸B g, x ∈ Str(A), β : B → Σ and x; f ;β↓. Then we define
γ : (A⊸B)→ Σ by

γ = (A⊸B)
∼
✲ (A⊸B)⊗ I

idA⊸B ⊗ x
✲ (A⊸B)⊗A

LAPP
✲ B

β
✲ Σ

For all h ∈ Str(A⊸B), h; γ ≈ x;h;β, so x; g;β ≈ g; γ↓ since f .A⊸B g and f ; γ↓.
(⇐) Suppose f ; γ↓ where γ : (A⊸B) → Σ. From the switching condition we know

that γ can respond to the initial move in Σ only in B or Σ; to a move in B only in
B or Σ and to a move in A only in A or Σ. Moreover, whenever Player is to move in
A the number of moves played in B is odd, hence there is an unanswered question in
B which must have been asked more recently than the opening question in Σ. By the
stack discipline γ can in fact only respond in A to a move in A. Thus if γ ∈ σf where
f : MO

A + MP
B + MO

O ⇀ MP
A + MO

B + MP
Σ we can decompose f as f = g + h where:

g : MO
A ⇀ MP

A , h : MP
B +MO

Σ ⇀ MO
B +MP

Σ . If we now define x = σg, β = σh then:
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(i) x ∈ Str(A).

(ii) β : B → Σ.

(iii) ∀h ∈ Str(A⊸B).h; γ ≈ x;h;β.

Now
f ; γ↓ ⊃ x; f ;β↓

⊃ by assumption x; g;β↓

⊃ g; γ↓

as required. �

This argument can be understood in terms of Classical Linear Logic. If we think of
A⊸Σ as “approximately A⊥”, then

(A⊸B)⊸Σ ≈ (A⊸B)⊥ = A⊗B⊥ ≈ A⊗ (B⊸Σ).

To prove our final extensionality result, we will need an auxiliary lemma.

Lemma 4.5 (Separation of head occurrence) For all σ :!A → Σ, for some σ′ :
!A⊗A→ Σ:

σ ≈!A
conA

✲ !A⊗!A
id!A ⊗ derA

✲ !A⊗A
σ′

✲ Σ

Proof If σ = ⊥!A,Σ or σ = K!A⊤, the result is trivial. If σ responds to the initial
question q with a move (i, a) in !A we define σ′ by interpreting the index i as a separate
tensorial factor rather than an index in !A. The only non-trivial point is to show that
σ′ ≈ σ′. If q(i, a)sm ≈ q(i, a)s′m′ where q(i, a)s, q(i, a)s′ ∈ σ′, then any permutation π
witnessing the equivalence must satisfy π(i) = i. Let the response of σ′ to m be (j1, a1)
and to m′ (j2, a2). Since σ ≈ σ we must have q(i, a)sm(j1, a1) ≈!A⊸Σ q(i, a)s′m′(j2, a2),
and hence either j1 = j2 = i or j1 6= j2 6= i. In either cases, q(i, a)sm(j1, a1) ≈!A⊗A⊸Σ

q(i, a)s′m′(j2, a2), as required. �

Lemma 4.6 (Bang Extensionality) For all x, y ∈ Str(A).

x .A y ⇐⇒!x .!A!y

Proof (⇐) If !x .!A!y and x;α↓ then !x; (derA;α)↓, so !y; (derA;α)↓, and hence y;α↓
as required.

(⇒) If !x;α↓, define |α| to be the number of indices in !A occurring in !x‖α. We
show that, for all α :!A → Σ such that !x;α↓, !y;α↓, by induction on |α|. For the basis,
note that !x;α↓ and |α| = 0 implies that α = K!A⊤. For the inductive step, let |α| =
k + 1. By Lemma 4.5, for some β :!A ⊗ A → Σ, α ≈ conA; id!A ⊗ derA;β. For all
z ∈ Str(A). !z; conA; id!A ⊗ derA ≈!z ⊗ z, so !z ⊗ z;β ≈!z;α.

Now define

γ =!A
∼
✲ !A⊗ I

id!A ⊗ x
✲ !A⊗A

β
✲ Σ

For all z ∈ Str(A), !z; γ ≈!z ⊗ x;β. In particular, !x; γ ≈!x⊗ x;β ≈!x;α↓. Since |α| > 0,
there is a first index i0 in !A used by α. By the definition of γ, !x‖γ is !x‖α with all moves
at index i0 deleted. Hence |γ| < |α|, and by induction hypothesis !y; γ↓.

Define δ : A→ Σ by

δ = A
∼
✲ I ⊗A

!y ⊗ idA
✲ !A⊗A

β
✲ Σ.

Then for all z ∈ Str(A). z; δ ≈!y ⊗ z;β. In particular, x; δ ≈!y ⊗ x;β ≈!y; γ↓. By the
assumption that x .A y, y; δ↓. This implies that !y;α ≈!y ⊗ y;β↓, as required. �
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Lemma 4.7 (Intuitionistic Function Extensionality)

σ .A⇒B τ ⇐⇒ ∀x : 1⇒ A, β : B ⇒ Σ. β ◦ σ ◦ x↓ ⊃ β ◦ τ ◦ x↓.

Proof

σ .A⇒B τ ⇐⇒ ∀z ∈ Str(!A).z;σ .B z; τ
Linear Function Extensionality

⇐⇒ ∀x ∈ Str(A).x†;σ .B x†; τ
Bang Lemma, !I = I

⇐⇒ ∀x ∈ Str(A). x†;σ† .!B x†; τ†

Bang Extensionality, derI = idI
⇐⇒ ∀x ∈ Str(A), β :!B → Σ. x†;σ†;β↓ ⊃ x†; τ†;β↓
⇐⇒ ∀x : 1⇒ A, β : B ⇒ Σ. β ◦ σ ◦ x↓ ⊃ β ◦ τ ◦ x↓.

�

Lemma 4.8 (Congruence Lemma) (i) σ .A⇒B σ′ ∧ τ .B⇒C τ ′ ⊃ τ ◦ σ .A⇒C

τ ′ ◦ σ′

(ii) σ .C⇒A σ′ ∧ τ .C⇒B τ ′ ⊃ 〈σ, τ〉 .
C⇒A&B

〈σ′, τ ′〉.

(iii) σ .
A&B⇒C

τ ⊃ Λ(σ) .A⇒(B⇒C) Λ(τ).

Proof (i)
β ◦ τ ◦ σ ◦ x↓ ⊃ β ◦ τ ′ ◦ σ ◦ x↓ τ .B⇒C τ ′

⊃ β ◦ τ ′ ◦ σ′ ◦ x↓ σ .A⇒B σ′.

(ii) For all x : 1⇒ C, 〈σ, τ〉 ◦x ≈ 〈σ ◦x, τ ◦x〉 : I → A&B; and similarly, 〈σ′, τ ′〉 ◦x ≈
〈σ′ ◦ x, τ ′ ◦ x〉. By (i), σ ◦ x .A σ′ ◦ x and τ ◦ x .B τ ′ ◦ x. The result now follows by
Product Extensionality.

(iii) Identifying morphisms with points of arrow types,

γ ◦ Λ(σ) ◦ x ◦ y↓ ⊃ γ ◦ σ ◦ 〈x, y〉↓
⊃ γ ◦ τ ◦ 〈x, y〉↓ σ .

A&B⇒C
τ

⊃ γ ◦ Λ(τ) ◦ x ◦ y↓.

�

Finally we consider the relationship between the intrinsic and intensional preorders.

Lemma 4.9 (i) If σ ⊏
≈A τ , then σ .A τ .

(ii) If σo ⊆ σ1 ⊆ . . . is an increasing sequence, and for all n, σn .A τn, then
⋃

n∈ω σn .A

τn.

Proof (i) By ⊏
≈−monotonicity of composition (Proposition 2.9.3) if σ⊏≈Aτ and σ;α = ⊤

then ⊤ = σ;α⊏
≈A τ ;α and hence τ ;α = ⊤.

(ii) By ⊆ −continuity of composition (Proposition 2.9.3), similarly to (i). �

By Lemma 4.9, σ ≈ τ implies σ ≃ τ where ≃ is the equivalence induced by the
preorder .. Thus each ≃ −equivalence class is a union of ≈ −classes. Henceforth, when
we write [σ] we shall mean the ≃ −equivalence class of σ.

We can define the notion of strong chain of ≃ −equivalence classes, just as we did for
≈ −classes: a sequence

(†) [σ0] . [σ1] . . . .

such that there are (σ′
n | n ∈ ω) with σ′

n ∈ [σn] and σ′
n ⊆ σ′

n+1 for all n ∈ ω.

Lemma 4.10 Every strong . −chain has a . −least upper bound.

Proof Given a strong chain (†), take
⊔

n∈ω[σn] = [σ′] where σ′ =
⋃

n∈ω σ′
n. For all

n, σn ≃ σ′
n ⊆ σ′, so by Lemma 4.9(i), [σ′] is un upper bound for ([σn] | n ∈ ω).

Finally, if [τ ] is another upper bound, then for all n, σ′
n . τ ; so by Lemma 4.9(ii),

σ′ . τ . �
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4.2 The Extensional Category

We begin with some general considerations on quotients of rational cartesian closed cat-
egories. Let C be a rational CCC. A precongruence on C is a family .= {.A,B| A,B ∈
Obj(C)} of relations .A,B⊆ C(A,B)× C(A,B) satisfying the following properties:

(r1) each .A,B is a preorder

(r2) f .A,B f ′ and g .B,C g′ implies g ◦ f .A,C g′ ◦ f ′

(r3) f .C,A f ′ and g .C,B g′ implies 〈f, g〉 .C,A×B 〈f ′, g′〉

(r4) f .A×B,C g implies Λ(f) .A,B⇒C Λ(g)

(r5) ⊑A,B ⊆ .A,B

(r6) for all f : A×B → B, g : C → A, h : B → D:

(∀n ∈ ω. h ◦ f (n) ◦ g .C,D k) ⊃ h ◦ f∇ ◦ g .C,D k.

Given such a precongruence, we define a new category C/. as follows. The objects
are the same as those of C;

C/.(A,B) = (C(A,B)/ ≃A,B,≤A,B).

That is, a morphism in C/ .(A,B) is a ≃A,B −equivalence class [f ], where ≃A,B is the
equivalence relation induced by .A,B. The partial ordering is then the induced one:

[f ] ≤A,B [g]⇐⇒ f .A,B g.

Note that by (r5), [⊥A,B] is the least element with respect to this partial order. By
(r2)–(r4), composition, pairing and currying are well-defined on ≃ −equivalence classes
by

[g] ◦ [f ] = [g ◦ f ],
〈[f ], [g]〉 = [〈f, g〉],
Λ([f ]) = [Λ(f)] .

It is then immediate by (r5) and the fact that C is a rational (and hence in particular a
ppo-enriched) CCC that C/. is a ppo-enriched CCC. It remains to verify rationality for
C/.. By (r2) and (r5), for any f : A × B → B, g : C → A, h : B → D, the sequence
([h ◦ f (n) ◦ g] | n ∈ ω) is a ≤C,D-chain. By (r5) and (r6), [h ◦ f∇ ◦ g] is the ≤C,D −least
upper bound of this chain. In particular , taking g = idA and h = idB, [f

∇] is the least
upper bound of ([f (n)] | n ∈ ω).

We record this result, which is a variant of [ADJ76], as

Lemma 4.11 (Rational Quotient) If . is a precongruence on a rational CCC C, then
C/. is a rational CCC.

Now we define a family .= {.A⇒B| A,B ∈ Obj(K!(G))}.

Lemma 4.12 . is a precongruence on K!(G).

Proof The fact that .A→B is a preorder has already been noted. (r2)–(r4) are the
pre-congruence Lemma 4.1.8. (r5) is Lemma 4.1.9(i). Finally, we verify (r6). Let σ :
A&B ⇒ B, τ : C ⇒ A, θ : B ⇒ D. As already explained, since ⊏

≈ ⊆ ., we work directly
with ≃ −classes of strategies, rather that ≃ −classes of ≈ −classes of strategies. Now
(θ ◦ σ(n) ◦ τ | n ∈ ω) is a ⊆ −chain (using ⊆ −monotonicity of composition), and we can
apply Lemma 4.1.9(ii) to yeld (r6). �
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Now we define E = K!(G)/..

Proposition 4.13 E is a rational CCC. Moreover, E is well-pointed in the order-enriched
sense:

f ≤A,b g ⇔ ∀x : 1→ A. f ◦ x ≤A,B g ◦ x .

Proof E is a rational CCC by Lemma 4.11 and 4.12. It is well-pointed by Intuitionistic
Function Extensionality (Lemma 4.1.7). �

Now we define the PCF model M(E) with the same interpretation of Nat as in
M(K!(G)). The ground and first-order constants of PCF are interpreted by the ≃
−equivalence classes of their interpretations inM(K!(G)).

Proposition 4.14 M(E) is an order-extensional standard model of PCF.

Proof M(E) is an order-extensional model of PCF by Proposition 4.2.3. It is standard
becauseM(K!(G)) is, and .Nat=⊑Nat . �

4.3 An alternative view of E

We now briefly sketch another way of looking at E , which brings out its extensional
character more clearly, although technically it is no more than a presentational variant of
the above description. Given a game A, define

D(A) = ({[x]≃ | x ∈ Str(A)},≤A)

Then D(A) is a pointed poset. Given σ : A ⇒ B, define D(σ) : D(A) → D(B) as the
(monotone) function defined by:

D(σ)([x]) = [σ ◦ x]

Write f : A →E B if f : D(A) → D(B) is a monotone function such that f = D(σ) for
some σ : A⇒ B. In this case we say that f is sequentially realised by σ, and write σ  f .

Note that there are order-isomorphisms

• D(I) ∼= 1

• D(A&B) ∼= D(A) ×D(B)

• D(A⇒ B) ∼= D(A)⇒E D(B)

Here D(A)×D(B) is the cartesian product of the posets D(A),D(B), with the point-
wise order; while D(A) ⇒E D(B) is the set of all functions f : A →E B, again with the
pointwise order.

Now note that, with respect to the representations of D(A&B) as a cartesian product
and D(A ⇒ B) as a “function space”, the interpretations of composition, pairing and
projections, and currying and application in E are the usual set-theoretic operations on
functions in extenso. That is,

D(τ ◦ σ) = D(τ) ◦ D(σ)
D(〈τ, σ〉) = 〈D(σ),D(τ)〉
D(π1) = π1

D(π2) = π2

D(Λ(σ)) = Λ(D(σ))
D(Ap) = Ap

where the operations on the right hand sides are defined as in the category of sets (or any
concrete category of domains).

39



Thus an equivalent definition of E is as follows:

Objects as in K!(G)
Arrows f : A→E B
Composition function composition

The rôle of the intensional structure, that is of the use of the game A to represent
the abstract space D(A), is to cut down the function spaces to the sequentially realisable
functions. Specifically, note the use of A and B in the definition of D(A)⇒E D(B).

4.4 Full Abstraction

We recall that a modelM is fully abstract for a language L if, for all types T and closed
terms M,N : T

MJMK ⊑MJNK⇔M ⊑obs N (†)

where
M ⊑obs N ⇔ ∀ program context C[.]

C[M ]⇓n ⊃ C[N ]⇓n

Here a program context C[.] is one for which C[P ] is a closed term of type N for any
closed term P : T ; and ⇓ is the operational convergence relation. The left—to—right
implication in (†) is known as soundness and the converse as completeness. It is standard
that soundness is a consequence of computational adequacy [Cur93]; thus by Proposition
2.10.1, standard models are sound. Also, full abstraction for closed terms is easily seen
to imply the corresponding statement (†) for open terms.

Theorem 4.15 M(E) is fully abstract for PCF.

Proof Firstly, M(E) is a standard model by Proposition 4.14, and hence sound. We
shall prove the contrapositive of completeness. Suppose M,N are closed terms of PCF of
type T = T1 ⇒ . . . Tk ⇒ Nat and

M(E)JMK �JT K M(E)JNK.

Let [σ] =M(E)JMK, [τ ] =M(E)JNK. By Intuitionistic Function Extensionality, for some
x1 ∈ Str(JT1K), . . . , xk ∈ Str(JTkK),

β :!N → Σ, β ◦ σ ◦ x1 ◦ . . . ◦ xk↓ and β ◦ τ ◦ x1 ◦ . . . ◦ xk↑.

By ⊏
≈−monotonicity of composition, this implies that σ ◦ x1 ◦ . . . ◦ xk 6 ⊏≈Natτ ◦ x1 ◦ . . . ◦

xk, and hence that σ ◦ x1 ◦ . . . ◦ xk = n for some n ∈ ω, and τ ◦ x1 ◦ . . . ◦ xk 6= n.
By ⊆ −continuity of composition and the properties of the projections pk given in the
Approximation Lemma 3.5.1, for some m ∈ ω, σ ◦ pm(x1) ◦ . . . ◦ pm(xk) = n, while by
⊆ −monotonicity of composition, τ ◦ pm(x1) ◦ . . . ◦ pm(xk) 6= n. By Lemma 3.6.3, there
are finite evaluation trees,and hence PCFc terms P1, . . . , Pk such that JPiK = [pm(xi)],
1 ≤ i ≤ k. This means that JMP1 . . . PkK = n, while JNP1 . . . PkK 6= n. By computational
adequacy, this implies that MP1 . . . Pk⇓n and ¬(NP1 . . . Pk⇓n). By Lemma 3.1.1, each
PCFc term is observationally congruent to a PCF term. Hence there is a PCF context
C[.] = [.]Q1 . . . Qk, where Qi

∼=obs Pi, 1 ≤ i ≤ k, such that C[M ]⇓n and ¬(C[N ]⇓n). This
implies that M 6⊑obs N , as required. �
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As an instructive consequence of this proof, we have:

Corollary 4.16 (Context Lemma) For all closed M,N : T1 ⇒ . . . Tk ⇒ Nat,

M ⊑obs N ⇔ ∀ closed P1 : T1, . . . , Pk : Tk

MP1 . . . Pk⇓n ⊃ NP1 . . . Pk⇓n

Proof The left-to-right implication is obvious, by considering applicative contexts
[.]P1 . . . Pk. The converse follows from the proof of the Full Abstraction Theorem, since
if M 6⊑obs N , then JMK � JNK by soundness, and then by the argument for completeness
this can be translated back into an applicative context separating M and N . �

The point of reproving this well-known result is that a semantic proof falls out of
the Full Abstraction Theorem. By contrast, Milner had to prove the Context Lemma
directly, as a necessary preliminary to his syntactic construction of the fully abstract
model. Moreover, the direct syntactic proof, particularly for the λ−calculus formulation
of PCF [Cur93], is quite subtle. This gives some immediate evidence of substance in our
“semantic analysis”.

5 Universality

The definability result we have achieved so far refers only to compact strategies. Our aim
in this section is to characterize precisely which strategies are (extensionally) definable in
PCF, and in fact to construct a fully abstract model in which all strategies are definable.

5.1 Recursive Strategies

We shall develop effective versions of G and E . Our treatment will be very sketchy, as
the details are lengthy and tedious, but quite routine. We refer to standard texts such as
[Soa87] for background.

We say that a game A is effectively given if there is a surjective map eA : ω →MA with
respect to which λA (with some coding of {P,O,Q,A}) and the characteristic functions
of PA and ≈A (with some coding of finite sequences) are tracked by recursive functions.
A strategy σ on A is then said to be recursive if σ is a recursively enumerable subset of
PA (strictly speaking, if the set of codes of positions in σ is r.e.).

Lemma 5.1 σ = σf is recursive iff f is tracked by a partial recursive function. There
are recursive functions taking an index for σ to one for f , and vice versa.

Proof The predicate f(a) ≃ b ⇔ ∃s.sab ∈ σ is clearly r.e. in σ, hence f has an r.e.
graph and is partial recursive

Conversely, given f define a predicate G(s, n) by:

G(s, 0) = s = ǫ,
G(s, n+ 1) = ∃a, b, t. s = tab ∧ s ∈ PA ∧G(t, n) ∧ f(a) ≃ b.

Clearly G is r.e. and hence so is

σ = graph(f) = {s | ∃n.G(s, n)}.

These constructions are defined via simple syntactic transformations and yield effective
operations on indices. �
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If A and B are effectively given, one can verify that the effective structure lifts to
A⊗B, A⊸B,A&B and !A. Also, I and Nat are evidently effectively given. The most
interesting point which arises in verifying these assertions is that ≈!A is recursive. This
requires the observation that, in checking s ≈!A t, it suffices to consider permutations
π ∈ S(ω) of bounded (finite) support, where the bound is easily computed from s and t.

Similarly, one can check that all operations on strategies defined in Section 2 effectivize.
For example, it is easily seen that the definition of σ; τ in terms of sets of positions is
r.e. in σ and τ ; or, we can give an algorithm for computing EX(f, g). This algorithm
simply consists of applying f and g alternately starting from whichever is applicable to
the input, until an “externally visible” output appears. Note that it is not the case in
general that unions of ⊆ −chains of recursive strategies are recursive. For example every
strategy of type N⊸N is a union of an increasing chain of finite and hence recursive
strategies. However, given a recursive σ : A&B ⇒ B, σ∇ =

⋃

n∈ω σ(n) is recursive, since
it can be enumerated uniformly effectively in n (“r.e. unions of r.e. sets are r.e.”).

Thus we can define a category Grec with objects effectively given games, and morphisms
(partial equivalence classes of ) recursive strategies. Also, the interpretations of PCF
constants inM(K!(G)) are clearly recursive strategies.

Proposition 5.2 (i) Grec is a Linear category

(ii) K!(Grec) is a rational cartesian closed category

(iii) M(K!(Grec)) is a standard model of PCF

We can now consider the extensional quotient Erec = K!(Grec)/. where . is defined
just as for K!(G), but of course with respect to recursive tests, i.e. recursive strategies
A⊸Σ. All the results of section 4 go through with respect to recursive tests.

Proposition 5.3 Erec is a well-pointed rational CCC.M(Erec) is a fully abstract model
of PCF.

Proof The result does require a little care, since the Isomorphism Theorem 3.6.4 is
not valid forM(Erec). However, the Isomorphism Theorem was not used in the proof of
the Full Abstraction Theorem 4.3.1, but rather the finitary version Lemma 3.6.3, which
is valid inM(Erec). �

It is worth remarking that a nice feature of our definition of model in terms of ra-
tionality rather than cpo-enrichment is that the recursive version Erec is again a model
in exactly the same sense as E . By contrast, in the cpo-enriched setting one must either
modify the definition of model explicitly (by only requiring completeness with respect to
r.e. chains), or implicitly by working inside some recursive realizability universe.

5.2 Universal Terms

The fact that M(K!(Grec)) and M(Erec) are models shows that all PCF terms denote
recursive strategies, as we would expect. Our aim now is to prove a converse; every
recursive strategy is, up to extensional equivalence, the denotation of a PCF term, and
hence every functional in the extensional modelM(Erec) is definable in PCF.

More precisely our aim is to define, for each PCF type T , a “universal term” UT :
Nat⇒ T , such that

EJUT ⌈σ⌉K = [σ]

for each recursive σ. These universal terms will work by simulating the evaluation tree
corresponding to σ.
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Firstly, we recall some notations from recursion theory. We fix an acceptable number-
ing of the partial recursive functions [Soa87] such that φn is the n’th partial recursive func-
tion andWn is the n’th r.e. set. We also fix a recursive pairing function 〈−,−〉 : ω×ω → ω
and a recursive coding of finite sequences.

A recursive strategy σ is regarded as being given by a code (natural number) ⌈σ⌉. By
virtue of Lemma 5.1.1 we use such a code indifferently as determining σ by

σ = σf where f = φ⌈σ⌉

or
W⌈σ⌉ = {⌈s⌉ | s ∈ σ}

The following lemma is a recursive refinement of the Decomposition Lemma, and assumes
the notations of Section 3.4.

Lemma 5.4 (Decomposition Lemma (Recursive Version)) For each PCF type T
there are partial recursive functions

DT , HT : ω ⇀ ω and BT : ω × ω ⇀ ω

such that, if σ is a recursive strategy on T

DT ⌈σ⌉ =







undefined, σ = ⊥T̃

〈2, n〉, σ = KT̃n
〈3, i〉, R(σ)

HT ⌈σ⌉ =

{
〈⌈σ1⌉, . . . , ⌈σli⌉〉, R(σ)
undefined, otherwise

BT (⌈σ⌉, n) =

{
⌈τn⌉, R(σ)
undefined, otherwise

where R(σ) stands for

Φ(σ) = (3, i, σ1, . . . , σli , (τn | n ∈ ω)).

Proof DT ⌈σ⌉ is computed by applying φ⌈σ⌉ to the (code of) the initial question. The
extraction of τn from σ, τn = {∗1s | ∗1 ∗2 ns ∈ σ}, is obviously r.e. in σ, uniformly
effectively in n. Hence we obtain an r.e. predicate s ∈ BT (⌈σ⌉, n), and by an application
of the S-m-n theorem we obtain the index for “BT ⌈σ⌉n = ⌈τn⌉”.

Similarly the extraction of σ′ from σ is r.e. in σ, and that of σ′′ for σ′ is r.e. in σ′;
while σ1, . . . , σli are obtained from σ′′ by composition, dereliction and projection, which
are computable operations by Proposition 5.1.2. Hence applying the S-m-n theorem again
we obtain the codes for σ1, . . . , σli . �

Given a PCF type T , we define the subtypes of T to be the PCF types occurring as
subformulas of T , e.g. (N ⇒ N) and N are subtypes of (N ⇒ N) ⇒ N . Let S1, . . . , Sq

be a listing of all the (finitely many) subtypes of T , where we write

Si = Si,1 ⇒ . . . Si,li ⇒ N

To aid the presentation, we will use an abstract datatype CtxtT of “T -contexts”, which
we will show later how to implement in PCF. We will make essential use of the fact that,
while contexts can grow to arbritary size in the recursive unfolding of an evaluation tree
of type T , the types occurring in the context can only be subtypes of T .

CtxtT comes with the following operations:

• emptycontextT : CtxtT
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• getS : N ⇒ CtxtT ⇒ S for each subtype S of T

• extendSi
: CtxtT ⇒ Si,1 ⇒ . . . Si,li ⇒ CtxtT for each subtype Si of T

• mapT : N ⇒ CtxtT ⇒ N .

If Γ = x1 : U1, . . . , xn : Un, then Γi is the subsequence of all entries of type Si,
1 ≤ i ≤ q and Γj = xj : Uj

The idea is that, if Γ is an “abstract context”,

• extendSi
Γx

Si,1

1 . . . x
Si,li

li
= Γ, x1 : Si,1, . . . , xli : Si,li

• mapT i Γ = 〈i1, i2〉 where Γi = x : Si1 = Γi1
i2

• getSi
jΓ = Γi

j .

Now we use the standard fact that every partial recursive function φ : ω ⇀ ω can be
represented by a closed PCF term M : N ⇒ N in the sense that, for all n ∈ ω

Mn ⇓ m⇔ φn ≃ m.

This obviously implies that partial recursive functions of two arguments can be represented
by closed terms of type N ⇒ N ⇒ N . Specifically, we fix terms DT,HT : N ⇒ N and
BT : N ⇒ N ⇒ N which represent DT , HT and BT respectively.

Now we define a family of functions

FS : CtxtT ⇒ N ⇒ S

for each subtype S = U1 ⇒ . . . Uk ⇒ N of T , by the following mutual recursion:

FS = λkN .λΓCtxt
T .λxU1

1 . . . λxUk

k

let〈k1, k2〉 = DTk in

if k1 = 2 then k2 else
if k1 = 3 then
let ∆ = extendS Γx1 . . . xk in

let 〈i1, i2〉 = mapT k2 ∆ in

case i1 of

1 : . . .
...
i : let 〈k1, . . . , kli〉 = HSk in

let n = (getSi
i2∆)(FSi,1

k1∆) . . . (FSi,li
kli∆)

in FN (BSkn)∆
i+ 1 : . . .
...
q : . . .

otherwise : Ω
endcase

else Ω

These functions have been defined using some “syntactic sugar”. Standard techniques
can be used to transform these definitions into PCF syntax. In particular Bekic̆’s rule
[Win93] can be used to transform a finite system of simultaneous recursion equations into
iterated applications of the Y combinator. The universal term UT can then be defined by

UT = FT emptycontextT .

It remains to be shown how CtxtT can be implemented in PCF. To do this, we
assume two lower-level data-type abstractions, namely product types T ×U with pairing
and projections, and list types list(T ) for each PCF type T , with the usual operations:
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• emptyT : list(T )⇒ N

• consT : T ⇒ list(T )⇒ list(T )

• hdT : list(T )⇒ T

• tlT : list(T )⇒ list(T )

• nilT : listT

We write l↓i for the i’th component of a list.
We represent an abstract context Γ by the q + 1−tuple (l1, . . . , lq, mlist) where li :

list(Si), 1 ≤ i ≤ q and mlist : list(N). The idea is that li = Γi, while

mlist↓i = 〈i1, i2〉 = mapT iΓ.

It is straightforward to implement the operations on contexts in terms of this repre-
sentation.

• emptycontextT = ([], . . . , [], [])

• mapT i(l1, . . . , lq, mlist) = mlist↓i

• getSi
j(l1, . . . , lq, mlist) = li↓j

• extendSi
(l1, . . . , lq, mlist)x1 · · ·xli = L

where

L = extend1Si,li
(· · · (extend1Si,2

(extend1Si,1
(l1, . . . , lq, mlist)x1)x2) · · ·)xli

and extend1Si,j
(l1, . . . , lq, mlist)x equals

(l1, . . . , lj ++[x], . . . , lq, mlist++[〈j, lengthSj
(lj) + 1〉])

where −++− is list concatenation.

Finally, we show how to represent lists and products in PCF. We represent lists by

List(T ) = (N ⇒ T )×N

where e.g.

• consT =

λxT .λl : List(T )
let (f, n) = l in (g, n+ 1)

where

g = λiN . if i = 0 then x
else f(i− 1)

• emptyT (f, n) = n = 0.

A function taking an argument of product type

T × U ⇒ V

can be replaced by its curried version

T ⇒ U ⇒ V

while a function returning a product type can be replaced by the two component functions.
This completes our description of the universal term UT .
For each PCF type T , we define a relation M R Ta between closed PCF terms of type

T and strategies a ∈ Str(T ) by

M R Ta ⇐⇒ JMK ≃ a.

This is extended to sequences M̃ R T̃ ã in the evident fashion.
We fix a type T with subtypes S1, . . . , Sq as in the previous discussion.
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Lemma 5.5 Let T̃ ⇒ S be a PCF type-in-context and σ ∈ Str(T̃ ⇒ S) a compact
strategy, where T̃ , S are subtypes of T . Let Γ be a closed expression of type CtxtT (which
we will regard as a sequence of closed terms), and ã a sequence of strategies. Then

Γ R T̃ ã⇒ (FS⌈σ⌉Γ) R S(σã).

Proof By induction on the height of the finite evaluation tree corresponding to σ
under Theorem 3.21 , and by cases on the Decomposition Lemma for σ. The cases for
σ = ΛS̃(⊥T̃ ,S̃) and σ = ΛS̃(KT̃ ,S̃n) are clear.

Suppose
σ ≈ Ci(σ1, . . . , σli , (τn | n ∈ ω)).

By Intuitionistic Function Extensionality Lemma, it suffices to show that, for all closed
M̃ and strategies b̃ such that M̃ R S̃ b̃

FS⌈σ⌉ΓM̃ R Nσãb̃.

Let ∆ = extendSΓM̃, c̃ = ã, b̃. Then ∆ R T̃ ,S̃ c̃, so by induction hypothesis,

FSi,j
⌈σj⌉∆ R Si,j

σj c̃, 1 ≤ j ≤ li

Hence if we define

M = ∆i(FSi,1
⌈σ1⌉∆) · · · (FSi,li

⌈σli⌉∆)

= ∆i1
i2
(FSi,1

⌈σ1⌉∆) · · · (FSi,li
⌈σli⌉∆)

where 〈i1, i2〉 = map i∆, then M R Nci(σ1c̃) · · · (σli c̃). Thus if ci(σ1c̃) · · · (σli c̃) = ⊥N ,
then JMK = ⊥n, while if ci(σ1c̃) · · · (σli c̃) = n then JMK = n.

In the former case,
JFS⌈σ⌉ΓM̃K ≃ ⊥N ≃ σc̃.

In the latter case,
JFS⌈σ⌉ΓM̃K ≃ JFN (B⌈σ⌉n)∆K

≃ JFN ⌈τn⌉∆K,

while σc̃ ≃ τnc̃, and by induction hypothesis FN⌈τn⌉∆ R Nτnc̃. �

Now we define a family of relations (�k| k ∈ ω), where �k⊆ ω × ω, inductively as
follows:

�0 = ω × ω
n �k+1 m ⇐⇒ (Dn = 〈2, p〉 ⇒ Dm = 〈2, p〉)

∧ (Dn = 〈3, i〉 ⇒ Dm = 〈3, i〉
∧ [Hn = 〈k1, . . . , kli〉 ⇒

Hm = 〈k′1, . . . , k
′
li
〉 ∧

∧li
j=1 kj �k k′j ]

∧ ∀p : 0 � p � k. Bnp �k Bmp).

We can read n �k m as: the stategy coded by m simulates the strategy coded by n
for all behaviours of size ≤ k.

We write
n � m ⇐⇒ ∀k ∈ ω.n �k m.

Lemma 5.6 For all PCF types T , σ ∈ Str(T ), k ∈ ω :

(i) pk(σ) � σ.

(ii) σ �k pk(σ)

Lemma 5.7 With S,Γ, M̃ as in Lemma 5.5, and σ any strategy in Str(S):

JFS⌈σ⌉ΓM̃K = n ⇐⇒ ∃k ∈ ω. JFS⌈pk(σ)⌉ΓM̃K = n

Proof (⇐) By Lemma 5.6(i).
(⇒) By Lemma 5.6(ii), using continuity, and hence the fact that only finitely many

calls to D,H and B are made in evaluating FS⌈σ⌉ΓM̃ . (This can be made precise using
Berry’s Syntactic Approximation Lemma for PCF [BCL85]). �
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Theorem 5.8 (Universality Theorem) For all PCF types T and recursive strategies
σ ∈ Str(T ) with n = ⌈σ⌉,

M(K!(G))JUTnK ≃T σ.

Thus every functional in M(Erec) (equivalently, every functional in M(E) realised by a
recursive strategy) is definable in PCF.

Proof For all closed M̃ : T̃ .

JUT ⌈σ⌉M̃K = n ⇐⇒ ∃k ∈ ω. JUT ⌈pk(σ)⌉M̃ K = n
by Lemma 5.7

⇐⇒ ∃k ∈ ω. pk(σ)JM̃ K = n
by Lemma 5.5

⇐⇒ σJM̃K = n
by the Approximation Lemma for strategies.

By the Intuitionistic Function Extensionality Lemma this shows that JUT ⌈σ⌉K ≃ σ. �

In the case of cpo-enriched models, an important result due to Milner is that the fully-
abstract order extensional model is unique up to isomorphism. For rational models, the
situation is not quite so rigid. For example, bothM(E) andM(Erec) are fully abstract,
butM(Erec) is properly contained inM(E). To see this, note that all monotonic functions
of type N ⇒ N are sequentially realised and hence live inM(E), while only the recursive
ones live inM(Erec). We can, however, give a very satisfactory account of the canonicity
of M(Erec). We define a category FAMOD(PCF) with objects the fully abstract (rational)
models of PCF. A homomorphism F :M(C)→M(D) is a functor from the full cartesian
closed sub category of C generated by the interpretation ofN inM(C) to the corresponding
subcategory of D. F is additionally required to be a rational CCC functor, and to preserve
the interpretation of N and of the PCF ground and first-order constants.

Theorem 5.9 (Extensional Initiality Theorem) M(Erec) is initial in FAMOD(PCF).

Proof Let N be any fully abstract model. By the Universality Theorem, there is only
one possible definition of F :M(Erec)→ N , given by

F (M(Erec)JMK) = N JMK

for all closed terms M of PCF. SinceM(Erec) and N are both fully abstract,

M(Erec)JMK ≤ M(Erec)JNK
⇔ M ⊑obs N
⇔ N JMK ≤ N JNK

so this map is well-defined, and preserves and reflects order. It is a homomorphism by
the compositional definition of the semantic function. �
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