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Abstract

A collapsing spherical D2-brane carrying magnetic flux can be described
in the region of small radius in a dual zero-brane picture using Tseytlin’s
proposal for a non-Abelian Dirac-Born-Infeld action for N D0-branes. A
standard large N approximation of the D0-brane action, familiar from the
Myers dielectric effect, gives a time evolution which agrees with the Abelian
D2-brane Born-Infeld equations which describe a D2-brane collapsing to zero
size. The first 1/N correction from the symmetrised trace prescription in the
zero-brane action leads to a class of classical solutions where the minimum
radius of a collapsing D2-brane is lifted away from zero. We discuss the
validity of this approximation to the zero-brane action in the region of the
minimum, and explore higher order 1/N corrections as well as an exact finite
N example. The 1/N corrected Lagrangians and the finite N example have
an effective mass squared which becomes negative in some regions of phase
space. We discuss the physics of this tachyonic behaviour.
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1 Introduction

There has been a lot of work recently on time dependence in string theory
[1, 2, 3, 4, 5, 6, 7]. In this paper we will study a simple time dependent
system of a spherical D2-brane carrying magnetic flux.

D2-branes in type IIA string theory with magnetic flux on the world-
volume carry zero-brane charge [8, 9]. We consider such spherical D2-branes
and their time evolution as described by the 2+1 dimensional Born-Infeld
action. A closely related problem is the time dependence of a spherical M2-
brane of M-theory. When considered in the context of Matrix Theory [10, 11],
we are led to add momentum along the eleventh direction, which amounts
in the IIA picture to having D2-branes with magnetic flux. Other closely
related systems include the microscopic description of giant gravitons [12]
and the D3-brane bion where the world-volume of the D3 stretches out into
a D1-funnel described by an excitation of the scalars in the D3-world-volume
[13, 14]. Magnetic fluxes in the D3-worldvolume allow the existence of a
BPS solution describing such funnels. The dual description in terms of the
D1-worldvolume has been studied in detail in [16], one general lesson being
that the D1 and D3 descriptions agree at large N . Whereas the D1-D3 funnel
system involves a spherically symmetric solution of the D1-world-volume with
the radius R(σ) of the spherical cross-section of the funnel having a non-
trivial dependence on the spatial coordinate σ, the D0-D2 system has a time
dependent radius R(t) of the spherical D2-brane.

In a similar spirit to [16] we may look for the collapsing D2-brane in terms
of the D0-branes. The dualities between descriptions of the same physics from
two points of view, of a lower dimensional brane and a higher dimensional
brane, can thus be explored in a time-dependent context. The D0-brane
effective world-volume Yang Mills theory neglects stringy excitations. This is
a valid approximation when the separation of the zero branes is less than the
string length (branes as short distance probes in string theory were studied
in detail in [17]). For a spherical system of N D0-branes this means that
the radius R of the sphere obeys R < ls

√
N . The semiclassical world-volume

D2-brane action is expected to be valid for R > ls. There is a large overlap of
regimes of validity at large N . Indeed we will find in Section 2 that the non-
Abelian Born-Infeld type action of the D0-branes (written down in [18] and
developed to describe the dielectric effect in [19]) gives at large N the same
equation for the time evolution of R as the one obtained from the D2-brane
action.

In Section 3, we consider 1/N corrections to the equation for R. This
requires some combinatorics of symmetrised traces. We give two methods
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for computing these corrections. The first is based on evaluation of a sym-
metrised string of su(2) generators on the highest weight state of an irre-
ducible representation. The second method maps the problem of expressing
the symmetrised generators in terms of powers of the Casimir, into a combi-
natorics of chord diagrams of the kind that appear in knot theory.

In Sections 4 and 5 we study the leading 1/N correction. We consider
the energy as a function of (r, s), the dimensionless position and velocity
variables. For convenience many formulae are expressed in terms of the
variables (γ, U) where γ = (1 − s2)−

1

2 is the standard Lorentz factor of

special relativity, and U = (1 + r4)
1

2 . At leading order all the formulae
for Lagrangian, energy, momentum, etc, are the standard ones of special
relativity, with U playing the role of a position dependent mass. The 1/N
corrections give an interesting modification of these standard formulae. The
physical consequence of the correction is that while a spherical brane starting
at rest at a large radius collapses to zero radius for a range of radii, it cannot
do so if the initial radius is too large. These large collapsing membranes
bounce from a minimal radius, which depends on the initial radius. This is a
somewhat exotic bounce where the velocity ṙ is discontinuous, as in reflection
at a hard wall, and in addition the fate of the membrane after the bounce is
not uniquely determined, but rather there are two possible outcomes. These
conclusions follow from an analysis of the energy function in (r, s) space and
the existence of an extremum where ∂E

∂s
= 0 and s 6= 0. We briefly discuss

quantum mechanics near this extremum.
In Section 6 we consider higher order corrections in the 1/N expansion,

explaining which properties of the solutions are preserved as we include these.
In Section 7 we consider the exact finite N evaluation of the symmetrised
trace for the case of spin 1/2. We find explicit forms of the energy function in
terms of hypergeometric functions and discuss the dependence upon position
and velocity. In Section 8 we discuss regimes of validity and the effects of
higher order terms in general, paying attention to the behaviour of the accel-
eration and effective mass, and the appearance of tachyonic modes. Finally,
in Section 9 we present a summary and outlook.

2 Time dependent solutions: Born-Infeld

Consider the action describing N D0-branes

S0 = −T0

∫

dt Str
√

(IN − λ2∂tΦiQ−1
ij ∂tΦj)

√

detQij (1)

3



where Φi, i = 1..9 are a set of N×N matrices and Qij = INδ
ij +iλ[Φi,Φj ]. T0

is the tension, λ = 2πα′ = 2πl2s and Str denotes the completely symmetrised
trace over N -dimensional indices. Amongst the solutions to the equations of
motion obtained from (1) are those describing t-dependent fuzzy 2-spheres.
These are obtained from the ansatz Φi = R̂(t)αi, i = 1, 2, 3; Φm = 0, m = 4..9,
where αi are the generators of su(2) in anN -dimensional representation, with

[αi, αj ] = 2iǫijkαk (2)

The physical radius of the fuzzy S2 which we denote by R(t) is related to R̂
via

R2 =
λ2

N
tr(Φ2

i ) = λ2CR̂2 (3)

with C = (N2 − 1) is the value of the second order Casimir invariant.
Substituting this ansatz into the action (1) and using the approximate

relation (valid in the leading large N limit) Str(αiαi)
n = NCn, we get

S0 = −T0N

∫

dt

√

(1 − (λ2C)(∂tR̂)2) (1 + 4λ2CR̂4) (4)

The conserved energy is E =
√

1+4λ2CR̂4

1−λ2C
˙̂

R2
and the equations of motion are

d

dt

√

1 + 4λ2CR̂4

1 − λ2C
˙̂
R2

= 0 (5)

Integrating this equation with the initial condition R̂ = R̂0 and
˙̂
R = 0 at

t = 0, we obtain

Ṙ2 = 4
R4

0 − R4

λ2C + 4R4
0

(6)

where we work in physical units. This equation, studied in the context of
time-dependent membranes in [20], has solution

R(t) = R0Cn
(

t
√

2/R̃0, 1/
√

2
)

(7)

where Cn(u, k) is a Jacobi elliptic function and R̃2
0 =

R4

0
+λ2C/4

R2

0

. The initial

conditions are satisfied due to the properties Cn(0, k) = 1 and dCn(u,k)
du

=
−Sn(u, k)dn(u, k) with Sn(0, k) = 0.

The functions Cn(u, k) have the property that they are monotonically
decreasing with zeros at the special value u = K(k) where K is a complete
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elliptic integral of the first kind. Thus our D2-brane solution describes a
spherical collapse to a point after a time

√
2t∗

R̃0

= K(1/
√

2) (8)

ie the collapse time is t∗ = 1√
2R0

(

√

R4
0 + λ2C/4

)

K( 1√
2
). Hence we see that

t∗ increases as we increase the size of R0 (assuming that R4
0 >> λ2C/4).

Solutions of a similar form have been discussed recently, in the context of
3-form flux backgrounds, in [15]

Now consider the DBI action for D2-branes moving in flat space but
including Abelian world-volume gauge fields -

S2 = −T2

∫

d3ξ
√

−det(GMN∂aXM∂bXN + λFab) (9)

where in (9) ξa, a = 0, 1, 2 are worldvolume coordinates of the D2-brane,
GMN is the flat space metric in D + 1 dimensions, M = 0 . . .D, Fab is
the Abelian gauge field strength and T2 is the brane tension. We choose a
static gauge where ξ0 = t = X0, ξ1 = X1, ξ2 = X2. We want to consider time
dependent solutions of a spherical D2-brane and so we shall choose world vol-
ume coordinates ξ1 = θ, ξ2 = φ, and embedding X1 = R(t) sin θ sin φ,X2 =
R(t) sin θ cosφ,X3 = R(t) cosφ, where R(t) is the radius of the spherical D2,
in physical units.

In order to correctly reproduce the dynamics of the time dependent fuzzy
spheres considered elsewhere, we shall take the field strength Fab to define n
units of magnetic flux through the world volume, ie

∫

dΣabFab = 2πn (10)

where dΣab is the infinitesimal world-volume surface element. Since only the
F12 components are non-zero, F12 = nsinθ

2
. Its easy to see that the action for

the D2-brane reduces to

S2 = −2πnλT2

∫

dt

√

(

1 − Ṙ2
)(

1 + 4
R4

n2λ2

)

(11)

The equations of motion for this sytem can be written in the form

d

dt





√

1 + 4R4

n2λ2

1 − Ṙ2



 = 0 (12)
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Comparing the above equation to that describing a system of N D0-branes,
discussed earlier, we see that in the leading N approximation the equations
coincide if we identify N = n.

It is useful to introduce dimensionless variables (r, s), where s = dr
dT

,

such that the Lagrangian is
√

(1 + r4)(1 − s2). The variable T is a re-scaled
time t. The relations between the dimensionless variables and the original
variables in (4) are

r4 = (4λ2C)R̂4

s2 = (λ2C)
˙̂
R

2

T =
√

2(λ2C)−1/4t (13)

Using the relation between R̂ and the physical R in (3) we also see that

s =
dr

dT
=
dR

dt
(14)

so that the relativistic barrier is just s = 1.

3 Corrections from the symmetrised trace

Consider the ansatz Φi = R̂αi, introduced in the D0-brane theory in the
previous section. Substituting this into the action (1) yields

S0 = −T0

∫

dt Str

√

(1 + 4λ2αiαiR̂4)(1 − λ2αjαj
˙̂
R2) (15)

with both i and j summed from 1 to 3. The derivation of (15) uses properties
of the symmetrised trace. For the analogous discussion in the D1-brane case,
see [16]. The equations of motion following from (15) are

Str
d

dt

√

√

√

√

1 + 4λ2αiαiR̂4

1 − λ2αiαi
˙̂
R2

= 0 (16)

In the large N limit, we may replace αiαi by C(N), and we obtain (5).
However, we wish to use more precise expressions here. To consider this,
suppose that one wishes to evaluate the symmetrised trace of some function
f(αiαi) of the summed product αiαi. If we expand

f(x) =

∞
∑

n=0

fnx
n (17)
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for some constants fn, then

Strf(αiαi) =

∞
∑

n=0

fnStr(αiαi)
n (18)

Generally, one has

Str(αiαi)
n = N

n−1
∑

i=1

aiC
n−i (19)

for some n-dependent coefficients ai. In this section, we will explicitly de-
termine a0, a1 and a2, whilst in Section 7 we will give the full result for
Str(αiαi)

n in the case where the generators αi are in the spin-half represen-
tation of su(2).

We will show in the following that

a0 = 1, a1 = −2

3
n(n− 1), a2 =

2

45
n(n− 1)(n− 2)(7n− 1) (20)

so that

Str(αiαi)
n = N

(

Cn− 2

3
n(n−1)Cn−1+

2

45
n(n−1)(n−2)(7n−1)Cn−2 +. . .

)

(21)
Now note that, if one may write

Str(αiαi)
n = DCn (22)

for some n-independent differential operator D, then from (18)

Strf(αiαi) =

∞
∑

n=0

fnDC
n = Df(C) (23)

With the result (21), we see that to the first few orders,

D = N

(

1 − 2

3
C
∂2

∂C2
+

14

45
C2 ∂4

∂C4
+

8

9
C
∂3

∂C3
+ . . .

)

(24)

We will use the results (23), (24) in Section (4.6).

3.1 Calculation by evaluation on highest weight

The basic object of study in the symmetrised trace which we are considering
is the element

Cn =
1

(2n)!

∑

αi1αi1αi2αi2 · · ·αinαin (25)
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in the universal enveloping algebra of su(2). The sum is over the (2n)! permu-
tations of the α’s. Since all the indices are contracted, this element commutes
with all the generators of su(2), i.e belongs to the centre. By Schur’s Lemma
it is proportional to the identity in any irreducible representation. We can
calculate it by obtaining its value on the highest weight state of a spin J rep-
resentation. This method of evaluation on highest weights is quite effective
in producing formulae for the large J limit of Cn, for any n, and is also used
in Section 7.

Let us first set down some conventions and useful facts about su(2):

[αi, αj ] = 2iǫijkαk

α± = α1 ± iα2

[α3, α±] = ±2α±

[α+, α−] = 2α3

αiαi = (α3)
2 + α+α− + α−α+

The value of α3 on the highest weight of the spin J representation is 2J
(where J is 0, 1

2
, · · · ) -

α3|J, J >= 2J |J, J > (26)

The quadratic Casimir takes the value C = 4J(J + 1). Evaluation of Cn is
done by writing out the (2n)! permutations and taking the contracted indices
to be equal to (3, 3) or (+,−) or (−,+). At the end of this process we have
a series of α’s including α3 or α±, an example of which is

(..)α+(..)α−(..)α+(..)α−(..)|J, J > (27)

The (..) indicate powers of α3. We will be more explicit later. All the powers
of α3 can be commuted to the left say, by using

α+(α3)
I = (α3 − 2)Iα+

α−(α3)
I = (α3 + 2)Iα+ (28)

After commuting the α3 to the left we have an expression made of a string
of α+ and α− operators acting on the highest weight state. It is useful to
calculate

αm
+α

L
−|J, J >= N(L,m)αL−m

− |J, J > (29)

where N(L,m) = 2m L!
(L−m)!

(2J−L+m)!
(2J−L)!

. For example, for the pattern in (27)

we have to evaluate α+α−α+α−|J, J > which is equal to N(1, 1)2.
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For L = m = k, the N-factor behaves at large J as N(k, k) = (2J)k.
Consideration of the N -factors, together with the explicit powers of 2J from
the α3 shows that the highest power contributed by a pattern containing k
pairs of α± is (2J)2n−k. Hence the Cn has an expansion of the form (2J)2n(b0+
b1(2J)−1 + b2(2J)−2 + · · · ) and we only need to calculate patterns with at
most k pairs of α± in order to determine the coefficient bk.

A useful combinatoric factor needed is the number of arrangements (25)
followed by choices of the values for the i indices, which lead to a fixed (+−)

pattern of type (27). The factor is k!(2n−2k)!2kn!
(n−k)!

. Absorbing the 1
(2n)!

from
normalization of the symmetriser we define

C(k, n) =
k!(2n− 2k)!2kn!

(n− k)!(2n)!
(30)

The k copies of α+ can arise from specifying αi’s contracted to any of k
copies of αi’s which are specified to α−, hence the k!. The 2n − 2k factors
of α3 can be contracted with (2n − 2k)! possible orderings. The first α±
contraction can be done with one of the n pairs of contracted indices and
there is a factor of two because we can assign each index of the pair to a
+ or a −. Hence we have 2n choices for the first contraction, 2(n − 1) for
the second, 2(n− 2) for the third and so on. Collecting everything we have

1
(2n)!

× k!(2n− 2k)!× (2n)(2n− 2)(2n− 4)... = k!(2n−2k)!2kn!
(n−k)!(2n)!

as claimed above.

Thus (30) is the factor which must multiply the number obtained by explicit
evaluation of the (+−) patterns.

Let us first consider k = 0. All the terms in the equation defining Cn in
(25) are equal to (α3)

2n = (2J)2n. C(0, n) = 1 so the leading term in the
large 2J expansion is just (2J)2n

Now consider k = 1. Let the α− sit in the i1’th position after αi1−1
3 and

let the α+ sit in the i2’th position after an additional αi2−i1−1
3 -

2n−1
∑

i1=1

2n
∑

i2=i1+1

α2n−i2
3 α+α

i2−i1−1
3 α−α

i1−1
3 |J, J > (31)

Multiplying by the combinatoric factor in (30) and commuting the α3 to the
left we get

C(1, n)

2n−1
∑

i1=1

2n
∑

i2=i1+1

α2n−i2
3 (α3 − 2)i2−i1−1αi1−1

3 α+α−|J, J >

= C(1, n)

2n−1
∑

i1=1

2n
∑

i2=i1+1

(2J)2n−i2(2J − 2)i2−i1−1(2J)i1−1N(1, 1)|J, J >

9



which can be simplified to

= C(1, n)N(1, 1)(2J)2n−2
∑

~i

(1 − 1

J
)i2−i1−1

= (2J)2n−1
(

2n− 8

3
n(n− 1)

1

2J
+

4

3
n(n− 1)(2n− 3)

1

(2J)2

− 16

15
n(n− 1)(n− 2)(2n− 3)

1

(2J)3

)

(32)

The sums here and below can be done with a mathematical software package
such as Maple. For k = 2, there are two patterns :

(..)α+(..)α−(..)α+(..)α−(..) (33)

(..)α+(..)α+(..)α−(..)α−(..) (34)

We will denote them as the (+ − +−) pattern and the (+ + −−) pattern.
An alternative notation to distinguish them is to write

(

1 1
1 1

)

for the first, and
(

2
2

)

for the second. In the first array, the first integer in the first column indicates
the number of successive α− seen while we read from the right and the second
gives the number of α+ that follows. The top integer in the second column
gives the number of α− that follows after this and the lower the number α+

thereafter. In the second array, the upper 2 is the number of α− seen reading
from the right, and the lower 2 is the number of α+ after that. Steps similar
to the case k = 1 give for the value of (+ + −−) on the highest weight

N(2, 2)C(2, n)(2J)2n−4
2n−3
∑

i1=1

2n−2
∑

i2=i1+1

2n−1
∑

i3=i2+1

2n
∑

i4=i3+1

(1 − 1

J
)i2+i4−i1−i3−2 (35)

Evaluating the pattern (+ − +−) gives

N(1, 1)2C(2, n)(2J)2n−4

×
2n−3
∑

i1=1

2n−2
∑

i2=i1+1

2n−1
∑

i3=i2+1

2n
∑

i4=i3+1

(1 − 1

J
)i4+i2−i1−i3−2(1 − 2

J
)i3−i2−1 (36)
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These sums can be evaluated and collecting the contributions for k = 2 we
get

(2J)2n−2
(

4n(n− 1) − 8

3
n(n− 1)(4n− 7)

1

(2J)

+
16

45
n(n− 1)(n− 2)(50n− 101)

1

(2J)2

)

(37)

For k = 3 we have 5 patterns which we list below together with the
corresponding N -factors -

(

3
3

)

N(3, 3)

(

2 1
2 1

)

N(2, 2)N(1, 1)

(

2 1
1 2

)

N(2, 1)N(2, 2)

(

1 2
1 2

)

N(1, 1)N(2, 2)

(

1 1 1
1 1 1

)

N(1, 1)3

(38)

Using the compact notation
∑

~i for

2n−5
∑

i1=1

2n−4
∑

i2=i1+1

2n−3
∑

i3=i2+1

2n−2
∑

i4=i3+1

2n−1
∑

i5=i4+1

2n
∑

i6=i5+1

(39)

the result of evaluating the five patterns above is

N(3, 3)C(3, n)(2J)2n−6
∑

~i

(1− 1

J
)i2+i6−i1−i5−2(1− 2

J
)i3+i5−i2−i4−2(1− 3

J
)i4−i3−1

(40)

N(2, 2)N(1, 1)C(3, n)(2J)2n−6
∑

~i

(1 − 1

J
)i2+i4+i6−i1−i3−i5−3(1 − 2

J
)i3−i2−1

(41)

N(2, 1)N(2, 2)C(3, n)(2J)2n−6
∑

~i

(1− 1

J
)i2+i4+i6−i1−i3−i5−3(1− 2

J
)i3+i5−i2−i4−2

(42)
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N(1, 1)N(2, 2)C(3, n)(2J)2n−6
∑

~i

(1 − 1

J
)i2+i4+i6−i1−i3−i5−3(1 − 2

J
)i5−i4−1

(43)

N(1, 1)3C(3, n)(2J)2n−6
∑

~i

(1 − 1

J
)i2+i4+i6−i1−i3−i5−3 (44)

After expanding in 1/J and doing the sums, and collecting the five con-
tributions for k = 3 we get

(2J)2n−3
(

8n(n− 1)(n− 2) − 16(n)(n− 1)(n− 2)(2n− 5)
1

2J

)

(45)

For k = 4 there are 14 patterns. We write the array description of the
patterns, followed by the corresponding N -factors -

(

4
4

)

N(4, 4)

(

3 1
1 3

)

N(3, 3)N(3, 1)

(

3 1
3 1

)

N(3, 3)N(1, 1)

(

2 2
2 2

)

N(2, 2)2

(

2 1 1
2 1 1

)

N(1, 1)2N(2, 2)

(

2 2
1 3

)

N(3, 3)N(2, 1)

(

2 1 1
1 2 1

)

N(2, 1)N(2, 2)N(1, 1) (46)
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and
(

2 1 1
1 1 2

)

N(2, 1)2N(2, 2)

(

1 3
1 3

)

N(1, 1)N(3, 3)

(

1 1 1 1
1 1 1 1

)

N(1, 1)4

(

1 2 1
1 1 2

)

N(1, 1)N(2, 1)N(2, 2)

(

1 1 2
1 1 2

)

N(1, 1)2N(2, 2)

(

1 2 1
1 2 1

)

N(1, 1)2N(2, 2) (47)

For each of the 14 terms there is a sum of the type in (39) generalised to
8 summation variables. After (2J)2n−8C(4, n) multiplied by the appropriate
N -factors is extracted, what is left is nothing but the number of terms in
the sum which is (2n)!

(2n−8)!8!
. Collecting all patterns relevant to n = 4, with the

appropriate combinatoric factors, and evaluating on the highest weight gives

16(n)(n− 1)(n− 2)(n− 3)(2J)2n−4 (48)

With the results in equations (32,37,45,48), we can find the value of Cn

as a function of J to the first few orders

Cn = (2J)2n

(

1 + (2n)
1

2J
+

4

3
n(n− 1)

1

(2J)2
− 4

3
n(n− 1)

1

(2J)3

+
16

45
n(n− 1)(n− 2)(n+ 2)

1

(2J)4
+ . . .

)

(49)

Matching this with an expression of the form a0C
n + a1C

n−1 + a2C
n−2 + · · ·

where C = 4J(J + 1) determines

a0 = 1

a1 = −2

3
n(n− 1)

a2 =
2

45
n(n− 1)(n− 2)(7n− 1) (50)

It is worth noting that once we have determined the coefficient a0 by
calculating the patterns with k = 0 which determine the coefficient of (2J)2n,
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the formula in terms of Casimirs fixes the order (2J)2n−1 term. The latter is
checked by considering patterns with k = 1. Further consideration of k = 2
fixes the coefficient a1. With a0 and a1 fixed the term of order (2J)2n−3

is fixed by the expansion in powers of the Casimir and can be checked by
considering patterns with k = 3. Expanding the contribution from k = 3
patterns to next order and collecting the leading order from k = 4 allows the
determination of a2. With a1, a2 determined, we now have a prediction for
the coefficient of (2J)2n−5, i.e 16

45
n(n− 1)(n− 2)(n+ 2). We have checked by

considering the 42 patterns which arise at k = 5 that this is indeed the correct
coefficient. Independent confirmation of these results using computations
based on evaluation of the Casimirs using chord diagrams are given in the
following.

3.2 Casimirs and chords

The group invariants discussed above arise in knot theory, in particular in the
study of finite type invariants of knots. These form a type of basis of knot
invariants, and may be understood as terms from the perturbative expan-
sion of Chern-Simons gauge theoretic knot invariants. Finite type invariants
may be discussed in terms of chord diagrams [21], which are diagrammatic
representations of precisely the individual terms which occur in Str(αiαi)

n.
A term in this symmetrised trace will be the trace of a product containing
n pairs of group generators αiαi, in some order αi1αi2 ....αi2n

. Writing each
matrix generator (αi)

a
b as a vertex

(αi)
a
b =

a b

i

the matrix product joins matrix-labelled legs of the vertices, with the trace
forming a circle. Chords of the circle are then formed by the pairs of free
legs with like indices. For example,

Tr(αiαiαjαj) = ✫✪
✬✩rr r

r

Tr(αiαjαiαj) = ✫✪
✬✩rr r

r

(conventionally one starts at the point on the circle corresponding to twelve
o’clock and moves counter-clockwise around the circle as one moves from left
to right inside the trace). An individual term in Str(αiαi)

n will be represented
by a circle containing n chords, ie a chord diagram. Particular choices of
groups and representations then give explicit realizations of chord diagrams,
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the resulting assignment of numerical values to diagrams leading to a “weight
system” and a finite type invariant of knots. In the following, the “order”
of a chord diagram will be the number of chords, and the “value” < D > of
a chord diagram D will be the numerical value obtained by evaluating the
group theoretic trace for the group and representation under consideration
(for simplicity, we will ignore the factor coming from the trace of the identity
matrix in the expressions for chord diagrams in this section).

An operator of much interest for knot theoretic applications is that of
cabling. This is closely connected with the Adams operation in group theory
and with the fundamental Alexander-Conway invariant in knot theory [22].
Cabling involves taking multiple covers of the encompassing circle in chord
diagrams, and lifting the chord ends in all possible ways to this new circle. It
is clear by definition that the symmetrised trace Str(αiαi)

n is invariant (up to
a factor) under the cabling operation. In fact it is the unique eigenvector of
highest eigenvalue of the transpose of the cabling matrix [22]. For example,
for the chord diagrams with two chords, define the basis

(

1 0
)

= ✫✪
✬✩rr r

r

(

0 1
)

= ✫✪
✬✩rr r

r

Then the cabling operation ψ, which takes the double cover of the chord
diagram circle and lifts chord ends, is given by

ψ = 4

(

3 1
2 2

)

(51)

The eigenvectors of ψT are then (−1, 1), (2, 1), with eigenvalues 4, 16 respec-
tively. For comparison, Str(αiαi)

2 = 1
3
(2, 1), which is proportional to the

eigenvector with highest eigenvalue. We note that the symmetrised trace
STr includes a normalization factor 1/(2n)!.

There are in general relations between chord diagrams [21], arising from
identities satisfied by the generators αi. For example, at order three,

✫✪
✬✩rr

r

r

r

r

= 2 ✫✪
✬✩rr r

r

❚
❚
❚❚

r

r

− ✫✪
✬✩r

r
✔

✔
✔✔

r

r

❚
❚
❚❚

rr .

Taking the full set of such relations into account, one can show that the
following sets of elements define bases for diagrams of order 2, 3 and 4 -
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(

✫✪
✬✩rr r

r

, ✫✪
✬✩rr r

r

)

(

✫✪
✬✩rr

r

r

r

r

, ✫✪
✬✩r

r
✔

✔
✔✔

r

r

❚
❚
❚❚

rr , ✫✪
✬✩rr r

r

❚
❚
❚❚

r

r

)

(

✫✪
✬✩rr

rr

r

r

r

r

✔
✔

✔✔
, ✫✪

✬✩rr
r

r

r

r

r

r

, ✫✪
✬✩rr ✧

✧
✧✧

r

r

r

r

r

r

❜
❜

❜❜
, ✫✪

✬✩
r r

r

r

r

r r

r , ✫✪
✬✩r

r
r

r

r

r

r

r

, ✫✪
✬✩rr

r

r

r

r

r

r

)

We will now specialise to the group sl(2). In this case, it is possible to derive
a reductive formula relating the value of a chord diagram with n chords to
the values of combinations of chord diagrams with fewer than n chords [23]
(the group theory conventions of this reference will be used in this section.
This will introduce some factors of 2 as will be noted below). Thus one
may express the value of any chord diagram as a polynomial in c, where the
Casimir c is the value of the diagram with one chord:

c = ✫✪
✬✩r

r (52)

Using this reduction to evaluate the diagrams in the basis elements defined
above, one finds the explicit results

(

c2, c(c− 2)
)

(

c3, c(c2 − 6c+ 8), c(c− 2)2
)

(

c2(c− 2)2, c(c− 2)3, c(c3 − 10c2 + 40c− 40), c(c− 2)2(c− 4), c3(c− 2), c4
)

The expressions for Str(αiαi)
n, for n up to 4, may then be found, either by di-

rectly carrying out the symmetrised trace prescription, or by using the action
of the cabling operator ψ and deducing the highest eigenvalue eigenvector of
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ψT . One finds for general groups

Str(αiαi)
2 =

1

3
(2, 1)

Str(αiαi)
3 =

1

3
(1,−1, 3)

Str(αiαi)
4 =

1

15
(6, 2, 1, 1, 3, 2)

Evaluating these for sl(2) yields

Str(αiαi)
2|sl(2) = c2 − 2

3
c

Str(αiαi)
3|sl(2) = c3 − 2c2 +

4

3
c

Str(αiαi)
4|sl(2) = c4 − 4c3 +

36

5
c2 − 24

5
c

Evaluating a chord diagram gives a polynomial in c. The coefficients of this
polynomial are given in terms of quantities defined by chord intersection
properties of the diagram [23]. For a chord diagram Dn with n chords, one
finds

< Dn >= cn − 2Icn−1 +
(

2I(I − 1) − 4T + 8Q
)

cn−2 + o(cn−3) (53)

where I is the number of intersections of pairs of chords in the diagram, T
the number of triple intersections and Q the number of quartic intersections
(intersections of four chords in the shape of a square, with possible other
intersections amongst these four chords). This leads to corresponding results
for the symmetrised trace operator. Denote by < X >av(n) the value of some
quantity X defined for chord diagrams, averaged over the set of all chord
diagrams of order n which arise from the symmetrised trace. Then, for the
result quoted above we see that the coefficient of cn−1 in the polynomial
arising from evaluating Str(αiαi)

n is just −2 < I >av(n).
We have

< I >av(n)=
1

6
n(n− 1) (54)

To prove this, note that any pair of chords can either intersect or not in any
diagram. Thus, to find < I >av(n), we consider all possible positions of a pair
of chords on a circle where there are 2n possible endpoints for chords. For
each such placement of the pair, one sees if I is 0 or 1, and then sums this,
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and finally one divides by the total number of such placements. This leads
to the expression for each pair of chords

∑2n−3
i=1 i(2n− 2 − i)

(n− 1)(2n− 1)(2n− 3)
=

1

3
(55)

This is to be multiplied by the number of choices of pairs of chords, ie 1
2
n(n−

1), giving the result above. Alternatively, since the result is proportional
to n(n − 1), one can find the coefficient by computation for n = 2. This
provides a different proof of the result in Section (2.1) above (to compare
coefficients, we note that the Killing form used in [23] introduces a factor
of 2−i multiplying the coefficient of cn−i, and so one needs to divide by this
factor in translating to the conventions used elsewhere in this paper).

For the next order term, involving cn−2, to calculate < T >av(n) and
< Q >av(n), note that these are proportional to n(n − 1)(n − 2) and n(n −
1)(n−2)(n−3) respectively. The coefficients are fixed by explicit calculation
for n = 3, 4 respectively. This gives the results

< T >av(n) =
1

90
n(n− 1)(n− 2)

< Q >av(n) =
1

15.24
n(n− 1)(n− 2)(n− 3)

For < I2 >av(n), note that at large n this behaves as n4, and it vanishes for
n = 0, 1. This fixes all but three of the coefficients of the expression as a
fourth order polynomial in n. These further three coefficients are then found
by calculation for n = 2, 3, 4. Thus one finds that

< I2 >av(n)=
1

180
n(n− 1)(5n2 − n+ 12) (56)

Putting together the above expressions, inserting the factor of N coming
from the trace of the identity, and using the conventions of the rest of this
paper, we are thus led to the result

1

N
Str(αiαi)

n|su(2) = Cn−2

3
n(n−1)Cn−1+

2

45
n(n−1)(n−2)(7n−1)Cn−2+o(Cn−3)

(57)
in agreement with the calculations of the previous section.

Clearly the precise form of subsequent terms in this expansion will depend
upon detailed features of diagrams of increasing complexity. In order to
obtain information on the general structure of these terms, we now outline
an argument concerning the large n behaviour of Str(αiαi)

n. First note that
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at large n, ie for diagrams with a large number of chords, the symmetrised
trace generates sets of diagrams which are dominated by those with I large
and the other quantities T,Q, etc, relatively small, since I is always greater
than these quantities in any given diagram, and there are in addition many
diagrams with I non-zero and the other quantities all zero. To determine
the pure I dependence of a chord diagram, consider the diagram Pn which
corresponds to the expression

Tr
(

(αi1αi2αi3αi1)(αi4αi3αi5αi4) . . . . . . (αi2n−3
αi2n−4

αi2n−2
αi2n−3

)

×(αi2n−3
αi2n−1

αi2n−2
αi2n

αi2n−1
αi2n

αi2)
)

(58)

This corresponds to a chord diagram, with n chords in the shape of an n-
polygon inside the circle, but with one pair of adjacent chord ends (labelled
by α2 and α2n in this case) interchanged to remove one intersection. The
diagram Pn has I non-zero and all other geometric quantities T,Q, etc, zero,
and so it can be used to deduce the pure I dependence of a general diagram.
It is not difficult to prove by calculation that the value of Pn is given by

< Pn >= c(c− 2)n−1 (59)

This indicates that the pure I dependence of a general diagram Dn with n
chords is given by

< Dn >= cn − 2Icn−1 + 2I(I − 1)cn−2 + · · ·+
(

I
i

)

(−2)icn−i + . . .

+

(

I
n− 1

)

(−2)n−1c (60)

We now wish to average this over chord diagrams at order n. Following
arguments similar to those given earlier, we find that at large n we have

< Iλ >av(n)≃ (n2/6)λ (61)

Using (60), we can deduce the contributions to the symmetrised trace from
chord diagrams with up to double intersections at large n. This gives an
approximation to the symmetrised trace which is (in the conventions of the
rest of this paper)

1

N
Str(αiαi)

n ∼
n
∑

i=0

1

i!

(−2

3

)i

n2iCn−i

= Cn − 2

3
n2Cn−1 +

2

9
n4Cn−2 − 4

81
n6Cn−3 + . . . (62)
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The expression (62) shows that the signs of terms of decreasing order in
C alternate, and that the coefficients fall to zero somewhat faster than an
inverse factorial. This formula gives a guide to the general structure of higher
order terms. From (57) the large n limit of the exact expression is Cn −
(2/3)n2Cn−1 + (14/45)n4Cn−2 + . . . , and we see that ignoring the effects of
higher order intersections in diagrams has reduced the coefficient of the Cn−2

term by about 25%. The effects of higher order corrections with the structure
in (62) will be reviewed in Section 6.

4 Energy corrections to first order in 1/N

In this section we will study the effects of the corrections to the theory defined
by (15) which are of the lowest order in 1/N . The leading order Lagrangian
is

L0 = −
√

1 + 4λ2CR4
√

1 − λ2CṘ2 (63)

and the energy to lowest order is

E0 = Ṙ
∂L0

∂Ṙ
− L0

=

√

1 + 4λ2CR4

1 − λ2CṘ2

=

√

1 + r4

1 − s2
(64)

In the last line we used the dimensionless variables in (13). Including the
corrections to next order, by the arguments of Section 3 we are led to the
corrected Lagrangian

L1 =

(

1 − 2

3
C
∂2

∂C2

)

L0 (65)

We will work with re-scaled variables r4 = 4λ2CR4 and s2 = λ2CṘ2. The
conserved energy to this order is then

E1 = Ṙ
∂L1

∂Ṙ
−L1 =

(

1 − 2

3
C
∂2

∂C2

)

E0 (66)

It is useful to use the variables U and γ, defined by

U =
√

1 + r4, γ =
1√

1 − s2
(67)
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Then the zeroth order energy is just

E0 = γU (68)

which indicates that one might think of U as a position dependent “mass”.
We will denote the first order expression for the energy by the symbol E

in this section. From equation (66) this is given by

E(γ, U) = γU − γ

6CU3
(γ2U2 − 1)(3γ2U2 − 4U2 + 1) (69)

4.1 Plots

It is instructive to study the energy (69) as a function of the variables (r, s),
using (67). We will do this in the following.

0

20

40

60

80

100

2 4 6 8 10
r

Figure 1: Plot of the energy as a function of r, for s = 0 and taking C = 50.

Plots of the energy function as a function of r show that at s = 0 it
is monotonically increasing. Figure 1 shows such a plot. This behaviour
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means that as the D2-brane starts collapsing from rest at some large radius
r0, there is no smaller radius where the energy can take the same value at
t = 0 while returning to zero velocity. If the potential had a minimum,
a conventional bounce would be possible with the radial evolution slowing
down to zero velocity and then re-expansion starting with a change in sign
of the radial velocity. So clearly such a bounce does not happen with the
first 1/N correction.

–1

–0.5

0

0.5

1

1.5

0.2 0.4 0.6 0.8
s

Figure 2: Plot of energy as a function of s, for r = 0 and with C = 50.

Plots of the energy as a function of s at fixed r show an extremum. Figure
2 shows such a plot at r = 0. If the energy is bounded above at r = 0, this
means that a D2-brane, starting from zero velocity at sufficiently large r0
(hence sufficiently large energy), cannot reach zero radius. This may seem
paradoxical given the conclusions to be drawn from the plot above of energy
as a function of r at s = 0. Further insight can however be obtained by
plotting contours of constant energy in the (r, s) plane.
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Figure 3: Plot of constant energy contours as a function of r and s, with
C = 100. The energy of the contours is increasing from left to right.
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Figure 3 shows contour plots of the energy (69) as a function of r and
s. We have chosen C = 100 as an example. If we do not include the 1/C
correction the constant energy contours all reach down to zero radius. The
key feature is that ∂E

∂s
= 0 at a point where s = sm 6= 0. This does not happen

for ordinary mechanical systems described by energy functions of the form
E = 1

2
ms2 +V (r). For such energy functions ∂E

∂s
= 0 only at the point s = 0.

As we will see from analytic considerations in section 4.2, solutions to ∂E
∂s

= 0
or equivalently ∂E

∂γ
= 0 do exist for γ ∼ C1/4.

More detailed numerical investigation of the trajectories are possible. For
fixed initial energy E0 or initial position r0 (or equivalently U0) where the
velocity is zero, we can solve the equation E(γ, U) = E0 for U(γ, E0). The
equation is quartic and has four solutions, one of which is the physical one.
This solution can be followed as γ is changed from unity to some large num-
ber. For E0 corresponding to U0 > 1 but U0 <∼ C1/4 we find that the
classical path describes U decreasing monotonically to U = 1. These paths,
which we may call perturbative paths , are small 1

C
perturbations of the paths

obtained from L0. For larger values of U0, the path encounters a minimum
radius at some finite value γm and proceeds to increasing U , which in fact
approaches infinity at a finite upper bound.

Figure 4 shows the classical path in the (U, γ) plane for C = 504 and
E0 = 20. For these choices, U decreases continuously through U = 1 or
r = 0. Figure 5 shows the classical path in the (U, γ) plane for C = 504

and E0 = 1002. For these choices, U decreases until it reaches a minimum
and then increases apparently to infinity at a finite value of γ. Beyond this
limiting γ the quartic equation for U given by E(γ, U) = E0 has no physical
solution. Along these paths we can also compute an effective mass

√

E2 − p2

and the (proper) acceleration. We will discuss these further in Section 8.

4.2 Extrema

The extrema in the energy contour are one of the novel features of L1. As
we will elaborate on later, they occur in a region where the 1/N expansion
is becoming problematic, but we will nevertheless study them in more detail
since it is entirely possible that such extrema occur in the finite N case.

On a contour of constant energy one has dE = 0. To first order in
variations of γ, U we can write dE = (∂E

∂γ
)Udγ + (∂E

∂U
)γdU . At an extremum

of position along the energy contour, we have dU = 0. This means that

(
∂E

∂γ
)U = 0 (70)
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Figure 4: Plot of U as a function of γ = g along a solution, with C = 504

and E0 = 20
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Figure 5: Plot of U as a function of γ = g along a solution, with C = 50 and
E0 = 1002
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at that point. Equivalently we have

(
∂U

∂γ
)E =

(−∂E
∂γ

)U

(∂E
∂U

)γ

(71)

If we consider U as a function of γ along a constant energy contour, an
extremum of U requires the vanishing of the energy derivative (70).

This gives us a quadratic equation for U2 in terms of γ

U4
(

− 1 + 5
γ4

2C
− 2γ2

C

)

+ U2
(−γ2

C
+

2

3C

)

− 1

6C
= 0 (72)

This is solved by

U2 =
(γ2

C
− 2

3C
) ±

√

(γ2

C
− 2

3C
)2 + 2

3C
(−1 + 5γ4

2C
− 2γ2

C
)

2(−1 + 5 γ4

2C
− 2γ2

C
)

(73)

For γ close to 1 the denominator is negative, while the argument of the
square root is negative as it is dominated by −2

3C
at large C, so there is no

real solution for U . The positive branch must be chosen for a real solution
to be possible. For C large compared to 1, and γ2 ∼

√
C, the denominator

changes sign and there is a real solution. The minimum γ which allows an
extremum is obtained by setting the denominator to zero. This gives

γ2 =
1

5
(2 +

√
4 + 10C) ∼

√

2

5

√
C (74)

where we have used the large C approximation in the last step. The associ-

ated minimal velocity is s2 = 1 −
√

5
2

1√
C

.

When γ is very large compared to C, we again have no physical solution,
because U becomes close to zero, whereas for real r it must be larger than 1.
The upper bound on γ for allowed extrema is obtained by setting U = 1 in
(72) and solving for γ. This gives

γ2 =
1

5
(3 +

√
4 + 10C) ∼

√

2C

5
(75)

Comparing the above two equations, we see that there is a very thin range
of γ which allows the extremum to exist.

While there is a finite range of velocities which allows the extremum to
exist, there is no bound on r. This is a bit surprising since we expect the
extremum to occur in a sense near the origin. This can still be true in the
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following sense. If we start the collapse with zero velocity at some position
U0, and ask for the minimum U reached, we will get a minimum which is a
function of U0. Let us denote this minimum as Um(U0). We would like to

prove that Um(U0)
U0

∼ 1
Cα where α is a positive number, so that this approaches

zero in the large C limit. Now consider a brane starting with zero velocity.
Substitute γ = 1 in (69) to obtain the energy E0 at the starting position U0

E0(U0) = U0 +
1

6CU3
0

(

U2
0 − 1

)2

(76)

We can determine γ as a function of U along the curve of extrema by solving
the quadratic equation for γ2 in (72). This gives

γ2
m =

(3 + 6U2
m) +

√

24 − 24U2
m + 36U4

m + 90U2
mC

15U2
m

(77)

Substitute this in the energy formula (69) to get a function E(Um) given by

E(Um) =
2(45 + 90U2

m + 15D)
1

2 (90U4
mC + 18 − 48U2

m +D + 12U4
m + 2U2

mD)

3375U4C
(78)

where D is given by

D =
√

(24 − 24U2
m + 36U4

m + 90U4
mC) (79)

Equating E(Um) = E(U0) gives an equation which determines Um(U0). This
becomes tractable if we use the large C approximation (assuming Um is
sufficiently small compared to C). We find that Um/U0 = C−1/4f0(U0) +
C−3/4f1(U0) + · · · , where f0(U0) ∼ 1 + O( 1

U2

0

) and f1(U0) ∼ 1 + O( 1
U2

0

).

4.3 Energy-momentum relation

We now turn to dispersion relations. The momentum is

p =
1

λ
√
C

∂L

∂s

= γUs− γs

6U3C
(3U2γ2 + 1)(U2γ2 − 1) (80)

We have included a factor of 1
λ
√

C
for convenience. Note that the formula

for the momentum, like that for the energy, has at the leading term the
standard form of special relativity, with U playing the role of mass. We
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would like to obtain an equation for E(p) which can be interpreted as a
deformed dispersion relation.

Let the corrected speed be

s =
p

√

p2 + U2
+
s1

C
(81)

where we will determine s1 as a function of U and p. The corrected γ variable
is

γ =
(

1 +
p2

U2

)1/2

− p

U

(

1 +
p2

U2

)s1

C
(82)

Substituting this in (80) and keeping the leading term in the 1/C expansion
gives us a linear equation for s1. The solution of this is

s1 =
−(p2 + U2)−3/2

6U2
(3U2 + 3p2 + 1)(U2 + p2 − 1)p (83)

Substituting in the corrected speed (or the corresponding corrected γ) in (69)
we find the first-order corrected energy formula as a function of p is

E =
√

p2 + U2 +
(p2 + U2)−3/2

6CU4
(U2 + p2 − 1)(U2 − 3p2 − 1)(U2 + p2)2

− p2

6CU4
(3U2 + 3p2 + 1)(U2 + p2 − 1) (84)

There has been a lot of discussion of deformed dispersion relations recently
in the context of inflation (see [24], for example). The deformed dispersion
relation we are getting does not have a smooth limit in the zero “mass” limit
of U = 0. In our context this limit is of course unphysical since U =

√
1 + r4.

4.4 The time of collapse

It is also possible to determine the time of collapse in this system. The
leading formulae for velocity s and the corresponding γ are

s(0)(U,U0) =

√

U2
0 − U2

U2
0

, γ(0)(U,U0) =
U0

U
(85)

We will find the perturbed formulae

s = s(0) +
1

C
s(1)(U,U0), γ = γ(0) +

s(1)

C
γ3

(0)(1− γ−2
(0))

1

2 ≡ γ(0) +
γ(1)

C
(86)
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where the last line defines γ(1). We substitute (76) into the left-hand side of
(69), and on the right-hand side put in the 1/C expansion of the velocity,
keeping only the leading terms. This gives

E0(U0) − U0 =
γ(1)U

C
+

1

C
f(γ(0), U) (87)

where f is the correction term that appears in (69). This allows us to solve
for γ(1), or equivalently s(1). We find

s(1) =
(U2

0 − 1)

6U5
0

√

(U2
0 − U2)

U2
(3U4

0 − U2
0U

2 + U2
0 + U2) (88)

Thus the 1/C corrected formula for the speed is

dr

dt
=

√

(U2
0 − U2)

U0

+
1

C

(U2
0 − 1)

6U5
0

√

(U2
0 − U2)

U2
(3U4

0 +U2
0 +U2(1−U2

0 )) (89)

and the time of collapse is

∫

dt =

∫

dr
U0

√

U2
0 − U2

− 1

6C

∫

dr
(U2

0 − 1)(3U2
0 + 1)

U0U2
√

U2
0 − U2

+
1

6C

∫

dr
(U2

0 − 1)2

U3
0

√

U2
0 − U2

(90)

These integrals can be evaluated in terms of elliptic functions.

5 Solution in the neighborhood of the ex-

tremum

In this section, we will study the behaviour of the brane in the region of
the radial extremum found above. Generally, consider the expansion of the
energy around the extremum, keeping the second order terms. Consider
a constant energy contour parameterised by λ, i.e we think of coordinates
(G(λ), V (λ)), where G is some function of the ṙ, for example γ or ṙ. V
is some function of r, for example U or more simply r. By expanding the
energy in a Taylor series we find at lowest two orders

dλ
(∂E

∂V

dV

dλ
+
∂E

∂G

dG

dλ

)

= 0 (91)
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and

dλ2

(

1

2

∂E

∂V

d2V

dλ2
+

1

2

∂E

∂G

d2G

dλ2
+

1

2

(dV

dλ

)2∂2E

∂V 2
+

1

2

(dG

dλ

)2∂2E

∂G2
+

∂2E

∂G∂V

dG

dλ

dV

dλ

)

= 0

(92)
Specializing to a point where dV

dλ
= 0, then from (91) we have ∂E

∂G
= 0. Then

we obtain

1

2

∂E

∂V

d2V

dλ2
+

1

2

(dV

dλ

)2∂2E

∂V 2
+

1

2

(dG

dλ

)2∂2E

∂G2
+

∂2E

∂G∂V

dG

dλ

dV

dλ
= 0 (93)

If we approximate the equation in the neighborhood of the extremum where
dV
dλ

= 0 by setting this first derivative to zero we get

d2V

dλ2
= −

∂2E
∂G2 (

dG
dλ

)2

∂E
∂V

(94)

The complete equation derived at order dλ2 is really (93) but we may hope
that some qualitative properties such as the existence of two branches cor-
responding to reflection with increasing speed or reflection with decreasing
speed can be captured by the simpler equation (94). This equation should
allow us to prove that the extremum is a minimum of U and that we need a
change of branch of the solution at the extremum.

Let us choose V = r , G = s2 ≡ S and λ = S so that (94) becomes

d2r

dS2
= −2α (95)

where α = 1
2

∂2E
∂S2 /

∂E
∂r

evaluated at the extremum. Equation (95) can be solved
in the neighborhood of the minimum to give

(r − rm) = −α(s2 − s2
m)2 (96)

We know that r > rm because plots show that the constant energy contours
have a minimum and α is less than zero. We can now write the squared
velocity

s2 = s2
m ±

√

rm − r

α
(97)

Hence

dr

dt
= ±

√

s2
m ±

√

rm − r

α
(98)
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which can be solved for the time elapsed

∫

dt = ±
∫

dr
1

√

s2
m ±

√

rm−r
α

(99)

When we choose the outer negative sign, r decreases with increasing time,
whereas when we choose the outer positive sign, r increases with increas-
ing time. The collapsing solution cannot be continued past rm because the
formula for time elapsed would become complex. These two solutions can
be patched at r = rm. The radial velocity is discontinuous at the patching,
but the time evolution described by the patched solutions is consistent with
energy conservation.

Note that there is also a choice of sign inside the square root. If we
switch the choice of this sign in patching solutions at the extremum, then
the collapsing brane re-expands along the second branch, which means that,
when it reaches the original starting position (where it had zero velocity), it
is travelling close to the speed of light. If we do not make this switch of sign
inside the square root upon patching, the brane re-expands along the same
branch as it was collapsing and reaches zero velocity at the starting position.

If we use the form (V,G) = (s, r) and use λ = s, the differential equation
(94) becomes

d2r

ds2
= −2β (100)

where β = 1
2

∂2E
∂s2 /

∂E
∂r

. Then

∫

dt =

∫

dr
1

sm ±
√

r−rm

β

(101)

Here the overall choice of sign visible in (99) is not apparent. However we
know by the time reversal invariance of the Lagrangian that solutions which
have an extra ± in front of the integral are also allowed. This time reversal
invariance was kept manifest when we worked with the variables (r, s2).

A more precise treatment of the local differential equation in the neigh-
bourhood of the extremum continues to reveal that s− sm is double valued
there. With the choice (G, V ) = (s, r), λ = s, if we keep terms involving the
first derivative we get an equation of the form

a
∂2r

∂s2
+ b
(∂r

∂s

)2

+ c
∂r

∂s
+ d = 0 (102)
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where the constants are given by

a =
E

(m)
r

2
, b =

E
(m)
rr

2
, c = E(m)

rs , d =
E

(m)
ss

2
(103)

Equation (102) is the Riccati equation with constant coefficients. We can
solve this as follows. Use variables y = dr

ds
to rewrite (102) as

a
dy

ds
+ by2 + cy + d = 0 (104)

The roots of the quadratic polynomial in y play an important role in the
solutions. These roots are

a+ =
−c +D

2b
, a− =

−c−D

2b
(105)

where we defined D =
√
c2 − 4db. Numerical check shows that D is real.

Integrating once gives

∫

ds = −a
b

1

(a+ − a−)
ln

(

y − a+

y − a−

)

(106)

Imposing the condition that y = dr
ds

= 0 at s = sm fixes the integration
constant to give

(s− sm) =
a

D

(

ln
(a+

a−

)

− ln
(y − a+

y − a−

)

)

(107)

One more integration and the condition that r = rm at s = sm gives

r − rm = a+(s− sm) +
a

b
ln

(

1 − a+

a−
exp

(b(a− − a+)

a
(s− sm)

)

)

− a

b
ln

(

1 − a+

a−

)

(108)

The original differential equation (104) is symmetric under exchange of the
roots a± and as expected the final solution can be manipulated into the form

r − rm = a−(s− sm) +
a

b
ln

(

1 − a−
a+

exp

(

b(a+ − a−)

a
(s− sm)

))

− a

b
ln

(

1 − a−
a+

)

(109)
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Expanding the right-hand side of (108) or (109) gives

(r − rm) = − E
(m)
ss

2E
(m)
r

(

s− sm

)2

(110)

in agreement with the approximation which dropped the dr
ds

terms in the
equation. From (110) it is clear that for a fixed r there are two values of s,
one above sm and one below.

We can also use the time t as the parameter λ and obtain an equation
which looks a little more complicated but can nevertheless be solved. It seems
that the time variable may be less useful since dr/dt has a discontinuity at
the extremum. In any case the equation is now

E(m)
r r̈ +

1

2
E(m)

rr (ṙ)2 +
1

2
E(m)

ss (r̈)2 + E(m)
rs r̈ṙ = 0 (111)

This can again be solved.

5.1 Quantum mechanics near the extremum

Equation (100) can be viewed as describing the evolution of r as a function
of a “time” variable s. We can write down a Lagrangian which leads to
the equation and a corresponding Hamiltonian which generates translations
along the s direction

d2ψ

dr2
+ brψ = Eψ (112)

The solutions to this equation are Airy functions. The correct boundary
condition is to require that the solutions die off for r < rm. This implies
oscillatory behaviour with a damped amplitude as the magnitude of s− sm

increases. It is important to note that in this quantum mechanical set-up
s < sm and s > sm are treated symmetrically.

When the terms dr
ds

are kept the system becomes dissipative. Such systems
cannot be quantised in an ordinary way, but they can be described quantum
mechanically by enlarging the system to include a bath of bosonic oscillators,
see for example [25, 26]. ( A connection between string theory and this
quantization of dissipative systems has in fact been made in [27] ). The
correlation functions < r(s)r(s′ > can be considered. Such treatments in
terms of a bath of oscillators can be viewed as simulating the interaction of
the massless degrees of freedom including r with the stringy spectrum of open
string modes. It is possible that the extra degrees of freedom required are
just the additional modes that live on the brane world-volume, e.g the various
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fluctuations of the fields (which have been neglected in the solutions where we
study purely radial evolution). The important conclusion for our purposes
is that whereas the classical evolution is ambiguous at the turning point,
a quantum mechanical set-up allows computations of correlators associated
with different points along the trajectory on either side of the extremum.
This leads us to anticipate that a more complete stringy treatment will allow
the formulation of probabilities for the evolution along the two branches.

It may appear that the conclusions from attempting the above quantum
mechanical discussion are artefacts of the exotic choice of s as time. However,
the ordinary time can also be used to describe the equations, which are
then of higher order. This again suggests that we need additional degrees
of freedom. In fact it has been argued that particle systems with higher
derivative actions share some stringy properties such as the Virasoro algebra
[28]. The conclusion from this discussion is again that an attempt to do
quantum mechanics leads to the need for extra degrees of freedom, which
are indeed expected in this stringy context. While these stringy modes are
not relevant for most of the trajectory, at the extremum the only possible
classical evolutions involve discontinuities in velocity, hence formally infinite
accelerations. Since small accelerations are a requirement for the low energy
effective action to be useful, in this case we expect that extra degrees of
freedom become relevant.

6 Higher order corrections to the Lagrangian

Based on the results of Section 3, the next order corrections to the Lagrangian
of (65) give the result

L2 =

(

1 − 2

3
C
∂2

∂C2
+

14

45
C2 ∂4

∂C4
+

8

9
C
∂3

∂C3

)

L0 (113)

The energy function to this order is

E2 = γU − γ

6CU3
(γU + 1)(γU − 1)(3γ2U2 + 1 − 4U2)

+
γ

120C2U7
(γU − 1)(γU + 1)

(

245γ6U6 − 640γ4U6 + 105γ4U4

+ 528γ2U6 − 256γ2U4 + 63γ2U2 − 128U6 + 176U4 − 128U2 + 35
)

It is possible to repeat the analysis of Section 4, studying the effects of the
above terms of order 1/C2. We omit the details. In summary, as in the study
of the Lagrangian L1, there is a class of perturbative paths in (γ, U) space
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(for U0 <∼ C1/4), which are similar to the ones arising from the Lagrangian
L0. For higher U0 the paths still end at U = 1 without going through
the extremum seen with L1, but there are important differences. The proper
acceleration does not increase far beyond 1 and the final γ at U = 1 increases
with U0 much slower than would be anticipated by extrapolation from the
final γ for the perturbative paths. This suggests some sort of repulsive force.
It also indicates that there may be a class of non-perturbative (in the sense
of the 1/N expansion) paths having small proper accelerations which allow
simple reliable treatment with the low energy effective actions neglecting the
higher derivative terms.

Going to one further order, using the term suggested by the expression
(62), however restores the extremum when these terms contribute. Thus, as
this emphasises, in regimes where higher order terms are not negligible it is
necessary to obtain information about the exact structure of Str(αiαi)

n. To
this end, in Section 7 we will derive and study the exact expression for this
when the spin half representation is used.

7 Exact evaluation of the symmetrised trace

for spin half

In this section, the Cn operator will be evaluated exactly for the spin 1/2
case. We will be using some of the notation and techniques from Section
(3.1). Consider patterns of the form

α2n−i2k

3 α+α
i2k−i2k−1−1
3 · · ·αi3−i2−1

3 α+α
i2−i1−1
3 α−α

i1−1
3 (114)

These are the only patterns that contribute for spin 1/2 since any pattern con-
taining (..)α−(..)α−(..) (where (..) as in Section 2 stands for arbitrary powers
of α3) gives zero when acting on the highest weight of the two-dimensional
representation. This is an important simplification compared to the case of
general J . Expressions of the form (114) are to be summed with summation
symbol

∑

~i defined as

2n
∑

i2k=2k

i2k−1
∑

i2k−1=2k−1

· · ·
i3−1
∑

i2=2

i2−1
∑

i1=1

(115)

After commuting all the α3’s to the left we get
∑

~i

(α3 − 2)(i2−i1−1)+(i4−i3−1)+···+(i2k−i2k−1−1)α
i1+(i2−i1−1)+···+(i2k−i2k−1−1)
3

×α+α−α+α− · · ·α+α− (116)
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Further simplifications are α3 = 2J = 1 and α3 − 2 = (−1). As a result the
expression in (116) evaluates on the highest weight state to

2k
∑

~i

(

− 1
)−k+

∑

2k
p=1

ip

We also used N(1, 1) = 2 for J = 1
2
. The sum over i can be simplified by

defining variables
îs = is − s, s = 1, ..., 2k (117)

With these variables the expression in (117) simplifies to

2k
2n−2k
∑

î2k

· · ·
î3
∑

î2=0

î2
∑

î1=0

(−1)î1+î2+···̂i2k =
2kn!

(n− k)!k!

In relating the patterns to the symmetrised trace there is a combinatoric
factor (30). Taking that into account along with the above, we have for spin
1/2 that the symmetrised power of the quadratic Casimir Cn is 1

Cn =
(n!)2

(2n)!

n
∑

k=0

22k(2n− 2k)!

((n− k)!)2
= (2n+ 1) ≡ f(n) (118)

Now we can calculate the Lagrangian. Let Ĉ = αiαi. Then

L = −Str

√

1 + Ĉr4

√

1 − Ĉs2

= −Str
∞
∑

l=0

∞
∑

m=0

r4ls2m(Ĉ)l+m

(

1/2

l

)(

1/2

m

)

(−1)m

= −N
∞
∑

l=0

∞
∑

m=0

r4ls2mf(l +m)

(

1/2

l

)(

1/2

m

)

(−1)m

= −N
∞
∑

n=0

n
∑

l=0

f(n)r4ls2n−2l

(

1/2

l

)(

1/2

n− l

)

(−1)n−l (119)

The factor of N(= 2) comes from the trace, and the binomial factors are
expressed in terms of Gamma functions as

(

1/2

l

)

=
Γ(3/2)

Γ(3/2 − l)Γ(l + 1)
(120)

1Previous versions of this paper had a missing (2n−2k)! on the left resulting in a more
complicated f(n). The corrected analysis yields simpler energy functions, with the same
general features.
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The energy can be computed to be

E(r, s) = −N
∞
∑

l=0

∞
∑

m=0

f(l +m)(2m− 1)

(

1/2

l

)(

1/2

n− l

)

(−1)mr4ls2m

= −N
∞
∑

n=0

n
∑

l=0

f(n)(2n− 2l − 1)

(

1/2

l

)(

1/2

n− l

)

(−1)n−lr4ls2n−2l

(121)

If we sum over powers of r first and then over powers of s we get

E(r, s) = 2
(1 + 2r4)
√

(1 + r4)
2F1(

1

2
,
3 + 4r4

2 + 2r4
;
(1 + 2r4)

(2 + 2r4)
, s2) (122)

If we sum over powers of s first and then over powers of r we get

E(r, s) = 2
1

(1 − s2)3/2 2F1(
2s2 − 3

2s2 − 2
,
−1

2
;

−1

2s2 − 2
,−r4) (123)

These are both useful expressions.
It is useful to recall the following facts about the hypergeometric function

2F1(z). This function has branch points at z = 1 and z = ∞, and there is a
branch cut extending from 1 to ∞. Formulae are available for the disconti-
nuity across the branch cut. In (122) attempting to continue past s = 1 runs
into the branch cut. Continuation past s = 1 to s > 1 requires specification
of the sheet. Physically we are not interested in these super-luminal speeds
in any case. In (123) the hypergeometric function can be continued past
r = 1 to large positive r even though the the original sum over powers of r
diverges for r > 1.

It is instructive to specialize (122) or (123) to the case of r = 0 or s = 0.

E(r = 0, s) = 2
1

(1 − s2)3/2
(124)

E(r, s = 0) = 2
(1 + 2r4)√

1 + r4
(125)

From (125) we see that the energy grows monotonically with r. This
means there is no smooth bounce. From (124) there is no extremum as a
function of s at r = 0. Hence there is no exotic bounce at r = 0. Further
numerical investigation shows that there is no such extremum when r > 0.
Hence the exotic bounces of the kind studied in section 4 with the first 1/N
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correction, do not occur for spin 1/2. Whether such extrema occur for other
finite values of N is an interesting open question.

The appearance of the limiting velocity s = 1 in (122) – (124) shows that
the symmetrised trace prescription correctly captures the expected relativis-
tic barrier. This does not seem evident from the original form of Lagrangians
such as (1).

8 Regimes of validity

Neglecting higher spatial derivatives implies that the D2-brane picture only
works for distances larger than the string scale, or r > 1 in dimensionless
units. We also need to consider higher orders in time derivatives.

We first discuss issues of regimes which are related to radial velocities
and their comparison to C, before considering accelerations. For the original

unperturbed solution, described in Section 2, E =
√

(1+r4)
(1−ṙ2)

and if r0 is the

initial position where ṙ = 0, then ṙ2 =
r4

0
−r4

1+r4

0

. The subsequent analysis

of 1/N corrections has shown that higher orders in the 1/N expansion are
important when γ2 ∼

√
C ∼ N . This gives a lower bound on r for the large

N zero-brane description to remain valid -

r4 >
r4
0

N
− 1 (126)

This lower bound can be much less than 1, so we can follow the evolution
for distances much shorter than the string scale. However it appears that we
can follow it all the way to zero if r4

0 scales like a power of N which is smaller
than one.

Indeed, for such choices of r0, the paths which solve the equations of
motion coming from L1 and L2 have a similar behaviour to the leading order
paths. They describe 2-branes collapsing to zero size with maximal proper
accelerations which grow as r0 grows. The maximal speed reached at zero
radius is very close to the speed of light, with γ ∼ r2

0. However when r0 is
larger than ∼ N1/4, the paths described show qualitative changes. Whether
we work with L1 or L2, we find that there is an upper bound on γ which is
much less than r2

0.

8.1 Proper Acceleration and effective mass

Two useful quantities to study are the proper acceleration and the effective

squared mass. The proper acceleration α is given by α2 = d2xµ

dτ2

d2xµ

dτ2 . Useful
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expressions for α are

α = γ3d
2r

dt2
= γ3s

ds

dr
= −γ3s

Er

Es

= −Er

Eγ

(127)

This is the relativistically invariant acceleration and should be expected to
control higher derivative corrections to the Born-Infeld action. For recent
discussion on the geometry of corrections to brane actions see [30, 31]. An
effective mass can be defined by m2 = E2−p2. For the leading order solution
one has m =

√
1 + r4. With this effective mass, the formulae for the energy

and momentum look like the standard ones of special relativity.
For the leading large N solution

α = −2r3 (1 + r4
0)

(1/2)

(1 + r4)(3/2)
(128)

This shows that the proper acceleration starts at a small value α ∼ 1
r0

at the
initial position r0, which is taken to be much larger than 1. It grows to order
1 at r ∼ r

2/3
0 and reaches a maximum of α ∼ r2

0 when r = 1. It drops back to

order 1 at r ∼ r
−2/3
0 and finally to zero when r = 0. Near the extrema of the

phase space curves obtained from L1, where ds
dr

is infinite, the acceleration
and proper acceleration continuously approach infinity. This suggests that
the full stringy degrees of freedom are important, or at least we need some
information about the nature of the terms in the effective action involving
proper accelerations and higher derivatives.

For the cases of spin half, and the Lagrangian L2, we can study the
acceleration numerically. For L2, with U0 <∼ C1/4, the proper acceleration
behaves similarly to that for the solutions to the zeroth order equations of
motion coming from L0, reaching large values around r = 1. Somewhat
surprisingly, for very large U0, we find that the acceleration remains small
(less than 1 in magnitude) along the trajectory. This is another indication
that for such high U0 the 1/N corrected Lagrangians behave very differently
from the leading order ones. The fact that the proper acceleration remains
small suggests that there may be interesting time-dependent physics in string
theory which is non-perturbative in the 1/N expansion but can be reliably
described by the Born-Infeld actions, nelecting higher derivative corrections
and massive string modes.

For the 1/C corrected Lagrangian, L1, we find that there are regions of
phase space where the effective mass becomes imaginary. Numerical studies
show that as we follow the trajectory of a large D2-brane down to small
radius in the space parameterised by (r, s2), we have a minimum radius and
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then the curve continues along increasing s2 and approaches infinite radius
as it asymptotes to a finite upper s2 = s2

E < 1. The acceleration and proper
acceleration approach zero as sE is approached. The effective mass remains
real at the extremum but becomes imaginary near sE.

For L1 the effective mass squared is

m2 ≡ E2 − p2 = U2
(

1 +
1

3C
(γ2 − U−2)2

− 1

36C2
(γ2 − U−2)2(15γ4 − 16γ2 + 2γ2U−2 − U−4)

)

(129)

The region of interest is at large U . Assuming large U and large γ, the
coefficient of U2 in the above expression is 1 + γ4

3C
− 5γ8

18C2 . This changes sign
at γ4 = C/2. Note that this value of γ is larger than the large C location

of the extremum γ ∼
√

2C
5

, consistent with the numerical evidence that the

extremum is reached before the tachyonic behaviour of the mass squared.
For fixed initial conditions, there is also a tachyon appearing with L2 but
this also appears at a larger speed than the extremum seen with L1.

As discussed previously, there are two possible classical evolutions after
the extremum is reached. One involves bouncing back along the original
path, with a discontinuity in velocity. The other is to bounce back along the
branch with increasing s2. Here we are finding that the first bounce does
not encounter the tachyonic region whereas the second does. The immediate
neighbourhood of the extremum is free from the tachyon but involves infinite
proper accelerations. The correct string description may require string field
theory.

Plots of the effective mass as a function of (r, s) continue to show the radial
mode becoming tachyonic in certain regions, for L2 as well as for the spin
half Lagrangian. Following the classical trajectory of the radius as a function
of γ for L2, zero radius is reached at finite speed. The effective mass becomes
imaginary at some point along the classical trajectory if U0 >∼ C1/4. The
effective squared mass can be plotted as a function of (r, s) for the spin half
case. For r = 0 or small, it becomes tachyonic around s = 0.6.

A summary of the previous comments is that there is a class of pertur-
bative classical paths which are modified by small 1/C corrections. They
describe the collpase of branes starting at rest at some U0 which corresponds
to γ <∼ C1/4. In the leading Lagrangian L0 the limiting γ ∼ C1/4 are
reached for U0 ∼ C1/4. The 1/C corrections relevant to such paths can be
computed analytically along the lines of Section (4.3) and (4.4). The exis-
tence of interesting features such as the extremum we found with L1 requires
finite N investigations, which we initiated with the spin half case. If we find
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such extrema in the finite N case, understanding the complete picture re-
quires information about higher orders in time derivatives, which should be
obtained from string theory. This is because the proper acceleration diverges
at these extrema. Alternatively we may go beyond the framework of effective
actions and study the problem in string field theory. It may also be inter-
esting to explore what happens to such extrema when one considers simple
higher derivative Lagrangians which are designed to put an upper limit on
the proper acceleration [32].

8.2 The physics of the tachyon

A heuristic argument can be used to predict the existence of the tachyonic
effective mass which we found. Imagine an observer sitting at the north
pole of the collapsing spherical D2-brane, at Φ3 = R̂. In the rest frame
of this observer, the north-south axis is Lorentz-contracted, so that the 2-
brane looks more like the surface of a pancake. The spherical brane has
zero net D2-charge, and can be thought as having positive charge at the
north pole and negative charge at the south pole. This follows since the
D2-charge density is proportional to [Φ1,Φ2] ∼ iΦ3, which is positive at
the north pole and negative at the south pole. Locally then, our observer
at the north pole sees themselves at rest on a D2-brane with an anti-D2
brane approaching at high speed. We know that the D2-anti-D2 system has
a tachyon when the separation is close to the string scale. The observer
also sees a density of magnetic flux which is a distribution of D0-charge, but
D0-D2 systems also have a tachyon. It would be interesting to make a more
quantitative connection between this picture and the tachyonic effective mass
obtained from L1,L2 and the spin half case, in order to understand better
this “pancake tachyon”. The insights from [33, 34, 35] which discuss brane-
anti-brane systems in the presence of motion and flux may be useful. Another
situation where tachyonic behaviour of a radial brane variable has been found
recently is described in [36].

It might be argued that the tachyon is an artefact of the symmetrised
trace prescription, which is not the correct supersymmetric non-abelian DBI
theory. It has been shown that the symmetrised trace prescription must
be corrected, based on BPS energy formulas [37, 38, 39]. However, we find
it likely that these tachyonic features will survive with these corrections.
Indeed it can be argued that L1 is not modified. The form Str(αα)n =
N(Cn+a1(n−1)Cn−1+n(n−1)(n−2)(an+b)Cn−2+. . . ) follows from general
arguments which will hold true even when the symmetrised trace prescrip-
tion is replaced by something more complicated such as weighting different
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symmetry patterns with different coefficients. For example, we know that
the first correction of the form C(n−1) must vanish for n = 0 and 1 because
for these values of n we can simply evaluate the traces and check that the
leading term Cn is accurate. For n = 1, we have tr(αiαi) = NC. Assum-
ing that the n-dependent coefficients are sufficiently nice functions of n, it
would follow that the first correction is unchanged by these corrections. The
failure of the symmetrised trace prescription starts at tr(F 6) which trans-
lates here into tr(αiαi)

3. Once the structure of the tr(F 8) terms are known
the numbers a, b appearing in the coeffient of Cn−2 can be determined, and
will likely be different from the values 7,−1 of (23). We have checked that
the effective mass to order 1/C2 can become imaginary at large γ for any

choice of a, b. It is still possible to argue that the tachyon seen in the 1/N
expansion is really an artefact of the failure of the 1/N expansion itself, and
that the correct supersymmetric non-abelian Born-Infeld at finite N will not
allow such tachyonic behaviour. An important future direction is to develop
a proof (which does not look at all obvious) along these lines which disposes
of the tachyon, or to develop a more concrete quantitative formulation of the
physical nature of the tachyon as outlined above. The expectation that the
1/N expansion captures some qualitative features of the finite N physics sug-
gests that the latter avenue will be more fruitful. We have also seen that the
symmetrised trace prescription does lead to formulae for the energy which
correctly capture the expected relativistic limit s = 1 in the spin half case.

9 Summary and outlook

A large N approximation to the non-abelian zero-brane action of Myers for
time-dependent fuzzy sphere configurations gives equations for the radius
which agree with the expected dual picture in terms of a D2-brane with a
magnetic flux. These equations have the same form as those for a relativistic
particle with a position dependent mass. The 1/N corrections to the zero-
brane action give rise to modifications of these equations. We studied the
energy function for these modified equations in detail.

The simplest solution of interest at largeN , with LagrangianL0, describes
a D2-brane, with initial radius R ≫ ls collapsing to zero radius. Classically
this solution can be patched with an expanding solution at zero radius, but
the velocity is discontinuous at that point. The zero brane description allows
us to deduce that the collapsing radius can be trusted to distances less than
the string length. However the speed at very small radius for such a large
initial membrane is close to the speed of light. At these speeds, higher orders
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in the 1/N expansion of the zero brane action become important. Another
feature to bear in mind is that the proper acceleration becomes large along the
classical trajectory. This raises an interesting question of whether the form
of the time-dependent solution can be argued to be unchanged throughout
the trajectory from large R down to zero, perhaps using arguments along the
lines of [40].

Using the first order in 1/N corrected Lagrangian L1, we showed that for
a large range of initial conditions R > ls (r > 1 in dimensionless variables),
the classical path obtained from L1 is qualitatively similar to that obtained
from L0. However for initial conditions which allow γ to reach near C1/4

along the path, the path described in phase space encounters a minimum
at non-zero speed. This conclusion can be reached from the analysis of
the energy as a function of r and s, where r is the dimensionless radius
and s the dimensionless velocity. The contours of constant energy starting
from zero velocity at some large radius cannot be continued to zero radius,
but rather have a minimum. At the minimum, ∂E

∂s
= 0, while smin 6= 0.

Such minima do not occur in simple mechanical systems where E = mẋ2

2
+

V (x). This occurs in our equations because of the peculiar mixing of the
coordinate and velocity in the energy function. At the extremum, the velocity
is close to the speed of light. As N → ∞ this extremum recedes to the
relativistic barrier s = 1, which is why we do not see it in the leading large
N approximation. The bounce at the extremum is somewhat peculiar, it
involves a discontinuity in the velocity and also an ambiguity in the choice
of trajectory after the bounce. These features are made clear by a local
analysis of the energy function in the neighbourhood of the singularity. We
discussed the quantum mechanical behaviour of the system near this local
singularity, and argued that quantum mechanics would provide probabilities
for the two trajectories. The discussion is not complete since the equations
we are trying to quantise have a non-linear dissipative nature, hinting that
the correct quantum treatment requires extra degrees of freedom, such as
those that naturally occur in the string set-up when we go beyond the low
energy effective action approach and include higher string excitations.

Another consequence of the fact that the velocity at the extremum is
close to the speed of light is that the 1/N correction term to the Lagrangian
is comparable to the leading term for such velocities. This means that the
1/N approximation is breaking down in the neighborhood of the extremum.
This motivated an analysis of higher orders in the 1/N expansion. At the
second order in the 1/N expansion we found that the extremum disappears,
while it reappears again at the third order.

This led us to study the exact Lagrangian for finite N . In the case N = 2,
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we found that the extremum does not exist, but for general N the existence
or otherwise of such extrema is a very interesting open question, which could
be addressed using the techniques developed in this paper. If such extrema
exist then we will have a new mechanism in string theory for a brane bounce
which is intimately related to the non-Abelian structure of D-brane actions.

The technical computations of the 1/N corrections require care in dealing
with the symmetrised trace. This symmetrised trace leads to the evaluation
of certain SO(3) invariants. We presented two approaches to the calculation.
One proceeded by evaluating on highest weights. The other used a diagram-
matic approach for re-ordering the various terms in the symmetrised product.
This latter approach makes interesting connections with knot theory, which
may provide a source of new techniques and ideas in this context.

Further computations with L1 included a perturbative computation of
the time taken to collapse from an initial radius to some final radius. This
perturbative approach is best suited to initial and final radii which are not
too far apart. We also computed the energy as a function of momentum
giving an interesting deformation of the dispersion relation for a massive rel-
ativistic particle, derived directly from the non-Abelian structure of the zero
brane action in string theory. Whereas many string-inspired deformations
of relativistic dispersion relations have been discussed, this deformation is
the first that follows directly from the non-abelian nature of stringy D-brane
actions.

In Section 7, we gave a detailed discussion of regimes of validity for the
different approximations, taking care to use the proper acceleration rather
than the ordinary acceleration as a measure of whether higher derivative
corrections are important. Quite generically, we found that the generalised
effective mass defined by

√

E2 − p2 became tachyonic in certain regions of
phase space close to the speed of light. We discussed the physics of this
“pancake tachyon” as associated with a geometry which looks very similar
to system of brane and anti-brane. We gave arguments against attributing
the tachyon to the inadequacy of the symmetrised trace prescription used in
the non-abelian Born-Infeld.

Here we have considered the simple situation of a spherical D2-brane
collapsing from a dual D0-point of view using the fuzzy 2-sphere construction.
It will be interesting to explore similar brane collapse phenomena for higher
branes using higher dimensional fuzzy spheres [41, 42, 43, 44, 45, 46, 47].
This may be a new way to explore cosmological bounces in a braneworld
context developing works such as [48], with the additional ingredient of the
non-abelian Born-Infeld action. Position dependent effective masses have
been considered in [49, 50] and earlier references therein. The leading order
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Lagrangian L0 is a simple example of a relativistic system with position
dependent mass. An effective mass can be defined using m2 = E2−p2 for the
higher order Lagrangians. We found tachyonic behaviour in certain regions
of phase space close to the speed of light. This problem of the collapsing
brane may also have similarities with gravitational collapse of thin shells [51].
Another direction is to look for a gravitational background which corresponds
to the time-dependent system of large N zero branes, and find a spacetime
interpretation for some of the features we have found such as the bounces
and the tachyonic effective masses.
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