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Abstract 

Opsins - G-protein coupled receptors involved in photoreception - have been 

extensively studied in the animal kingdom. The present work provides new insights into 

opsin-based photoreception and photoreceptor cell evolution with a first analysis of 

opsin sequence data for a major deuterostome clade, the Ambulacraria. Systematic data 

analysis, including for the first time hemichordate opsin sequences and an expanded 

echinoderm dataset, led to a robust opsin phylogeny for this cornerstone superphylum. 

Multiple genomic and transcriptomic resources were surveyed to cover each class of 

Hemichordata and Echinodermata. In total, 119 ambulacrarian opsin sequences were 

found, 22 new sequences in hemichordates and 97 in echinoderms (including 67 new 

sequences). We framed the ambulacrarian opsin repertoire within eumetazoan diversity 

by including selected reference opsins from non-ambulacrarians. Our findings 

corroborate the presence of all major ancestral bilaterian opsin groups in Ambulacraria. 

Furthermore, we identified two opsin groups specific to echinoderms. In conclusion, a 

molecular phylogenetic framework for investigating light-perception and 

photobiological behaviours in marine deuterostomes has been obtained. 
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Introduction  

In animals, the prototypical molecules involved in photoreception and vision are opsin 

proteins (Nilsson, 2004). Opsins are G-protein coupled receptors (GPCR) that consist of 

an apoprotein plus a covalently bound to a chromophore (11-retinal) (Terakita, 2005). 

The nitrogen atom of the amino group of residue K296, situated in helix VII, binds to 

the retinal molecule through a Schiff-base linkage, forming a double bond with the 

carbon atom at the end of this molecule (Hargrave et al., 1983). Residue K296 is, 

therefore, crucial for light absorption, and its presence or absence can be used as a 

molecular fingerprint to judge whether or not a GPCR is a bona fide opsin.  

Recent investigations on opsin phylogeny resolved six distinct groups present in 

metazoans: ciliary opsins, rhabdomeric opsins, Go-opsins, neuropsins, peropsins, and 

RGR (RPE-retinal G protein-coupled receptor) opsins (Porter et al., 2012; Feuda et al. 

2012; Terakita et al., 2012). A vast number of opsins are also expressed in non-ocular 

tissues (Porter et al., 2012; Plachetzki et al., 2005; Koyanagi et al., 2005; Terakita et 

al., 2012).  

With regard to opsin evolution in the deuterostomes, genomic and transcriptomic data 

of a number of chordates have been used to identify and characterize their opsins (e.g. 

Holland et al., 2008; Kusakabe et al., 2001). However, little attention has been paid to 

Ambulacraria, the sister group to all extant chordates, (i.e. cephalochordates, 

urochordates, and vertebrates, Edgecombe et al., 2011), a key clade to reconstruct the 

opsin set of the common ancestor of extant deuterostomes. 

The present study integrates opsin sequences from two ambulacrarian sub-lineages: 

enteropneust Hemichordata, (Harrimaniidae, Spengelidae, Ptychoderidae and 

Torquaratoridae), and the pentameral Echinodermata comprising five classes 

(Crinoidea, Ophiuroidea, Asteroidea, Holoturoidea and Echinoidea).  

The phylogenetic relationship of echinoderms and hemichordates as sister groups within 

Ambulacraria, as shown in Figure 1, was already suggested by Metschnikoff (1881), 

and supported by Nielsen (2012). The monophyly of Ambulacraria is also well 

supported by molecular phylogenetic analyses (Cannon et al., 2014; Telford et al., 

2014). Moreover, Cannon and colleagues showed that the six hemichordate subgroups 

cluster into two monophyletic taxa, Enteropneusta and Pterobranchia (Rhabdopleuridae 

and Cephalodiscidae). Finally, Figure 1 conforms to the Asterozoa hypothesis 

separating the Echinozoa (Echinoidea + Holothuroidea) and the Asterozoa (Asteroidea 
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+ Ophiuroidea), which is now well supported by recent molecular phylogenies (Cannon 

et al., 2014; Telford et al., 2014; O’Hara et al., 2014). 

Other than a few structural investigations of eye-like structures in some asteroid species 

(e.g. the starfish optic cushion) and in enteropneust larvae (Brandenburger et al., 1973; 

Nezlin and Yushin, 2004; Braun et al., 2015), the molecular mechanisms of echinoderm 

and hemichordate photoreception remained enigmatic until recently. 

Immunohistochemical studies indicated the presence of a putative rhodopsin in the 

asteroid Asterias forbesi and in the ophiuroid Ophioderma brevispinum (Johnsen, 

1997). Subsequently, Raible et al. (2006) analyzed the ‘rhodopsin-type’ G-protein-

coupled receptors family in an echinoid genome (Strongylocentrotus purpuratus).  They 

predicted six bona fide opsin sequences, four of which were reported independently by 

Burke et al. (2006). Later, Ooka et al. (2010) cloned an “encephalopsin” orthologue in 

the sea urchin Hemicentrotus pulcherrimus. Recently, more opsin sequences have been 

found in sea urchins (S. purpuratus; Paracentrotus lividus), starfish (Asterias rubens), 

and brittle stars (Ophiocomina nigra, Amphiura filiformis) (Delroisse et al., 2013, 2014, 

2015 a,b ; Ullrich-Lüter et al., 2011, 2013). These studies highlighted the expression of 

ciliary and rhabdomeric opsins in various echinoderm tissues. Also, a large opsin gene 

repertoire was identified in the brittle star A. filiformis, pinpointing notable differences 

with findings from the previously published sea urchin genome (Delroisse et al., 2014). 

However, a comprehensive description of opsin diversity in echinoderms is still lacking 

and almost nothing is known about hemichordate opsins.  

Therefore, to characterize and describe the diversity of the opsin family in the 

Ambulacraria, we conducted a detailed analysis of 6 genomic and 24 transcriptomic 

sequence databases. This work represents the first attempt to describe and characterize 

the evolution of the opsin “toolkit” in the ambulacrarian lineage. We performed a 

phylogenetic study using the largest dataset of ambulacrarian opsin sequences to date, 

including representatives of a previously neglected group, Hemichordata. 

 

Materials and methods 
 
Data mining 
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Strongylocentrotus purpuratus opsins belonging to all the paralogous classes (Supp. 

File 1) were used as starting query sequences for tBLASTx against transcriptomic and 

genomic databases including public databases (NCBI, JGI, Ensemble, Echinobase 

(www.echinobase.org/), BioInformatique CNRS-UPMC (http://octopus.obs-vlfr.fr/) and 

Genoscope (http://www.genoscope.cns.fr/spip/Generation-de-ressources.html). The 

parameters used across all our tBLASTx searches were the following: Matrix: 

Blosum62; gap penalties: existence: 11; extension: 1; neighboring words threshold: 13; 

window for multiple hits: 40. Additionally, our dataset was further enriched using 

various unpublished genomic and transcriptomic databases obtained from several 

independent research projects (Suppl. File 1 and Suppl. File 2). This includes 

transcriptomes from adult specimens’ tissues, such as cuverian tubules and integument 

from Holothuria forskali, muscle of Parastichopus californicus, radial nerve from 

Asterias rubens, arms from Labidiaster annulatus, Ophiopsila aranea, Astrotomma 

agassizii and Antedon mediterranea, proboscis from Saccoglossus mereschkowskii and 

Torquaratorid sp, whole adult body of Leptosynapta clarki and anterior part of the body 

from Harrimaniidae sp and Schizocardium braziliense. Several other transcriptomes 

obtained from embryos or larvae from Paracentrotus lividus, Heliocidaris 

erythrogramma, Eucidaris tribuloides, Parasticopus parvimensis, Saccoglossus 

kowalevskii and Ptychodera flava (Suppl. File 1 and Suppl. File 2) were also screened. 

The raw predicted opsin sequences used in this study are listed in the Suppl. File 3 in 

fasta format. 

 

Alignment and phylogenetic analyses 
Predicted protein alignments were performed with SeaView v4.2.12 (Galtier et al., 

1996; Gouy et al., 2010) using the MUSCLE algorithm (Edgar, 2004). To improve 

phylogenetic reconstruction, N-terminal and C-terminal ends were trimmed and the 

alignment was manually corrected in order to minimize gaps and eliminate ambiguous 

and misaligned regions. Sequences that were shorter than 60 amino acids were removed 

to avoid bias. However, these could potentially correspond to true opsins and merit 

further study.  

Maximum likelihood analyses (ML) of our dataset were conducted on Michigan State 

University’s High Performance Computing Cluster using PhyML v3.0 (Guindon and 

Gascuel, 2003), and nodal support assessed with 1000 bootstrap replicates is indicated. 

The alignment is shown in Suppl. File 4 (phylip format) and Suppl. File 5 (image). A 

http://www.echinobase.org/
http://octopus.obs-vlfr.fr/
http://www.genoscope.cns.fr/spip/generation-de-ressources.html
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best-fit model analysis was performed using MEGA6 (following the AIC criteria) 

(Tamura et al., 2007; Kumar et al., 2008) and WAG+G+F amino acid substitution 

model was found to be the best suited (Whelan and Goldman, 2001). Three melatonin 

receptor sequences from S. purpuratus (Echinodermata) and three from Saccoglossus 

kowalevskii (Hemichordata) were chosen as the best outgroup for the opsin phylogeny, 

as previously proposed by Plachetzki et al. (2010) and Feuda et al. (2014). 

 
Consensus fingerprint of ambulacrarian opsin groups 
Ambulacraria opsins were clustered according their estimated position within opsin 

subfamilies and a multiple alignment of a 35 amino-acid long peptide region, including 

the 7th transmembrane domain with the opsin-specific lysine (K296), was performed 

with SeaView v4.2.12 for each opsin group supported in our phylogenetic tree. The 

selected region spanned residues 286 to 320 of the Rattus norvegicus rhodopsin 

sequence used as a reference (Palczewski et al., 2000). The consensus sequence was 

generated on the basis of the alignment for each class of ambulacrarian opsin using 

Geneious®8.1.5.  

 

 

Results  
 
Phylogeny and opsin distribution within ambulacrarian groups 
Using a collection of both genomic and transcriptomic data (see Materials and Methods 

and Suppl. File 2 for details), a final set of 119 protein sequences, representing 31 

ambulacrarian species, was generated for our phylogenetic reconstruction, which 

included 6 outgroup sequences and 6 human reference opsin sequences (Suppl. File 1 

and Suppl. File 3 for raw predicted protein sequences). The trimmed opsin alignment is 

shown in the Suppl. File 5 (see Suppl. File 4 for the alignment phylip file). We 

employed maximum likelihood using the WAG+G+F model with melatonin receptors 

as an outgroup. Canonical opsin groups are well supported in our analysis (Figure 2), 

demonstrating the presence of a complex opsin toolkit in Ambulacraria.  

Interestingly, according to our data, two novel groups of opsins were found, which we 

have named echinopsin-A and echinopsin-B groups. Ad hoc BLAST searches against 

several metazoan genomes clearly indicated the absence of these two opsin types 
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outside the echinoderm lineage. The previously identified Sp-opsin2 and Sp-opsin5 

belong to echinopsins-A and echinopsins-B, respectively (Raible et al., 2006).  

A complete opsin profile including at least one representative of each prototypical opsin 

group (opsin 1-8) was detected in the sea urchin S. purpuratus, but not in Lytechinus 

variegatus or P. lividus. The genomes of the latter two species have not yet been 

comprehensively sequenced and annotated, and therefore some opsin genes may be 

missing due to incomplete sequence coverage. With the exception of echinopsin-B, a 

complete opsin profile was found in the genome sequence data of the starfish Patiria 

miniata. The starfish A. rubens radial nerve transcriptome also contained several opsins, 

including ciliary, Go-, RGR-opsins. 

Surprisingly, rhabdomeric and Go-opsins do not seem to be present in hemichordates in 

our dataset. However, this requires confirmation through more extensive taxonomic 

sampling of hemichordate sequence data because, at present, only one hemichordate 

genome has been fully sequenced (S. kowalevskii). In several opsin groups we observed 

lineage-specific duplications: two opsins in P. miniata and A. rubens; five neuropsins in 

S. kowalevskii; four r-opsins in L. annulatus and six r-opsins in A. filiformis; two Go-

opsins in the echinoids L. variegatus, S. purpuratus and Heliocidaris erythrogramma.  

Nevertheless, some of these molecules present a short overlapping sequence therefore 

we cannot exclude that they could be part of unique genes and therefore to overestimate 

their number. 

 
Alignment of the transmembrane domain and opsin fingerprint 
In order to build a consensus fingerprint to distinguish the various ambulacrarian opsin 

groups, the 7th transmembrane domain and C-terminal tail region of our sequence 

dataset were aligned and a graphical representation was generated (Fig. 3). All 

sequences were characterized by the general structure of G protein-coupled receptors 

(GPCRs) comprising seven transmembrane (TM) domains. Numerous residues 

characteristic of opsins are present in the opsin sequences of A. filiformis. However, as 

several sequences are partial, not all characteristic residues could be detected in all 

sequences. Most of the opsin sequences also contained the highly conserved lysine 

residue (equivalent to K296 of the R. norvegicus rhodopsin) critical for Schiff base 

linkage formed with retinal, except three sea-urchin peropsins (Sp-opsin 6, Pl-opsin 6, 

Lv-opsin 6) in which it is substituted by a glutamate (E). The dipeptide NP (position 

302-303 of the R. norvegicus rhodopsin sequence) is also highly conserved among all 
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the subfamilies except in peropsins (N/HP) and RGR-opsins, which show divergence in 

these residues (also rhabdomeric opsins to a lesser extent). Amino-acid conservation for 

each opsin group from our phylogenetic analysis is shown in Figure 3. Ambulacrarian 

c-opsins, r-opsins and echinopsins-A displayed a highly conserved tyrosine (Y306). 

Conversely, the histidine (H310) appears distinctive of the ambulacrarian r-opsins 

(Figure 3) and r-opsins in general (human melanopsin, octopus rhodopsin and 

Drosophila Rh1-opsin). In our dataset the tripeptide SSS, positioned at residues 309-

402 of the reference protein, is a distinctive feature of ambulacrarian Go-opsins. 

These representations will be particularly useful in future studies in support of 

phylogenetic analysis to assign novel, unknown sequences to lineage-specific opsin 

groups.  

 

 

Discussion 
 

Our phylogenetic analyses showed ambulacrarian opsin sequences to be represented in 

all six prototypical bilaterian opsin groups: ciliary opsins, rhabdomeric opsins, 

neuropsins, Go-opsins, peropsins and RGR-opsins (Fig. 4). In addition we confirmed 

the presence of two novel echinoderm-specific opsin groups, which we have named 

echinopsins (echinopsin-A and echinopsin-B). These novel groups of opsins, which 

were found only in Echinoidea, Ophiuroidea and Asteroidea, respectively cluster as a 

sister group of all other opsins and as a sister group of all opsins except Echinopsins-A 

and ciliary opsins (Fig.4). A deeper analysis of these groups of proteins, including more 

hemichordate opsin sequences, is needed in order to determine if they represent an 

echinoderm or ambulacrarian novelty.  

Our analysis failed to reveal a rhabdomeric opsin (r-opsin) in hemichordates. The 

absence of such an opsin type is surprising because many enteropneust tornaria larvae 

possess eyespots that bear photoreceptors with clear microvillar surface enlargement 

(Brandenburger et al., 1973; Nezlin and Yushin, 2004; Braun et al., 2015). So far, 

photoreception in microvillar photoreceptor cell types has been demonstrated to 

generally deploy opsins of the so-called rhabdomeric type (r-opsins), although co-

expression of other opsin types in microvillar/rhabdomeric photoreceptors has been 

shown in recent studies (Randel et al., 2013). However, although our analysis reveals no 

such opsin in any of the examined enteropneust species, it should be noted that genomic 
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information is only available from the direct developer S. kowalevskii, which does not 

have a larval (tornarian) stage in its life cycle. Moreover, most of hemichordate 

transcriptomes in our study were generated using adult tissues; it is therefore possible 

that the absence of r-opsin in this group of animals is due to a limitation of data 

availability from this understudied group of animals.  

In contrast to the lack of r-opsins in enteropneusts, our analyses showed several cases of 

opsin gene duplication. Obviously in some instances the locus of duplication prompted 

a large expansion of the gene family, as is the case of the five neuropsins found in S. 

kowalevskii, and the six rhabdomeric opsins in A. filiformis, with the latter previously 

described by Delroisse et al. (2014). However, the fragmentary information about these 

duplicates makes it difficult to predict the exact number of functional opsin proteins in 

Ambulacraria. Whether or not these duplicated genes have sub-functionalized roles 

should be experimentally investigated by knock-out or silencing experiments. 

Until recently, under-representation of many taxonomic groups in comparative studies 

of photoreceptor evolution has hidden the real extent of opsin diversity (Porter et al., 

2012; Feuda et al., 2014). As more opsins have been characterized, these sequences 

have been classified into narrow pre-defined groups (e.g. Group 4 opsins), implying 

theoretical functional similarities that might not always be correct (Shichida and 

Matsuyama, 2009). At present, however, the rapidly increasing availability of entire 

genomes and transcriptomes provides a large number of sequences for investigating the 

evolution and functional diversity of the opsin family in greater detail. Likewise, our 

detailed phylogenetic analyses of ambulacrarian opsins not only provide a better 

understanding of opsin evolution in general, but are also essential for future 

photoreceptor studies elucidating the evolution of opsin functions.  
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Figures 

 
Figure 1.   Ambulacrarian phylogenetic relationships and their adult forms. 
The Ambulacraria consist of two groups: Hemichordata, bilateral animals subdivided in 

six clades: Cephalodiscidae, Rhabdopleuridae, Harrimaniidae, Spengelidae, 

Ptychoderidae and Torquaratoridae, and the pentameral Echinodermata, comprising: 

Crinoidea, Ophiuroidea, Asteroidea, Holoturoidea and Echinoidea. For each class there 

is a representation of the adult body plan. The numbers represented on the figure 

correspond to the two hemichordate subgroups: 1. Pterobranchia and 2. Enteropneusta, 

and the two echinoderm subgroups 3. Eleutherozoa and 4. Crinozoa. 

 

Figure 2.   Phylogenetic reconstruction of ambulacrarian opsins. 
119 opsin from 31 different ambulacrarian species cluster in eight highly supported 

groups in this maximum likelihood (ML) based analysis. R-opsins in blue, c-opsins in 

red, Go-opsins in green, neuropsins in purple, peropsins in yellow and RGR-opsin in 

orange. Visualization was generated with Figtree. 

 

Figure 3.  Consensus sequences of different opsin groups.  
Graphical representations of opsin amino acid patterns within the multiple alignments of 

the 7th transmembrane domain and the protein G linkage site. The 7th transmembrane 

domain is highlighted in green in the tridimensional representation of a typical opsin 

receptor. Alignment is limited to the highly conserved regions including the opsin-

specific lysine residue and the “NPxxY(x)6F” pattern. The lysine residue involved in 

the Schiff base formation - equivalent to K296 of the R. norvegicus rhodopsin - is 

present in position 10. The pattern “NPxxY(x)6F” (position 302-313 of the R. 

norvegicus rhodopsin sequence) is present in position 17-28. The size of each amino 

acid indicates the probability to find this specific amino acid for the considered position.   

Amino acid patterns of Melatonin receptors used as an outgroup in the phylogenetic 

analysis is also presented. 

 

Figure 4. Opsin distribution within the investigated ambulacraria species. 
For each species the number of opsin belonging to classical groups were reported. 

Those species for which no opsins were find are not reported in the table (for additional 
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informations see Suppl. File 1). Species for which the genome data is available are in 

bold. 

 
Supplementary Figure 1.   List of all the ambulacraria species used in our analysis 
and the opsin gene content per species. 
 
Supplementary Figure 2.  List of the ambulacraria transcriptomes surveyed in our 
analysis. The available information regarding the transcriptomes used is provided and 

the RNA source material is detailed. 

 

Supplementary Figure 3.   Opsin fasta file. Predicted opsin proteins used in the 

phylogenetic analysis are listed in fasta format. 

 

Supplementary Figure 4. The phylip version of the trimmed alignment used in the 
study. 
 

Supplementary Figure 5. Trimmed alignment supporting the phylogenetic tree 
shown in Figure 2. 
Trimmed alignment of all deduced amino acid sequences of Ambulacraria opsins. The 

alignment mainly contain the “TM cores” of the opsins. Non-conserved N-terminus and 

C-terminus ends were trimmed. The Schiff base equivalent to the lysine residue in the 

position 296 of the R. norvegicus rhodopsin – is indicated by an asteriscs in the 

alignment. Alignment performed in Seaview and edited in Geneious®8.1.5. 
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