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Abstract

We propose a novel label inference approach for segmenting natural images into

perceptually meaningful regions. Each pixel is assigned a serial label indicat-

ing its category using a Markov Random Field(MRF) model. To this end, we

introduce a framework for latent semantic inference of serial labels, called LSI,

by integrating local pixel, global region, and scale information of an natural

image into a MRF-inspired model. The key difference from traditional MRF

based image segmentation methods is that we infer semantic segments in the

label space instead of the pixel space. We first design a serial label formation

algorithm named Color and Location Density Clustering (CLDC) to capture

the local pixel information. Then we propose a label merging strategy to com-

bine global cues of labels in the Cross-Region potential to grasp the contextual

information within an image. In addition, to align with the structure of segmen-

tation, a hierarchical label alignment mechanism is designed to formulate the

Cross-Scale potential by utilizing the scale information to catch the hierarchy of

image at different scales for final segmentation optimization. We evaluate the

performance of the proposed approach on the Berkeley Segmentation Dataset

and preferable results are achieved.
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1. Introduction

Image segmentation remains a highly challenging task in Computer Vision.

By partitioning an image into a set of perceptually meaningful regions, it acts

as an indispensable process for a range of middle level and high level vision

tasks, such as object detection [1, 2, 3], object recognition [4, 5, 6], knowledge5

inference [9, 10, 13], and image understanding [11, 15].

Recent works have shown that employing color, texture, and any other con-

textual information lead to encouraging results for image segmentation. The

link of all these information is usually obtained by learning various complex

classifiers to control the segmentation results. Many significant segmentation10

algorithms [16, 17, 18, 20] generate and regard such link terms as preprocessed

segments, and then try to utilize the advantages of superpixel-level segmenta-

tion method [20] which puts emphasis on finding the dissimilarity of pixels in

the whole image. However, the superpixel-level segmentation method neglects

the similarity of pixels in the local non-adjacent regions, which can also serve as15

another valuable element aside from dissimilarity of pixels that contributes to

improve the segmentation performance. In this paper, different with traditional

superpixel-level method, we are apt to exploit the characteristics of local pixels

and global regions for enhancing image segmentation in a disciplined manner,

which overcomes the limitation of homogeneous superpixel-based treatment.20

Although a unified framework called PISA [9] is proposed to generate image

regions with the same purpose as ours, this method gives more attention to

image saliency.

In this paper, we consider the segmentation task as a label inference problem.

To solve the problem, we propose a new framework for latent semantic inference25

of serial label, called LSI. In this framework, we adapt a MRF-inspired model

but focus on the crucial point of how to integrate the multiple information into

the segmentation process. Unlike traditional methods based on MRF model

[35, 33], the proposed Cross − R&S model can produce an estimate of the
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number of object classes in the image by coupling potential functions defined30

on labels with the designed Cross-Region and Cross-Scale potentials.

In our LSI framework, the serial labels are obtained through a color and

location density clustering (CLDC) algorithm in the label formation phase to

catch the local characters of a natural image. Then, the next step is to assign

each pixel a unique serial label with a MRF model by minimizing the energy35

function of labels. Although [12, 14] try to minimize the joint energy in a global

optimization MRF framework, both of these two methods rely on corresponding

unique saliency-based strategies as initialization to help address robust object

extraction problem.

For better understanding, we design a label merging strategy to portray40

the link properties between the local pixel and global region information in the

Cross-Region potential. The advantage of using this link term is that we do

not need to train many classifiers which depend largely on the combinational

features. Further, the concept of hierarchy segmentation [21, 22, 28, 30, 39]

has aroused researchers’ attention in recent years, and most existing hierar-45

chy segmentation methods use the scale-space structure of an image to explore

the similarity of pixels at multiple scales. Different from solving the segmen-

tation problem at multiple scales, we utilize serial semantic labels to preserve

the hierarchical structure of segmentation results. Based on this, our approach

unexpectedly preserves the object shapes in natural images as in [2]. Different50

from Lin and Wang’s approach in [2] to recognize the object shapes by utilizing

the node and layout of the And-Or graph model, the hierarchical scale informa-

tion in our method is aggregated by a hierarchical label alignment mechanism

in the Cross-Scale potential to exploit the topological properties of labels on

different scales.55

The key contributions of this paper are as follows: (1) We present a novel

approach to capture the context, layout, and scale information in a given image

and achieve effective segmentation using the LSI framework; (2) we formulate

the segmentation problem as a label inference problem in the label space to

reason for the label of each pixel; (3) Cross-Region and Cross-Scale potentials60
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are designed for the label inference algorithm to derive the final segmentation.

Hence, the proposed approach can easily be expanded for Object-Class Seg-

mentation and Semantic segmentation [7, 8] tasks based on the properties of

the objects.

The remainder of the paper is organized as follows: In Section 2, existing65

segmentation methods are presented. In Section 3, the proposed LSI framework

is elaborated. Then, experiments are described in detail in Section 4. Finally,

Section 5 concludes the paper with directions for future work.

2. Brief Review of Related Work

There are clear distinctions between the proposed LSI approach and previous70

works. In this section, we briefly review the existing works and comment on the

advantages of our method.

(1)Problem Formulation and Transformation

The majority of recent works in this area focus on solving a graph-based

problem [16, 17], clustering-based problem [18, 19], or a hierarchy-based prob-75

lem [21, 22] and regard the general image segmentation problem as Object-Class

segmentation and Semantic segmentation. Our method treats the task as a la-

bel inference problem which is different from the aforementioned ideas. In the

graph-based segmentation methods, the problem is represented as graph parti-

tion, and the global information of an image is usually utilized. However, the80

extraction and employment of global information is very limited and results in

high storage requirement inevitably. In comparison, our model involves the rich

information from local and global context, as well as layout and scale informa-

tion. To reduce the storage requirements, we only catch the image local infor-

mation in sub-image level, and infer the final segmentation in image level. The85

clustering-based segmentation approach [18] aims to group pixels with similar

patterns into the same cluster by maximizing the inter-cluster dissimilarity and

the minimizing the intra-class similarity. This method, however, has a intrinsic

limitation that the number of clusters are unknown. In our method, although
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the number of segment classes is still unclear, we can estimate it approximately.90

To obtain the label of a pixel, we make use of the clustering algorithm proposed

in [29] to capture the local information in label formation phase. The state-of-

art hierarchical segmentation method [22] is commonly based for the analysis of

local feature cues, which are restricted and are focused on the segmentation re-

sults in terms of a hierarchy, especially in Ultra Contour Map (UCM) algorithm95

[21].

(2)Model Categorization and Comparison

For natural images, there exists a vast amount of sophisticated models in

the aforementioned three segmentation methods. The work in [12] proposes an

inhomogeneity-embedded active contour (InH-ACM) for natural image segmen-100

tation by minimizing the energy of global color coherence and local inhomo-

geneity consistency. However, this method needs a saliency-inspired framework

to start the evolution of locating the initial contour for InH-ACM, while our

method avoids the subsequent steps on the contour which may be imprecise.

The work in [34] proposes an adequate variational segmentation model for seg-105

mentation of images perturbed by arbitrary noise models, which is intend to

be applied to real application data from biomedical images. Our method is

designed for natural image segmentation without losing the generality of being

applied in other domains.

The proposed LSI framework utilizes the MRF-inspired model to infer the110

semantic label. Feng and Jia [35] address the problem of self-validated labeling

of Markov random fields, by treating the whole image as a single segment with

three concrete graph cuts algorithms, and converse when the energy stops de-

creasing. In the graph cuts method, each pixel serves as a node in graph theory,

whereas our method treats each subregion in the label formation phase as a node115

in the label space. One of the advantages about our label representation is the

fact that the storage consumption is greatly reduced. Sfikas and Nikou [33] pro-

pose a new Bayesian model for image segmentation by defining local and global

weights with a spatial variant and an MRF edge-preserving smoothing prior,

respectively. Although this method is used for natural image segmentation, it120
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still begins with an existing superpixel initialization. In comparison, we design

a CLDC algorithm to extracts the sub-tags for label inference. Therefore, in

sub-regions, the proposed method catches more abundant local cues than most

significant superpixel initialization. This is because we extract the tags from

sub-images of smaller size in the label formation phase. With the constraints125

of a MRF, Lin and Liu [32] present a framework that incorporates shape and

structure information into a sketch graph, which applies to object categoriza-

tion instead of image segmentation, while our method can preserve the shape

information by utilizing the scale information, and the experimental results in

Figure 7 can verify the effectiveness.130

(3)Hierarchical Structure Description

A typical segmentation algorithm with the idea of hierarchy, designed by

Arbelaez and Maire [21], consists of generic machinery for transforming the

output of any contour detector into a hierarchical region tree with low time

efficiency. Based on that, Donoser and Schmalstieg [22] propose a hierarchical135

image segmentation model. It is described as a coarse-to-fine structure to exploit

different levels of contextual information preferring to predict local gradients for

each pixel in a test image. Zheng and Cheng [30] develop a hierarchical model

to incorporate region-level objects and attribute information in the semantic

segmentation, such as Wood, Cotton, etc. The serial labels used in our approach140

are not semantic concepts, since most approaches based on MRF are designed

to focus on reasoning the relationship of existing labels. Additionally, Arbelaez

and Malik [31] propose a unified approach for bottom-up hierarchical image

segmentation, which is later used for recognition. In the method, combinational

space is explored for integrating the multi-scale regions into highly-accurate145

object candidates instead of general image segmentation. In contrast to these

approaches, we take advantage of the scale information of labels in the label

scale space rather than in the image scale space.
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3. Latent Semantic Inference of Serial Label

In this section, we introduce the segmentation framework for the Latent150

Semantic Inference of Serial Label (LSI). For a given image, we aim to segment

it into perceptual regions by assigning each pixel an unspecified label. Here, the

unspecific label is defined as a serial number label instead of the kind of semantic

objects. Now we describe the solution of our LSI framework with a visual effect

in Figure 1 using Image-143090 in BSD300 as an example. Especially, we take155

full advantages of the local pixel information, global region information, and

scale information.

In the latent semantic inference framework, the input image is S1. First, S1

need to be down sampled twice. With the proposed color and location density

clustering algorithm named CLDC, we get the label of each scaled image in the160

label formation phase. Furthermore, label merging strategy and label alignment

mechanism are integrated into the MRF model in the following label inference

phase. Finally, we get the segmentation results with the proposed LSI.

S1

S2

S3

Input Image Label Formation

Output Image

S2-1

S3-1

S1-1
1

2

3

4

Label Inference

CLDC

Label

Merging

Strategy

Hierarchy 

Label

Alignment 

Mechanism

T
h
ree S

cale

S1-1'

S2-1'

S3-1'

LSI

Figure 1: Latent Semantic Inference Framework for Segmentation.

3.1. Color and Location Density Clustering

The main idea of label formation phase is to obtain the labels in the inference165

process by computing the similarity of all pixel pairs in the whole image. To this
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end, a color and location density clustering algorithm, named CLDC, is briefly

introduced. In our algorithm, instead of starting with an over-segmentation

[23, 24, 25] for the whole image, i.e. a set of superpixels [20] partially adhering

to local boundaries, we split the given image into quarters along the red lines170

to extract more detailed local pixel information from each independent part,

which illustrated in Figure 2. The quadrant structure supports well the label

merging strategy.

We take each independent part as a sub-image. From the psychological point

of view [26, 27], after splitting an image into quarters, the bottom-up and left-175

right searching method is in accord with the human beings cognitive habits.

Furthermore, to avoid the potential memory consumption issue, we perform

CLDC algorithm in each sub-image instead of the whole image.This brings up

two problems: (1) How to measure the similarity of pixels within the sub-image?

(2) How to assure the integrity of superpixels across different sub-image?180

(a)
1

2

3

2

1

3

2

1
2

1

1
2

3
5

4

6

9

8
11

10

(b)

(c)(d)

4

7

Figure 2: Labels formation:(a) original image, (b) sub-images, (c) serial labels in sub-image,

(b) sequence labels in image.
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(a)

(b)

Figure 3: The selection of ρ and δ in the label formation phase. We select ρ and δ manually.

(a) is the distribution of ρ and δ decision graph. If the value of selected ρ is large than half

of the maximum value, we draw the rectangle from the top right corner in (a). (b) shows the

colored cluster centers.

To solve the first problem, for each sub-image, each pixel is treated as a

node according to the Graph-Based Segmentation algorithm. We compute the

similarities of all pixel pairs in the sub-image. Different from Graph-Based algo-

rithm, we select method in [29], which leads to good effect in cluster analysis, to

do the sub-image clustering. For the reason that [29] can not be directly applied185

to traditional image segmentation task due to its high storage consumption and

the irregularity of pixel distribution, we use sub-images to reduce the storage

consumption and find a mode of normalizing the pixel similarity to 2D data

distribution.

In the label formation phase, to get the label presented in Figure 2(c), first

and foremost, each pixel of the sub-image is represented as a five-dimensional
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vector pi = [li, ai, bi, xi, yi] in the CIELAB color space, where [xi, yi] are the

space coordinates in the sub-image. Then we use Euclidean color and spatial

distances to measure the similarity of all pixel pairs Dpij
defined as follows:

dcij =
√

(li − lj)2 + (ai − aj)2 + (bi − bj)2

dsij =
√

(xi − xj)2 + (yi − yj)2

Dpij
= dcij + dsij ,

(1)

where dcij is the lab color distance and the dsij is the spatial distance. We190

expect that the superpixels(i.e. cluster centers) are surrounded by pixels with

lower local density and the density between clusters is relatively higher. There-

fore, using the clustering method similar to [29], for each pixel, we compute two

values: local density ρpi
and distance δpi

.

The local density ρpi
is given as:

ρpi
=

∑
pj

χ(Dpij
− t), (2)

where χ(x) = 1 if x < 0, or χ(x) = 0, otherwise, and t is a threshold of similarity

distance. According to Equation 1, we set t the mean value of Dpij
. In this way,

we can transform the similarity matrix of pixel in sub-image into standards 2D

data points distribution to find the position of the cluster center. The distance

δpi
denotes the minimum similarity distance between pi and pj :

δpi = minj(Dpij ), (3)

with the condition ρpj
> ρpi

. With the ρ and δ, we can find the cluster centers195

as those with large values of both the two. The selection of ρ and δ is presented

in Figure 3.

Finally, we sort the serial label in all four sub-images. From Figure 2(d), we

can observe that there is no link between the sorted labels. However, along the

red line we can find some label pairs like (2, 6), (8, 11), (9, 10) denote different200

classes while in fact they should belong to the same region. Therefore, we will

solve this in the design of our Cross-Region potential of the Cross−R&S model

in label inference phase.
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3.2. Cross−R&S Model

One key challenge in the LSI framework is how to utilize a rich mixture of205

basic image information such as color, texture, and middle-level features. To

address this challenge, we develop the Cross − R&S model which is able to

appropriately integrate multiple information into a MRF-inspired model. In

this model, we treat the segmentation task as a label inference problem with a

MRF-inspired model but rather different from traditional MRF settings.210

Here the key differences from the traditional MRF method [10, 31, 35] include

(1) we operate label inference in the label space instead of pixel space, (2) the

labels are obtained by our CLDC algorithm rather than traditional superpixel-

based methods [21, 23, 24, 25, 31], and (3) the label inference associates a label

merging strategy in the unary term with a hierarchy label alignment mechanism215

in the pairwise term.

Similar to that of [10], the energy function of region labels in Cross−R&S

Model is defined as:

E(l) =

M∑
i=1

ψi(li) + λ

M,N∑
i,j=1

φij(li, lj), (4)

where M is the total number of labels, and N is the total number of neighborhood

labels. In this energy function, the Cross-Region potential is defined as ψi and

the Cross-Scale potential is defined as φij . In the Cross-Region potential, based

on labels obtained in the label formation phase, we introduce a label merging220

strategy to catch the global region information of an image. In the Cross-

Scale potential, a hierarchy label alignment mechanism is presented to grasp

the layout information of image. On the basis, we propose an overall inference

algorithm to achieve our segmentation. Finally, our goal is to score the entire

description of the image labels by iteratively minimizing the energy function.225

3.2.1. Cross-Region Potential

Once subimages have been segmented into independent subregions which are

indicated as Rj
i , where i = {1, 2, 3, 4}, and j is the order of cluster centers, i.e.

the serial number of labels in the i-th sub-image, we aim to design a strategy to
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merge these subregions into continuous meaningful regions Rk across so as to230

capture the global region information of the sub-images. Now we describe how

to assure the integrity of superpixels across different sub-images mentioned in

the label formation stage.

For each obtained independent subregions, we define a label merging strategy

f l : Rj
i → Rk (5)

where l is the index for discrete label presented in Figure 2(d), and k is the region

label after the subregions are merged. The aim is to eliminate the incoherence235

of these subregions across the red lines. The merging strategy is summarized in

Algorithm 1.

Algorithm 1 Label merging strategy

1: Input: Subregion Rj
i

2: Output: Region Rk

3: Count the sum N number of the labels in all sub-regions Rj
i

4: Compute the number of pixels Npair and patch similarity Spair between two

adjacent sub-regions along the red horizon and vertical lines in the middle

of the image

5: /∗ Subregions Merge: ∗/

6: repeat

7: for num = N do

8: if (Npair > 5)
⋂

(Spair <
∑
i

max(
∑
j

δ(Rj
i ))) then

9: Rnum → Rk

10: end if

11: end for

12: until num = 1

In the function f l, we set l = l1, l2, ...ln, where n is the sum of cluster numbers

in all four subimages, then the strategy degenerates from Rj
i → Rn, so next step

is to merge Rn into Rk. Based on this, we consider two quantifications as the240
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norm of sub-region integration: the number of pixels between two adjacent sub-

regions Npair and patch similarity between two adjacent Spair along the red

lines in the middle of the image.

First we count the number of pair number of these pixels along the red lines

in the middle of the image. If Npair is smaller than 5, we empirically regard the

two subregions have no correlation. Then, we use the first formula of Equation

1 to compute similarity of the counted pixel pairs, thus confirming whether

the two adjacent subregions are with high correlation. The value of pixel pair

similarity defined as Spair, is subject to the following conditions:

Spair <
∑
i

max(
∑
j

δ(Rj
i )) (6)

Finally, according to the above constraints, all subregions Rn are fused into Rk

until the clusters in subimages are run through.245

According to our strategy, we define our Cross-Region potential ψ as:

ψi(li) = −log(
∑
i

max(
∑
j

δ(Rj
i ))− (

∑
i

∑
j

Spair)/k), (7)

where Spair is subjects to the condition given in step 8 in Algorithm 1.

3.2.2. Cross-Scale Potential

We construct an image pyramid with 3 scales by subsampling the original

given image, producing three images for each original, with 481*321, 241*161,

121*81 pixels. These three scale images are referred to as S1, S2, S3 respectively.250

As mentioned in Section 1, we perform operations of label inference in the label-

scale space rather than image-scale space. The fundamental step in Cross-Scale

potential is to get the labels in different scales. Therefore, each pixel of scaled

image S2 or S3 is represented as a five-dimensional vector pi = [li, ai, bi, xi, yi]

in the CIELAB color space, then we use Euclidean color and spatial distances255

to measure the similarity of all pixel pairs Dpij
, and define the local density ρpi

in the same way as in the label formation phase. These steps produce a set of

Cross-Scale potential: S1-1, S2-1,S3-1.
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After three fixed scale images are segmented, we design a hierarchy label

alignment mechanism to describe the labels on three scales, which is elaborated260

in Figure 4.

Our main idea is to confirm the adjacent labels in comparison to different

scale input images. In this mechanism, we first empirically consider that S3-1

entails the most layout information and S2-1 has more layout information than

S1-1. For this reason, if the label of S3-1 occurs as that of S2-1 and S1-1, we set265

S3-1’s label as the new label for S2-1. Meanwhile, the value of Spair modifies

with the new label in the S1-1 by adopting the label merging strategy in the

Cross-Region potential. Though this mechanism, we can get new S1-1’ and

S2-1’.

Final 

Segmentation

1

2

3

4

S2-1

S3-1

S1-1

Figure 4: Label inference in Cross-Scale Potential. S1-1, S2-1, S3-1 are scaled images. If two

images in three are with the same label, the rest image updates the label in the same position,

then we compute the cross-scale potential. If the label in S1-1 changes, the cross-region

potential is modified by reusing the label merging strategy.

Therefore, we define the Cross-Scale Potential φij as:

φij(li, lj) = −log(NumS3−1(li, lj)−NumS2−1(li, lj)), (8)
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where NumS3−1 − NumS2−1 is the sum of different labels between S2-1 and270

S3-1.

3.2.3. Inference

The overall inference algorithm of Cross−R&S model is described as: First,

we obtain the labels of an image at three different scales: S1− > S1 − 1,

S2− > S2 − 1, S3− > S3 − 1, and initialize the unary potential ψ using our275

Label Merging Strategy with S1-1 and the pairwise potential φ with S2-1 and

S3-1, with which the total energy E can be computed; Next, given potential ψ,

we compare the second scaled segmented image S1-1 and S3-1, then update the

Cross-Region potentials ψ; and compare S2-1 and S3-1, then update the pairwise

potential φ; Finally, we compute the new total energy Enew, if Enew < E, we280

set E = Enew. The algorithm iterates till convergence is reached.

4. Experiment

In this section, we show the experimental results of the proposed LSI on

Berkeley Segmentation Dataset. The proposed LSI includes two phase. The

label formation takes from 40 to 60 seconds, and the label inference phase costs285

no more than 0.5 second for one image. We also evaluate the performance and

compare the accuracy with recent popular approaches.

Berkeley Segmentation Dataset: The Berkeley Computer Vision Group

collected 12,000 hand-labeled segmentations of 1,000 Corel dataset images from

30 human subjects. Half of the segmentations were obtained from presenting290

the subject with a color image; the other half from presenting a grayscale image.

The public benchmark based on this data consists of all of the grayscale and

color segmentations for 300 images. The images are divided into a training set

of 200 images, and a test set of 100 images.

To demonstrate the effectiveness of our approach, we compare its perfor-295

mance with the well-known Ncuts [16], Meanshift [18], and SLIC [20] segmenta-

tion methods which are reviewed in Section 2. Figure 5 provides results of LSI

and three aforementioned methods on several images from the BSD. In Figure
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Orignal Image Ncut Meanshift SLIC Our Method
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Figure 5: Given an image, we segment it into perceptually semantic regions.
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5, we set the number of segments in Ncut, Meanshift, SLIC to be uniformly

30 which is empirically decided as a good number in average. We can observe300

that in the image of the third row, sky, cloud, mountain and water are segment-

ed neatly, while in Ncut method, regions are not meaningful. If the ultimate

task is to do recognition, various kinds of combination models or discriminative

classifiers can be used to further integrate these segments. From the sixth and

eighth row in Figure 5, we can observe that the horses and elephants are seg-305

mented from the complex background. Therefore, although a few objects are

wrongly categorized into one class, for example, the shadow of a horse is seg-

mented into the horse, the segmentation by LSI method is useful for object-class

segmentation, semantic segmentation and scene understanding tasks.

Table 1: Region Benchmark on BSD300

BSD300

Segmentation Covering Rand Index

Groundtruth 0.73 0.87

Ncut 0.53 0.79

Meanshift 0.58 0.80

SLIC 0.63 0.83

LSI 0.59 0.80

Instead of using the boundary methodology which supports contour detec-

tors over segmentation, we evaluate our method and Ncut, Meanshift, SLIC

approach with region-based criteria which includes Rand Index [21] and Seg-

mentation Covering [36, 37, 21]. In Rand Index criteria, the Probabilistic Rand

Index is defined as:

PRI(S,Gk) = 1/T
∑
i<j

[cijpij + (1− cij(1− pij))],

where S and G are the test and ground-truth segmentation, and cij is the event

that pixels i and j have the same label pairs, pij is its probability, and T is

the total number of pixel pairs. In Segmentation Covering criteria, the covering
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between two different segments S and S′ is defined as:

O(S′− > S) = 1/N
∑
R∈S
|R| ·maxR′∈S′ |R ∩R′|/|R ∪R′|,

where N is the total number of pixels in the image. Table 1 presents region310

benchmarks on the BSD.

From Table 1, we can observe that the proposed LSI achieves satisfactory

results, just slightly inferior to SLIC. Although region-based criteria provides an

important measure for segmentation, the advantages of LSI is not fully demon-

strated through these measures. The key idea of LSI is to understand the315

segmentation results in a way that is similar to human visual observation. The

main goal of this approach is to achieve visual segmentation results that can

be meaningfully interpreted as they are analysed by human beings, instead of

producing relatively independent regions. Therefore, we analyse segmentation

results from two additional aspects in terms of numbers of segments and mean-320

ing of the segmented regions.

Figure 6: Label statistics before and after inference.

To test the efficiency of the estimated number of segments, we first give a

quantitative statistics of feasible existing object class as in the given image. The

results presented in Figure 6 show that for natural images, in most cases, they
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are segmented into 2-4 meaningful regions with our LSI approach. For a human325

being, it is fairly enough to recognize the shape of segment regions with 2-4

meaningful regions. We can see from Figure 6 that the number of regions in

most natural images is reduced from 8-14 to 2-4 by the label inference. This

matches with the fact that human interpret images into 2 meaningful regions. It

can be observed in the Ncut segmentation image regions are not coherent with330

human visual perception because they are not semantically meaningful. We

can see it clearly from the images in the last column in Figure 7 with concise

background are intend to be segmented into two classed, i.e. foreground and

background, and images with complex background generate more regions than

ones with concise background. The background here is an amorphous object335

[38], because it depends on how ambiguous and complex the background is

intend to be.

To understand the meaning of segmented regions, we observe that from

the second image in the first two rows in Figure 5, these two results can be

intuitively understood as ’an eagle standing on a branch’ and ’a koala holding340

a branch’. Moreover, in Ncut, Meanshift, and SLIC methods, the number of

segments needs to be specified manually, which means the performance heavily

relies on the specified number of segments, and unsuitable number of segments

may lead to segmentation that are not semantically meaningful to human.

Further, we compare our segmentation results with the three other methods345

using different numbers of regions in Figure 7. In Figure 7(a), the number of

segments in Meanshift is set to 5, and we can see that Meanshift intends to

produce smaller regions which are confusing. In Figure 7(b), we use two setups

for the number of regions for Ncut. In the first line in Figure 7(b), when the

number of regions is set to be the same with those LSI obtains, Ncut produces350

similar results to our method. In the second line when the approximate number

of segments in Ncut method are used, the quality of our segments is superior to

Ncut. In Figure 7(c), the number of segments in SLIC is set to 20 and 200. When

the number of segments is 20, we can see that our method can preserve more

local information in the superpixels. In addition, although the local information355
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Original Image

Meanshift

Number of Segments 5 5 5 5 5 5 5

LSI

(a)

Number of Segments 2 4 2 3 4 4 4

Ncut

Number of Segments 5 5 5 5 5 5 5

Number of Segments 20 20 20 20 20 20 20

Number of Segments 200 200 200 200 200 200 200

LSI

Ncut

Number of Segments 2 4 2 3 4 4 4

(b)

SLIC

SLIC

LSI

Number of Segments 2 4 2 3 4 4 4

(c)

Number of Segments 2 4 2 3 4 4 4

Figure 7: Comparison with different number of segments.
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in SLIC can be more abundant when the number of segments is 200, our method

can catch much more global information and master the meaning of regions.

Therefore, analysing the number of segments and the meaningfulness of the

segmented regions, we can observe that our method outperforms the three other

methods, and can preserve the object shape at large extent.360

Original 

Image

Cross-Region 

Potential

+

+

+

+

Inference

Inference

Inference

Inference

Final

Segmentation

Concise

Background

Complex

Background

Cross-Scale

 Potential

1

2

1

2

1 2

3

4

1

2

3

...

...

...

...

Figure 8: Given an image, we catch the local and global layout information of the original

image through the inference stage.

More specifically, we analyse the segmentation performance of two potentials

in Figure 8. The second and third columns from the left show preprocessed

images: initial images produced by label merging strategy and initial images

produced by hierarchy label alignment mechanism. We can see clearly that

images in second column with concise background are almost merged together365

with less of layout information, while for images with complex background the

layout information is captured at the cost of a large number of missing of local

information. Therefore, we bridge these two potentials together to infer regions.

It can be observed in column 4 that each segment accounts for a meaningful

object. For example, for image in the third row, label 1 represents sky, label370

2 shows trees, label 3 shows snow, and label 4 is the shadow of snow. The
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Ncut, Meanshift, and SLIC methods are unable to preserve the integrity of

semantic object in the segmentation phase. Therefore, such methods usually

can only serve as an initialization step in semantic segmentation or object-class

segmentation approaches, while our method provides a viable alternative for375

these application.

Observing that each segment is always a meaningful object in the the right-

most column, we think of the serial label 1 of image in the third row as sky,

label 2 as trees, label 3 as snow, and label 4 as shadow of snow in the psycho-

logical perception, while the Ncut, meanshift, and SLIC methods are unable to380

preserve these meaningful information in the segmentation phase. Therefore,

most of semantic segmentation or object-class segmentation approaches select

the aforementioned three methods as an initialization rather than manipulating

features in pixel-level directly, while our method provides a viable alternative

for these applications.385

5. Conclusion

The goal of this paper is to explore segmentation approaches for partition-

ing the given image into perceptually meaningful regions. We design a LSI

framework using a Cross−R&S model including a Cross-Region potential and

a Cross-Scale potential to integrate detailed image information for the final390

segmentation. It is worth noting that we regard image segmentation as label in-

ference problem. The label is obtained by a label formation phase instead of the

recent popular superpixel initialization approach, and a label merging strategy

is then performed to grasp the local and global information of regions. Then,

utilizing the layout information at different scales, a hierarchy label alignment395

mechanism is formed to infer the final segmentation. In addition, according to

the final result, our LSI is superior in terms of object-class segmentation, seman-

tic segmentation and scene understanding. These advantages will be explored

in semantic recognition and understanding tasks in our future work.
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