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Abstract. We consider the problem of optimal investment in cyber-
security by an enterprise. Optimality is measured with respect to the
overall (1) monetary cost of implementation, (2) negative side-effects of
cyber-security controls (indirect costs), and (3) mitigation of the cyber-
security risk. We consider “passive” and “reactive” threats, the former
representing the case where attack attempts are independent of the de-
fender’s chosen plan, the latter, where attackers can adapt and react
to an implemented cyber-security defense. Moreover, we model in three
different ways the combined effect of multiple cyber-security controls,
depending on their degree of complementarity and correlation. We also
consider multi-stage attacks and address the potential correlations in the
success of different stages. First, we formalize the problem as a non-linear
multi-objective integer programming. We then convert these optimiza-
tions into Mixed Linear Integer Programs (MILP) that very efficiently
solve for the exact Pareto-optimal solutions even when the number of
available controls is large. In our numerical evaluation section, we per-
form the largest cyber-security modeling to date: our case study com-
prises 27 of the most typical security controls, each with multiple in-
tensity levels of implementation, and 37 common vulnerabilities facing
a typical SME. We compare our findings against expert-recommended
critical controls. We then investigate the effect of the security models on
the resulting optimal plan and contrast the merits of different security
metrics. In particular, we show the superior robustness of the security
measures based on the “reactive” threat model, and the significance of
the hitherto overlooked role of correlations.

1 Introduction

A cyber-security plan is a set of defensive measures (i.e., cyber-security con-
trols) that are applied across an enterprise to improve its overall state of secu-
rity. There are many cyber-security measures to choose from, and each measure
can be implemented at multiple levels of intensity. Examples of these security
controls (taken from the UK’s Center for the Protection of National Infras-
tructure (CPNI)’s list of top-20 critical measures [22]) include: “Inventory of
Authorized and Unauthorized Devices”, “Inventory of Authorized and Unautho-
rized Software”, “Secure Configurations for Hardware and Software on Mobile
Devices, Laptops, Workstations, and Servers”, “Malware Defenses”, “Wireless
Access Control”, and so on. Each cyber-security measure addresses a specific set



of vulnerabilities. For instance, while “Access Control” can mitigate “OS Com-
mand Injection”, it has no effect on “DDoS attacks”. Hence a cyber-security plan
should be composed of a combination of the measures to provide a well-rounded
defense against the range of vulnerabilities that the enterprise faces.

Implementation of each cyber-security measure is not cost-free: it requires
monetary investment (direct costs) and can also negatively affect the perfor-
mance of an enterprise (indirect costs). Therefore, an exhaustive implementa-
tion of controls at maximum intensity is likely neither economically feasible nor
managerially desirable. In reality, organizations have to deal with cyber-security
risk within a limited budget and must be wary of the potential side-effects of
the security measures on their existing business processes. Therefore, the miti-
gation in the security risks has to be judiciously balanced with the direct and
indirect costs. A selection analysis should consider the set of controls as well as
vulnerabilities jointly. This is because an approach that takes investment deci-
sions for each vulnerability or control separately, ignores the relative importance
of the vulnerabilities, and does not optimally use the complementary effects of
the controls, and hence, may fail to reach a best overall trade-off. Choosing a
desirability metric for a plan is itself a challenging task:

1. The three sources of costs (security, direct and indirect) are not easily com-
binable. For instance, the investment costs are incurred deterministically and
at the present, while the security losses are probabilistic in nature and, if at
all, will occur at an unknown future time. Also the monetary conversion is
not as clear for indirect costs as for the other two, for instance, it is hard
to put a monetary value on the annoyance felt by the staff as a result of a
more restrictive access control or a stricter password policy.

2. The trade-off preferences cannot be exactly arbitrated “a priori”. For in-
stance, even a “security-concerned” enterprise may choose a different plan if
“almost” the same security risk mitigation can be achieved at a much lower
direct or indirect cost. Likewise, an enterprise that is very sensitive to in-
direct costs or extra investment may reconsider if a slight increase in these
costs can reduce a relatively significant amount of security risk.

To address these issues we adopt a multi-objective optimization framework.
Specifically, we simultaneously minimize the security risk, indirect, and direct
costs of the enterprise (the latter within the budget). The “solution” of this three-
objective optimization is the set of Pareto-optimal (or non-inferior, or simply,
Pareto) plans, that are the solutions with the guarantee that no other plan can
simultaneously improve all of these three costs (at least one of them strictly).

Of these three costs, the security risk is the most challenging to model. The
effect of an individual security measure (at each implementation intensity) can
be represented by its “effectiveness” against different vulnerabilities. That is, the
reduction in the success probability of exploitation attempts of each vulnerability
when only that control is implemented (stand-alone). Complicating the matter
is the fact that, often, the same vulnerability can be (partially) mitigated by
more than one security measure. Then a modeling question is how to capture
the combined efficacy of controls on their overlapping vulnerabilities.



The simplest approach is an “additive” model, where it is assumed that, per
each vulnerability, the (blocking) efficacies of controls are added up, heeding
that, logically, none of the overall blocking probabilities should exceed 100%.
This capping of the combined efficacies introduces a degree of nonlinearity in
the model, but one that can be easily dealt with, as we will show later.

Although computationally the simplest, this model bears the underlying as-
sumption that defensive mechanisms have positive externalities on each others’
efficacies. In particular, it potentially allows 100% efficacy when multiple controls
are combined, which is rather unrealistic. A more relaxed modeling assumption
is that each control affects the common vulnerabilities independently. Hence,
when a vulnerability is attempted, the success chance is the product of success-
fully bypassing each of its pertaining controls. We will thus refer to this model
as “multiplicative”. This model is ostensibly nonlinear in the decision variables,
and hence, solving the resulting nonlinear integer program accurately can be
very inefficient. However, as we will see later, it can be converted into a Mixed
Integer Linear Program (MILP) which is much more efficient to solve accurately.

A problem with the previous two models is that they ignore the possible
correlations in the defensive mechanisms of security measures. Due to such cor-
relations, it can be argued that if an attempted exploitation bypasses one of the
controls, it will be a strong indication for bypassing the other affecting measures
as well. The “independent” blocking probabilities in the heart of multiplica-
tive model, although better than the additive model, can still be a significant
over-estimation of the overall effectiveness of a security plan. In this paper, we
introduce a novel non-linear model, which we call “best-of”, that captures such
correlations. In particular, the combined effectiveness of implemented controls
on a common vulnerability is taken to be (only) the highest effectiveness among
them. We then develop a technique to convert the resulting nonlinear integer
program into a MILP that is surprisingly efficient to solve.

Another challenge in modeling the security losses is anticipating the dis-
tribution of exploitation attempts of the attackers across vulnerabilities. One
approach is to use the histogram of the past attempts (retrieved from the logs of
the enterprise itself or of any similar enterprises), or the publicly available statis-
tics of attacks (e.g. [14]). We will refer to this model as the “passive” threat.
However, in reality the distribution of the attempts may adapt to the imple-
mentation of security controls: if a vulnerability is now well mitigated, then the
attempts may shift to other less protected vulnerabilities. We will refer to this
case as “Reactive” threat, and establish a connection with a sequential game
between the enterprise and attackers. For both passive and reactive cases, we
provide efficient ways to solve for the exact Pareto-optimal plans efficiently by
converting the nonlinear optimization problems into appropriate MILPs.

Finally, we will present a case study and numerical evaluations using our
frameworks and a database of major security controls and vulnerabilities. We
first compare the derived optimal plans of each model against the expert recom-
mended list of critical controls, which reveals a general consistency, with best
match observed for the “best-of – reactive” model. Subsequently, we compare
the optimal plans as well as the achieved utilities across our different security



risk models. In particular, we observe that the “reactive” threat provides a more
robust (and hence more favorable) notion of security risk in the sense that, opti-
mization with respect to reactive threat does not lead to a terribly sub-optimal
performance with respect to passive threat, however, the opposite is not true: an
optimal plan with respect to passive threat can lead to terrible performance with
respect to reactive threat, even for relatively high values of investment budget.

Contributions and Related Works

There are two main contributions of this work:

– By reducing the model to MILP we make possible to compute optimal so-
lutions for cyber-security: the state space we consider in our case study is
enormous, of the order of 1014 pure strategies, and our MILP finds the opti-
mal solution in seconds. The closest work in the cyber-security literature [24]
takes instead days to converge and crucially lacks a guarantee of optimality.

– Our case study represents the largest cyber-security modeling to date. The
data used in the experiments has been extracted from official government
organizations’ publications like [4, 5, 17] as well as the publicly available
databases of CVE, CWE and CWSS.

Quantitative risk assessment and mitigation in cyber-security has been a the-
matic topic of research in security, that has in part lead to established method-
ologies such as Magerit and NIST800-30 among others [21]. Works that ex-
plicitly investigate the problem of investment portfolios in cyber-security in-
clude [1–3,7,8,11–13,15,16,18–20,24]. Comparing with all these work, our work
presents a wider modeling framework both in terms of the way controls can be
combined (multiplicative, additive, best-of) and in terms of the attacker capa-
bilities and threat types (passive, reactive, cost-based). Also of the above works
only [13,16,24] are based on real world data and only [13,24] model indirect costs.
Compared with these last two works their solutions are based on Tabu Search
(TS) and genetic algorithms (GA) respectively, and are inherently more ineffi-
cient than the solutions here presented and they do not provide any guarantee
of optimality. Also none of those works addresses issues like robustness.

2 Modeling and Notations

Let C represent the set of (cyber-security) controls, each with potentially multiple
intensity levels of implementation. We will use Lc = {1, . . . , Lc} to denote the
set of available implementation levels of control c. A cyber-security plan or a
cyber-security investment portfolio x = (xc) is a vector in X := ×c∈C({0}∪Lc),
where xc = l ∈ {0} ∪ Lc represents the decision to implement control c at level
l, with zero representing the lack of implementation of that control.

Let B ∈ R+ be the (hard) constraint on the total cyber-security budget of
the enterprise. Let D, I,R : X → R+ respectively denote the (total) direct cost,
(total) indirect cost, and the (aggregate) “security risk” of the enterprise given a
security plan. As we proceed, we explicitly describe each of these functions. But



first, we give a high-level description of the problem of cyber-security investment
as a (constrained) multi-objective integer programming:

min
x∈X

(D(x), I(x), R(x)) s.t.: D(x) ≤ B (1)

For each c ∈ C, let dc(l) ∈ R+ be the direct cost of implementing control c at
level l ∈ {0}∪Lc, with the obvious convention that dc(0) = 0. The direct cost is a
combination of the (one-time) investment (for obtaining the required hardware,
software or staff), and the recurrent monetary expenses associated with the
implementation. For controls that are already in place, i.e., existing controls,
only the recurrent expenses must be considered. Similarly, let ic(l) ∈ R+ be
the indirect cost of implementing control c ∈ C at level l ∈ {0} ∪ Lc, where
ic(0) = 0. The indirect costs are those related to reduced performance (due to
introduced overhead on resources), lowered morale (e.g. due to restricting access,
false positives, stricter password policies), etc, that are not easily convertible to
monetary losses. Using these notations, we simply have:

D(x) =
∑
c∈C

dc(xc), I(x) =
∑
c∈C

ic(xc) (2)

We will denote the set of vulnerabilities of the enterprise by V. Let ecv(l) be
the stand-alone effectiveness of control c at implementation level l ∈ {0}∪Lc on
vulnerability v, that is, ecv(l) is the probability that an exploitation attempts
on vulnerability v is blocked when “only” control c at implementation level l
is present. Then scv(l) := 1− ecv(l) will represent the success probability of an
attempt at exploitation of vulnerability v when no other control than c at level
l is implemented. Trivially, ecv(0) = 0 ∀c ∈ C and ∀v ∈ V.

Let Cv be the set of controls that can affect vulnerability v, i.e., Cv := {c ∈ C :
ecv(l) > 0 for some l ∈ Lc}. If for a vulnerability v, we have ‖Cv‖ > 1, then the
combined effectiveness of the controls on v needs to be modeled. In particular,
let Sv : X → [0, 1] represent the success probability of an exploitation attempt
on vulnerability v ∈ V given a cyber-security plan. We provide three different
candidates for Sv(x), in decreasing order of “complementary” effects among the
defensive mechanisms of the controls (using the convention: a+ := max{a, 0}):

Additive: Sv(x) =
(
1−

∑
c∈Cv

ecv(xc)
)+

(3)

Multiplicative: Sv(x) =
∏
c∈Cv

scv(xc) (4)

Best-of: Sv(x) = min
c∈Cv

scv(xc) (5)

Let Λv be the random variable representing the losses to the enterprise when
vulnerability v ∈ V is “successfully” exploited, and let λv be its expected value.
These losses are due to the interruption in availability, integrity and/or confi-
dentiality of data assets or services of the enterprise (e.g. tampering or theft of
intellectual property or financial or client data, disruption of operations, etc.) as



well as the secondary causes of losses such as reputation damage, loss of clients,
legal fees, and so on.1 We assume a “risk-neutral” decision-maker, and hence take
the expected value of losses due to successful exploitations to be the measure of
the security risk. In order to represent the expected losses, we need to anticipate
the rate with which different vulnerabilities will be target of exploitation. This
rate may depend on the profile of the enterprise and may also change in the face
of the implemented security plan. Let π : X → ∆(V) represent this relation,
where ∆(V) represents the set of all probability distributions over the set of vul-
nerabilities V. In particular, let π(v;x) be the rate at which vulnerability v ∈ V
is attempted, given that the implemented plan is x. Then the security risk of
the (risk-neutral) enterprise in (1) can be written as:

R(x) =
∑
v∈V

π(v;x)Sv(x)λv (6)

Modeling π requires anticipating the behavior of the attackers. In what follows,
we consider two models for this behavior: “passive” and “reactive” threats.

Passive Threat In this model, the probability distribution of the attacks is as-
sumed given and that it “stays unchanged” irrespective of the implemented plan.
In particular, let P ∈ ∆V be the distribution of attempts across vulnerabilities,
which will be the same for any implemented plan x ∈ X , i.e., π(v;x) = P(v)
∀x ∈ X . In the rest of the paper, we will denote P(v) with Pv for brevity. Then
the expected losses (as the risk-neutral measure of security risk) is:

R(x) =
∑
v∈V

PvSv(x)λv (7)

where Sv(x) comes from (3), (4) or (5), depending on the combination model.

Reactive Threat As we mentioned, the distribution of attempts for exploiting
vulnerabilities may evolve in the face of the new implemented security plan. In
particular, the attempts on well-protected vulnerabilities may shift to less pro-
tected vulnerabilities. The most pessimistic scenario is the assumption that the
attempts will shift to a vulnerability that has the most “effective impact”, i.e.,
in (6):

∑
v∈argmax(Sv(x)λv)

π(v;x) = 1. Therefore, the corresponding expected

loss (as the risk-neutral measure of security risk) is:

R(x) = max
v∈V

(Sv(x)λv) (8)

Next, we show that this notion of security is closely related to a sequential game.

1 The loss Λv is enterprise dependent through their evaluation of different sources of
disruption: An energy company may be primarily concerned with the availability of
their service while a banking firm would assign a large weight to integrity of its data.



Connection to Game Theory Consider the following non-zero-sum sequential
two-player game of “perfect information”:

Players: The enterprise ‘e’ (the leader), and the attacker ‘a’ (the follower).
Action spaces: The action of the enterprise is its cyber-security investment

plan, x. The attacker decides on which one of the vulnerabilities to try to exploit
(if any). This can be represented by an indicator y. Hence, the action spaces are
respectively X and Y := {y ∈ {0, 1}V :

∑
v∈V y(v) ≤ 1}. The enterprise also has

a constraint, defining its set of feasible actions: the total direct cost of its action
has to be within the budget, which the attacker may not know the value of.

Information structure & strategies: The enterprise (the leader) makes
the first “move”, and its action and strategy spaces coincide. The attacker (the
follower) observes the “move” of the enterprise x (hence the label: “perfect
information”), and after re-assessing the effectiveness of attempts on each of the
vulnerabilities, makes its decision of which vulnerability to attempt. Hence, a
strategy of the attacker, which we denote by σ, is a function σ : X → Y, and its
strategy space is the set of all functions X → Y, denoted by YX .

Payoffs The negative payoff of the enterprise (which it wants to minimize)
is a weighted sum of the three costs. Specifically, let wd, wi, and wr be the
weights of the (total) direct and indirect costs and the security damage to the
enterprise, respectively, where wd, wi ≥ 0, and wr > 0. Referring to (2) and (6),
the expected cost of the enterprise ue : X ×Y → R+ is therefore: ue(x, σ(x)) =
wd
∑
c∈C dc(xc) + wi

∑
c∈C ic(xc) + wr

∑
v∈V σv(x)Sv(x)λv). The payoff of the

attacker (which it wants to maximize) is (linearly) proportional to the expected
security losses of the enterprise due to successful exploitations. In particular,
letting ua : X × Y → R+ represent the expected payoff of the attacker, we
can write: ua(x, σ(x)) = w′r

∑
v∈V σv(x)Sv(x)λv, for some w′r > 0, whose exact

value may not be known to the enterprise. Note that we assumed exploitation
attempts are costless for the attacker. We have the following result:

Prop. 1 Any strategy of the enterprise in a Subgame Perfect Nash Equilibrium
(SPNE) of the above non-zero-sum sequential two player game with “perfect
information” is a Pareto-optimal solution to the multi-objective problem of (1)
where the security cost is according to the “reactive threat” model in (8).

Proof. Denoting the attacker’s best response correspondence by σ∗, we have:

σ∗(x) ∈ arg max
v∈V

w′r
∑
v∈V

σv(x)Sv(x)λv,

which implies
∑
v∈V σ

∗
v(x)Sv(x)λv = maxv∈V (Sv(x)λv). Now, using backward

induction (for subgame perfection), the problem of the enterprise becomes:

min
x∈X

[
wd
∑
c∈C

dc(xc) + wi
∑
c∈C

ic(xc) + wr max
v∈V

(Sv(x)λv)

]
, s.t.

∑
c∈C

dc(xc) ≤ B.

Finally, any solution of the above single optimization is also a Pareto-optimal
solution of the multi-objective problem in (8). ut



It is worthwhile to note that the set of SPNE stays the same even if the game
is converted to a zero-sum game in which the payoff of the attacker (to be maxi-
mized) is exactly the same as the total cost of the defender, i.e., if ua(x, σ(x)) =
ue(x, σ(x)) = wd

∑
c∈C dc(xc) + wi

∑
c∈C ic(xc) + wr

∑
v∈V σv(x)Sv(x)λv. That

is, if the attacker wanted to also maximize the investment and indirect costs of
the defender, the optimization problem of the enterprise would not change at
all. To see this, note that once the enterprise makes its implementation decision,
the attacker cannot affect either the direct or indirect costs of the enterprise.
Interestingly, this still holds even if the attacker has its own weights on dif-
ferent components of its overall payoff, i.e., if ua(x, σ(x)) = w′d

∑
c∈C dc(xc) +

w′i
∑
c∈C ic(xc) + w′r

∑
v∈V σv(x)Sv(x)λv, for instance, if the attacker emphati-

cally cares about the investment and indirect costs of the enterprise.2

Justifiability of Perfect Information Assumption The full observability
of the action of the enterprise may be unjustifiable in its literal interpretation.
However, the critical point here is the much slower variability of security plans
and much faster adaptability of attacks. Specifically, once the security plan is
implemented, it will not be modified over a relatively long horizon. Hence, the
enterprise can be thought of as having committed to its investment decision. In
contrast, the exploitation attempts on different vulnerabilities can explore and
“learn” the most effective vulnerability. If the transitory learning phase of the
attacker is negligible, then the formalism of perfect information is applicable.

3 Solving the Multi-Objective Optimization

An approach to find the Pareto solutions of multi-objective-optimizations (MOO),
including multi-objective integer programs (MOIP) and multi-objective combi-
natorial optimizations (MOCO) as its sub-branches, is through scalarization.
Here, we provide a brief overview. The reader may consult the survey papers
and textbooks on MOO for more detailed treatment, e.g. [6, 10,23].

In scalarization methods, the MOO is transformed into (parametric) in-
stances of single-objective optimization problems, the optimal solution of each
is also a Pareto-optimal solution of the original MOO problem. The most widely
known method is the “linear scalarization”, where a weighted sum of the indi-
vidual objectives constitutes the new objective function to be optimized. Specif-
ically, consider a general n-objective optimization problem of minx∈X (Fi(x)),
i = 1, . . . , n. Then a series of single-objective optimization as the convex com-
bination of (a proper normalization of) each of the objective functions is con-
structed parameterized by the weight coefficients, that is, minx∈X

∑n
i=1 wiF̃i(x),

where wi > 0 and
∑n
i=1 wi = 1, and F̃i is a carefully chosen affine transformation

2 The assumptions that attacks are costless and the reward is linearly proportional to
the security damage to the enterprise is important for this observation, and the fact
that the attacks for not affect the indirect costs, for instance, through the assumption
that if an exploitation attempt fails there is no damage associated with it.



(i.e., normalization) of Fi.
3 Clearly, any solution of the weighted optimization is

on the Pareto-front of the original multi-objective problem (because otherwise,
there is an alternative solution that simultaneously improves all of the objective
functions and at least one of them strictly, which contradicts the optimality in
the scalarized problem).4 The Pareto-optimal solutions are found by “sweeping”
the weights over the entire simplex with some granularity, solving each of the
single objective optimizations, and storing any “new” solution found.

In our problem, if the weights of the direct, indirect and security costs are
respectively wd, wi, wr ≥ 0, such that wd + wd + wi = 1, then, ignoring normal-
ization for brevity, the resulting single objective optimizations (SOO) is:

min
x∈X

[wdD(x) + wiI(x) + wrR(x)] s.t.: D(x) ≤ B. (9)

The form of R(x) in part comes from (7) or (8) depending on the threat model,
in which the success rates of each attempted vulnerability comes from (3), (4)
or (5) depending on the model for combining efficacies of the controls. Each
of these optimizations is an instance of a non-linear integer program, which is
NP-hard to solve in general. Exploring the entire set of possible plans can be
computationally infeasible since the number of plans is

∏
c∈C(Lc + 1), which

grows exponentially in the number of controls (this is for instance, over 1014

for our case study in §7). In what follows, we describe a series of tricks that
help convert each of these nonlinear integer programs into mixed integer linear
programs (MILPs) by introducing carefully designed auxiliary variables. 5

4 Conversions to (binary) MILP

Common to all of our models is the introduction of binary decision variables as
follows: xcl ∈ {0, 1} for each c ∈ C and l ∈ Lc, which represents whether control c
is implemented at level l ∈ Lc. Using this notation, we first enforce that logically
at most only one of the implementation levels per each control is selected:(

xcl ∈ {0, 1} ∀l ∈ Lc,∀c ∈ C
)
,
(∑
l∈Lc

xcl ≤ 1, ∀c ∈ C
)
. (10)

Recall that Lc := {1, . . . , Lc}, and in particular, it did not include level 0. Then
the direct and indirect costs can be represented in linear form as follows:

D(x) =
∑
c∈C

∑
l∈Lc

dc(l)xcl, I(x) =
∑
c∈C

∑
l∈Lc

ic(l)xcl. (11)

Note that dc(l) and ic(l) are now just coefficients of the xcl variables.

3 The normalization is for numerical efficiency, such that the range of the objective
functions becomes comparable, hence increasing the chances that a uniform sweeping
of the weights even with a small number of steps finds all the Pareto solutions.

4 Note, however, that finding all Pareto solutions is not guaranteed in this method.
5 An alternative scalarization approach is the “epsilon-constraint” method. All of our

MILP conversions can be modified for that method in a straightforward manner.



4.1 Additive Model in (3)

For the passive threat, the expected security damage in the additive model is:

R(x) =
∑
v∈V

Pv

(
1−

∑
c∈Cv

ecv(xc)
)+
λv. (12)

In order to get rid of the non-linearity introduced by the “positive part” relation,
we introduce auxiliary real-valued6 variables yv’s for each v ∈ V such that:
yv ≥ 0 and yv ≥ 1 −

∑
c∈C
∑
l∈Lc

ecv(l)xcl. Note that these two inequalities
and the goal of the minimization guarantees that at the solution, we have: yv =
(1−

∑
c∈C
∑
l∈Lc

ecv(l)xcl)
+, as desired. Therefore, we can replace the security

cost with
∑
v∈V Pvyvλv. Hence, we have the following simple proposition:

Prop. 2 Each of the scalarized single-objective optimizations in (9) for the
additive–passive risk model is equivalent to the following MILP:

min
(xcl,yv)

[
wd
∑
c∈C

∑
l∈Lc

dc(l)xcl + wi
∑
c∈C

∑
l∈Lc

ic(l)xcl + wr
∑
v∈V

(Pvλvyv)

]
s.t.: (10),

∑
c∈C

∑
l∈Lc

dc(l)xcl ≤B,
(
yv ≥ 0, yv ≥ 1−

∑
c∈C

∑
l∈Lc

ecv(l)xcl : ∀v∈V
)
.

For the reactive threat, the expected security damage as the security risk

is: R(x) = maxv∈V

{(
1 −

∑
c∈Cv ecv(xc)

)+
λv

}
. This can be made linear by

simply introducing (only) one auxiliary variable z and imposing z ≥ 0 and
z ≥ (1−

∑
c∈C
∑
l∈Lc

ecv(l)xcl)λv for “all” v ∈ V. This yields:

Prop. 3 Each of the scalarized single objective optimizations in (9) for the
additive–reactive risk model is equivalent to the following MILP:

min
(xcl,z)

[
wd
∑
c∈C

∑
l∈Lc

dc(l)xcl + wi
∑
c∈C

∑
l∈Lc

ic(l)xcl + wrz
]

s.t.: (10),
∑
c∈C

∑
l∈Lc

dc(l)xcl ≤B, z ≥ 0,
(
z ≥

(
1−

∑
c∈C

∑
l∈Lc

ecv(l)xcl
)
λv ∀v ∈ V

)
.

4.2 Multiplicative model in (4)

For multiplicative model, we provide a modification of the method proposed
in [19] and modify it for reactive threats as well. First, we extend the optimization
variables xcl to explicitly include level zero for each control as well. Hence the
“logical” choice constraint, as opposed to (10), becomes:(

xcl ∈ {0, 1} ∀l ∈ Lc ∪ {0},∀c ∈ C
)
,
( ∑
l∈Lc∪{0}

xcl = 1, ∀c ∈ C
)
. (13)

6 hence, “mixed” integer linear program, as opposed to pure integer linear program.



Now, for each vulnerability v ∈ V, we introduce
∑
c∈Cv (1 + Lc) positive real-

valued auxiliary (“flow”) variables yvcl ≥ 0, one for each l ∈ Lc ∪ {0} per each
control c ∈ Cv, with the following interpretation: yvcl is the fraction (“flow”) of
the exploitation attempts on vulnerability v that is “handled” by control c at
level l. Let Cv, the set of controls that can affect vulnerability v, be enumerated
as follows: Cv = {cv1, . . . , cv|Cv|} (the order is immaterial). The total fraction of the

exploitation attempts on vulnerability v that is to be handled by the first control
in Cv is 1. That is, for each v ∈ V, we impose:

∑
l∈Lc∪{0} yvcl = 1 where c = cv1. A

portion of these exploitation attempts gets blocked by controls cv1, depending on
which level it is implemented at, and the “surviving” fraction has to be handled
by the next control in Cv. Hence, for each v ∈ V, we have the following flow-like
constraint:

∑
l∈Lc∪{0} yvclscv(l) =

∑
l∈Lc′∪{0}

yvc′l, where c′ = cvi and c = cvi−1
for all i = 2, . . . , |Cv|. Note that scv(l) is just a coefficient in this linear equality
constraint, and recall the convention that scv(0) = 1 for all v ∈ V, c ∈ Cv. The
overall probability of success of exploitation attempts of vulnerability v is the
fraction that survives the last control in Cv, that is,

∑
l∈Lc∪{0} yvclscv(l) where

c = cv|Cv|. Enforcing that only the implemented controls have their blocking effect

on the vulnerabilities translates to the following constraint: yvcl ≤ xcl ∀v ∈ V,
∀c ∈ Cv, ∀l ∈ Lc ∪ {0}. This constraint along with (13) ensures that only one
level per controls is implemented (including level zero) and only the flow-variable
corresponding to the implemented level can be nonzero. Now, recursively putting
the equalities together will recover the multiplicative form of the overall success
probability of exploitation of v. Putting all ingredients together, we have:

Prop. 4 Each of the scalarized single objective optimizations in (9) for the
multiplicative–passive risk model is equivalent to the following MILP:

min
(xcl,ycvl)

[
wd
∑
c∈C

∑
l∈Lc

dc(l)xcl + wi
∑
c∈C

∑
l∈Lc

ic(l)xcl + wr
∑
v∈V

Pvλv
∑

l∈Lc∪{0}
c=cv|Cv|

yvclscv(l)
]

s.t.: (13),
∑
c∈C

∑
l∈Lc

dc(l)xcl ≤ B,
(
0 ≤ yvcl ≤ xcl : ∀v ∈ V,∀c ∈ Cv,∀l ∈ Lc ∪ {0}

)
,

( ∑
l∈Lc∪{0}

yvcl = 1 : c = cv1, ∀v ∈ V
)
, (14)

∑
l∈Lc′∪{0}

yvc′l =
∑

l∈Lc∪{0}

yvclscv(l) : c′ = cvi , c = cvi−1,∀i = 2, . . . , |Cv|,∀v ∈ V.

For the reactive threat model, we can introduce an extra variable z and enforce:
z ≥ λv

∑
l∈Lc∪{0} yvclscv(l) where c = cv|Cv| for all v ∈ V, along with the rest of

the constraints in (14), and change the objective function to the following:

min
(xcl,ycvl,z)

[
wd
∑
c∈C

∑
l∈Lc

dc(l)xcl + wi
∑
c∈C

∑
l∈Lc

ic(l)xcl + wrz
]

(15)



4.3 “Best-of” model in (5)

For each vulnerability v ∈ V define the set of (flow-based) positive auxiliary
variables yv,c,l ≥ 0 for each c ∈ {0} ∪ Cv and l ∈ Lc, that is, a flow is con-
sidered for each control that affects vulnerability v, along with a “no-control”
flow yv,0,0. For each v ∈ V, we impose the total “in-flow” corresponding to
vulnerability v to be one, i.e.,

∑
c∈{0}∪Cv,l∈Lc

yv,c,l = 1. We will also impose
the logical “selection” constraints: yv,c,l ≤ xcl such that, if a control is not im-
plemented, the corresponding flows will be zero. Then, in (5), we can simply
replace Sv(x) = minc∈Cv scv(xc) with

∑
c∈{0}∪Cv,l∈Lc

yv,c,lscv(l), where we also

define s0v(0) = 1 as coefficients of yv,0,0. To see that this conversion indeed
works, note that when the total sum of the positive flow variables are constant,
the minimization problem, trying to minimize the “out-flow” per each vulner-
ability, chooses the “pathway” with the highest available reduction, i.e. lowest
flow coefficient, exactly as the “best-of” model intends. Putting together:

Prop. 5 Each of the scalarized single objective optimizations in (9) for the best-
of–passive risk model is equivalent to the following MILP:

min
(xcl,ycvl)

[
wd
∑
c∈C

∑
l∈Lc

dc(l)xcl + wi
∑
c∈C

∑
l∈Lc

ic(l)xcl + wr
∑
v∈V

Pvλv
∑

c∈Cv∪{0}
l∈Lc

yvclscv(l)
]

s. t.:
∑
c∈C

∑
l∈Lc

dc(l)xcl ≤ B,
(

0 ≤ yvcl ≤ xcl, ∀v ∈ V,∀c ∈ Cv,∀l ∈ Lc
)
,( ∑

c∈Cv∪{0}
l∈Lc

yvcl = 1, ∀v∈V
)
,
(∑
l∈Lc

xcl ≤ 1, ∀c∈C
)
,
(
xcl ∈ {0, 1}, ∀l ∈ Lc,∀c∈C

)
.

For the “reactive” threat model, the only difference is that the security risk (the
third summation in the objective function) is replaced with the extra auxiliary
(real-valued) variable z that needs to satisfy the following (linear) constraints:
z ≥ λv

∑
c∈Cv∪{0},l∈Lc

yvclscv(l), ∀v ∈ V.

5 From Vulnerabilities to Attacks

The expected losses (λ’s) are more accurately related to attacks as opposed
to vulnerabilities. For instance, consider an attack A whose success requires
successful exploitation of two vulnerabilities v1 and v2, as part of the stages of
the attack, and if successful inflicts an expected damage of λA. Since λA is only
inflicted when both vulnerabilities are successfully exploited, it is not possible to
separate the expected loss among v1 and v2 separately. We provide two different
models for considering attacks that involve exploiting multiple vulnerabilities
and describe how our developed MILPs can be extended to them.

5.1 Independence across vulnerabilities

Let A represent the set of attacks, where the expected inflicted loss if attack
A ∈ A is successful is λA. Consider the multiplicative model in which the effect of



controls on a vulnerability was assumed to be independent. Now assume further
that the successful exploitation of different vulnerabilities comprising an attack
are also independent events. Then, the expected security damages will be:

R(x) =
∑
A∈A

PAλA
∏
v∈A

∏
c∈Cv

scv(xc) =
∑
A∈A

PAλA
∏
c∈Cv

∏
v∈A

scv(xc)

This shows that, by introducing flow variables yAcl for each attack, and perform-
ing a pre-processing by computing scA(xc) :=

∏
v∈A scv(xc), the same formula-

tion as in Prep.4 can be applied with scv(l) replaced by scA(l).

5.2 Correlations across vulnerabilities

The success of exploitation attempts across different vulnerabilities comprising
an attack may have positive correlations. These correlations arise due to skills or
resources of the attackers: a successful exploitation of an stage of an attack can
be a signal about the higher abilities/resources of the attacker. A model that
reflects these correlations is the following: the success chance of carrying out an
attack is determined by the lowest probability of success across the vulnerabilities
that comprise that attack. Now, combining this model with the “best-of” model
that takes the correlations across defensive mechanism of controls, we get:

R(x) =
∑
A∈A

PAλA min
v∈A

min
c∈Cv

scv(xc) =
∑
A∈A

PAλA min
c∈Cv

min
v∈A

scv(xc)

Therefore, by introducing auxiliary variables yAcl per attacks A ∈ A as opposed
to per vulnerabilities, and performing a pre-processing scA(l) := minv∈A scv(l),
we can apply the same formulation as in Prop.5 with scv(l) replaced by scA(l).

6 Parameter Uncertainties

The most likely source of uncertainty in the parameters of our models is arguably
the effectiveness of the controls against each of the vulnerabilities at different
implementation levels, i.e., ecv(l)’s. Suppose that each of these parameters are
given as an uncertainty interval [ecv(l), ecv(l)] a subset of [0, 1], with the inter-
pretation that the true (realized) value of the parameter can be anywhere in that
interval with an unknown distribution. Collating all the efficacy parameters as
[ecv], we can show the uncertainty intervals by their lower and upper end in a
concise way as: [ecv] � [ecv] � [ecv], where � denotes element-wise inequalities.

One way to deal with the uncertainty is to optimize for the “worst” combined
realization of the uncertain parameters. Consider the optimizations in (9), with
the uncertain parameters [ecv] also as variables. Then finding optimal plans with
respect to worst case of the uncertainties in efficacies can be expressed as follows:

min
x∈X

[
max

[ecv ]�[ecv ]�[ecv ]

{
wdD̃(x) + wiĨ(x) + wrR̃(x, [ecv])

}]
s.t.: max

[ecv ]�[ecv ]�[ecv ]
{D(x)−B} ≤ 0 (16)



We have the following observation, which we skip the proof of for brevity: For
all of the security risk models in this paper, (16) is equivalent to:

min
x∈X

[
wdD̃(x) + wiĨ(x) + wrR̃(x, [ecv])

]
s.t.: D(x) ≤ B

7 Numerical Evaluations

In this section, we first use our frameworks to investigate a list of the most
important security controls for a typical SME (Small and Medium Enterprise)
given a realistic set of parameters. As a soft method of validation, we compare
the controls that most consistently appear in the Pareto-optimal plans against
the top critical cyber-security controls as recommended by experts and policy
organizations, specifically, SANS [17] and GCHQ [4,5]. Subsequently, we provide
some comparisons among the different security models.7

Parameters for our Case Study: The vulnerabilities that a typical SME
faces can be generally categorized into three groups: I.“Software Vulnerabilities”,
II.“Social Engineering” (e.g. phishing, pretexting, baiting, etc) and III.“Network
Vulnerabilities”. In this study, we incorporated a wide range of vulnerabilities
from each of these categories. In total, we consider 37 most common vulnera-
bilities (Table I in the Appendix of our technical report [9]) which we collected
from a combination of the publicly available databases such as the Critical Weak-
ness Enumeration (CWE) and the Common Attack Pattern Enumeration and
Classification (CAPEC).

Recall that the “Impact” score for each vulnerability in our models, i.e., Iv,
designated the expected damage inflicted on the SME in case of a successful
exploitation of that vulnerability. To obtain relative values for Iv, from the vul-
nerability descriptions in the “Common Weakness Scoring System (CWSS)”, we
derived a score for the impact of each vulnerability on three sources of damage:
(1) “Data Losses”, damages as a result of a compromise in the confidentiality
or integrity of data; (2) “Business Disruption”, losses due to compromise in the
availability of services, and (3) “Reputation Damage”. For each vulnerability, we
considered a weighted average of these three damages as its overall impact. We es-
timated these by combining some relevant features from the Common Weakness
Scoring System (CWSS) database. Specifically, features regarding their “System
Requirement Score” (e.g. “required privilege”), “Technical Requirement Score”
(e.g. “likelihood of discovery” and “ease of execution”), and “Environmental
Factor Score” (e.g. “exploitability” and “accessibility of information”), are com-
bined to give a measure of the “relative ease” to exploit each vulnerability and
hence get a measure of the overall rate of attempts on each vulnerability. The
general trend was similar to the measurement reports of [14].

For cyber-security controls, we need to have each control to be an action-
able process as a single independent measure that can be used to help mitigate

7 Due to space limit, some of our numerical evaluations were relegated to our technical
report, accessible at: [9].



vulnerabilities in the system. We derived our controls from the “SANS Top 20
Critical Security controls”, but we separated some of the controls that were
in fact represented a composition of multiple investment decisions. Therefore,
overall, we take into account 27 distinct controls, each with multiple levels of
implementation, leading to 75 distinct controls. We estimated and normalized
costs parameters (both indirect and indirect costs) reported in Table II in the
Appendix of our technical report [9]. We also gathered estimates of the efficacy
parameters based on the defensive mechanism of each measure in the face of the
exploitation requirements of each vulnerability (Table III in the Appendix of our
technical report [9]).

Validation Our overall objective is to provide a cyber-security investment
framework which is accurate, credible and relevant to the real world. A rig-
orous validation should take the form of a field validation in the style of clinical
trials. However, at this stage, for both economical and security reasons, this
approach is not feasible. In reflecting about what can constitute a reasonable
validation of our framework we have decided to concentrate on expert advice,
in particular the available recommendations from government agencies. These
agencies have studied thousands of cyber-security incidents over many years and
as such we consider their advice credible and relevant. In particular, we consult
with the SANS institute “The Critical Security Controls for Effective Cyber
Defense” [17], and the “10 Steps to Cyber Security” [5] and “Common Cyber
Attacks: Reducing The Impact” by GCHQ [4].

A subset of the critical controls is common among all of these documents. For
instance from the SANS institute the core of recommended controls are the “5
quick wins” [17]: I- Application whitelisting (found in CSC-2); II- Use of stan-
dard, secure system configurations (found in CSC-3); III- Patching application
software within 48 hours (found in CSC-4); IV- Patching system software within
48 hours (found in CSC 4); and V- Reducing the number of users with adminis-
trative privileges (found in CSC 3 and CSC 12)”. A similar set of critical controls
is recommended by the latest GCHQ advice [4]: I- Boundary firewalls and Inter-
net gateways; II- Malware protection; III- Patch management; IV- Whitelisting
and execution control; V- Secure configuration; VI- Password policy; VII- User
access control; It is hence interesting to compare our results with these sets of
recommendations and in particular their intersection: I- Patch management;
II- Application whitelisting; III- Secure configuration; IV- User access control.

To make a meaningful comparison we have organized the controls appearing
in our solutions in a “prevalence ordering”. The “most prevalent” controls are
the ones that appear across the most number of Pareto-optimal plans for a large
range of parameters: we take this as a measure of the relative importance of
each cyber-security control. In particular, For each of our models, we computed
the number of times each cyber-security control (at any of its implementation
levels) appear in the plan across all Pareto-optimal solutions. We then “ranked”
the controls based on this measure of prevalence in decreasing order. The result-
ing ranks are provided in Table 1 in the Appendix. We observed that overall,
“patching”, “firewalls” and “whitelisting” appear among the top controls for



all cases and there is a general consistency with the official recommendations.
The best match with the official recommendations pertains to the “Best-of –
Reactive” model. This reinforces the intuition that the “Best-of” combination of
controls concentrates on the contributions of the most effective controls, and the
“Reactive” threat concentrates on the most critical vulnerabilities. This observa-
tion also underlines the importance of taking into account the hitherto ignored
correlations in the defensive mechanisms of the security controls.

The consistency of our results and the official advice is an encouraging first
step. In the longer term we expect our mathematical framework to guide and
eventually possibly replace expert advice. Another advantage is that we can
customize our data to specific organizations and particular threats and so pro-
vide better “individualized” investment portfolios than a generic one-size-fit-all
recommendation. We can also extend and edit the data with new controls and
attacks as the threat scenarios evolve. Our solutions can be efficiently computed
for large sets of controls and attacks, way beyond human manual capabilities.
Our framework and the resulting tools hence open the door for customizable and
accurate quantitative cyber-security advice.

A note on the computational efficiency of our frameworks It is worth
noting that, with their distinct implementation levels, we are considering 75
distinct security controls, which lead to an order of 1014 distinct cyber-security
plans. With this size of the problem, an exhaustive search for finding Pareto-
optimal plans is outright impractical. Generic heuristic methods such as “Genetic
Algorithms” and “Tabu Search” as used in works like [13,24] will also take “days”
to converge, and even after convergence, there is no guarantee of optimality. In
contrast, our MILP-based frameworks, using a generic MILP solver (Matlab’s
intlinprog in our case on a typical laptop) solve for an “exact” optimal solution
over the following time scales: “additive” (both passive and reactive): fraction of
a second; “Multiplicative” (both “passive” and “reactive”): less than a minute;
and surprisingly, for “Best-of” model, about a second for the “passive” case, and
less than 10 seconds for the reactive case.

Conclusions and future works

Decision support for cyber-security is a complex multi-objective problem. We
modeled a large set of possible vulnerabilities and mitigations, and demonstrated
how to efficiently compute Pareto-optimal solutions using Mixed Integer Linear
Programming conversions. Many challenges remain, e.g. taking into account the
costs of attacks, custom combined efficacies of controls, other approaches to deal
with parameter uncertainties, combining learning and optimization, and stronger
model validation. Some of these problems are within the realm of optimization
engineering, others like validation methodologies requires more real-world data,
which will be direction of our future work.
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Table 1: Order of prevalence of controls among Pareto-optimal plans, for different
security models. In the column-headers, the initials “A.”, “M.” and “B.” stand
for “Additive”, “Multiplicative” and “Best-of”, also, “P.” and “R.” designate
“Reactive” and “Passive”, respectively. The table is ordered with respect to the
Best-of prevalence rank, as it shows the best match with expert recommendation.

Cyber-Security Control B.R. M.R. A.R. B.P. M.P. A.P.

Deployment of Network Firewalls 1 1 1 2 2 2
Deploy Web Application Firewalls 2 2 4 4 3 3
Anti-Malware Software 3 7 6 3 4 5
Automated Patching Tools 4 3 2 1 1 1
Use of Secure Config. for OS 5 5 7 5 10 9
Application Whitelisting 6 4 3 10 8 8
Network Data Encryption 7 6 5 7 6 4
Strong Secure Password Policy 8 15 20 13 12 17
User Access Controls 9 12 17 6 7 13
Secure Configuration Controls for All Devices 10 24 26 9 15 22
Penetration Testing 11 13 13 27 27 12
Automated Vulnerability Scanning Tools 12 11 11 17 13 18
Automated Inventory Scanning & Management 13 8 8 16 14 11
Segmentation of Network Based on Trust Levels 14 17 22 23 23 19
Host Based IPS 15 9 16 12 5 7
Deploy DLP Based Systems 16 22 24 8 16 25
Execution Control on Removable Media 17 21 15 18 17 21
Employ Wireless Devices Authentication Config. 18 23 25 19 18 26
Employ Port Scanning & Control Tools 19 25 21 20 19 23
Deploy Network Based IDS 20 20 19 14 20 20
Deploy Network Based Proxies 21 16 14 21 21 14
Deployment of VLANs for Sensitive Operations 22 26 27 22 22 27
Website Whitelisting 23 27 18 11 11 16
Network Log Reporting 24 14 12 24 24 10
Account Management Controls 25 19 23 25 25 24
User Training & Education 26 18 10 26 26 15
Incident Handling & Response Policies 27 10 9 15 9 6

Further Numerical Investigations: Choosing an optimal plan from
the Pareto-front
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Fig. 1: Examples of Pareto-front plots. The efficacy combination model is “best-
of”, and the threat model is “passive” in (a) and “reactive” in (b).



Table I: Vulnerabilities.

ID Vulnerability (v) Iv Pv PvIv

V1 OS Command Injection 5.9 0.027 0.16
V2 XSS 5.9 0.032 0.19
V3 SQL Injection 4.4 0.030 0.13
V4 Error Message Exposure 3.0 0.010 0.03
V5 Cross Site Request Forgery 8.3 0.031 0.25
V6 Race Condition 3.0 0.014 0.04
V7 Unrestricted Upload 4.0 0.015 0.06
V8 Open Redirect 5.4 0.028 0.15
V9 Path Traversal 5.4 0.019 0.10
V10 Improper Control of Filenames 4.7 0.020 0.09
V11 Buffer Overflow 3.6 0.030 0.11
V12 Improper Validation of Array Indices 3.6 0.028 0.10
V13 Unrestricted Allocation of Resources 3.6 0.038 0.14
V14 Integer Overflow or Wraparound 3.6 0.026 0.09
V15 Download of Code Without Integrity Checks 6.4 0.025 0.16
V16 Improper Check for Unusual or Exceptional Conditions 4.4 0.021 0.09
V17 Improper Authorisation 7.1 0.026 0.18
V18 Missing Authentication for Critical Factors 7.1 0.031 0.22
V19 Missing Encryption on Sensitive Data 7.1 0.029 0.20
V20 Risky or Broken Cryptographic Algorithms 4.1 0.016 0.06
V21 Incorrect Permission Assignment for Critical Resources 6.0 0.020 0.12
V22 Use of Hard Coded Credentials 4.7 0.039 0.18
V23 Spear Phishing (Credentials) 8.3 0.029 0.24
V24 Spear Phishing (Malware) 8.4 0.029 0.25
V25 Pretexting (Credentials) 8.3 0.029 0.24
V26 Phishing (Credentials) 8.3 0.033 0.27
V27 Phishing (Malware) 8.4 0.033 0.27
V28 Watering Hole (Malware) 8.4 0.032 0.27
V29 Baiting (Malware) 8.4 0.032 0.27
V30 DDoS 3.0 0.037 0.11
V31 Port Scanning Attacks 6.6 0.041 0.27
V32 Unauthorised Direct Access 6.6 0.041 0.27
V33 IP Spoofing Attacks 6.8 0.032 0.22
V34 Unsecured Third Party Software 6.4 0.006 0.04
V35 Infected BYOD 7.4 0.016 0.12
V36 Passive Monitoring 3.0 0.034 0.10
V37 Session Hijacking 4.8 0.020 0.10



Control Costs (direct and indirect) ... [continued on the next page]

ID Control(c) Level(l) dc Ic

C1-1 Automated Inventory Scanning & Management Implement Once 0.25 0.25
C1-2 Automated Inventory Scanning & Management Yearly 0.50 0.25
C1-3 Automated Inventory Scanning & Management Monthly 0.75 0.50
C1-4 Automated Inventory Scanning & Management Weekly 1.00 0.50
C1-5 Automated Inventory Scanning & Management Daily/On Demand 1.50 0.75
C2-1 Automated Patching Tools Implement Once 0.25 0.25
C2-2 Automated Patching Tools Yearly 0.50 0.25
C2-3 Automated Patching Tools Monthly 0.75 0.50
C2-4 Automated Patching Tools Weekly 1.00 0.75
C2-5 Automated Patching Tools Daily/On Demand 1.50 0.25
C3-1 Automated Vulnerability Scanning Tools Yearly 0.50 0.25
C3-2 Automated Vulnerability Scanning Tools Monthly 0.75 0.50
C3-3 Automated Vulnerability Scanning Tools Weekly 1.00 0.75
C3-4 Automated Vulnerability Scanning Tools Daily/On Demand 1.50 0.25
C4-1 Anti-Malware Software Yearly 0.50 0.25
C4-2 Anti-Malware Software Monthly 0.75 0.50
C4-3 Anti-Malware Software Weekly 1.00 0.75
C4-4 Anti-Malware Software Daily/On Demand 1.50 1.25
C5-1 Deployment of Network Firewalls Lax 0.25 0.25
C5-2 Deployment of Network Firewalls Moderate 0.50 0.50
C5-3 Deployment of Network Firewalls Strict 1.00 0.50
C6-1 Host Based IPS Lax 0.75 0.25
C6-2 Host Based IPS Moderate 1.00 0.50
C6-3 Host Based IPS Strict 1.50 0.75
C7-1 Deploy Web Application Firewalls Lax 0.25 0.25
C7-2 Deploy Web Application Firewalls Moderate 0.50 0.50
C7-3 Deploy Web Application Firewalls Strict 1.00 0.50
C8-1 Deploy DLP Based Systems Implement Once 1.00 0.25
C9-1 Use of Secure Config for OS Basic 1.00 0.25
C9-2 Use of Secure Config for OS Advanced 1.25 0.50
C9-3 Use of Secure Config for OS Complete 1.50 0.75
C10-1 Execution Control on Removable Media Lax 0.25 0.75
C10-2 Execution Control on Removable Media Moderate 0.50 1.25
C10-3 Execution Control on Removable Media Strict 0.75 1.75
C11-1 Employ Wireless Devices Auth. Config Implement Once 1.00 0.75
C12-1 Secure Configuration Controls for All Devices Basic 1.00 1.25
C12-2 Secure Configuration Controls for All Devices Advanced 1.25 1.50
C12-3 Secure Configuration Controls for All Devices Complete 1.50 2.00
C13-1 Employ Port Scanning & Control Tools Yearly 0.25 0.25
C13-2 Employ Port Scanning & Control Tools Monthly 0.50 0.50
C13-3 Employ Port Scanning & Control Tools Weekly 1.00 0.50
C13-4 Employ Port Scanning & Control Tools Daily/On Demand 1.50 0.75
C14-1 Deploy Network Based IDS Basic 0.75 0.25
C14-2 Deploy Network Based IDS Advanced 1.00 0.50
C14-3 Deploy Network Based IDS Complete 1.25 0.75
C15-1 Deploy Network Based Proxies Implement Once 1.00 0.50
C16-1 Deployment of VLANs for Sensitive Operations Implement Once 1.25 0.50
C17-1 Segmentation of Net. Based on Trust Levels Implement Once 2.00 0.50
C18-1 Network Data Encryption Implement Once 0.75 0.75
C19-1 Application Whitelisting Lax 0.50 0.75
C19-2 Application Whitelisting Moderate 1.00 1.25
C19-3 Application Whitelisting Strict 1.25 1.50
C19-4 Application Whitelisting Business Needs 1.50 1.75



Table II: Control Costs (direct and indirect) ... [continue from previous page]

ID Control(c) Level(l) dc Ic

C20-1 User Access Controls Basic 0.50 0.75
C20-2 User Access Controls Advanced 1.00 1.00
C20-3 User Access Controls Complete 2.00 1.50
C21-1 Website Whitelisting Lax 0.50 0.75
C21-2 Website Whitelisting Moderate 1.00 1.25
C21-3 Website Whitelisting Strict 1.25 1.50
C21-4 Website Whitelisting Business Needs 1.50 2.25
C22-1 Network Log Reporting Implement Once 0.75 0.25
C23-1 Account Management Controls Lax 0.75 0.75
C23-2 Account Management Controls Moderate 1.00 1.00
C23-3 Account Management Controls Strict 1.50 1.00
C23-4 Account Management Controls Business Needs 1.75 1.50
C24-1 User Training & Education Yearly 0.75 0.50
C24-2 User Training & Education Monthly 1.00 1.00
C24-3 User Training & Education Weekly 2.00 1.50
C24-4 User Training & Education Daily/On Demand 4.00 2.00
C25-1 Strong Secure Password Policy Lax 0.25 0.50
C25-2 Strong Secure Password Policy Moderate 1.00 0.75
C25-3 Strong Secure Password Policy Strict 1.50 1.25
C26-1 Incident Handling & Response Policies Implement Once 0.25 0.50
C27-1 Penetration Testing Yearly 2.00 0.25
C27-2 Penetration Testing Monthly 4.00 0.50



Table III: Control-Vulnerability Effectiveness: ecv(l)...[continues on next page]
ID V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19

C1-1 - - - - - - - - - - - - - - - - - - -
C1-2 - - - - - - - - - - - - - - - - - - -
C1-3 - - - - - - - - - - - - - - - - - - -
C1-4 - - - - - - - - - - - - - - - - - - -
C1-5 - - - - - - - - - - - - - - - - - - -
C2-1 0.09 0.09 0.09 0.18 0.09 0.18 0.09 0.45 0.45 0.45 0.18 0.18 0.18 0.18 0.09 0.18 0.18 0.18 -
C2-2 0.23 0.18 0.45 0.45 0.18 0.23 0.18 0.45 0.45 0.45 0.27 0.27 0.27 0.27 0.18 0.23 0.23 0.23 -
C2-3 0.54 0.27 0.63 0.63 0.27 0.54 0.27 0.85 0.85 0.85 0.45 0.45 0.45 0.45 0.27 0.54 0.54 0.54 -
C2-4 0.68 0.36 0.85 0.85 0.36 0.68 0.36 0.85 0.85 0.85 0.68 0.68 0.68 0.68 0.36 0.63 0.63 0.63 -
C2-5 0.85 0.45 0.85 0.85 0.45 0.85 0.45 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.45 0.68 0.68 0.68 -
C3-1 0.09 0.09 - - 0.09 0.09 - 0.45 0.45 0.45 0.27 0.27 0.27 0.27 - 0.09 0.09 0.09 -
C3-2 0.27 0.18 - - 0.18 0.27 - 0.85 0.85 0.85 0.45 0.45 0.45 0.45 - 0.18 0.18 0.18 -
C3-3 0.54 0.27 - - 0.27 0.54 - 0.85 0.85 0.85 0.68 0.68 0.68 0.68 - 0.27 0.27 0.27 -
C3-4 0.68 0.45 - - 0.45 0.68 - 0.85 0.85 0.85 0.85 0.85 0.85 0.85 - 0.27 0.27 0.27 -
C4-1 - - - - - - 0.18 - - - - - - - 0.18 - - - -
C4-2 - - - - - - 0.45 - - - - - - - 0.45 - - - -
C4-3 - - - - - - 0.54 - - - - - - - 0.54 - - - -
C4-4 - - - - - - 0.68 - - - - - - - 0.68 - - - -
C5-1 0.09 - - - - - - - - - - - - - - - - - -
C5-2 0.27 - - - - - - - - - - - - - - - - - -
C5-3 0.45 - - - - - - - - - - - - - - - - - -
C6-1 0.09 - - - - - - 0.09 0.09 0.09 0.09 0.09 0.09 0.09 - 0.27 0.27 0.27 -
C6-2 0.27 - - - - - - 0.27 0.27 0.27 0.27 0.27 0.27 0.27 - 0.45 0.45 0.45 -
C6-3 0.45 - - - - - - 0.45 0.45 0.45 0.45 0.45 0.45 0.45 - 0.63 0.63 0.63 -
C7-1 - 0.18 - - 0.18 - 0.09 - - - - - - - 0.09 - - - -
C7-2 - 0.45 - - 0.45 - 0.18 - - - - - - - 0.18 - - - -
C7-3 - 0.85 - - 0.85 - 0.27 - - - - - - - 0.27 - - - -
C8-1 - - 0.45 0.09 - 0.27 - - - - - - - - - 0.45 0.45 0.45 -
C9-1 0.32 - - 0.45 - 0.32 - 0.45 0.45 0.45 0.09 0.09 0.09 0.09 - 0.27 0.27 0.27 0.45
C9-2 0.45 - - 0.58 - 0.45 - 0.63 0.63 0.63 0.27 0.27 0.27 0.27 - 0.63 0.63 0.63 0.63
C9-3 0.68 - - 0.68 - 0.68 - 0.85 0.85 0.85 0.45 0.45 0.45 0.45 - 0.85 0.85 0.85 0.85
C10-1 - - - - - - - - - - - - - - - - - - -
C10-2 - - - - - - - - - - - - - - - - - - -
C10-3 - - - - - - - - - - - - - - - - - - -
C11-1 - - - - - - - - - - - - - - - - - - -
C12-1 0.32 - - 0.45 - 0.32 - - - - 0.32 0.32 0.32 0.32 - 0.27 0.27 0.27 0.45
C12-2 0.45 - - 0.58 - 0.45 - - - - 0.45 0.45 0.45 0.45 - 0.63 0.63 0.63 0.63
C12-3 0.68 - - 0.68 - 0.68 - - - - 0.58 0.58 0.58 0.58 - 0.85 0.85 0.85 0.85
C13-1 - - - - - - - - - - - - - - - - - - -
C13-2 - - - - - - - - - - - - - - - - - - -
C13-3 - - - - - - - - - - - - - - - - - - -
C13-4 - - - - - - - - - - - - - - - - - - -
C14-1 0.09 - 0.18 - - - - 0.18 0.18 0.18 0.09 0.09 0.09 0.09 - 0.09 0.09 0.09 -
C14-2 0.27 - 0.36 - - - - 0.36 0.36 0.36 0.27 0.27 0.27 0.27 - 0.27 0.27 0.27 -
C14-3 0.45 - 0.54 - - - - 0.54 0.54 0.54 0.45 0.45 0.45 0.45 - 0.45 0.45 0.45 -
C15-1 0.18 - - - - - - 0.45 0.45 0.45 - - - - - - - - -
C16-1 0.27 - 0.45 - - - 0.45 - - - - - - - 0.45 - - - -
C17-1 0.23 - - - - - 0.23 - - - - - - - 0.23 0.27 0.27 0.27 -
C18-1 - - - 0.45 - - - - - - - - - - - - - - 0.85
C19-1 - - - 0.09 - 0.09 0.18 0.18 0.18 0.18 0.09 0.09 0.09 0.09 0.18 0.09 0.09 0.09 -
C19-2 - - - 0.27 - 0.27 0.36 0.36 0.36 0.36 0.54 0.54 0.54 0.54 0.45 0.27 0.27 0.27 -
C19-3 - - - 0.45 - 0.45 0.54 0.54 0.54 0.54 0.63 0.63 0.63 0.63 0.63 0.45 0.45 0.45 -
C19-4 - - - 0.54 - 0.54 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.54 0.54 0.54 -
C20-1 0.09 - - 0.18 - - - - - - - - - - - - - - -
C20-2 0.27 - - 0.32 - - - - - - - - - - - - - - -
C20-3 0.45 - - 0.45 - - - - - - - - - - - - - - -
C21-1 - 0.18 - - 0.18 - - - - - - - - - - - - - -
C21-2 - 0.45 - - 0.45 - - - - - - - - - - - - - -
C21-3 - 0.63 - - 0.63 - - - - - - - - - - - - - -
C21-4 - 0.85 - - 0.85 - - - - - - - - - - - - - -
C22-1 0.18 - 0.18 - - 0.27 - - - - - - - - - - - - -
C23-1 - - 0.09 - - - - - - - - - - - - - - - -
C23-2 - - 0.27 - - - - - - - - - - - - - - - -
C23-3 - - 0.45 - - - - - - - - - - - - - - - -
C23-4 - - 0.45 - - - - - - - - - - - - - - - -
C24-1 - - - - - - - - - - - - - - - - - - -
C24-2 - - - - - - - - - - - - - - - - - - -
C24-3 - - - - - - - - - - - - - - - - - - -
C24-4 - - - - - - - - - - - - - - - - - - -
C25-1 - - - - - - - - - - - - - - - - - - -
C25-2 - - - - - - - - - - - - - - - - - - -
C25-3 - - - - - - - - - - - - - - - - - - -
C26-1 0.09 - 0.09 - - 0.09 - - - - - - - - - - - - -
C27-1 0.18 - 0.18 - - 0.36 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18
C27-2 0.27 - 0.36 - - 0.45 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27



Table III: Control-Vulnerability Effectiveness: ecv(l)...[from previous page]
V20 V21 V22 V23 V24 V25 V26 V27 V28 V29 V30 V31 V32 V33 V34 V35 V36 V37

C1-1 - - - 0.09 - 0.09 0.09 - - - - 0.18 0.18 0.18 - 0.09 - -
C1-2 - - - 0.18 - 0.18 0.18 - - - - 0.23 0.23 0.23 - 0.18 - -
C1-3 - - - 0.27 - 0.27 0.27 - - - - 0.45 0.45 0.45 - 0.27 - -
C1-4 - - - 0.36 - 0.36 0.36 - - - - 0.54 0.54 0.54 - 0.36 - -
C1-5 - - - 0.45 - 0.45 0.45 - - - - 0.63 0.63 0.63 - 0.45 - -
C2-1 - 0.18 0.18 - - - - - - - - - - - - - - -
C2-2 - 0.23 0.23 - - - - - - - - - - - - - - -
C2-3 - 0.54 0.54 - - - - - - - - - - - - - - -
C2-4 - 0.63 0.63 - - - - - - - - - - - - - - -
C2-5 - 0.68 0.68 - - - - - - - - - - - - - - -
C3-1 - 0.09 0.09 - - - - - - - - 0.18 0.18 - - - - -
C3-2 - 0.18 0.18 - - - - - - - - 0.45 0.45 - - - - -
C3-3 - 0.27 0.27 - - - - - - - - 0.63 0.63 - - - - -
C3-4 - 0.27 0.27 - - - - - - - - 0.68 0.68 - - - - -
C4-1 - - - - 0.45 - - 0.45 0.45 0.45 - - - - 0.09 - - -
C4-2 - - - - 0.63 - - 0.63 0.63 0.63 - - - - 0.27 - - -
C4-3 - - - - 0.81 - - 0.81 0.81 0.81 - - - - 0.45 - - -
C4-4 - - - - 0.85 - - 0.85 0.85 0.85 - - - - 0.63 - - -
C5-1 - - - 0.18 - 0.18 0.18 - - - 0.18 0.63 0.63 0.63 - 0.36 0.27 0.36
C5-2 - - - 0.45 - 0.45 0.45 - - - 0.36 0.81 0.81 0.81 - 0.54 0.36 0.54
C5-3 - - - 0.63 - 0.63 0.63 - - - 0.54 0.85 0.85 0.85 - 0.72 0.54 0.72
C6-1 - 0.27 0.27 0.18 - 0.18 0.18 - - - - 0.63 0.63 0.63 - - 0.27 0.27
C6-2 - 0.45 0.45 0.45 - 0.45 0.45 - - - - 0.81 0.81 0.81 - - 0.45 0.45
C6-3 - 0.63 0.63 0.63 - 0.63 0.63 - - - - 0.85 0.85 0.85 - - 0.63 0.63
C7-1 - - - - 0.27 - - 0.27 0.27 0.27 - - - - - - - -
C7-2 - - - - 0.45 - - 0.45 0.45 0.45 - - - - - - - -
C7-3 - - - - 0.63 - - 0.63 0.63 0.63 - - - - - - - -
C8-1 - 0.45 0.45 - - - - - - - - - - - - - 0.63 0.63
C9-1 0.45 0.27 0.27 - - - - - - - - - - - - - - -
C9-2 0.63 0.63 0.63 - - - - - - - - - - - - - - -
C9-3 0.85 0.85 0.85 - - - - - - - - - - - - - - -
C10-1 - - - - - - - - - 0.63 - - - - 0.09 0.09 - -
C10-2 - - - - - - - - - 0.72 - - - - 0.27 0.27 - -
C10-3 - - - - - - - - - 0.81 - - - - 0.45 0.45 - -
C11-1 - - - - - - - - - - - - - - - 0.81 - -
C12-1 0.45 0.27 0.27 - - - - - - - - - - - - 0.36 - -
C12-2 0.63 0.63 0.63 - - - - - - - - - - - - 0.54 - -
C12-3 0.85 0.85 0.85 - - - - - - - - - - - - 0.81 - -
C13-1 - - - - - - - - - - - 0.45 0.45 0.45 - - - -
C13-2 - - - - - - - - - - - 0.63 0.63 0.63 - - - -
C13-3 - - - - - - - - - - - 0.81 0.81 0.81 - - - -
C13-4 - - - - - - - - - - - 0.85 0.85 0.85 - - - -
C14-1 - 0.09 0.09 0.09 - 0.09 0.09 - - - - - - - - - 0.36 0.36
C14-2 - 0.27 0.27 0.27 - 0.27 0.27 - - - - - - - - - 0.54 0.54
C14-3 - 0.45 0.45 0.45 - 0.45 0.45 - - - - - - - - - 0.72 0.72
C15-1 - - - - - - - - - - 0.09 - - - - 0.63 - -
C16-1 - - - - - - - - - - - - - - - 0.81 - -
C17-1 - 0.27 0.27 0.36 0.36 0.36 0.36 0.36 0.36 0.36 - - - - - 0.63 0.45 0.45
C18-1 0.85 - - - - - - - - - - - - - - - 0.63 0.63
C19-1 - 0.09 0.09 - 0.45 - - 0.18 0.18 0.18 - - - - 0.45 - - -
C19-2 - 0.27 0.27 - 0.63 - - 0.36 0.36 0.36 - - - - 0.63 - - -
C19-3 - 0.45 0.45 - 0.81 - - 0.54 0.54 0.54 - - - - 0.81 - - -
C19-4 - 0.54 0.54 - 0.85 - - 0.63 0.63 0.63 - - - - 0.85 - - -
C20-1 - - - 0.45 - 0.45 0.45 - - - - 0.45 0.45 0.45 - 0.27 0.18 0.18
C20-2 - - - 0.68 - 0.68 0.68 - - - - 0.63 0.63 0.63 - 0.54 0.36 0.36
C20-3 - - - 0.85 - 0.85 0.85 - - - - 0.85 0.85 0.85 - 0.81 0.54 0.54
C21-1 - - - 0.18 0.45 0.18 0.18 0.18 0.45 0.45 - - - - - - - -
C21-2 - - - 0.27 0.63 0.27 0.27 0.27 0.63 0.63 - - - - - - - -
C21-3 - - - 0.45 0.81 0.45 0.45 0.45 0.81 0.81 - - - - - - - -
C21-4 - - - 0.54 0.85 0.54 0.54 0.54 0.85 0.85 - - - - - - - -
C22-1 - - - - - - - - - - 0.09 - - - - 0.27 - -
C23-1 - - - - - - - - - - - - - - 0.18 - 0.27 0.27
C23-2 - - - - - - - - - - - - - - 0.36 - 0.45 0.45
C23-3 - - - - - - - - - - - - - - 0.54 - 0.63 0.63
C23-4 - - - - - - - - - - - - - - 0.81 - 0.63 0.63
C24-1 - - - 0.18 0.18 0.18 0.18 0.18 0.18 0.18 - - - - 0.18 0.18 - 0.09
C24-2 - - - 0.27 0.27 0.27 0.27 0.27 0.27 0.27 - - - - 0.27 0.27 - 0.18
C24-3 - - - 0.36 0.36 0.36 0.36 0.36 0.36 0.36 - - - - 0.36 0.36 - 0.23
C24-4 - - - 0.45 0.45 0.45 0.45 0.45 0.45 0.45 - - - - 0.45 0.45 - 0.27
C25-1 - - - 0.27 - 0.27 0.27 - - - - - - - - - 0.27 0.27
C25-2 - - - 0.54 - 0.54 0.54 - - - - - - - - - 0.45 0.45
C25-3 - - - 0.81 - 0.81 0.81 - - - - - - - - - 0.63 0.63
C26-1 - - - 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.09 - - - - - - -
C27-1 0.18 0.18 0.18 0.09 0.09 0.09 0.09 0.09 0.09 0.09 - 0.36 0.36 0.36 - 0.27 - -
C27-2 0.27 0.27 0.27 0.09 0.09 0.09 0.09 0.09 0.09 0.09 - 0.36 0.36 0.36 - 0.36 - -
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