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Abstract

Random non-Hermitian Jacobi matrices Jn of increasing dimension n are con-
sidered. We prove that the normalized eigenvalue counting measure of Jn converges
weakly to a limiting measure µ as n → ∞. We also extend to the non-Hermitian
case the Thouless formula relating µ and the Lyapunov exponent of the second-order
difference equation associated with the sequence Jn. The measure µ is shown to be
log-Hölder continuous.

1 Introduction

Let aj , bj , and cj are three given sequences of complex numbers. Consider the second-order
difference equation for f

ajfj−1 + bjfj + cjfj+1 = zfj , j = 1, 2, . . . . (1.1)

This equation can be also written as

(

fj+1

fj

)

= gj

(

fj

fj−1

)

, j = 1, 2, . . . , where gj =

(

z−bj

cj

−aj

cj

1 0

)

. (1.2)

Denote by fj(z) the solution of (1.1) satisfying the initial condition f0 = 0, f1 = 1. In
terms of the transfer matrix Sn(z) = gn · . . . · g1,

(

fn+1(z)
fn(z)

)

= Sn(z)

(

1
0

)

. (1.3)
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Obviously, fn+1(z) is a polynomial in z of degree n,

fn+1(z) = kn

n
∏

l=1

(z − zl), kn =

n
∏

j=1

1/cj. (1.4)

Its roots z1, . . . zn are the eigenvalues of the tridiagonal (Jacobi) matrix

Jn =

















b1 c1

a2 b2 c2
. . .

. . .
. . .

an−1 bn−1 cn−1

an bn

















. (1.5)

In this paper we are concerned with the limiting distribution of the eigenvalues of Jn as
n→ ∞ for random aj , bj , and cj.

If all bj are real and cj = a∗j+1 for all j the matrices Jn are Hermitian. The eigenvalue
distribution of such matrices was studied extensively in the past in the context of the
Anderson model, see e.g. [18, 3]. In this case the eigenvalues are always real and there are
several ways to prove that the normalized eigenvalue counting measure of Jn converges
to a limiting measure as n → ∞. None of these proofs works in the non-Hermitian case
and little is known about the limiting eigenvalue distribution of random non-Hermitian
Jacobi matrices, however, see [5, 11].

Our interest to such matrices is partly motivated by non-Hermitian quantum mechan-
ics of Hatano and Nelson [9, 10] which, in one dimension, leads to equation (1.1) with the
coefficients aj , bj , and cj chosen randomly from the special class defined by the restrictions

bj ∈ R and a∗j+1/cj > 0 for all j. (1.6)

In this class the Liouville substitution1 reduces equation (1.1) to the symmetric equation

s∗j−1ψj−1 + bjψj + sjψj=1 = zψj (1.7)

where sj = cj(a
∗
j+1/cj)

1/2. However, the situation here is much richer than in the Hermi-
tian case as the choice of boundary conditions to accompany equation (1.1) has a profound
effect on the spectrum of the associated Jacobi matrix. If the Dirichlet boundary condi-
tions, f0 = 0 and fn+1 = 0, are chosen then the corresponding Jacobi matrix is Jn (1.5).
As the Dirichlet boundary conditions are preserved by the Liouville transformation, the
spectrum of Jn is real provided the coefficients (aj , bj , cj) belong to the Hatano-Nelson
class (1.6). On the other hand, if one imposes the periodic boundary conditions, f0 = fn

and f1 = fn+1, then the spectrum of the corresponding Jacobi matrix turns out to be
complex. This is not surprising of course as the Liouville substitution transforms the
periodic boundary conditions for f into highly asymmetric boundary conditions for ψ.

1fj = θjψj , where θ1 = 1 and θk = (
∏k−1

j=1
a∗j+1/cj)

1/2 for k ≥ 2.
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What is surprising however is that in the limit n → ∞ the complex eigenvalues lie on
analytic curves [15] and are regularly spaced even if the coefficients in equation (1.1) are
chosen randomly [16]. These effects are specific to the Hatano-Nelson class and the proofs
and analysis of the limiting eigenvalue distribution given in [15, 16] exploit the relation
between equations (1.1) and (1.7). Of course, in the general case of arbitrary coefficients
no such relation exists and one requires a different approach in order to investigate the
eigenvalue distribution of Jn. We develop such an approach in the present paper.

Throughout this paper we assume that:

A1 {(aj, bj , cj)}
∞
j=1 is a sequence i.i.d. random vectors.

A2 For some δ > 0 E[|aj|
δ + |aj|

−δ + |bj|
δ + |cj|

δ + |cj|
−δ] <∞.

A3 The support of the probability distribution of the random vector (a1, b1, c1) contains
at least two different points (a, b, c) and (a′, b′, c′).

If all mass of the probability distribution of (aj, bj , cj) is concentrated at one point
(a, b, c) then of course we have a tridiagonal matrix with constant diagonals. This is
a particular case of Töplitz matrices. Eigenvalue distribution of non-Hermitian Töplitz
matrices was extensively studied in the past, see e.g. survey [21].

Our main result expresses the limiting distribution of the eigenvalues of Jn in terms
of the (upper) Lyapunov exponent

γ(z) = lim
n→∞

1

2n
log[|fn+1(z)|

2 + |fn(z)|2]

of equation (1.1). It is well known that (for every complex z) the above limit exists with
probability one and is nonrandom. This follows from Oseledec’s multiplicative ergodic
theorem [17]. A more subtle fact is that in our case γ(z) can be calculated using the well
known Furstenberg formula [7], and moreover

γ(z) = lim
n→∞

1

n
E log ||Sn(z)||, z ∈ C. (1.8)

The function γ(z) is subharmonic in the entire complex plane [4] and bounded from below,

γ(z) ≥
1

2
E log |a1/c1| for all z. (1.9)

This inequality easily follows from detSn(z) =
∏n

j=1 aj/cj. The subharmonicity implies
that ∆γ, where ∆ is the distributional Laplacian in variables Re z and Im z, defines a
measure on C, see e.g. [12]. Our main result is as follows.

Theorem 1.1 Let µn be the normalized eigenvalue counting measure of Jn, i.e. µn =
1
n

∑n
l=1 δzl

, where z1, . . . zn are the eigenvalues of Jn. Then:

(a) With probability one, µn converges weakly to µ = 1
2π

∆γ as n→ ∞.
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(b) (Thouless formula) For every z ∈ C

γ(z) =

∫

C

log |w − z| dµ(w) − E log |c1|. (1.10)

(c) The limiting eigenvalue counting measure µ is log-Hölder continuous. More pre-
cisely, for any Bz0,δ = {z : |z − z0| ≤ δ}, 0 < δ < 1,

µ(Bz0,δ) ≤
C(z0, δ)

log 1
δ

, (1.11)

where C(z0, δ) → 0 as δ → 0.

We deduce Theorem 1.1 from Theorem 1.2 which is of independent interest in the
context of second order difference equations.

Theorem 1.2 With probability one

lim
n→∞

1

n
log |fn+1(z)| = γ(z) (1.12)

for almost all z with respect to the Lebesgue measure on C.

To prove Theorem 1.2, we use the theory of products of random matrices. Of course
this is unnecessary in the Hermitian case. In this case (1.12) and the Thouless formula
(1.10) follow directly from the fact that µn converges weakly to a limiting measure µ
[1, 6] and the latter can be established independently and by more elementary means. We
would like to emphasize that in the non-Hermitian case we follow the opposite direction
route: the weak convergence of µn and the Thouless formula are deduced from (1.12). To
this end we make use of the relation

µn =
1

2πn
∆ log |fn+1|, (1.13)

where the equality is to be understood in the sense of distribution theory. Relation (1.13)
is well known in the function theory. It holds for arbitrary polynomial of degree n and can
be easily derived with the help of the Gauss-Green formula. In this general setup it was
shown by Widom [20, 21] that if the measures µn for all n are supported inside a bounded
region and in the limit n → ∞ the function pn(z) =

∫

C
log |z − w|dµn(w) converges to a

limiting function p(z) almost everywhere in the complex plane then µn converges weakly
to µ = 1

2π
∆p. We shall need the following simple extension of this result to the case when

the supports of µn are not necessarily bounded.
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Let An be a (deterministic) sequence of square matrices of increasing dimension n,
and

pn(z) =
1

n
log | det(An − zIn)| =

∫

C

log |w − z|dµn(w),

where In is n× n identity matrix and µn = 1
2π

∆pn is the normalized eigenvalue counting
measure of An. Define

τR = lim sup
n→∞

∫

|w|≥R

log |w| dµn(w), R ≥ 1. (1.14)

Proposition 1.3 Assume that there is a function p: C → [−∞,+∞) such that pn(z) →
p(z) as n → ∞ almost everywhere in C. If τ1 < +∞ then it follows that p is locally
integrable, µ = 1

2π
∆p is a unit mass measure,

∫

|w|≥1

log |w| dµ(w) ≤ τ1 < +∞, (1.15)

and the sequence of measures µn converges weakly to µ as n → ∞. If, in addition,
limR→∞ τR = 0 then we also have that

p(z) =

∫

C

log |w − z|dµ(w). (1.16)

Remark. In view of (1.15), the integral on the RHS in (1.16) is a locally integrable
function of z taking values in [−∞,+∞).

For the sake of completeness, we give a proof of this Proposition in Appendix A.
In order to estimate the tails of eigenvalue distributions as required in the above

Proposition 1.3 we use the following inequalities2:

τ1 ≤ lim sup
n→∞

1

2n
log det(In + AnA

∗
n), (1.17)

and for any R > 1 and δ > 0

τR ≤
1

logδ R
lim sup

n→∞

1

21+δn
tr log1+δ(In + AnA

∗
n). (1.18)

These inequalities can be derived with the help of Weyl’s Majorant Theorem, for details
of derivation see Appendix B.

2Note that log det(In +AnA
∗

n) = tr log(In +AnA
∗

n).
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Let us now return to the random Jacobi matrices Jn. Straightforward but tedious
calculations show3 that

1

n
tr log1+δ(In + JnJ

∗
n) ≤

α

n

n
∑

j=1

log1+δ(1 + β|vj|
2), where vj = (aj, bj , cj),

for some α, β > 0 independent of vj ’s and n. Therefore if the random sequence vj is
stationary and

E log1+δ[1 + |v1|
2] <∞ for some δ > 0 (1.19)

then the Ergodic Theorem asserts that with probability one the limits in (1.17) (1.18)
are finite which implies τ1 < ∞ and limR→∞ τR = 0, as required in Proposition 1.3.
The assumptions of stationarity and (1.19) are less restrictive than assumptions A1-A3.
However we are only able to prove Theorem 1.2 (which is the main ingredient to our proof
of Theorem 1.1) under these more restrictive assumptions.

2 Products of random matrices

Our proof of Theorem 1.2 makes use of several facts from the theory of products of random
2 × 2 matrices. We list these facts below (Propositions 2.1 - 2.3).

Let ν be a probability distribution on the group Gl(2,C) of invertible complex 2 × 2
matrices and gk be an infinite sequence of independent samples from this distribution.

As before Sn = gn · . . . · g1 for n = 1, 2, . . . . By P (C2) we denote the projective space
on which every non-degenerate matrix g acts in a natural way. Let κ be a probability
measure on P (C2). We say that g preserves κ if κ(g−1.B) = κ(B) for any Borel set B
(here g.x is the result of the action of g on x ∈ P (C2)). By Gν we denote the closure of
the subgroup of Gl(2,C) generated by all matrices belonging to the support of ν. We say
that Gν preserves κ if κ is preserved by every g ∈ Gν .

Proposition 2.1 Let λ
(n)
1 ≥ λ

(n)
2 be the singular values of Sn. If

E log ||g|| and E log | det g| are both finite (2.1)

then with probability one the following limits

lim
n→∞

1

n
log λ

(n)
j = γj, j = 1, 2, (2.2)

exist and are nonrandom.

The limiting values γ1 and γ2 are called the Lyapunov exponents of the sequence Sn.

3For any Hermitian matrix H = ||Hjk||
n
j,k=1 we haveH ≤ D = diag(d1, . . . , dn) with dj =

∑n
k=1

|Hjk|,
j = 1, . . . , n. Therefore if f is a nondecreasing function then, by the Courant-Fisher minimax principle,
tr log f(H) ≤ tr f(D) =

∑n
j=1

f(dj).
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Proposition 2.2 If in addition to condition (2.1), no measure κ is preserved by Gν then
the Lyapunov exponents of the sequence Sn are distinct, i.e. γ1 > γ2.

Proposition 2.3 If condition (2.1) is satisfied and no measure κ is preserved by Gν then

(i) For any unit vector x the probability is one that

lim
n→∞

1

n
log ||Snx|| = γ1. (2.3)

(ii) If in addition E(||g||δ + ||g−1||δ) < ∞ for some δ > 0 then for any positive ε there
is a constant ρ(ε) > 0 such that uniformly in x, ||x|| = 1,

P rob (|log ||Snx|| − nγ1| ≥ εn|) ≤ e−nρ(ε). (2.4)

Remarks. 1. As all norms in C2 are equivalent, the choice of norm in (2.3) and (2.4)
is not important. However it is convenient to deal with the standard Euclidian norm.

2. Propositions 2.1 - 2.3 are well known in the classical case of the real matrices, see
e.g. [17, 2] for proofs of Propositions 2.1 and 2.3 and [7, 19] for proofs of Proposition 2.2.
For complex matrices, Propositions 2.1 and 2.3 are proved in the same way as in [17, 2].
However, the proof of Proposition 2.2 is somewhat different from that given in [7, 19].
We shall now discuss the necessary changes which would allow the interested reader to
reconstruct the proof in question simply by examining the one in [19]. Namely, the main
ingredient of this proof is the fact that the mapping g 7→ Tg, where

(Tgf) (x) = f(g−1x)||g−1x||−
m
2 ,

defines a unitary representation of the group SL(m,R) in Hilbert space L2(Sm, dl) with
dl being the natural Lebesgue measure on the unit sphere Sm ∈ Rm. (Obviously, we are
interested in the case when m = 2.)

In the case of the complex space the representation is defined by

(Tgf) (x) = f(g−1x)||g−1x||−m,

in Hilbert space L2(Sm, dl) with dl being again the natural Lebesgue measure on the unit
sphere Sm ∈ C

m. After that the proof proceeds in the way suggested in [19].

3 Proofs of Theorems 1.1 and 1.2

In order to be able to apply Propositions 2.1 – 2.3 we have to verify that under assumptions
A1–A3 our matrices gj defined in (1.2) satisfy the conditions of these Propositions.
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Is is apparent that assumption A2 guarantees that condition (2.1) is satisfied and
E(||g||δ + ||g−1||δ) <∞. It remains to check that assumption A3 implies that no measure
κ is preserved by Gν (here ν is the measure induced on the group of matrices by the
distribution of (a1, b1, c1)). To this end we note that if

g =

(

z−b
c

−a
c

1 0

)

and g′ =

(

z−b′

c′
−a
c′

1 0

)

then

gg′
−1

=

(

c′a
a′c

z−b
c

− (z−b′)a
a′c

0 1

)

and g′
−1
g =

(

1 0
z−b′

a′
− (z−b)c′

ca′

c′a
a′c

)

and

It remains to check that for almost all z that the group G generated by the matrices g, g′

is rich enough in the sense that no measure is preserved by all matrices of this group.
The main idea is as follows. For a ”typical” z we construct two matrices, say B and D,
from G such that the eigenvalues of B are of different moduli. It is easy to see then that
the only measure preserved by all matrices of the form Bn, −∞ < n < ∞ is the one
supported by the lines in P (C2) generated by the eigenvectors of B. The matrix D ∈ G
is then chosen so that its action on P (C2) does not preserve these lines which means that
the measure in question does not exist. We would like to emphasize that the presence of
the parameter z plays a crucial role in this situation.

More precisely, if z is such that

2 arg(z − b) 6= arg(ac)

then the matrix g has eigenvalues with different moduli. In other words the moduli are
different if z does not belong to a certain half line. The g′ plays then the role of D (once
again when z lies outside of certain curves). This statement can be checked by direct
calculation and is sufficient for our purposes.

However, in some important cases much more precise statements can be made. In
particular if c′a

a′c
= 1 then each of triangular matrices (gg′−1) and g′−1g is non-trivial for

all but may be two values of z and a similar idea applies, see [2] page 213.
Now we are in a position to apply Propositions 2.1 - 2.3. For any two non-zero vectors

x and y define

d(x, y) =

√

1 −
|(x, y)|2

(x, x)(y, y)
,

where (·, ·) is the scalar product in C
2. The function d(x, y) is the natural angular distance

between x and y on the projective space P (C2).
The following Lemma is the key element in the proof of Theorem 1.2. (In this Lemma

and thereafter the abbreviation a.s. refers to the probability measure, i.e. any equality
with the letters a.s. above it holds with probability one)

Lemma 3.1 Suppose that the conditions of Propositions 2.1 - 2.3 are satisfied. If yn is
a sequence of random unit vectors in C

2 such that

||Snyn|| = enγ2+ǫn, where ǫn
a.s.
= o(n) as n→ ∞, (3.1)
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then for any fixed unit vector x and any δ > 0 there is a constant r(x, δ) > 0 such that

Prob
{

d(x, yn) ≤ e−nδ
}

≤ e−nr(x,δ) (3.2)

for all sufficiently large n.

Proof. For any n one can always find two orthogonal unit vectors un and vn such that
S∗

nSnun = λ
(n)
1 and S∗

nSnvn = λ
(n)
2 . In view of Proposition 2.1,

||Snun|| = enγ1+ǫ′n and ||Snvn|| = enγ2+ǫ′′n, where ǫ′n, ǫ
′′
n

a.s.
= o(n).

Obviously the sequence vn satisfies condition (3.1) and we first prove the large deviation
estimate (3.2) for this sequence.

Let x be a fixed unit vector. Then x = (x, un)un + (x, vn)vn for every n, and, since
|(x, un)| = d(x, vn) and |(x, vn)| ≤ 1, we have that

||Snx|| ≤ d(x, vn)||Snun|| + ||Snvn||.

Therefore if d(x, vn) ≤ e−nδ then

log ||Snx|| ≤ nγ1 + log(e−nδ+ǫ′n + e−n(γ1−γ2)+ǫ′′n),

and hence with probability one,

log ||Snx|| − nγ1 ≤ −nmin(δ, γ1 − γ2) + o(n).

It follows now from Proposition 2.3 that

Prob
{

d(x, vn) ≤ e−nδ
}

≤ e−nr(x,δ) (3.3)

for some r(x, δ) and all n > n0 where n0 depends on the matrices Sn, and also on x and
δ.

Now, let yn be an arbitrary sequence of random unit vectors satisfying condition (3.1),
and let y⊥n be a sequence of unit vectors orthogonal to yn, i.e. (yn, y

⊥
n ) = 0 for all n.

Obviously, d(un, y
⊥
n ) = |(un, yn)| and, since S∗

nSnun = e2nγ1+2ǫ′nun, we have that with
probability one

d(un, y
⊥
n ) = e−2nγ1+o(n)|(Snun, Snyn)| ≤ e−n(γ1−γ2)+o(n).

It is then apparent that d(vn, yn) is also exponentially small for large n and therefore the
large deviation estimate (3.2) for yn follows from (3.3). 2

Proof of Theorem 1.2. Let

x =

(

0
1

)

and yn =

(

fn+1(z)
fn(z)

)

, n = 1, 2, . . . .

9



Then

d2(x, yn) =
|fn+1(z)|

2

|fn+1(z)|2 + |fn(z)|2
=

|fn+1(z)|
2

||yn||2
,

and therefore
1

n
log |fn+1(z)| =

1

n
log d(x, yn) +

1

n
log ||yn||. (3.4)

In view of (1.3) and Proposition 2.3(i),

lim
n→∞

1

n
log ||yn||

a.s.
= γ1(z), (3.5)

where γ(z) is the upper Lyapunov exponent of the sequence of transfer matrices Sn(z).
On the other hand, S−1

n (z)yn = (1, 0)T , and therefore

lim
n→∞

1

n
log

||S−1
n (z)yn||

||yn||
a.s.
= −γ1(z).

It follows now from Lemma 3.1 (applied to the matrices S−1
n (z) and the vectors x and

yn/||yn||
4) and the Borel-Cantelli Lemma that

lim
n→∞

1

n
log d(x, yn)

a.s.
= 0.

Therefore, in view of (3.4) and (3.5), for any fixed z the probability is one that

lim
n→∞

1

n
log |fn+1(z)| = γ1(z). (3.6)

But then the probability is one that (3.6) holds almost everywhere in the complex plane.
This follows from the Fubini Theorem. Our proof of Theorem 1.2 is complete.

Proof of Theorem 1.1. As explained in introduction, under assumptions A1 – A3,
the probability is one that τ1 ≤ C for some non-random C < +∞ and limR→∞ τR = 0.
Therefore parts (a) and (b) of Theorem 1.1 follow immediately from Theorem 1.2 by the
way of Proposition 1.3.

The log-Hölder continuity of µ is a corollary of the Thouless formula and the fact that
the Lyapunov exponent γ(z) is bounded from below. This is very much in the same way
as in the Hermitian case, see [4].

To prove (1.11), we first note that the integral
∫

C
log |w−z|dµ(w) converges absolutely

for every z. Indeed, it follows from (1.15) that

∫

|w−z|≥1

log |w − z|dµ(w) < +∞,

4If γ1 and γ2 are the Lyapunov exponents of a sequence Sn then the sequence S−1
n has the Lyapunov

exponents −γ2 and −γ1.
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and this inequality together with the Thouless formula and the lower bound (1.9) imply
that

∫

|w−z|≤1

| log |w − z||dµ(w) < +∞

as well. Therefore,

C(z, δ) :=

∫

|w−z|≤δ

| log |w − z||dµ(w) → 0 as δ → 0. (3.7)

Obviously, for δ < 1,

C(z, δ) =

∫

|w−z|≤δ

log(1/|w − z|)dµ(w) ≥
µ(Bz,δ)

log(1/δ)
,

and part (c) of Theorem 1.1 follows. Our proof of Theorem 1.1 is now complete.

A Appendix

Proof of Proposition 1.3. The local integrability of log |z| and the condition τ1 < +∞
imply that the functions pn(z) are uniformly integrable on bounded sets in C. It follows
from this that p(z) is locally integrable and pn → p as n → ∞ in D′(C), the space of
Schwartz distributions in C. Since ∆ is continuous on distributions, we also have that
∆pn → ∆p in D′(C). Obviously ∆p ≥ 0, hence ∆p is defined by a measure, see e.g.
[13]. As any sequence of measures converging as distributions must converge weakly we
conclude that µn = 1

2π
∆pn → µ = 1

2π
∆p weakly as measures.

For any R > 1,
∫

|w|≥R

dµn(w) ≤
1

log |R|

∫

|w|≥1

log |w|dµn(w).

Therefore the inequality τ1 < +∞ implies that the sequence of measures µn is tight, and
hence cannot lose mass. As each of µn has unit mass, so has the limiting measure µ.

It follows from the weak convergence of µn to µ and (1.14) that
∫

1≤|w|≤R

log |w|dµ(w) ≤ lim
n→∞

∫

1≤|w|≤2R

log |w|dµn(w) ≤ τ1

for any R > 1. This implies (1.15). Similarly, if limR→∞ τR = 0 then

lim
R→∞

∫

|w|≥R

log |w|dµ(w) = 0. (A.1)

It remains to prove relation (1.16). It will suffice to show that

pn →

∫

C

log |w − ·|dµ(w) in D′(C) (A.2)
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when n→ ∞. Let ψ(z) be a continuous function with bounded support. Then

∫

C

pn(z)ψ(z)d2z =

∫

C

g(w)dµn(w)

with

g(w) =

∫

C

ψ(z) log |w − z|d2z.

The function g is continuous and g(w) = O(log |w|) when |w| → ∞. Assume now that
limR→∞ τR = 0. Then

lim
R→∞

lim sup
n→∞

∫

|w|≥R

|g(w)|dµn(w) = 0,

and

lim
R→∞

∫

|w|≥R

|g(w)|dµ(w) = 0

because of (A.1). It now follows from the weak convergence of µn to µ that

lim
n→∞

∫

C

g(w)dµn(w) =

∫

C

g(w)dµ(w).

Therefore

lim
n→∞

∫

C

pn(z)ψ(z)d2z =

∫

C

g(w)dµ(w) =

∫

C

{
∫

C

log |w − z|dµ(z)

}

ψ(z)d2z,

and (A.2) follows.

B Appendix

Derivation of inequalities (1.17) and (1.18). Let z1, . . . , zn and s1, . . . , sn be respectively
the eigenvalues and singular values of An labeled so that |z1| ≥ |z2| ≥ . . . ≥ |zn| and
s1 ≥ s2 ≥ . . . ≥ sn. Weyl’s Majorant Theorem, see [14], page 39, asserts that

m
∑

j=1

F (|zj|) ≤

m
∑

j=1

F (sj), m = 1, 2, . . . , n,

for any function F (t) (0 ≤ t <∞) such that F (ex) is convex on R. Obviously the function
log1+δ(t) satisfies this requirement for δ ≥ 0, and therefore

∫

|w|≥1

log1+δ |w|dµn(w) =
1

n

∑

|zj |≥1

log1+δ |zj| ≤
1

n

∑

|zj |≥1

log1+δ |zj | ≤
1

n

m
∑

j=1

log1+δ sj

12



where m is the number of eigenvalues of An such that |zj | ≥ 1. Obviously,

m
∑

j=1

log sj =
1

21+δ

m
∑

j=1

log1+δ(s2
j) ≤

1

21+δ

n
∑

j=1

log1+δ(1 + s2
j) =

1

21+δ
tr log1+δ(In + AnA

∗
n),

and therefore
∫

|w|≥1

log1+δ |w|dµn(w) ≤
1

21+δn
tr log1+δ(In + AnA

∗
n), δ ≥ 0,

which implies (1.17) and (1.18).
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