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Abstract

Enteroaggregative Escherichia coli (EAEC) is a leading cause of acute and persistent diarrhea worldwide. A recently emerged
Shiga-toxin-producing strain of EAEC resulted in significant mortality and morbidity due to progressive development of
hemolytic-uremic syndrome. The attachment of EAEC to the human intestinal mucosa is mediated by aggregative
adherence fimbria (AAF). Using X-ray crystallography and NMR structures, we present new atomic resolution insight into the
structure of AAF variant I from the strain that caused the deadly outbreak in Germany in 2011, and AAF variant II from
archetype strain 042, and propose a mechanism for AAF-mediated adhesion and biofilm formation. Our work shows that
major subunits of AAF assemble into linear polymers by donor strand complementation where a single minor subunit is
inserted at the tip of the polymer by accepting the donor strand from the terminal major subunit. Whereas the minor
subunits of AAF have a distinct conserved structure, AAF major subunits display large structural differences, affecting the
overall pilus architecture. These structures suggest a mechanism for AAF-mediated adhesion and biofilm formation. Binding
experiments using wild type and mutant subunits (NMR and SPR) and bacteria (ELISA) revealed that despite the structural
differences AAF recognize a common receptor, fibronectin, by employing clusters of basic residues at the junction between
subunits in the pilus. We show that AAF-fibronectin attachment is based primarily on electrostatic interactions, a
mechanism not reported previously for bacterial adhesion to biotic surfaces.
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Introduction

Enteroaggregative Escherichia coli (EAEC) was first identified in

1987 and it has since become recognized as a leading cause of

acute and persistent diarrhea worldwide [1,2]. EAEC is charac-

terized by its distinct ‘‘stacked-brick’’ pattern of aggregative

adherence (AA) to HEp-2 cells in vitro [1]. This defining

phenotype is mediated by aggregative adherence fimbriae (AAF).

EAEC has been associated with persistent diarrhoea in children

and in individuals infected with HIV [3,4]. It is also commonly

detected in symptomatic travelers returning from developing

countries [5].

Emergence of a Shiga toxin (Stx)-producing strain of EAEC [6,7]

represents a significant threat to public health. The Stx-producing

O104:H4 strain responsible for the 2011 outbreak in Germany was

notable for being more virulent than Shiga-toxin–producing E. coli
strains that do not have virulence factors associated with EAEC; it

resulted in 3816 cases of gastroenteritis, 845 cases of hemolytic

uremic syndrome (HUS), and 54 deaths [8].

Most enteric bacterial pathogens possess specific adherence

factors that are responsible for recognizing receptors on host cells

prior to colonization. In the case of EAEC, there are four known

AAF variants: AAF/I (encoded by the agg gene cluster), AAF/II

(encoded by the aaf genes), AAF/III (agg3) and Hda/AAF/IV

(encoded by the hda genes) [9–12]. All AAF fimbrial biogenesis

genes are encoded on a 55 to 65 MDa plasmid called pAA.

Different AAF variants are expressed by different EAEC strains,

where they are required for the bacterium’s adherence to small
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and large intestinal mucosa. AAF adhesins have also been shown

to promote biofilm formation on abiotic surfaces (glass and plastic)

[13]. Despite their shared phenotypes, AAF show significant

differences in agglutination of erythrocytes from different species

[12], suggesting that they may recognize different receptors or

bind to the same receptors with different affinity.

AAF are assembled via the FGL chaperone/usher (CU)

pathway [14,15] and share a similar gene cluster architecture

with those of the Afa/Dr subfamily of polyadhesins [16,17]. As

with Afa/Dr polyadhesins, AAF consist of two secreted protein

subunits, a major subunit (A) and a putative minor subunit (B).

The minor subunit of Afa/Dr polyadhesins may mediate invasion

of host cells by uropathogenic E. coli [18]; usher-independent

secretion has also been proposed [19,20]. In EAEC, the minor

subunit of AAF/II (AafB) has been associated with the release of

cytokines [10,21], suggesting its surface localization and function

in EAEC pathogenesis. Whereas the minor subunits are relatively

conserved within the subfamily, the major (A) subunits of AAF

show only marginal sequence similarity among each other (Fig. 1)

and no sequence similarity to the subunits from the Afa/Dr family

(Fig. S1). Whereas most of the major subunits of CU-assembled

fimbriae are typically negatively charged at physiological pH, the

major subunits of AAF are positively charged up to pH 9.2–9.5;

this feature is thought to play a role in EAEC adhesion. Moreover,

a regulatory mechanism based on the repulsion of AAF and

surface-localized dispersin has been proposed [22]. Although the

major subunit of AAF/II has been recently shown to mediate

attachment of EAEC strain 042 to the extracellular proteins

fibronectin, laminin and type IV collagen [23], the mechanism of

recognition is not known, and it is also not clear whether other

types of AAF mediate attachment.

Previous transmission electron microscopy (EM) studies of the

AAF expressed by E. coli showed the presence of thin, bundled

fibers that can extend up to several microns from the bacterial

surface. Estimates for the diameter of individual fimbriae have

been reported be in the 2–3 nm range for AAF/I [9,10], whereas

images for AAF/II show fibers of up to 5 nm in width [10]. AAF/

III are also long, flexible fimbriae with measured diameters of 3–

5 nm, but these were usually observed as individual filaments and

occasionally in bundles [24]. Based on homology of the CU

machineries, it is be predicted that these AAF structures are

assembled by the FGL CU pathway in a similar fashion to the

Yersinia pestis F1 antigen [25], E. coli AFA-III [26], E. coli CS6

[27], Yersinia pestis pH6 antigen [28] and Salmonella Saf

polyadhesins [29]. The major subunits from these systems lack

the last (G) b-strand of a typical seven-stranded immunoglobulin

fold, which exposes a substantial hydrophobic cleft running

between the two b-sheets of the subunit. In the fiber, subunits

are linked together by donor strand complementation (DSC) with

an N-terminal Gd donor strand segment of one subunit inserted

into the hydrophobic cleft of a neighboring subunit [25,30].

Theoretically, for any fimbrial subunit capable of DSC

polymerization it is possible to create a circularly permuted

construct [26,27,31,32]. In this construct, the Gd strand is placed

at the C terminus of the subunit, enabling self-complementation

and formation of a monomer with the classical Ig-fold. Whereas it

is difficult to determine the structure of multimeric fimbriae at

atomic resolution, production of stable monomers through donor

strand complementation allows their study using nuclear magnetic

resonance (NMR) spectroscopy and/or X-ray crystallography.

In this study, we report X-ray crystallographic and NMR

studies of monomeric, donor-strand-complemented major and

minor subunits of AAF/I from the German outbreak strain and

AAF/II from EAEC strain 042 and provide an atomic resolution

model for the structure of the entire fimbriae. Based on the

structures and results of NMR titration experiments, site directed

mutagenesis was performed to map the fibronectin binding sites in

the organelles. Our results suggest that although there are

significant structural differences between AAF/I and AAF/II,

both uniquely rely on ionic-based mechanisms for adhesion to a

common receptor.

Results

Model of AAF assembly and design of self-complemented
subunits

Major subunits of AAF contain a pair of conserved cysteine

residues that are commonly found in subunits of CU fimbriae

(Fig. 1) [33,34]. As the first cysteine often marks the beginning of

the subunit core structure, we hypothesized that the N-terminal

sequences 12–24 residues preceding the cysteine in the major

subunits could act as donor strands connecting subunits in the

fiber. At the same time, based on the fact that minor subunits of

AAF are 12–23 residues shorter than major subunits (Fig. 1), we

hypothesized that they do not possess their own donor strand

sequences and are stabilized in the fiber by strands donated by

major subunits. A model, in which minor subunits insert at the tip

of a polymer of major subunits, would be consistent with this

hypothesis.

To verify this model, we engineered DSC-monomers for each of

the major A and minor B subunits of AAF type I and II, encoded

by the agg and aaf gene clusters in the German outbreak strain

and archetypal strain 042, respectively, by extending them with

the potential donor strand sequences of the corresponding major

subunits (dsA): AggAdsA, AggBdsA, AafAdsA and AafBdsA

(Fig. 2A and S2). To ensure that the donor strand has sufficient

conformational freedom to insert correctly into the acceptor cleft,

we introduced linker sequences between the subunit’s last residue

and the first residue in the donor strand. Using native signal

sequences, AggAdsA and AggBdsA were expressed in the E. coli
periplasm, whereas AafAdsA and AafBdsA were expressed in the

E. coli cytoplasm and refolded. All four subunits were purified in

soluble, monomeric form and exhibited high stability, suggesting

that the chosen donor strands sequences efficiently stabilized the

subunits.

Author Summary

Enteroaggregative Escherichia coli (EAEC) is a major cause
of diarrhea worldwide and is commonly present as an
infection in symptomatic travelers returning from devel-
oping countries. The attachment of EAEC to the human
intestine is mediated protein filaments extending from the
bacterial surface known as aggregative adherence fimbria
(AAF). Here we use X-ray crystallography and nuclear
magnetic resonance (NMR) structures to provide an atomic
structure of the protein fibers made by the two major
variants, AAF/I and AAF/II. The structures of the major
subunit proteins show that the AAFs assemble into
flexible, linear polymers that are capped by a single minor
protein subunit at the tip. Biochemical assays reveal that
the AAFs recognize a common receptor, the extracellular
matrix protein fibronectin, via clusters of positively-
charged amino acid residues running along the length of
the fimbriae. Our structures suggest a unique mechanism
based on ionic interactions for AAF-mediated receptor
binding and biofilm formation.

Host Recognition by E. coli AAF Fimbriae
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High-resolution structures of AggAdsA, AggBdsA,
AafAdsA and AafBdsA

To elucidate the structure and assembly mechanism of AAF, we

determined high-resolution crystal structures of AggAdsA (1.6 Å;

pdb accession code 4PH8), AggBdsA (2.4 Å; pdb accession code

4PHX) and AafBdsA (3.0 Å; pdb accession code 4OR1) as well as

the solution structure of AafAdsA (pdb accession code 2MPV and

BMRB ID 25001) (Fig. 2 and Fig. S3 and Tables S1 and S2).

The DSC-monomers of the major subunits (AggAdsA and

AafAdsA) have a classical Ig-like fold that consists of two b sheets

packed against each other in a b sandwich (Fig. 2B). In solution,

the sequence prior to the first conserved cysteine (residues 1–10,

Fig S2) is highly flexible (Fig. S3A), suggesting that the N-terminal

extension would be fully accessible for polymerization in

preassembly monomers. On the other hand, when the N-terminal

extensions are linked to the C-termini of the subunits to form the

missing C-terminal G strand and facilitate self-complementation,

they are well ordered and illustrate how major subunits form DSC

contacts in AAF fibers.

Superposition of the AggAdsA and AafAdsA structures revealed

variation at the edges of the b sandwich structure (Fig. 2C and E).

In AafAdsA, a substantial strand D is hydrogen bonded to strand E

of b sheet 1 (A1BED) where as in AggAdsA, strand D is very short.

Instead, it has additional strands C and D, which form the edge of

b sheet 2 (CDC1C2FGdA2) in this subunit. Both strand F and the

donor strand (Gd) at the other edge of sheet 2 are longer in

AggAdsA than in AafAdsA. The donor strand of AggAdsA inserts

seven classical donor residues in to the acceptor cleft (Fig. 2B),

which is two more than AafAdsA and other structurally

characterized subunits from FGL CU systems. In addition,

AggAdsA contains an a helix in the loop between B and C1

strands, which is absent in AafAdsA. These features give AggAdsA

a more elongated shape than AafAdsA.

The overall similarity between AggA and AafA, which are the

closest structural homologues, displays an r.m.s.d. of 3.2 Å for 125

Ca atoms. The AFA/III major subunit AfaE (pdb: 2ixq) [35] was

identified as the second most structurally similar protein to AggA

(r.m.s.d. of 4.1 Å for 120 Ca atoms) and AafA (r.m.s.d. of 4.0 for

115 Ca atoms) by a DALI [36] search of the protein data bank,

confirming the evolutionary relationship between AAF and AFA/

Dr fimbriae. The maximal structural differences between the AAF

subunits and AfaE were found in the same structurally variable

segments: the loop region between strands C2 and E, beginning of

strand Gd and BC1 loop (Fig. S4). The most structurally conserved

region in the three structures corresponds to the beginning of

strand F and the ends of strands Gd and A2, which include

conserved Gly127 and Tyr129 residues in strand F and Leu11 in

the donor strand Gd (residues are numbered according to the

sequence of AggA) (Fig. S1 and S5). Another conserved feature

represents the disulfide bond connecting the BC1 loop (a helix in

AggAdsA) and the beginning of the subunit fold. The donor strand

in the AAF and AFA/Dr families shares the same interactions with

its neighboring strand as in other FGL CU systems such as Saf

[29] and the F1 antigen [25]. In these systems, the Gd strand lies

at the sheet edge, whereas in the P-pilus and type 1 fimbriae it is

shorter and sandwiched intimately between long A and F strands

Figure 1. Sequence alignment of the major (AggA, AafA and Agg3A) and minor (AggB, AafB and Agg3B) subunits of aggregative
adherence fimbriae (AAF) type I, II and III. Secondary structure elements of AggA, AafA, AggB, and AafB core structures are shown in magenta,
cyan, green, and pink respectively, whilst the donor strands in AggA and AafA (Gd) are shown in red and blue, respectively. Donor residues occupying
pockets of the acceptor cleft are indicated with circles. Amino acid identities and similar residues are indicated by background shading in cyan and
yellow, respectively. The donor residues, occupying pockets of the acceptor cleft are indicated with circles. Positively charged residues are shown in
bold and painted in blue. Cysteine residues involved in disulfide bonds are indicated with stars. CLUSTALW alignment of sequences was modified
based on superposition of structures of the donor strand complemented (DSC) subunits AggA and AafA and AggB and AafB (this study).
doi:10.1371/journal.ppat.1004404.g001
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Figure 2. High-resolution structures of DSC subunits of AAF type I and II. (A) Schematic representation of DSC monomers. The positions of
residues flanking mature sequence are numbered. Signal peptide, N-terminal His-tag, and linker are colored in grey, yellow and orange, respectively.
For AggBdsA, both donor strand sequences of AggA from the German outbreak strain and classical EAEC strain 17–2 (three residue longer) were used
successfully to stabilize AggB, however only the later crystallized. Amino acid sequences of the constructs are shown in Fig. S2. (B) Cartoon diagrams
of AggAdsA, AafAdsA, AggBdsA and AafBdsA. (C and D) Structural superposition of AggAdsA and AafAdsA (C) and AggBdsA and AafBdsA (D) (stereo
view). (E) Topology diagrams. The core structure of AggAdsA, AafAdsA, AggBdsA and AafBdsA is painted in magenta, cyan, green, and pink,
respectively. The AggA and AafA Gd donor strands are colored in red and blue, respectively. The loop linking the core structure and donor strand
(visible in AggAdsA, AafAdsA and AafBdsA) is shown in orange. Donor strand residues and disulfide bonds are shown as balls and sticks in A. Carbon,
oxygen, nitrogen, and sulfur atoms are painted in yellow, red, blue and orange, respectively. Secondary structure elements are labeled in A and B.
doi:10.1371/journal.ppat.1004404.g002
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[37]. The lack of a second pairing strand for Gd is a distinguishing

feature of the FGL CU systems that is reflected in the requirement

for the long G’ strand in the chaperone [17].

The level of conservation of structural elements in major

subunits generally correlates with the degree of their mobility in

solution (Fig. S3). The conserved core structure of AafAdsA is

considerably less mobile in the NMR ensemble than the

structurally variable region including the sequence between

strands D and E, the N-terminus, the BC1 loop, and the

beginning of strand Gd, all localized at the upper part of the

molecule (Fig. S3B). To provide further characterization of

mobility in these regions, heteronuclear NOE and T2 relaxation

data were recorded and analyzed. These data together with

TALOS+ predictions [38] confirmed that the region between

residues 89 to 96 is dynamic on the picosecond timescale. Not

surprisingly, the engineered linker between the C-terminus and

the Gd strand is also highly flexible.

Interestingly, many residues that are either conserved across

both AAF/AFA families (Fig. S1) or conserved only within AAF

major subunits (shaded blue in Fig. 1) are located in the

structurally variable and flexible regions (Fig. S5). Specifically,

four of these residues are highly surface exposed, namely the AAF

specific basic residue position 55, Trp59, Thr80 and the AAF/

AFA conserved asparagine/aspartate 97 (residues are numbered

according to the sequence of AggA), (Fig. 3A insert, Fig. S5).

The minor subunits AggBdsA and AafBdsA have more similar

structures than the major pilins: 117 matching Ca atoms are

superimposed with r.m.s.d. of 1.2 Å (Fig. 2B and D). The donor

sequences derived from the corresponding major subunits form

classical donor strands (Gd), each inserting five donor residues into

the subunit core structure. The values of shape correlation statistic

(Sc) [39] calculated for the acceptor cleft-donor strand interactions

for AggBdsA and AafBdsA (0.733 and 0.756, respectively) were

similar to those calculated for AggAdsA and AafAdsA (0.784 and

0.804, respectively). The good geometrical fit between the donor

strands and acceptor clefts suggests that these interactions are

native [27]. As predicted, the minor subunits have no N-terminal

extension that could act as a donor strand: the first residue in the

mature protein is structured and immediately followed by the first

strand A. Hence, this structural evidence suggests that the minor

subunits assemble by accepting donor sequences of the corre-

sponding major subunits. As such sequences are only available in

tip subunits of major subunit polymers, the AAF minor subunits

are likely to be tip localized. This arrangement is consistent with

EM localization studies of the AAF pilins. Bacteria lacking the

major subunit are unable to assemble fimbrial surface structures

and immunogold localization revealed the major subunit distrib-

uted along the fimbrial shaft [10]. Furthermore, the significant

sequence identity with the AfaD tip invasin (.60%),which has

been visualized as a tip subunit, together with the ability of AggB

to functionally complement AfaD mutants are also suggestive of a

similar localization for AAF minor sununits [35,40,41].

The topology of minor subunits differs from that of the major

subunits in several other aspects (Fig. 2E). In minor subunits,

strand A is not split between the b sheets, but locates entirely in the

sheet 1. Instead, strand C2 that in a classical Ig fold is hydrogen

bonded to strand F, in minor subunits is hydrogen bonded to

strand D and hence belongs to sheet 2. Strands D and D in sheet 2

of minor subunits have no analogues in the structure of major

subunits. This region is the most dissimilar (Fig. 2C) and flexible

(Fig. S3) in the structure. A conserved disulfide bond also stabilizes

the minor subunits. However, this bond connects the BC1 loop

with the end of strand F and not the beginning of the fold as in

major subunits. The distinct structure, high structural conservation

and specific localization suggest a highly specialized important

function for the AAF minor subunits.

Atomic model of AAF
The structures of DSC monomers were used to model AAF

(Fig. 3 and S6). The modules of the AAF shaft structures (-

subunit:Gd-) were modeled based on AggAdsA or AafAdsA, while

the corresponding terminal modules (subunit:Gd-) were modeled

based on AggBdsA or AafBdsA. To revert the circular permuta-

tion of the DSC-monomers, the artificial linker sequences

connecting C-termini of the DSC subunits with N-termini of

donor strands were deleted and the C-termini of donor strands

were bridged with N-termini of adjacent DSC subunits using

native linker sequences TND and VNK in AggA and AafA,

respectively. The fiber model was generated by assuming the same

orientation between successive subunits as observed in the crystal

structure of the mini-fiber of the F1 antigen [25].

To provide further evidence for these models we visualized

AAF/II fimbriae purified from the prototypical enteroaggregative

E. coli strain 042 using negative-stain transmission electron

microscopy. Consistent with previous EM studies of bacterial-

surface localized AAF fimbriae [10,11], our purified AAF fibers

show a propensity to intertwine into bundles at high concentra-

tions. However, upon dilution individual fimbriae can be clearly

observed (Fig. 3C). These fibers are thin with diameter of 2.5–

4 nm and highly flexible, occasionally exhibiting ,30u bends

within relatively short stretches (20 nm, ,5 subunits). The

extended appearance of these fibrillar structures and their inherent

flexibility are consistent with the relatively small interdomain

contact area present in our reconstructed models. Similar low

resolution EM images have been obtained for the FGL-CU Saf

fimbriae and subsequent reconstruction revealed thin, extended

structures of ,2.5 nm width [42]. The dimensions of the observed

fibers are also consistent with high-resolution structures for other

FGL-CU organelles, namely the Caf1M-Caf1’-Caf1’’ mini-fiber of

the F1 antigen[25] and the AfaDE tip complex [35], which show

very similar values for the intersubunit angle (Fig. S6).

The more elongated AggA produced a longer AAF/I fiber than

that of AAF/II consisting of the same amount of shorter AafA

subunits (Fig. S6). The edge of the fiber module that is involved in

DSC (strands A and Gd) forms the less exposed side of the fiber

helix. This region contains the majority of the conserved structural

residues that are closely positioned and involved in assembly. The

disulfide bond stabilizing the donor strand linker in major subunits

functionally belongs to this region. The disulfide bond in minor

subunits serves a different function in that it stabilizes the acceptor

cleft (Fig. S7). The opposite segment of the structure (sequences

between strands B and E) is more exposed. This mobile and

structurally variable, yet conserved surface region is a potential

candidate for a receptor binding site (Fig. 3A, insert).

Fibronectin is a common receptor for AAF/I and AAF/II
EAEC adheres to fibronectin, and in strain 042 the attachment

is mediated by AAF/II [23]. To examine if fibronectin is a

common receptor for AAF, we studied AggAdsA-fibronectin

interactions using surface plasmon resonance (SPR) (Fig. S8). The

experiment revealed specific binding with a dissociation constant

of 1662 mM (Table 1). This value is similar to that previously

found for AafAdsA [23]. Interestingly, AggBdsA also bound to

fibronectin but with significantly lower affinity (,100 mM).

Whereas a single AggB is unlikely to promote attachment of

bacteria to fibronectin, a polymer of AggA subunits would mediate

a tight bacterial adhesion by establishing multipoint interactions

with several fibronectin molecules.

Host Recognition by E. coli AAF Fimbriae
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AAF-fibronectin binding is mediated by ionic interactions
An NMR titration experiment was performed to identify the

putative fibronectin-binding interface in AafAdsA. After compar-

ing 1H-15N HSQC NMR spectra of AafAdsA recorded in the

absence and presence of FnI (Fig. 4A), several residues could be

identified that exhibited significant chemical shift perturbations,

suggesting the likely location of the binding surface (Fig. 4B).

Unsurprisingly given the basic nature of AafA, a number of

positive charged residues experienced chemical shift perturbations,

namely Lys1, Arg40, Arg44, Arg51 and Lys53 and Lys72. Key

residues in AafAdsA identified in the NMR FnI titration analyses

were targeted for mutagenesis on the native fimbrial structure

expressed in E. coli. Site-directed mutations were created in

plasmid pBAD30 harboring the intact native aafA gene. Mutants

were introduced into the 042Daaf strain, and fibronectin binding

in the complemented mutants was scored in the presence of

arabinose (to induce aafA expression). A number of additional

residues (Thr18, Arg23, Thr38, Lys66 and Thr114) were chosen,

which are located in approximately equivalent regions to reported

protein-binding interfaces for AfaE, namely carcinoembryonic

antigen (CEA) and DAF [26,43,44]. Although AafA is not

reported to bind to either CEA or DAF, it is conceivable that

these surfaces on AafA are also important for fibronectin binding

and/or biofilm formation. Protein expression was confirmed by

Western blot (Fig. S9) and, perhaps with the exception of T18I,

AAF production in the mutant strains is similar to wild-type. These

expression data also imply that mutant subunits are stably

polymerized into fimbriae. This is also reflected in surface

exposure levels assessed qualitatively using immunofluorescence

microscopy of AafA mutants Ser30Ala, Arg40Ala, Arg44Ala,

Lys66Ala, Lys72Ala, and Thr77Ala (Fig. 5C). It, however, cannot

be ruled out that some variation in AAF presentation may

contribute to the fibronectin binding or biofilm phenotypes.

AafA mutant Arg40Ala exhibited significant reduction of

biofilm formation (Fig. 5A), while mutants Arg23Ala, Arg40Ala,

Arg44Ala, Lys66Ala, and Lys72Ala displayed reductions in

fibronectin binding compared with wild type (Fig. 5B). All other

mutations did not affect either biofilm formation or Fn binding,

including conservative substitutions Lys66Arg and Lys72Arg,

which did not affect Fn binding. These data confirmed the

identity of several residues suggested by NMR spectroscopy, and

implicated two regions at the poles of the AafA subunit. Our data

also suggested that the predicted receptor-binding site for DAF in

the Dr adhesins is not involved in Fn binding. Interestingly, all

residues identified as functional in fibronectin binding were basic

arginines or lysines. As the high content of basic residues is a

prominent feature for AAF, we hypothesized that basic residues

are important for the AAF/I-fibronectin interactions. As EM

studies of both bacterially-displayed and sheered AAF revealed an

abundance of bundled fibers, it is also possible that there is a

significant electrostatic contribution to this morphology and these

intertwined bundles are important for function. This is consistent

with the observation of a strong dependence of the strength of

AggAdsA-fibronectin binding on the ionic strength of the solution

(Table 1, Fig. S8). The affinity dropped by more than 12 fold in

presence of 300 mM NaCl in 50 mM Hepes buffer, which could

be explained by disruption of salt bridges between the interacting

molecules.

To verify this hypothesis, we reduced the charge on the AggA

surfaces that correspond to the equivalent basic regions identified

in AafA by mutating groups of positively charge amino acids to

alanine and measuring the interaction of the self-complemented

monomer (i.e. AggAdsA) with fibronectin using SPR (Table 1). We

focused the mutagenesis on surface patches comprising proximal

pairs of lysines (including Lys51 and Lys109, Lys55 and Lys103,

and Lys73 and Lys76) and the three closely positioned lysines

Lys73, Lys76, and Lys78. All the double mutants exhibited

significant decreases in fibronectin binding and, despite the

absence of the cooperatively expected for a polymeric AggA fiber,

the affinity for the triple mutant of monomeric AggAdsA dropped

below the detection limit of the experiment. To confirm the

structural integrity and stability of these charge removal mutations,

the AggAdsA triple mutant (Lys73Ala, Lys76Ala, and Lys78Ala)

was characterized further by circular dichroism (CD). The CD

spectra of both WT and mutant monomeric proteins are almost

identical showing a negative band at 217 nm and positive band at

195 nm (Fig. S10A). The CD profiles are characteristic of a highly

similar b-sheet structure and thermal denaturation revealed that

the mutations do not affect stability of the monomeric AggAdsA

subunit (Fig. S10B). The defect in fibronectin binding for the

mutant is therefore due exclusively to the absence of specific

positively charged side chains. The low affinity and electrostatic

nature of this interaction raises the question that AAF may target

acidic proteins nonspecifically. We examined this using SPR and

show that this is unlikely, as binding of AggAdsA to fibronectin is

unaffected by the presence of 6-fold molar excess of Bovine serum

albumin (BSA pI = 4.7; Fig. S11).

The conserved surface tryptophan residue in AAF major

subunits (Trp59 and Trp55 in AggA and AafA, respectively) is

located close to the conserved positive charges implicated in the

AggA-fibronectin binding (Fig. 3A). In addition, AggA contains a

closely positioned surface Trp57 as well as the exposed Phe91 and

Figure 3. AAF architecture. (A) Model of AAF/I constructed based on the crystal structures of DSC subunits, AggAdsA and AggBdsA, and the
crystal structure of the F1 antigen mini-fiber [25] (cartoon diagram). The fiber contains a single copy of the AggB subunit (green) at the tip of a
polymer of the AggA subunits (a fragment containing three AggA subunits is shown). The insert shows localization of conserved residues in the
structure of the fiber. (B) Topology diagram of the AAF/I fiber. (C) Negative stain transmission electron micrographs of diluted AAF/II fimbriae isolated
from enteroaggregative E. coli strain 042.
doi:10.1371/journal.ppat.1004404.g003

Table 1. Effects of ionic strength and amino acid
substitutions on the dissociation constant for AggAdsA-
fibronectin binding.

Mutation KD, mM

WT, 75 mM NaCl 1662

WT, 300 mM NaCl .200

Trp57 3166

Trp59 1763

Phe91 2063

Arg10 2363

Lys51 and Lys109 4964

Lys55 and Lys103 5665

Lys73 and Lys76 6166

Lys73, Lys76, and Lys78 .200

doi:10.1371/journal.ppat.1004404.t001
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partially exposed Ile85, located in the variable region. To study the

possible involvement of the extensive hydrophobic surface of these

residues in AggA-fibronectin binding, we mutated each residue to

produce the Trp57Ala, Trp59Ala, Ile85Ala and Phe91Ala

mutants of the monomeric AggAdsA subunit. Trp57Ala,

Trp59Ala, and Phe91Ala, but not Ile85Ala, were expressed,

demonstrating that they are not essential for the protein structure.

Examination of the fibronectin-binding of these AggAdsA mutants

with the SPR binding assay revealed affinities similar to that of the

wild type subunit (Table 1), suggesting that the large hydrophobic

surfaces displayed on AAF subunits are not involved in the

fibronectin binding. Furthermore, the prominence of basic lysine

and arginine residues suggests that fibronectin binding by AAF/I

and AAF/II is driven by electrostatic interactions.

Modeling of fibronectin binding sites on AAF
Superimposition of fibronectin-binding residues on the fiber

models placed the experimentally determined fibronectin-binding

pocket within the clefts formed by adjacent subunits in the fiber

(Fig. 6). The pocket is particularly well pronounced in AAF/I.

Three closely positioned lysines (73, 76 and 78), mutations of

which practically abolished the binding, are located in the loop

between the C2 and C strands at the bottom of the subunit. The

other binding residues are located close to the top of the molecule:

lysines 51 and 55 in the helix within the BC1 loop and at the

beginning of strand C1, respectively, and lysines 103 and 109 at

the end of strand C and in the CE loop, respectively. These two

polar segments are closely positioned in the fiber and form a

continuous surface, which is characterized with the highest positive

potential and contains a shallow groove in the middle. Similarly, in

AAF/II all implicated binding residues locate at the junction

between subunits with the fiber. Three arginines; 23 (end of the

strand A2) at the bottom of AafA; 40 (beginning of strand B); and

44 (the BC1 loop) at the top of AafA are a part of the AAF/II

surface with the highest positive potential. Interestingly, arginines

23, 40, and 44 form an array along the fiber length. Lysines 66 and

72 form an independent cluster locating at the subunit interface. It

is likely that these residues contribute to fibronectin binding by

forming additional contacts, which likely result from changes in

the range of relative domain orientations along the fiber due to its

flexibility. Alternatively, they might contribute to binding

indirectly, either by promoting fiber bundling or stabilizing a

binding competent conformation of the whole fiber. Although the

majority of the identified binding residues are not conserved at

specific sequence position (Fig. 1), many of them locate in the

structurally similar regions at the poles of the subunits, which in

the context of AAF fibers positions a high concentration of basic

residues in the cleft between subunits.

Discussion

The AAF of EAEC is a multifunctional organelle that

contributes multiple phenotypes plausibly related to pathogenesis.

AAF have been associated with adherence to human intestinal

explants [45], biofilm formation on abiotic surfaces [13] and

adherence to polarized T84 cell monolayers with stimulation of

IL-8 release and opening of epithelial tight junctions [46].

Although no single receptor has yet been associated directly with

these phenotypes, binding to extracellular matrix proteins has

been associated with colonization and biofilm formation. The AAF

adhesins can be classified into at least four variants [12] with

conserved characteristics, despite low levels of amino acid identity

among the major pilin subunits. In this work, we present the

structures of the major and minor pilin subunits of the most

common AAF variants, AAF/I and AAF/II. We find that despite

less than 25% amino acid identity between the AAF/I and AAF/II

major pilins, AggA and AafA respectively, the two pilin proteins

adopt a similar fold with shared surface characteristics. The most

notable feature of the AggA and AafA structures is the unusual

surface distribution of basic residues, giving rise to subunits with a

substantial net positive charge at physiologic pH. Although the

majority of bacterial adhesins are not highly positively charged,

the adhesin of Stenotrophomonas maltophilia is basic and has also

been associated with biofilm formation and adherence to

Figure 4. Fibronectin binding site mapping using NMR. (A)
Overlaid 1H-15N HSQC NMR spectra for free AafAdsA (black) with two
molar equivalents of fibronectin (red). Residue labels represent mature
protein sequence numbering. (B) Map of chemical shift perturbations
on the structure of subunit. Key basic residues are highlighted.
doi:10.1371/journal.ppat.1004404.g004
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indwelling vascular catheters [47]. The contribution of positively

charged adhesins to pathogenesis for either Stenotrophomonas or

EAEC has largely been overlooked.

We present a new structural insight into the architecture of

AAF/I and AAF/II fimbriae and reveal a contiguous basic surface

located at the subunit interfaces within the biopolymer. Although

the observation of highly basic AAFs in bundles is somewhat

surprising due to potential repulsion between entwined fimbriae,

intersubunit repulsion between subunits within a fiber may enable

these long, thin fimbriae to project from the bacteria surface as far

as possible and prevent them from collapsing onto it. The

alignment of AAFs into bundles may be a consequence their

extended length and inherent helicity. There is precedent in other

biological fibers from bacteria; for example, in the Type IV pilus

from N. gonorrhoeae extensive phosphorylation does not abrogate

bundle formation, but reduces the curliness of fibers and thickness

Figure 5. Involvement of AafA and site-directed-mutants in biofilm formation and binding to fibronectin. (A) Biofilm quantification.
Bacteria were cultivated in LB for 20 h at 37uC in 24-well dishes and induced with 0.2% arabinose. Biofilms were fixed and stained with crystal violet,
and then the stains were solubilized and quantitated spectrophotometrically at 450 nm. The bars represent the means of the results from triplicate
wells; error bars indicate one standard deviation. Wt, wild type EAEC042, DaafA, EAEC042aafA mutant. All residues tested were mutated to Ala except
Thr18Ile and Thr38Leu. *, P,0.005. (B) Fibronectin binding. EAEC 042 derivatives harboring site mutations in aafA were added to 96-well plates
coated separately with 25 mg/ml of fibronectin, and the binding was determined by collecting the cells adhered to wells by scraping them into PBS.
The number of adherent bacteria was determined by counting the resulting colonies in duplicate and normalized to the wild type adherence (as a
100% adherence). The bars represent the means for three experiments, with the error bars indicating 1 standard deviation. *, significantly different
from EAEC042WT (P,0.005).(C) AafA surface expression. After induction of bacterial strains with 0.2% arabinose, cells were harvested, washed twice
with PBS, and incubated with a polyclonal anti-aafA antibody (2 mg/ml) in PBS plus 1% bovine serum albumin for 1 h at room temperature with
agitation. They were washed twice with PBS and incubated with a goat anti-rabbit IgG-fluorescein isothiocyanate (FITC) conjugate (10 mg/ml) for
30 min at room temperature in the dark. The washings were repeated, and the samples were resuspended in DAPI (4 mg/liter) and spread on slides
for viewing by fluorescence microscopy.
doi:10.1371/journal.ppat.1004404.g005
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of bundles [48]. Furthermore, counterion coating of highly-

charged surface of nanometer fibers has been shown to promote

bundle formation [49].

We show that the basic nature in AggA and AafA plays an

important role in the specific recognition of fibronectin. The mode

of recognition is principally by electrostatic interaction, which is in

contrast to mechanisms utilised by other bacterial fibronectin-

binding proteins. Perhaps the best characterised structurally are

the MSCRAMMs (microbial surface components recognizing

adhesive matrix molecules) from Gram positive bacteria.

MSCRAMMs are large modular proteins covalently attached to

the bacterial cell wall. Examples of this family from staphylococci

and streptococci bind fibronectin with high affinity through

interaction with an extensive region with several copies of a repeat

sequence. Structural studies have revealed that the repeats are

disordered in isolation, but in complex they augment the b-sheets

of fibronectin type I domains, forming an extensive b-zipper along

the edge of consecutive domains, resulting in an extremely tight

interaction with nM dissociation constants [50]. While the

dissociation constants for single pilins lie in the mM range, the

high avidity from the polymeric architecture of AAF would equate

to a much stronger interaction with fibronectin. Although the

precise role of fibronectin binding in EAEC pathogenesis is

unclear, the strength of interaction and conserved characteristics

between AggA and AafA fibronectin binding suggest a significant

involvement. This also consistent with the persistent nature of

EAEC infection which implies that bacteria progress beyond

simple apical attachment on the epithelial surface to maintain

disease. Indeed, while extracellular matrix proteins are usually

localized to the remote basement membrane, access to a bacterial

pathogen can occur during inflammation, invasion or specific

breaching of tight junctions. Tight junction opening has been

associated with AAF expression during the EAEC infection of T84

cells [46]. This may be the consequence of a colonization signal

cascade in which proinflammatory cytokines are secreted from

infected epithelial cells [21]. The receptor associated with this

phenotype has yet to be identified, however we expect that our

structural insight into the electrostatically driven mechanism for

AAF/II binding provides new inspiration for mutagenesis

experiments that may accelerate this effort. It is also plausible

that a natural receptor for AAF adhesins is not fibronectin itself,

but another or multiple extracellular protein(s). In addition to

fibronectin, other host receptors have been implicated in EAEC

adhesion [51] and more recently both laminin and cytokeratin8

(CK8) have been confirmed to interact with the major subunit of

AAF/II fimbriae [52]. It is conceivable that AAF have evolved a

more generalised electrostatic mechanism for binding several host

receptors that have appropriate arrangements of acidic residues,

negatively-charged glycosylation sugars and/or phosphorylated

site.

We have also determined the structures of the minor pilin

subunits AggB and AafB. As expected from the similar major pilin

subunit structures and a higher degree of sequence conservation

between the minor pilin subunits, the structures of the two minor

Figure 6. Location of fibronectin binding sites in AAF type I and II. Cartoon diagrams (left) and electrostatic potential assessable surfaces
(right) of three major subunit polymers are shown. Positively charged residues interacting with fibronectin are drawn as sphere models. Arg40 in
AAF/II is also involved in biofilm formation. Regions of positive surface potential are depicted in blue and negative potential in red (scale is from 24
to 4 kT/e). AAF/II contains two fibronectin binding surfaces: a continuous array of arginines 23, 40, and 44 and a repeated patch of lysines 66 and 72.
In AAF/I, the basic residues concentrated at the interface between adjacent subunits. Seven lysine residues 51, 55, 73, 76, 78, 103 and 109 in this
region are involved in fibronectin binding.
doi:10.1371/journal.ppat.1004404.g006
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pilin proteins are much more conserved. Although the role of the

minor pilins in AAF is unknown, it has been suggested [17], and

our data support this model, that the minor subunit caps the end

of the AAF structure. Bacterial fimbriae are in general highly

immunogenic, and antibodies raised against the structures are

characteristically protective against bacterial colonization [53–55].

As such, fimbriae are high-profile vaccine candidates, and

structural information can advance vaccine development efforts

dramatically [56].

Materials and Methods

Construction of donor strand complemented monomers
The AggAdsA and AafAdsA expression constructs (pET101D-

AggAdsA-O104H4 and pQE30-AafAdsA, respectively) were

created as described previously in [57] and [58], respectively.

The sequence coding for the aggBdsA gene was ordered from

GenScript and placed under T7 promoter of pET101D to create

the expression plasmid pET101D-AggBdsA. The sequence coding

for the aafBdsA gene was ordered from Invitrogen and placed

under T7 promoter of pQE20 to create the expression plasmid

pQE30-AafBdsA.

Protein preparation
The aafAdsA and aafBdsA constructs were transformed into E.

coli strain M15 containing the pREP4 plasmid (Qiagen). Cells

were grown at 37 uC in either LB or M9 minimal medium

supplemented with 15NH4Cl and/or 13C-glucose (Cambridge

Isotope Laboratories) and expression induced with 1 mM isopro-

pyl b-D-1-thiogalactopyranoside (IPTG) at an OD600nm = 0.6.

Cells were harvested after 4 hrs, resuspended in 50 mM sodium

phosphate pH 8.0, 8M urea, 300 mM NaCl, lysed using a French

press, before being purified under denaturing conditions with Ni–

NTA. The eluates were first dialysed against 50 mM sodium

acetate pH 5, 50 mM NaCl, 1 M urea, followed by a second

dialysis against the same buffer with no urea and finally gel filtered

using a Superdex 75 gel-filtration column (GE Healthcare).

AggAdsA was expressed in the periplasmic space of E. coli strain

BL21-AI, extracted by osmotic shock and purified as described in

[57]. AggBdsA was expressed and extracted using the same

procedure [57]. To remove the majority of contaminating

proteins, the extract was filtrated though a 20-ml Source 30Q

column (GE healthcare) in 20 mM Tris-HCl, pH 8.5. The sample

was dialyzed overnight in 20 mM HEPES, pH 7.2 buffer, and

purified further by cation-exchange chromatography on a Mono-S

5/50 GL column (GE healthcare) using a 0–250 mM elution

gradient of NaCl. To obtain highest purity samples, protein was

subjected to gel-filtration on a Superdex 75 column (GE

Healthcare) equilibrated with 50 mM HEPES, pH 7.5 and

150 mM NaCl. Protein was concentrated to 33 mg ml21 for

crystallization experiments on a Vivaspin device (GE healthcare)

with molecular weight cut-off of 5 kDa.

Crystal structure determination
Crystallization of AafBdsA was performed by ‘‘sitting-drop’’

vapor-diffusion method grown in 0.1 M Bis-Tris pH 5.5, lithium

sulphate and 25% w/v PEG 3350. Crystals were soaked for 30–

60 s in cryoprotection solution (well solution complimented with

20% PEG 400) and then cooled by plunging them into liquid

nitrogen. Diffraction data were collected under liquid-nitrogen

cryoconditions at 100K on beamline I24 at the Diamond Light

Source (DLS), UK. Data were processed with XDS [59]. The

protein structure was solved by molecular replacement method

using DraD protein (pdb accession code 2AXW: [60]) as a model

using Phaser [61] and refined with Refmac [62]. Coordinates have

been deposited with the protein databank with accession code

4OR1.

Crystallisation and the quality of preliminary diffraction data for

AggAdsA have been described previously [57]. Crystallization of

AggBdsA was performed by ‘‘sitting-drop’’ vapor-diffusion method

using commercial screening kits Index-HR2-144, JCSG+ Suite

(Qiagen) at 290 K. Crystals grew in drops with 0.2 M Lithium

sulfate monohydrate, 0.1 M Tris HCl pH 8.5, 30% w/v PEG

4000. Crystals were soaked for 30–60 s in cryoprotection solution

prepared by mixing two parts of precipitant solution with one part

50% PEG 400 and then cooled by plunging them into liquid

nitrogen. Diffraction data were collected under liquid-nitrogen

cryoconditions at 100K on beamline ID23-1 at the European

Synchrotron Radiation facility (ESRF), Grenoble, France. Data

were processed with XDS [59]. The protein structure was solved

by molecular replacement method using DraD protein as a model

(55% of sequence identity) using Phaser from the PHENIX
Software package [61].

NMR structure determination
For AafA-dsA, backbone and side-chain assignments were

completed using our in-house, semi-automated assignment algo-

rithms and standard triple-resonance assignment methodology

[63]. Ha and Hb assignments were obtained using HBHA

(CBCACO)NH. The side-chain assignments were completed

using HCCH-total correlation (TOCSY) spectroscopy and

(H)CC(CO)NH TOCSY. Three-dimensional 1H-15N/13C

NOESY-HSQC (mixing time 100 ms at 800 MHz) experiments

provided the distance restraints used in the final structure

calculation. The ARIA protocol [64] was used for completion of

the NOE assignment and structure calculation. The frequency

window tolerance for assigning NOEs was 60.04 ppm and

60.06 ppm for direct and indirect proton dimensions and

60.6 ppm for both nitrogen and carbon dimensions. The ARIA

parameters p, Tv and Nv were set to default values. 144 dihedral

angle restraints derived from TALOS were also implemented [65].

The 10 lowest energy structures had no NOE violations greater

than 0.5 Å and dihedral angle violations greater than 5u. Although

structure calculations readily converged without the introduction

of manual assignments, a systematic check of automatically-

assigned NOEs was carried out. The structural statistics are

presented in Table S1.

NMR titrations
1H-15N TROSY/HSQC spectra of 15N-AafA-dsc was recorded

at 25mM in the absence and presence of the 30-kDa N-terminal

type I repeat domain of fibronectin (FnI) in equimolar concentra-

tions.

Construction of AafA and AggA mutants
Bacterial strains were grown in Luria-Bertani (LB) broth at

37uC with shaking unless otherwise indicated. When appropriate,

the medium was supplemented with antibiotics at the following

concentrations: ampicillin, 100 mg/ml and kanamycin 50 mg/ml.

The bacterial strains used in this study were DH5a [supE44

DlacU169 (Q80 lacZDM15) hsdR17 recA1 endA1 gyrA96 thi-1

relA1], EAEC042WT, and EAEC042aafA [10].

Construction of pBADaafDA plasmid
Inducible AafA expression was achieved by cloning aafA into

the pBAD30 plasmid. To stabilize AafA expression, its chaperone

aafD was also cloned bicistronically into the same plasmid. Briefly,
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a DNA fragment containing aafD and aafA was amplified by PCR

from EAEC 042WT using Pfx platinum DNA polymerase

(Invitrogen). Primers are shown in the Table S3. The PCR

products were digested with SacI-HF and SalI-HF and ligated

with Quick T4-DNA ligase (New England BioLabs) into pBAD30

plasmid previously digested with the same enzymes.

Site-directed mutagenesis
Site-directed mutagenesis was performed following the Quik-

Change protocol (Stratagene, Cedar Creek, TX) and with the

PfuTurbo (Stratagene) high-fidelity polymerase. For each reac-

tion, 25–50 ng of pBADaafDA or pET101D-AggAdsA-O104H4

plasmid was combined with 10 pmol of each of the complemen-

tary primers. Reactions were carried out according to the

manufacturer’s protocol. Primers used to generate the single point

mutations are shown in Table S3. All constructs were verified by

Sanger sequencing at the University of Virginia DNA Core

Facility or Sequencing service of Turku Centre for Biotechnology.

EAEC042aafa and DH5a were transformed with mutated

pBADaafDA and pET101D-AggAdsA-O104H4, respectively, by

heat shock at 42uC, rescued with SOC media, and selectively

grown on LB-agar with kanamycin (pBADaafDA) or ampicillin

(pET101D-AggAdsA-O104H4).

SDS-PAGE and immunoblotting
Protein analysis of AafA constructs harboring site mutations was

performed by immunoblotting. EAEC042aafA transformed with

pBADaafDA harboring site mutations was grown until

OD600 = 0.6, then induced with 2% arabinose until an

OD600 = 1.2. 16107 cells were resuspended in Laemmlii buffer,

boiled and proteins were separated by 4–15% gradient acrylamide

SDS-PAGE and transferred by 1 h at 100 V in Towbin’s buffer

onto nitrocellulose membranes (BioRad, Hercules CA). Mem-

branes were blocked with 5% skim milk in phosphate-buffered

saline/Tween, incubated with 200 ng/mL primary anti-AafA

rabbit polyclonal antibody followed by 40 ng/mL of secondary

HRP-conjugated anti-rabbit antibody (KPL, Gaithersburg, MD).

Results were visualized directly on nitrocellulose membranes after

exposure with TMB membrane peroxidase substrate (KPL,

Gaithersburg, MD. USA).

Biofilm quantification
Biofilm formation was measured as previously described

[12,13]. Briefly, bacteria were grown at 37uC overnight in LB in

24-well plates and induced with 0.2% arabinose. After washing the

substratum with PBS and fixation with 10% (vol/vol) formalin for

10 minutes, bacteria were stained with 0.5% crystal violet for

5 minutes and solubilized with 70% ethanol for 5 minutes. The

resulting solution was transferred to a microtiter plate where

absorbance was read at 450 nm.

Bacterial binding to fibronectin
Quantification of bacterial binding to fibronectin was per-

formed as previously described [23]. Briefly, wells of microtiter

plates were coated with a solution of 25 mg/ml of Fn protein in

100 mM Tris-HCl buffer, pH 8.0, overnight at 4uC. Plates were

washed 5 times with phosphate-buffered saline (PBS) to remove

unbound protein and blocked with 5% milk in PBS for 4 h at 4uC.

Wells were then washed five times prior to the addition of the

bacteria. 1 ml Dulbecco’s modified Eagle’s medium (DMEM)/

0.5% glucose medium containing 16108 bacteria at 37uC for 4 h

were added to the wells. After the wells were washed 5 times with

PBS, the bacterial cells that adhered to the wells were collected by

scraping them into PBS with 0.1% (vol/vol) Triton X-100; serial

dilutions were plated onto LB agar plates supplemented with

ampicillin. The number of adherent bacteria was determined by

counting the resulting colonies in duplicate.

Immunofluorescence microscopy
Surface expression of AafA derivatives on EAEC042 was

evaluated by indirect immunofluorescence assay (IFA). After

induction of the bacterial strains with 0.2% arabinose, cells were

harvested, washed twice with PBS, and incubated with a

polyclonal anti-aafA antibody (2 mg/ml) in PBS plus 1% bovine

serum albumin for 1h at room temperature with agitation. Cells

were washed twice with PBS and incubated with a goat anti-rabbit

IgG-fluorescein isothiocyanate (FITC) conjugate (10 mg/ml) for

30 min at room temperature in the dark. The washings were

repeated, and the samples were resuspended in DAPI (4 mg/liter),

and applied to slides for viewing by fluorescence microscopy.

Negative stain electron microscopy
2 ml samples of sheared AAF/I fimbrae at ,100 mg/ml and

,10 mg/ml were applied to glow-discharged continuous-carbon-

coated copper grids (Agar Scientific, UK), washed with 30 ml 2%

(w/v) uranyl acetate, blotted and air dried. Microscopy was

performed using a Philips CM200 FEG electron microscope.

SPR binding assay
A Biacore X100 system (GE Healthcare) was used for all

biosensor experiments. Fibronectin (Sigma) (approximately 1800

resonance units (RU)) was immobilized on flow cell 2 of a CM5

Sensor Chip by amine coupling using an Amine Coupling Kit (GE

Healthcare). To record the association and dissociation curves,

varying concentrations of subunit were injected into flow cell 2 of

the chip for 3 min followed by flushing of the cell with 10 mM

HEPES, pH 7.4, 150 mM NaCl, 3 mM EDTA, 0.005% Tween

20 (HBS-EP) for 3 min at a flow rate of 10 ml min21. Identical

samples were injected over a control flow cell to determine non-

specific binding, which was subtracted from the experimental

curves. The sensor chip was regenerated with 0.1% SDS. The

equilibrium constants were determined by applying a one receptor

binding model, using the Biacore X100 evaluation software and

Simfit/HLFIT program.

Statistical analysis
Statistical significance between means was analyzed using the

unpaired Student’s t test with a threshold P value of 0.05. Values

are expressed as the means of three experiments with one standard

deviation errors.

Supporting Information

Figure S1 The primary sequence alignment of major subunits

from AAF and Afa/Dr families. The invariant and conserved

positions are shaded in cyan and yellow, respectively.

(TIFF)

Figure S2 Protein sequences of designed constructs. Blue, signal

peptide; orange, His-tag; green, linker sequence; red, donor strand

sequence.

(TIFF)

Figure S3 Dynamic structure of AAF subunits. (A) NMR

Relaxation properties of AafAdsA. Top panel: Black: Random

Coil Index (RCI) predicted by TALOS+ based on AafA-dsc

backbone chemical shifts. Region from residue number 125 to 135

shows high flexibility. Red: RMSD of each AafA residue generated
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by ARIA/CNS. Middle panel: T2 relaxation analysis of AafA-dsc.

Bottom panel: 1H-15N Heteronuclear NOE spectrum of AafAdsA.

(B) Superimposition of the 10 best NMR structures of AafAdsA.

(C) Structural superposition of the eight independently refined

molecules from the asymmetric unit of the AggBdscA crystal. In A

and C, the donor strand and linker sequence are shown in yellow

and blue, respectively. The flexible N-terminal residues in the

NMR structure are colored magenta.

(TIFF)

Figure S4 Structural superposition of AggAdsA (magenta),

AafAdsA (marine), and AfaEdsE (pdb: 2ixq) [35] (green) (stereo

view) showing structurally variable segments.

(TIFF)

Figure S5 Localization of key residues conserved across the

major subunits of both AAF/I-III and AFA/Dr families (shaded in

Fig. S1). These include the invariant Cys17, Cys49, Gly127 and

Tyr129; the highly conserved Leu11 in the donor strand and

Asp97, which is Asn in AAF/I from EAEC strain 17. Also shown

are residues conserved within AAF/I-III major subunits only (i.e.

not present in the AFA/Dr family), which include Lys55, Trp59,

Gly60, Thr80 and Leu81 residues (from those shaded blue in

Fig. 1). Side-chains are shown as balls on sticks on the structure of

AggAdsA as a stereo view. Residues are numbered according to

the sequence of AggA.

(TIFF)

Figure S6 Modelling of AAF fibers (A) Molecular surface

rendering of a model for AAF fibers. Fragments containing tip

minor subunits and four major subunits are shown. Conserved

surface residues (Fig. 4) are painted in red. (B) Structural superpo-

sition of the Caf1’:Caf1" fragment of the crystal structure of the

Caf1M:Caf1’:Caf1" mini-fiber of the F1 antigen (PDB accession

number 1Z9S) and solution structure of the AfaDdsE-AfaEdsE fusion

protein representing the tip complex of Afa-III fimbriae (dsE, donor

strand of AfaE, PDB accession number 2IXQ). The Caf1’:Caf1"

fragment is shown in magenta except the donor strand, which is

shown in red. The AfaDdsE-AfaEdsE fusion is painted in green,

except the dsE donor strand complementing the AfaD subunits (blue)

and the linker sequence connecting dsE to AfaD (cyan). The N and C

termini of protein chains are labeled. Note that the angle between

adjacent subunits in the F1 and Afa-III fibers differs by ,25u.
(TIFF)

Figure S7 Fragment of the tip complex in AAF/I demonstrating

the difference in the topology of disulfide bonds (balls on sticks) in

the minor (AggB, green) and major (AggA, cyan) subunits (cartoon

diagram, stereo view). Note that in AggA, the disulfide bond

connects the a helix in the BC1 loop with the donor strand linker,

whereas in AggB, the disulfide bond connects the BC1 loop with

the end of strand F.

(TIFF)

Figure S8 Biacore analysis of AggAdsA (A) and AggBdsA (B)

binding to fibronectin. Left panels: SPR sensograms recorded for

different concentration of AggAdsA or AggBdsA. Right panels:

Saturation curves (one binding site model).

(TIFF)

Figure S9 Expression of AafA harboring site mutations in

EAEC. Protein analysis of AafA constructs harboring site

mutations was performed by immunobloting. EAEC aafA mutant,

was transformed with pBADaafDA harboring site mutations and

grown until OD600 = 0.6, then induced with 2% arabinose until

an OD600 = 1.2 was reached. 16107 cells were resuspended in

Laemmli buffer, boiled and proteins were separated by 4–15%

gradient SDS-PAGE and transferred onto nitrocellulose mem-

branes. Membranes were probed with an anti-AafA rabbit

polyclonal antibody followed by HRP-conjugated anti-rabbit

antibody. All residues were mutated to alanine except where

noted.

(TIFF)

Figure S10 Comparison of structure and stability of the wild

type (WT) AggAdsA and AggAdsA carrying three mutations:

Lys73Ala, Lys76Ala, and Lys78Ala. (A) Far UV circular dichroism

(CD) spectra of the wild type AggAdsA at 20 (solid line) and 80uC
(dashed line) and mutant AggAdsA at 20uC (dotted line). 20-40 g/l

samples of the proteins in 10 mM Hepes, pH 7.4 and 50 mM

NaCl were diluted to the concentration of 3 g/l with 20 mM

phosphate buffer, pH 7.0, and CD spectra were recorded on a J-

810 dichrograph (Jasco) equipped with a PTC-423S temperature

control system in a 0.01 cm quartz cuvette. (B) Temperature

stability of the wild type and mutant AggAdsA. Temperature

dependence of the CD signal was recorded at a heating rate of 1uC
min21 at 218 nm for the wild type AggAdsA and at 230 nm for

the mutant in a 0.2 cm cuvette. The protein concentration was

0.21 g/ml. The data were normalized and fitted to a two-state

denaturation process. The transition temperatures for the wild

type and mutant AggAdsA have similar values, 66.860.4 and

65.460.2uC, respectively, suggesting that the introduced muta-

tions did not affect protein stability.

(TIFF)

Figure S11 Bovine serum albumin (BSA) does not affect the

AggAdsA binding to fibronectin. SPR sensograms for the binding

of AggAdsA and fibronectin were recorded at 40 mM concentra-

tion of AggAdsA in the absence (black solid line) and presence of

240 mM BSA (red dashed line).

(TIFF)

Table S1 NMR structural constraints and structure statistics for

AafAdsA.

(PDF)

Table S2 Diffraction data and refinement statistics.

(PDF)

Table S3 Primers used in the study.

(PDF)
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34. Crespo MD, Puorger C, Schärer MA, Eidam O, Grütter MG, et al. (2012)

Quality control of disulfide bond formation in pilus subunits by the chaperone
FimC. Nat Chem Biol 8: 707–713.

35. Cota E, Jones C, Simpson P, Altroff H, Anderson KL, et al. (2006) The solution

structure of the invasive tip complex from Afa/Dr fibrils. Mol Microbiol 62:

356–366.

36. Holm L, Rosenstrom P (2010) Dali server: conservation mapping in 3D. Nucleic

Acids Research 38: W545–549.

37. Sauer FG, Remaut H, Hultgren SJ, Waksman G (2004) Fiber assembly by the
chaperone–usher pathway. Biochimica et Biophysica Acta (BBA) - Molecular

Cell Research 1694: 259–267.

38. Berjanskii MV, Wishart DS (2008) Application of the random coil index to

studying protein flexibility. J Biomol NMR 40: 31–48.

39. Lawrence MC, Colman PM (1993) Shape complementarity at protein/protein

interfaces. J Mol Biol 234: 946–950.

40. Garcia M-I, Gounon P, Courcoux P, Labigne A, Le Bouguénec C (1996) The
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