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Abstract

We exhibit two distinct renormalization scenarios for two-parameter
piecewise isometries (PWI’s), based on 2π/5 rotations of a rhombus
and parameter-dependent translations. Both scenarios rely on the re-
cently established renormalizability of a one-parameter triangle map,
which takes place if and only if the parameter belongs to the alge-
braic number field K = Q(

√
5) associated with the rotation matrix.

With two parameters, features emerge which have no counterpart in
the single-parameter model. In the first scenario, we show that renor-
malizability is no longer rigid: whereas one of the two parameters
is restricted to K, the second parameter can vary continuously over
a real interval without destroying self-similarity. The mechanism in-
volves neighbouring atoms which recombine after traversing distinct
return paths. We show that this phenomenon also occurs in the simpler
context of Rauzy-Veech renormalization of interval exchange transfor-
mations, here regarded as parametric piecewise isometries on a real
interval. We explore this analogy in some detail.

In the second scenario, which involves two-parameter deformations
of a three-parameter rhombus map, we exhibit a weak form of rigid-
ity. The phase space splits into several (non-convex) invariant compo-
nents, on each of which the renormalization still has a free parameter.
However, the foliations of the different components are transversal in
parameter space; as a result, simultaneous self-similarity of the com-
ponent maps requires that both of the original parameters belong to
the field K.
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Since the late 1970’s, renormalization has provided a power-
ful framework for probing the asymptotic short-distance behavior
of dynamical systems. Prominent among the pioneering works on
the subject was G. Rauzy’s systematic renormalization scheme for
one-dimensional mappings known as interval-exchange transfor-
mations (IET’s) [21]. An IET maps a real interval onto itself, par-
titioning it into sub-intervals, then permuting the sub-intervals.
Rauzy’s aim was not simply to study individual renormalizable
IET’s, but rather to construct large classes of such mappings. His
strategy was to consider the sub-interval lengths as continuously
variable parameters, on which the condition of renormalizability
(i.e., dynamical self-similarity) could be imposed by solving alge-
braic equations.

It is only recently that a strategy similar to Rauzy’s has been
successfully applied to the renormalization of mappings in the
plane which are close relatives of the one-dimensional IET’s [10,
16, 23]. These are the piecewise isometries (PWI’s), in which a
polygon is partitioned into convex sub-polygons (atoms), which
are mapped back into it via translations and rotations. In [16] we
constructed two families of renormalizable one-parameter PWI’s,
including a particularly simple three-atom parametric PWI on
a triangle. The present work is a first exploration of renormal-
ization in a two-dimensional parameter space, and includes two
quite different routes to renormalizability. One of these involves
a degenerate form of self-similarity, in which the values of one of
the two parameters are restricted to a field of algebraic numbers,
while the other parameter can be varied freely within a finite in-
terval. We show that this phenomenon, in simpler form, plays an
important role in the Rauzy renormalization of IET’s.

1 Introduction

Piecewise isometries (PWI) are maps of polygonal domains partitioned into
convex sub-domains, called atoms, in such a way that the restriction of
the map to each atom is an isometry. The first-return map to any convex
sub-domain is a new PWI, called the induced PWI on that domain. If by
repeating the induction we obtain a sub-system conjugate to the original
one via a suitable group of isometries and homotheties, then we consider
the original PWI to be renormalizable.
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General results for PWI’s are scarce [18,19]. All early work on renormal-
ization concerned specific models of PWI’s defined over quadratic fields (the
field of a PWI is determined by the entries of the rotation matrices and the
translation vectors defining the isometries) [1,2,12,14,22]. A more intricate
form of renormalization was found in a handful of cubic cases [9, 15].

It is only recently that one has been able to deal with the renormalizabil-
ity, in a more general sense, of continuously deformable PWI’s. This is in
contrast to the situation for the one-dimensional analogues of PWI’s, namely
interval exchange transformations (IET’s). An IET maps a real interval
onto itself via piecewise translations (i.e., permutations) of sub-intervals.
In this case, the parameters are a discrete permutation and a continuously
deformable array of sub-interval lengths. Rauzy-Veech induction [21,24,25]
provides a systematic scheme for parameter-dependent renormalization.

In two dimensions, the first results on parametric families concerned
polygon-exchange transformations, for which the isometry is strictly transla-
tional. This was work of Hooper [10], on the measure of the periodic and ape-
riodic sets in a two-parameter family of rectangle-exchange transformations,
and Schwartz [23], on the renormalization group of a one-parameter family of
polygon-exchange transformations. Subsequently, the present authors [16]
studied two one-parameter families of piecewise isometries. Each family
has a fixed rotational component defined over a quadratic field (Q(

√
5) and

Q(
√

2), respectively), and parameter-dependent translations. It was shown
that self-similarity occurs if and only if the parameter belongs to the relevant
field. In this circumstance, we say that renormalizability is rigid.

The mapping for the “pentagonal” model based on Q(
√

5) is shown in
figure 1. For the parameter s restricted to a suitable interval, there is an
induced PWI on a triangular sub-domain (the so-called base triangle), which
reproduces itself after scaling and the reparametrization s 7→ r(s). After an
affine change of parameter, the function r was found to be of Lüroth type
—a piecewise affine version of Gauss’s map [4, 8, 17]. In the pentagonal
model, the discontinuities of r accumulate at the origin; in the octagonal
case (K =

√
2) one has r = f ◦ f , where f has two accumulation points

of discontinuities. In both cases r is expanding and preserves the Lebesgue
measure.

The present work is a first attempt at constructing renormalizable piece-
wise isometries with more than one deformation parameter. We have iden-
tified two quite different scenarios for achieving this goal, both of which
depend, at some stage of the induction process, on the known behaviour of
the single-parameter base triangle map of the pentagonal model.

In our first construction we start with the rhombus PWI shown in figure
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Figure 1: One-parameter rhombus map of the pentagonal model of [16]. The
boundary lines a, b, c, d, e, f, are respectively defined by the equations x0 =
−s, x1 = −s, x0 = 1− s, x1 = 1− s, x2 = −s, x2 = −1− s, where xm = um · x with
basis vectors um given in (4), and s a real parameter which varies continuously over
a finite interval.

2, whose caption reveals the dependence of the boundary lines on two in-
dependent parameters, s and t. Our choice of parameter domain Π, shown
in figure 9, has a boundary where t = s, where the PWI collapses into the
three-atom rhombus map shown in figure 1. It is easy to verify that varying
s and t within Π retains the character of the map as a piecewise isometry.
The question of renormalizability is more subtle. As we shall see in section
4, after three successive induction steps, one arrives at an induced PWI on
an isosceles triangle which, after eliminating superfluous atom boundaries,
reduces to precisely the base triangle map parametrized by s. The criterion
of self-similarity thus leads to a foliation of the parameter domain Π: we
have rigidity in the s direction (s must be an algebraic number in K), but
continuous variation in the t direction.

The appearance of a hidden reduction of the number of atoms, which
reveals itself only after induction, is present in a much simpler form in
Rauzy-Veech induction of interval exchange transformations. In section 5,
we discuss this phenomenon in detail, showing that it leads to consider-
able simplification in the classification scheme for renormalizable IET’s. In
particular, there are always so-called proper self-similar IET’s, without free
parameters, as long as the number of intervals is greater than three. (At
at a deeper level, the occurrence of non-rigidity in renormalizable IET’s
can be understood in terms of the properties of the associated translation
surfaces [11].)

In view of the one-dimensional analogue, we speculate that there may
exist renormalizable two parameter PWI’s which are proper, in the sense
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Figure 2: Two-parameter rhombus map. The boundary lines a,b,c,d,e,f,g are,
respectively, defined by the equations x0 = −t, x1 = −s, x0 = 1− t, x1 = 1−s, x2 =
−s, x2 = −1 − s, x1 = −t, where xm = um · x and the basis vectors um are given
in (4). Here s and t are real parameters, with (s, t) varying continuously over the
convex domain shown in figure 9.

that their renormalizability does not derive from that of a one-parameter
induced map. With this in mind, we conducted an extensive search for a
rigidly renormalizable two-parameter PWI, using two-dimensional sections
of the three-dimensional parameter space of a four-atom rhombus shown
in figure 13. We only found a weak form of rigidity, resulting from the
co-existence, in disjoint (non-convex) regions of the phase space, of several
one-parameter induced PWI’s with transversally intersecting foliations of
the parameter domain. This provides a second scenario for two-parameter
renormalizability, which exhibits rigidity in both parameters without being
genuinely proper. One such model is studied in detail in section 6. Whether
proper renormalizable two-parameter PWI’s exist at all remains an open
question.

The remainder of this article is organized as follows. After introducing
our basic definitions and methods in section 2, we review in section 3 the
renormalization of the one-parameter base triangle. In section 4, we in-
troduce our first scenario for two-parameter renormalization, showing how
atom recombination leads to non-rigidity of the self-similarity. As we explain
in section 5, the same mechanism plays an important role in Rauzy-Veech
renormalization of interval exchange transformations in one dimension. In
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the final section 6, we exhibit a four-atom rhombus map which exemplifies
our second scenario, in which weak rigidity of both parameters is achieved,
but at the expense of a partition of the phase space into several invariant
components.

Acknowledgements: JHL and FV would like to thank, respectively, the
School of Mathematical Sciences at Queen Mary, University of London, and
the Department of Physics of New York University, for their hospitality.

2 Preliminaries

Throughout this paper, we let

α =
√

5, ω = (α+ 1)/2, β = ω−1 = (α− 1)/2. (1)

The arithmetical environment is the quadratic field Q(ω) with its ring of
integers Z[ω], given by

Q(ω) = {x+ yα : x, y ∈ Q}, Z[ω] = {m+ nω : m,n ∈ Z}. (2)

The number ω, which is the fundamental unit in Z[ω] (see [6, chapter 6]),
will determine the scaling under renormalization. The number β = ω − 1 is
also a unit.

2.1 Planar objects

A tile X with n edges is a convex polygon defined by the half-plane condi-
tions

umi · x < bi (excluded edge)
or

umi · x > bi (included edge)
i = 1, . . . , n, (3)

where x = (x, y), bi ∈ R, and the um are the vectors

um =
(

cos
2πm

5
, sin

2πm
5

)
m ∈ {0, . . . , 4}. (4)

For the ith edge, defined by umi · x = bi, we introduce an index εi, where
εi = −1 if the edge is included in X, and εi = 1 if it is excluded. We then
represent X as a triple of n-vectors

X = [(m1, . . . ,mn), (ε1, . . . , εn), (b1, . . . , bn)]. (5)
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We shall assume that n is minimal, namely that X is not definable by fewer
conditions.

A tiling X is a set of disjoint tiles,

X = {X1, . . . , XN}

and is associated with a domain X (union of tiles)

X =
N⋃
k=1

Xk.

Note that a domain need not be convex, or even connected. Note further that
thanks to (3), if a pair of tiles have disjoint interiors but share a common
boundary segment, that segment belongs to one and only one tile of the
pair. This allows the possibility of gluing together adjacent tiles without
disturbing the inclusion relation of the respective edges.

2.2 Similarity group

The transformation properties of planar objects are provided by a group G

which comprises the rotations and reflections of the symmetry group of the
regular pentagon (the dihedral group D5) together with translations in K2

and real scale transformations.
We adopt the following notation:

Um: reflection about the line generated by um.

Rm: rotation by the angle 2mπ/5.

Td: translation by d ∈ K2.

Sη: scaling by η ∈ R+.

We write X ∼ Y to indicate that X is similar to Y, i.e., that X = G(Y) for
some G ∈ G. As G is a group, this is an equivalence relation. Within G we
distinguish two important subgroups: the isometry group I generated by ro-
tations, reflections, and translations, and the dynamical group I+, generated
by rotations and translations.
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2.3 Dressed domains and sub-domains

A dressed domain is a triple

X = (X,X, ρ), (6)

where X = {X1, . . . , XN} is a tiling of the domain X, and ρ = {ρ1, . . . , ρN},
where ρi ∈ J+ is an orientation-preserving isometry acting on the tile Xk.
Under the action of G ∈ G, a dressed domain X transforms as

G(X ) = G(X,X, ρ) = (G(X), {G(X1), . . . , G(Xk)}, G ◦ ρ ◦ G−1)

where the conjugacy acts component-wise. To emphasize the association of
a mapping ρ with a particular dressed domain X , we use the notation ρX .

Let X = (X,X, ρX ) be a dressed domain, and let Y be a sub-domain of
X. We denote by ρY the first-return map on Y induced by ρX . We call the
resulting dressed domain Y = (Y,Y, ρY) a dressed sub-domain of X , and
write

Y / X . (7)

The dressed sub-domain relation (7) is scale invariant, namely invariant
under an homothety. Indeed, if Sη denotes scaling by a factor η, then in the
data (5) specifying a tile, the orientations mk remain unchanged, while the
pentagonal coordinates bk scale by η. Moreover, the identity

SηTdRn = TηdRnSη.

shows that the piecewise isometries ρ scale in the same way. We conclude
that the sub-domain relation (7) is preserved if the dressed domain param-
eters are scaled by the same factor for both members.

2.4 Parametric dressed domains

In this article we consider continuously deformable dressed domains X =
X (s) called parametric dressed domains, depending on a real parameter
vector s = (s1, . . . , sp).

These are domains whose tiles Xk and image tiles ρk(Xk) depend on s
only via the coefficients bi, while the parameters n, mi and εi remain fixed
[see (5)]. We shall require that the bi’s be affine functions of s1, . . . , sp, with
coefficients in Q(ω). Algebraically, this is expressed as

bi ∈ S S = Q(ω) + Q(ω)s1 + · · ·+ Q(ω)sp, (8)
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where s1, . . . , sp are regarded as indeterminates. The set S is is a (p + 1)-
dimensional vector space over Q(ω) (a Q(ω)-module).

The condition (8) gives us affine functions bi : Rp → R

bi(s1, . . . , sp) = bi,0 + bi,1s1 + · · ·+ bi,psp bi,j ∈ Q(ω). (9)

We define the bifurcation-free set Π(X ) to be the maximal open set such
that all of the edges of all Xk(s) have non-zero lengths. Note that other
types of bifurcations may occur if X is embedded within a larger domain
(see section 2.6.)

2.5 Renormalizable dressed domains

A parametric dressed domain X (s) is said to be renormalizable over an open
domain Π ⊂ Rp if there exists a piecewise smooth map r : Π→ Π such that
for every choice of s ∈ r−1(Π) the dressed domain X (s) has a dressed sub-
domain Y similar to X (r(s)) which satisfies the recursive tiling property. The
function r depends only on s, a requirement of scale invariance. In general,
we have Y = Yi(s)(s), where i is a discrete index. The set r−1(Π) need
not be connected (even if i is constant), each connected component being a
bifurcation-free domain of Y. (To extend the renormalization function r to
the closure of Π, one must include bifurcation parameter values, as in [16].)

If s = s0 is eventually periodic under r, then we say that X (s0) is self-
similar. A self-similar system has an induced sub-system which reproduces
itself on a smaller scale under induction.

Let a parametric dressed domain X (s) have induced Xj(s), such that,
for j = 1, . . . , N we have: (i) Xj is renormalizable over a domain Πj ; (ii)
the Xj recursively tile X ; (iii) the Πj have non-empty intersection Π. Then
we still consider X renormalizable over Π.

The definition of renormalizability given above is tailored to our model; it
is not the most general possible, and it is local in parameter space. We allow
Y to depend on a discrete index (as in Rauzy induction for interval exchange
transformations —see section 5) to obtain a simpler renormalization function
r (section 3). We only require X to be eventually renormalizable, and we
allow X to have sub-domains with independent renormalization schemes
(which is a common phenomenon, see section 6).

2.6 Computations

For computations, we use the Mathematica R©procedures listed in the sup-
plemental material [7]. All computations reported in this work are exact,
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employing integer and polynomial arithmetic, and the symbolic representa-
tion of algebraic numbers.

The geometrical objects defined in section 2.1 require arithmetic in a bi-
quadratic field, since only the first component of the vectors um is in Q(ω).
To circumvent this difficulty, we conjugate our PWI to a map of a square
where the clockwise rotation 2π/5 is represented by the following matrix
over Z[ω] (

0 1
−1 β

)
where β was defined in (1). (This is still a PWI with respect to a non-
Euclidean metric.) In the new co-ordinates, the vectors um become

{(1, 0), (0, 1), (−1, β), (−β,−β), (β,−1)} (10)

which belong to Z[ω]2. With this representation, all of our calculations can
be performed within the module S defined in (8). As an example, figure 3
displays the rhombus map of figure 2 using the basis (10). We shall still

s − t

R

R
ρ

R1

R2

R3

R4 R5

a

b

c

d

e

f
g

Figure 3: The two-parameter map of figure 2 represented using the basis vectors of
(10). The equations for the boundary lines are the same as those listed under figure
2. The mapping is still piecewise isometric, but with respect to a non-Euclidean
metric.

display our figures in the original coordinates, where geometric relations
(especially reflection symmetries) are more apparent to the eye.

In constructing a return map orbit of a domain X (s) by direct iteration,
one determines inclusion and disjointness relations among domains, which
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require evaluations of inequalities (3). Since the latter are expressed by
affine functions of the parameter s in some polytope Π, it suffices to check
the inequalities on the boundary of Π. All these boundary values belong to
the field Q(ω), and the inequalities can be reduced to integer inequalities.

Typically, X will be immersed in a larger domain Y (an atom, say).
Therefore, in addition to the intrinsic bifurcation-free polytope Π(X ) defined
in section 2.4, one must also consider the polytope Π(X ,Y) defined by the
inclusion X (s) ⊂ Y(s), as well as intersection of these polytopes.

The recursive tiling property defined in section 2.5 is established by
adding up the areas of the tiles of all the orbits, and comparing it with the
total area of the parent domain.

With these techniques, we are able to establish rigorously a variety of
statements valid over convex sets in parameter space.

3 Base triangle

The base triangle is the simplest one-parameter renormalizable piecewise
isometry associated with rotations by 2π/5; it is self-similar precisely for
parameter in the quadratic field Q(

√
5). It was instrumental to the proof

of renormalizability of a one-parameter rhombus map in [16], and it will
appear again in the many-parameter versions presented here.

We develop a variant of the model presented in [16], which includes
boundary segments in the tiles and an improved renormalization scheme.
The base triangle B prototype is the following dressed domain (see figure
4):

ρ
B

B1

B2

B3

Figure 4: Base triangle prototype.
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B = (B, (B1, B2, B3), (ρ1, ρ2, ρ3))

where

B = [(1, 0, 2), (−1, 1, 1), (τ − ω2, 0, 0)],
B1 = [(0, 2, 3), (1, 1, 1), (0, 0, ω − ωτ)], (11)
B2 = [(1, 4, 0, 3, 2), (−1, 1, 1,−1, 1), (τ − ω2, ω2 − ωτ, 0, ω − ωτ, 0)],
B3 = [(1, 0, 4), (−1, 1,−1), (τ − ω2, 0, ω2 − ωτ)].

The dynamics is given by a local reflection of each atom about its own
symmetry axis, followed by a global reflection about the symmetry axis of
B, which can be written as:

ρ1 = T(ωτ−ω,−ω2+ω2τ) R2

ρ2 = T(0,ω2τ−ω3) R3 (12)
ρ3 = T(ωτ−2ω,ω2τ−2ω2) R2.

Here we have chosen a coordinate system such that the peak of the isosceles
triangle is at the origin and the altitude of the atom B3 is the parameter
τ , which varies over the interval (0, 1) without the occurrence of a bifur-
cation. This parameter (together with time-reversal invariance) determines
the scale-invariant properties of the dressed domain, since it is related to
the ratio η of altitudes of B3 and B by the formula

η =
τ

ω2 − τ
.

As τ varies from 0 to 1, η increases from 0 to β.
The edges of the domain B are included or excluded as stipulated in

section 2; a vertex joining two included edges is included, but is excluded
otherwise. The renormalizability analysis will also require a second base
triangle B̃, differing from B by a change of sign of all edge coordinates and
translation vectors, as well as of the respective εi. The dressed domains B
and B̃ are G-inequivalent: not only do they have different boundary con-
ditions, but their interiors differ by a rotation by π, not an element of the
similarity group.

The renormalizability analysis for the base triangle is summarized in the
following lemma:

Lemma 1 Let B be as above. The following holds:

(i) For 0 < τ < β2, B has a dressed sub-domain B1 ∼ B which is scaled
by a factor (1− τ)/(ω2 − τ) and has shape parameter r(τ) = ω2τ .

12



(ii) For β2 < τ < β, B has a dressed sub-domain B2 ∼ B̃ which is scaled
by a factor τ/(ω2 − τ) and has shape parameter r(τ) = ω3(β − τ).

(iii) For β < τ < 1, B has a dressed sub-domain B3 ∼ B̃ which is scaled by
a factor τ/(ω2 − τ) and has shape parameter r(τ) = ω2(1− τ).

1

10 ββ2

β2

β

τ

r(τ)

Figure 5: Renormalization function r(τ) for base triangles.

The renormalization function r has three branches (see figure 5). In cases
(ii) and (iii) one induces on the atom B3, over two disjoint bifurcation-free
parameter ranges. Since the size of B3 vanishes as τ approaches 0, in the
range (i) we induce on the triangle [(1, 0, 2), (−1, 1, 1), (β2τ − 1, 0, 0)], which
is not an atom. This device prevents the occurrence of infinitely many
singularities in the renormalization function found in [16].

In each case, the return orbits of the atoms of Bi, together with a finite
number of periodic tiles, completely tile the triangle B. For B̃, the pre-
scriptions (i)-(iii) hold with the roles of B and B̃ exchanged. The induction
relations are represented as the graph in figure 6.

As in [16], the proof of Lemma 1 is by direct iteration, as discussed in
section 2.6. The main difference in the two computational algorithms lies
in the procedures used to verify inclusion and disjointness of tiles (see [7]).
Specifically, checking the sub-polygon relation X ⊂ Y requires verifying that
no included vertex of X has landed on an excluded edge of Y . Similarly, to
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B B~τ > β2

τ < β2
τ < β2

Figure 6: Renormalization graph for base triangles. A directed link from X to Y
indicates that X has an induced dressed sub-domain equivalent to Y , subject to
the the indicated parameter constraint.

decide that X and Y are disjoint, one must check that no included vertex
of either tile lies on an included edge of the other.

With reference to lemma 1, we remark that the base triangle B, with
its definition extended to the two-atom limiting cases τ = 0, 1, is in fact
renormalizable also at the parameter values 0, β2, β, 1, with r(τ) = 0 in
all these cases (for the calculations, see supplemental material [7]. These
additional parameter values are needed to make B renormalizable over the
whole interval [0, 1] ∩Q(ω). We shall use this property in sections 4 and 6.

4 Non-rigid self-similarity

We now turn to the two-parameter rhombus map introduced in section 1
—see figures 2 and 3. In suitable coordinates, the dressed domain is given
by

R = (R, (R1, . . . , R5), (ρR1 , . . . , ρR5)),

with (see figure 2)

R = [(0, 1, 0, 1), (−1,−1, 1, 1), (−t,−s, 1− t, 1− s)],
R1 = [(0, 2, 1), (−1,−1, 1), (−t,−s, 1− s)],
R2 = [(0, 1, 2, 0, 1, 2), (−1,−1,−1, 1, 1, 1), (−t,−t,−1− s, 1− t, 1− s,−s)],
R3 = [(0, 2, 1), (1, 1,−1), (1− t,−1− s,−t)], (13)
R4 = [(0, 1, 2, 1), (−1,−1,−1, 1), (−t,−s,−1− s,−t)],
R5 = [(1, 0, 1, 2), (−1, 1, 1, 1), (−s, 1− t,−t,−1− s)]

ρR1 = T(0,0) R4, ρR2 = T(0,1) R4, ρR3 = T(0,2) R4, (14)

ρR4 = T(1,1) R4. ρR5 = T(1,2) R4.

The corresponding bifurcation-free parametric domain Π(R), defined in
section 2.4, is found to be the triangle with vertices at (0, 0), (−1/α,−1/α),
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and (β/α,−β/α). On the boundary of Π(R) given by with s = t, the dressed
domain R collapses into the one-parameter pentagonal model of [16], and
hence is self-similar for all s ∈ Q(ω) within a suitable interval.

R

R

R

3

31R3

R31

A

Figure 7: The first two steps of the triple induction R .R3 .R31 .A. The third
step produces the dressed domain A shown in figure 8.

Our goal is to determine a parametric dressed domainA with bifurcation-
free sub-domain Π(A) ⊂ Π(R) over which R is renormalizable. To this end,
we choose a specific parameter pair close to the s = t boundary: (s0, t0) =
(−19/200,−1/10), and we establish that at this value the renormalization
is amenable to a complete analysis (with computer assistance). Specifically,
we consider a three-step induction, first on the triangular atom R3, followed
by two inductions on sub-triangles, as shown in figure 7. The last induction
produces the dressed domain A, shown in figure 8, which is given by:

A = (A, (A1, . . . , A8), (ρA1 , . . . , ρA8)), (15)

with

A = [(2, 1, 0), (1,−1, 1), (−1− s, β4 − s, 1− s)]
A1 = [(1, 0, 4), (−1, 1,−1), (β4 − t, 1− s, αβ4 − t)],
A2 = [(1, 4, 0, 4), (−1, 1, 1,−1), (β4 − t, αβ4 − t, 1− s, αβ4 − s)],
A3 = [(0, 1, 4, 1), (1, 1,−1,−1), (1− s, β4 − t, αβ4 − t, β4 − s)],
A4 = [(4, 1, 4, 1), (1, 1,−1,−1), (αβ4 − t, β4 − t, αβ4 − s, β4 − s)],
A5 = [(2, 1, 4, 0, 3), (1,−1, 1, 1,−1) (16)

(−1− s, β4 − t, αβ4 − s, 1− s,−4β3 − t)],
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A6 = [(2, 3, 0, 3), (1, 1, 1,−1), (−1− s,−4β3 − t, 1− s,−4β3 − s)],
A7 = [(2, 1, 4, 1), (1,−1, 1, 1), (−1− s, β4 − s, αβ4 − s, β4 − t)],
A8 = [(2, 3, 0), (1, 1, 1), (−1− s,−4β3 − s, 1− s)],

ρA1 = ρA2 = ρA3 = ρA4 = T(8β3,−2β5) R2,

ρA5 = ρA6 = ρA7 = T(2,1+β5) R3,

ρA8 = T(2−β6,−β5) R2.

(17)

ρ
A

A

14
3
2

5

6

7

8

1
2

4

3

5

6

7

8

Figure 8: The dressed domain A, with its 8 atoms numbered as in (15). The
boundaries of the composite atoms C1, C2, C3 are coloured red, green, and blue,
respectively.

We find that Π(A) is the triangle with vertices

(−1+
2
α
,−1+

2
α

), (
1
2

(11−5α),
1
4

(−25+11α)), (
1
2

(11−5α),
1
2

(11−5α)),

shown in figure 9. One verifies that Π(A) is adjacent to the line s = t and
that (s0, t0) lies in its interior.

Using direct iteration, we verify that for all (s, t) ∈ Π(A) the return
orbits of the eight atoms of A, together with those of 13 periodic tiles,
completely tile the rhombus R (see figure 10).

A decisive simplification of the analysis results from the observation that
the four atoms A1, . . . , A4 of A are mapped by the same isometry, and
hence, with regard to the first-return map to A, can be merged into a single
triangular tile, A1234. Similarly, atoms A5, A6, A7 can be merged into a single
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s = 
t

s

t

Figure 9: The parametric domain Π(A).

reflection-symmetric pentagon, A567. The mergers have been suggested in
the shading of the tiles in figure 8. The dressed domain thus simplifies into

C = (C, (C1, C2, C3), (ρC1 , ρC2 , ρC3))
def= (A, (A8, A567, A1234), (ρA8 , ρA5 , ρA1)) (18)

Moreover, one verifies that over Π(C) = Π(A), we have C ∼ B. The intrinsic
shape parameter of C can be calculated from the ratio ηC of the altitude of
C3 to that of C:

τC =
ω2ηC

1 + ηC
= ω7(αs+ β3). (19)

As we transverse Π(C) from left to right, s increases from 2/α− 1 to (11−
5α)/2, with τC increasing from 0 to 1.

The issue of recursive tiling is now rather subtle. The rhombus is cer-
tainly tiled by the return orbits of C1, C2, C3, and the 13 periodic tiles which
arose in the induction on A. (see figure 10). However, the return paths are
not the same for all tiles. In (say) C3, the tiles A1, A2, A3, A4 have four
distinct 78-step return paths, which go their separate ways, but recombine
eventually to form an atom of the dressed domain with a unique isometry.
The coincidence of the return times is not necessary to the recombination,
as these times could differ by any integer multiples of 5. As a result, the
partition of C3 into A1, A2, A3, A4 is relevant to the recursive tiling of the
original rhombus, but not to dynamical self-similarity. (We shall encounter
again the same phenomenon —recombination with different return times—
in section 6.)
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A

R3

Figure 10: Tiling of R3 by return orbits of the 8 atoms of A (coloured) and 7
periodic tiles (grey). Note that A1, A2, A3, A4, which comprise C1, have distinct
return orbits.

The parameter pairs (s, t) ∈ Π(C) corresponding to self-similarity for the
rhombus map R are now determined by the self-similarity of the induced
dressed sub-domain C. In turn, the latter are the values of s for which
the base triangle is self-similar, namely τC(s) ∈ (0, 1) ∩ Q(ω), while t is
unconstrained. Thus, by (19), R is renormalizable in Π(C) if and only if

(s, t) ∈ Π(C) ∩ (Q(ω)× R) .

This is the main result of this section.
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5 Non-rigid self-similarity in Rauzy induction

The merging and recombination of atoms, resulting in the appearance of
a hidden free parameter in the renormalization process, is not peculiar to
planar PWI’s. In fact, this phenomenon is analogous to that encountered
in the simpler, one-dimensional setting of Rauzy-Veech renormalization of
interval exchange transformations (IET’s) [21,24,25]. For completeness, we
first review the basic constructs.

We fix a half-open interval Ω = [0, l) and a partition of Ω into n half-open
sub-intervals Ωi. An IET is a piecewise isometry of Ω which is a translation
on each Ωi. We represent it as a pair (π,Λ), where Λ = (λ1, . . . , λn) is
the vector of the lengths of the sub-intervals and π is the permutation of
{1, . . . , n} such that the transformed interval length vector is (λπ−1(1), . . . ,
λπ−1(n)) (i.e., the interval of length λk is translated from position k to posi-
tion π(k) in the array).

We assume that π is irreducible in the sense that {1, . . . , k} is mapped
into itself only if k = n. If we fix n, then (π,Λ) is a parametric PWI,
with discrete and continuous parameters π and Λ, respectively. IET’s which
differ only by an overall translation or scale transformation are considered
equivalent.

Rauzy-Veech induction on (π,Λ) consists of inducing on the larger of the
two intervals Ω(0) = [0, l−λn) and Ω(1) = [0, l−λπ−1(n)), denoted by type 0
and type 1 induction, respectively (the case |Ω(0)| = |Ω(1)| is excluded from
consideration, as in this case the map is not minimal). Induction corresponds
to a map (π,Λ) 7→ (π′,Λ′) = (ai(π), Ai(π)−1Λ), i = 0, 1, where Ai(π)−1 is
an n× n integral matrix (see [20]), and ai(π) is defined as follows:

a0 ((k1, . . . , kj−1, n, kj+1, . . . , kn−1,m)) (20)

= (k′1, . . . , k
′
j−1,m+ 1, k′j+1, . . . , k

′
n−1,m),

where k′i = ki if ki < m and k′i = ki + 1 if ki > m, and

a1 ((k1, . . . , kj−1, n, kj+1, . . . , kn−1,m)) (21)

= (k1, . . . , kj−1, n,m, kj+1, . . . , kn−1),

with the obvious interpretations if either of the sequences k1, . . . , kj−1 or
kj+1, . . . , kn−1 is empty or consists of a single member.

The permutations π of n symbols are then represented as the vertices
of a Rauzy graph. Each vertex has two outgoing and two incoming edges,
associated with ai and a−1

i , respectively, for i = 0, 1. The Rauzy classes
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are the connected components of the graph. These IET’s are linked by a
sequence of Rauzy inductions, and a self-similar IET corresponds to a path
on a Rauzy graph which terminates in a closed circuit γ of permutations
π1, π2, . . . , πp. Transversing such a circuit produces a rescaled version of the
initial IET if its length vector is an eigenvector of the product A−1

γ of the ma-
trices Aik(πk)−1, k = 1, . . . , p, with a scale factor given by the corresponding
eigenvalue. In the language of section 2.5, the irreducible IET’s of length
n form a parametric dressed domain whose tiles are the sub-intervals and
whose parameters are π and Λ = (λ1, . . . , λn). The renormalization func-
tion corresponding to a particular permutation π and Rauzy-graph circuit
originating at π is just

rγ(Λ) =
A−1
γ · Λ

|A−1
γ · Λ|

.

As usual, self-similarity corresponds to a fixed-point of rγ , i.e., an eigenvalue
condition for the matrix Aγ .

In figures 11 and 12 we display the Rauzy graphs for n = 3 and n = 4 [25,
section 6]. Two of the three irreducible permutations of the Rauzy graph
for n = 3 (figure 11) and all of the permutations for the first class for n = 4
(figure 12) contain a consecutive pair of the form (. . . , j, j+ 1, . . .). Such an
IET will be called degenerate. For those IET’s, the consecutive intervals Ωj

and Ωj+1 have the same translation vector, and hence the interval Ωj ∪Ωj+1

may be merged into a single interval of length λ′j = λj+λj+1. The n-interval
IET is thus identical, as a mapping, to an n− 1-interval IET.

In figures 11 and 12 we see examples of simplification via atom merger,
even though this is not necessarily true recombination. For the latter, we
require that the degeneracy appear only after at least one step of induction,
to ensure that the members of a consecutive pair have distinct return paths.
The simplest example of a recombination is the one with permutation (321).

312 321 2310

1 0

1 0

1

Figure 11: Rauzy graph for n = 3. All permutations are degenerate, and their
translation surface is a torus. Any renormalizable IET with three intervals will
have a free parameter.
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4123 4231 2341

0 1

4312 3412 3421
0

0

0 0

0

1 1

1

1

1

4213

4321

3241

0 1

4132 2431
0

0
0

0

0

1

1

1

1

1
2413

1

3142

0

Figure 12: Rauzy graph for n = 4. All permutations of the upper component are
degenerate. No permutation of the lower component has this property.

This IET is clearly not degenerate, but each of its Rauzy-induced children is.
In both cases the two members of the consecutive pair have distinct return
paths, and even distinct return times. Now the renormalization analysis
reduces naturally to that a single IET with π = (12). Once again, one
of the parameters of the original IET can be varied continuously without
disturbing strict renormalizability.

For general n, we define as recombinant any IET which, under Rauzy
induction, has the property that each of its children has a permutation with
a consecutive pair of intervals having distinct return paths. Furthermore,
we define as improper an IET which is degenerate or of the form

(. . . , n, k + 1, . . . , k)

for some k < n− 1. An IET which is not improper is defined to be proper.
By a straightforward application of the definitions (20) and (21), one obtains
the following results:

(i) A nondegenerate, improper IET is recombinant.

(ii) Under Rauzy induction, the parents and children of an improper IET
are all improper.
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From (ii) we conclude that either all members of a Rauzy class are proper,
or all are improper. In the latter case, each of the IET’s is characterized by
at least one parameter which can be varied continuously without disturbing
the criteria of strict renormalizability. Removing these parameters, with
merging of the relevant atoms, reduces the renormalization analysis to that
of a Rauzy class of IET’s with a smaller number of intervals. In other
words, a complete inventory of renormalizable IET’s can be obtained by
restricting one’s attention to the proper Rauzy classes. Doing so leads to a
considerable improvement in efficiency: for example, for n = 7, there are 13
Rauzy classes containing a total of 3447 irreducible IET’s; of these, there are
6 proper classes, with 1340 IET’s. Self-similarity within the remaining 2107
improper IET’s can be analysed by studying the proper IET’s with n < 7.
Note that n = 4 is special in having only degenerate IET’s in its single
improper Rauzy class. For larger n, nondegenerate, hence recombinant,
examples are plentiful within the improper Rauzy classes, since it is easy to
find permutations of the form (. . . , n, k+1, . . . , k) with no consecutive pairs.

A deeper understanding of the above results can by obtained by rep-
resenting an IET as Poincaré section of a flow on a translation surface
[11, 24, 25]. The latter is a polygon with 2n sides (n is the number of in-
tervals), labelled according to the ordering of the intervals before and after
the permutation. The sides that correspond to the same interval have equal
length and are parallel, and they are to be identified. A rectilinear flow
on the plane will develop conical singularities on the surface, in correspon-
dence to the vertices of the 2n-gon. While the translation surface is not
unique, its genus and singularities (given by the total angle 2π(m + 1) at
the identified vertices) depend only on the Rauzy class. The removable sin-
gularities (m = 0) correspond to degenerate permutations, and they signal
the appearance of free parameters in renormalizability. Since the translation
surface does not change under induction, these structures depend only on
the Rauzy class to which the permutation belongs.
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6 Weakly-rigid self-similarity

The analogy with Rauzy induction suggests that there might exist two-
parameter planar PWI’s which do not admit self-similarity with free param-
eters, meaning that both parameters would be algebraically constrained. We
shall exhibit a weak form of this property, resulting from the coexistence of
two systems with semi-rigid self-similarity.

ρ
R

R

R1
R2

R3
R4

a

b c

d

e

f

g

Figure 13: Three-parameter rhombus map with four atoms. The boundary lines
a,b,c,d,e,f,g are respectively defined by the equations x0 = −t, x1 = −s, x0 =
1 − t, x1 = 1 − s, x2 = −s, x2 = −1 − s − u, x1 = −t, where xm = um · x and
the basis vectors um are given in (4), with s, t, and u real parameters which vary
continuously over finite intervals.

Our starting point is the four-atom, three-parameter PWI of the 2π/5
rhombus shown in figure 13. The interpretation of the parameters s, t, u is
made clear in the conjugate system of figure 14, where the rhombus appears
as a unit square. (A similar strategy can be pursued for the five-atom family
of figures 2 and 3, but we found that the four-atom family is somewhat easier
to work with.)

In convenient coordinates, the dressed domain is

R = (R, (R1, . . . , R4), (ρ1, . . . , ρ4)),
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{ { {
s − t

s + β2t
1 − u

R

R1 R2

R3 R4

Figure 14: Representation of the dressed domain R using basis vectors (10). The
dependence of the atoms’s shapes on the parameters s, t, u is shown.

with

R = [(0, 1, 0, 1), (−1,−1, 1, 1), (−t,−s, 1− t, 1− s)],
R1 = [(0, 1, 2, 1), (−1,−1,−1, 1), (−t,−t,−s, 1− s)],
R2 = [(0, 1, 2, 1), (1, 1, 1,−1), (1− t, 1− s,−s,−t)],
R3 = [(0, 1, 2, 1), (−1,−1,−1, 1), (−t,−s,−1− s+ u,−t)], (22)
R4 = [(0, 1, 2, 1), (1, 1, 1,−1), (1− t,−t,−1− s+ u,−s)]

ρ1 = T(0,0) R4, ρ2 = T(0,1) R4,

ρ3 = T(1,1−u) R4 ρ4 = T(1,2−u) R4.
(23)

From figure 14, we see that the bifurcation-free domain Π(R) ⊂ R3 is the
polytope bounded by the planes s − t = 0, s − t = 1, u = 1, s + β2t = 0,
u− s− β2t = 0, β2 − β2s− t = 0, and 1 + β2s+ t− u = 0.

This system has a simple one-parameter subsystem on the line L defined
by s−t = β2, u = β. We shall consider a two-parameter perturbation of this
subsystem in the plane u = β which intersects L. (We have also considered
other planes, obtaining other manageable examples: see remarks at the end
of this section.)

Setting u = β, the parameter polytope reduces to the hexagonal domain
shown in figure 17 (left). As done in section 4, we choose a parameter pair
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close to L lying within such a domain: (s0, t0) = (2/5, 1/25). By inducing on

Figure 15: Induced dressed domain F .

the trapezoidal atom R1, we obtain the parametric dressed domain F shown
in figure 15. One readily verifies that the return orbits of the eight atoms
of F completely tile R, so that the renormalizability of R will follow from
that of F . We find that the complete tiling of F by renormalizable dressed
sub-domains, given in figure 16, requires the return orbits of three dressed
triangles F1,F2,F3, plus seven periodic tiles Pi (five regular pentagons, one
trapezoid, and one rhombus).

Letting

Π∗(F) =
3⋂
i=1

Π(Fi)
7⋂
i=1

Π(Pi) (24)

we find that Π∗(F) is the quadrilateral with vertices

(
β2, 0

)
,
(
β2 + β6/α, β6/α)

)
,
(
β2 + β6/α, β4/α

)
,
(
β2, β4/α

)
,

shown in figure 17 (right). Note that one of the bounding edges of the
parameter domain coincides with the line L which was the starting point of
our perturbative exploration.

The dressed domains F1 and F2 are base triangles equivalent to the
prototype B, with respective shape parameters

τ1 = ω6α(s− β2), τ2 = ω4αt.

Examination of F3 shows that its atoms with four and five sides share the
same isometry (in spite of having different return paths, and even different
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F

F

F3

1

2

Figure 16: Tiling of F by return orbits of F1 (red), F2 (green), F3 (blue), and
seven periodic tiles (grey).

return times on the rhombus), and hence can be merged for the purpose of
testing renormalizability. After the merger, F3 is also equivalent to B, with
shape parameter

τ3 = ω6α(s− β2).

Since each Fi is renormalizable for τi ∈ Q(
√

5), we conclude that F
(hence R) is renormalizable when all three shape parameters are in Q(

√
5),

i.e., when (s, t) is constrained to belong to Π∗(F) ∩Q(
√

5)2.
Each of the three renormalizable dressed domains Fi provides a sequence

of nested coverings of a distinct invariant component of the exceptional
set complementary to all periodic points of the rhombus. The number of
distinct ergodic components of the exceptional set is thus at least three. For
the model of section 4, on the other hand, we believe that there is a single
ergodic component.

In closing, we summarize briefly the results of our explorations of the
three-parameter space of the four- or five-atom rhombus maps.

Manageable renormalizations are likely to be found in systems specified
by parameters of small height. [The height H(ζ) of the algebraic number ζ =
(m/n)+(m′/n′)ω is defined as H(ζ) = max(|m|, |n|, |m′|, |n′|)]. Such was the
case for the domain R, and the two-parameter restriction u = β described
above. We have considered other planes of small height: s− t−ωu+β = 0,
s−t+u−1 = 0, etc. Within such planes, and for carefully chosen parameter
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Figure 17: Left: The bifurcation-free domains Π(R) and Π(F) for the parameters
s and t, with u = β. Right: Detailed view of Π(F), showing the trapezoidal domain
Π∗(F) of equation (24). The latter is constructed as the intersection of Π(F1) (semi-
transparent green trapezoid), Π(F2) (semi-transparent blue triangle), and Π(F3)
(semi-transparent red square). The seven periodic tiles Pi do not contribute any
additional constraints. The unperturbed one-parameter model corresponds to the
(yellow) line s− t = β2, which lies along the south-east boundary of Π(F)
.

patches, we have encountered a number of two-parameter renormalizable
models. These are characterized by a decomposition of the rhombus into
N disjoint dressed domains, each tiled by the return orbits of a single base
triangle (provided we ignore the “decorations” produced by the common
boundaries of merged atoms), plus a finite number of periodic tiles.

For the plane u = 0 of the five-atom map, the case N = 1 appears to be
the norm, so that in those models the exceptional set is likely to be uniquely
ergodic. Elsewhere, a proliferation of ergodic components is typical (albeit
not universal). Notably, we have found no example of a rigidly self-similar,
single component piecewise isometry with two or more parameters. Whether
such a dynamical system exists at all remains an important open question.
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