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Abstract—The flexible partitioning scheme and increased num-
ber of prediction modes in the High Efficiency Video Coding
(HEVC) standard are largely responsible for both its high
compression efficiency and computational complexity. In typical
HEVC encoder implementations, Coding Units (CUs) in a Coding
Tree Unit (CTU) are visited from top to bottom at each level of
recursion to select the optimal coding configuration. In this paper,
a novel approach is presented in which CUs in a CTU can be
adaptively visited also in a reverse bottom to top visiting order.
This Reverse CU (RCU) visiting order allows for different algo-
rithmic optimizations for further complexity reduction of many
HEVC encoding steps, especially under challenging conditions,
such as highly textured or fast moving content. In particular,
algorithms to reduce complexity of HEVC depth selection, mode
decision and inter-prediction are presented here based on the
coding information obtained from higher depths when using the
RCU visiting order. Experimental results show that enabling
different stages of the proposed algorithm can achieve average
speed-ups from 16.3% to 36.6% compared to fast reference
HEVC implementation with pre-built speed-ups enabled (up to
51.2% in some cases), for 0.3% to 2.2% BD-rate penalty.

Index Terms—video coding, HEVC, mode decision

I. INTRODUCTION

IMPROVING video coding standards is necessary to allow
for more efficient exchange of video signals, especially

when considering high spatial or temporal resolutions. For
this reason, the H.265/High Efficiency Video Coding (HEVC)
standard [1] was developed by the Joint Collaborative Team
on Video Coding (JCT-VC) as a successor to the successful
H.264/Advanced Video Coding (AVC) [2]. HEVC reportedly
achieves 35 - 40% of bitrate reduction for a given level of
objective visual quality compared to AVC [3], [4].

It has been shown that one of the key factors contributing to
the higher efficiency of HEVC with respect to AVC is its im-
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proved flexible partitioning scheme [5]. HEVC allows frames
to be flexibly partitioned to adapt to local characteristics of
the content. In particular, a frame is first divided in a number
of Coding Tree Units (CTUs) of fixed size. Each CTU is
then partitioned in Coding Units (CUs) following a recursive
quadtree structure. CUs are assigned a depth, depending on
their size and the corresponding level of recursion. Each CU
at depth d can then be partitioned into four CUs at depth d+1
with half the width and height of their parent CU. This process
can be recursively repeated up to a minimum CU size of 8×8
luma samples. The encoder selects the best configuration for
each CTU, following a process denoted as depth selection.

The content of each CU can then be predicted using a
variety of different modes, each identifying a different sub-
partitioning of the CU in Prediction Units (PUs). In the case
of inter-prediction, up to 8 modes are considered, as shown in
Figure 1. Motion Estimation (ME) and compensation is then
computed independently on each PU. Similarly to previous
standards, the SKIP mode is also considered in inter-predicted
CUs. When using intra-prediction, a single PU is always
considered spanning the entire CU, except for CUs at the
highest depth which may be split into 4 equally sized PUs.
The process of testing different PU modes and calculating the
corresponding Rate-Distortion (RD) cost to select a mode with
the minimum cost is referred to as mode decision.

Finally, when testing inter-prediction modes, the encoder
considers a set of candidate Motion Vectors (MVs) based on
the ME algorithm used. An RD cost is estimated for each MV
in the set, to select the MV at minimum cost for the current
PU. This process is repeated for all PUs within a CU, and it
is referred to in this paper as prediction.

Most HEVC encoder implementations test a variety of
possible options, and select the optimal coding configuration
and parameters specific for the current portion of the signal
being encoded based on an RD cost. In theory, in order to
obtain the best possible coding efficiency, the encoder should
test all possible combinations of these options to find the op-
timal solution for the current block. Clearly, such approach is
extremely computationally expensive and can drastically limit
the usage of HEVC, especially when handling high resolution
content. For this reason, many authors have proposed efficient
HEVC encoder schemes under different constraints. In this
paper, a novel scheme is presented to target HEVC encoding
at low computational costs, based on adaptive block testing
order. When analyzing small blocks first, information collected
during the encoding can be used to limit the number of testing
options in larger blocks and hence reduce the complexity.
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Fig. 1. HEVC inter-prediction partitions.

The rest of this paper is organized as follows. An overview
of previously proposed fast algorithms for HEVC is pre-
sented in Section II. An analysis of typical HEVC encoder
implementations using available fast algorithms is presented in
Section III. The proposed adaptive CU visiting order and Re-
verse CU (RCU) optimizations are then illustrated in Section
IV. A comprehensive experimental evaluation of the proposed
scheme is presented in Section V, and finally Section VI
concludes the paper.

II. RELATED WORK

The combination of depth selection, mode decision and
inter-prediction is extremely time consuming for the encoder,
which has to test a huge number of different options before
selecting the optimal configuration for each CTU. For this
reason, many methods have been proposed to reduce the
complexity of each of these three processes.

A. Fast Methods for Depth Selection

After introducing a new CTU partitioning scheme in HEVC,
many methods have been proposed for fast depth selection. A
speed-up is already included in the HM reference software
[6], referred to as Early CU termination (ECU) [7]. The ECU
examines the optimal mode selected after mode decision on
a given CU. If this is SKIP, then the CU is not split and
no sub-CUs are tested. A method was proposed by Zhang
et al. [8] in which similarity among neighboring CTUs is
studied to reduce the depth search range. CTUs are divided in
three classes based on a defined similarity measure and only a
restricted range of depths is tested for each class. Xiong et al.
[9] proposed an approach in which the optical flow is estimated
from the down-sampled frames and then used to compute a
parameter which decides whether CU should be split or not.
An approach was proposed by Shen et al. [10] which limits
the CTU depth levels. When using this algorithm, a weighted
sum of the depths from spatially and temporary neighboring
CTUs is used to predict the depth range for a current CTU.
Finally, Correa et al. [11] recently proposed schemes to early
terminate the CU partitioning scheme and predict the optimal
PU and residual quadtree structures. The schemes are based
on decision trees obtained through data mining techniques.

B. Fast Methods for Mode Decision

Mode decision has been extensively studied in the past and
numerous fast methods were proposed in the context of HEVC.
There are already two pre-built speed-ups included in the HM
reference software, referred to as Early Skip Detection (ESD)

[12] and Coding Flag Mode (CFM) [13]. When using ESD,
the encoder tests the 2N×2N inter mode first. SKIP mode is
then tested and its cost is compared with the cost obtained for
the inter 2N×2N mode. In case SKIP is selected, no further
modes are tested on the current CU. When using CFM, the
root coded block flag (CBF) of the current PU is analyzed after
testing each inter-prediction mode. Such flag specifies whether
all quantized and transformed residuals in all components are
zero or not. If CBF is zero, the current mode is good in an
RD sense, and no other modes are tested for the current CU.

In the second part of the method proposed by Shen et
al. [10], testing of inter and intra modes is skipped for
homogeneous regions. Three early termination strategies to
avoid testing inter and intra modes on sub-CUs are proposed
based on detection of homogeneous regions. Another method
was also proposed by Shen et al. [14] in which inter-prediction
modes of spatially and temporally neighboring CUs are used
to predict the motion activity of the current CU. Based on
this prediction, CUs are divided in categories where only
selected modes are tested for each category. Xiong et al. [15]
proposed an algorithm based on Markov random fields, where
a maximum a posteriori approach based on the RD cost is
conducted to evaluate whether CUs should be split or not.

A method was proposed by Vanne et al. [16] to speed
up the inter mode decision in HEVC. Their approach is
focused on the selection of Symmetric (SMP) and Asymmetric
(AMP) Motion Partition modes. Testing of either SMP and/or
AMP modes is limited based on the current CU depth or
the Quantization Parameter (QP) value. Recently, Ahn et al.
[17] proposed a method which utilizes the sample adaptive
offset parameters, MVs, Transform Unit (TU) size and CBF
information to estimate the temporal complexity. Spatial and
temporal complexity are then combined to develop fast de-
cision methods. Finally, in our previous work on fast mode
decision [18], statistics on the modes and costs found on
previously encoded PUs are collected and used to build online
cost distributions. Modes are then sorted based on the expected
probability, and only the most probable modes are tested.

C. Fast Methods for Inter-Prediction

The inter-prediction step has also been investigated to find
fast methods to compute the MVs for a PU. The HM reference
software already makes use of a fast ME algorithm based on
Enhanced Predictive Zonal Search (EPZS) [19]. When using
EPZS, a certain number of MV candidates are considered.
These are computed using information from spatially or tem-
porally neighboring blocks, and also testing some predefined
MVs. Then, pattern searches are performed in the surrounding
of such candidates to find the optimal MV solution for the
current block. Recently, we proposed a fast integer precision
ME method [20] to early terminate the ME process. The
method is applied immediately before performing EPZS, on
each of the possible EPZS starting points to possibly skip the
integer ME search. Finally, in our previous work on fractional
precision ME, a fast algorithm for reducing complexity of
HEVC fractional precision ME was proposed [21]. In this
approach, local features of each PU (behavior of the residual
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error samples) and global features of each frame (amount of
edges) are used to adaptively skip the fractional precision ME.

Most of the above-mentioned algorithms are tailored to
work particularly well for sequences which contain many
homogeneous regions or slow motion activity. Typically, these
conditions also correspond to sequences which can be easily
compressed using HEVC, resulting in very high compression
efficiency. Very few methods have been developed to target
fast encoder decisions under more challenging conditions,
such as highly textured regions or fast motion activity. In
these cases, most of the reported methods provide very little
complexity reductions or typically suffer from high efficiency
losses. Conversely, the methods proposed in this paper make
use of a different encoding scheme based on a reverse CU
visiting order within a CTU to optimize all three encoding
stages. As a result, the proposed encoders significantly reduce
the computational complexity of HEVC encoding at low
efficiency losses, and work particularly well when encoding
highly textured or fast motion content.

III. ANALYSIS OF THE HEVC ENCODER

While historically in previous video coding technology the
ME module typically accounted for the majority of the coding
complexity [22], the complexity of modern HEVC encoder
implementations is more equally distributed among the mode
decision, depth selection and prediction steps. In this section,
we analyze the algorithms for fast encoding used in the HM
reference codec and present an encoder complexity profile.

To measure compression efficiency, the Bjøntegaard Distor-
tion rate (BD-rate) [23] is used. This is a performance measure
of an encoder with respect to an anchor at the same levels of
quality, in percentage. Positive values of the BD-rate mean a
decrease in compression efficiency with respect to the anchor.
Total encoding speed-up was also computed for each of the 4
tested QPs for each sequence using the following formula:

∆Ti =
TA − TM

TA
× 100%, (1)

where TA denotes the total encoding time for the anchor
encoder, and TM denotes the total encoding time for the tested
encoder. Finally, arithmetic mean of ∆Ti for all 4 points was
computed to obtain the average encoding speed-up ∆T .

A. Performance of Fast HEVC Implementations

The JCT-VC established a set of coding configurations,
referred to as Common Test Conditions (CTC) [24], which
regulate usage of the HM software to provide a uniform
benchmark for testing and evaluation of video coding algo-
rithms. When using CTC, the encoder computes an RD cost
for every possible option. As expected, this gives the best RD
performance at a very high computational cost. In the rest of
this paper, for brevity, we will refer to the usage of HM under
these conditions as the CTC encoder.

A simple way to reduce the computational cost of the CTC
encoder could be to restrict the range of depths that can be
visited within the CTU. Here we show three example encoders,
namely DepthA, DepthB , and DepthC , each corresponding

to testing a restricted range of depths inside the CTU. In
particular, DepthA tests only CUs of sizes 64×64, 32×32 and
16×16; DepthB tests only CUs of sizes 64×64 and 32×32;
and DepthC tests only CUs of sizes 32 × 32, 16 × 16 and
8×8. These encoders were tested on a variety of sequences at
different resolutions, using 4 QP values (22, 27, 32, and 37).
Results for these three simple encoders are shown in Table I,
with CTC as an anchor. On average, DepthA achieves 3.7%
BD-rate increase for 32.1% time savings, DepthB obtains
13.0% BD-rate increase for 61.1% time savings, while DepthC
achieves 3.7% BD-rate increase for 15.7% time savings. It
can be seen that these losses are heavily dependent on the
sequences being encoded. In some cases, obtained losses are
unacceptable for most applications.

There are more sophisticated speed-up tools available in
the literature, such as the ECU, ESD and CFM speed-ups
pre-built in the HM encoder implementation. Each of these
speed-ups was enabled on top of a CTC encoder, to obtain the
ECU, ESD and CFM encoders, respectively. Results of such
encoders are also presented in Table I. From the table, it can
be seen that the ECU encoder obtains on average a 0.4% BD-
rate increase for 39.6% time savings. Similarly, the results for
ESD show a 0.2% BD-rate increase for 32.1% time savings.
Finally, enabling the CFM tool in HM achieves on average
a 0.7% BD-rate increase for 36.3% time savings. The ESD,
ECU and CFM speed-ups can be combined on top of CTC
to provide an even faster implementation. The corresponding
encoder is referred in the rest of this paper as FAST-HM. The
results for FAST-HM are also shown in Table I, where it can
be seen that it achieves on average a 1.5% BD-rate increase
for 49.4% time savings.

More detailed examination of the results in Table I reveals
some cases where FAST-HM has a very limited impact on
reducing the encoding time. This happens typically in case of
highly textured and/or fast moving sequences. In these cases,
the SKIP mode is selected rarely (meaning ESD and ECU
are not often used), and similarly many non-zero residuals
can be expected due to difficulty in producing good predic-
tions of each PU (meaning CFM is also not used often). In
the next subsection, the encoding time needed for particular
HEVC tasks when using CTC and FAST-HM was analyzed for
selected sequences.

B. Profiling Analysis of the HM Encoder
The HM encoder complexity was further analyzed for two

specific sequences: Kimono and Riverbed. Figure 2 shows the
profiling results for these sequences when using both the CTC
and FAST-HM encoders. Three parts of the HEVC encoding
loop are shown in the figure: the time spent by the encoder at
each depth, the time spent testing each of the prediction modes
while testing depth 1, and the time spent doing different ME
tasks while testing depth 1. These sequences were selected as
they represent the cases in which the built-in HM speed-ups
have a high and low impact (as can be seen from Table I).

For the Riverbed sequence, the available speed-ups do not
work very well. It can also be seen in Table I that the
three simple depth constrained encoders outperform the speed-
ups found in FAST-HM. For instance, DepthB provides very
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TABLE I
RESULTS FOR VARIOUS MODIFICATIONS OF HEVC ENCODER VERSUS CTC-HM ANCHOR UNDER RA-MAIN CONFIGURATION.

DepthA DepthB DepthC ESD ECU CFM FAST-HM

Sequence BDR TS BDR TS BDR TS BDR TS BDR TS BDR TS BDR TS
[%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

3840× 2160

Manege 8.5 30.2 33.1 59.6 1.8 16.6 0.7 30.4 0.8 34.8 2.1 35.2 3.3 47.6
Marathon 2.3 30.7 10.1 60.6 2.4 15.2 0.4 24.1 0.4 27.4 0.9 29.2 1.7 36.9
ParkJoy 0.7 32.0 4.1 61.8 2.0 14.6 0.2 21.1 0.4 24.6 0.3 24.4 1.1 32.0
Sedof 7.2 31.5 25.8 60.9 2.4 14.4 0.4 32.7 0.7 38.8 1.4 38.5 2.8 50.4

BBC-UHD

Book 1.5 30.5 6.0 59.2 12.5 16.9 0.2 37.8 −0.1 46.7 0.6 40.3 0.6 56.3
CalendarAndPlants 3.4 32.2 14.1 60.6 6.9 15.9 0.4 45.0 0.8 58.0 1.0 48.5 2.5 68.8
MenAndPlants 2.1 32.4 10.1 61.0 5.6 14.3 0.3 39.3 0.3 49.2 0.9 43.7 1.4 59.1
ParkAndBuildings 3.3 33.2 8.7 61.9 6.7 13.6 0.2 41.7 0.3 52.8 0.5 46.2 1.2 63.9
Vehicles 1.9 32.9 6.5 61.8 3.3 15.3 0.2 37.6 0.4 48.2 0.4 40.7 1.0 58.0

EBU-UHD LupoCandlelight 3.2 32.3 9.6 60.6 10.8 16.5 0.2 38.5 0.3 56.6 0.5 47.2 1.1 66.9
RainFruits 1.7 32.7 9.0 61.2 4.9 15.7 0.2 43.0 0.4 55.7 0.4 45.7 1.4 65.9

2560× 1600 ParkJoy 1.0 31.5 5.5 61.3 2.6 16.1 0.2 22.6 0.5 26.6 0.5 25.8 1.4 34.1

Class A Traffic 5.3 31.9 16.3 60.7 3.2 17.2 0.2 40.7 0.6 50.5 0.7 46.0 2.4 63.0
PeopleOnStreet 7.3 29.0 29.0 59.2 1.5 17.4 0.4 20.2 0.6 18.7 1.5 28.1 2.4 31.5

1920× 1080
CrowdRun 7.1 30.5 25.5 60.8 0.8 14.6 0.3 19.2 0.6 21.4 1.1 26.6 2.3 30.9
DucksTakeOff −0.1 33.0 1.3 63.3 1.4 14.0 0.1 14.2 0.3 16.7 0.2 16.7 0.9 22.1
Riverbed 0.1 31.4 0.6 62.4 0.5 14.5 0.1 5.8 0.0 3.2 0.1 7.5 0.2 7.0

Class B

Kimono 1.3 32.9 5.0 61.0 3.9 16.2 0.3 33.9 0.5 40.9 0.6 38.6 1.5 51.1
Parkscene 3.8 32.8 12.6 60.6 2.4 16.9 0.2 38.8 0.5 47.5 0.7 44.0 1.9 59.4
Cactus 6.3 31.8 21.2 60.4 2.5 16.1 0.3 33.0 0.7 39.4 0.8 37.2 2.5 50.4
BasketballDrive 4.3 31.3 15.0 60.5 4.0 15.8 0.4 30.3 0.4 35.0 1.0 35.2 1.5 45.6
BQTerrace 4.3 32.1 14.4 61.1 4.2 15.9 0.4 35.9 0.7 42.8 0.8 40.2 2.5 55.1

1280× 720
ParkJoy 3.0 31.1 14.0 59.9 0.8 15.9 0.2 21.5 0.5 24.2 0.5 25.9 1.6 33.0
ParkRun 0.9 32.5 5.5 60.8 0.8 15.0 0.1 23.6 0.3 28.8 0.2 25.7 0.7 35.6
DucksTakeOff 0.2 33.7 2.1 63.4 1.2 14.8 0.1 17.2 0.4 20.3 0.1 19.3 1.0 25.3

Class E
FourPeople 7.4 33.6 19.6 61.4 2.7 16.2 0.0 48.6 0.0 63.8 0.3 51.4 0.7 75.0
Johnny 7.5 34.6 19.5 61.9 6.5 17.1 0.0 53.3 −0.1 69.9 0.6 55.9 0.6 81.2
KristenAndSara 7.8 33.9 19.8 61.6 5.2 17.0 0.2 49.7 0.0 65.0 0.7 53.1 0.8 76.3

Average 3.7 32.1 13.0 61.1 3.7 15.7 0.2 32.1 0.4 39.6 0.7 36.3 1.5 49.4

small efficiency losses for significant time savings. The main
reason is that the ESD, ECU and CFM speed-ups are rarely
triggered in this sequence, hence FAST-HM does not lead to
any significant computational complexity savings. This can
be seen in the charts in Figure 2, where the distribution of
encoding time per task is largely unchanged between CTC
and FAST-HM. To further validate these findings, we also
computed the number of times each of the speed-ups is used
when using the ECU, ESD, and CFM encoders for each CU
in the first 8 frames of the sequences. The analysis showed
that ECU, ESD, and CFM were used on 14.6%, 22.5%, and
28.9% of the CUs, respectively.

An opposite behavior can be observed for the Kimono
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Fig. 2. HEVC encoding time distribution for different depths, modes and
inter-prediction tasks are shown for Kimono and Riverbed sequence using the
CTC and FAST-HM encoders.

sequence, where existing speed-ups work very well. The
distribution of encoding time in this sequence is quite different
between CTC and FAST-HM, as shown in Figure 2. It can
be seen, for instance, that the relative complexity of depth
0 is significantly higher for FAST-HM than for CTC. This
happens because when ECU is triggered the encoder avoids
testing lower depths, resulting in increased time distribution
towards low depths when using the speed-ups. Also, the
relative complexity of the SKIP mode is higher in FAST-HM
than in CTC, as this mode is always tested while both ESD
and CFM may be triggered to avoid testing other modes. The
number of times each speed-up is triggered was also computed
for the first 8 frames of Kimono and shows that ECU, ESD,
and CFM were used on 32.0%, 70.4%, and 75.2% of the CUs,
respectively.

These results highlight that existing speed-ups can provide
high encoding complexity reductions, and cannot be ignored in
a practical fast HEVC implementation. Hence, we enable these
speed-ups in the proposed algorithm. However, they may not
be as effective under challenging conditions, such as highly
textured or fast moving sequences. Therefore, we also address
these cases in this paper.

IV. FAST HEVC CODING USING REVERSE CU

This section presents the proposed Reverse CU (RCU)
framework and the novel algorithms and tools developed
with the goal of reducing HEVC encoding complexity. The
algorithms are mainly targeted at coding under challenging
conditions, such as high resolution of the input sequences.
For this reason, only the content at resolutions equal or
higher than 1280 × 720 luma samples was considered here.
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In particular, content at 3840 × 2160 (2160p), 2560 × 1600
(1600p), 1920 × 1080 (1080p) and 1280 × 720 (720p) luma
samples was considered. For simplicity, during the tests these
resolutions were grouped into two resolution groups: the
UHD-group includes the 2160p and 1600p formats, while the
HD-group includes the 1080p and 720p formats.

The algorithmic development presented in the rest of this
section was performed using a 10 sequence Training set
comprising 5 sequences from UHD-group and 5 from HD-
group. In particular, the 2160p sequences ConstructionField,
RushHour, TallBuildings, Library, and TrafficFlow [25] were
part of UHD-group, while the 1080p sequences ChristmasTree,
Station, Wisley, and ParkJoy, along with the Mobcal 720p
sequence were part of HD-group. These sequences were
selected to represent a variety of different content. Unless
otherwise specified, all experiments reported in this section
were obtained after encoding the first 9 frames (including the
first intra frame) from the Training set using JCT-VC CTC
[24] under RA-Main configuration. Note that sequences in the
Training set were excluded from the test set used in the Results
section to evaluate performance of the proposed algorithms.

A. The Reverse CU Framework

The typical testing order of CUs within a CTU (assuming
a maximum depth of 2) is illustrated in Figure 3 (a), referred
to as Normal CU (NCU) visiting order. In this paper, another
approach is also used, referred to as RCU visiting order, in
which CUs in the CTU are visited in a different order. When
RCU is used on a CTU, each time the encoder needs to select
whether a CU should be encoded in its full configuration or
it should be split, the latter is tested first. Due to the recursive
nature of the quadtree, applying RCU on a CTU implies that
the first CUs to be tested are those at the maximum allowed
depth. The RCU visiting order is presented in Figure 3 (b).

CU visiting order can also be considered in the context
of graph theory, as a tree search problem. The RCU visiting
order corresponds to Post-order tree traversal [26], in which
all the child nodes are always visited before their parent nodes.
That is different from Depth-First Search (DFS) strategy [27]
used in conventional HEVC, in which child nodes are visited
depending on their parent nodes. Notice that a bottom-to-top
approach has already been used before in video coding, but
in the context of intra-prediction, to visit the transform blocks
in the recursive structure used for transform and quantization
[28], or to calculate gradient intensity of the CU [29]. Re-
cently, it has also been used in the context of transcoding
from AVC to the HEVC [30].

Assuming that all CUs in the CTU are tested, simply using
RCU has no effects on HEVC coding. The RCU framework
can be used though to define fast algorithms, as illustrated in
the rest of this paper. Compared to our previous work [31], the
method proposed in this paper introduces numerous enhance-
ments and optimizations. In our previous work, RCU visiting
order was selected in cases when at least two neighboring CUs
had maximum depth level greater or equal to 2, and there
was no depth selection. In this paper, a thorough analysis
has been performed to define an enhanced depth prediction

and RCU selection algorithm. Mode decision in our previous
work was based on MV Variance Distance (MVVD), while in
the proposed approach we use probabilistic model based on
Naı̈ve Bayes classifier. Finally, in this paper we are introducing
a prediction stage based on MVVD, which does not have a
correspondent in our previous work.

B. RCU Framework and Depth Selection

Among the new coding tools introduced in HEVC, usage
of larger CU sizes is particularly suited for encoding ho-
mogeneous and uniform regions in a video sequence. Many
approaches for fast depth selection, such as ECU, have been
proposed with the aim of detecting those cases to stop the
recursion in the CTU and avoid testing unnecessary depths.
On the other hand, the analysis presented in Section III
showed that there are sequences where the ECU speed-up
is rarely used or provides relatively high efficiency losses.
This mainly happens in those regions which are difficult to
predict. Such regions are best encoded using very small CUs
at high depths, which allow the prediction to be computed at
a finer level of granularity. Therefore, if a method to predict
the expected maximum depth in the CTU is defined, and if
such predicted depth is relatively high, then RCU can be used
to start examining CUs at high depths, and stop the search
before reaching lowest depth of the CTU, therefore possibly
reducing complexity without affecting the coding efficiency.

Hence, in order to utilize the RCU framework and corre-
spondingly reduce the complexity of HEVC depth selection,
RCU should be selectively used along with NCU, with the
following rationale: when the predicted maximum depth for
a given CTU is low, NCU should be used, while in contrast,
when the predicted maximum depth is high, RCU should be
selected. Since CUs at depth 0 cannot coexist in a CTU with
any other CUs at other depths, to further reduce computational
complexity when RCU is used in a CTU, CUs at depth 0 are
never tested, and conversely, if NCU is used, CUs at depth 3
are never tested. Notice that when using the conventional NCU
visiting order, the pre-implemented ECU speed-up can also
be used, as in typical HEVC implementations. The problem
of selecting whether to use the RCU or NCU visiting order
becomes then that of predicting the maximum depth for a
given CTU, which has already been investigated in the past
[8] - [10]. In this paper, a similar approach to predict the
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Fig. 3. Visiting order of CUs using conventional HEVC implementations (a)
or the proposed RCU approach (b), assuming a maximum depth of 2.
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TABLE II
MAXIMUM DEPTH CORRELATION BETWEEN THE CURRENT CTU AND

NEIGHBORING REGIONS r0, ..., r4 .

Region r0 r1 r2 r3 r4
Correlation 0.76 0.73 0.66 0.70 0.71

maximum CTU depth is used based on the depths found in
the spatially neighboring CTUs.

In particular, assume that the encoder needs to encode a
certain CTU with a size of L×L luma samples. All previously
encoded sub-CUs contained within five square regions of
L/2×L/2 samples immediately on top, top-left, and left of the
current CTU are considered. These regions are illustrated in
Figure 4, denoted as r0, ..., r4. For each i = 0, ..., 4, all sub-
CUs contained within the region ri are considered, and finally
the maximum depth of such sub-CUs is extracted, denoted
here as Di. Notice that in case one of the neighboring CTUs
is encoded with a depth 0, the maximum depths in the regions
contained within such CTU are considered to be 0 (e.g., D0

and D1 are 0 in case the CTU on the left is encoded with
depth 0).

The method proposed in this paper is based on the assump-
tion that such maximum depths are highly correlated with
the maximum depth found in the current CTU. To validate
this assumption, the first 9 frames from Training set were
encoded using the CTC encoder. For each CTU, the maximum
neighboring depths Di, i = 0, ..., 4 were computed. Finally,
the maximum depth found in the current CTU was extracted,
referred to here as Dmax. The correlations between Dmax

and Di, i = 0, ..., 4 were then calculated, as shown in Table
II. The table shows that high correlation can be expected
between the maximum depth found in each region ri, and the
maximum depth of the current CTU. It also highlights the fact
that all the correlations are very similar. Following from these
findings, it is clear that the depths Di can be used to predict the
expected maximum depth in the current CTU. Such prediction
is performed in this paper by means of a simple weighted
sum. Moreover, due to the similarity among all correlations in
Table II, all weights wi can be set to 1. Finally, the following
parameter can be defined:

Dp =

N−1∑
i=0

Diwi, (2)

where N is the number of the available neighboring regions
of L/2×L/2 samples, N ≤ 5. Dp ranges from 0 to 15 and is
referred to in this paper as the Depth Sum.

A further analysis was then performed to study the rela-
tionship between the Depth Sum and the actual maximum
depth found in a CTU. Table III shows the percentage of

current

CTUr0

r1

r2 r3 r4

Fig. 4. Neighboring CUs considered while deciding about using RCU.

CTUs coded with a certain maximum depth for each value
of the Depth Sum. Clearly, higher values of Dp correspond to
higher maximum depths in the current CTU, which correspond
to those cases where RCU should be used. Conversely, lower
values of Dp correspond to generally low depths in the current
CTU which means NCU should be used. By appropriately
defining a threshold Tp, NCU is used on a CTU in case
Dp < Tp, and RCU is used otherwise.

The problem is then that of appropriately defining the
threshold Tp to perform such decision. To derive this threshold,
the sum of two F -scores was computed using the depth
information after encoding first 9 frames from Training set.
F -score has been widely used in statistical analysis of binary
classification as an accuracy measure [32]. It is defined as
the harmonic mean of precision and recall, where precision is
defined as the number of True Positive (TP) results divided by
the number of all positive results, where the latter is obtained
as the sum of TP and False Positive (FP) results. Similarly,
recall is defined as the number of TP results divided by the
sum of TP and False Negative (FN) results. The first F -score
was computed considering the accuracy of selecting RCU. In
particular, a CTU was considered as a TP if RCU is selected
and the maximum depth in that CTU is different than 0,
whereas a CTU was considered as an FP if RCU is selected
but the maximum depth of the CTU is 0. Finally, FN CTUs are
those where NCU is selected, but the maximum CTU depth is
3. Analogously, the second F -score was computed to measure
the accuracy of NCU following a similar process. The two
F -scores were summed for all possible values of Tp, and the
threshold corresponding to the highest sum was selected. The
highest F -score sum of 1.6653 was obtained for Tp = 6 and
hence it is used in this paper.

Formally, assume that CUs can span from a maximum
depth Dmax to a minimum depth Dmin. Then, in case a
CTU is classified to use RCU, depth 0 is not tested, namely
Dmin = 1. Conversely, if NCU is used, depth 3 is not tested,
namely Dmax = 2. In addition to this, even more speed-ups
can be obtained by avoiding testing of low depths in case
the Depth Sum is very high. For instance, if Dp is greater
than 13, it means that most of the neighboring CUs in the
surrounding of the current CTU were encoded at depth 3.
In this case, following from the correlations in Table II, it
is unlikely that the current CU should be encoded with low
depths. Formally, a second threshold Tp2 > Tp can be defined,
such that when Dp ≥ Tp2, also testing of CUs at depth 1 is
avoided in the CTU. Following from experimental analysis on
Training set, Tp2 = 14 is selected in this paper as a trade-
off between coding efficiency and encoder complexity. It is
worth mentioning that limiting the depth selection to test only
one depth could potentially lead to error propagation, since
it significantly affects the value of Dp. This may mislead the
encoder to always test only one depth for the rest of the frame,
and hence was not considered in the proposed algorithm.

The depth prediction accuracy of the proposed method was
further validated on first 8 frames (excluding the first intra
frame) from Training set, and compared with other depth pre-
diction scheme [10]. Experiment showed that depth prediction
accuracy for the method proposed in [10] is 94.52%, while the
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TABLE III
PROBABILITIES OF MAXIMUM CTU DEPTH OCCURRENCE FOR DIFFERENT VALUES OF DEPTH SUM.

Depth Sum
Maximum
CTU depth 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0.9536 0.7976 0.6215 0.4144 0.3230 0.2488 0.2176 0.1718 0.1350 0.1029 0.0650 0.0435 0.0258 0.0126 0.0053 0.0022
1 0.0309 0.1252 0.2358 0.1742 0.2065 0.3887 0.2085 0.1634 0.1266 0.0904 0.0636 0.0510 0.0280 0.0138 0.0094 0.0022
2 0.0103 0.0489 0.0956 0.3485 0.2102 0.2069 0.3019 0.2680 0.2647 0.1997 0.2643 0.1143 0.0982 0.0410 0.0309 0.0052
3 0.0052 0.0283 0.0471 0.0629 0.2603 0.1555 0.2720 0.3968 0.4738 0.6070 0.6070 0.7911 0.8480 0.9326 0.9544 0.9904

depth prediction accuracy for our method was 96.01%. Such
high accuracy can be explained from the fact that the depth
prediction is performed using information from regions highly
correlated with the current CTU. Note that in case when not all
the neighboring CU information is available, selection between
using a NCU or RCU is obtained using a different threshold
value (Tp = 4). When encoding the first CTU in a frame, no
neighboring CUs are available. Therefore, NCU visiting order
is used without any depth limitation. The final depth selection
algorithm with the optimizations proposed here (illustrated in
Figure 5), is referred to as Stage 1 in the rest of this paper.

C. Mode Decision with RCU Framework

In case RCU is used on a CTU, when testing a CU at depth
d < Dmax, information regarding the encoder decisions on
the four sub-CUs at depth d + 1 is already available. This
information could possibly be used to reduce the number of
modes to test for the current CU. Many of the parameters
selected for the sub-CUs could be used at this purpose. In
particular, it can be assumed that the prediction modes found
on the sub-CUs are highly related with the mode selected on
the CU.

An analysis has been carried out to investigate such assump-
tion. Prediction modes were divided in 3 classes: SKIP, Inter,
and Intra. The first 8 frames (excluding the first intra frame)
from Training set were encoded and used to generate Table
IV. The table shows the sample probability that the mode
of a CU is in one of these three classes, depending on the
number of modes in each class found in the sub-CUs. All
possible combinations of classes in the sub-CUs are shown in
the table. It can be observed from the table that there is a high
dependency between the optimal modes in sub-CUs and the
optimal mode for current CU. In all cases when all 4 sub-CUs
are encoded using modes in the same class, that same class is
used with the highest probability in the upper CU. The same
happens in most cases when 3 sub-CUs are encoded using
modes in the same class. More importantly, if a certain class

0
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2

3

D
ep

th
s

Depth Sum
0 15Tp2Tp

NCU RCU

Depth tested

Depth skipped

Fig. 5. RCU depth selection depending on the Depth Sum (Stage 1).

TABLE IV
PROBABILITY OF A SPECIFIC MODE TO BE SELECTED AS AN OPTIMAL FOR
A GIVEN CU DEPENDING ON THE OPTIMAL MODES FOUND IN 4 SUB-CUS.

Number of modes
selected in 4 sub-CUs

Optimal mode
selected in upper CU

SKIP Inter Intra SKIP Inter Intra
4 0 0 0.9447 0.0065 0.0488
0 4 0 0.0077 0.9816 0.0107
0 0 4 0.0463 0.0078 0.9459
3 1 0 0.5258 0.2126 0.2616
3 0 1 0.3614 0.0103 0.6284
1 3 0 0.1611 0.7266 0.1123
1 0 3 0.1006 0.0033 0.8961
0 3 1 0.0703 0.6628 0.2668
0 1 3 0.0555 0.1058 0.8387
2 1 1 0.2766 0.0997 0.6237
1 2 1 0.1980 0.3007 0.5013
1 1 2 0.1396 0.0694 0.7910
2 2 0 0.3199 0.4649 0.2152
2 0 2 0.1817 0.0060 0.8123
0 2 2 0.0737 0.3286 0.5976

was not used on any of the sub-CUs, the probability of that
mode class being used on the current CU was the lowest. The
behavior shown in Table IV proved to be sequence, resolution,
QP, and temporal layer independent.

From these findings, it is clear that the modes selected on the
sub-CUs can be used to help mode decision on the current CU.
Using only this information, instead of more complex features,
has the advantage that the decision rule can be performed in a
relatively fast way, as only four integer numbers are involved.
In this paper, a classifier is defined for this purpose based on
the well-known Naı̈ve Bayes algorithm [33].

Naı̈ve Bayes algorithms are classification algorithms where
the posterior probability of making a decision conditioned to
a set of features is expressed in terms of the prior probability
of such decision and the likelihood of these features for
each class. Naı̈ve Bayes classifiers are one of the simplest
among the probabilistic classifiers, but despite that, they are
successfully used in various fields. They assume the value
of a particular feature is independent of the value of any
other feature, given the class variable. Formally, assume a
decision has to be made regarding the outcome of a random
variable Y , which can assume values in y1, ..., yD, based on
the observation of a set of n attributes X1...Xn. The class
with maximum posterior probability is obtained as:

Y = arg max
yk

P (Y = yk)

n∏
i=1

P (Xi|Y = yk). (3)

Where the distributions P (Y ) and P (Xi|Y ) are estimated
from the training data. A complete derivation of Naı̈ve Bayes
classifier can be found elsewhere [33].

Similarly, a Bayes classifier can be used to estimate the
posterior probability of Y based on the observation of the
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attributes, and then sort the classes based on such probabilities.
In the case of HEVC mode decision, such a classifier can be
used to determine the M most probable modes for a given
CU based on the optimal modes found in its 4 sub-CUs,
and then only test those modes. The optimal modes in each
of the 4 sub-CUs can be considered as random variables
X1...X4. Each Xi can assume values from 0 to 8, where
Xi = 0 corresponds to using the SKIP mode on sub-CU i,
values Xi = 1, ..., 7 correspond to using one of the 7 inter-
prediction modes (considering N×N along with 2N×2N), and
Xi = 8 means the sub-CU i was intra-predicted. Similarly,
the mode to select on the current CU can be considered as
a random variable Y , which again can assume 9 values. The
prior probabilities P (Y = yk), k = 0, ..., 8 can be computed
from training sequences as the number of times a certain mode
is selected. Similarly, the likelihoods P (Xi = xn|Y = yk) can
be computed for each sub-CU i, as the number of times mode
xn was selected on i, given yk was selected on the upper CU.

To obtain these probabilities, the first 8 frames (excluding
the first intra frame) from Training set were used. An example
of conditional probabilities for selecting a mode in sub-CU
0, given the mode in the current CU, is shown for HD-
group in Table V. For instance, notice that there is 98.51%
probability that the optimal mode for the first sub-CU is
SKIP, given the optimal mode found for the current CU is
SKIP. Finally, while encoding a CU at depth d < Dmax,
the four optimal modes found in sub-CUs at depth d + 1
are considered. Correspondingly, the posterior probabilities
P (Y = yk|X1...Xn) are computed for k = 0, ..., 8. These
are sorted in descending order, and only the M most probable
modes are tested, where M is a tuning parameter. Smaller
values of M correspond to testing fewer modes on each CU,
with correspondingly higher speed-ups, while lower losses and
speed-ups can be expected when using high values of M .

It is worth pointing out that existing mode decision methods,
such as ESD and CFM, are in theory not fully compatible
with the proposed mode decision scheme. Both these schemes
apply some kind of early termination to the mode decision pro-
cess, based on the outcomes of previously tested modes. For
instance, the outcomes of SKIP and 2N×2N are considered
while applying ESD. When using the mode decision scheme
proposed here, testing of any mode can be avoided on a CU,
including SKIP or inter 2N×2N. If this is the case ESD does
not have the information needed to possibly perform the early
termination. For this reason, ESD and CFM were adapted to
coexist with the proposed scheme. The algorithms are initially
disabled on a CU if the algorithm presented in this subsection
is used. Then, the speed-ups are possibly re-enabled only if
enough information becomes available to the encoder. The
optimizations proposed in this subsection are referred to as
Stage 2 in the rest of this paper.

D. Prediction with RCU Framework

The final stage of the proposed optimizations consists in
reducing the complexity of the prediction step. In Section
III it was shown that the large majority of encoding time is
used by inter-prediction. For this reason, only inter-prediction

TABLE V
CONDITIONAL PROBABILITIES OF SELECTING A MODE IN SUB-CU 0

GIVEN THE MODE ON CURRENT CU FOR HD-GROUP.

Optimal CU mode
Mode SKIP 2N×2N 2N×N 2N×uN 2N×nD N×2N nL×2N nR×2N Intra

M
od

e
at

Su
b-

C
U

0

SKIP 0.9851 0.0247 0.6975 0.6006 0.5597 0.637 0.6135 0.5223 0.6746
2N×2N 0.0033 0.9685 0.0593 0.0354 0.0393 0.0382 0.0424 0.0602 0.0448
2N×N 0.0043 0.0029 0.1550 0.1389 0.1164 0.1448 0.1257 0.0976 0.1263
2N×uN 0.0025 0.0010 0.0313 0.0802 0.1476 0.0639 0.0547 0.0454 0.0434
2N×nD 0.0004 0.0002 0.0049 0.0278 0.0345 0.0202 0.0160 0.0097 0.0122
N×2N 0.0003 0.0002 0.0038 0.0244 0.0267 0.0157 0.0139 0.0086 0.0099
nL×2N 0.0032 0.0018 0.0366 0.0608 0.0519 0.0548 0.0830 0.1703 0.0579
nR×2N 0.0004 0.0003 0.0066 0.0192 0.0127 0.0155 0.0245 0.0598 0.0171
Intra 0.0003 0.0003 0.0050 0.0128 0.0112 0.0098 0.0263 0.0262 0.0137

is targeted here. Similar to the algorithms illustrated in the
previous stages, the idea of this stage is that of exploiting the
RCU framework to use information extracted from sub-CUs to
make decisions on the current CU. In particular, the algorithm
proposed in this section is based on the assumption that the
MVs found after ME in the sub-CUs are strongly correlated
with the optimal MVs for the currently encoded CU. This
assumption was experimentally validated by encoding the first
8 frames (excluding the first intra frame) from the Training set
and analyzing the optimal MVs for a given CU and its sub-
CUs. The experiment showed that in 79% of the cases when all
MVs from the same list in the sub-CUs are identical, the same
MV is selected for that list in the current CU. Extending this
concept, the number of MV candidates to test in the motion
search can be limited to reduce the computational complexity.

The problem of measuring the similarity among MVs is
not new in video coding. For instance, it has been extensively
studied in video transcoding techniques, where MVs extracted
from the source codec might need to be manipulated and
reused in the target codec. Among the techniques proposed for
this purpose, one is particularly well suited for the algorithm
proposed in this paper, referred to as MVVD [34]. The MVVD
measures similarity in terms of the Euclidean distance between
the variance of the horizontal and vertical components of a
given set of MVs. As such, it offers several advantages with
respect to other techniques: it can be expressed as a single
fractional number; it can be applied to a group of an arbitrary
large number of MVs; more importantly, it can also be used
to compare groups of MVs containing different number of
elements; it is relatively fast to compute, especially if it is
computed using appropriate approximations.

The first step to compute the MVVD consists in scaling
all MVs in the given set to the same temporal distance from
the current frame. The idea is that, while MVs that point to
different reference frames are theoretically not comparable,
they can be projected to the same reference frame assuming
the linearity of the motion flow. While this assumption is
not always satisfied, it is good enough for the purpose of
measuring similarity, as will be shown in the rest of this
subsection.

Formally, assume the MVVD needs to be computed on an
area spanning a number of PUs, for a given reference list k.
Define as J the number of MVs available in list k, namely the
number of inter-predicted PUs in the area which are either bi-
predicted, or uni-predicted with list k. Each MV can be defined
in terms of three integers MVj = {xj , yj , tj}, where xj and yj
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are the MV vertical and horizontal components, respectively,
and tj is the temporal index of the reference frame the MV
points to, j = 0, ..., J−1. Consider then the reference frame at
minimum temporal index, tmin = minj=0,...,J−1{tj}. Define
as tcur the temporal index of the current frame being encoded.
Each MV can then be scaled to M̃V j = {x̃j , ỹj , tmin}, where
x̃j = αjxj , ỹj = αjyj , and:

αj =
tcur − tmin
tcur − tj

. (4)

As a result of this process, all the J scaled MVs extracted
from list k point to the same reference frame. MVVD then
measures the sample variance of the two MV components
and finally returns the Euclidean distance between the two
variances. Before applying this process, the available MVs
need to be further processed, to account for the fact that
each CU may contain a different number of available MVs.
Consider for instance that MVVD needs to be applied to a
region comprised of two CUs, where the first CU is predicted
using the 2N×2N mode with list k (therefore only contains
a single MV), while the second is predicted using N×N with
list k (therefore contains 4 MVs), J = 5 in this example.

To overcome the bias problem, MVs can be replicated
in such a way that always 4 MVs are considered in each
CU in which there is at least one MV available in list k,
regardless of the inter-prediction mode being used. MVs from
CUs predicted with 2N×2N mode are replicated 4 times, MVs
from CUs predicted with N×N mode are not replicated, and
all other MVs are replicated 2 times. The output of this process
is a set of G replicated and scaled MVs. Due to the fact
that all these MVs point to the same reference frame, they
are completely characterized by their components, and for
simplicity are referred to as MVg = {xg, yg}, g = 0, ..., G−1
in the rest of this subsection. Finally, the variance of each
component is computed. This is obtained for the x component
as:

σ2
x =

∑G−1
g=0 (x2g − x̄2)

G− 1
, (5)

and analogously for the variance σy of the y component.
The MVVD of a given area S for a reference list k can be
computed as:

δσ{S, k} =
√

(σ2
x)2 + (σ2

y)2. (6)

The MVVD as defined in Eq. (6) can be used as a measure
of the “dissimilarity” of MVs extracted from region S, list
k. Values of δσ{S, k} close to 0 indicate that all MVs are
fairly similar within the area. MVVD can be used before
performing inter-prediction using a given mode, to possibly
limit the number of MV candidates to test. The idea is that if
all MVs from all sub-CUs of the current CU are similar, then
they are likely to be good candidates for the current CU, which
means ME can be performed testing only the J original MVs
{xj , yj , tj}. The process of only testing this limited set of J
MVs is referred to here as constrained-ME. Rather than using
an adaptive threshold for MVVD to determine a similarity of
MVs, a different sequence invariant approach is used.

The idea is that of computing the MVVD on the entire
region spanned by all four sub-CUs, and then computing it on

selected sub-regions spanning smaller areas of the current CU.
In case the MVVD found on the entire region is smaller than
that found on the sub-regions, it can be assumed that MVs
are all similar. In the following, refer to the areas spanned by
four sub-CUs as A, B, C and D respectively. The MVVD
is computed independently on A ∪ B and C ∪D, where the
maximum of these two values is taken as an indication of the
maximum dissimilarity in horizontal direction H:

δσ{H, k} = max{δσ{A ∪B, k}, δσ{C ∪D, k}},

and similarly for vertical direction V :

δσ{V, k} = max{δσ{A ∪ C, k}, δσ{B ∪D, k}}.

Finally, the MVVD is computed on the entire region:

δσ{FULL, k} = δσ{A ∪B ∪ C ∪D, k}.

Eventually, if:

δσ{FULL, k} ≤ δσ{V, k} and δσ{FULL, k} ≤ δσ{H, k},
(7)

then the current CU is classified to use constrained-ME,
and only J MVs are tested when performing ME on list k,
k = 0, 1. In such case, ME precision is limited based on the
MV precision in sub-CUs, but it is never lower than half-
pel precision. The prediction algorithm proposed in this sub-
section is referred to as Stage 3 in the rest of this paper.

E. Proposed Scheme and Encoders
Figure 6 summarizes the entire encoding framework and

optimizations presented in this paper. The areas shaded in grey
in the figure correspond to the three stages of optimization
for depth selection, mode decision and prediction. Apart from
Stage 1 which is a prerequisite for the other two stages,
stages are independent to each other, which means they can
be used either separately or in any possible combination. By
appropriately enabling or disabling the stages and tuning the
corresponding parameters of each stage, a variety of different
encoders can be defined to target different encoding speeds at
correspondingly different efficiency costs. In this subsection
three possible pre-set encoders are defined, referred to here as
Encoder 1, Encoder 2 and Encoder 3. Each of the encoders
is based on the FAST-HM encoder defined in Section III.

Encoder 1: the first proposed encoder targets relatively
small speed-ups, for very low compression efficiency losses.
Hence, such encoder only considers optimizations in Stage 1.
The two thresholds for the Depth Sum are set to Tp = 6 and
Tp2 = 14, as illustrated in Subsection IV-B.

Encoder 2: the second proposed encoder targets consistent
speed-ups at acceptable performance losses. Only Stage 1 and
Stage 2 are used in this case. The depth selection parameters
are the same as those used in Encoder 1. Stage 2 is used with
M = 4, namely maximum 4 modes are tested on each CU.

Encoder 3: the final proposed encoder targets very high
levels of speed, while allowing slightly higher compression
efficiency losses. All three stages of optimizations are enabled
here. Differently than Encoder 2, the mode decision is per-
formed in a more strict fashion with M = 3. Finally, if inter-
prediction modes are enabled to be tested on a CU, Stage 3 is
used to possibly reduce the number of MV candidates to test.
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V. RESULTS

The three encoders proposed in this paper were validated
and compared with state-of-the-art techniques through exten-
sive experimental evaluation using the following setup. The
HM code version 12.0 [6] was used for the implementations.
All tests were run using Dual 6-core 2.4 GHz 12 M Cache
Intel Westmere (E5645) machines with 24 GB of RAM. The
encoders were compared with the approaches proposed by
Shen et al. [10], [14], with the fast encoder proposed by
Vanne et al. [16], and with our previously proposed RCU
method [31]. All experiments were performed according to
JCT-VC CTC [24] under the RA-Main (RA) and LB-Main
(LB) configurations using the ECU, ESD and CFM speed-ups
whenever possible. Since the approach proposed by Shen et
al. [10] is not compatible with ECU and ESD, only CFM is
enabled when testing such encoder; all three speed-ups are
used in any other test. Notice that in their paper, Vanne et
al. [16] propose a variety of different algorithms achieving
different levels of encoding speed. In this paper, the QP
dependent algorithm achieving fastest encoding was used for
comparison with the proposed methods. The encoders were
validated on sequences at various resolutions (720p, 1080p,
1600p, and 2160p) from several well-known test sets [24],
[25], [35], [36]. RD plots for different resolutions for all the
sequences used for evaluation purposes were computed using
CTC and are shown in Figure 7. Results are presented here
in terms of BD-rates where FAST-HM was used as anchor
in all tests. Also, encoding times for the tested encoders
were measured and averaged on all QPs. These were used
to compute speed-ups with respect to FAST-HM using Eq. (1).

Full results for RA and LB configurations are shown in
Table VI and Table VII, respectively. As can be seen from
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Fig. 6. The proposed fast HEVC encoder scheme based on RCU. The shaded
areas illustrate the three stages of optimization proposed in the paper.

the tables, all the tested methods perform rather similar under
both configurations. Encoder 1 introduces negligible BD-
rate losses while still achieving on average 16.3% additional
speed-up compared to FAST-HM. Encoder 2 achieves on
average 33.3% speed-up, for 1.6% BD-rate losses. Finally,
even higher average speed-up of 36.6% compared with fast
HEVC implementations is obtained for Encoder 3, with still
acceptable average BD-rate losses of 2.1%. The proposed
encoders outperform all other tested methods. The approach
proposed by Shen et al. [10] achieves on average 1.9% BD-
rate losses, for 25.5% speed-ups. The QP dependent method
proposed by Vanne et al. achieves on average 1.5% BD-
rate losses for 30.3% speed-ups. Our previously proposed
RCU method achieves on average 0.8% BD-rate losses for
18.7% speed-ups. Finally, another approach from Shen et
al. [14] achieves on average 0.7% BD-rate losses for 9.6%
speed-ups. As can be seen from the results above, Encoder
2 achieves considerably higher speed-ups for similar levels of
compression losses compared with approaches from Shen [10]
and Vanne [16]. With respect to our previous version of RCU,
the encoders proposed in this paper allow for much higher
speed-ups with still reasonable compression losses.

It is important to notice that the proposed methods do
not degrade the visual quality. This was verified with the
PSNR and Structural Similarity (SSIM) [37] measure analysis.
It was observed that the proposed methods obtain equal or
higher both PSNR and SSIM values compared to the FAST-
HM anchor. Hence, higher BD-rate losses for Encoder 2 and
Encoder 3 are caused by an increased number of bits, rather
than degradation of quality.

As already mentioned in the paper, RCU is particularly
effective in case of highly textured and complex content, where
small CUs at high depths are often used. This corresponds
to sequences which are typically more difficult to compress
using HEVC, namely those residing in the bottom part of
the RD-plots in Figure 7. These sequences are also the ones
where pre-built speed-ups do not work particularly well (see
Table I). In order to validate this statement, a sub-set of the
tested sequences was defined, corresponding to the 2 most
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TABLE VIII
RESULTS FOR THE THREE PROPOSED PRE-SET ENCODERS VERSUS CTC AS

AN ANCHOR UNDER RA-MAIN AND LB-MAIN CONFIGURATIONS FOR
DIFFERENT SEQUENCE GROUPS.

RA-Main LB-Main
Encoder 1 Encoder 2 Encoder 3 Encoder 1 Encoder 2 Encoder 3

Group BDR TS BDR TS BDR TS BDR TS BDR TS BDR TS
[%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

2160p 2.0 62.5 3.6 70.1 4.1 71.7 1.6 57.1 3.3 65.5 3.9 67.6
1600p 2.3 53.8 3.6 65.0 4.3 67.3 1.6 48.6 3.0 61.4 3.8 65.0
1080p 1.9 51.5 3.1 61.6 3.6 63.5 1.4 45.2 2.6 56.3 3.1 58.5
720p 1.4 62.4 2.2 71.4 2.5 72.8 1.4 56.0 2.2 65.6 2.5 67.6

Average 1.9 57.5 3.1 67.0 3.6 68.8 1.5 51.7 2.8 62.2 3.3 64.7

challenging sequences at each resolution. Such sequences are
highlighted in Italic in Tables VI and VII, where average
results on this sub-set is also presented in the table. As can be
seen, when applied on “complex sequences”, Encoder 1 does
not bring any losses compared to FAST-HM, but adds 20.5%
more speed-up. More importantly, Encoder 2, with only 1.1%
BD-rate losses for 42.0% speed-ups, outperforms all other
tested approaches by a large margin. As expected Encoder
3 achieves even higher speed-ups with still acceptable losses.

Performance of the proposed methods was further inves-
tigated. It is expected that the percentage of CTUs that use
certain CU visiting order will vary significantly depending
on the sequence content. That means that sequences with
mostly uniform or static areas will tend to select NCU for
vast majority of their CTUs. This implies that the proposed
fast mode decision and prediction algorithms are used only on
a fraction of overall CTUs, since Stage 2 and 3 optimizations
are not used in CTUs where NCU is selected. As a result,
the proposed methods will provide limited speed-ups for
sequences residing in the top left corner of RD-plots in Figure
7, compared to other methods that use fast mode decision
for all CTUs. However, it should be noted that any fast
mode decision method could be used in CTUs where NCU
is selected to increase the speed-ups.

Finally, the proposed algorithm was compared with CTC
HM anchor without any speed-ups enabled. All the sequences
from Tables VI and VII were grouped based on their resolution
and the results for each group are shown in Table VIII. As can
be seen, Encoder 1 achieves on average 57.5% of time savings
for 1.9% BD-rate losses. Encoder 2 achieves on average 67.0%
of time savings for 3.1% BD-rate losses. Finally, Encoder 3
achieves 68.8% of time savings for 3.6% BD-rate losses.

VI. CONCLUSIONS

The new flexible CTU partitioning scheme introduced in
HEVC is responsible for a significant portion of the overall
compression gains with respect to its predecessor AVC. How-
ever, testing all possible partitions inside the CTU comes at
very high computational costs. In this paper, we propose the
adaptive CU visiting framework where CUs in a CTU can
be visited in reverse or conventional visiting order which are
selectively used in each CTU, and only selected depths are
tested. Moreover, by testing the CUs at higher depths first,
information on optimal modes and outcomes of ME found
in the four sub-CUs can be used to limit the number of
modes to test for current CU and to speed up the ME process.
Three different pre-set encoders were proposed in the paper to

target increasing levels of encoding speed, at correspondingly
different levels of compression efficiency. Experimental results
show that the proposed methods greatly outperform previous
state-of-the-art algorithms reducing the encoding time by an
average 16.3% to 36.6%, for 0.3% to 2.2% luma BD-rate
losses, respectively. It was observed that proposed methods are
performing particularly well when encoding highly complex
sequences, which are difficult to compress using conventional
HEVC implementations.
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TABLE VI
RESULTS FOR THE 3 PROPOSED ENCODERS COMPARED WITH STATE-OF-THE-ART FAST ALGORITHMS FROM SHEN ET AL. [10] AND [14], VANNE ET AL.
[16], AND OUR PREVIOUS WORK [31] VERSUS FAST-HM AS AN ANCHOR (WITH ESD, ECU, AND CFM ENABLED) UNDER RA-MAIN CONFIGURATION.

Encoder 1 Encoder 2 Encoder 3 Shen [10] Vanne [16] RCU [31] Shen2 [14]

Sequence BDR TS BDR TS BDR TS BDR TS BDR TS BDR TS BDR TS
[%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

3840× 2160

Manege 0.2 19.9 1.7 39.0 2.4 43.3 3.8 38.5 2.3 31.1 1.6 25.2 1.7 10.0
Marathon 0.2 16.4 2.0 39.0 3.0 44.3 2.0 34.4 2.2 31.6 1.3 23.6 0.8 8.6
ParkJoy 0.2 18.5 1.5 40.3 2.0 43.4 1.7 31.7 1.2 29.5 1.1 25.2 0.4 7.1
Sedof 0.1 17.4 1.2 37.2 1.6 40.2 3.2 32.0 1.6 30.6 1.0 21.4 1.2 10.5

BBC-UHD

Book 0.7 16.8 2.4 22.1 2.9 23.4 2.1 29.6 1.2 33.3 0.4 2.4 0.6 12.7
CalendarAndPlants 0.6 11.7 3.2 26.7 4.1 31.4 2.7 24.6 2.9 32.3 1.1 13.1 1.6 13.0
MenAndPlants 0.5 13.4 2.7 30.0 3.7 33.7 3.0 28.7 2.3 33.6 1.0 12.9 1.0 12.4
ParkAndBuildings 0.6 12.5 1.9 28.2 2.3 31.8 1.1 23.1 1.8 33.2 1.0 13.6 0.6 12.6
Vehicles 0.3 16.1 1.3 34.5 1.6 38.5 1.2 29.2 0.9 29.6 0.9 21.4 0.4 10.7

EBU-UHD LupoCandlelight 0.4 14.7 1.4 26.5 1.7 29.3 0.9 20.6 1.4 31.9 0.3 13.5 0.7 11.4
RainFruits 0.1 12.1 1.6 24.9 2.1 27.6 0.5 15.5 1.2 32.0 0.9 11.8 0.6 11.7

2560× 1600 ParkJoy 0.2 19.7 1.5 39.5 2.1 42.2 1.7 32.5 1.5 30.6 1.4 24.8 0.5 8.8

Class A Traffic 0.7 12.2 1.6 28.2 2.1 32.1 2.0 27.1 1.7 31.7 0.8 16.6 1.1 14.3
PeopleOnStreet −0.2 22.2 1.4 43.6 2.5 49.1 4.3 46.7 1.6 32.2 0.7 30.9 1.4 11.5

1920× 1080
CrowdRun −0.4 25.8 0.6 47.1 1.1 51.2 2.2 40.7 1.3 28.2 1.4 35.2 0.9 8.0
DucksTakeOff −0.1 19.9 0.6 41.8 0.9 45.5 0.7 27.8 1.0 26.7 0.4 26.6 0.2 3.8
Riverbed 0.1 23.1 0.9 32.6 1.1 33.9 0.3 24.6 0.3 29.9 0.1 3.3 0.1 2.8

Class B

Kimono1 0.5 16.0 1.5 26.2 2.0 28.5 0.5 18.2 2.0 33.3 0.5 7.1 0.7 11.7
ParkScene 0.4 12.5 1.2 30.2 1.7 33.7 1.1 20.4 1.4 30.6 0.8 18.1 0.8 12.2
Cactus 0.2 15.4 2.0 33.5 2.6 37.6 2.7 28.9 1.9 30.3 0.7 19.0 1.1 9.8
BasketballDrive 0.7 14.6 2.6 33.3 3.4 36.8 3.5 26.2 2.1 31.9 0.7 16.6 0.8 7.9
BQTerrace 0.6 15.8 1.8 36.2 2.2 39.7 1.4 23.3 1.6 29.3 1.0 28.1 0.9 8.4

1280× 720
ParkJoy −0.4 23.1 0.2 42.8 0.5 47.4 0.3 30.8 0.7 26.6 0.7 35.3 0.5 7.2
ParkRun 0.1 17.6 0.8 42.6 1.0 46.1 0.2 24.9 0.5 26.1 0.8 33.2 0.2 5.6
DucksTakeOff −0.1 20.5 0.5 42.3 0.9 43.8 0.3 26.9 0.9 26.6 0.4 28.5 −0.8 −1.0

Class E
FourPeople 0.9 10.6 2.0 23.9 2.4 27.1 2.7 7.5 1.2 28.4 0.5 9.5 0.6 12.3
Johnny 1.2 8.0 2.0 19.0 2.5 21.6 2.5 −4.5 1.6 27.4 0.4 5.0 0.7 11.9
KristenAndSara 1.2 8.6 2.3 20.1 2.6 22.6 4.2 3.1 1.6 29.8 0.2 3.0 0.8 12.5

Overall average 0.3 16.3 1.6 33.3 2.1 36.6 1.9 25.5 1.5 30.3 0.8 18.7 0.7 9.6
Complex sequences average 0.0 20.5 1.1 42.0 1.6 45.6 1.9 33.7 1.3 28.9 1.0 28.7 0.6 6.7

TABLE VII
RESULTS FOR THE 3 PROPOSED ENCODERS COMPARED WITH STATE-OF-THE-ART FAST ALGORITHMS FROM SHEN ET AL. [10] AND [14], VANNE ET AL.
[16], AND OUR PREVIOUS WORK [31] VERSUS FAST-HM AS AN ANCHOR (WITH ESD, ECU, AND CFM ENABLED) UNDER LB-MAIN CONFIGURATION.

Encoder 1 Encoder 2 Encoder 3 Shen [10] Vanne [16] RCU [31] Shen2 [14]

Sequence BDR TS BDR TS BDR TS BDR TS BDR TS BDR TS BDR TS
[%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

3840× 2160

Manege 0.2 20.1 1.9 40.4 2.6 45.8 4.8 42.9 2.2 34.2 1.6 26.9 2.2 15.5
Marathon 0.3 16.8 2.8 38.5 4.0 43.6 2.0 34.7 1.7 34.4 1.4 23.0 0.6 11.2
ParkJoy 0.1 19.1 1.6 40.3 2.0 44.4 1.4 36.5 1.0 33.4 1.1 26.9 0.4 11.9
Sedof 0.0 19.1 1.2 38.1 1.8 43.3 3.8 37.8 1.7 34.9 1.3 23.8 1.6 15.8

BBC-UHD

Book 0.6 17.5 2.2 24.2 2.7 25.1 1.7 35.5 1.6 35.8 0.3 5.6 0.8 17.9
CalendarAndPlants 0.5 12.9 3.0 24.3 3.9 29.4 2.9 32.2 2.4 39.0 1.0 11.9 1.6 21.5
MenAndPlants 0.4 13.6 2.8 27.4 3.8 31.8 2.6 31.7 2.2 37.9 0.9 10.1 1.1 17.5
ParkAndBuildings 0.8 13.6 1.9 28.7 2.5 32.4 1.2 29.1 1.9 38.3 0.9 15.4 0.7 19.5
Vehicles 0.1 15.4 1.3 33.6 1.6 38.0 1.1 32.3 1.2 32.4 0.9 22.9 0.6 14.6

EBU-UHD LupoCandlelight 0.1 11.1 1.1 23.5 1.5 26.7 0.6 21.9 1.7 37.2 0.3 12.2 1.1 19.0
RainFruits 0.0 12.3 1.3 23.2 1.6 26.0 0.1 24.0 1.2 37.5 0.7 10.4 0.8 18.8

2560× 1600 ParkJoy 0.1 17.2 1.5 37.2 2.1 43.0 1.5 34.0 1.2 31.6 1.1 23.3 0.6 10.7

Class A Traffic 0.7 13.0 1.8 29.4 2.4 34.2 2.9 33.1 1.9 35.2 1.0 16.9 1.5 21.6
PeopleOnStreet 0.2 20.5 1.9 43.9 3.1 50.3 4.9 48.6 1.2 34.2 1.0 32.4 1.5 15.3

1920× 1080
CrowdRun 0.1 26.6 1.1 47.4 1.8 52.4 3.3 42.9 0.8 31.2 1.1 35.9 1.0 11.3
DucksTakeOff 0.1 20.4 0.9 38.2 1.2 41.1 0.7 28.1 1.1 31.0 0.7 17.8 0.1 4.4
Riverbed 0.1 25.9 0.7 34.9 0.8 34.8 0.2 28.4 0.3 30.2 0.0 6.2 0.0 4.0

Class B

Kimono 0.3 14.1 1.4 25.1 1.8 28.5 0.6 22.7 2.0 36.8 0.5 5.0 0.8 14.4
ParkScene 0.3 14.4 1.3 32.5 1.9 37.4 1.3 30.4 1.6 36.4 0.8 20.4 1.2 21.0
Cactus 0.1 16.3 2.1 34.8 2.7 39.6 3.1 34.5 2.0 34.8 1.0 21.3 1.3 15.1
BasketballDrive 0.7 14.1 3.0 30.3 3.8 34.4 3.3 27.6 1.8 36.2 0.8 13.3 0.9 13.2
BQTerrace 0.8 14.6 1.9 36.0 2.3 39.9 1.4 26.3 1.4 33.0 1.0 29.2 1.0 12.6

1280× 720
ParkJoy −0.4 25.0 0.3 45.7 0.4 49.6 0.6 35.2 0.6 28.2 0.5 37.3 0.7 11.0
ParkRun −0.1 16.5 0.8 41.7 1.0 46.0 0.2 28.3 0.6 28.6 0.9 31.5 0.3 6.6
DucksTakeOff 0.1 19.2 0.8 37.3 1.1 40.8 0.5 25.7 1.0 29.0 0.7 18.0 0.1 3.3

Class E
FourPeople 1.0 9.5 2.1 21.3 2.6 25.1 4.1 17.5 2.0 31.9 0.5 5.6 1.5 18.8
Johnny 0.9 8.0 1.5 16.2 1.9 18.4 2.8 6.3 2.4 33.2 0.2 3.8 1.6 19.4
KristenAndSara 0.8 8.5 1.8 16.4 2.1 19.9 5.3 10.1 2.6 35.5 0.2 1.6 1.7 19.6

Overall average 0.3 16.3 1.6 32.5 2.2 36.5 2.1 29.9 1.5 34.0 0.8 18.2 1.0 14.5
Complex sequences average 0.1 19.9 1.3 40.8 1.9 45.5 2.1 35.9 1.1 31.6 1.0 26.6 0.8 9.9
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