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Abstract ʹ�
Despite extraordinary efforts to profile cancer genomes, interpreting the ʹ�

vast amount of genomic data in the light of cancer evolution remains challenging.  ʹͺ�
Here we demonstrate that neutral tumor evolution results in a power-law ʹͻ�
distribution of the mutant allele frequencies reported by next-generation ͵Ͳ�
sequencing of tumor bulk samples. We find that the neutral power law fits with ͵ͳ�
high precision 323 of 904 cancers from 14 types, selected from different cohorts. ͵ʹ�
In malignancies identified as neutral, all clonal selection occurred prior to the ͵͵�
onset of cancer growth and not in later-arising subclones, resulting in numerous ͵Ͷ�
passenger mutations that are responsible for intra-tumor heterogeneity. ͵ͷ�
Reanalyzing cancer sequencing data within the neutral framework allowed the ͵�
measurement, in each patient, of both the in vivo mutation rate and the order and ͵�
timing of mutations. This result provides a new way to interpret existing cancer ͵ͺ�
genomic data and to discriminate between functional and non-functional intra-͵ͻ�
tumor heterogeneity. ͶͲ�

Introduction Ͷͳ�
Unraveling the evolutionary history of a tumor is clinically valuable, as Ͷʹ�

prognosis depends on the future course of the evolutionary process1,2, and Ͷ͵�
therapeutic response is determined by the evolution of resistant subpopulations3. ͶͶ�
In humans, the details of tumor evolution have remained largely uncharacterized Ͷͷ�
as longitudinal measurements are impractical, and studies are complicated by Ͷ�
inter-patient variation4 and intra-tumor heterogeneity (ITH)5,6. Several recent Ͷ�
studies have begun tackling this complexity7, revealing patterns of convergent Ͷͺ�
evolution8, punctuated dynamics9, and intricate interactions between cancer cell Ͷͻ�
populations10. However, the lack of a rigorous theoretical framework able to ͷͲ�
make predictions on existing data11 means that results from cancer genomic ͷͳ�
profiling studies are often difficult to interpret. For example, how much of the ͷʹ�
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detected intra-tumor heterogeneity is actually functional is largely unknown, also ͷ͵�
because a rigorous ‘null model’ of genomic heterogeneity is lacking. In particular, ͷͶ�
interpreting the mutant allele frequency distribution reported by next-generation ͷͷ�
sequencing (NGS) is problematic because of the absence of a formal model ͷ�
linking tumor evolution to the observed data. Therefore, making sense to the ͷ�
wealth of available sequencing data in cancer remains challenging.  ͷͺ�

Here we show that the subclonal mutant allele frequencies of a significant ͷͻ�
proportion of cancers of different types and from different cohorts precisely follow Ͳ�
a simple power-law distribution predicted by neutral growth. In those neutral ͳ�
cancers, all tumor-driving alterations responsible for cancer expansion were ʹ�
present in the first malignant cell and subsequent tumor evolution was effectively ͵�
neutral. We demonstrate that under neutral growth, the fundamental parameters Ͷ�
describing cancer evolution that have been so far inaccessible in human tumors, ͷ�
such as the mutation rate and the mutational timeline, become measurable. �
Importantly, this approach allows identifying also non-neutral malignancies, in �
which ongoing clonal selection and adaption to microenvironmental niches may ͺ�
play a strong role during cancer growth. ͻ�

Results Ͳ�
 ͳ�

Neutral cancer growth ʹ�
Recently, we showed that colorectal cancers (CRC) often grow as a single ͵�

expansion, populated by a large number of intermixed subclones12. Ͷ�
Consequently, we expect that after malignant transformation, individual ͷ�
subclones with distinct mutational patterns grow at similar rates, coexisting within �
the tumor for long periods of time without overtaking one another. Indeed, only a �
handful of recurrent driver alterations have been identified in CRC13, and those ͺ�
are reported to be ubiquitous in multi-region sampling12 and stable during cancer ͻ�
progression14, indicating that they all occurred in the “first” cancer cell and that ͺͲ�
subsequent clonal outgrowths are relatively rare. Consequently, we hypothesized ͺͳ�
that cancer evolution may often be dominated by neutral evolutionary dynamics.  ͺʹ�

The dynamics of neutral evolutionary processes have been widely studied ͺ͵�
in the context of molecular evolution and population genetics15-17 as well as in ͺͶ�
mouse models of cancer18. However, the widely held presumption that subclone ͺͷ�
dynamics in human cancers are dominated by strong selection has meant these ͺ�
ideas have been neglected in current studies of cancer evolution.  ͺ�

Motivated by this, here we present a theoretical model describing the ͺͺ�
expected pattern of subclonal mutations within a tumor that is evolving according ͺͻ�
to neutral evolutionary dynamics. The model postulates that, after the ͻͲ�
accumulation of a “full house” of genomic changes that initiates tumor growth, ͻͳ�
some tumors expand neutrally, generating a large number of passenger ͻʹ�
mutations that are responsible for the extensive and common ITH. The ͻ͵�
parameter-free model is applicable to NGS data from any solid cancer. Here we ͻͶ�
present the model, and by applying it to large pre-existing cancer genomics ͻͷ�
datasets, determine which tumors are consistent with neutral growth. When the ͻ�
model applies, we measure new tumor characteristics directly from the patient’s ͻ�
data.  ͻͺ�
 ͻͻ�
Model derivation ͳͲͲ�

A tumor is founded by a single cell that has already acquired a significant ͳͲͳ�
mutation burden4: these “pre-cancer” mutations will be borne by every cell in the ͳͲʹ�
growing tumor, and so become “public” or clonal. Mutations that occur within ͳͲ͵�
different cell lineages remain “private” or subclonal in an expanding malignancy ͳͲͶ�
under the absence of strong selection. We focus on the latter as they contain ͳͲͷ�
information on the dynamics of the cancer growth. We denote the number of ͳͲ�
tumor cells at time t as N(t) which divide at rate Ȝ per unit time. During a cell ͳͲ�
division, somatic mutations may occur with a probability ȝ. If we consider an ͳͲͺ�
average number of ʌ chromosome sets in a cancer cell (e.g. the ploidy of the ͳͲͻ�
cell), we can calculate the expected number of new mutations per time interval ͳͳͲ�
as:  ͳͳͳ�
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dM
dt

= µπλNȋtȌ    [1] ͳͳʹ�
 ͳͳ͵�

Solving this requires integrating over the growth function N(t) in some time ͳͳͶ�
interval [t0,t]: ͳͳͷ�
 ͳͳ�

MȋtȌ= µπλ NȋtȌdt
tͲ

t

³      [2] ͳͳ�

  ͳͳͺ�
Since not all cell divisions may be successful in generating two surviving lineages ͳͳͻ�
due to cell death or differentiation, we introduce the fraction ȕ of “effective” cell ͳʹͲ�
divisions in which both resulting lineages survive. In the case of exponential ͳʹͳ�
growth, the mean number of tumor cells as a function of time is therefore:  ͳʹʹ�
 ͳʹ͵�

NȋtȌ= eλβt       [3] ͳʹͶ�
 ͳʹͷ�
Substituting into equation [2] gives the explicit solution:  ͳʹ�
 ͳʹ�

MȋtȌ= µπ
β

eλβt −eλβtͲ( )     [4] ͳʹͺ�
 ͳʹͻ�

This equation describes the total number of subclonal mutations that accumulate ͳ͵Ͳ�
within a growing tumor in the time interval [t0,t]. We note that for t0=0 equation [4] ͳ͵ͳ�
corresponds to the Luria-Delbrück model, which describes mutation accumulation ͳ͵ʹ�
in bacteria19. In our case, this equation is of limited use as none of the ͳ͵͵�
parameters ȝ, Ȝ, ȕ or the age of the tumor t can be measured directly in humans. ͳ͵Ͷ�
However, we do know that for a new mutation occurring at any time t, its allelic ͳ͵ͷ�
frequency (the relative fraction) f must be the inverse of the number of alleles in ͳ͵�
the population:  ͳ͵�
  ͳ͵ͺ�

f = ͳ
πNȋtȌ = ͳ

πeλβt       [5] ͳ͵ͻ�
 ͳͶͲ�
For example, if a new mutation arises in a tumor of 100 cells, it will comprise a ͳͶͳ�
fraction of 1/100. In the absence of clonal selection (or indeed significant genetic ͳͶʹ�
drift), the allelic frequency of a mutation will remain constant during the ͳͶ͵�
expansion, as all cells, with and without this mutation, grow at the same rate. In ͳͶͶ�
the previous example, after one generation has elapsed we will have 2 cells with ͳͶͷ�
that particular mutation, but a total of 200 tumor cells, again a fraction of 1/100. ͳͶ�
This implies that in the neutral case, tumor age t and mutation frequency f are ͳͶ�
interchangeable. For example, t0=0 in a diploid tumor (ʌ=2), corresponds to ͳͶͺ�
fmax=0.5 (the expected allelic frequency of clonal variants): ͳͶͻ�
 ͳͷͲ�

f��� = ͳ
πeλβtͲ

       [6] ͳͷͳ�
 ͳͷʹ�
Substituting t for f in equation [4] gives an expression for the cumulative number ͳͷ͵�
of mutations in the tumor per frequency M(f):  ͳͷͶ�
 ͳͷͷ�

Mȋ f Ȍ= µ
β

ͳ
f

− ͳ
f���

§

©̈

·

¹̧
     [7] ͳͷ�

 ͳͷ�
thus converging to the solution for expanding populations under neutrality ͳͷͺ�
obtained using other approaches20-23. Critically, the distribution M(f) is naturally ͳͷͻ�
provided by NGS data from bulk sequencing of tumor biopsies and resections, ͳͲ�
against which the model can be tested. The model predicts that mutations arising ͳͳ�
during a neutral expansion of a cancer accumulate following a 1/f power-law ͳʹ�
distribution. In other words, when neutral evolution occurs in a tumor, the number ͳ͵�
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of mutations detected should accumulate linearly with the inverse of their ͳͶ�
frequency. The 1/f noise or pink noise is common in nature and found in several ͳͷ�
physical, biological and economic systems24.  ͳ�

Importantly, the coefficient ȝe=ȝ/ȕ is the mutation rate per effective cell ͳ�
division, and corresponds to the easily measureable slope of M(f). This model ͳͺ�
therefore provides a straightforward parameter-free method to measure the in ͳͻ�
vivo mutation rate in a patient’s tumor using a single NGS sample. We note that ͳͲ�
the results do not depend on the identity of the alterations considered, since any ͳͳ�
genomic alteration (mutations, copy number changes or epigenetic modifications) ͳʹ�
anywhere in the genome that changes the dynamics of tumor growth (e.g. any ͳ͵�
alteration that is clonally selected) would result in deviation from the neutral 1/f ͳͶ�
power law by causing an over- or under-representation of the alleles in that ͳͷ�
clone. Hence, here we use single nucleotide variants as ‘barcodes’ to follow ͳ�
clone growth. Stochastic simulations of neutral tumor growth confirm the ͳ�
analytical solution in equation [7] (see Online Methods). ͳͺ�
 ͳͻ�
Identification of neutrality in colorectal cancer evolution ͳͺͲ�
 A typical allelic frequency distribution of mutations in a tumor measured by ͳͺͳ�
NGS whole-exome sequencing is shown in Figure 1A (data from ref 12). ͳͺʹ�
Considering tumor purity and aneuploidy, mutations with high allelic frequency ͳͺ͵�
(>0.25) are likely to be public (clonal) while all others are likely subclonal. The ͳͺͶ�
same data can be represented as the cumulative distribution M(f) of subclonal ͳͺͷ�
mutations as in equation [7] (Figure 1B). Remarkably, as reported by the high ͳͺ�
goodness-of-fit measure R2, these data precisely follow the distribution predicted ͳͺ�
by the model indicating that this tumor grew with neutral evolutionary dynamics.  ͳͺͺ�

We next considered our cohort of 7 multi-sampling CRCs12 and 101 TCGA ͳͺͻ�
colon adenocarcinomas13 selected for high tumor purity (�70%) that underwent ͳͻͲ�
whole-exome sequencing (see Online Methods). The latter were separated ͳͻͳ�
between tumors characterized by chromosomal instability (CIN) versus ͳͻʹ�
microsatellite instability (MSI). The power-law is remarkably well supported in ͳͻ͵�
both these cohorts, with 38/108 (35.1%) of the cases reporting a high R2�0.98 ͳͻͶ�
(Figure 1C). These results confirm that in a large proportion of colon cancers, ͳͻͷ�
intra-tumor clonal dynamics are not dominated by strong selection but rather ͳͻ�
follow neutral evolution. In particular, a larger proportion of CIN cancers evolved ͳͻ�
neutrally (31/82, 37.8%) than MSI cancers (3/19, 15.7%) (Figure 1C), possibly ͳͻͺ�
because the latter acquired so many new mutations that some are likely under ͳͻͻ�
strong selection. Since M(f) is a monotonic growing function, this stringent ʹͲͲ�
threshold of R2>0.98 was chosen to prevent over-calling neutrality, but we note ʹͲͳ�
that we may have therefore misclassified some tumors as non-neutral due to ʹͲʹ�
limited sequencing depth or low mutation burden. R2 values were independent ʹͲ͵�
from the mean coverage of mutations, the total number of mutations in the ʹͲͶ�
sample or the number of mutations within the model range (see Online Methods). ʹͲͷ�
See Supplementary Data Set 1 (summary of TCGA data used). ʹͲ�
 ʹͲ�
Measurement of the mutation rate in colorectal cancer   ʹͲͺ�

Estimating the per-base mutation rate ȝ per division in human ʹͲͻ�
malignancies is challenging since direct measurements are not possible.  ʹͳͲ�
Previous estimates critically depend on assumptions about the cell cycle time ʹͳͳ�
and the growth rate Ȝ, as well as on the total mutational burden of the cancer25-27. ʹͳʹ�
However, accurate measurement of all mutations within a cancer, including ʹͳ͵�
heterogeneous subclonal variants, is technically unfeasible since most mutations ʹͳͶ�
are present in very small numbers of cells5. With our approach it is possible to ʹͳͷ�
circumvent this issue by measuring the rate of accumulation of subclonal ʹͳ�
mutations represented by the slope of M(f). In the case of neutral evolution, this ʹͳ�
can be done in principle within any (subclonal) frequency range, without the need ʹͳͺ�
of detecting extremely rare mutations. We estimated the mutation rate in all ʹͳͻ�
samples with R2�0.98 (Figure 1D) and found that it was more than 15-fold higher ʹʹͲ�
in the MSI group (median: µe=3.65×10-6) with respect to the CIN group (median: ʹʹͳ�
µe=2.31×10-7; F-test: p=2.24×10-8) and our cohort of CRCs (median: µe=2.07×10-ʹʹʹ�
7), which was comprised of all but one CIN tumors12. Different mutational types ʹʹ͵�
(e.g. transitions or transversions) are caused by particular mutational ʹʹͶ�
processes28, and so likely occur at different rates and accordingly we found that ʹʹͷ�
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C>T mutations occurred at median µe,C>T=2.19×10-7, a rate nearly 10-fold higher ʹʹ�
than any other type of mutation (F-test: p=3.13×10-3; Supplementary Figure 1A). ʹʹ�
We stratified according to CIN versus MSI and found that the mutation rate of ʹʹͺ�
each mutational type reflected the overall mutation rate for the group ʹʹͻ�
(Supplementary Figure 1B). The variation in mutation rates within and between ʹ͵Ͳ�
subgroups was remarkably in line with the variation in estimates of mutational ʹ͵ͳ�
burden in colon cancer4. We note the mutation rate estimate is scaled by the ʹ͵ʹ�
(unknown) effective division rate ȕ, which means for example that if only 1 in 100 ʹ͵͵�
cell divisions leads to two surviving offspring (ȕ=0.01), then the mutation rate µ is ʹ͵Ͷ�
100 times lower than the effective rate µe reported. Importantly, mutation rates of ʹ͵ͷ�
non-neutral cases (R2<0.98) cannot be estimated, as the model does not fit the ʹ͵�
dynamics of these tumors. ʹ͵�

We examined the effect of copy-number changes in the model by ʹ͵ͺ�
performing the analysis using only mutations in diploid regions and found highly ʹ͵ͻ�
similar proportions of neutral tumors and mutation rates (see Online Methods and ʹͶͲ�
Supplementary Figure 2). The validity of the variant calls was also corroborated ʹͶͳ�
by the consistency of the underlying mutational signature across a range of allelic ʹͶʹ�
frequencies; hence the results are unlikely to be influenced by sequencing errors ʹͶ͵�
(Supplementary Figure 3).   ʹͶͶ�

Frequent selection events should induce a higher number of missense and ʹͶͷ�
nonsense mutations than expected by chance whereas under neutrality we ʹͶ�
expect the same rate of silent and non-silent mutations. To test this, we ʹͶ�
contrasted the estimated rate of synonymous mutations (unlikely to ever be ʹͶͺ�
under selection) versus the rate of missense and nonsense mutations (liable to ʹͶͻ�
experience selection). Although the latter are more common than the former, ʹͷͲ�
after adjustment for the number of potential synonymous and non-synonymous ʹͷͳ�
sites in the exome, the two rates were equivalent (Supplementary Figure 4), ʹͷʹ�
consistent with neutral evolution.  ʹͷ͵�

 ʹͷͶ�
Neutral evolution in coding and non-coding regions ʹͷͷ�
 We next tested whether the signature of neutral evolution could be found ʹͷ�
across the entire genome, not just in coding regions. To do this, we analyzed 78 ʹͷ�
gastric cancers from a recent study29 subjected to high depth whole-genome ʹͷͺ�
sequencing. The large number of mutations detected by WGS accumulated ʹͷͻ�
precisely as predicted by the model (example in Figure 2A,B), revealing neutral ʹͲ�
evolution in 60/78 (76.9%) cases (Figure 2C). A smaller proportion of MSI tumors ʹͳ�
were neutral (3/10, 30%) than microsatellite stable (MSS) tumors (57/68, 83.8%) ʹʹ�
consistent with the observation in CRC. A tumor was consistently classified as ʹ͵�
neutral independently of whether all SNVs or only non-coding SNVs were used to ʹͶ�
perform the classification (Figure 2C, Venn diagram), whereas due to the limited ʹͷ�
number of mutations available in the exome alone, fewer tumors were identified ʹ�
as neutral.  Importantly, every case was verified as neutral by at least two ʹ�
different variant sets. These results confirm that neutral evolution can be robustly ʹͺ�
assessed from mutations anywhere in the genome.  ʹͻ�

Mutation rate analysis of the neutrally evolved gastric cancers revealed ʹͲ�
that MSI cancers had a more than 4-fold higher mutation rate (µe=3.30×10-6) with ʹͳ�
respect to MSS (µe=7.82×10-7; F-test: p=1.35×10-4). Results were robust to copy ʹʹ�
number changes when the analysis was performed only using variants in diploid ʹ͵�
regions (Supplementary Figure 5). The mutational signature of the variant calls ʹͶ�
for this cohort was also consistent across the frequency spectrum ʹͷ�
(Supplementary Figure 6). Synonymous versus nonsynonymous mutation rates ʹ�
were also not consistent with frequent on-going selection (Supplementary Figure ʹ�
7). See Supplementary Data Set 2 (summary of Wang et al. data used). ʹͺ�

 ʹͻ�
Neutral evolution across cancer types ʹͺͲ�

We then applied our neutral model to a large pan-cancer cohort of 819 ʹͺͳ�
exome-sequenced cancers from 14 tumor types from the TCGA consortium ʹͺʹ�
(which included the 101 colon cancers previously examined). All of these ʹͺ͵�
samples had been pre-selected for high tumor purity (�70%). The fit of the model ʹͺͶ�
was remarkably good across types (Figure 3A) with 259/819 (31.6%) cases ʹͺͷ�
showing R2�0.98. We found that neutral evolution was more prominent in some ʹͺ�
tumor types, such as stomach (validating the WGS analysis), lung, bladder, ʹͺ�



� 

cervical, and colon. Others showed a consistently poorer fit, indicating that the ʹͺͺ�
clonal dynamics in these malignancies were typically not neutral, such as renal, ʹͺͻ�
melanoma, pancreatic, thyroid, and glioblastoma. Consistent with these results, ʹͻͲ�
“non-neutral” renal carcinoma has been shown to display convergent evolution in ʹͻͳ�
spatially disparate tumor regions driven by strong selective forces8, whereas the ʹͻʹ�
same phenomenon was not found in more “neutral” lung cancer30,31. Other types ʹͻ͵�
displayed mixed dynamics, with some cases that were characterized by neutral ʹͻͶ�
evolution and some that were not. We note that a proportion of melanoma ʹͻͷ�
samples in this cohort are derived from regional metastases and not primary ʹͻ�
lesions, and this could potentially explain the lack of neutral dynamics observed. ʹͻ�

Mutation rate analysis on the neutral cases showed differences of more ʹͻͺ�
than an order of magnitude between types (Figure 3B).  The highest mutation ʹͻͻ�
rates were observed in lung adenocarcinoma (median µe=6.79×10-7) and in lung ͵ͲͲ�
squamous cell carcinoma (median µe=5.61×10-7) and the lowest rates in low ͵Ͳͳ�
grade glioma (median µe=9.22×10-8) and in prostate (median µe=1.04×10-7). We ͵Ͳʹ�
stratified the mutation rates into different mutational types (Supplementary Figure ͵Ͳ͵�
8) and found that C>A mutations occurred at a significantly higher rate in lung ͵ͲͶ�
cancers, consistent with their causation by tobacco smoke28. C>T mutation rates ͵Ͳͷ�
were most consistent across cancer types, likely because of their association ͵Ͳ�
with normal replicative errors, as opposed to being caused by a particular ͵Ͳ�
stochastically-arising defect in DNA replication or repair28. ͵Ͳͺ�

These results demonstrate that within-tumor clonal dynamics can be ͵Ͳͻ�
neutral, and the classification of tumors based on neutral versus non-neutral ͵ͳͲ�
growth dynamics leads to new measurements of fundamental tumor biology. See ͵ͳͳ�
See Supplementary Data Set 1 (summary of TCGA data used). ͵ͳʹ�

 ͵ͳ͵�
In silico validation of the neutral model ͵ͳͶ�
To assess the different inherent sources of noise in NGS data (normal ͵ͳͷ�
contamination, limited sequencing depth, tumor sampling), we designed a ͵ͳ�
stochastic simulation of neutral growth that produced synthetic NGS data from ͵ͳ�
bulk samples (see Online Methods). The simulations produced realistic synthetic ͵ͳͺ�
NGS data (Supplementary Figure 9) with minimal assumptions and under a ͵ͳͻ�
range of different scenarios for tumor growth dynamics (variable low mutation ͵ʹͲ�
rate, variable number of clonal mutations) and sources of assay noise (normal ͵ʹͳ�
contamination in the sample, sequencing depth, detection limit). For each of ͵ʹʹ�
these potentially confounding factors, we were able to fit our neutral model to the ͵ʹ͵�
synthetic NGS data and accurately recover both the underlying neutral dynamics ͵ʹͶ�
and mutation rate (Supplementary Figure 10). We also validated the prediction ͵ʹͷ�
that M(f) would deviate from the neutral power law in the presence of emerging ͵ʹ�
subclones with a higher fitness advantage (Supplementary Figure 11A,B), as well ͵ʹ�
as in the case of a mixture of subclones (as observed in ref. 32) emerging either ͵ʹͺ�
by means of clonal expansions triggered by selection, or by segregating ͵ʹͻ�
microenvironmental niches (Supplementary Figure 11C-F). Variation of mutation ͵͵Ͳ�
rate between subclones also causes a deviation from neutrality (Supplementary ͵͵ͳ�
Figure 11G,H). These results confirm the reliability of the conservatively high R2 ͵͵ʹ�
threshold used to call neutrality. ͵͵͵�

 ͵͵Ͷ�
Mutational timelines ͵͵ͷ�

Under neutral evolution, it is possible to estimate the size of the tumor ͵͵�
when a mutation with frequency f arose from equation [5]: ͵͵�

 ͵͵ͺ�
NȋtȌ= ͳ

π f
      [8] ͵͵ͻ�

 ͵ͶͲ�
Figure 4A,B shows the decomposition of the mutational timeline for two ͵Ͷͳ�
illustrative cases: sample TB from12 and sample TCGA-AA-3712 from13. Previous ͵Ͷʹ�
estimates of mutational timelines relied on cross-sectional data33-36 that are ͵Ͷ͵�
compromised by the extensive heterogeneity, whereas multi-region profiling ͵ͶͶ�
approaches are instead more accurate but expensive and laborious8,37,38. Using ͵Ͷͷ�
our formal model of cancer evolution this timeline information becomes ͵Ͷ�
accessible from routinely available genomic data. We found that classical CRC ͵Ͷ�
driver alterations, such as in the APC, KRAS and TP53 genes, were indeed ͵Ͷͺ�
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present in the first malignant cell (likely because they accumulated during ͵Ͷͻ�
previous neoplastic stages). This confirms what we previously reported using ͵ͷͲ�
single-gland mutational profiling where all these drivers, when present, were ͵ͷͳ�
found in all glands12. However, we also found that when we considered a more ͵ͷʹ�
extended list of putative drivers, many occurred during the neutral phase of tumor ͵ͷ͵�
growth, suggesting that the selective advantage conferred by a putative driver ͵ͷͶ�
alteration may be context-dependent, as demonstrated in a p53 murine model39. ͵ͷͷ�

Discussion ͵ͷ�
 Understanding the evolutionary dynamics of subclones within human ͵ͷ�
cancers is challenging because longitudinal observations are unfeasible and the ͵ͷͺ�
genetic landscape of cancer is highly dynamic, leading to genomic data that are ͵ͷͻ�
hard to interpret40. In particular, complex non-linear evolutionary trajectories have ͵Ͳ�
been observed, such as punctuated evolution and karyotypic chaos9,40,41. Here ͵ͳ�
we have presented a formal law that predicts mutational patterns routinely ͵ʹ�
reported in NGS of bulk cancer specimens. Our analysis of large independent ͵͵�
cohorts using this framework shows that cancer growth is often dominated by ͵Ͷ�
neutral evolutionary dynamics, an observation that is consistent across 14 cancer ͵ͷ�
types. Under neutrality, the clonal structure of a tumor is expected to have a ͵�
fractal topology characterized by self-similarity (Figure 5). As the tumor grows, a ͵�
large number of cell lineages are generated and therefore ITH rapidly increases ͵ͺ�
while the allele frequency of the new heterogeneous mutations quickly decreases ͵ͻ�
due to the expansion. This implies that sampling in different parts of the tree ͵Ͳ�
leads to the detection of distinct mutations which all show the same 1/f ͵ͳ�
distribution. Clonal mutations found in a sample (not considered in the model) ͵ʹ�
belong to the most recent common ancestor in the tree.  ͵͵�

We note that some cancers were dominated by neutral evolution whereas ͵Ͷ�
others were not. In non-neutral tumors, strong selection, microenvironmental ͵ͷ�
constrains and non-cell autonomous effects42 may play a key role. Importantly, ͵�
our formalization represents the ‘null model’ of cancer intra-clone heterogeneity ͵�
that can be used to identify those cases in which complex non-neutral dynamics ͵ͺ�
occur, and to discriminate between functional and non-functional intra-tumor ͵ͻ�
heterogeneity. Furthermore, we speculate that neutral evolutionary dynamics ͵ͺͲ�
may be favored by the cellular architecture of the tumor (e.g. glandular structures ͵ͺͳ�
that limit the effects of selection) and/or the anatomical location of the malignancy ͵ͺʹ�
(e.g. growing in a lumen versus growing in a highly confined space), as well as ͵ͺ͵�
the presence of potentially selective microenvironmental features of the tumor ͵ͺͶ�
such as hypoxic regions. Despite the evidence for lack of natural selection during ͵ͺͷ�
malignant growth, eventual treatment is likely to “change the rules of the game” ͵ͺ�
and strongly select for treatment resistant clones. The same may happen in the ͵ͺ�
context of the purported evolutionary bottleneck preceding metastatic ͵ͺͺ�
dissemination, wherein treatment-resistance driver alterations that were not ͵ͺͻ�
under selection during growth may expand due to new selective pressures ͵ͻͲ�
introduced by therapy. Importantly, this reasoning highlights how ‘drivers’ can ͵ͻͳ�
only defined within a context, and so the same ‘driver’ alteration can be neutral in ͵ͻʹ�
a certain microenvironmental context (e.g. absence of treatment), and not neutral ͵ͻ͵�
in another (e.g. during treatment). Moreover, we predict that if a tumor is ͵ͻͶ�
characterized by different microenvironmental niches but still presents as neutral, ͵ͻͷ�
it is likely that adaptation will be driven by cancer cell plasticity, rather than clonal ͵ͻ�
selection. Cell plasticity is hard to study in cancer because it implies a change in ͵ͻ�
the cell phenotype that is not caused by any inheritable change (genomic or ͵ͻͺ�
epigenomic). This means that this phenomenon has been so far largely ͵ͻͻ�
neglected in cancer. As neutrality can be used as the ‘null model’ with which to ͶͲͲ�
identify clonal selection, this facilitates the study of adaptation through plasticity ͶͲͳ�
directly in human malignancies. ͶͲʹ�

Furthermore, it is important to note that due to the intrinsic sub-clonal ͶͲ͵�
detection limits of sequencing technologies, it is possible to explore only the early ͶͲͶ�
expansion of cancer clones (Figure 5) and hence the dynamics of small clones ͶͲͷ�
may differ from the tumor bulk as a whole. ͶͲ�

Importantly, the realization that the within-tumor clonal dynamics are ͶͲ�
neutral means that the in vivo mutation rate per division and the mutational ͶͲͺ�
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timeline, factors that play a key role in cancer evolution, progression and ͶͲͻ�
treatment resistance can be inferred without the need to assume cell division ͶͳͲ�
rates. These measurements can be performed in a patient-specific manner and Ͷͳͳ�
so may be useful for prognostication and the personalization of therapy. Ͷͳʹ�
Recognizing that the growth of a neoplasm is dominated by neutral clonal Ͷͳ͵�
dynamics provides an analytically tractable and rigorous method to study cancer ͶͳͶ�
evolution and gain clinically relevant insight from commonly available genomic Ͷͳͷ�
data.  Ͷͳ�
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Figure Legends ͷͶͷ�
�ͷͶ�
Figure 1. Neutral evolution is common in colon cancer and allows the ͷͶ�
measurement of mutation rates in each tumor. (A) The output of NGS data, ͷͶͺ�
such as whole-exome sequencing, can be summarized as a histogram of mutant ͷͶͻ�
allele frequencies, here for sample TB. Considering purity and ploidy, mutations ͷͷͲ�
with relatively high frequency (>0.25) are likely to be clonal (public), whereas low ͷͷͳ�
frequency mutations capture the tumor subclonal architecture. (B) The same data ͷͷʹ�
can be represented as the cumulative distribution M(f) of subclonal mutations. ͷͷ͵�
This was found to be linear with 1/f, precisely as predicted by our neutral model. ͷͷͶ�
(C) R2 goodness of fit of our CRC cohort (n=7) and the TCGA colon cancer ͷͷͷ�
cohort (n=101) grouped by CIN versus MSI confirmed that neutral evolution is ͷͷ�
common (38/108, 35.1% with R2�0.98). (D) Measurements of the mutation rate ͷͷ�
showed that the CIN groups had median mutation rate of µe=2.31×10-7, whereas ͷͷͺ�
MSI tumors reported a 15-fold higher rate (median: µe=3.65×10-6, F-test: ͷͷͻ�
p=2.24×10-8), as predicted due to their DNA mismatch repair deficiency.  ͷͲ�
 ͷͳ�
Figure 2. Neutral evolution across the whole-genome of gastric cancers. (A) ͷʹ�
Large number of coding and non-coding mutations can be identified using WGS. ͷ͵�
(B) All detected mutations precisely accumulate as 1/f following the neutral model ͷͶ�
in this example. (C) Neutral evolution is very common in gastric cancer, with ͷͷ�
60/78 (76.9%) samples showing goodness of fit of the neutral model R2�0.98. ͷ�
This was consistent using all, exonic or non-coding subclonal mutations. The ͷ�
same tumors were identified as neutral by all three methods, although limitations ͷͺ�
in detecting neutrality were present when considering exonic mutations due to ͷͻ�
the limited number of variants. (D) Mutation rates were more than 4 times higher ͷͲ�
in MSI (µe=3.30×10-6) versus MSS (µe=7.82×10-7; F-test: p=1.35×10-4) cancers, ͷͳ�
consistently with the underlying biology. ͷʹ�
 ͷ͵�
Figure 3. Neutral evolution and mutation rates across cancer types. (A) R2 ͷͶ�
values from 819 cancers of 14 different types supported neutral evolution in a ͷͷ�
large proportion of cases (259/819, 31.6% of R2�0.98) and across different ͷ�
cancer types, particularly in stomach (validating the WGS analysis), lung, ͷ�
bladder, cervical and colon. On the contrary, renal, melanoma, pancreatic, ͷͺ�
thyroid, and glioblastoma were characterized by non-neutral evolution. The other ͷͻ�
types displayed a mixed dynamics. (B) The highest mutation rates were found in ͷͺͲ�
lung cancer and melanoma. Lower rates were found in thyroid, low grade glioma ͷͺͳ�
and prostate. ͷͺʹ�
 ͷͺ͵�
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Figure 4. Reconstruction of the mutational timeline in each patient. The ͷͺͶ�
frequency of a mutation within the tumor predicts the size of the tumor when the ͷͺͷ�
mutation occurred. (A,B) The deconvolution of the mutational timeline is ͷͺ�
illustrated for samples TB and TCGA-AA-3712 respectively. Whereas established ͷͺ�
CRC drivers (APC, KRAS, TP53) were found to be present from the first ͷͺͺ�
malignant cell, several recurrent putative drivers not yet validated were mutated ͷͺͻ�
after malignant seeding, despite the underlying neutral dynamics. This suggests ͷͻͲ�
that some of these candidate alterations may not be fundamental drivers of ͷͻͳ�
growth in all cases. Confidence intervals are calculated using a binomial test on ͷͻʹ�
the number of variant reads versus the depth of coverage for each mutation. ͷͻ͵�
 ͷͻͶ�
Figure 5. Neutral evolution and tumor phylogeny. After the accumulation of ͷͻͷ�
genomic alterations, the cancer expansion is likely triggered by a single critical ͷͻ�
genomic event (the accumulation of a “full house” of genomic changes) followed ͷͻ�
by neutral evolution that generates a large number of new mutations in ever-ͷͻͺ�
smaller subclones. While the tumor heterogeneity rapidly increases, the allele ͷͻͻ�
frequency of heterogeneous mutations decreases. In this context, the ͲͲ�
accumulation of mutations M(f) follows a characteristic 1/f distribution. Moreover, Ͳͳ�
the tumor phylogeny displays a characteristic fractal topology that is self-similar. Ͳʹ�
Sampling in different regions of the phylogenetic tree exposes distinct mutations Ͳ͵�
that however show the same 1/f distribution. Clonal mutations in a sample (not ͲͶ�
considered in the model) arose in to the most recent common ancestor of the Ͳͷ�
sampled cells. Due to the large population of cells sampled using bulk Ͳ�
sequencing, the overwhelming majority of detected clonal mutations belongs to Ͳ�
the trunk of the tree and therefore is found in the first cancer cell. Deviations from Ͳͺ�
the 1/f law indicate different dynamics from neutral growth. Ͳͻ�

Online Methods ͳͲ�
�ͳͳ�
Data analysis�ͳʹ�

The processing of exome-sequencing data from1 and TCGA2 involved ͳ͵�
variant calling on matched-normal pairs using Mutect3. A mutation was ͳͶ�
considered if the depth of coverage was �10 and at least 3 reads supported the ͳͷ�
variant. Mutations that aligned to a more than one genomic location were ͳ�
discarded. The WGS gastric cancers4 were processed using VarScan25, with ͳ�
minimum depth of coverage for a mutation being 10x and at least 3 reads ͳͺ�
supporting the variant. Non-CRCs in the TCGA had mutations called using ͳͻ�
Mutect according to the pipeline described in ref6. Microsatellite instability in the ʹͲ�
TCGA colon cancer samples was called using MSIsensor7. Annotation was ʹͳ�
performed with ANNOVAR8. ʹʹ�

To fit the neutral model to allele frequency data we considered only ʹ͵�
variants with allele frequency in the range [fmax,fmin] corresponding to [t0,t] in ʹͶ�
equation [2]. The low boundary fmin reflects the limit for the reliable detectability of ʹͷ�
low-frequency mutations in NGS data, which is in the order of 10%3. The high ʹ�
boundary fmax is necessary to filter out public mutations that were present in the ʹ�
first transformed cell. In the case of diploid tumors, clonal mutations are expected ʹͺ�
at fmax=0.5 (mutations with 50% allelic frequency are heterozygous public or ʹͻ�
clonal), in the case of triploid tumors, this threshold drops to 0.33 and in the case ͵Ͳ�
of tetraploid neoplasms, it drops to 0.25. For all samples we used a boundary of ͵ͳ�
[0.12-0.24] to account only for reliably called subclonal mutations and tumor ͵ʹ�
purity in the samples. All the samples considered in this study were reported to ͵͵�
have tumor purity �70% and a minimum of 12 reliably called private mutations ͵Ͷ�
within the fit boundary. Once these conditions were met in a sample, equation [7] ͵ͷ�
was used to perform the fit as illustrated in Figure 1B and 2B. In particular, for ͵�
x=1/f, equation [7] becomes a linear model with slope ȝ/ȕ and intercept –ȝ/(ȕ ͵�
fmax). We exploited the intercept constraint to perform a more restrictive fit using ͵ͺ�
the model y=m(x-1/fmax)+0. ͵ͻ�
 Copy-number changes (allelic deletion or duplication) can alter the ͶͲ�
frequency of a variant in a manner that is not described by equation [7]. We Ͷͳ�
assessed the impact of copy-number alterations (CNAs) on our estimates of the Ͷʹ�
mutation rate within the TCGA colorectal cancer samples by using the paired Ͷ͵�
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publically available segmented SNP-array data to exclude somatic mutations that ͶͶ�
fell within regions of CNA. CNVs were identified having an absolute log-R-Ͷͷ�
ratio>0.5, and the model fitting was performed only on diploid regions of the Ͷ�
genome. In the gastric cancer cohort, regions with copy number changes were Ͷ�
identified using Sequenza9 and removed from the analysis. Mutation rates were Ͷͺ�
adjusted to the size of the resulting diploid genome. Supplementary Figures 2 Ͷͻ�
and 5 demonstrate the robustness of our analysis to copy number changes. R2 ͷͲ�
values were independent from the mean coverage of mutations (p=0.32), the ͷͳ�
total number of mutations in the sample (p=0.40), the mutation rate (p=0.11), or ͷʹ�
the number of mutations within the model range (p=0.65). ͷ͵�
 ͷͶ�
Stochastic Simulation of Tumor Growth ͷͷ�

To further validate our analytical model and to test the robustness to the ͷ�
noise in NGS data, we developed a stochastic simulation of tumor growth and ͷ�
accumulation of mutations that allowed us to generate synthetic datasets. The ͷͺ�
model was written and analyzed in the Julia programming language.  We then ͷͻ�
applied the analytical model to the simulated data to confirm that sources of Ͳ�
noise in NGS data do not considerably impact our results. In particular, we ͳ�
verified that we could reliably extract input parameters of the simulation (namely ʹ�
the mutation rate) from “noisy” synthetic data. Confounding factors in the data ͵�
include normal contamination, sampling effects, the detection limit of NGS Ͷ�
mutation calling, and variable read depth. We simulate a tumor using a branching ͷ�
process with discrete generations, beginning with a single “transformed” cancer �
cell that gives rise to the malignancy. Under exponential growth, the population at �
time t will be given by: ͺ�

 ͻ�
 NȋtȌ= Rt = e��ȋRȌt   [9] Ͳ�

 ͳ�
Where R is the average number of offspring per cell and the time ݐ is in units of ʹ�
generations. We will consider primarily the case when R=2 (a cell always divides ͵�
into 2), but we will also consider values <2, noting that R must be greater than 1 Ͷ�
to have growth. At each division, cells acquire new mutations at a rate ȝ and we ͷ�
assume every new mutation is unique (infinite sites approximation). The number �
of mutations acquired by a newborn cell at division is a random number drawn �
from a Poisson distribution. Each cell in the population is defined by its mutations ͺ�
and its ancestral history (by recording it’s parent cell). Using this information we ͻ�
can then reconstruct the history of the whole tumor and crucially, calculate the ͺͲ�
variant allele frequency of all mutations in the population. To relate the discrete ͺͳ�
simulation to the continuous analytical model we will now re-derive equation [7] ͺʹ�
within the context of our model. As we simulate a growing tumor using discrete ͺ͵�
generations, both the mutation rate ȝ and per capita growth rate Ȝ=ln(R) are in ͺͶ�
units of generations. For an offspring probability distribution P=(p0,p1,p2) where ͺͷ�
pk=P(# of OFFSPRING = k) where, the average number of offspring  R is simply ͺ�
given by the expected value of P: ͺ�
 ͺͺ�

 R = EȏPȐ= pͳ +ʹpʹ   [10] ͺͻ�
 ͻͲ�
For example, for R=2 we have P=(p0=0,p1=0,p2=1). By choosing different ͻͳ�
offspring probability distributions we can easily modulate the growth rate. We ͻʹ�
note that we are now expressing both ȝ and Ȝ as rates per generation rather than ͻ͵�
probabilities (all rates are scaled by units of generation). This allows us to write ͻͶ�
the growth function as N(t)=exp(Ȝt) with Ȝ=ln(R). Proceeding as in the main text, ͻͷ�
our cumulative number of mutations with an allelic frequency f is therefore: ͻ�

 Mȋ f Ȍ= µ
λ

ͳ
f

− ͳ
f���

§

©̈

·

¹̧
  [11] ͻ�

Therefore, when fitting the model to our stochastic simulation we extract ȝ/Ȝ from ͻͺ�
the linear fit, making it straightforward to compare the simulation with the ͻͻ�
analytical model. ͲͲ�

NGS data only captures a small fraction of the variability in a tumor, as the Ͳͳ�
resolution is often limited to alleles with frequency >10% due to sequencing Ͳʹ�



� ͳ͵

depth and limitations in mutation calling. To account for this, we employ a Ͳ͵�
multistage sampling scheme in our simulations. For all simulations reported here ͲͶ�
we grow the tumor to size 1,024 cells, which gives a minimum allele frequency of Ͳͷ�
~0.1%, considerably smaller than the 10% attainable in next generation Ͳ�
sequencing data. After growing the tumor and calculating the VAF for all alleles, Ͳ�
we take a sample of the alleles in the population, noting that we are assuming the Ͳͺ�
population is well mixed and has no spatial structure. We can vary the Ͳͻ�
percentage of alleles we sample, thus allowing us to investigate the effect of the ͳͲ�
depth of sequencing on our results.  As we know the true allelic frequency in the ͳͳ�
simulated population, we can use the multinomial distribution to produce a ͳʹ�
sample of the “sequenced” alleles, where the probability of sampling allele i is ͳ͵�
proportional to its frequency. The probability mass function is given by: ͳͶ�

 ͳͷ�
f ȋxǢnǡpȌ= nǨ

xͳǨ� xk Ǩ
pi
xi

i=ͳ
k∏ ǡ xͳ +� xk = n                      [12] ͳ�

 ͳ�
where xi is the sampled frequency of allele i, n is the number of trials (the chosen ͳͺ�
percentage of alleles sampled) and pi is the probability of sampling allele i (which ͳͻ�
has frequency ȡi in the original population): ʹͲ�

pi =
ρi

ρ jj=ͳ
k¦

     [13]  ʹͳ�

 ʹʹ�
The variant allele frequency VAF is therefore given by: ʹ͵�

VAF =
xi
Ni

      [14] ʹͶ�

 ʹͷ�
Where Ni is the total number of sampled cells from which every sampled allele is ʹ�
derived. As we are assuming a constant mutation rate ȝ, we can assume that the ʹ�
percentage of alleles sampled comes from an equivalent percentage of cells. ʹͺ�
However, to include an additional element of noise that resembles the variability ʹͻ�
of read depth, we calculate a new Ni for each allele i, which approximates the ͵Ͳ�
read depth.   For a desired “sequencing” depth D we calculate the corresponding ͵ͳ�
percentage of the population we need to sample that will give us our desired ͵ʹ�
depth. For example, for a desired depth of 100X from a population of 1,000 cells, ͵͵�
we would need to sample 10% of the population. To include some variability in ͵Ͷ�
depth across all alleles we use Binomial sampling so that Ni is a distribution with ͵ͷ�
mean D.  ͵�

Contamination from non-tumor cells in NGS results in variant allele ͵�
frequencies being underestimated. To include this effect in our simulation we can ͵ͺ�
modify our Ni by an additional fraction İ, the percentage of normal contamination. ͵ͻ�
Our VAF calculation thus becomes: ͶͲ�

VAF =
xi

Ni ͳ+ ε( )        Ͷͳ�

 Ͷʹ�
 Ͷ͵�
We also include detection limit in our sampling scheme, we only include alleles ͶͶ�
that have an allelic frequency greater than a specified limit in the original tumor Ͷͷ�
population. Ͷ�
 Ͷ�
To include the effects of selection in the simulation we introduce a second Ͷͺ�
population, where on average each cell has a greater number of offspring than Ͷͻ�
the first population. To model this, our second population has a modified offspring ͷͲ�
probability distribution: the previous offspring probability distribution was ͷͳ�
P=(p0,p1,p2), and the offspring probability distribution of our second fitter ͷʹ�
population is defined as Q=(q0,q1,q2), where q2>p2. The selective advantage of a ͷ͵�
population – s, will be given by the ratio of the expected number of offspring: ͷͶ�

ͳ+ s = EȏQȐ
EȏPȐ =

qͳ +ʹqʹ
pͳ +ʹpʹ

      ͷͷ�
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�
Therefore given P, and a desired selective advantage s we can easily calculate ͷ�
the offspring probability distribution of a fitter clone – Q.  ͷ�
 ͷͺ�
Previous studies have detected the presence of mixtures of subclones in breast ͷͻ�
cancer samples that emerged by means of clonal expansions, thus generating Ͳ�
multiple subclonal clusters in the data10. We also used our computational model ͳ�
of NGS data to produce similar synthetic data by means of mixing of different ʹ�
clonal clusters and verified that in this scenario (a model of differential selective ͵�
pressure across subclones), the power law does not hold. Ͷ�
 ͷ�
Simulation Results �

From the simulated data we produced histograms of the allelic frequency �
and calculated M(f) in order to fit the analytical model. We used the same ͺ�
frequency range as applied to empirical data [fmax,fmin]=[0.12,0.24]. ͻ�
Supplementary Figure 9A and B shows equivalent plots to Figures 1A and B but Ͳ�
with simulated data. These demonstrate that we are able to accurately model the ͳ�
allelic distribution of NGS data with our simple neutral model of tumor growth. We ʹ�
also show the effect of a low mutation rate (Supplementary Figure 9C), a large ͵�
number of clonal mutations (Supplementary Figure 9D), 30% contamination in Ͷ�
the sample (Supplementary Figure 9E) and a low detection limit (Supplementary ͷ�
Figure 9F). Importantly, by fitting the analytical model to the simulated data, we �
can recover the input mutation rate with high accuracy (Supplementary Figure �
9G, 10,000 equivalent simulations). The mean percentage error from the fit is ͺ�
1.1%. We also see uniformly high R2 values across all simulations ͻ�
(Supplementary Figure 9H).  ͺͲ�

To test the robustness of the model to the number of clonal mutations, the ͺͳ�
detection limit and the amount of normal contamination we ran 10,000 ͺʹ�
simulations across the spectrum of these parameters. Supplementary Figures ͺ͵�
10A-B show that we accurately recover (to within 15%) the mutation rate for 95% ͺͶ�
of simulations across different numbers of clonal mutations and different ͺͷ�
detection limits. Differently, we found that levels of normal contamination above ͺ�
30% considerably impact the parameter estimations of the model, hence our ͺ�
decision of only considering samples with �70% of tumor content  ͺͺ�
(Supplementary Figure 10C). Indeed, when normal contamination is above 30%, ͺͻ�
the clonal peak in the allelic frequency distribution interferes significantly with our ͻͲ�
chosen cumulative sum limit (fmax = 0.24), thus impacting our results. ͻͳ�
Nevertheless, the estimates are within a factor 2 for normal contamination of up ͻʹ�
to 50%, which we consider an acceptable level of accuracy. When we consider ͻ͵�
normal contaminationߝ� directly within our analytical model, the allelic fraction of a ͻͶ�
new mutation becomes: ͻͷ�

 ͻ�
f = ͳ

πNȋtȌ = ͳ
πeλβtȋͳ+ ε Ȍ

     [15] ͻ�

 ͻͺ�
And consequently, M(f) is: ͻͻ�
 ͺͲͲ�

Mȋ f Ȍ= µ
βȋͳ+ ε Ȍ

ͳ
f

− ͳ
f���

§

©̈

·

¹̧
     [16] ͺͲͳ�

 ͺͲʹ�
Showing that normal contamination alters the measurement of mutation by a ͺͲ͵�
factor of 1/(1+İ): much lower than one order of magnitude. Furthermore, if normal ͺͲͶ�
contamination can be estimated accurately from histopathological scoring or from ͺͲͷ�
reliable bioinformatics tools, we would be able to correct the frequency of variants ͺͲ�
in the data and thus rescue our ability to correctly estimate parameters with up to ͺͲ�
40-45% normal contamination (Supplementary Figure 10D). We also tested the ͺͲͺ�
model with varying read depths and mutation rates. We find that either a low ͺͲͻ�
mutation rate or low read depth resulted in a higher proportion of poor model fits ͺͳͲ�
(R2<0.98) and inaccurate or higher variance in mutation estimates ͺͳͳ�
(Supplementary Figures 10E-H). It is therefore possible that due to our stringent ͺͳʹ�
neutrality criteria that the true proportion of tumors that are dominated by neutral ͺͳ͵�
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dynamics is higher than reported, and relatedly our gastric cancer cohort covers ͺͳͶ�
the whole genome (greater mutation rate per division) and has mean depth of ͺͳͷ�
coverage >90X which may explain in part why we see a greater proportion of ͺͳ�
gastric cancers classified as neutral.   ͺͳ�

Additionally, we tested the model with simulations using a range of ͺͳͺ�
different probability distributions for the number of surviving offspring at each cell ͺͳͻ�
division. We simulated a growing tumor 10,000 times with 5 different offspring ͺʹͲ�
probability distributions and then reported the distributions of the fitted ͺʹͳ�
parameters. Supplementary Figures 10I-J show that as Ȝ decreases the ͺʹʹ�
distribution of mutation estimates becomes wider and we see an increase in ͺʹ͵�
poorly fitted models (larger number of R2<0.98). Again this suggests that tumor ͺʹͶ�
growth may still be neutral even when we classify a tumor as non-neutral due to ͺʹͷ�
a poor R2 value. Hence our underestimation of the number of neutral cases may ͺʹ�
be largely due to a low proportion of cells that successfully produce 2 viable ͺʹ�
offspring (the ȕ term in equation [7]), rather than the presence of selection. ͺʹͺ�

By introducing a second fitter population early during tumor growth we ͺʹͻ�
show that the fitter clone causes an overrepresentation of variants at high ͺ͵Ͳ�
frequency compared to what we would expect from our “null” model of neutral ͺ͵ͳ�
tumor growth. This causes the cumulative distribution to bend and deviate from ͺ͵ʹ�
the linear relationship predicted by neutral growth, as shown in Supplementary ͺ͵͵�
Figures 11A-B. This is because an overrepresentation of variants at high ͺ͵Ͷ�
frequency, as compared to what we would expect from our “null” model, is ͺ͵ͷ�
caused by the clonal selection of the fitter clone, but we note that we do not know ͺ͵�
what caused this increase (it could be a point mutation, chromosomal aberration ͺ͵�
or a change in environmental pressures for example). In other words, some ͺ͵ͺ�
passenger mutations are just in the “right clone at the right time” and become ͺ͵ͻ�
overrepresented in the tumour when that “right” clone expands. ͺͶͲ�

We also show that having multiple subclones that arose by means of ͺͶͳ�
clonal expansion, thus producing multiple clonal ‘clusters’, produces a deviation ͺͶʹ�
from the linear relationship we predict (Supplementary Figures 11C-F), as does ͺͶ͵�
having a marked increase in the mutation rate early in tumour growth ͺͶͶ�
(Supplementary Figures 11G,H). ͺͶͷ�
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