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Abstract
Bird calls range from simple tones to rich dynamic multi-
harmonic structures. The more complex calls are very poorly
understood at present, such as those of the scientifically impor-
tant corvid family (jackdaws, crows, ravens, etc.). Individual
birds can recognise familiar individuals from calls, but where in
the signal is this identity encoded? We studied the question by
applying a combination of feature representations to a dataset
of jackdaw calls, including linear predictive coding (LPC) and
adaptive discrete Fourier transform (aDFT). We demonstrate
through a classification paradigm that we can strongly outper-
form a standard spectrogram representation for identifying indi-
viduals, and we apply metric learning to determine which time-
frequency regions contribute most strongly to robust individual
identification. Computational methods can help to direct our
search for understanding of these complex biological signals.
Index Terms: bird, LPC, aDFT, metric learning, corvid, animal
communication

1. Introduction
Bird vocalisations are highly complex. They are often anal-
ysed as sinusoidal or harmonic sounds, or as spectrotemporal
“patches” [1], but in general this can obscure their rich struc-
ture: unlike humans, songbirds have two sets of vocal folds,
which they can use simultaneously; and they also have muscles
specialised for rapid pitch modulation [2]. Songbird species
make use of these abilities in different ways, not all of which
are fully understood. These complexities pose problems for sig-
nal processing paradigms borrowed from the study of speech or
music. Yet bird vocalisations are an important area of scientific
study: from behavioural studies we know that they can con-
tain information about species, about individual identity, and
more, and so we seek signal processing methods that can repre-
sent that information in a form suitable for analysis. Corvids, a
family of songbirds that includes ravens, crows, jays and other
species, have been the focus of much research, due to their
social complexity and remarkable cognitive skills. But unlike
in other songbirds, their vocalisations have not been as exten-
sively studied, maybe because they mainly produce short, non-
tonal vocalisations (calls) that are often structurally complex
and may involve the two-voice phenomenon. However, their
vocal complexity, in combination with high levels of sociality
and cognition has made corvids a suitable target for studying
vocal recognition [3]. Jackdaws (C. monedula) are highly vo-
cal, group-living corvids that breed in colonies and form strong,
lifelong pair bonds. They are highly vocal and use a variety of
vocalisations to maintain contact and communicate with their
conspecifics [4]. Recently, it has been suggested that pair mem-
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Figure 1: Spectrogram of a single jackdaw call (left) and of its
LPC residual (right).

bers are able to recognise each other’s contact calls [5]. But
are we able to discriminate individuals by analysing these chal-
lenging vocal signals? And which parts of the signals carry the
individual information? To explore these questions, we anal-
ysed a dataset of calls coming from 20 individually recorded
jackdaws, using alternative signal representations together with
automatic classification and metric learning.

2. Method
2.1. Data collection

The dataset came from 20 adult, hand-raised, group-housed
jackdaws (in accordance with the 2010/63/EU European di-
rectives for the protection of animals used for scientific pur-
poses). Individual vocalisations were recorded using a mi-
crophone (TC20, Earthworks, USA) and solid-state recorder
(PMD661, Marantz, Japan, at a sampling rate of 48000 Hz)
while the birds were temporarily held in social isolation (for
max. 32 minutes) in a sound chamber (2.0 x 2.0 x 1.3 m, fitted
with white acoustic foam), as part of a different study. Contact
calls were classified and clean recordings selected by visual and
acoustic assessment. Here, we analysed a total of 1156 calls
(3 to 93 per individual, median = 60), with a median duration
of 0.272 seconds (standard deviation: 0.047, min: 0.160, max:
0.510 seconds). The spectrogram of an example call is shown
in Figure 1 (left).



2.2. Signal processing

Our aim was to produce spectrogram representations that al-
lowed individual identity information to surface most readily.
For standard spectrograms we used a frame size of 1024 with
Hann windowing and 75% overlap.

As a potential improvement on this baseline we evaluated
linear prediction (LPC) analysis, widely used in speech pro-
cessing as a step which aims to separate the effects of the glot-
tal source (for songbirds, the syringeal sources) from the vocal
tract filter [6]. To each call we applied LPC analysis of order
10 to the whole audio clip. Songbirds might encode individual-
ity in fixed/gestural aspects of the syrinx oscillation and/or the
vocal tract setting. We therefore used the LPC residual (which
is an approximation to the syringeal source signal) in the same
way as we would use the original raw audio, for spectrogram
processing (see Figure 1 right), and we also used the LPC spec-
trum (an approximation to the vocal tract filter) separately as an
alternative spectral representation of each call.

Separately we explored the use of the adaptive Discrete
Fourier Transform (aDFT) proposed in [7]. This was origi-
nally introduced as an alternative, adaptive method to compute
a spectrogram and the sinusoidal parameters used by the “adap-
tive harmonic model” (aHM) in human speech analysis and
synthesis. The aDFT is similar to the Discrete Fourier Trans-
form (DFT) but uses a frequency basis that can completely fol-
low the variations of the fundamental frequency F0 through-
out a recording, in contrast to the constant frequency basis of
DFT. This time-varying F0 is estimated as part of the algo-
rithm, which thus offers the potential of a more accurate time-
frequency representation. The harmonics can be easily traced
and are typically more prominent even in mid/high frequencies,
compared to those in the DFT spectrogram.

In order to apply the aDFT to our dataset only one modifi-
cation of the original algorithm was needed. The F0 variations
for human speech are considered to be between 40 and 700 Hz,
but songbirds have an even higher and wider range. Hence, an
F0 range between 80 and 2000 Hz was used for the estimation
of the F0 variations throughout each recording. The values of
the F0 curve that was used as the frequency basis for aDFT
were then divided by 2, because of the potential importance of
sub- and inter-harmonics. Furthermore, we tested this aDFT
with and without the adaptive iterative refinement algorithm,
also proposed in [7], which iteratively refines the F0 estimate
used to produce the aDFT spectrogram. We therefore tested
‘unrefined’ and ‘refined’ versions.

The aDFT is designed to improve the characterisation of
frequency-modulated harmonic sounds, and so is a candidate
for analysis of songbird vocalisations (although it does not di-
rectly model two-voice phenomena). The aDFT produces spec-
trograms with a varying rather than regular temporal frame
rate. In order to perform pairwise comparisons between spec-
trograms, and to maximise comparability against the standard
spectrogram representation, we resampled the aDFT spectro-
grams onto a regular grid (by nearest-neighbour interpolation)
at the same frequency and time resolution as the standard spec-
trogram (Figure 2).

2.3. Classification tests

We used a classification paradigm to evaluate the various signal
representations. Our aim was not to achieve the best classifica-
tion possible, but to probe which representations gave the clear-
est indications of individual identity. For this reason, we did
not use an arbitrarily powerful classifier, but the well-known
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Figure 2: aDFT spectrogram of a single call: using unrefined
(left) and refined (right) F0 estimate.

and simple k-nearest-neighbours (kNN) classifier (with k = 3).
Data that work well with a kNN classifier will have their classes
in compact, well-separated clusters. However, the kNN clas-
sifier makes few assumptions about class distributions beyond
that: it is tolerant of multimodal classes, and of classes hav-
ing different variances, as long as they remain compact and
well-separated. kNN also naturally encompasses multi-class
data and not just binary-labelled data. Since we were working
with multi-class data in a high-dimensional space (spectrogram
pixels) about which relatively little is known (e.g. class multi-
modality), kNN was preferred over other simple discriminators
such as linear discriminant analysis.

The classifier was applied to pairwise distances between
spectrograms, evaluated using four different distance metrics:
Euclidean and Manhattan, each applied to magnitudes and to
log-magnitudes. The sound files were all aligned by their on-
set. In order to reduce any problems due to relative misalign-
ment when measuring pairwise distances, we allowed a relative
movement of±20 ms and used the alignment that gave the min-
imum distance.

We therefore obtained classification results using data
preprocessed in various ways: with/without LPC analysis,
with a standard spectrogram or aDFT (and aDFT could be
with/without refinement of its F0 estimate), with/without log-
transformed magnitudes, with Euclidean or Manhattan dis-
tance. We evaluated the contributions of these factors using a
mixed-effects statistical model (generalised linear mixed model
(GLMM), with call recording ID as the random factor), to
determine whether each made a significant difference to per-
formance, and to check for interactions between the factors.
In order to help understand the effects of the various signal-
processing choices, we also visualised the pairwise distances
using t-SNE [8].

The above investigations help to ensure that we choose sig-
nal processing methods that elucidate individual-identifying in-
formation if it is present, and through LPC help us to consider
one facet of the question of ‘where’ the information lies. It is
natural to ask to what extent information lies in the onset or the
decay of the call, in the fundamental or the harmonics—the lat-
ter question being particularly pertinent when a call can simul-
taneously contain energy from the two syringeal sources. Note



that the kNN classifier depends fundamentally on the distance
metric used, and in particular that the relative weighting of fea-
tures can make a dramatic difference to results. In the first test
we have described, we varied the metric but did not vary the
feature weightings, in effect telling the classifier to pay equal
attention to every pixel. We therefore complemented this ap-
proach by using the large margin nearest neighbours (LMNN)
framework (a type of metric learning) to derive an analysis of
the relative importance of each spectrogram pixel. The LMNN
process iteratively uses the predictions made by a kNN classi-
fier to learn a linear transformation of the data space in such a
way as to maximise the separation of classes, i.e. to optimise
kNN performance [9]. It can therefore improve on the basic
kNN classification results; however our focus was not on the
improved classification score but on the linear projection that
was learnt. After LMNN was trained (using the Python met-
ric learn package) we mapped the projection matrix back onto
the spectrogram pixels, giving an overall importance weight for
each pixel. (Note that for implementation reasons we could not
include the ±20 ms variable-alignment in the LMNN test.) To
visualise these results, we applied the ranking transformation to
the importance weights (to normalise their dynamic range) and
then plotted them in the same format as spectrograms. This re-
sulted in a visualisation of the relative relevance of spectrogram
regions.

3. Results
Classification results show clearly that a dramatic improvement
over a standard spectrogram representation is possible (Figure
3). Our GLMM analysis found a significant effect of all our
signal-processing interventions, but also significant interactions
between all of them (as can be seen in the rather bimodal re-
sults of Figure 3), so here we will not focus on the GLMM
results in detail. In general the Manhattan metric gave best re-
sults. When using Manhattan distance, we found that the LPC
residual and/or aDFT led to a strong improvement from around
74% to 90% in individual identification; yet the joint applica-
tion of LPC and aDFT did not strongly improve results beyond
that. The aDFT spectrograms showed strong performance with
either Manhattan or Euclidean distance. The LPC filter esti-
mate, however, did not lead to strong classification, performing
noticeably worse than the standard spectrogram.

The t-SNE plots give visual indications of the character-
istics of the high-dimensional spaces produced by our analy-
ses. Figure 4 shows the strongest-performing metric (Manhat-
tan distance) for spectrograms based on raw audio and on the
LPC residual; the LPC residual can be seen to enhance the per-
individual clustering structure. (Plots for aDFT were qualita-
tively similar to that for the LPC residual.) Some of the classes
appear multimodal, forming more than one cluster, which may
for example reflect an individual’s use of differing call types.

Feature importance weightings derived from LMNN help
to understand the relative importance of specific time-frequency
regions, and they also offer clues as to what sort of benefit the
LPC preprocessing gives (Figure 5). For both raw audio and
LPC residual, the strongest-weighted pixels are concentrated
soon after call onset, and place heavy emphasis on regions con-
taining the fundamental frequency component (which in many
cases includes a downward sweep from approx. 1 kHz) and its
first one or two harmonics – more broadly speaking, the region
1–3 kHz. Features which attain more importance after LPC
transformation are the higher frequencies near the onset. LPC
analysis inherently produces a residual with a whiter spectrum,

and so for these sounds amplifies the upper harmonics (Figure
1). However this does not inherently lead the LMNN analysis
to apply more weight to them; if the higher harmonics did not
contain useful information we would expect LMNN to suppress
them.

4. Discussion
The results here do not directly tell us about the production or
perception processes involved in jackdaw contact calls, but they
do give us information which helps to guide investigations into
those processes, and also which helps us to design systems to
extract information automatically from such vocalisations. We
have demonstrated that signal processing interventions can dra-
matically improve the automatic identification of individuals
with a low-complexity classification algorithm, which tells us
that they can transform the signal into a format in which indi-
viduals’ calls have more stable and repeatable character.

Our feature importance analysis suggests that the identify-
ing information is concentrated soon after onset, and spreads
across the fundamental(s) and harmonics. However, we note
that for this particular analysis we could not vary the relative
alignment of the signals, meaning that discriminative informa-
tion in the tail-end of calls may not be apparent since calls are
variable in length.

We found that both LPC and aDFT lead to representations
that facilitate classification. These are two rather different inter-
ventions, yet the improvements are not strongly additive: results
when using both are only a little stronger than when using ei-
ther. LPC is a well-known technique, and relatively efficient to
apply, whereas aDFT and related representations are not very
well studied, and take much more computation than a standard
spectrogram. The cost-benefit ratio therefore speaks in favour
of the LPC residual for the moment, though we have shown that
advanced adaptive spectrograms are worth exploring for their
surfacing of information present in the signal.

The LPC residual, rather than the LPC filter, showed the
strongest connection with individual identity in our tests. Linear
prediction is often used for source-filter analysis, with the resid-
ual interpreted as the glottal or syringeal source signal. How-
ever, the LPC residual is also likely to normalise away any vari-
ability in the acoustic channel between bird and microphone,
and so one should be cautious before interpreting the LPC fil-
ter component as purely representing “the vocal tract”. It also
means that the improved recognition using the LPC residual
could be interpreted as a normalisation rather than a decom-
position. However—contrary to that line of thought—in the
present dataset recordings are controlled and the channel ef-
fects are stable, although factors such as the orientation of a
bird’s head with respect to the microphone can still affect the
received signal. Nevertheless, our results suggest that the signal
component from the syringeal source contains sufficient infor-
mation for recognising individuals in this species, and that this
information is not just in the fundamental frequencies but also
involves the overall harmonic structure of the source signal—
a suggestion which should be compared against physiological
and perceptual evidence in future.

5. Acknowledgements
This work was supported by EPSRC Early Career research fel-
lowship EP/L020505/1. LFG was funded by the Max Planck
Society. We also thank Auguste von Bayern for discussions and
support during the experiments.



Raw LPC filter LPC residual aDFT (unrefined) aDFT (refined) LPCr+aDFT (unref) LPCr+aDFT (ref)
Signal representation

30

40

50

60

70

80

90

100

kN
N 

ac
cu

ra
cy

 (%
)

Manhattan
Euclidean
Manhattan (log)
Euclidean (log)

Figure 3: kNN classification results. Chance level is 8.0%. For each signal representation, results are shown for each of the four
different distance measures.
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6. References
[1] D. Stowell and M. D. Plumbley, “Birdsong and C4DM: A

survey of UK birdsong and machine recognition for music
researchers,” Centre for Digital Music, Queen Mary University
of London, Tech. Rep. C4DM-TR-09-12, Aug 2010. [Online].
Available: http://c4dm.eecs.qmul.ac.uk/papers/2010/Stowell2010-
C4DM-TR-09-12-birdsong.pdf

[2] T. Riede and F. Goller, “Peripheral mechanisms for vocal pro-
duction in birds–differences and similarities to human speech and
singing,” Brain and language, vol. 115, no. 1, pp. 69–80, 2010.

[3] N. Kondo, E.-I. Izawa, and S. Watanabe, “Perceptual mecha-
nism for vocal individual recognition in jungle crows (Corvus
macrorhynchos): contact call signature and discrimination,” Be-
haviour, vol. 147, no. 8, pp. 1051–1072, 2010.

[4] S. Cramp, Handbook of the birds of Europe, the Middle East and
North Africa, S. Cramp and C. M. Perrins, Eds. Oxford: Oxford
University Press, 1994, vol. 8, Crows to finches.

[5] L. F. Gill, W. Goymann, A. Ter Maat, A. von Bayern, and M. Gahr,
“Who ya gonna call? Individual recognition in jackdaw (Corvus
monedula) contact calls,” in International Bioacoustics Congress
(IBAC 2015), 2015.

[6] J. Makhoul, “Linear prediction: A tutorial review,” Proceedings of
the IEEE, vol. 63, no. 4, pp. 561–580, 1975.

[7] V. Morfi, G. Degottex, and A. Mouchtaris, “Speech analysis
and synthesis with a computationally efficient adaptive harmonic
model,” IEEE/ACM Trans. Audio, Speech & Language Processing,



vol. 23, no. 11, pp. 1950–1962, 2015. [Online]. Available:
http://dx.doi.org/10.1109/TASLP.2015.2458580

[8] L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE,”
Journal of Machine Learning Research, vol. 9, no. 2579-2605,
p. 85, 2008.

[9] K. Q. Weinberger, J. Blitzer, and L. K. Saul, “Distance metric learn-
ing for large margin nearest neighbor classification,” in Advances
in neural information processing systems, 2005, pp. 1473–1480.


