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ABSTRACT A key1 quantity;2 in the analysis of structured populations is the parameter K, which describes the number of subpopulations
that make up the total population. Inference of K ideally proceeds via the model evidence, which is equivalent to the likelihood of the
model. However, the3 evidence in favor of a particular value of K cannot usually be computed exactly, and instead programs such as
Structure make use of heuristic estimators to approximate this quantity. We show—using simulated data sets small enough that the
true evidence can be computed exactly—that these heuristics often fail to estimate the true evidence and that this can lead to incorrect
conclusions about K. Our proposed solution is to use thermodynamic integration (TI) to estimate the model evidence. After outlining
the TI methodology we demonstrate the effectiveness of this approach, using a range of simulated data sets. We find that TI can be
used to obtain estimates of the model evidence that are more accurate and precise than those based on heuristics. Furthermore,
estimates of K based on these values are found to be more reliable than those based on a suite of model comparison statistics. Finally,
we test our solution in a reanalysis of a white-footed mouse data set. The TI methodology is implemented for models both with and
without admixture in the software MavericK1.0.
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THEdetection and characterization of population structure
is one of the cornerstones of modern population genetics.

Ever since Wright (1949) and his contemporaries (Malécot
1948) it has been recognized that genetic samples obtained
from a large population may be better understood as a series
of draws from multiple partially isolated subpopulations or
demes. While traditional methods (such as those based on
the fixation index, FST) assume that the allocation of individ-
uals to demes is known a priori, many modern programs such
as Structure (Pritchard et al. 2000; Falush et al. 2003a, 2007;
Hubisz et al. 2009) take a different approach, attempting to
infer the group allocation from the observed data. What
makes this possible is the simple genetic mixture modeling
framework used by these programs, together with the effi-
ciency of Markov chain Monte Carlo (MCMC) methods for
sampling from this broad class of models.

However, even within the flexible framework of Bayesian
mixturemodels, the number of demes (denotedK) is difficult to
ascertain. While the allocation of individuals to demes is a
parameter within a particular model, the value of K is fixed
for a given mixture model, and so the problem of estimating
K involves a comparison betweenmodels. One of the most com-
mon ways of comparing between models in a Bayesian setting
is through themodel evidence, defined as the probability of the
observed data under the model (equivalently the likelihood of
themodel). This quantity can be estimated for a range ofK, and
themodelwith the highest evidence value can then become the
focus of our analysis. However, there are two potential issues
with this approach. The first one is philosophical and revolves
around the idea that there is a single true value ofK that we can
estimate from the data. In reality populations are rarely divided
into discrete subpopulations, and so the idea of a single true
value of K does not strictly apply. This does not mean that K
cannot be a useful quantity, but it is better viewed as a flexible
parameter that describes just one point on a continuously vary-
ing scale of population structure. This flexible interpretation of
K has been advocated by a number of previous authors (Raj
et al. 2014; Jombart andCollins 2015), including the authors of
the Structure program (Pritchard et al. 2010).
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The second issue is purely statistical—computing the
model evidence in complex, multidimensional models is not
straightforward. For this reason it is common to resort to
heuristic estimators of the true evidence. These heuristics
tend to have some direct mathematical connection to the
model evidence, but also make certain simplifying assump-
tions in their derivation. For example, in the original article
on which Structure is based, Pritchard et al. (2000) comment
on the difficulties in obtaining the model evidence directly
and instead opt for an ad hoc procedure in which a heuristic
(denoted LK here) is used as an approximation of
223 logðevidenceÞ: The derivation of this statistic rests on
certain simplifying assumptions, and the authors are careful
to emphasize that these assumptions are “dubious.”

Here we focus on the latter problem: reliable estimation of
the model evidence. Rather than resorting to heuristics, what
wewant is a direct way of estimating themodel evidence that
is both accurate and straightforward to implement. As noted
by Gelman and Meng (1998), such a method already exists
and has been known in the physical sciences for some time.
This method—referred to in the statistical literature as ther-
modynamic integration (TI)—uses the output of several
closely related MCMC chains to obtain a direct estimate of
the evidence. Crucially, this is not just another heuristic.
Rather, it is a true statistical estimator that can be evaluated
to an arbitrary degree of precision by simply increasing the
number of MCMC iterations used in the calculation. The TI
methodology was introduced into population genetics by
Lartillot and Philippe (2006) and has since been applied to
a range of problems in phylogenetics and coalescent theory,
including comparing models of demographics (Baele et al.
2012), migration (Beerli and Palczewski 2010), relaxed mo-
lecular clocks (Lepage et al. 2007), and sequence evolution
(Blanquart and Lartillot 2006).

In the remainder of this article we demonstrate the effec-
tiveness of TI as a method for estimating K in simple genetic
mixture models. For small data sets we find that the TI esti-
mator is several orders of magnitude more accurate and pre-
cise than the LK estimator for the same computational effort.
We also explore the ability of different statistics to correctly
estimate K for larger data sets, finding that TI outperforms
Evanno’s DK (Evanno et al. 2005), the Akaike information
criterion (AIC), the Bayesian information criterion (BIC),
and the deviance information criterion (DIC). Finally we
reanalyze data from an earlier study on the genetic structure
of white-footed mouse populations in New York City
(Munshi-South and Kharchenko 2010b). All of the methods
described here are made available through the program4 Mav-
ericK (www.bobverity.com/MavericK).

Materials and Methods

Evidence and Bayes factors

In a Bayesian setting the problem of deciding between com-
peting models can be addressed using Bayes’ rule. The pos-

terior probability of the modelM; given the observed data x;
can be written

PrðMjxÞ ¼ PrðxjMÞ  PrðMÞ
PrðxÞ : (1)

The quantity PrðxjMÞ—the probability of the observed data x
given just the model M—is defined as the model evidence.

The ratio of the evidence between competing models,
known as the Bayes factor, can be used to measure the
strength of evidence in favor of one model over another.
Bayes factors can be used on their own, or they can be com-
bined with priors on the different models to arrive at the
posterior odds:

PrðM1jxÞ
PrðM2jxÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

posterior  odds  ratio

¼ PrðxjM1Þ
PrðxjM2Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Bayes  factor

  3
PrðM1Þ
PrðM2Þ|fflfflfflfflffl{zfflfflfflfflffl}

prior  odds  ratio 

: (2)

A large Bayes factor in (2) provides evidence in favor ofmodel
M1 over model M2; whereas a small Bayes factor provides
evidence in favor of modelM2 overmodelM1: A useful scale
for interpreting Bayes factors can be found in Kass and Raf-
tery (1995); however, it is important to note that this scale is
meaningful only if priors are chosen appropriately (see
Discussion).

The problem of estimating the number of demes in a
structured population can be understood in this light: If we
letMK denote a genetic mixture model in which K demes are
assumed, then the problem of estimating K becomes one of
comparing between different models. Ideally we want to
solve this problem using the exact model evidence,
PrðxjMKÞ: Unfortunately, however, calculating the model ev-
idence in complex, multidimensional models is not straight-
forward, as most of the time we cannot write down the
probability of the data under the model without also condi-
tioning on certain known parameters, denoted 5u: Obtaining
the evidence from the likelihood requires that we integrate
over a prior on u:

PrðxjMKÞ ¼
Z
u
Prðxju;MKÞ  PrðujMKÞ  du: (3)

It is this integration step that makes calculating the model
evidence difficult in practice. In genetic mixture models u

might represent the allele frequencies in all K demes, perhaps
alongside some additional admixture parameters, making
the integral in (3) extremely high dimensional (a 100-dimen-
sional integral would not be uncommon). For this reason it
makes practical sense to turn to numerical methods or heu-
ristic approximations.

Estimating and approximating the evidence

Perhaps the simplest way of estimating the model evidence is
through the harmonic mean estimator, ĥK (Newton and Raf-
tery 1994),
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PrðxjMKÞ �
"
1
t

Xt
m¼1

1
Prðxjum;MKÞ

#21

¼ ĥK ; (4)

where um for m 2 f1; . . . ; tg denotes a series of draws from
the posterior distribution of u: Part of the appeal of this esti-
mator is its simplicity—it is straightforward to calculate ĥK
from the output of a single MCMC run. As an example, the
program Structurama (Huelsenbeck and Andolfatto 2007;
Huelsenbeck et al. 2011), which contains within it a version
of the basic Structure model, has an option for using ĥK to
estimate the model evidence (we note that this is not the
primary purpose of Structurama, which also implements a
Dirichlet process model). However, in spite of its intuitive
appeal, the harmonic mean estimator has been widely criti-
cized due to its instability; ĥK has been found to be very
sensitive to the choice of prior, often being dominated by
the reciprocal of a few small values (Neal 1994; Raftery
et al. 2006).

To avoid some of the problems inherent in the harmonic
mean estimator, the approach taken by Pritchard et al. (2000)
was to define the heuristic estimator LK (our notation) as

22    log
�
PrðxjMKÞ

� � m̂þ ŝ2

4
¼ LK ; (5)

where m̂ and ŝ2 are simple statistics that can be calculated
from the posterior draws (see Supplemental Material, File S1
for a more detailed derivation of this and other statistics).
The key assumption that underpins this heuristic is that the
posterior deviance is approximately normally distributed,
which may or may not be true in practice. LK is usually eval-
uated for a range of K, and the smallest LK (corresponding to
the largest evidence) is used as an indication of the most
likely model. Alternatively, these values can be transformed
out of log space to provide direct estimates of the evidence
that, once normalized, can be used to approximate the full
posterior distribution of K:

PrðMK jxÞ �
exp
�
2ð1=2ÞLK

�P
kexp

�
2ð1=2ÞLk

�: (6)

This procedure is rarely carried out in practice, despite being
recommended in the Structure software documentation
(Pritchard et al. 2010).

Figure 1 True and estimated val-
ues of the model evidence in log
space and in linear space. Error
bars give 95% confidence inter-
vals around estimates.
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Thermodynamic integration

The TI estimator differs fundamentally from LK in the sense
that it is not a heuristic estimator—it makes no simplifying
assumptions about the distribution of the likelihood. It also
differs from ĥK in that it is well behaved, having finite and
quantifiable variance. The approach centers around the
“power posterior” (Friel and Pettitt 2008), defined as follows:

Pbðujx;MKÞ ¼ Prðxju;MKÞb   PrðujMKÞ
uðxjb;MKÞ : (7)

This is nothing more than the ordinary posterior distribution
of u; but with the likelihood raised to the power b [the value
uðxjb;MKÞ is a normalizing constant that ensures the distri-
bution integrates to 1]. In the same way that we can design
an MCMC algorithm to draw from the posterior distribution
of u; we can design a similar algorithm to draw from the
power posterior distribution. Details of the MCMC steps are
given in the Appendix for models both with and without ad-
mixture. The resulting draws from the power posterior are
written ubm;where the superscript b indicates the power used
when generating the draws. The TI methodology then pro-
ceeds in two simple steps. First, we calculate the mean log-
likelihood of the power posterior draws:

D̂b ¼ 1
t

Xt
m¼1

log
h
Pr
�
xjubm;MK

�i
: (8)

[It is important to note that the notation ubm refers to values
drawn from the power posterior with power b; it does not
indicate that the values of u (or these likelihoods) are raised
to the power b]. This step is repeated for a range of values bi
for i ¼ f1; . . . ; rg spanning the interval ½0; 1�: Second, we cal-
culate the area under the curve made by the values D̂bi

; using
a suitable numerical integration scheme, such as the trape-
zoidal rule:

T̂K ¼
Xr21

i¼1

1
2

�
D̂biþ1

þ D̂bi

��
biþ12bi

�
: (9)

The value T̂K is the TI estimator of the model evidence (see
File S1 for a more detailed derivation). It can be seen that T̂K

is straightforward to calculate, although it does require us to
run multiple MCMC chains to obtain a single estimate of the
evidence, making it computationally intensive. On the other
hand, the method has greater precision than some alterna-
tives that can be calculated faster. In our comparisons this
trade-off was taken into account by using the same number
of MCMC iterations for all methods.

Data availability 6

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article.

Results

Comparison against the exact model evidence

Our first objective was to measure the accuracy and precision
of different estimators of themodel evidence against the exact
value, obtained bybrute force (seeAppendix). The difficulty in
calculating the exact model evidence meant that this was
possible only for very small simulated data sets of n ¼ 10
diploid individuals at L ¼ 20 loci, generated from the same
without-admixture model implemented in the program
Structure2.3.4. A total of 1000 simulated data sets were pro-
duced, with K ranging from 1 to 10 (100 simulations each)
andwith llj ¼ 1:0 for each of Jl ¼ 5 alleles (see Table A1 for a
list of parameters). Each data set was then analyzed using the
program MavericK1.0. This program is written in C++ and
was designed specifically to carry out TI for structured pop-
ulations via the algorithms described in the Appendix. In

Table 1 Accuracy of estimation methods compared with the exact model evidence

22 log(evidence) Normalized evidence

MSD MAD MSD MAD

K T̂K ĥK LK T̂K ĥK LK T̂K ĥK LK T̂K ĥK LK

1 0.00e + 00 0.00 28.72 0.00e + 00 0.00 28.72 7.03e-06 26.50e-03 22.76e-02 4.59e-05 6.50e-03 2.88e-02
2 21.54e-03 2.52 42.65 6.99e-03 2.52 42.65 6.67e-07 7.76e-03 4.93e-02 2.37e-04 1.41e-02 6.49e-02
3 21.95e-03 3.51 46.65 7.71e-03 3.51 46.65 26.00e-05 3.19e-02 8.96e-02 5.19e-04 3.96e-02 1.37e-01
4 21.96e-03 3.60 46.74 7.17e-03 3.60 46.74 28.42e-08 4.07e-02 1.37e-01 6.25e-04 5.54e-02 2.27e-01
5 21.61e-03 3.37 45.59 6.70e-03 3.37 45.59 29.85e-06 3.23e-02 1.37e-02 6.09e-04 5.16e-02 1.27e-01
6 21.39e-03 3.10 44.72 6.73e-03 3.10 44.72 1.59e-05 1.42e-02 25.46e-02 6.62e-04 4.08e-02 8.33e-02
7 21.47e-03 2.85 44.78 6.47e-03 2.85 44.78 27.72e-06 26.09e-03 26.99e-02 6.67e-04 3.17e-02 7.97e-02
8 21.18e-03 2.61 45.11 5.94e-03 2.61 45.11 2.01e-05 22.56e-02 26.74e-02 6.28e-04 3.17e-02 8.03e-02
9 21.21e-03 2.43 45.53 5.99e-03 2.43 45.53 4.17e-05 24.09e-02 25.11e-02 6.22e-04 4.23e-02 7.94e-02
10 21.44e-03 2.26 45.90 5.77e-03 2.26 45.90 22.17e-05 25.30e-02 22.08e-02 5.79e-04 5.31e-02 9.44e-02
Mean 21.38e-03 2.63 43.64 5.95e-03 2.63 43.64 21.41e-06 25.23e-04 22.12e-04 5.19e-04 3.67e-02 1.00e-01

Shown are mean signed difference (MSD) and mean absolute difference (MAD) of various estimation methods compared with the exact value, obtained by brute force.
Formulas for T̂ K ; ĥK ; and LK are given in Equations 9, 4, and 5, respectively. Values are shown in log space (columns 2–7) and linear space after exponentiating and
normalizing to sum to 1 (columns 8–13). Values of K here denote the value used in the inference step, with each13 row being an average over 1000 simulations (a more
detailed breakdown can be found in Table S1).
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addition, MavericK1.0 implements certain features that lead
to efficient and reliable exploration of the posterior, including
solving the label switching problem via the method of
Stephens (2000) (see File S2 for further details of the main
algorithm). The output of MavericK1.0 includes values of ĥK;
LK ; and the TI estimator T̂K : Calculation of LK was compared
extensively against Structure2.3.4 to ensure agreement. For
the TI estimator the number of “rungs” used (the value of r)
was set to 50, while for ĥK and LK the analysis was repeated
50 times to obtain a global mean and standard error over
replicates, thereby ensuring that the same computational ef-
fort was expended for all methods. A total of 10,000 samples
were obtained from the posterior distribution in each MCMC
analysis, with a burn-in of 1000 iterations.

Figure 1 shows the results of one such analysis, in which
the true number of demes was K ¼ 2:

It can be seen that both ĥK and LK are negatively biased in
this example, leading to estimates of223 logðevidenceÞ that
are smaller than the true value. Any bias that is constant over
K goes away after transforming to a linear scale and normal-
izing; however, ĥK and particularly LK still give poor estimates
of the true posterior distribution.

The accuracy and precision of the different estimators was
evaluatedacross all 1000 simulateddata sets in the formof the
mean signed difference (MSD) and the mean absolute differ-
ence (MAD). The MSD measures the average difference be-
tween the true and estimated values and hence can be
considered a measure of bias, while the MAD measures the
average absolute difference and hence is influenced by both
the bias and the precision of the estimator (small values rep-
resent estimates that are both accurate and precise). Results
are given in Table 1, broken down by the value of K used in
the inference step (a more detailed breakdown can be found
in Table S1).

It can be seen that the average MAD of the LK estimator
after normalizing is�0.1, while the MAD of the T̂K estimator
is 5:193 1024 for the same computational effort. The har-
monic mean estimator is intermediate between these values,
differing from the true evidence by �0.04 on average. Based
on these results we would expect estimates of the posterior
distribution of K made using ĥK or LK to be qualitatively
different from the true posterior distribution.

Accuracy for larger data sets

Although the results in Table 1 are suggestive of a weakness
in heuristic estimators, we are limited here to looking at small
data sets in which the exact model evidence can be calculated
by brute force. It is plausible based on these results that the
bias in ĥK and LK could be amplified in small data sets due to a
lack of information and would cease to be a problem if more
data were available. Here we therefore use larger simulated
data sets to address the question of whether the TI method
produces improvements that would be of practical impor-
tance. Although we cannot calculate the true evidence by
brute force here, the advantage of using simulated data sets
is that we can generate observations from the exact model

used in the inference step and for a known value of K. We can
then measure the proportion of times that the true value of K
is correctly identified. As well as comparing the estimators
T̂K ; ĥK; and LK ; in which the smallest value of the estimator
indicates the most likely model, we also compared Evanno’s
DK (Evanno et al. 2005), in which the largest value indicates
the point of maximum curvature of LK ; and the AIC, BIC, and
DIC statistics, in which the smallest value indicates the best-
fitting model. Values of the DIC were calculated using the
method of Spiegelhalter et al. (2002) (DIC S) as well as the
method of Gelman et al. (2014) (DIC G). To ensure that our
results were not driven by a lack of information, larger data
sets of n ¼ 200 diploid individuals at L ¼ 10; 20, and 50 loci
were generated from the same without-admixture model
used above. As before, 1000 simulated data sets were pro-
duced with K ranging from 1 to 10 (100 simulations each).
MavericK1.0 was run under the without-admixture model

Table 2 Percentage times K correctly identified

K T̂K ĥK LK DK AIC BIC DIC S DIC G

10 loci
1 100.0 76.0 0.0 — 88.0 100.0 0.0 100.0
2 100.0 83.0 0.0 100.0 99.0 100.0 0.0 98.0
3 100.0 83.0 0.0 76.0 100.0 100.0 0.0 94.0
4 100.0 77.0 0.0 67.0 95.0 99.0 0.0 89.0
5 100.0 71.0 0.0 58.0 98.0 92.0 0.0 90.0
6 100.0 72.0 1.0 45.0 96.0 75.0 0.0 90.0
7 100.0 65.0 3.0 43.0 96.0 35.0 0.0 94.0
8 100.0 46.0 6.0 42.0 93.0 7.0 0.0 84.0
9 100.0 57.0 17.0 14.0 96.0 1.0 0.0 94.0
10 100.0 100.0 100.0 — 96.0 0.0 100.0 99.0
Mean 100.0 73.0 12.7 55.6 95.7 60.9 10.0 93.2

20 loci
1 100.0 100.0 0.0 — 95.0 100.0 0.0 89.0
2 100.0 100.0 2.0 100.0 100.0 100.0 0.0 86.0
3 100.0 100.0 64.0 95.0 100.0 100.0 10.0 92.0
4 100.0 99.0 85.0 93.0 100.0 100.0 44.0 97.0
5 100.0 98.0 90.0 97.0 100.0 100.0 70.0 100.0
6 100.0 92.0 88.0 94.0 100.0 100.0 78.0 100.0
7 100.0 94.0 85.0 93.0 100.0 94.0 84.0 99.0
8 100.0 91.0 87.0 97.0 100.0 73.0 78.0 100.0
9 100.0 87.0 82.0 88.0 100.0 26.0 70.0 97.0
10 100.0 100.0 100.0 — 100.0 3.0 100.0 100.0
Mean 100.0 96.1 68.3 94.6 99.5 79.6 53.4 96.0

50 loci
1 100.0 100.0 45.0 — 100.0 100.0 17.0 25.0
2 100.0 99.0 21.0 100.0 100.0 100.0 100.0 19.0
3 100.0 90.0 30.0 99.0 100.0 100.0 100.0 17.0
4 100.0 97.0 32.0 100.0 100.0 100.0 100.0 23.0
5 100.0 98.0 28.0 100.0 100.0 100.0 100.0 20.0
6 100.0 97.0 42.0 100.0 100.0 100.0 100.0 27.0
7 100.0 98.0 47.0 100.0 100.0 100.0 100.0 30.0
8 100.0 95.0 58.0 99.0 100.0 95.0 100.0 47.0
9 100.0 96.0 63.0 99.0 100.0 83.0 100.0 57.0
10 100.0 100.0 99.0 — 100.0 45.0 100.0 100.0
Mean 100.0 97.0 46.5 99.6 100.0 92.3 91.7 36.5

Shown is the percentage times K is correctly identified by each method, broken
down by the value of K used when generating the data. Formulas for T̂ K ; ĥK ; and LK
are given in Equations 9, 4, and 5, respectively, while formulas for AIC, BIC, DIC S;

and DIC G are given in File S1 Equations 40, 43, 46, and 47, respectively. The
formula for DK can be found in Evanno et al. (2005).
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with 1000 burn-in iterations and 10,000 sampling iterations.
For the TI estimator 50 rungs were used, and for LK and ĥK
the analysis was repeated 50 times.

Table 2 gives the proportion of times that the correct value
of Kwas identified by each of the methods. It can be seen that
the TI-based method of choosing K provided 100% reliable
results across all simulated data sets. Estimates of K based on
ĥK were less reliable, although still reasonable when the
number of loci was large, whereas estimates based on LK
were generally not reliable and particularly poor when the
number of loci was small. This appears to be due to the well-
documented tendency of LK to continually increase with
larger values of K (Pritchard et al. 2010), also giving the false
impression that LK is highly accurate when K ¼ 10 in this
example. Evanno’s DK mitigated this to some extent, but still
did not provide consistently reliable results (note that DK

cannot be calculated on the smallest or largest K in any anal-
ysis as a consequence of how it is derived). Of the model
comparison statistics the AIC was the most consistently reli-
able, providing accurate estimates across a range of
simulations.

Returning to the question of whether the inaccuracy in ĥK
and LK in Table 1 was driven by a lack of information, it can
be seen from Table 2 that the quantity of data certainly plays
a role. However, the fact that TI provides reliable estimates
across the range of simulations indicates that there is suffi-
cient signal in the data to detect the value of K even in rela-
tively small data sets. Thus, the increased precision of the TI
approach is of practical as well as theoretical importance.

Reanalysis of white-footed mouse data

Our main reason for focusing on simulated data sets above is
for the purposes of comparing different statistical methods
under very controlled circumstances. By simulating data from
the exact model used in the inference step we can tease apart
the issue of whether inaccuracies are due to statistical prob-
lems or simply a lack of model fit to the data (the latter being
ruled out). However, ultimately our interest lies in real-world
analyses of population structure. Here the parameter K has a
less literal meaning and should be seen as a convenient way
of summarizing the structure in the available data, rather
than as an exact description of the number of demes.

To test MavericK1.0 in a realistic setting we reanalyzed
data from a study by Munshi-South and Kharchenko
(2010b), made available through the Dryad digital repository
(Munshi-South and Kharchenko 2010a). The data consist of
diploid genotypes at 18 putatively neutral microsatellite loci
in 312 white-footed mice (Peromyscus leucopus), sampled
from 15 distinct locations in and around New York City
(see the original article for details). White-footed mice are
known to be urban adaptors, and so the original study in-
vestigated the effects of urbanization and habitat fragmenta-
tion on themouse population, concluding that there has been
pervasive genetic differentiation and the emergence of strong
population structure. The authors carried out a range of sta-
tistical tests, including but not limited to an analysis with
Structure2.3 under the admixture model with correlated al-
lele frequencies and with a inferred as part of the MCMC.
They explored values of K from 1 to 20 (repeating each anal-
ysis 10 times), finding that the mean LK peaked at K ¼ 16
while Evanno’s DK had peaks at K ¼ 6 and K ¼ 16; although
generally the distribution of this statistic was complex (see 7

figure 2 in Munshi-South and Kharchenko 2010b).
We carried out a similar analysis inMavericK1.0, usingTI to

estimate the evidence for K as well as using ĥK and LK : We
used the same admixture model as in the original study, in
which a is inferred as part of the MCMC; however, the cor-
related allele frequencies model is not implemented in Mav-
ericK1.0 and so we assumed a model of independent allele
frequencies. For this reason our results are not directly com-
parable with those of the original study, although our as-
sumptions are broadly similar. We explored K from 1 to 20.
When carrying out TI we used r ¼ 21 rungs, and for the other
estimation methods we took the mean and standard error
over 21 replicates. For eachMCMC analysis we ran 10 chains,
each with 10,000 burn-in iterations and 50,000 sampling
iterations, before trimming and merging chains to obtain
500,000 sampling iterations (we found that this gave better
results than running one long chain).

The results of this analysis are shown in Figure 2. It can be
seen that LK increases smoothly with K, in a trend similar to
that found by Munshi-South and Kharchenko (2010b), the
difference being that we find no peak at K ¼ 16: The har-
monic mean estimator increases rapidly until K ¼ 5 but at

Figure 2 Estimates of the model
evidence for K ¼ 1 : 20 obtained
using (A) the Structure estimator
LK ; (B) the harmonic mean estima-
tor ĥK ; and (C) the TI estimator T̂ K :

For A and B, solid points give the
mean over 21 replicates and error
bars give 95% confidence intervals
calculated from the variance over
replicates. For C the TI estimation
procedure results in a single point
estimate of the evidence and an
estimate of the 95% confidence
interval without the need to aver-
age over replicates.
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this point saturates and cannot distinguish between higher
values of K. In contrast to both of these statistics, the TI
estimator has a strong peak at K ¼ 5 with narrow confidence
intervals. Based on the arguments presented above we con-
clude that this is the most accurate curve for the model evi-
dence, and so K ¼ 5 has the strongest support under this
model. The posterior allocation plot for K ¼ 5 is shown in
Figure 3 (plots for all values of K can be found in Figure
S1). Comparing8 this with figure 3 in Munshi-South and
Kharchenko (2010b), we see some striking similarities—for
example, the strong population differentiation in the Hunters
Island and Willow Lake (a.k.a. Flushing Meadows) samples
and the greater uncertainty in samples from the Black Rock
Forest location. However, we also group together several
populations that were previously found to be distinct, includ-
ing locations 3, 4, 5, and 7 (all from the Bronx) and locations
8, 9, 11, and 15 (all from central Queens). The fact that we
found evidence for fewer distinct populations than the orig-
inal study may be due to our use of an uncorrelated allele
frequencies model, although the geographical proximity of
these regions gives us some confidence that this clustering is
biologically plausible. Moreover, the striking difference be-
tween Figure 2A and Figure 2C demonstrates that different
estimation methods can lead to quantitatively different con-
clusions even conditional on the same underlying model.

Discussion

Model-based clustering methods have proved extremely use-
ful within population genetics. The probabilistic allocation of
individuals to demes employed by programs such as Structure
has made it possible to tease apart population subdivision
within a wide range of organisms, including humans
(Rosenberg et al. 2002; Li et al. 2008; Tishkoff et al. 2009),
human pathogens (Falush et al. 2003b), plants (Garris et al.
2005), and animals (Parker et al. 2004). However, these pos-
terior assignments are always produced conditional on the
known value of K. Choosing an appropriate value of K is
statistically much more challenging than estimating popula-
tion assignments, as it involves a comparison between mod-
els rather than simple parameter estimation within a given
model. Thermodynamic integration offers a way to do this,
providing estimates of the evidence for K that are both accu-
rate and precise. Our reanalysis of the white-footed mouse

data demonstrates that this is of practical as well as theoret-
ical importance, with the potential to lead to quantitatively
different conclusions about the data.

The main disadvantage of TI is the computational cost.
Multiple MCMC chains are needed, each drawn from a dif-
ferent version of the power posterior, to compute a single
estimate of the model evidence. If the number of rungs is too
low, then the trapezoidal rule step in (9) will not capture the
shape of theunderlying curve that it is approximating, leading
tobias in theestimator.Wemustalsobecareful to takeaccount
of autocorrelation in the samples. This is dealt with automat-
ically in MavericK1.0 through the use of effective sample size
(ESS) calculations (see File S1 for details), which result in
estimates of the model evidence that are accurate even in the
presence of autocorrelation. However, it is still the case that
high levels of autocorrelation require us to obtain a large
number of posterior draws, and so we cannot ignore autocor-
relation completely. This is a particular problem for the ad-
mixture model with a free to vary, where the much higher
dimensionality of the model (compared with the without-
admixture case) tends to result in poor MCMC mixing.

For this reason, TI may be suitable only for small- to
medium-sized data sets of the sort analyzed here, at least
for the time being. The use of TI for large SNP data sets—for
example, data from the Human Genome Diversity Project
(HGDP) analyzed by Li et al. (2008)—is therefore not prac-
tically possible at this stage without devoting significant com-
putational resources to the problem. Good results will tend to
be obtained when applied to data sets on the order of hun-
dreds of individuals and tens to hundreds of loci, depending
on the parameter set used. Fortunately, the accuracy of some
heuristic estimators and traditional model comparison statis-
tics appears to improve for larger data sets, and so it may be
possible to sidestep this issue. It is also worth noting that
when genetic markers are sufficiently dense, that loci can
no longer be considered independent, alternative approaches
such as chromosome painting may be more appropriate
(Lawson et al. 2012).

An important consequence of working with the model
evidence is that we must be careful in our choice of priors. In
ordinary parameter estimation it is common practice to use
relatively uninformative priors—the logic being that themodel
should be free to be driven by the data and not by our prior
assumptions. However, when calculating the evidence (as in

Figure 3 Posterior assignment of
all 312 individuals into K ¼ 5
clusters. Site names correspond
to locations in and around New
York City, and major landmasses
are also given (the Black Rock
Forest site is not within any of
the five New York City bor-
oughs). Further details of sam-
pling sites can be found in
Munshi-South and Kharchenko
(2010b).
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Equation 3), the thinness of the prior has an effect that is not
diminished by adding more data. This can result in models
being unduly punished if the observed data are extremely un-
likely a priori. For example, our use of independent Dirichlet
priors on the allele frequencies in all populations can be con-
sidered a fairly thin prior, as no combination of allele frequen-
cies is any more likely than any other a priori. This will tend to
result in conservative estimates of K, as there is a large cost (in
evidence terms) of adding more populations unless they can
justify their existence by a commensurate increase in the likeli-
hood. Alternative model formulations, such as the correlated
allele frequencies model of Falush et al. (2003a), may there-
fore be better at detecting subtle signals of population subdi-
vision. This model is likely to feature in later versions of
MavericK.

Finally, it is important to keep in mind that when thinking
about population structure, we should not place too much
emphasis on any single value of K. The simplemodels used by
programs such as Structure and MavericK are highly ideal-
ized cartoons of real life, and so we cannot expect the results
of model-based inference to be a perfect reflection of true
population structure (see discussion in Waples and Gaggiotti
2006). Thus, while TI can help ensure that our results are
statistically valid conditional on a particular evolutionary
model, it can do nothing to ensure that the evolutionary
model is appropriate for the data. Similarly—in spite of the
results in Table 2—we do not advocate using the model ev-
idence (estimated by TI or any other method) as a way of
choosing the single “best” value of K. The chief advantage of
the evidence in this context is that it can be used to obtain the
complete posterior distribution of K, which is far more infor-
mative than any single point estimate. For example, by aver-
aging over the distribution of K, weighted by the evidence,
we can obtain estimates of parameters of biological interest
(such as the admixture parametera) without conditioning on
a single population structure. Although one value of Kmay be
most likely a posteriori, in general a range of values will be
plausible, and we should entertain all of these possibilities
when drawing conclusions.

The MavericK program and documentation can be down-
loaded from www.bobverity.com/MavericK.
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Appendix

MCMC Under the Without-Admixture Model

To carry out theTI estimation approachweneed to be able to draw from thepower posterior distribution. This is straightforward
in the case of geneticmixtures and requires nothingmore than a simple extension of existingMCMCalgorithms. In the following
westrive tobringournotation in linewithprevious studieswhereverpossible, but thecomplexitiesof certain likelihood functions
also motivate us to define some new notation (see Table A1). It is worth noting, for example, that we will write individual
genotypes in simple list form (as in Pritchard et al. 2000), using the notation xil for the lth locus of the ith individual, but also in
allelic partition form (as in Huelsenbeck and Andolfatto 2007), using the notation sil: For example, a diploid individual
homozygous for the third allele at a particular locus can be written xil ¼ ð3; 3Þ or equivalently sil ¼ f0; 0; 2; 0; 0g;where there
are five possible alleles to choose from in this example. Conditioning on the modelMK is also implicit throughout this section.

In the basic algorithm described by Pritchard et al. (2000) there are two free parameters to keep track of—the allocation of
individuals to demes, denoted z here, and the allele frequencies in all K demes, denoted p: Under the assumptions of Hardy–
Weinberg and linkage equilibrium it is possible to write the probability of the observed data given the known values of these
free parameters, Prðxjz;pÞ: Combining this likelihood with a Dirichletðll1; . . . ; llJlÞ prior on the allele frequencies at each locus,
we can derive the conditional posterior distribution of the allele frequencies given the known group allocation, Prðpjx; zÞ:
Alternatively, multiplying by an equal 1=K prior on the allocation of individuals to demes, we can derive the conditional
posterior distribution of the group allocation given the known allele frequencies, Prðzjx;pÞ: Algorithm 1 of Pritchard et al.
(2000) works by alternately sampling from each of these conditional distributions, resulting (after sufficient burn-in) in a
series of draws from the full posterior distribution. More often than not we are interested in the posterior allocation, in which
case the posterior allele frequencies can simply be ignored.

However, as stated in the original derivation of Rannala and Mountain (1997) and reiterated by later authors (Corander
et al. 2003; Pella and Masuda 2006; Huelsenbeck and Andolfatto 2007), it is possible to integrate over the allele frequencies
analytically, thereby greatly reducing the dimensionality of the problem. The new likelihood, conditional only on the group
allocation, can be written

PrðxjzÞ ¼
YK
k¼1

YL
l¼1

Gðll0Þ
Gðll0 þ ykl0Þ

YJl
j¼1

Gðllj þ ykljÞ
GðlljÞ

  (A1)

(see Table A1 for parameter definitions). This expression is extremely useful to us, as it means the likelihood can be calculated
without having to take into account an explicit representation of the unknown allele frequencies—our uncertainty in the allele
frequencies has already been integrated out of the problem.

Rather than using (A1) directly, later authors including Corander et al. (2003), Pella and Masuda (2006), and Huelsenbeck
and Andolfatto (2007) used this analytical solution to define an efficient MCMC algorithm. Dividing the probability of the data
x by the probability of the data with the ith observation removed, denoted xð2iÞ; we obtain the conditional probability of
observation i given all others. Using the fact that ykl ¼ yð2iÞ

kl þ sil; we obtain

Pr
�
xijzi ¼ k; yð2iÞ

k

�
¼
YL
l¼1

G
�
ll0 þ yð2iÞ

kl0

�
G
�
ll0 þ yð2iÞ

kl0 þ sil0
�YJl

j¼1

G
�
llj þ yð2iÞ

klj þ silj
�

G
�
llj þ yð2iÞ

klj

� : (A2)

Computing (A2) for all k and normalizing, we obtain the conditional posterior probability that individual i belongs to deme k:

Pr
�
zi ¼ kjxi; yð2iÞ

k

�
¼

ð1=KÞPr
�
xijzi ¼ k; yð2iÞ

k

�
XK

u¼1
ð1=KÞPr

�
xijzi ¼ u; yð2iÞ

u

�: (A3)

By repeatedly drawing new group allocations for all individuals from (A3), we obtain a series of draws from the posterior
distribution without ever needing to invoke the unknown allele frequencies. Thus, the two-step algorithm of Pritchard et al.
(2000) can be reduced to the more efficient one-step algorithm of Corander et al. (2003).

The reason these results arepertinent toourproblem is thatwecanmakeuseof the samegains inefficiencywhendesigningan
MCMC algorithm for the purposes of TI. In fact, the only difference when carrying out TI is that the likelihood in (A1) should be
raised to the power b, allowing us to draw from the power posterior. On making this change we find that the conditional
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posterior distribution in (A2) should also be raised to the power b [this follows from the fact that (A2) can be derived as a ratio
of two ordinary likelihoods]. Thus, we arrive at a new expression for the probability of individual i being assigned to group k:

Pb
�
zi ¼ kjxi; yð2iÞ

k

�
¼

ð1=KÞPr
�
xijzi ¼ k; yð2iÞ

k

�b
XK

u¼1
ð1=KÞPr

�
xijzi ¼ u; yð2iÞ

u

�b: (A4)

By repeatedly sampling new group allocations for all individuals from (A4), we obtain a series of allocation vectors drawn from
the power posterior (note that when b ¼ 0;we are essentially drawing from the prior). The likelihood of each vector can then
be computed using (A1), at which point we have everything we need to calculate D̂b as in (8). Carrying out this entire
procedure for a range of values bi; we obtain a series of points D̂bi

that can be used to calculate the TI estimator T̂K; as in
(9). The complete TI algorithm for the model without admixture can be defined as follows:

Algorithm 1 (without admixture)

1. For r distinct values of bi spanning the interval ½0; 1�
a. Perform MCMC by repeatedly drawing from (A4) for all i 2 f1; . . . ; ng: This results (after discarding burn-in) in t draws

from the power posterior group allocation.
b. Calculate the likelihood of each group allocation, using (A1).
c. Calculate D̂bi

as the average log-likelihood, as in (8). If calculating the variance of the estimator, calculate V̂bi
using the

formula in File S1, taking care to use an appropriate value of the ESS.

2. Use the values D̂bi
to calculate T̂K in a suitable numerical integration scheme, for example using the trapezoidal rule as

in (9).

MCMC Under the Admixture Model

The model with admixture described by Pritchard et al. (2000) is slightly complicated by the fact that each gene copy is free to
originate from a different deme. However, we can still apply the same basic logic described above to arrive at a simple one-step
algorithm for sampling from the power posterior. First, we note that the probability of the data conditional on the known group
allocation is identical in this model to the probability in the without-admixture model and is given by (A1). This is true because
we make the same assumption that gene copies are drawn independently from demes, and we apply the same Dirichlet priors
on allele frequencies, meaning the final likelihood does not change. The difference in the admixture model is that the group
allocation takes place at the level of the gene copy, rather than at the level of the individual, and so the values zila are no longer
restricted to being the same for all ðl; aÞ: This is reflected in the yk values used to keep track of the gene copies allocated to a
particular deme, which are now free to contain only a partial contribution of the genome of each individual.

Following the same approach as for thewithout-admixturemodel, we can obtain the conditional probability of gene copy xila
by dividing through the probability of the complete data by the probability of the data with this element removed [denoted
xð2ilaÞ]. Most of the terms in the resulting expression cancel out, leading to the following simple result:

Pr
�
xilajzila ¼ k; yð2ilaÞ

k

�
¼ llxila þ yð2ilaÞ

klxila

ll0 þ yð2ilaÞ
kl0

0
@

1
A: (A5)

Asbefore, this likelihood shouldbecombinedwith thepriorprobability of assignment toeachdeme. If theadmixtureproportions
for individual i are given by the vector qi; then, under the assumptions of the model described by Pritchard et al. (2000), the
number of gene copies in this individual that are allocated to each deme can be considered a multinomial draw from qi:

Integrating over a Dirichletða; . . . ;aÞ prior on these frequencies, we obtain

Prðzjv;aÞ ¼
Yn
i¼1

GðKaÞ
GðKaþ vi0Þ

YK
k¼1

Gðaþ vikÞ
GðaÞ : (A6)

We can use this expression to write down the prior probability of gene copy a at locus l in individual i being allocated to deme k,
conditional on the allocations of all other gene copies:
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Pr
�
zila ¼ k 

			  vð2ilaÞ
i ;a

�
¼ aþ vð2ilaÞ

ik

Kaþ vð2ilaÞ
i0

 !
: (A7)

Bringing together the priorwith the likelihood raised to the powerb, we obtain the following expression for the power posterior
probability of an individual gene copy being allocated to deme k:

Pb
�
zila ¼ kjxila; yð2ilaÞ

k ; vð2ilaÞ
i ;a

�
¼

Pr
�
zila ¼ kjvð2ilaÞ

i ;a
�
Pr
�
xilajzila ¼ k; yð2ilaÞ

k

�b
XK

u¼1
Pr
�
zila ¼ ujvð2ilaÞ

i ;a
�
Pr
�
xilajzila ¼ u; yð2ilaÞ

u

�b: (A8)

By repeatedly sampling new allocations for all gene copies at all loci within all individuals (i.e., all zila), we obtain a series of
draws from the power posterior group allocation under the admixture model. Again, this algorithm is made more efficient by
the fact that the unknown allele frequencies in all populations and the unknown admixture proportions in all individuals have
been integrated out of the problem at an early stage.

A common extension to the basic admixturemodel is to leavea as a free parameter, updating it as part of theMCMC. This can
be accommodated within the TI framework by using a simple Metropolis–Hastings step. If a9 is a new value of a, drawn from
some suitable proposal distribution gða9		aÞ; then the acceptance probability under Metropolis–Hastings is given by

Pr
�
a/a9

�
¼ min

 
1;
Pr
�
zjv;a9�g�aja9�

Prðzjv;aÞgða9jaÞ

!
: (A9)

Note that the core probability that drives this expression is the prior probability of the allocation z;which is given in (A6). The
actual probability of the data—i.e., the expression that is raised to the power b in the power posterior calculation—does not
feature here. Thus, we can use the same Metropolis–Hastings step to update a irrespective of the value of b.

The complete TI algorithm for the model with admixture can be defined as follows:

Algorithm 2 (with admixture)

1. For r distinct values of bi spanning the interval ½0; 1�
a. Perform MCMC by repeatedly drawing from (A8) for all gene copies at all loci in all individuals (all a; l; i). If a is a free

parameter, then update this value using a Metropolis–Hastings step, as in (A9). This results (after discarding burn-in) in t
draws from the power posterior group allocation.

b. Calculate the likelihood of each group allocation, using (A1).
c. Calculate D̂bi

as the average log-likelihood, as in (8). If calculating the variance of the estimator, calculate V̂bi
using the

formula in File S1, taking care to use an appropriate value of the ESS.

2. Use all the values D̂bi
to calculate T̂K in a suitable numerical integration scheme, for example using the trapezoidal rule as in

(9).

Finally, we note that the expressions derived in this section can be used to obtain the exact model evidence by brute force in
restricted settings. For example, focusingon themodelwithout admixture,wecould sumover the likelihoodof all possible group
allocations to obtain the true model evidence,

PrðxÞ ¼
X
z

  PrðxjzÞPrðzÞ; (A10)

where PrðxjzÞ is given by (A1), and for this model PrðzÞ ¼ 1=Kn for all group allocations. Although this is possible in theory, the
sheer number of allocations that are required to sum overmakes this method impractical in all but the simplest situations. Even
if we exploit redundancies in the labeling of different allocations, we are still restricted to values of n and K not much.10. This
method is therefore only really useful as a way of checking the accuracy of other estimation methods.
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Table A1 Definitions of parameters used in this study

Parameter Description

a Dirichlet parameter on admixture proportions
b Power used in power posterior calculation
cð2iÞ Evaluation of a parameter while excluding information for individual i (c could be any of the parameters listed above)
cð2ilpÞ Evaluation of a parameter while excluding information for gene copy a at locus l in individual i (c could be any of the

parameters listed above)
Jl No. of unique alleles observed at locus l
K No. of populations
L No. of loci
llj Dirichlet parameter for frequency of allele j at locus l [where j 2 ð1; . . . ; JlÞ]
ll0 Sum of the Dirichlet parameters for locus l [i.e., ll0 ¼PJl

j¼1llj ]
n No. of individuals sampled
p Allele frequencies in all populations at all loci
qi Admixture proportions in individual i
sil Allelic partition of alleles in individual i at locus l. For example, the genotype xil ¼ ð3; 3Þ can be written sil ¼ f0;0;2; 0; 0g

in allelic partition form, where in this example Jl ¼ 5
silj No. of copies of allele j at locus l in individual i [where j 2 ð1; . . . ; JlÞ]
sil0 No. of copies of any allele at locus l in individual i [i.e., sil0 ¼PJl

j¼1silj ]
v Partition of gene copies to populations in all individuals
vi Partition of gene copies to populations in individual i
vik No. of gene copies in individual i assigned to population k
vi0 No. of gene copies in individual i assigned to any population [i.e., vi0 ¼PK

k¼1vik]
x Genetic information for all individuals
xi Genetic information for individual i
xil Genetic information for individual i at locus l
xila Allelic type of the ath gene copy in individual i at locus l [where xila 2 ð1; . . . ; JlÞ]
yk Allelic partition at all loci of all gene copies assigned to population k
ykl Allelic partition at locus l of all gene copies assigned to population k
yklj No. of copies of allele j at locus l assigned to population k
ykl0 No. of copies of any allele at locus l assigned to population k [i.e., ykl0 ¼PJl

j¼1yklj ]
z Assignment of all gene copies in all individuals
zila Assignment of gene copy a at locus l in individual i to a population [where zila 2 ð1; . . . ;KÞ]
zi Assignment of individual i to a population. When referring to zi it is implied that zila is identical for all ðl; aÞ; meaning all gene

copies within this individual are assigned together

Gð�Þ denotes14 the gamma function.
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