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Abstract. We characterise when the sequence of free subgroup numbers of a finitely
generated virtually free group is ultimately periodic modulo a given prime power.

1. Introduction

For a finitely generated virtually free group Γ, denote by mΓ the least common multiple
of the orders of the finite subgroups in Γ and, for a positive integer λ, let fλ(Γ) be the
number of free subgroups of index λmΓ in Γ. In [4], the authors show, among other
things, that the number fλ(PSL2(Z)) of free subgroups of index 6λ in the inhomogeneous
modular group PSL2(Z), considered as a sequence indexed by λ, is ultimately periodic
modulo any fixed prime power pα, if p is a prime number with p ≥ 5. More precise
results on the length of the period, and an explicit formula for the linear recurrence
satisfied by these numbers modulo pα are also provided in [4]. As is well known, ultimate
periodicity of the sequence

(
fλ(Γ)

)
λ≥1

is equivalent to rationality of the corresponding

generating function FΓ(z) =
∑

λ≥0 fλ+1(Γ)zλ.

The purpose of the present paper is to demonstrate that the periodicity phenome-
non discovered in [4] holds in a much wider context, namely that of finitely generated
virtually free groups. Indeed, our main result (Theorem 1) provides an explicit char-
acterisation of all pairs (Γ, pα), where Γ is a finitely generated virtually free group and
pα is a proper prime power, for which the sequence of free subgroup numbers of Γ is
ultimately periodic modulo pα. Roughly speaking, for “almost all” pairs (Γ, p) the se-
quence

(
fλ(Γ)

)
λ≥0

is ultimately periodic modulo pα for all α ≥ 1, the only exception

occurring when p | mΓ and µp(Γ) = 0, where µp(Γ) is a certain invariant defined in
(2.10) and discussed in the paragraph following that formula.

In order to further place our results into context, we point out that, for primes p
dividing the constant mΓ, an elaborate theory is presented in [9] for the behaviour of
the arithmetic function fλ(Γ) modulo p. Recently, this theory has been supplemented
by congruences modulo (essentially arbitrary) 2-powers and 3-powers for the number of
free subgroups of finite index in lifts of the classical modular group; that is, amalgamated
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products of the form

Γ` = C2` ∗
C`
C3`, ` ≥ 1;

cf. Theorems 19 and 20 in [3, Sec. 8], and Section 16 in [5], in particular, [5, Thms. 49–
52]. These results demonstrate a highly non-trivial behaviour of the sequences(
fλ(Γ`)

)
λ≥1

modulo powers of 2 if ` is odd (in which case µ2(Γ`) = 0), and mod-

ulo powers of 3 for 3 - ` (in which case µ3(Γ`) = 0). For instance, for the sequence(
fλ = fλ(Γ1)

)
λ≥1

of free subgroup numbers of the group PSL2(Z), one finds that:

(1) fλ ≡ −1 (mod 3) if, and only if, the 3-adic expansion of λ is an element of
{0, 2}∗1;

(2) fλ ≡ 1 (mod 3) if, and only if, the 3-adic expansion of λ is an element of

{0, 2}∗100∗ ∪ {0, 2}∗122∗;

(3) for all other λ, we have fλ ≡ 0 (mod 3);

cf. [5, Cor. 53]. Here, for a set Ω, we denote by Ω∗ the free monoid generated by Ω. All
this is in sharp contrast to “most” of the cases in the classification result in Theorem 1,
which exhibit “simple” (ultimate) periodicity.

The proof of Theorem 1 has two main steps. The first consists in showing that, if p is
a prime number not dividing mΓ, then the sequence

(
fλ(Γ)

)
λ≥1

is ultimately periodic

modulo pα for every integer α ≥ 1; this is the contents of Theorem 2. Its proof is
based on a folklore fact concerning linear recurrence relations with constant coefficients
stated in Section 4, on a bound for the p-divisibility of the function gλ(Γ) provided by
Lemma 6 in Section 5, and the (well-known) classification of virtually infinite-cyclic
groups recalled in Section 6. The proof of Theorem 2 appears in Section 7. The second
step concerns the case where p | mΓ, and is largely taken care of by Theorem 3. The
proof of the latter theorem in Section 8 is by an inductive argument, which is based
on an earlier generating function result in [9]. The proof of Theorem 1 itself is given
in Section 9. Precise formulations of our main results are found in Section 3, while
the next section collects together definitions as well as some background material on
virtually free groups.

2. Some preliminaries on virtually free groups

Our notation and terminology here follows Serre’s book [12]; in particular, the category
of graphs used is described in [12, §2]. This category deviates slightly from the usual
notions in graph theory. Specifically, a graph X consists of two sets: E(X), the set
of (directed) edges, and V (X), the set of vertices. The set E(X) is endowed with a
fixed-point-free involution − : E(X) → E(X) (reversal of orientation), and there are
two functions o, t : E(X) → V (X) assigning to an edge e ∈ E(X) its origin o(e) and
terminus t(e), such that t(ē) = o(e). The reader should note that, according to the above
definition, graphs may have loops (that is, edges e with o(e) = t(e)) and multiple edges
(that is, several edges with the same origin and the same terminus). An orientation
O(X) consists of a choice of exactly one edge in each pair {e, ē} (this is indeed always
a pair – even for loops – since, by definition, the involution − is fixed-point-free). Such
a pair is called a geometric edge.
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Let Γ be a finitely generated virtually free group with Stallings decomposition
(Γ(−), X); that is, (Γ(−), X) is a finite graph of finite groups with fundamental group
π1(Γ(−), X) ∼= Γ. If F is a free subgroup of finite index in Γ then, following an idea of
C. T. C. Wall, one defines the (rational) Euler characteristic χ(Γ) of Γ as

χ(Γ) = −rk(F)− 1

(Γ : F)
. (2.1)

(This is well-defined in view of Schreier’s index formula in [10].) In terms of the above
decomposition of Γ, we have

χ(Γ) =
∑

v∈V (X)

1

|Γ(v)|
−

∑
e∈O(X)

1

|Γ(e)|
. (2.2)

Equation (2.2) reflects the fact that, in our situation, the Euler characteristic in the
sense of Wall coincides with the equivariant Euler characteristic χT (Γ) of Γ relative
to the tree T canonically associated with Γ in the sense of Bass–Serre theory; cf. [1,
Chap. IX, Prop. 7.3] or [11, Prop. 14].

As in the introduction, denote by mΓ the least common multiple of the orders of the
finite subgroups in Γ, so that, again in terms of the above Stallings decomposition of Γ,

mΓ = lcm
{
|Γ(v)| : v ∈ V (X)

}
.

(This formula essentially follows from the well-known fact that a finite group has a fixed
point when acting on a tree.) The type τ(Γ) of a finitely generated virtually free group
Γ ∼= π1(Γ(−), X) is defined as the tuple

τ(Γ) =
(
mΓ; ζ1(Γ), . . . , ζκ(Γ), . . . , ζmΓ

(Γ)
)
,

where the ζκ(Γ)’s are integers indexed by the divisors κ of mΓ, given by

ζκ(Γ) =
∣∣{e ∈ O(X) : |Γ(e)|

∣∣κ}∣∣ − ∣∣{v ∈ V (X) : |Γ(v)|
∣∣κ}∣∣.

It can be shown that the type τ(Γ) is in fact an invariant of the group Γ, i.e., independent
of the particular decomposition of Γ in terms of a graph of groups (Γ(−), X), and that
two finitely generated virtually free groups Γ1 and Γ2 contain the same number of free
subgroups of index n for each positive integer n if, and only if, τ(Γ1) = τ(Γ2); cf. [8,
Theorem 2]. We have ζκ(Γ) ≥ 0 for κ < mΓ and ζmΓ

(Γ) ≥ −1 with equality occurring
in the latter inequality if, and only if, Γ is the fundamental group of a tree of groups;
cf. [7, Prop. 1] or [8, Lemma 2]. We observe that, as a consequence of (2.2), the Euler
characteristic of Γ can be expressed in terms of the type τ(Γ) via

χ(Γ) = −m−1
Γ

∑
κ|mΓ

ϕ(mΓ/κ) ζκ(Γ), (2.3)

where ϕ is Euler’s totient function. It follows in particular that, if two finitely generated
virtually free groups have the same number of free subgroups of index n for every n,
then their Euler characteristics must coincide.

The proof of Theorem 2, as given in Section 7, is based on the analysis of a second
arithmetic function associated with the group Γ. Define a torsion-free Γ-action on a
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set Ω to be a Γ-action on Ω which is free when restricted to finite subgroups, and let

gλ(Γ) :=
number of torsion-free Γ-actions on a set with λmΓ elements

(λmΓ)!
, λ ≥ 0;

(2.4)
in particular, g0(Γ) = 1. The sequences

(
fλ(Γ)

)
λ≥1

and
(
gλ(Γ)

)
λ≥0

are related via the

Hall-type transformation formula1

λ−1∑
µ=0

gµ(Γ)fλ−µ(Γ) = mΓλgλ(Γ), λ ≥ 1. (2.5)

Moreover, a careful analysis of the universal mapping property associated with the
presentation Γ ∼= π1(Γ(−), X) leads to the explicit formula

gλ(Γ) =

∏
e∈O(X)

(λmΓ/|Γ(e)|)! |Γ(e)|λmΓ/|Γ(e)|

∏
v∈V (X)

(λmΓ/|Γ(v)|)! |Γ(v)|λmΓ/|Γ(v)| , λ ≥ 0, (2.6)

for gλ(Γ), where O(X) is any orientation of X; cf. [8, Prop. 3]. Introducing the gener-
ating functions

FΓ(z) :=
∑
λ≥0

fλ+1(Γ)zλ and GΓ(z) :=
∑
λ≥0

gλ(Γ)zλ,

Equation (2.5) is seen to be equivalent to the relation

FΓ(z) = mΓ
d

dz

(
logGΓ(z)

)
. (2.7)

Define the free rank µ(Γ) of a finitely generated virtually free group Γ to be the rank
of a free subgroup of index mΓ in Γ (existence of such a subgroup follows, for instance,
from Lemmas 8 and 10 in [12]; it need not be unique, though). We note that, in view
of (2.1), the quantity µ(Γ) is connected with the Euler characteristic of Γ via

µ(Γ) +mΓ · χ(Γ) = 1, (2.8)

which shows in particular that µ(Γ) is well-defined. Combining Equations (2.3) and
(2.8), we see that the free rank µ(Γ) can be expressed in terms of the type of Γ via

µ(Γ) = 1 +
∑
κ|mΓ

ϕ(mΓ/κ)ζκ(Γ). (2.9)

Given a finitely generated virtually free group Γ and a prime number p, we introduce,
in analogy with formula (2.9), the p-rank µp(Γ) of Γ via the equation

µp(Γ) = 1 +
∑
p|κ|mΓ

ϕ(mΓ/κ)ζκ(Γ). (2.10)

Clearly, µp(Γ) ≥ 0, with equality occurring in this inequality if, and only if, Γ is the
fundamental group of a tree of groups, p | mΓ, and ζκ(Γ) = 0 for p | κ | mΓ and κ < mΓ.
Similarly, we have µp(Γ) = 1 if, and only if, (i) ζκ(Γ) = 0 for all κ with p | κ | mΓ, or
(ii) Γ is the fundamental group of a tree of groups, mΓ is even, p | mΓ/2, ζmΓ/2(Γ) = 1,

1See [8, Cor. 1], or [2, Prop. 1] for a more general result.
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and ζκ(Γ) = 0 for p | κ | mΓ and κ < mΓ/2. To give some concrete examples, if p is an
odd prime number, then the groups

Γp,α = C2 ∗ C2p ∗ Cp ∗ · · · ∗ Cp︸ ︷︷ ︸
α copies

, α ≥ 0

satisfy µp(Γp,α) = 1, while the groups

Γ2,α = C4 ∗ C4 ∗ C2 ∗ · · ·C2︸ ︷︷ ︸
α copies

, α ≥ 0

satisfy µ2(Γ2,α) = 1.

3. Periodicity results for fλ(Γ)

Here and in the sequel, given power series f(z) and g(z), we write

f(z) = g(z) modulo pγ

to mean that the coefficients of zi in f(z) and g(z) agree modulo pγ for all i; in particular,
the phrase “FΓ(z) is rational modulo pα” means that FΓ(z) equals a certain rational
function modulo pα in the sense of the above definition. (It is well known that rationality
of the generating function FΓ(z) is equivalent to ultimate periodicity of its sequence of
coefficients

(
fλ(Γ)

)
λ≥1

.) The main result of this section, which completely characterises

rationality of the generating function FΓ(z) modulo prime powers, is as follows.

Theorem 1. Let Γ be a finitely generated virtually free group, let p be a prime num-
ber, and let FΓ(z) denote the generating function

∑
λ≥0 fλ+1(Γ)zλ for the free subgroup

numbers of Γ. Then the following assertions are equivalent:

(I) the series FΓ(z) is rational modulo pα for each positive integer α;

(II) the series FΓ(z) is rational modulo p;

(III) The pair (Γ, p) satisfies one of the following mutually exclusive conditions:

(III)1 p - mΓ;

(III)2 p | mΓ and µp(Γ) > 0;

(III)3 Γ is finite;

(III)4 Γ is virtually infinite-cyclic and p = 2.

The proof of Theorem 1 is broken up into two main steps, each of which is a mean-
ingful result in its own right. Case (III)1 is taken care of by the following result.

Theorem 2. Let Γ be a finitely generated virtually free group, let p be a prime number
not dividing mΓ, and let α be a positive integer. Then the sequence

(
fλ(Γ)

)
λ≥1

is

ultimately periodic modulo pα. Its (minimal) period length is less than

pα(p(
α

µ(Γ)−1
+blogp αc+2)−2). (3.1)

Case (III)2, where p | mΓ and µp(Γ) > 0, is dealt with in our last result.

Theorem 3. Let Γ be a finitely generated virtually free group, let p be a prime number
such that p | mΓ and µp(Γ) > 0, and let α be a positive integer. Then the generating
function FΓ(z) for the free subgroup numbers of Γ is rational modulo pα. More precisely,



6 C. KRATTENTHALER AND T.W. MÜLLER

if µp(Γ) = 1, then FΓ(z) is a proper rational function modulo pα, whose denominator
may be chosen as a power of 1 − z or 1 + z, respectively, depending on whether the
expression

(µ(Γ)− µp(Γ))/(p− 1)

is even or odd. If µp(Γ) ≥ 2, then FΓ(z) is a polynomial modulo pα.

Other ingredients in the proof of Theorem 1 (given in Section 9) are Corollary 10,
which describes the function fλ(Γ) in the case where Γ is virtually infinite-cyclic, as
well as [9, Prop. 2] and [9, Theorem 2].

The proof of Theorem 2, as given in Section 7, is based on the analysis of the rational-
valued arithmetic function gλ defined in (2.4). A careful analysis of the expression (2.6)
for gλ(Γ), combined with Equation (2.5) connecting the fλ(Γ)’s and the gλ(Γ)’s, will
show that the numbers fλ(Γ) satisfy a linear recurrence of finite order with constant
coefficients modulo any fixed prime power pα if p does not divide mΓ. By a standard
result on linear recurring sequences (see Lemma 5 in Section 4), Theorem 2 then follows
immediately.

The proof of Theorem 3 is given in Section 8. It is based on a functional equation
modulo p (with p | mΓ) satisfied by the generating function FΓ(z) for the free subgroup
numbers fλ(Γ) established in [9].

We conclude this section with some remarks.

Remarks 4. (1) It is shown in [9] that, if Γ is a finitely generated virtually free group
with µp(Γ) = 0 for a given prime p, then the function fλ(Γ) satisfies the congruence

fλ(Γ) ≡ (−1)
(µ(Γ)−1)
p−1 λ−1

(µ(Γ)λ
p−1

λ−1
p−1

)
(mod p);

cf. [9, Eqn. (35)]. In general, it remains an open problem how the free subgroup numbers
of a finitely generated virtually free group Γ with µp(Γ) = 0 behave modulo higher p-
powers. The only results known in this direction concern (i) lifts of Hecke groups
H(q) ∼= C2 ∗Cq with q a Fermat prime and p = 2, and (ii) lifts of the classical modular
group H(3) ∼= PSL2(Z) with p = 3; see Corollary 34 and Theorem 35 in [3], and [5,
Sec. 16].

(2) By a cyclic cover, we mean the fundamental group Γ of a finite graph (Γ(−), X)
of finite cyclic groups. To fix ideas, we shall assume that the canonical embeddings
associated with (Γ(−), X) are induced by the identity maps of the corresponding vertex
stabilisers. Let Γ = π1(Γ(−), X) be a cyclic cover, and let ` be a positive integer. Then
we define the `-th lift Γ` of Γ as the cyclic cover resulting from (Γ(−), X) by multiplying
the order of each (vertex or edge) stabiliser by a factor `. The last assertion in Theorem 3
implies that FΓ`(z) is a polynomial modulo all proper p-powers for all lifts Γ` of cyclic
covers Γ with µ(Γ`) = µ(Γ) ≥ 2, and p | `, even if p - mΓ.

(3) In order to illustrate Theorem 3, let us consider the case where Γ = H(6) ∼= C2∗C6

and p = 3. Indeed, in this example, we have 3 | mH(6) = 6 and µ3(H(6)) = 1. If one
applies the algorithm which is implicit in the proof of Theorem 3 given in Section 8,
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then, modulo 39 = 19683, one obtains

FH(6)(z) =
1

(1 + z)10
(19680z9 + 585z8 + 1926z7 + 6165z6 + 7326z5

+ 1584z4 + 1566z3 + 17433z2 + 1845z + 15) modulo 39.

From this expression, it is not difficult to deduce that the sequence
(
fλ(H(6))

)
λ≥1

, when

taken modulo 39, is in fact purely periodic with minimal period length 2 · 311 = 354294.
Namely, we have

1

(1 + z)10
=
∑
n≥0

(−1)n
(
n+ 9

9

)
zn. (3.2)

Furthermore,

9∏
`=1

(n+ 311 + `)−
9∏
`=1

(n+ `) ≡ 311

(
9∏
`=1

(n+ `)

)
9∑
`=1

1

n+ `
(mod 313)

≡ 0 (mod 313),

since each product
∏9

`=1(n+`) contains at least three factors divisible by 3, at most one
of which is divided out by a fraction 1

n+`
. Since 9! = 34 · 4480 with 4480 not divisible

by 3, the above calculation implies(
n+ 311 + 9

9

)
≡
(
n+ 9

9

)
(mod 39),

and it is easy to see that there is no period smaller than 311 of the binomial coefficient(
n+9

9

)
. Using this observation in (3.2), we conclude that the coefficients in the series

1/(1 + z)10 are periodic with minimal period length 2 · 311, implying our claim.

(4) For a finitely generated virtually free group Γ, denote by Γ̂ the isomorphism class
of Γ. Given a prime number p, define a density Dp of isomorphism classes of groups Γ
with µp(Γ) = 0 in all isomorphism classes by

Dp := lim
M→∞

∣∣{Γ̂ : mΓ ≤M, µ(Γ) ≤M, µp(Γ) = 0
}∣∣∣∣{Γ̂ : mΓ ≤M, µ(Γ) ≤M

}∣∣ .

Note that this definition makes sense in view of [8, Prop. 4] and Equation (2.8). We
conjecture that Dp = 0 for all prime numbers p.

4. Periodicity of sequences over finite rings

In this section we review a standard result on linear recurring sequences (usually only
formulated over finite fields), which will be used in a crucial manner in the proof of
Theorem 2 in Section 7.

Let Λ be a finite commutative ring with identity, and let S = (sn)n≥0 be a se-
quence of elements of Λ. Suppose that there exist a positive integer d and elements α0,
α1, . . . , αd−1 ∈ Λ, such that S satisfies the relation

sn+d = αd−1sn+d−1 + αd−2sn+d−2 + · · ·+ α0sn, n ≥ 0. (4.1)
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Then S is termed a (homogeneous) linear recurring sequence over Λ of order d, a relation
of the form (4.1) itself is called a (homogeneous) linear recurrence relation (or difference
relation) of order d.

The sequence S = (sn)n≥0 is termed ultimately periodic, if there exist integers ω > 0
and n0 ≥ 0, such that sn+ω = sn holds for all n ≥ n0. The integer ω is then called a
period of S. The smallest number among all the possible periods ω of an ultimately
periodic sequence S is called the least period ω0 = ω0(S) of S. If S = (sn)n≥0 is
ultimately periodic with least period ω0, then the least non-negative integer n0 such
that sn+ω0 = sn for all n ≥ n0 is called the preperiod of S. An ultimately periodic
sequence S = (sn)n≥0 with least period ω0(S) is termed purely periodic, if sn+ω0(S) = sn
for all n ≥ 0. It is easy to see that a sequence S = (sn)n≥0 is purely periodic, if, and
only if, there exists an integer ω > 0 such that sn+ω = sn for all n ≥ 0. Also, every
period of an ultimately periodic sequence is divisible by the least period.

Linear recurring sequences over finite rings are always (ultimately) periodic. The
precise fact that we are going to use in the proof of Theorem 2 is the following.

Lemma 5. Let S = (sn)n≥0 be a homogeneous linear recurring sequence of order d ≥ 1
over a finite commutative ring Λ with identity. Then S is ultimately periodic with least
period ω0(S) < |Λ|d.

The proof of Lemma 5 is virtually identical with that in the case of finite fields; see
[6, Theorem 8.7].

5. A bound on the p-divisibility of gλ(Γ)

We use the standard notation for the p-adic valuation of rational numbers. That is, if
α = r/s, then vp(α) = vp(r)− vp(s), where vp(r) is the exponent of the highest p-power
dividing r, with vp(s) being defined in an analogous way.

Lemma 6. Let Γ be a finitely generated virtually free group of free rank µ(Γ) ≥ 2, and
let p be a prime number not dividing mΓ. Then we have

vp
(
gλ(Γ)

)
≥ (µ(Γ)− 1) · vp(λ!), λ ≥ 0. (5.1)

In particular, the function vp
(
gλ(Γ)

)
is non-negative, and unbounded as λ→∞.

Proof. Let (Γ(−), X) be a Stallings decomposition of Γ, and letO(X) be any orientation
of the graph X. In proving (5.1), we may ignore the factor∏

e∈O(X)

|Γ(e)|λmΓ/|Γ(e)|

∏
v∈V (X)

|Γ(v)|λmΓ/|Γ(v)| (5.2)

in the expression (2.6) for gλ(Γ), since p - mΓ by assumption. We shall in fact show
that the remaining expression in (2.6) is an integer, and that (λ!)−mΓ·χ(Γ) divides that
integer. In symbols:

(λ!)−mΓ·χ(Γ) divides

∏
e∈O(X)

(λmΓ/|Γ(e)|)!∏
v∈V (X)

(λmΓ/|Γ(v)|)!
. (5.3)
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Since, by (2.8), we have µ(Γ)− 1 = −mΓ ·χ(Γ), in combination with the above remark
this would establish (5.1).

For the proof of (5.3), we regard the graph X as undirected, in the sense that each
pair {e, ē} is considered as one (undirected) edge, and we consider the edge and vertex
labels as abstract labels satisfying the condition that an edge label divides the vertex
labels of the vertices incident with the edge. By abuse of notation, we still write |Γ(e)|
for the label of the edge e and |Γ(v)| for the label of the vertex v.

We shall build up the graph X by adding edges and vertices one by one, and at each
step record the contributions of the added edges and vertices to (5.3).

We distinguish two cases, depending on whether X contains a cycle or not. Suppose
first that X contains a cycle

v1, e1, v2, e2, . . . , vm, em, v1,

where vi and vi+1 are the vertices incident with the (undirected) edge ei, i = 1, 2, . . . ,m
(where vm+1 is identified with v1), and v1, v2, . . . , vm are pairwise distinct. Since, by the
definition of a graph of groups, we have |Γ(ei)| divides |Γ(vi)|, i = 1, 2, . . . ,m, it follows
that (

mΓ

(
1

|Γ(ei)| −
1

|Γ(vi)|

)
λ
)

! divides
(λmΓ/|Γ(ei)|)!
(λmΓ/|Γ(vi)|)!

, i = 1, 2, . . . ,m, (5.4)

by integrality of binomial coefficients.
Let G be the graph consisting of this cycle. If G is already all of X, then our

construction stops here. Otherwise, there must be an edge e that is not yet included
in G which emanates from some vertex of G. There are two possible cases: either the
other vertex incident with e, say v, is not yet in G, in which case we have(

mΓ

(
1
|Γ(e)| −

1
|Γ(v)|

)
λ
)

! divides
(λmΓ/|Γ(e)|)!
(λmΓ/|Γ(v)|)!

, (5.5)

or v is already in G, in which case we have (trivially)(
mΓ

1
|Γ(e)|λ

)
! divides (λmΓ/|Γ(e)|)!. (5.6)

We add e and v (in the case it is not yet in G) to G. If G is already all of X, then
we stop. Otherwise, we iterate the above step of adding an edge and possibly a vertex
to G until we have obtained all of X.

Now we “multiply” all divisor relations (5.4)–(5.6) together, to obtain( ∏
e∈S1

(
mΓ

1
|Γ(e)|λ

)
!
∏

(e,v)∈S2

(
mΓ

(
1
|Γ(e)| −

1
|Γ(v)|

)
λ
)

!

)
divides

∏
e∈O(X)

(λmΓ/|Γ(e)|)!∏
v∈V (X)

(λmΓ/|Γ(v)|)!
,

(5.7)
where S1 is the set of all those edges e of X which, in the above algorithm, were added
to G without a vertex being added at the same time, and where S2 is the set of all
pairs (e, v) of an edge e and a vertex v which are either a pair of the form (ei, vi),
i = 1, 2, . . . ,m, or were added together in the same step of the above algorithm. Since
(λ!)m divides (mλ)! for any positive integer m, our claim (5.3) follows, and thus the
assertion (5.1).
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If X does not contain a cycle, then we proceed in a similar fashion. The initial step
has to be modified, however. To start with, we claim that there must exist an edge e0

such that |Γ(e0)| is less than |Γ(v0)| and less than |Γ(v1)|, where v0 and v1 are the two
vertices incident with e0. Indeed, any edge e in X with |Γ(e)| = |Γ(v)| for a vertex v
incident with e could actually be contracted “into the other vertex,” by which we mean
that upon contraction of e the vertex v “disappears” and only the other vertex incident
with e is retained. This contraction generates a new graph X ′ with the same Euler
characteristic (cf. (2.2)) and the same associated function gλ (cf. (2.6)). If the graph X
would only consist of such edges, then, after contraction of all the edges, only a single
labelled vertex would remain, which has positive Euler characteristic (again, in the
sense of (2.2)), namely 1/mΓ. By (2.8), it would follow that µ(Γ) = 0, a contradiction.

Let now e0 be an edge with |Γ(e0)| < |Γ(v0)| and |Γ(e0)| < |Γ(v1)|, where v0 and v1

are the vertices incident with e0. We let G be the graph consisting of e0, v0 and v1. We
have(

mΓ

(
1

|Γ(e0)| −
1

|Γ(v0)| −
1

|Γ(v1)|

)
λ
)

! divides
(λmΓ/|Γ(e0)|)!

(λmΓ/|Γ(v0)|)! (λmΓ/|Γ(v1)|)!
. (5.8)

The subsequent steps are the same as before: that is, if the graph G obtained so far
should not yet be all of X, we choose an edge e not yet in G that is incident with one
of the vertices in G, and we add it to G together with the other vertex incident with e.
In each of these addition steps (5.5) holds. Finally, again, all divisibility relations (5.8)
and (5.5), are “multiplied” together. The result is (5.7) (with an empty set S1), from
which the claim (5.3) results in the same way as before. �

1

2

2

2

1
1

1


r edges

Figure 1. The graph of (C2)∗r

Remarks 7. (1) It is easy to see that the estimate (5.1) in Lemma 6 is, in general, best
possible for odd primes p. For instance, let Γ = (C2)∗r, where r ≥ 2. The corresponding
graph of groups is shown in Figure 1 together with its vertex and edge labels. We have

gλ(Γ) =
(2λ)!r−1

λ!r 2rλ
,

and, for a prime p ≥ 3 and λ = ps with s ≥ 0, we have

vp
(
gλ(Γ)

)
=
(
2(r − 1)− r

)ps − 1

p− 1
= (r − 2)vp(λ!) = (µ(Γ)− 1)vp(λ!).

(2) The reader should observe that, in the proof of Lemma 6, we actually proved
a slightly stronger result, namely the divisibility relation (5.7), the factor (5.2) not
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contributing anything to (5.1). However, since there is no elegant way to write down
the result (as a matter of fact, there are several inequivalent results that can be derived
from different parsings of the graph X), we refrain from exploiting this relation.

6. The classification of virtually infinite-cyclic groups

Virtually infinite-cyclic groups play a certain role in topology as they are precisely the
finitely generated groups with two ends. Their structure is well-known; cf. [13, 5.1] or
[14, Lemma 4.1].

Proposition 8. A virtually infinite-cyclic group Γ falls into one of the following two
classes:

(i) Γ has a finite normal subgroup with infinite-cyclic quotient.

(ii) Γ is a free product Γ = G1 ∗
A
G2 of two finite groups G1 and G2, with an amal-

gamated subgroup A of index 2 in both factors.

Remark 9. In Part (ii) of Proposition 8, A is a finite normal subgroup of Γ with quotient
C2 ∗ C2, the infinite dihedral group.

Corollary 10. If Γ is virtually infinite-cyclic, then the function fλ(Γ) is constant.
More precisely, we have fλ(Γ) = mΓ for λ ≥ 1 in Case (i) of Proposition 8, while in
Case (ii) we have fλ(Γ) = |A| = mΓ/2.

Proof. If Γ is as described in Case (i) of Proposition 8, then (2.6) shows that gλ(Γ) = 1
for λ ≥ 0, leading to fλ(Γ) = mΓ for all λ ≥ 1 by (2.5) and an immediate induction on
λ.

For Γ as in Case (ii), Equation (2.6) yields

gλ(Γ) = 2−2λ

(
2λ

λ

)
, λ ≥ 0.

By the binomial theorem applied to the generating function GΓ(z) of the gλ(Γ)’s, we
obtain GΓ(z) = (1− z)−1/2, which transforms into the relation

FΓ(z) =
|mΓ|

2(1− z)
=
|A|

1− z

via (2.7). The desired result follows from this last equation by comparing coefficients.
�

7. Proof of Theorem 2

Theorem 2 follows from Lemmas 5 and 6. Indeed, if µ(Γ) = 0, then Γ is finite, we have
mΓ = |Γ|, and thus f1(Γ) = 1 and fλ(Γ) = 0 for λ ≥ 2, so that fλ(Γ) is ultimately
periodic with period and preperiod equal to 1 modulo any prime power. If µ(Γ) = 1,
then, by Corollary 10, fλ(Γ) is constant, thus purely periodic with period equal to 1,
again modulo any prime power. Now suppose that µ(Γ) ≥ 2. Given a positive integer
α, let λ0(α) be chosen according to Lemma 6 such that vp

(
gλ(Γ)

)
≥ α for all λ ≥ λ0(α)

and vp
(
gλ0(α)−1(Γ)

)
< α. Then consider Equation (2.5) for λ ≥ λ0(α). All summands
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on the left-hand side corresponding to indices µ ≥ λ0(α) will vanish modulo pα, as does
the right-hand side, and we obtain the congruence

fλ+λ0(α)(Γ) ≡ −
(
g1(Γ)fλ+λ0(α)−1(Γ) + · · ·+ gλ0(α)−1(Γ)fλ+1(Γ)

)
(mod pα), λ ≥ 0.

(7.1)
This provides a homogeneous linear recurrence with constant coefficients in Z/pαZ of
order λ0(α)− 1 for the sequence

(
fλ(Γ)

)
λ≥1

. Applying Lemma 5 with Λ = Z/pαZ and

S = (fλ+1(Γ))λ≥0, we find that, in this last case, fλ(Γ) is ultimately periodic modulo pα

with least period ω0 < pα(λ0(α)−1).

For proving the claimed upper bound on the (minimal) period length, we need to
bound λ0(α) from above. We start by using the estimation (5.1), i.e.,

vp
(
gλ(Γ)

)
≥ (µ(Γ)− 1)vp(λ!). (7.2)

Thus, we need to bound vp(λ!) from below. We have

vp(λ!) =
∑
`≥1

⌊
λ

p`

⌋
≥
blogp λc∑
`=1

(
λ

p`
− p` − 1

p`

)
=

(λ+ 1)

(p− 1)

(pblogp λc − 1)

pblogp λc
−
⌊
logp λ

⌋
. (7.3)

We claim that, if we substitute

λ1(α) := p

(
α

µ(Γ)− 1
+
⌊
logp α

⌋
+ 2

)
− 1

for λ in the right-hand side of (7.3), then the result is at least α/(µ(Γ)−1). If one then
combines (7.2) with (7.3) and observes that the right-hand side of (7.3) is monotone
increasing for λ > p, then one sees that one has proved vp

(
gλ(Γ)

)
≥ α for all λ ≥ λ1(α).

This shows that λ0(α) ≤ λ1(α), and, in combination with Lemma 5, will establish the
upper bound in (3.1) on the period length of the sequences

(
fλ(Γ)

)
λ≥1

.

If one substitutes λ1(α) for λ in the right-hand side of (7.3), then one obtains(
α

µ(Γ)− 1
+
⌊
logp α

⌋
+ 2

)
p

(p− 1)

(pL − 1)

pL
− L, (7.4)

where L =
⌊
logp λ1(α)

⌋
. We have(

α

µ(Γ)− 1
+
⌊
logp α

⌋
+ 2

)
p

(p− 1)

(pL − 1)

pL
− L

≥
(

α

µ(Γ)− 1
+
⌊
logp α

⌋
+ 2

)
−
⌊
logp

(
p
(
α +

⌊
logp α

⌋
+ 2
) )⌋

≥ α

µ(Γ)− 1
+
⌊
logp α

⌋
+ 1−

⌊
logp α + logp

(
1 +

⌊
logp α

⌋
+ 2

α

)⌋
. (7.5)

In order to demonstrate our claim, we have to show⌊
logp α

⌋
+ 1−

⌊
logp α + logp

(
1 +

⌊
logp α

⌋
+ 2

α

)⌋
≥ 0. (7.6)

If α = 1, then, from (7.5), we obtain that the expression (7.6) is bounded below by

1−
⌊
logp 3

⌋
≥ 0.
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If α = 2, then (7.6) becomes

⌊
logp 2

⌋
+ 1−

⌊
logp 2 + logp

(
1 +

⌊
logp 2

⌋
+ 2

2

)⌋
≥ 0,

which indeed holds true. (More precisely, the expression on the left-hand side above
equals 0 if p = 2, and otherwise it equals 1.) On the other hand, if α ≥ 3, then the
left-hand side of (7.6) can be bounded below by

⌊
logp α

⌋
+ 1−

⌊
logp α + logp

(
1 +

⌊
logp 3

⌋
+ 2

3

)⌋
≥
⌊
logp α

⌋
+ 1−

⌊
logp α + logp 2

⌋
≥
⌊
logp α

⌋
+ 1−

⌊
logp α + 1

⌋
≥ 0.

Thus, in all cases, the expression (7.4) is bounded below by α/(µ(Γ)−1). In combination
with (7.2) and (7.3) this establishes the inequality vp

(
gλ(Γ)

)
≥ α for λ ≥ λ1(α) ≥ λ0(α).

This completes the proof of the bound (3.1) on the minimal period length and, thus, of
the theorem.

8. Proof of Theorem 3

If p | mΓ, then, by [9, Eq. (3)], the generating function FΓ(z) satisfies the congruence

FΓ(z) = zµp(Γ)F
µp(Γ)
Γ (z)

(
zp−1FΓ(z)p−1 − 1

)(µ(Γ)−µp(Γ))/(p−1)
modulo p. (8.1)

As is argued in [9], if p | mΓ and µp(Γ) > 0, then it is clear from this congruence that
FΓ(z) = 0 modulo p. We shall now demonstrate by an induction on α that, for all
integers α ≥ 1, the generating function FΓ(z) is rational when coefficients are reduced
modulo pα.

For α = 1 this last statement is true due to the above remark. Let us suppose that
we have already shown that FΓ(z) is rational when coefficients are reduced modulo pα,
say FΓ(z) = R(z) modulo pα, for some rational function R(z) over the integers whose
denominator is not divisible by p. By [9, Eq. (12)] and (8.1), we know that

FΓ(z) = zµp(Γ)F
µp(Γ)
Γ (z)

(
zp−1FΓ(z)p−1 − 1

)(µ(Γ)−µp(Γ))/(p−1)

+ p · P(z, FΓ(z), F ′Γ(z), F ′′Γ (z), . . . , F
(µ(Γ−1))
Γ (z)), (8.2)

where P(z, FΓ(z), F ′Γ(z), . . . , F
(µ(Γ)−1)
Γ (z)) is a polynomial in z, FΓ(z), F ′Γ(z), . . . ,

F
(µ(Γ)−1)
Γ (z) over the rationals. However, it is proven in [9, Sections 3 and 5] that, if
p | mΓ, the rational coefficients can be written with denominators which are relatively
prime to p, a fact that we shall tacitly use in the sequel.

We now make the Ansatz FΓ(z) = R(z) + pαY (z), for some unknown formal power
series Y (z), we substitute in (8.2), and then consider the result modulo pα+1. Since

(R(z) + pαY (z))e = Re(z) + epαRe−1(z)Y (z) modulo pα+1,
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we arrive at the congruence

R(z) + pαY (z) =
M∑
i=0

(−1)M−i
(
M

i

)
zµp(Γ)+i(p−1)

·
(
Rµp(Γ)+i(p−1)(z) + pα(µp(Γ) + i(p− 1))Rµp(Γ)+i(p−1)−1(z)Y (z)

)
+ p · P(z,R(z), R′(z), . . . , R(µ(Γ)−1)(z)) modulo pα+1, (8.3)

where M is short for (µ(Γ)− µp(Γ))/(p− 1). By rearranging terms, we transform this
congruence into

pαY (z) ·
(
− 1 +

M∑
i=0

(−1)M−i
(
M

i

)
zµp(Γ)+i(p−1)(µp(Γ) + i(p− 1))Rµp(Γ)+i(p−1)−1(z)

)

= R(z)−
M∑
i=0

(−1)M−i
(
M

i

)
zµp(Γ)+i(p−1)Rµp(Γ)+i(p−1)(z)

− p · P(z, R(z), R′(z), . . . , R(µ(Γ)−1)(z)) modulo pα+1. (8.4)

By induction hypothesis, the right-hand side is divisible by pα. We may hence divide
both sides by pα, to obtain the congruence

Y (z) ·
(
− 1 +

M∑
i=0

(−1)M−i
(
M

i

)
zµp(Γ)+i(p−1)(µp(Γ)− i)Rµp(Γ)+i(p−1)−1(z)

)
= S(z)

modulo p,

where S(z) can be written as an explicit rational function in z over the integers with
denominator not divisible by p. If we remember that, from the base case of the induction
(see the sentence below (8.1)), it follows that R(z) = 0 modulo p, then we see that the
above congruence simplifies further to

Y (z) ·
(
− 1 + (−1)Mµp(Γ)zµp(Γ)Rµp(Γ)−1(z)

)
= S(z) modulo p. (8.5)

We can therefore determine Y (z) modulo p by dividing both sides of the congruence
by the term in parentheses on the left-hand side. Hence Y (z) is a rational function
modulo p, and therefore FΓ(z) = R(z)+pαY (z) is rational modulo pα+1. This concludes
the induction argument.

The additional assertions in Theorem 3 are now obvious: if µp(Γ) = 1, then each time
we divide by 1−(−1)Mz, and the induction hypothesis guarantees that all denominators
of fractions in the congruence (8.5) are powers of 1− (−1)Mz, cf. the implicit definition
of S(z) via (8.4). If, on the other hand, µp(Γ) ≥ 2, then let us suppose as induction
hypothesis that R(z) is actually a polynomial modulo pα. Again using the fact that
R(z) = 0 modulo p, we see that, since µp(Γ) + i(p− 1) > 0 for all i ≥ 0 in the current
case, the congruence (8.5) reduces to

−Y (z) = S(z) modulo p.
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Here, the rational function S(z) is actually a polynomial. Consequently, Y (z) is a
polynomial modulo p, and thus FΓ(z) = R(z) + pαY (z) is a polynomial modulo pα+1.
This completes the proof of the theorem.

9. Proof of Theorem 1

(I) implies (II). This is obvious.

(II) implies (III). We may have p - mΓ (Case (III)1), or p | mΓ and µp(Γ) > 0
(Case (III)2), or p | mΓ and µp(Γ) = 0. Due to the definition (2.10) of µp, the condition
µp(Γ) = 0 already implies that p | mΓ (in the sum on the right-hand side of (2.10) only
the term for κ = mΓ can be negative). Thus, it remains to consider the case where
µp(Γ) = 0. In this case, Theorem A(iii) in [9] says that either µ(Γ) = 0, or µ(Γ) = 1
and p = 2. In the former case, the group Γ is finite (Case (III)3), while in the latter
case Γ is virtually infinite-cyclic (Case (III)4).

(III) implies (I). We have to distinguish between the various subcases given in this item.
In each case, we have to show that the generating function FΓ(z) is rational modulo pα

for every α ≥ 1.

Case (III)1. This is taken care of by Theorem 2.

Case (III)2. This is dealt with by Theorem 3.

Case (III)3. This is obvious since in this case FΓ(z) = 1.

Case (III)4. Corollary 10 says that in this case the sequence of free subgroup numbers
fλ(Γ) is constant. Consequently, the corresponding generating function FΓ(z) is rational
even over the integers.
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