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Abstract

For a quaternary code C of length n, define a pair of binary codes {C1, C2}

as:

-C1 = C mod 2

-C2 = h(C ∩ 2Zn4 )

where h is a bijection from 2Z4 to Z2 mapping 0 to 0 and 2 to 1 and for the

extension to a map acting coordinatewise. Here C1 ≤ C2.

For a pair of binary codes {C1, C2} with C1 ≤ C2, let C(C1, C2) be the set

of Z4-codes giving rise to this binary pair as defined above. Our main goal

is to describe the set C(C1, C2) using the binary pair of codes {C1, C2}.

In Chapter 1, we give some preliminaries. In Chapter 2, we start with

a general description of codes {C1, C2} which give cardinality of C(C1, C2).

Then we show that C(C1, C2) ' C∗1⊗Zn2/C2. The cohomology of C(C1, C2) is

given in Section (2.2). Then we end chapter 2 with a description of dual codes

of C(C1, C2). Chapter 3 is about weight enumerators of codes in C(C1, C2).

The average swe is given in terms of weight enumerators of C1 and C2 in

Section(3.1) as

swe(x, y, z) =
|C2|
2n

(weC1(x+ z, 2y)− (x+ z)n) + weC2(x, z)

Detailed computations of swe’s of codes in C(C1, C2) using codes {C1, C2}

is then given. Information about different weight enumerators of codes in

C(C1, C2) is given in Section (3.2). These weight enumerators are included

in an affine space of polynomials. Then we end chapter 3 with a description

of weight enumerators of self dual codes. Chapter 4 deals with actions of
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the automorphism group G = Aut(C1) ∩ Aut(C2) ≤ Sn on C(C1, C2) which

preserves cwe of codes. Corresponding action on C∗1 ⊗Zn2/C2 is explained in

this chapter. Changing signs of coordinates can be defined as an action of

Zn2 on C(C1, C2). This action preserves swe of codes. Corresponding action

on C∗1 ⊗ Zn2/C2 is provided in this chapter.

In the appendix, we give a complete description of Z4-codes in C(C1, C2)

with C1 = C2 = Extended Hamming Code of length 8. A programming code

in GAP for computing derivations is given. And a description of the affine

space containing the swe’s of Z4-codes is given with examples of different

C1 = C2 having same weight enumerator.
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Chapter 1

Introduction

The basic goal of coding theory is transferring data in an efficient and

reliable way. Normally, data is transmitted using binary codes; a set of

sequences of 0’s and 1’s called codewords. A code is said to be linear iff

the sum of any two codewords is a codeword (sum is taken coordinatewise).

An [n, k] linear binary code is an additive subgroup of Zn2 of dimension k. A

quaternary code C of length n is an additive subgroup of Zn4 . Throughout,

Zk stands for the integers modulo k.

1.1 Weight Distribution of Codes

The weight distribution of a code is given by weight enumerators. Several

weight enumerators are associated with a quaternary code C. The complete

weight enumerator of C is

cweC(x, y, z, w) =
∑
a∈C

xn0(a)yn1(a)zn2(a)wn3(a) (1.1)

6



CHAPTER 1. INTRODUCTION 7

where nj(a) is the number of components congruent to j mod 4. Permuting

coordinates of a code fixes number of 0’s, 1’s, 2’s and 3’s in codewords and

so fixing its complete weight enumerator.

Two quaternary codes are said to be permutation equivalent if one

can be obtained from the other by permuting its coordinates. For many

applications there is no need to distinguish between +1 and −1 components

and so we say that two codes are equivalent if one can be obtained from

the other by permuting or changing signs of certain coordinates (this is the

same as multiplying some coordinates by −1). Equivalent codes might have

distinct cwe’s. Since multiplying by −1 only affects odd coordinates, we need

a weight enumerator that treats odd entries the same. This would be the

symmetrized weight enumerator, swe, obtained by identifying y and w

in (1.1)

sweC(x, y, z) = cweC(x, y, z, y) (1.2)

For a code C of length n over Zk, define the Lee distance between codewords

a, b ∈ C to be

dL(a, b) =
n∑
i=1

min(|{a}i − {b}i|, |{b}i − {a}i|) mod k

The Lee weight of a codeword, denoted by wtL(x), is its Lee distance from

the zero word. That is wtL(x) = dL(x, 0). Lee weights of 0, 1, 2 and 3 ∈ Z4

are 0, 1, 2 and 1 respectively. The Lee weight of a word is the rational sum

of Lee weights of its components. The Lee weight enumerator of a code

describes Lee weight distribution of words in a code. It is defined to be

LeeC(x, y) =
∑
a∈C

x2n−wtL(a)ywtL(a) = sweC(x2, xy, y2) (1.3)

For binary codes define the weight enumerator, weC(x, y), to be

weC(x, y) =
∑
a∈C

xn0(a)yn1(a) (1.4)
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where nj(a) is the number of components congruent to j mod 2.

Define a map φ : Zn4 → Z2n
2 called the Gray map[1] sending:

0→ 00

1→ 01

2→ 11

3→ 10

and coordinatewise mapping x ∈ Zn4 to Z2n
2 .

The Hamming distance between two words x and y of Znk is the number

of places they differ denoted by d(x, y). Accordingly Hamming weight of

a codeword, denoted wt(x), is defined to be number of nonzero entries. That

is wt(x) = d(x, 0). Note that d(x, y) 6= dL(x, y) in general. They are equal

for binary codes. A map θ : Znk → Zmr is said to be distance preserving if

dL(a, b) = dL(θ(a), θ(b)) for all a, b ∈ Znk .

Theorem 1.1 The Gray map is a distance preserving map from Zn4 to Z2n
2 .

Proof This can be deduced directly from the definition of the Gray map

since dL(i, j) = d(φ(i), φ(j)) for i, j ∈ {0, 1, 2, 3} mod 4 and so dL(a, b) =

d(φ(a), φ(b)) for a, b ∈ Zn4 .

From definitions above, if C = φ(C) is the gray map image of a Z4-code C,

then

weC(x, y) = LeeC(x, y) (1.5)

Hence, the Gray map preserves weight distribution of codes.

A binary code is said to be distance invariant if the Hamming weight

distributions of its translates C + u are the same for all u ∈ C. In general,
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for codes over Zk, define distance invariant codes C to have fixed Lee weight

distributions for all translations of the form C−u for u ∈ C. This is satisfied

for linear codes since C−u = C but not always satisfied for nonlinear codes.

Theorem 1.2 If C is a quaternary code then C = φ(C) (its Gray map

image) is distance invariant.

Proof C is linear so distance invariant with respect to the Lee distance.

And the result follows since dL(a, b) = d(φ(a), φ(b)).

A generator matrix is a matrix whose rows form a basis for the linear

code.

Proposition 1.1 Any quaternary code is permutation equivalent to a code

with generator matrix of the form: Ik1 A B

0 2Ik2 2C

 (1.6)

where A and C are matrices over Z2 and B is a matrix over Z4. The code

is then an abelian group of order |C| = 4k12k2. [1]

Proof [9] Z4-codes are finite subgroups of Zn4 . So we can have a finite set

of generators {v1, . . . , vk} for any Z4-code, C. Let M be a matrix with rows

{vi}. A generator matrix of the form (1.6) can be obtained from M .

If C = 〈{v1, . . . , vk}〉 then if y = a1v1 + . . . + akvk with a1 a unit then

replacing v1 by y give another generating set {y, v2, . . . , vk} since

v1 = a−11 y − a−11 a2v2 − . . .− a−11 akvk

Hence,
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• replacing a generating vector by its unit multiple give another gener-

ating set.

• replacing a vector vi in the generating set by vi± a multiple of another

generating vector give another generating set.

These operations are called elementary row operations. Permuting coordi-

nates of words of a code give a permutation equivalent code. Performing a

sequence of row operations on M along with permutation of coordinates give

a generator matrix of the form (1.6) as follows.

Let φ(M) be an entry with the minimum of the absolute value of nonzero

entries of M (this is an entry with minimum Lee weight). With Z4-codes

φ(M) = 1, 2, or 3. If M = 0 then there is nothing to be done. Let M 6= 0

and A be a matrix obtained from M by performing row operations and

permutations as in the algorithm below.

1. If M consists of 0’s and 2’s only then go to step (7) otherwise permute

rows and columns of M to get A with φ(A) in the upper left corner (i.e

in a11). If φ(A) = 3 then multiply the first row by -1 to get a11 = 1.

2. Subtract the appropriate multiple of the first row from rows {2, . . . , k}

to get ai1 = 0 for all 2 ≤ i ≤ k. Let A be the matrix obtained.

3. Let A1 be the matrix obtained by deleting the first row and column

from A. If A1 = 0 go to step (10). If A1 consists of 0’s and 2’s only

then go to step (7). Otherwise, permute rows {2, . . . , k} and columns

{2, . . . , n} of A to get a22 = φ(A1). If a22 = 3 then multiply the 2nd

row by −1 to change a22 to 1.

4. Subtract the appropriate multiple of the second row from rows j 6= 2

to get aj2 = 0 for all j 6= 2.
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5. Let A1,...,i be the matrix obtained by deleting rows and columns 1, . . . , i

form matrix A. If A1,...,i = 0 go to step (10). Else if it consists of

0’s and 2’s only then go to step (7). Otherwise, repeat the process

above: finding φ(A1,...,i), permuting rows {i + 1, . . . , k} and columns

{i + 1, . . . , n} to have ai+1,i+1 = φ(A1,...,i), then subtracting an appro-

priate multiple of the (i + 1)th row from other rows to have a column

(0, . . . , 0, 1, 0, . . . , 0)T where the 1 is located in the i + 1st row. The

process continues as long as A1,...,i have an entry ±1.

6. When we reach a stage where A1,...,k1 = 0 or φ(A1,...,k1) = 2, matrix

A would have first k1 coumns of the form

 Ik1

0

. We still need to

refurbish the rest of the matrix.

7. If A1,...,k1 = 0 then go to step 10 otherwise permute rows {k1+1, . . . , k}

and columns {k1 + 1, . . . , n} to have ak1+1,k1+1 = 2.

8. Subtract the appropriate multiple of the (k1 + 1)th row from the jth

rows for j 6= k1 + 1 to get ajk1+1 = 0 for all k1 + 2 ≤ j ≤ k and

ajk1+1 = 0 or 1 for 1 ≤ i ≤ k1.

9. Repeat the process (steps 7 and 8) for A1,...,i with ji > k1 + 1 until we

get A1,...,i = 0 or until j = k.

10. Ignoring zero rows if any, by the end of this stage we get a generator

matrix:  Ik1 A B

0 2Ik2 2C


with matrices A and C having entries 0’s and 1’s and B with entries

from Z4.
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Define an inner (dot) product on Znk to be a ·b = a1b1+ . . .+anbn( mod k).

The dual code, C⊥, is defined to be the subgroup of Znk annihilating words

of C. That is C⊥ = {x ∈ Znk such that x · a = 0 for all a ∈ C}. A code is

said to be self orthogonal if C ⊆ C⊥. It is called self dual if C = C⊥. For

a, b ∈ Znk , define a ∗ b to be the vector in Znk obtained by multiplying entries

of vectors a and b coordinatewise.

Theorem 1.3 The dual code of a Z4-code with generator (1.6) has generator

G⊥ =

 −Btr − CtrAtr Ctr In−k1−k2

2Atr 2Ik2 0

 (1.7)

where M tr is the transposed matrix of the matrix M .

Proof Let G be the general generator matrix of a Z4-code:

G =

 Ik1 A B

0 2Ik2 2C


then since (M1M2)

tr = M tr
2 ·M tr

1 and (M tr)tr = M , we have

G ·Gtr
⊥ =

 Ik1 A B

0 2Ik2 2C

 ·

−B − AC 2A

C 2Ik2

In−k1−k2 0


=

 −B − AC + AC +B 2A+ 2A

2C + 2C 4Ik2


= 0 mod 4
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and

G⊥ ·Gtr =

 −Btr − CtrAtr Ctr In−k1−k2

2Atr 2Ik2 0

 ·


Ik1 0

Atr 2Ik2

Btr 2Ctr


=

 −Btr − CtrAtr + CtrAtr +Btr 2Ctr + 2Ctr

2Atr + 2Atr 4Ik2


= 0 mod 4

So row space of G⊥ is in the dual space of the code. But cardinality of the

dual space is

4n

4k1 · 2k2
=

4n · 2k2
4k1 · 2k2 · 2k2

= 4(n−k1−k2) · 2k2

= cardinality of the row space of G⊥

The MacWilliams Theorems give weight enumerators of dual codes C⊥ in

terms of weight enumerators of the codes[1].

For Z4-codes:

cweC⊥(x, y, z, w) =
1

|C|
cweC(x+ y + z + w, x+ iy − z − iw,

x− y + z − w, x− iy − z + iw)

sweC⊥(x, y, z) =
1

|C|
sweC(x+ 2y + z, x− z, x− 2y + z)

LeeC⊥(x, y) =
1

|C|
LeeC(x+ y, x− y)

and for binary codes:

weC⊥(x, y) =
1

|C|
weC(x+ y, x− y)

Two binary codes are said to be formal duals if they are nonlinear but

the weight enumerator of one is the MacWilliam transform of the weight
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enumerator of the other code. A code is said to be formally self dual if its

weights enumerator is equal to its MacWilliams transform.

Theorem 1.4 For a quaternary code C, if φ is the Gray map then φ(C) and

φ(C⊥) are formal duals. For a self dual quaternary code, φ(C) is formally

self dual.

Proof Result can be obtained as follows:

weφ(C⊥)(x, y) = LeeC⊥(x, y)

=
1

|C|
LeeC(x+ y, x− y)

=
1

|C|
weφ(C)(x+ y, x− y)

Linear codes are easier to describe, encode and decode compared to nonlin-

ear codes. Certain nonlinear binary codes though contain more codewords

than any known linear codes with the same length and minimum distance.

These include the Nordstrom-Robinson code, Kerdock, Preparata, Goethals

and Delsarte-Goethals codes. These codes have excellent error correcting ca-

pabilities. The Kerdock and Preparata codes are formal duals. These codes

exist for all lengths n = 4m ≥ 16. At length 16 they coincide giving the

Nordstrom-Robinson code making it formally self dual. There are many ver-

sions of the Nordstrom-Robinson code, Kerdock and Preparata codes and

it was not clear if these codes are duals in some more algebraic sense. It

was then shown that when the Kerdock and Preparata codes are properly

defined, they can be simply constructed as binary images under the Gray

map of quaternary codes. So they are distance invariant. The Z4-codes

mapped to Kerdock and Preparata codes using the Gray map are shown to

be duals. Decoding codes mentioned is greatly simplified by working in the



CHAPTER 1. INTRODUCTION 15

Z4-domain, where they are linear. Decoding the Nordstrom-Robinson code

and Preparata codes is especially simple[1].

1.2 What can we say about codewords

Let a, a′ be two words of a binary code, then we can rearrange their coordi-

nates to have sets of coordinates with relations:

a 0 . . . 0 1 . . . 1 1 . . . 1 0 . . . 0

a′ 0 . . . 0 1 . . . 1 0 . . . 0 1 . . . 1

S0 S1 S2 S3

So we would have,

• Sum of two words of even weights or two words of odd weights is an

even weight word since wt(a+ a′) = wt(a) + wt(a′)− 2 wt(a ∗ a′).

• |S1|, |S2| and |S3| have the same parity when looking at pairs of words

of even weights. (Given that |S1|+ |S2| is even and |S1|+ |S3| is even. If

|S1| is even(odd) then |S2| and |S3| are even(odd). If |S2| is even(odd)

then |S1| is even(odd) so is |S3|).

• a · a′ = |S1| mod 2 = wt(a ∗ a′).

• In a self orthogonal code C, all words have even weights since a · a =

0 mod 2 for all a ∈ C. But a · a′ = |S1| mod 2. So cardinalities of |S1|,

|S2| and |S3| are even for all pairs of words a, a′ ∈ C since a · a′ =

0 mod 2.

• wt(a+ a′) = |S2|+ |S3| = |d(a, a′)|.



CHAPTER 1. INTRODUCTION 16

Also note that in quaternary codes,

• If {t1, t2} ∈ 2Zn4 then t1 · t2 = (0, . . . , 0) mod 4 since 0.0 = 0.2 = 2.0 =

2.2 = 0 mod 4.

• x = 0 mod 4⇒ x = 0 mod 2 but the converse is not always true.

• In general for any even integer k, in a code over the ring Zk, sum of

words of even weights or odd weights is a word of even weight. We can

show this similarly as above. We can rearrange coordinates of a and a′

in this case to have sets of coordinates with relations:

a even odd even odd

a′ odd odd even even

S0 S1 S2 S3

if wt(a) and wt(a′) are even then |S1| + |S3| is even so is |S0| + |S1|.

Giving us |S0|+ 2|S1|+ |S3| even or |S0|+ |S3| even. But these are the

coordinates a+ a′ of odd parity. Hence, a+ a′ have even weight.

Proposition 1.2 In a binary linear code C, either all codewords begin with

0 or exactly 1
2

of them begin with 0.(This can be shown to be true for any

code over a field Fq with 1
2

replaced by 1
q
). This is also true for any position,

1 ≤ i ≤ n[3].

Proof Consider the map θ : C 7→ Z2 given by θ(v) = {v}1, mapping code-

words to their first coordinate. This is linear and the image have dimension

0 or 1. So the kernel has codimension 0 or 1. That is all codewords get

mapped to 0 or half of them get mapped to 0.
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Proposition 1.3 In a quaternary code C, either all codewords begin with 0,

exactly half of them begin with 0 (the other half beginning with 2) or exactly

1
4
th of the codewords begin with 0 (and 1

4
begin with ±1 and 2). This is also

true for all other coordinate position.

Proof Similar to proof of proposition (2.1). Consider the map θ : C 7→ Z4

given by θ(v) = {v}1 mapping codewords to their first coordinate. This is

linear and the image has order 1, 2 or 4. So the kernel has index 1, 2 or 4.

That is all codewords get mapped to 0, half of them get mapped to 0 or 1
4
th

get mapped to 0 (respectively 1
4
th get mapped to ±1 and 2).

Hence, if for all positions, 1 ≤ i ≤ n, some codewords have 1 in the ith

position then sum of Lee weights of all codewords in a Z4-code of length n

having C1 of dimension k1 and C2 of dimension k1 + k2 is

n

4
(4k1 · 2k2 + 2× 4k1 · 2k2 + 4k1 · 2k2) = n4k1 · 2k2 (1.8)

Minimum weight is less than the average weight of non zero words. There-

fore, Minimum weight ≤ n4k1 .2k2

4k1 .2k2−1 = n + n
|C|−1 . So, if n < |C| − 1, then the

minimum weight is less than n.

1.3 Group Extensions

A sequence of groups and group homomorphisms: . . . → A1 →φ1 A2 →φ2

A3 → . . . is said to be exact at A2 if Im(φ1) = ker(φ2). A sequence is said

to be exact if it is exact at every point of the sequence.

If 0 →φ0 A1 →φ1 A2 →φ2 A3 →φ3 0 is exact then φ1 is one to one since

Im(φ0) = 0 = ker(φ1) and φ2 is onto since ker(φ3) = A3 = Im(φ2). This

sequence is called a short exact sequence.



CHAPTER 1. INTRODUCTION 18

Let E be a group, A be an abelian normal subgroup of E and G = E/A.

Definition An extension of A by G is a short exact sequence

0→ A→ E → G→ 1

Definition Let 0 → A → E →π G → 1 be an extension. A lifting is a

function; λ : G→ E with πλ = IG and λ1 = 0.

Definition An Extension, 0 → A → E →π G → 1, is split if there is a

homomorphism λ : G 7→ E such that πλ = IG. The middle group is then

called a semidirect product denoted by AoG. This is isomorphic to the

direct product A×G.

An extension is split iff E contains a subgroup C ' G with A+ C = E and

A∩C = 0. Here, C is called a complement of A in E. An extension of A by

G determines an action of G on A. Since A is normal in E. We can let G

act on A as

x · a = λx+ a− λx (1.9)

Given an extension, 0 → A → E →π G → 1. Choose a lifting, λ. Then

Im(λ) is transversal (a complete set of coset representatives) of A in E.

Since λ1 = 0, every element of E can be uniquely expressed as a+ λx. Both

λxy and λx+ λy represent the same coset of A then

λx+ λy = [x, y] + λxy (1.10)

for some [x, y] ∈ A. With G’s conjugation action on A,

x · a+ λx = λx+ a (1.11)
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Definition The function [ , ] : G × G 7→ A defined by (1.10) is called a

factor set. The set of all factor sets is a group under pointwise addition

denoted by Z2(G,A).

A function [ , ] : G×G 7→ A for a G-module A is a factor set if and only if

[x, 1] = [1, x] = 0 and (1.12)

x[y, z]− [xy, z] + [x, yz]− [x, y] = 0 (1.13)

(1.12) can be deduced from equation(1.10), by letting y = IG. Equation

(1.11) and associativity of E give (1.13) as follows.

(λx+ λy) + λz = λx+ (λy + λz)

[x, y] + λxy + λz = λx+ [y, z] + λyz

[x, y] + [xy, z] + λxyz = x[y, z] + λx+ λyz

= x[y, z] + [x, yz] + λxyz

For the converse, let [ , ] : G×G 7→ A satisfy (1.12) and (1.13). Define E to

be the set of all ordered pairs (a, x) ∈ A×G with addition:

(a, x) + (b, y) = (a+ xb+ [x, y], xy)

identity (0, I) and −(a, x) = (−x−1a − x−1[x, x−1], x−1) then E is a group.

Define π : E 7→ G by (a, x) 7→ x then π is onto with kernel (a, IG) that can

be identified by A. A lifting can be defined as λx = (0, x).

For an extension of A by G, we can produce two different factor sets

by choosing different liftings. The resulting factor sets would be considered

equivalent. Following is a way to determine equivalent factor sets.

Theorem 1.5 Let 0 → A → E →π G → 1 be an extension. Let, λ and λ′

be different liftings. If [ , ] and ( , ) are their corresponding factor sets then

there is a function ϕ : G 7→ A satisfying:
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• ϕ(1) = 0 and

• [x, y]− (x, y) = xϕ(y)− ϕ(xy) + ϕ(x)

Definition Set of all functions f : G×G 7→ A for which there is a function

ϕ : G 7→ A with ϕ(1) = 0 such that f(x, y) = xϕ(y)− ϕ(xy) + ϕ(x) is called

the coboundary set of G with coefficient set A denoted by B2(G,A).

The coboundary set of a group G with coefficient set A is a subgroup of the

group of factor sets of G with coefficient set A. Two factor sets differing by

a coboundary are said to be equivalent.

Define the second cohomology group of G with coefficient group A to

be H2(G,A) = Z2(G,A)/B2(G,A).

Definition A derivation is a function φ : G 7→ A with φ(xy) = xφ(y) +

φ(x). The set of all derivations, Der(G,A) is an abelian group under point-

wise addition.

Definition A principal derivation(or inner derivation) is a function f :

G 7→ A of the form f(x) = a0 − xa0 for some a0 ∈ A. The set of principal

derivations, IDer(G,A) is a subgroup of Der(G,A).

Let H1(G,A) be the set of cosets of IDer(G,A) in Der(G,A). That is

H1(G,A) = Der(G,A)/ IDer(G,A). This is the first cohomology group

of G with coefficient set A. It gives conjugate classes of complements of A

in AoG.

Two extensions of A by G are equivalent if and only if they fit in a

commutative diagram:
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0 → A → E → G → 0

Id ↓ ↓ ϕ ↓ Id

0 → A → E → G → 0

ϕ is called a stabilizing automorphism of E. The set of stabilizing automor-

phisms is a subgroup of Aut(E) denoted by s(E). Here s(E) ' Der(G,A)

and ϕ ∈ s(E) can be taken to be of the form ϕ(a + λx) = a + 〈x〉 + λx

for an element a + λx ∈ E, a derivation 〈 〉 and a lifting λ. There is a one

to one correspondence between H2(G,A) and the set of equivalent classes of

extensions of A by G.

We can write affine actions as

g · a = ga+ δ(g)

where ga is the linear part of the action and δ(g) ∈ A is the affine part

depending on g. For the action to be well defined, we need δ(I) = 0 and

(g1g2) · a = g1 · (g2 · a). Since,

g1 · (g2 · a) = g1 · (g2a+ δ(g2)) = g1g2a+ g1δ(g2) + δ(g1)

We have, δ(g1g2) = g1δ(g2) + δ(g1). That is the affine part need to be a

derivation. If the derivation is inner then δ(g) = a0 − ga0 for some a0 ∈ A

and

g · a0 = ga0 + a0 − ga0 = a0

On the other hand if a0 is a fixed point of the affine action then

g · a0 = ga0 + δ(g) = a0

giving us an inner derivation δ(g) = a0 − ga0. Hence the derivation is inner

if and only if G has a fixed point. We can make the action linear by choosing

the fixed point to be an origin.
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Define H0(G,A) to be the set of fixed points of G’s linear action on A.

With the help of Cohomology theory, from a short exact sequence of G

modules, 0→ A′ → A→ A′′ → 0, we get a long exact sequence:

0 → H0(G,A′)→ H0(G,A)→ H0(G,A′′)

→ H1(G,A′)→ H1(G,A)→ H1(G,A′′)

→ H2(G,A′)→ H2(G,A)→ H2(G,A′′) → . . .

See [5] for further details.



Chapter 2

A Classification of Z4-Codes

Let C be a quaternary code of length n. Define a pair of binary codes

{C1, C2} by:

• C1 = C (mod 2)

• C2 = h(C ∩ 2Zn4 )

where h is a bijection from 2Zn4 to Zn2 mapping 0 to 0 and 2 to 1 and for

the extension to a map acting coordinatewise. h here stands for half. Let

d (taken from double) be the inverse of h. The map x 7→ x mod 2 is a

homomorphism from Zn4 to Zn2 with kernel 2Zn4 . So its restriction to C is a

homomorphism from C to C1 with a kernel d(C2). By the First Isomorphism

Theorem, |C| = |C1| · |C2|.

23
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2.1 The class C(C1, C2)

For a Z4-code C, let {C1, C2} be the binary pair of Z2-codes defined as

above. Then for a word a ∈ C1, there is an x ∈ C with a = x mod 2 and

h(2x) = a ∈ C2. So C1 is a subgroup of C2. For C with generator matrix

(1.6), the binary code C1 is an [n, k1] code with generator(
Ik1 A α(B)

)
(2.1)

where α(B) = B mod 2. While C2 is an [n, k1 + k2] code with generator Ik1 A α(B)

0 Ik2 C

 (2.2)

For a pair of binary codes {C1, C2} with C1 ≤ C2, let C(C1, C2) be the set

of Z4-codes giving rise to this binary pair as defined above throughout. For

example when C1 = C2 = Extended Hamming code of length 8, the class

C(C1, C2) contains the Nordstrom-Robinson code which has a generator:
1 0 0 0 2 3 1 1

0 1 0 0 1 2 3 1

0 0 1 0 3 1 2 1

0 0 0 1 3 3 3 2


We want to describe the class C(C1, C2) using a fixed pair of binary

codes {C1, C2} defined as above.

Proposition 2.1 Number of Z4-codes in C(C1, C2) is ( 2n

|C2|)
dimC1

Proof We get different codes of C(C1, C2) when adding different even vec-

tors to a basis of C1. From proposition(1.1), the difference in generator

matrices for codes of C(C1, C2) lies in matrix B in the form (1.6). These
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are determined mod 2 by C1 and C2. In other words, codes in C(C1, C2)

correspond to maps;

{basis of C1} 7→ Zn2/C2

extended linearly. If we take coset representatives of C2 to be vectors of the

form [0, 0, ∗]. Number of these cosets is 2n−dim(C2). We can write a function,

f : C1 7→ Zn2/C2 as an dim(C1) × (n − dim(C2)) matrix X. For a vector v

of length dim(C1), we have f : v 7→ [0, 0, vX] mapping basis of C1 to rows of

X. So,

{set of codes} ' {set of all dim(C1)× (n− dim(C2)) matrices X over Z2}

and we can write the general generator matrix for a code C ∈ C(C1, C2) in

the form:  Ik1 A α(B) + d(X)

0 2Ik2 2C

 (2.3)

where α(B) = B mod 2 and X a matrix in Z2. Number of these matrices is

|Z
n
2

C2
|
dimC1

= 2(n−m2)m1 where mi = dim(Ci).

We have a class C(C1, C2) of cardinality 2N for N = (n−m2)m1. It is natural

to look for a bijection between this set and some vector space of dimension

N over Z2.

Definition Let A and B be abelian groups. Let F be the free abelian group

on the set A × B. That is F is Z-linear combinations of all ordered pairs

(a, b). Let K be the subgroup of F generated by all elements of the forms:

• (a+ a′, b)− (a, b)− (a′, b);

• (a, b+ b′)− (a, b)− (a, b′);
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• (ar, b)− (a, rb).

for all a, a′ ∈ A, b, b′ ∈ B, r ∈ Z. The quotient group F/K is called the

tensor product of A and B denoted by A ⊗ B[6]. The coset (a, b) + K of

the element (a, b) in F is denoted by a⊗b. Elements of A⊗B can be written

as finite sums of the form:
∑

i ni(ai ⊗ bi).

In other words, the tensor product of groups A and B is the largest

abelian group generated by symbols a⊗ b for a ∈ A and b ∈ B such that the

map from ordered pairs (a, b) to a⊗ b is linear in each argument.

Let C∗1 = Hom(C1,Z2) be the dual space of C1. Define a linear action of

C∗1 ⊗ Zn2 on C(C1, C2) by the rule

(f ⊗ w)(c) = c+ d(f(c mod 2)w) (2.4)

for f ∈ C∗1 and w ∈ Zn2 . This is an additive homomorphism so (f ⊗w)(C) =

C′ is a Z4-code. Since d(x) is even, (f ⊗ w)(c) ≡ c mod 2. Hence C ′1 = C1

and if c ∈ 2Zn4 then c mod 2 = 0. So (f ⊗ w)(c) = c and C ′2 = C2. Hence,

C′ ∈ C(C1, C2) and the action is well defined.

For a basis {a1, . . . , ak1} of C1, let us fix a basis for C∗1 throughout to be

{f1, . . . , fk1}, where fi(aj) = 1 if i = j and 0 otherwise. Let {w1, . . . , wk3} be

a basis for Zn2/C2 where k3 = n−(k1 +k2) (here k1 and k2 are the dimensions

of the identity matrices in the general generator matrix as in (1.6)) and {wi}

are vectors of the form [0, 0, ∗] taken from the standard basis of Zn2 . That is

{wi} has a 1 in the (k1 + k2 + i)th position and 0 elsewhere.

C∗1 ⊗Zn2 is an abelian group acting transitively on C(C1, C2). That is, for

all codes C1,C2 ∈ C(C1, C2), there is an x ∈ C∗1 ⊗Zn2 such that x ·C1 = C2.

This is true since if C1 is a Z4-code corresponding to matrix X1 and C2
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is a Z4-code corresponding to matrix X2, then we can act on C1 by x =∑
(nij +mij)fi ⊗ wj where nij = {X1}ij and mij = {X2}ij to get C2.

Note that, if w ∈ C2 then d(w) ∈ d(C2) and d(f(c mod 2)w) ∈ C for

all c ∈ C. Thus elements of C∗1 ⊗ C2 fix C and form the kernel of this

action. Hence, A = C∗1 ⊗ Zn2/C2 acts regularly on C(C1, C2). Since for all

C1,C2 ∈ C(C1, C2), there is a unique x ∈ A such that x ·C1 = C2. So if W

is the set of matrices X then W ' A = C∗1 ⊗ Zn2/C2 ' C(C1, C2).

For binary codes, {C1, C2, D1, D2}, suppose that C1 ≤ C2 and D1 ≤ D2.

Then C(C1, C2) ' C∗1 ⊗ Zn2/C2 and C(D1, D2) ' D∗1 ⊗ Zm2 /D2. So,

C(C1 ⊕D1, C2 ⊕D2) ' (C1 ⊕D1)⊗ Z(n+m)
2 /(C2 +D2)

= (C1 ⊕D1)⊗ (Zn2/C2 ⊕ Zm2 /D2)

= (C1 ⊗ Zn2/C2)⊕ (C1 ⊗ Zm2 /D2)

⊕(D1 ⊗ Zn2/C2)⊕ (D1 ⊗ Zm2 /D2)

' C(C1, C2)⊕ C(D1, D2)⊕ (C1 ⊗ Zm2 /D2)⊕ (D1 ⊗ Zn2/C2)

Proposition 2.2 All Z4-codes of C(C1, C2) have same number of words of

even weight.

Proof As mentioned in the proof of proposition(2.1), codes in C(C1, C2)

differ by changing the function from a basis of C1 to coset representatives of

C2. This changes 0↔ 2 or 1↔ 3. Hence, parity of coordinates of codewords

is the same for different Z4-codes. As all words of d(C2) have even weights,

number of words of even weight in a Z4-code is determined by that of its

corresponding C1. In fact,

number of words = number of words × |C2|

of even weight in of even weight

C ∈ C(C1, C2) in C1
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2.2 Cohomology of C(C1, C2)

Consider extensions of Zn2 by C1:

0→ Zn2 → E →π C1 → 0 (2.5)

C1 acts trivially on Zn2 . (This is a conjugation action but C1 ≤ Zn2 and Zn2 is

an abelian group which makes the action trivial).

Set of extensions is defined by different addition tables in E. These are

defined by factor sets which are functions [ , ] : C1 × C1 → Zn2 defined by:

λx+ λy = [x, y] + λxy

where λ is a lifting, λ(x) = (a, x) for some a ∈ Zn2 . Addition in Z4-codes

of C(C1, C2) is given by one of the addition tables (a factor set) defining

an extension: 0 → Zn2 → E → C1 → 0. For elements,{(a, x), (b, y)} ∈ E,

addition is defined as:

(a, x) + (b, y) = (a+ b+ [x, y], x+ y) (2.6)

In a Z4-code C ∈ C(C1, C2), the even words are represented by d(C2) ≤

d(Zn2 ). If a1, a2 ∈ C2 then d(a1), d(a2) ∈ C and d(a1)+d(a2) = d(a1+a2), de-

fined by addition in C2. These can be represented by elements (a1, 0), (a2, 0) ∈

E and so (a1, 0) + (a2, 0) = (a1 + a2, 0) for a1, a2 ∈ C2 ≤ Zn2 . On the other

hand since C1 = C mod 2, addition of non even words in C is not defined

by addition in C1 since addition in Z2 is different from the one in Z4. These

can be represented by elements (a1, x1), (a2, x2) ∈ E so addition is given by

(2.6) above for x1, x2 ∈ C1. A factor set corresponding to a code in the class

of codes of the Hamming example is defined by the addition table below:
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1000 0111 0100 1011 0010 1101 0001 1110 1100 1100 . . .

1000 0111 1000 0111 0000 0011 0000 0101 0000 0110 1000 0100 . . .

0100 1011 0000 0011 0100 1011 0000 1001 0000 1010 0100 1000 . . .

0010 1101 0000 0101 0000 1001 0010 1101 0000 1100 0000 1100 . . .

. . . . . . . . . . . . . . . . . .
. . .

We may choose the lifting:

1000 0111 → (0 . . . 0, 1000 0111)

0100 1011 → (0 . . . 0, 0100 1011)

0010 1101 → (0 . . . 0, 0010 1101)

0001 1110 → (0 . . . 0, 0001 1110)

1100 1100 → (0000 0011, 1100 1100)

1010 1010 → (0000 0101, 1010 1010)

1001 1001 → (0000 0110, 1001 1001)

0110 0110 → (0000 1001, 0110 0110)

0101 0101 → (0000 1010, 0101 0101)

0011 0011 → (0000 1100, 0011 0011)

1110 0001 → (0000 1111, 1110 0001)

1101 0010 → (0000 1111, 1101 0010)

1011 0100 → (0000 1111, 1101 0010)

0111 1000 → (0000 1111, 0111 1000)

1111 1111 → (0000 1111, 1111 1111)

with the addition table above to get the Z4-code corresponding to X = 0.

A lifting differing from this by a homomorphism δ : C1 → Zn2/C2 will give

us another code in the class C(C1, C2). In general, we may fix a factor set
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defining addition in an extension corresponding to a class of codes C(C1, C2)

to be

[x, y] = x ∗ y for x, y ∈ C1

We get different codes by choosing different liftings so different codes are

obtained from a set of equivalent extensions. But two extensions of Zn2 by

C1 are equivalent if and only if they fit in a commutative diagram:

0 → Zn2 → E → C1 → 0

Id ↓ ↓ ϕ ↓ Id

0 → Zn2 → E → C1 → 0

where ϕ is a stabilizing automorphism of E of the form ϕ(a + λx) = a +

〈x〉 + λx for an element a + λx ∈ E, a derivation 〈 〉 ∈ Der(C1,Zn2 ) and a

lifting λ : C1 → E. If the images of a derivation are chosen to be in C2, we

would be mapping E to the same corresponding code.

Consider extensions of C2 by C1:

0→ C2 → E → C1 → 0

set of factor sets defined by these extensions is a subgroup of the set of the

factor sets defined by the earlier extension. Since adding words in d(C2) to

a Z4-code stays within the Z4-code, we may regard factor sets defined by

this extensions as zero factor sets when looking for our addition table. And

define our addition table in codes of C(C1, C2) from factor sets of extensions:

0→ Zn2/C2 → E → C1 → 0

With the lifting used in the example above Im(λ) is a subgroup of E and so

the extensions are split as extensions of Zn2/C2 by C1.
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Now we have a set of equivalent codes (≡ set of codes in C(C1, C2)) de-

fined by an extension and its equivalent extensions defined by the derivation

set Der(C1,Zn2/C2). Since C1 acts trivially on Zn2 then Der(C1,Zn2/C2) =

Hom(C1,Zn2/C2). We get these homomorphisms by fixing images of a ba-

sis of C1 and extending linearly. Hence, we get the right number of Z4-

codes in C(C1, C2). Note that InDer(C1,Zn2/C2) = {0} so H1(C1,Zn2/C2) =

Der(C1,Zn2/C2) and C(C1, C2) ' H1(C1,Zn2/C2) ' C∗1 ⊗ Zn2/C2 as shown in

Section(2.1).

Z4-codes can be precisely represented by subgroups of the extensions (2.5)

above generated by {(b, I) : b ∈ C2} and {(f(a), a) : for a ∈ C1 and a

homomorphism f : C1 → Zn2}.

2.3 Dual codes of C(C1, C2)

For a given class C(C1, C2), we can work out number of self orthogonal or

self dual codes. To do this, we need the following.

Proposition 2.3 If A is an m × n matrix over a field F and y is a given

vector in Fm then set of solutions x ∈ Fn of the equation Ax = y is either

empty or form an affine subspace in Fn.

Proof From linear algebra tools, we can get solutions of Ax = y by com-

puting Reduced Gaussian elimination for the system [A : y]. If we end up

with a system with a zero row to the left of the colon facing a nonzero entry

to the right of the colon, the set of solutions is empty. Otherwise solutions

are of the form:
∑

ij∈[n] xijvij + s for some vij , s ∈ Fm.

Theorem 2.1 Let C(C1, C2) be a set of Z4-codes giving rise to {C1, C2} and
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W be its isomorphic Z2 vector space (set of m1 × (n − m2) matrices over

Z2 where mi = dim(Ci)). Then, C(C1, C2) can only contain self orthogonal

codes if C2 ≤ (C1)
⊥ and words of C1 are doubly even. In this case, the set of

self orthogonal codes in C(C1, C2) is either empty or form an affine space of

dimension at least (n−m2)m1−
(
m1

2

)
. For C(C1, C2) to have self dual codes,

n needs to be even as well.

Proof A word in a Z4-code can be expressed in the form: a1 + d(e + c2)

where a1 ∈ C1, e ∈ Zn2 and c2 ∈ C2. For C ∈ C(C1, C2) to be self orthogonal,

we need (a1 + d(e+ c2)) · d(c′2) = 0 mod 4 for c′2 ∈ C2. But

(a1 + d(e+ c2)) · d(c′2) = a1 · d(c′2) = 0 mod 4⇔ a1 · c′2 = 0 mod 2

That is C2 ≤ C⊥1 . We should also have

(a1 + d(e+ c2)) · (a1 + d(e+ c2)) = 0 mod 4

but

(a1 + d(e+ c2)) · (a1 + d(e+ c2)) = a1 · a1 + 2(a1 · d(e)) mod 4

= a1 · a1 mod 4

since a1 · d(e) = 2(a1 · e). Hence, words of C1 need to be doubly even to have

a self orthogonal code in C(C1, C2).

Now if C is a self orthogonal code and (a1+d(e+c2)), (a′1+d(e′+c′2)) ∈ C,

then

(a1 + d(e+ c2)) · (a′1 + d(e′ + c′2)) = a1 · a′1 + (a1 · d(e′) + a′1 · d(e))

= 0 mod 4

But a1 · d(e′) = 0 mod 2 and a1 · a′1 = 0 mod 2 since C1 ≤ C2 ≤ C1
⊥. Hence,

for C to be a self orthogonal code either
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a1 · a′1 = 2 mod 4 and (a1 · e′ + a′1 · e) = 1 mod 2

or a1 · a′1 = 0 mod 4 and (a1 · e′ + a′1 · e) = 0 mod 2

If this is satisfied for a basis of C1, it will be satisfied for all words. So every

pair in the basis of C1 give us a relation to be satisfied by variables in matrix

X. Number of relations is
(
m1

2

)
and number of variables is (n −m2)m1. So

we can write this as a system of linear equations to be solved. If solvable,

we get a solution set isomorphic to a vector space of dimension at least

(n − m2)m1 −
(
m1

2

)
depending on linear dependence of the relations. We

can say more about the linear dependence of the relations above in the case

where C1 = C2 using the following proposition.

Proposition 2.4 In a set C(C1, C2) of Z4-codes rising from binary codes

{C1, C2} with C1 = C2 ≤ C⊥1 , if {bi} are rows of matrix α(B) then {bi} are

linearly independent. Here, α(B) = B mod 2.

Proof When C1 = C2, the general generator matrix for a Z4-code in

C(C1, C2) is of the form: (
Ik1 B

)
where B is a matrix in Z4. Let {ri} be rows of the generator matrix of C1.

The vectors bi satisfy bi · bi = 1 and bi · bj = 0 for i 6= j, since ri has just

one more entry 1 than bi and these 1’s occur in different positions. Suppose

that we have a linear combination equal to zero, say
∑
aibi = 0 for some

ai ∈ Z2 and i running from 1 to k1. Now for any fixed j, taking the dot

product of this linear combination with bj gives aj = 0. So the bi are linearly

independent.

Looking back at proof of theorem(2.1), for each pair of rows {ri, rj}, if {ei, ej}

are the corresponding rows of X then the relation we get for such a pair is



CHAPTER 2. A CLASSIFICATION OF Z4-CODES 34

of the form (bi · ej + bj · ei) = kij where kij = 0 or 1. We can arrange these

relations in a matrix

b2 b1 0 . . . 0 . . . 0 . . . 0

b3 0 . . . 0 b1 . . . 0 . . . 0

. . .

bk 0 . . . 0 0 . . . 0 . . . b1

−−− −−− −−− −−− −−−

0 . . . 0 b3 b2 . . . 0 . . . 0

. . .

0 . . . 0 bk 0 . . . 0 . . . b2

−−− −−− −−− −−− −−−

. . . . . . . . . . . . . . .

−−− −−− −−− −−− −−−

0 . . . 0 0 . . . 0 . . . bk bk−1


Every block has linearly independent rows and different blocks are linearly

independent. Here also, m1 = m2. Hence if (n−m1)m1 ≥
(
m1

2

)
the system is

solvable and the solution set of such a system is an affine space of dimension

(n −m1)m1 −
(
m1

2

)
. But C1 ≤ C2 ≤ C⊥1 . So m1 ≤ m2 ≤ (n −m1). Hence,

(n−m1)m1 ≥ m2 ·m1 ≥ m1 ·m1 ≥ m1
(m1−1)

2
. Therefore, in a set C(C1, C2) of

Z4-codes rising from binary codes {C1, C2} with C1 = C2 ≤ C⊥1 , if words of

C1 are doubly even then the dimension of the affine space of self orthogonal

codes in this class is (n−m1)m1 −
(
m1

2

)
.

For a self dual code, C = C⊥. But dim(C⊥) = n − dim(C). Hence n

needs to be even. This theorem gives a method for finding self dual codes in

a class C(C1, C2).

Corollary 2.1 Let C1 be a binary self dual code of length n. If words of
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C1 are doubly even then the class C(C1, C1) has 2
n(n+2)

8 self dual Z4-codes.

Otherwise the class C(C1, C1) has no self dual codes.

Proof C1 is self dual so dim(C1) = n
2
. From Theorem(2.1) and Proposition(2.4),

if dim(Ci) = mi then set of self dual Z4-codes in C(C1, C2) with C1 = C2

form an affine space with dimension:

(n−m2)m1 −
(
m1

2

)
= (n− n

2
)
n

2
− n

4
(
n

2
− 1)

=
n

2
(
n

2
− n

4
+

1

2
)

=
n(n+ 2)

8

If C1 ≤ C2 then C⊥2 ≤ C⊥1 . This is true since having C1 ≤ C2 and v ∈ C⊥2
gives v · x = 0 for all x ∈ C2. But C1 ≤ C2. So v · x = 0 for all x ∈ C1.

That is v ∈ C⊥1 and so C⊥2 ≤ C⊥1 . Hence, we can define a class C(C⊥2 , C⊥1 ) of

Z4-codes.

Proposition 2.5 C(C⊥2 , C⊥1 ) consists of duals of the codes in C(C1, C2).

Proof Take C ∈ C(C1, C2), so that

C mod 2 = C1, h(C ∩ 2Zn4 ) = C2.

We have to show that C⊥ ∈ C(C⊥2 , C⊥1 ). That is,

C⊥ mod 2 = C⊥2 , h(C⊥ ∩ 2Zn4 ) = C⊥1 .

For v ∈ C⊥, we have v · c = 0 in Z4 for all c ∈ C.

(i) If c ∈ d(C2) = C ∩ 2Zn4 , let c = 2c′, for some c′ ∈ C2. Then v · c′ = 0

in Z2 (if we read v mod 2, it doesn’t make a difference since 2 · 1 =
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2 · 3 = 2 mod 4 and 2 · 0 = 2 · 2 mod 4). So (v mod 2) ∈ C⊥2 and

C⊥ mod 2 ≤ C⊥2 . Conversely if (v mod 2) ∈ C⊥2 then (v mod 2) · c = 0

in Z2 for all c ∈ C2 and v · d(c) = 0 in Z4. So C⊥ mod 2 = C⊥2 .

(ii) Part (i) says that

C⊥ mod 2 = (h(C ∩ 2Zn4 ))⊥

for any Z4-code C. Applying this to C⊥, we have

C1 = C mod 2

= C⊥⊥ mod 2

= (h(C⊥ ∩ 2Zn4 ))⊥.

Taking the dual of both sides gives C⊥1 = h(C⊥ ∩ 2Zn4 ), as required.

We can prove this result by some matrix multiplications by showing that if

C ∈ C(C1, C2) then C⊥ ∈ C(C⊥2 , C⊥1 ) using their generator matrices. We can

use MacWilliams transforms defined in (1.3) to get weight enumerators of a

class C(C⊥2 , C⊥1 ) from those of C(C1, C2).

Hence if C1 = C2 = C⊥1 , a Z4-code C ∈ C(C1, C1) if and only if C⊥ ∈

C(C1, C1). Having a code with certain weight enumerator tells us that there is

a code in the same class with a weight enumerator equals to its MacWilliams

transform. The class C(C1, C1) with a self dual C1 can be split into a set of

self dual codes and a set of pairs {C,C⊥}.



Chapter 3

Computing Symmetrized

Weight Enumerators

As defined earlier, the symmetrized weight enumerator of a Z4-code is a three

variable homogeneous polynomial defined as:

sweC(x, y, z) =
∑
c∈C

xn0(c)yn1(c)+n3(c)zn2(c)

We can obtain weight enumerators of C1 and C2 from the symmetrized weight

enumerator of C as:

weC1(x, y) =
1

|C2|
· sweC(x, y, x)

weC2(x, y) = sweC(x, 0, y)

We can also obtain the Lee weight enumerator which is the same as the

weight enumerator of the Gray map image of C as:

LeeC(x, y) = sweC(x2, xy, y2)

Now fix C1 and C2. Let us try to get information about swe’s of codes in

C(C1, C2) from C1 and C2.

37
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3.1 Average Weight Enumerators

Theorem 3.1 The average symmetrized weight enumerator of the codes in

C(C1, C2) is given by

swe(x, y, z) =
|C2|
2n

(weC1(x+ z, 2y)− (x+ z)n) + weC2(x, z)

Proof Let mi = dim Ci, for i = 1, 2. For any v ∈ C1 there are 2m2 words

of each C ∈ C(C1, C2) that gives v when read modulo 2. If v 6= 0 then each

vector in d(Zn2 ) can be added to v to give words of the same parity pattern.

If v has weight j, the corresponding term in weC1 is xn−jyj. The words of the

same parity pattern are counted by (x+z)n−j(2y)j in the sum of symmetrized

weight enumerators of codes in C(C1, C2). But this expression is too much by

a factor of 2n/|C2| for the average, since it counts 2n words for each v ∈ C1

whereas there are only |C2| of them in each code C ∈ C(C1, C2). So the

contribution to the average from nonzero words of C1 is

|C2|
2n

(weC1(x+ z, 2y)− (x+ z)n)

If v = 0 then the corresponding words of all C ∈ C(C1, C2) are the same.

They are the words of d(C2), so they are counted by weC2(x, z).

For C1 = C2 = Extended Hamming code of length 8.

weC1 = x8 + 14x4y4 + y8

Average symmetrized weight enumerator is

swe = 14(x+ z)4y4 + 16y8 + (x8 + 14x4z4 + z8)

Corollary 3.1 If all codes of a class C(C1, C2) have same swe then this

should be equal to swe.
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Using the same principle used above (replacing 2y by y+w), we can get the

average complete weight enumerator in C(C1, C2) to be

cwe(x, y, z, w) =
|C2|
2n

(weC1(x+ z, y + w)− (x+ z)n) + weC2(x, z)

Proposition 3.1 The average cwe of codes in C(C⊥2 , C⊥1 ) is equal to the

MacWilliams transform of the average cwe of codes in C(C1, C2). All other

weight enumerators satisfy this as well since they are defined in terms of cwe.

Proof Result follows since the MacWilliams transform is linear. We can

verify this directly as shown below

The average cwe of C(C1, C2) is

cwe(x, y, z) =
|C2|
2n

(weC1(x+ z, y + w)− (x+ z)n) + weC2(x, z)

Average cwe for C(C⊥2 , C⊥1 ) is

|C⊥1 |
2n

(weC⊥2 (x+ z, y + w)− (x+ z)n) + weC⊥1 (x, z)

=
|C⊥1 |
2n

(
1

|C2|
weC2(x+ y + z + w, x− y + z − w)− (x+ z)n) +

1

|C1|
weC1(x+ z, x− z)

=
1

22k1+k2
weC2(x+ y + z + w, x− y + z − w)− 1

2k1
(x+ z)n +

1

2k1
weC1(x+ z, x− z)

MacWilliams transform of the average of C(C1, C2) is the following:

1

|C|
[
|C2|
2n

(weC1(2x+ 2z, 2x− 2z)− (2x+ 2z)n) + weC2(x+ y + z + w, x− y + z − w)]

=
1

22k1+k2
[
2k1+k2

2n
(2nweC1(x+ z, x− z)− 2n(x+ z)n) + weC2(x+ 2y + z, x− 2y + z)]

=
1

2k1
(weC1(x+ z, x− z)− (x+ z)n) +

1

22k1+k2
weC2(x+ y + z + w, x− y + z − w)

same as above result.

Corollary 3.2 If C1 = C⊥1 then swe (also cwe) of the class of codes C(C1, C1)

is equal to its MacWilliams transform.
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3.2 Variation in Symmetrized Weight Enu-

merators of C(C1, C2)

Define an affine subspace of polynomials to be a coset of a finitely generated

space of polynomials. We can use codes {C1, C2} to get information about

variations of swe’s in C(C1, C2). Here is some of what we can get supported

with what happens in the Hamming example where C1 = C2 with a generator

matrix:

GC1 =


1 0 0 0 0 1 1 1

0 1 0 0 1 0 1 1

0 0 1 0 1 1 0 1

0 0 0 1 1 1 1 0


• Each word x ∈ C has a unique expression as x = c1 + c2 for c2 ∈ d(C2)

and c1 a sum of rows of the generator matrix.

• |d(C2)| = |C2| = 2m2 and |C1| = 2m1 so |C| = 2m1+m2 where mi =

dim(Ci). In the Hamming example, we would have |C1| = |C2| = 16

and |C| = 16× 16 = 256.

• Let C∗ be the set of words including the ith row of the generator matrix

and C∗∗ be the set of words not including the ith row as a summand.

• A change in the ith row affects words of C∗ and so affecting their

monomial representations in a weight enumerator. But words of C∗∗

will not be affected. |C∗| = 2m1−1× 2m2 = |C∗∗| since we need to count

different sums of the rows excluding the ith row. So in the Hamming

case this would be |C∗| = 8× 16 = 128 = |C∗∗|.

• If C2 is a code where there is a word which is nonzero for every coor-



CHAPTER 3. COMPUTING SYMMETRIZEDWEIGHT ENUMERATORS41

dinate position, 1
2

of the words in d(C2) have a 0 in a position and the

other 1
2

have 2 in that position, as deduced in Proposition(1.2).

• If c1 with (c1 mod 2) ∈ C1 is even in a certain position, then 1
2

of its

variations with words of d(C2) will have a 0 in that position and the

other half will have 2 in that position. If the position carries an odd

then 1
2

of its variations with words of d(C2) will have 1 and the other

1
2

will have 3 there.

• C∗∗ is a subgroup of C whose words are even in the ith coordinate

position. For all other coordinate positions, we have equally many 0’s,

1’s, 2’s and 3’s given that conditions of Proposition(1.3) are satisfied.

All words of C∗ will be odd in the ith position and in all other positions

it will have equally many 0’s, 1’s, 2’s and 3’s. So this number will

be |C∗|
4

= 2m2+m1−1/4 = 2m2+m1−3. In the Hamming case, number

of words having 0 (also 2, 1 or 3) in a position other than the ith

position is 4 × 8 = 32. Let {aj} be rows of the generator matrix GC1 .

Taking i = 1, words of C∗ are {a1, a1 + aj for j 6= 1, a1 + al + aj for

l, j 6= 1, a1 + a2 + a3 + a4}.

• When a 1 is changed to 3 or a 3 is changed to 1 in a word, its monomial

representation in the swe is not affected. So there is a possible change

when we exchange 0’s and 2’s. So we should look at words having even

entry in the position changed.

• If weC1 =
∑

c∈C1
xn0(c)yn1(c) then for a code C ∈ C(C1, C2) we would

have,

sweC(x, y, z) =
∑
c∈C1

Pn0(c)(x, z)y
n1(c)
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where Pn0(c) are homogeneous polynomials of degree n0(c) with coeffi-

cients summing to |C2|. Changes made in the generator matrix affect

these polynomials. If C1 = C2 = C⊥1 then all words of C2 have even

weights since a ·a = 0 for all a ∈ C2 and 1 . . . 1 ∈ C2. With this, we get

all powers of x even or all odd in polynomials Pn0(c). Also, coefficients

of xizn0(c)−i and xn0(c)−izi is the same in a polynomial Pn0(c). In the

Hamming example,

weC1(x, y) = x8 + 14x4y4 + y8

Hence all swe’s of codes C ∈ C(C1, C2) will be of the form:

sweC(x, y, z) = weC1(x, z) +
∑

{c∈C1,wt(c)=4}

P4(x, z)y
4 + 16y8

So here we would have P4(x, z) of the form (a0(x
4 + z4) + a2x

2z2) or

a1(x
3z + xz3) where 2a0 + a2 = 16 and 2a1 = 16⇒ a1 = 8.

• If a 0 is changed to 2 in a word, its monomial representation in the

swe would change from xeyfzg to xe−1yfzg+1 whereas when a 2 is

changed to 0, the corresponding polynomial representation will change

to xe+1yfzg−1. In the Hamming example, if a word and its transversals

with d(C2) words have a polynomial representation 8y4(x3z+xz3) then

coord. change monomial rep. change Reasoning

0→ 2 2xy4z3 → 2y4z4 Equally likely to have any of

2→ 0 6xy4z3 → 6x2y4z2 {2220, 2202, 2022, 0222}

0→ 2 6x3y4z → 6x2y4z2 Equally likely to have any of

2→ 0 2x3y4z → 2x4y4 {2000, 0200, 0020, 0002}

So a0 = 2 and a2 = 12 gives a possible polynomial representation

P4 = 2x4 + 12x2z2 + 2z4. If a word and its transversals with words of
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d(C2) have a polynomial representation 2x4y4 + 12x2y4z2 + 2y4z4 then

a change in a position give the following

coord. change monomial rep. change Reasoning

0→ 2 2x4y4 → 2x3y4z 0000 is the only option

0→ 2 6x2y4z2 → 6xy4z3 Equally likely to have {2200,

2→ 0 6x2y4z2 → 6x3y4z 2020, 2002, 0220, 0202, 0022}

2→ 0 2y4z4 → 2xy4z3 2222 is the only option

giving P4(x, z) = 8(x3z + xz3). So these are the only options we may

have.

• Considering the first row of the generator, words of C∗ and the possible

changes in swe’s are listed below:

1000 0111 ⇒ 1000 2111 2y4(x4 + z4 + 6x2z2)⇒ 8y4(x3z + xz3)

1100 1122 + v2 ⇒ 1100 3122 + v2 ⇒ no change

1010 1212 + v3 ⇒ 1010 3212 + v3 ⇒ no change

1001 1221 + v4 ⇒ 1001 3221 + v4 ⇒ no change

1110 2223 + v23 ⇒ 1110 0223 + v23 8y4(x3z + xz3)↔ 2y4(x4 + z4 + 6x2z2)

1101 2232 + v24 ⇒ 1101 0232 + v24 8y4(x3z + xz3)↔ 2y4(x4 + z4 + 6x2z2)

1011 2322 + v34 ⇒ 1011 0322 + v34 8y4(x3z + xz3)↔ 2y4(x4 + z4 + 6x2z2)

1111 3333 + v234 ⇒ 1111 1333 + v234 ⇒ no change

Net change a multiple of 2y4[2(x4 + z4 + 6x2z2)− 8(x3z + xz3)]
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1000 0111 ⇒ 1000 0311 ⇒ no change

1100 1122 + v2 ⇒ 1100 1322 + v2 ⇒ no change

1010 1212 + v3 ⇒ 1010 1012 + v3 2y4(x4 + z4 + 6x2z2)↔ 8y4(x3z + xz3)

1001 1221 + v4 ⇒ 1001 1021 + v4 2y4(x4 + z4 + 6x2z2)↔ 8y4(x3z + xz3)

1110 2223 + v23 ⇒ 1110 2023 + v23 8y4(x3z + xz3)↔ 2y4(x4 + z4 + 6x2z2)

1101 2232 + v24 ⇒ 1101 2032 + v24 8y4(x3z + xz3)↔ 2y4(x4 + z4 + 6x2z2)

1011 2322 + v34 ⇒ 1011 2122 + v34 ⇒ no change

1111 3333 + v234 ⇒ 1111 3133 + v234 ⇒ no change

Net change a multiple of 2y4[2(x4 + z4 + 6x2z2)− 8(x3z + xz3)]

• Adding other even vectors to 1000 0111 will always result in adding or

subtracting the expression:

Exp = 2y4[2x4 + 2z4 + 12x2z2 − 8(x3z + xz3)] = 4y4(x− z)4

Changes made to different rows will affect swe as above. Hence any

change in the generator matrix result in adding a number of Exp and

set of different swe’s fall in a one dimensional affine subspace in this

example.

• Rows of the generator matrix that are G = Aut(C1)∩Aut(C2) permu-

tation equivalent give same polynomial representations.

• Changes in the polynomial representations above are computed regard-

less any code. So we may choose any code C0 ∈ C(C1, C2) to be a

reference code, gather different expressions we may have from different

matrices X in (2.3) to have for C ∈ C(C1, C2),

sweC(x, y, z) = sweC0 + a1Exp1 + . . .+ akExpk (3.1)
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for some integers a1, . . . , ak. In the Hamming example choosing C0 to

be the code corresponding to X = 0 in generator matrix form (2.3), we

get

sweC0(x, y, z) = (x8 + 14x4z4 + z8) + 16y8 + 20y4(x4 + 6x2z2 + z4)

+8y4(4x3z + 4xz3)

So possible swe’s would have coefficients of x4y4 (respectively y4z4),

x3y4z (respectively xy4z3) and x2y4z2 in the range:

x4y4 x3y4z x2y4z2

sweNR → 0 112 0

. . .

sweC0 → 20 32 120

. . .

28 0 168

Other monomials have fixed coefficients in all swe’s. Without choosing

a reference code C0, we can deduce that swe’s are of the form:

sweC(x, y, z) = swe + a1Exp1 + . . .+ akExpk (3.2)

but to choose proper integer constants {a1, . . . , ak} we better use swe

of a code in C(C1, C2). For instance, computing weight enumerators for

all codes in the class C(C1, C1) with C1 = Extended Hamming code of

length 8, we get only the weight enumerators listed below:

swe1 = x8 + 14x4z4 + z8 + 16y8 + 112x3y4z + 112xy4z3

swe2 = x8+14x4z4+z8+16y8+ 8x4y4+80x3y4z+48x2y4z2+80xy4z3+8y4z4
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swe3 = x8+14x4z4+z8+16y8+ 12x4y4+64x3y4z+72x2y4z2+64xy4z3+12y4z4

swe4 = x8+14x4z4+z8+16y8+ 16x4y4+48x3y4z+96x2y4z2+48xy4z3+16y4z4

swe5 = x8+14x4z4+z8+16y8+ 20x4y4+32x3y4z+120x2y4z2+32xy4z3+20y4z4

swe6 = x8+14x4z4+z8+16y8+ 24x4y4+16x3y4z+144x2y4z2+16xy4z3+24y4z4

Proposition 3.2 The set of weight enumerators of a set C(C1, C2) is con-

tained in an affine subspace of polynomials.

Proof There are only finitely many codes in C(C1, C2), and so there are only

finitely many swe’s, say p0, p1, . . . , ps, that occur. These swe’s are contained

in the affine subspace:

{p0 + a1(p1 − p0) + . . .+ as(ps − p0)|ai ∈ Q}

We comment that the dimension of the smallest affine subspace containing

the swe’s of C(C1, C2) is often very much smaller than the Proof of Proposition

(3.2) seems to suggest.

Corollary 3.3 If all expressions defining the affine subspace of weight enu-

merators as in (3.1) are multiples of linear combinations of formally self

dual codes and swe is equal to its MacWilliams transform then all codes of

C(C1, C2) are formally self dual. For instance, when C1 = C⊥1 then all codes

of C(C1, C1) are formally self dual if expressions defining the affine subspace

of weight enumerators are multiples of linear combinations of formally self

dual codes.

From Corollary (2.1) for C1 = C⊥1 , the class C(C1, C1) contain self dual codes.

From Corollary (3.1), in this class swe is equal to its MacWilliams transform.
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So all linear combinations of swe and swe’s of self dual cades are equal to their

MacWilliams transform. Expressions made from these linear combinations

are equal to their MacWilliams transform. Hence, codes with swe’s made

from these linear combinations are formally self dual.

Following are more examples showing the variation of swe’s in a class of

Z4 codes. The first example show a class with a fixed swe for all codes in

C(C1, C2). The second example is an interesting example like the Hamming

example.

Example Let C(C1, C2) be the set of Z4-codes having generator matrices:
1 0 0 1 0 1 1

0 1 0 1 1 0 1

0 0 1 0 1 1 1

0 0 0 2 2 2 0

+

 0 0 d(X)

0 0 0



where X is a 3× 4 matrix over Z2, then all codes have:

swe = (x7 + 7x4z3 + 7x3z4 + z7) + 14x3y4 + 42x2y4z + 42xy4z2 + 14y4z3

Example If C1 = C2 = extended Golay Code, a generator matrix for C1
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can be taken to be [I12A] where I12 is the 12× 12 identity matrix and

A =



1 1 0 1 1 1 0 0 0 1 0 1

1 0 1 1 1 0 0 0 1 0 1 1

0 1 1 1 0 0 0 1 0 1 1 1

1 1 1 0 0 0 1 0 1 1 0 1

1 1 0 0 0 1 0 1 1 0 1 1

1 0 0 0 1 0 1 1 0 1 1 1

0 0 0 1 0 1 1 0 1 1 1 1

0 0 1 0 1 1 0 1 1 1 0 1

0 1 0 1 1 0 1 1 1 0 0 1

1 0 1 1 0 1 1 1 0 0 0 1

0 1 1 0 1 1 1 0 0 0 1 1

1 1 1 1 1 1 1 1 1 1 1 0


[4]. Here C1 have words of weights 0, 8, 12, 16 and 24. For words of weights

16 and 12, the case is similar to the extended hamming code example, all

even patterns are included and no odd pattern so an odd change would give

us one expression in each case. For words of weight 8, we have 211 even

patterns included in the set of even positions but these are not all the even

patterns (total number is 216

2
= 215) and an even change may give us another

expression. From computations, we got an expression for even changes and

another one for odd changes as shown below. The dimensions of the affine
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space in this case at most 4 with

Ex1 = 256x7y16z + 1792x5y16z3 + 1792x3y16z5 + 256xy16z7

−(32x8y16 + 896x6y16z2 + 2240x4y16z4 + 896x2y16z6 + 32y16z8)

for weight 16 words

Ex2 = 24x11y12z + 440x9y12z3 + 1584x7y12z5 + 1584x5y12z7 + 440x3y12z9 + 24xy12z11

−(2x12y12 + 110x10y12z2 + 660x8y12z4 + 924x6y12z6 + 330x4y12z8 + 22x2y12z10)

for weight 12 words

Ex3 = 2(8x14y8z2 + 112x12y8z4 + 504x10y8z6 + 800x8y8z8 + 504x6y8z10 + 112x4y8z12

+8x2y8z14)− 2(x16y8 + 140x12y8z4 + 448x10y8z6 + 870x8y8z8 + 448x6y8z10

+140x4y8z12 + y8z16)

and

Ex4 = 2(x15y8z + 35x13y8z3 + 273x11y8z5 + 715x9y8z7 + 715x7y8z9 + 273x5y8z11

+35x3y8z13 + xy8z15)− 2(x16y8 + 140x12y8z4 + 448x10y8z6 + 870x8y8z8

+448x6y8z10 + 140x4y8z12 + y8z16)

for weight 8 words

Computations are shown below starting with different expressions we get

for words of weight 16 and 12 then ending with expressions of weight 8 words.
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diff.weight C1 words trans. for even xe poly. rep

011111111111001000111010 {011111111111001000111010, 32x8y16 + 896x6y16z2

wt(w) = 16 211111111111221222111212, +2240x4y16z4 + 896x2y16z6

031111111111203220113032, +32y16z8

. . .}

trans. for odd xe poly. rep

{211111111111001000111010, 256x7y16z + 1792x5y16z3

011111111111221222111212, +1792x3y16z5 + 256xy16z7

. . .}

trans. for even xe poly. rep

000000000001111111111110 {000000000001111111111110, 2x12y12 + 110x10y12z2

wt(w) = 12 200000000001331333111312, +660x8y12z4 + 924x6y12z6

020000000001313331113132, +330x4y12z8 + 22x2y12z10

. . .}

trans. for odd xe poly. rep

{200000000001111111111110, 24x11y12z + 440x9y12z3

000000000001331333111312, +1584x7y12z5 + 1584x5y12z7

220000000001313331113132, +440x3y12z9 + 24xy12z11

. . .}
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trans. for xe = 0 poly. rep

or equiv

100000000000110111000101 {100000000000110111000101, 2(x16y8 + 140x12y8z4

wt(w) = 8 120000000000312331002123, +448x10y8z6 + 870x8y8z8

102000000000132311020323, +448x6y8z10 + 140x4y8z12

. . .} +y8z16)

trans. for even xe ' 0 poly. rep

{122000000000110111000101, 2(8x14y8z2 + 112x12y8z4

102000000000312331002123, +504x10y8z6 + 800x8y8z8

120000000000132311020323, +504x6y8z10 + 112x4y8z12

. . .} +8x2y8z14)

trans. for odd xe poly. rep

{120000000000110111000101, 2(x15y8z + 35x13y8z3

100000000000312331002123, +273x11y8z5 + 715x9y8z7

122000000000132311020323, +715x7y8z9 + 273x5y8z11

. . .} +35x3y8z13 + xy8z15)

More computation on these polynomials on different examples is supplied

in Appendix (A.4). In those examples we can see that choosing different

binary codes having same weight enumerator may give corresponding classes

of Z4-codes, Ci(C1, C1), with swe’s contained in different affine spaces.

3.3 Possible swe’s of self dual codes

Let C1 = C2 = C⊥1 . We can use Gleason’s technique [8] to find possible swe’s

of self dual Z4-codes in C(C1, C2). Since C1 is self dual, all words of C1 have
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even weights. So swe’s of Z4-codes of C(C1, C2) satisfy:

swe(x, y, z) = swe(x,−y, z)

Here also self dual codes satisfy |C| = 4
n
2 and the MacWilliam’s transform.

swe(x, y, z) =
1

|C|
swe(x+ 2y + z, x− z, x− 2y + z)

=
1

4
n
2

swe(x+ 2y + z, x− z, x− 2y + z)

=
1

2n
swe(x+ 2y + z, x− z, x− 2y + z)

= swe(
x+ 2y + z

2
,
x− z

2
,
x− 2y + z

2
)

So swe’s of self dual codes are invariant polynomials of the group G =

〈A1, A2〉 where

A1 =


1 0 0

0 −1 0

0 0 1

 and A2 =


1
2

1
2

1
2

1 0 −1

1
2
−1

2
1
2


Here, A2

1 = A2
2 = (A1A2)

4 = I. So G has order 8. Molien’s Theorem and

some computations show that the Hilbert series of C[x, y, z] is 1
(1−t)(1−t2)(1−t4) .

Hence the dimension of the nth homogeneous component is equal to the

number of ways of writing n as a sum of 1’s, 2’s and 4’s.

• F1 = x+ z is a weight enumerator of a self dual Z4-code {0, 2}.

• F2 = x2 + z2 + 2y2 does not represent a self dual code but it represent

a code which is invariant under G. For C = {00, 11, 22, 33}, the dual

C⊥ = {00, 13, 22, 31} which has same swe.

• F4 = x4 +6x2z2 +z4 +8y4 represents a weight enumerator of a self dual

code. C = {0000, 0202, 0022, 0220, 2020, 2200, 2002, 2222, 1111, 1313,

1133, 1331, 3131, 3311, 3113, 3333}.
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These polynomials are independent. Applying Gleason’s technique, we get

the following.

Theorem 3.2 The symmetrized weight enumerator of a self dual Z4-code of

length n in a class C(C1, C2) with C1 = C2 = C⊥1 has the form:∑
4j1+2j2+j3

a1(x+ z)j3(x2 + z2 + 2y2)j2(x4 + 6x2y2 + z4 + 8y4)j1

Result is true also for formally self dual codes.

For instance, a self dual Z4-code of length 8 has a weight enumerator of the

form

a1F
8
1 +a2F

6
1F2+a3F

4
1F

2
2 +a4F

2
1F

3
2 +a5F

4
2 +a6F

4
1F4+a7F

2
4 +a8F

2
2F4+a9F

2
1F2F4

which give the following

(a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9)x
8

+ (8a1 + 6a2 + 4a3 + 2a4 + 4a6 + 2a9)x
7z

+ (2a2 + 4a3 + 6a4 + 8a5 + 4a8 + 2a9)x
6y2

+ (28a1 + 16a2 + 8a3 + 4a4 + 4a5 + 12a6 + 12a7 + 8a8 + 8a9)x
6z2

+ (12a2 + 16a3 + 12a4 + 4a9)x
5y2z

+ (56a1 + 26a2 + 12a3 + 6a4 + 28a6 + 14a9)x
5z3

+ (4a3 + 12a4 + 24a5 + 8a6 + 16a7 + 12a8 + 8a9)x
4y4

+ (30a2 + 28a3 + 18a4 + 24a5 + 28a8 + 14a9)x
4y2z2

+ (70a1 + 30a2 + 14a3 + 6a4 + 6a5 + 38a6 + 38a7 + 14a8 + 14a9)x
4z4

+ (16a3 + 24a4 + 32a6 + 16a9)x
3y4z

+ (40a2 + 32a3 + 24a4 + 24a9)x
3y2z3

+ (56a1 + 26a2 + 12a3 + 6a4 + 28a6 + 14a9)x
3z5
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+ (8a4 + 32a5 + 32a8 + 16a9)x
2y6

+ (24a3 + 24a4 + 48a5 + 48a6 + 96a7 + 40a8 + 16a9)x
2y4z2

+ (30a2 + 28a3 + 18a4 + 24a5 + 28a8 + 14a9)x
2y2z4

+ (28a1 + 16a2 + 8a3 + 4a4 + 4a5 + 12a6 + 12a7 + 8a8 + 8a9)x
2z6

+ (16a4 + 32a9)xy
6z

+ (16a3 + 24a4 + 32a6 + 16a9)xy
4z3

+ (12a2 + 16a3 + 12a4 + 4a9)xy
2z5

+ (8a1 + 6a2 + 4a3 + 2a4 + 4a6 + 2a9)xz
7

+ (16a5 + 64a7 + 32a8)y
8

+ (8a4 + 32a5 + 32a8 + 16a9)y
6z2

+ (4a3 + 12a4 + 24a5 + 8a6 + 16a7 + 12a8 + 8a9)y
4z4

+ (2a2 + 4a3 + 6a4 + 8a5 + 4a8 + 2a9)y
2z6

+ (a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9)z
8
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Using this form to get possible weight enumerators of self dual codes for the

Hamming example, we will have the following system to be solved

1 1 1 1 1 1 1 1 1 : 1

8 6 4 2 0 4 0 0 2 : 0

0 2 4 6 8 0 0 4 2 : 0

28 16 8 4 4 12 12 8 8 : 0

0 12 16 12 0 0 0 0 4 : 0

56 26 12 6 0 28 0 0 14 : 0

0 30 28 18 24 0 0 28 14 : 0

70 30 14 6 6 38 38 14 14 : 14

0 40 32 24 0 0 0 0 24 : 0

0 0 0 8 32 0 0 32 16 : 0

0 0 0 16 0 0 0 0 32 : 0

0 0 0 0 16 0 64 32 0 : 16


letting a9 be a free variable, solution of the linear system need to satisfy:

a1 = −3

4
+

1

4
a9, a2 = −a9, a3 = 2a9, a4 = −2a9,

a5 = a9, a6 =
3

2
− 1

2
a9, a7 =

1

4
− 1

4
a9, a8 = −a9

for a9 = 0 we get

a1 = −3

4
, a6 =

3

2
, a7 =

1

4
, and ai = 0 for all i 6= 1, 6, 7

giving

F = x8+14x4z4+z8+16x4y4+48x3y4z+96x2y4z2+48xy4z3+16y4z4+16y8

for a9 = 1 we get F +Exp. Hence even though not all codes are self dual in

this class, all swe’s of this class are invariant under G. This can be deduced
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also from Corollary (3.3), since here Exp is a multiple of the difference be-

tween self dual codes. With Theorem (2.1), we found self dual codes having

the weight enumerators:

swe = x8 + 14x4z4 + z8 + 16x4y4 + 48x3y4z + 96x2y4z2 + 48xy4z3 + 16y4z4 + 16y8

swe = x8 + 14x4z4 + z8 + 112x3y4z + 112xy4z3 + 16y8



Chapter 4

Actions on C(C1, C2)

Let the semidirect product Zn2oG where G = Aut(C1)∩Aut(C2) ≤ Sn act on

C(C1, C2). Elements of Zn2 act coordinatewise. If ν ∈ Zn2 has an ith coordinate

1, acting by ν on a code C ∈ C(C1, C2) changes signs of entries in the ith

coordinate of C. This action preserves the class C(C1, C2). It exchanges 1’s

and 3’s and does not affect the evens. Elements of G permute coordinates.

This automorphism group is chosen to preserve the class C(C1, C2).

4.1 Defining action of Zn2 on W

For a, b ∈ Zn2 , define a ∗ b ∈ Zn2 to be the coordinatewise multiple of coordi-

nates of a and b. Acting by (1, . . . , 1) fixes any Z4-code since changing signs

of all coordinates fixes a linear code. So Zn2 ’s action is not faithful. The

kernel of this action in the case where C2 = C1 can be described as follows.

Theorem 4.1 Let C1 be a binary code, C(C1, C1) be the set of Z4-codes

corresponding to {C1, C1} and A = {a1, . . . , ak1} be a basis of C1. If there is

57
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no coordinate in which all words of C1 is zero and A can not be partitioned

into two sets; {A1,A2} (that is A1 ∪ A2 = A and A1 ∩ A2 = ∅) such that

ai ∗ al = (0, . . . , 0) for all ai ∈ A1 and al ∈ A2 then the kernel of the Zn2 ’s

action is the subgroup 〈(1 . . . 1)〉.

Proof For ν ∈ Zn2 and c ∈ C, we can describe Zn2 ’s action on C(C1, C2) as

follows:

ν ◦ c = c+ d(ν ∗ (c mod 2)) (4.1)

for ν ∈ Zn2 . Codes of C(C1, C2) are linear. So if c ∈ C ∈ C(C1, C2) then

−c ∈ C. But −c = (1, . . . , 1) ◦ c. Hence (1, . . . , 1) is in the kernel of Zn2 ’s

action.

Let ei = (0, . . . , 0, 1, 0, . . . , 0), having 0 for all positions j 6= i and 1 for

j = i. If the ith position of all words of C1 is 0, then ei∗(c mod 2) = (0, . . . , 0)

for all codewords c ∈ C ∈ C(C1, C2) and so ei · C = C for all Z4-codes

in the class C(C1, C2). So the kernel of Zn2 ’s action contains the subgroup

〈(1 . . . 1), {ei : {c}i = 0, ∀ c ∈ C1}〉.

Let ν be in the kernel of Zn2 ’s action on C(C1, C1). Here C1 = C2 so the

general generator matrix of a code in C(C1, C2) has the form:(
Ik1 α(B) + d(X)

)
Notice that

• If ν ∗a = (0, . . . , 0) for some a ∈ A then {ν}i = 0 whenever {a}i is odd

and ν ◦ a = a.

• There is no coordinate for which all C1 codewords is zero so there is

at least one basis vector which is 1 in a specific coordinate. If ν ∗ a =

(0, . . . , 0) for all basis vectors a ∈ A then ν = (0, . . . , 0).
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• If ν ∗ a 6= (0, . . . , 0) for some a ∈ A then ν ◦ a = −a and {ν}i = 1

whenever {a}i = 1.

• If ν ∗ a 6= (0, . . . , 0) for all a ∈ A then ν = (1, . . . , 1).

• If ν 6= (0, . . . , 0) or (1, . . . , 1) then for some ai ∈ A, we have ν ∗ ai =

(0, . . . , 0) and for other aj ∈ A, we have ν ∗ aj 6= (0, . . . , 0). Let

A1 = {a ∈ A such that ν ∗ a = (0, . . . , 0)} and A2 = {a ∈ A such

that ν ∗a 6= (0, . . . , 0)} then ν has an ith coordinate 0 in every position

where there is an element in A1 with 1 in its ith coordinate. ν has an

ith coordinate 1 in every position where there is an element in A2 with

1 its ith coordinate. ν fixes the codes so A is partitioned into two sets

{A1,A2} such that ai ∗ aj = (0, . . . , 0) for all ai ∈ A1 and aj ∈ A2.

If C1 = 〈a1, . . . , ak1〉 such that for some ai in the basis, ai ◦ al = ±al for all

al in the set of basis vectors then such an ai is in kernel of Zn2 ’s action also.

In general, if A is partitioned into {A1, . . .Ak} with as · at = 0 for all

as ∈ As and at ∈ At then the set of vectors ν with coordinates {ν}i = 1

for all coordinates such that Aj for some j has a word with nonzero ith

coordinate and {ν}i = 0 otherwise are in the kernel of Zn2 ’s action.

Let Z be the kernel of Zn2 ’s action. Then Zn2/Z acts faithfully on C(C1, C2).

Corresponding Zn2 action on W (set of all matrices X in different generator

matrices of codes in C(C1, C2)) can be described by watching behavior of

actions of a basis of Zn2 as follows.

Let ei = (0, . . . , 0, 1, 0, . . . , 0) have an ith coordinate 1 and 0 elsewhere.

For a Z4-code with a generator matrix of the form:

G =

 Ik1 A B

0 2Ik2 2C


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Let {ai} be rows of matrix A above, {bi} be rows of matrix B and {ci} be

rows of matrix C. Let ei act on a code with the above generator matrix.

Then,

• for 1 ≤ i ≤ k1 and 1 ≤ j ≤ k2,

ei ◦G =

 Ik1 A B

0 2Ik2 2C

+


0 . . . 0 0 . . . 0

0 d(ai) d(bi)

0 . . . 0 0 . . . 0

0 0 0



∼

 Ik1 A B

0 2Ik2 2C

+


0 . . . 0

0 0 d(bi) +
∑

j d(aij)cj

0 . . . 0

0 0 0


• For k1 < i ≤ k1 + k2:

ei ◦G =

 Ik1 A B

0 2Ik2 2C

+


0 . . . d(a1i) . . . 0

0 . . . 0

0 . . . d(ak1i) . . . 0

0 0 0



∼

 Ik1 A B

0 2Ik2 2C

+


d(a1i)ci

0 0 . . .

d(ak1i)ci

0 0 0


• For k1 + k2 < i ≤ n:

ei ◦G =

 Ik1 A B

0 2Ik2 2C

+


0 . . . d(b1i) . . . 0

0 0 . . .

0 . . . d(bk1i) . . . 0

0 0 0


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Hence we can define Zn2 ’s action on W as translation by matrices Mi as:

ν ·W = W +
∑

1≤i≤n

d({ν}i) ·Mi (4.2)

for ν ∈ Zn2 and

Mi =




0 . . . 0

α(bi) +
∑

j aijcj

0 . . . 0

 for 1 ≤ i ≤ k1


(a1i)ci

. . .

(ak1i)ci

 for k1 < i ≤ k1 + k2


0 . . . α(b1i) . . . 0

. . .

0 . . . α(bk1i) . . . 0

 for k1 + k2 < i ≤ n

Zn2/Z acts faithfully by translation with 2k1(n−(k1+k2))

2n−dim(Z) = 2k1(n−(k1+k2))−n+dim(Z)

orbits each of size 2n−dim(Z).

If W is the set of all matrices X as in the generator matrix. Let W0 ≤ W

be the set of matrices spanned by matrices Mi defined above. Then adding

a matrix from W0 to a matrix X gives a corresponding Z4-code with same

swe as the swe of the code corresponding to X. If the kernel of Zn2 ’s action is

〈1 . . . 1〉 then W0 ' Zn2/〈1 . . . 1〉. We can also describe action of Zn2/〈1 . . . 1〉

as an affine action having a trivial linear action and a derivation obtained

from the split extension of W by Zn2/〈1 . . . 1〉

0→ W → E → Zn2/〈1 . . . 1〉 → 0
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The factor set we are considering here would be the zero factor set so addition

in this extension would be coordinatewise as in the direct product. Action of

sign changing of coordinates then would be an affine action with a trivial lin-

ear action and a derivation in Der(Zn2/〈1 . . . 1〉,W ) = Hom(Zn2/〈1 . . . 1〉,W )

defined by δ(0) = 0, δ(e1) = M1, . . . , δ(en) = Mn, and W0 = 〈M1, . . . ,Mn−1〉

since Mn = M1 + · · · + Mn−1. Hence orbit of 0 would be W0 and orbit of

a ∈ W would be a+W0.

4.2 Derivations Computation

Derivations are functions φ : G 7→ A satisfying φ(xy) = xφ(y)+φ(x). We can

think of derivations as different complement of A in the semidirect product

AoG. When G ≤ Sn is generated by odd order automorphisms, computing

derivations can be made easier as described below.

4.2.1 Describing G’s linear action

G acts on Zn2 by permuting coordinates. Actions of g ∈ G are represented

by permutation matrices. These are matrices that have exactly one nonzero

coordinate in every row and every column. If an ith coordinate is fixed by g

then we would have aii = 1 in Mg and so (1− λ) in that position of matrix

Mg − λI. This gives a factor (1− λ)m in the characteristic polynomial with

m ≥ number of fixed coordinates by g. If a permutation has order k then

Mk
g = I and the characteristic polynomial will divide λk − 1. Precisely, for

every cycle of length k in a permutation, we have a corresponding factor

λk−1 in the characteristic polynomial. Hence, the characteristic polynomial

of a permutation is a product of factors (λki − 1) one for each cycle with
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corresponding cycle length ki. So, this polynomial will be of the form

(λ− 1)m(λk1−1 + . . .+ λ+ 1) . . . (λkm−1 + . . .+ λ+ 1)

where m is the number of cycles of the permutation.

If g has odd order then all cycles have odd lengths and number of entries

in λki−1+ · · ·+λ+1 is odd for every cycle. So (λ−1) is not a factor for any of

these polynomials. Also, these polynomials would be a product of irreducible

polynomials with distinct roots since they divide λord(g) − 1. So the action

is diagonalizable in this case. When n (code’s length) is even, power of the

factor (λ− 1) in the characteristic polynomial is then ≥ 2.

Let k be the order of a permutation then (Akg − 1)v = 0 for any v. Note

that,

(xk − 1) = (x− 1)(xk−1 + . . .+ 1)

For odd k, the factors (x−1) and (xk−1+ . . .+1) are coprime. So V = V1+V2

where V1 = (Ag − I)V and V2 = (Ak−1g + . . . + Ag + I)V and any v can be

expressed as v = (Ag − I)v1 + (Ak−1g + . . . + Ag + I)v2. Here, V1 and V2 are

disjoint since if v ∈ V1 ∩ V2 then v = (Ag − I)v1 = (Ak−1g + . . . + Ag + I)v2

for some v1, v2 ∈ V . So we would have (Ag − I)2v1 = 0⇒ (Ag − I)v1 = 0⇒

v1 = 0. Hence, V = V1 ⊕ V2.

When G ≤ Sn act on Zn2 , a permutation g ∈ G with m cycles has the

characteristic polynomial p = (xk1 − 1)(xk2 − 1) . . . (xkm − 1) where ki are

cycle lengths for different cycles of g.

g ∈ Aut(C1) for a subspace C1 ≤ Zn2 act on C1. Its characteristic polynomial,

say p1 divides p. This g act on Zn2/C1 with characteristic polynomial p2 and

p1 · p2 = p. For p1 = amx
m + am−1x

m−1 + . . . a1x + a0, let p̃1 = a0x
m +

a1x
m−1 + . . . am−1x + am. If p1 is a characteristic polynomial of g’s action
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on C1. Then p̃1 is the characteristic polynomial for the action on C∗1 . If

C1 ≤ C2 ≤ C⊥1 . Then p1 divides p (the characteristic polynomial on Zn2 ).

Characteristic polynomial on Zn2/C1 is p/p1 and characteristic polynomial on

Zn2/C2 then divides p/p1.

An automorphism of odd order acts on Zn2 with a diagonalizable action.

When it acts on a subspace, V1, the action on V1 is diagonalizable also.

Let V1 and V2 be subspaces of Zn2 . If G acts on these spaces. We can let

it act on V1 ⊗ V2 as g · (V1 ⊗ V2) = g · V1 ⊗ g · V2.

If g ∈ G acts on V1 with diagonalizable action. Let Ag be the correspond-

ing matrix of action. Then Ag has a basis of eigenvectors say {νi} with a

corresponding eigenvalues {λi} and g · νi = λiνi. Similarly if g’s action on

V2 is diagonalizable and Bg is its matrix of action. Then Bg has a basis of

eigenvectors say {ϕi} with a corresponding eigenvalues {µi} and g ·ϕi = µiϕi.

So {νi ⊗ ϕj} is a basis for V1 ⊗ V2 and g · (νi ⊗ ϕj) = λiµj(νi ⊗ ϕj).

4.2.2 First Cohomology Group with Coefficient Set Zn
2

As defined earlier, a derivation is a function, φ : G→ W , satisfying:

φ(g1g2) = φ(g1)
g2 + φ(g2)

Derivations are determined by their values on a set of generators. A deriva-

tion δ ∈ Der(〈g〉,Zn2 ) is determined by δ(g) since

δ(g2) = δ(g)g + δ(g) = (g + I) · δ(g)

and inductively

δ(gk) = (gk−1 + . . .+ g + I) · δ(g)
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If g has order ord(g) then a derivation defined by δ(g) = x need to satisfy

(gord(g)−1 + . . .+ g + I) · x = 0 (4.3)

This is the space of vectors satisfying

(Aord(g)−1g + . . .+ Ag + I) · x = 0

If g has odd order then as given above in the characteristic polynomial com-

putation,

Der(〈g〉,Zn2 ) = {v : (Aord(g)−1g + . . .+ Ag + I)v = 0}

= {(Ag − I)v}

This is the Inner derivation set. Hence for an automorphism g of odd order,

all derivations Der(〈g〉,Zn2 ) are inner. Also note that:

• (Ag − I)a = (Ag − I)(1 . . . 1 + a) since (Ag − I)(1 . . . 1) = 0 . . . 0.

• Dimension of the Inner derivation set, IDer(〈g〉,Zn2 ) is equal to n−

number of cycles. Since δ(g) = a − ag is zero only if ag = a. But

dimension of fixed points space for g ∈ G on Zn2 is equal to number of

cycles.

• If G is generated by a set {g1, g2, . . . , gk}. Then

Dim(IDer(G, V )) = n−Dim(intersection of fixed point spaces of all gi)

= n−Dim(∩{v : (Agi − I)v = 0 for all g ∈ G})

H1(G,Zn2 ) can be described as the set of conjugate classes of complements

of Zn2 in Zn2 oG. To compute H1(G,Zn2 ) we need to:

1. Check all possible complement.
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2. Divide them into conjugate classes.

3. Assign a representative for each conjugate class.

4. Check derivation conditions for the set of conjugate class representa-

tives.

|H1(G,Zn2 )| is then the number of conjugate class representatives satisfying

the derivation conditions.

If G is generated by a set {g1, g2, . . . , gk} of odd order permutations then

for every gi, all derivations are inner in Der(〈gi〉,Zn2 ). So derivations in

Der(〈gi〉,Zn2 ) have images of the form a − ag for some a ∈ Zn2 . The set

Der(G,Zn2 ) is then a subset of Der(〈g1〉,Zn2 )× . . .×Der(〈gk〉,Zn2 ).

Let us start with G = 〈g1, g2〉. Since all derivation images are given by

their images on a set of generators of G, we shall define complements by their

values on the generators. Complements conjugate to the zero complement

will be of the form {(a0 − ag10 , g1), (a0 − a
g2
0 , g2)}. All possible complements

here will be of the form {(a1 − ag11 , g1), (a2 − ag22 , g2)}. So a complement

represents an inner derivation if and only if a1 = a2.

We can choose {(0, g1), (0, g2)} as a representative for the zero com-

plement. To get representatives for other conjugate classes, note that if

{(a1 − ag11 , g1), (a2 − ag22 , g2)} is a complement then {(0, g1), ((a2 − ag22 ) −

(a1 − ag21 ), g2)} = {(0, g1), ((a2 − a1) − (a2 − a1)g2 , g2)} is a complement in

the same conjugate class. So complements of the form {(0, g1), (a0−ag20 , g2)}

will cover the whole set of conjugate class representatives. If ag10 = a0 then

we will have a complement conjugate to the zero complement. So a set of

representatives with no 2 elements in the same conjugate class would be the

set {(0, g1), (a0 − ag20 , g2)} with a0 chosen to be in Zn2 not fixed by g1 or g2.
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Number of these elements is
2n×|H0(G,Zn

2 )|
|H0(〈g1〉,Zn

2 )|×|H0(〈g2〉,Zn
2 )|

.

Let δ(g1) = 0 and δ(g2) = x. Computation of H1(G,Zn2 ) might be done

by hand. Checking conditions here is done easily by summing coordinates

of a cycle for a certain permutation. We can make this process even simpler

using the following:

• δ(gi1g
j
2) = δ(gj2). The automorphisms {gi1g

j
2} have different orders. We

need to check that (4.3) is satisfied for all automorphisms {gi1g
j
2} with

x = δ(gj2). No need to check the conditions for automorphisms {gi2g
j
1}

since this is a set of inverses of the earlier set and so it will not add

further constrains. If δ(gi1g
j
2) = δ(gj2) = x satisfy derivation order

condition so does δ(g−j2 g−i1 ). Since ord(gi1g
j
2) = ord(g−j2 g−i1 ) and if

((gi1g
j
2)
ord−1 + . . .+ (gi1g

j
2) + I)x = 0

then multiplying by (g−j2 g−i1 )ord−1, we get

(I + (g−j2 g−i1 ) + . . .+ (g−j2 g−i1 )ord−1)x = 0

• Once the previous check is done. We don’t need to check conditions

for {(gi1g
j
2)
m} or {(gi2g

j
1)
m}. Since conditions on this will be the same

obtained earlier.

• Still need to check conditions for automorphisms {gi11 gi22 gi31 }, {gi11 gi22 gi31 gi42 }, . . .

Once we get a set of derivation class representatives for G = 〈g1, g2〉. Let

derivation values be {0, rep1, rep2, . . .} on 〈g1, g2〉 and compute derivations

of G = 〈g1, g2, g3〉 similarly. And keep on extending G until we get the

derivation modulo inner derivations set for G = 〈g1, g2, . . . , gk〉.
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4.2.3 H1(G,Zn
2) for the Automorphism Group of the

Hamming Example

The method we have so far simplifies computing first cohomology when G is

generated by odd order elements. In fact, G can be generated by a set of odd

order elements if and only if it has no subgroup of index 2. The automorphism

group of the hamming example, G = 〈(2843567), (1234)(5678)〉 satisfies this.

Where we can write

(1234)(5678) = (12345)(45678)

= (45)(35)(25)(15)(78)(68)(58)(48)

= (45)(35)(78)(68)(25)(15)(58)(48)

= (345)(678)(125)(458)

= (345)(687)(687)(125)(458)

= (345)(687)(1257684)

and {(345)(687), (1257684)} ∈ G. SoG = 〈(2843567), (345)(687), (1257684)〉.

Let h1 = (1257684), h2 = (345)(687) and h3 = (2843567). Since all hi

have odd orders, all derivations are inner inDer(〈hi〉,Zn2 ). Let us assume that

the derivation value is zero on 〈h1〉 and compute H1(〈h1, h2〉,Zn2 ). Nonzero

complements of Zn2 in Zn2 o 〈h1, h2〉 would be of the form:

{(0, h1), (x− xh2 , h2)}

Here x is chosen to be an element in Zn2 not fixed by h1 or h2. Let x =

(a1, a2, a3, a4, a5, a6, a7, a8). Then x is fixed by h1 if xh1 = x. That is if

a1 = a2 = a4 = a5 = a6 = a7 = a8

Hence fixed space by h1 is spanned by

{(1, 1, 0, 1, 1, 1, 1, 1), (0, 0, 1, 0, 0, 0, 0, 0)}
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We need to pick x to be not in the subspace spanned by this set.

δ(h2) = x− xh2

= (0, 0, a3 + a5, a3 + a4, a4 + a5, a6 + a7, a7 + a8, a6 + a8)

For x = (1, 1, 0, 1, 1, 1, 1, 1) or (0, 0, 1, 0, 0, 0, 0, 0) we get δ(h2) =

(0, 0, 1, 1, 0, 0, 0, 0). This gives a complement conjugate to the zero

complement. So we need to exclude this derivation value from the set of

complements defining derivations at the end of computations.

Now we need to start checking derivation conditions for δ(h1) = 0 and

δ(h2) = (0, 0, a3 + a5, a3 + a4, a4 + a5, a6 + a7, a7 + a8, a6 + a8). Note

that δ(hi1h2) = δ(h2) and so

• For g = h1h2 = (1234)(5678), we need a4 + a5 = 0 and so δ(h2) =

(0, 0, a3 + a4, a3 + a4, 0, a6 + a7, a7 + a8, a6 + a8).

• For g = h21h2 = (1342658), we need a7 +a8 = 0. So δ(h2) = (0, 0, a3 +

a4, a3 + a4, 0, a6 + a7, 0, a6 + a7).

• For g = h31h2 = (16)(28)(34)(57), we get a6 + a7 = 0. So δ(h2) =

(0, 0, a3 + a4, a3 + a4, 0, 0, 0, 0). This is an inner derivation given

by choosing x fixed points of h1 mentioned above.

Hence, H1(〈h1, h2〉,Zn2 ) = {0}.

Now assume that derivation value is zero on 〈h1, h2〉 and try computing

H1(G,Zn2 ). Complements of Zn2 on Zn2 oG would be of the form:

{(0, h1), (0, h2), (x− xh3 , h3)}

and x should not be chosen to be fixed by 〈h1, h2〉. The subspace fixed by h1

is

(Zn2 )h1 = 〈(1, 1, 0, 1, 1, 1, 1, 1), (0, 0, 1, 0, 0, 0, 0, 0)〉
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as obtained above. x = (a1, a2, a3, a4, a5, a6, a7, a8) is fixed by h2 if

a3 = a5 = a4 and a6 = a7 = a8

So subspace fixed by h2 is

(Zn2 )h2 = 〈(1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0),

(0, 0, 1, 1, 1, 0, 0, 0), (0, 0, 0, 0, 0 , 1, 1, 1)〉

Intersection of these two subspaces is 〈(1, . . . , 1)〉

δ(h3) = x− xh3

= (0, a2 + a7, a3 + a4, a4 + a8, a3 + a5, a5 + a6, a6 + a7, a2 + a8)

For x = (1, . . . , 1), we get δ(h3) = (0, . . . , 0), so nothing to exclude from the

solution set at the end.

Now we need to start checking derivation conditions for δ(h1) = δ(h2) = 0

and δ(h3) defined above. Here again δ(hh3) = δ(h3) for all h ∈ 〈h1, h2〉.

• For g = h2h3 = (28)(46), we need a7 = a8 and a4 + a8 = a5 + a6 or

a7 = a8 = a4 + a5 + a6. So δ(h3) = (0, a2 + a4 + a5 + a6, a3 + a4, a5 +

a6, a3 + a5, a5 + a6, a4 + a5, a2 + a4 + a5 + a6)

• For g = h1h2h3 = (1862574), we need a3 + a4 = 0 so δ(h3) = (0, a2 +

a3 + a5 + a6, 0, a5 + a6, a3 + a5, a5 + a6, a3 + a5, a2 + a3 + a5 + a6).

• For g = h21h2h3 = (1548)(27), we need a2 + a5 = 0 and a2 + a6 = 0 so

δ(h3) = (0, a2 + a3, 0, 0, a2 + a3, 0, a2 + a3, a2 + a3).

• For g = h1h3 = (1835264), we need a2 + a3 = 0 so δ(h3) = (0, . . . , 0).

Hence, H1(G,Zn2 ) = {0} for G = 〈h1, h2, h3〉.
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4.2.4 First Cohomology Group with Coefficient Set

V1 ⊗ V2

For δ(g) = x =
∑
aij(νi ⊗ ϕj) to define a derivation in Der(〈g〉, V1 ⊗ V2) it

needs to satisfy (gord(g)−1 + . . .+ g + I) · x = 0. But

(gord(g)−1 + . . .+ g + I) · x =
∑

(gord(g)−1 + . . .+ g + I) · aij(νi ⊗ ϕj)

=
∑

((λiµj)
ord(g)−1 + . . .+ λiµj + 1)aij(νi ⊗ ϕj)

So δ(g) defines a derivation in Der(〈g〉, V1 ⊗ V2) if and only if

((λiµj)
ord(g)−1 + . . .+ λiµj + 1) = 0 or aij = 0

since {νi ⊗ ϕj} are linearly independent. Hence

Dim(Der(〈g〉, V1 ⊗ V2)) = |{{λi, µj} : ((λiµj)
ord(g)−1 + . . .+ λiµj + 1) = 0}|

If g has odd order then ((λiµj)
ord(g)−1 + . . . + λiµj + 1) has odd number of

terms. Thus λiµj = 1 does not give a derivation.

For µj = 1, all λi 6= 1 satisfy the equation since these eigenvalues are

chosen to be zeros of the characteristic polynomial on V1. And these poly-

nomials divide xord(g) − 1. Similarly for λi = 1 all µj 6= 1 satisfy the above

equation. What about λi 6= 1, µj 6= 1 and λiµj 6= 1. Characteristic polyno-

mial on V1⊗ V2 need to divide (xk1 − 1)(xk2 − 1) . . . (xkm − 1). If g has order

k characteristic polynomial divides xk−1 = (x−1)(xk−1 + . . .+x+ 1). Here

x = 1 is not a zero for (xk−1 + . . .+x+ 1). Eigenvalues of V1⊗V2 are {λiµj}

so zero’s of (xk−1 + . . .+ x+ 1) are precisely all λiµj 6= 1. We have also,

Inder(〈g〉, V1 ⊗ V2) = {f : f(g) = a0 − ag0 for a0 ∈ V1 ⊗ V2}

but

νi ⊗ ϕj − (νi ⊗ ϕj)g = (1− λiµj)(νi ⊗ ϕj)



CHAPTER 4. ACTIONS ON C(C1, C2) 72

which is nonzero when λiµj 6= 1. Hence,

Dim(Inder(〈g〉, V1 ⊗ V2) = |{{λi, µj} : λiµj 6= 1}|

= Dim(Der(〈g〉, V1 ⊗ V2))

Giving, H1(〈g〉, V1 ⊗ V2) = {0}.

For G = 〈g1, g2〉 with {g1, g2} of odd orders. All derivations are inner in

Der(〈gi〉, V1 ⊗ V2) and Der(G, V1 ⊗ V2) is a subset of Der(〈g1〉, V1 ⊗ V2) ×

Der(〈g2〉, V1 ⊗ V2). So δ ∈ Der(G, V1 ⊗ V2) is defined by δ(g1) = a1 − ag11
and δ(g2) = a2 − ag22 and δ is inner if and only if a1 = a2. So here also, we

can compute derivations just like we did earlier with coefficient set Zn2 . Then

we would have number of elements in H1(G, V1 ⊗ V2) is number of maps δ

defined by δ(g1) = 0 and δ(g2) = a0− ag20 satisfying derivation conditions for

a0 chosen to be elements in V1⊗ V2 not fixed by g1 or g2. Then computation

of H1(G, V1 ⊗ V2) is extended as before for G = 〈{g1, g2, . . . , gk}〉.

4.2.5 H1(G,C∗1 ⊗ Zn
2/C2) for the Hamming Example

Here G = 〈h1, h2, h3〉 for h1 = (1257684), h2 = (345)(687) and h3 =

(2843567). All hi have odd orders so all derivations are inner inDer(〈hi〉, C∗1⊗

Zn2/C2). We may follow the method above to compute first cohomology.

g ∈ G act on C∗1 and Zn2/C2 so we can let it act on C∗1 ⊗Zn2/C2 as described

above. An element x ∈ C∗1 ⊗ Zn2/C2 can be represented as a sum:

x = (1, 0, 0, 0)⊗ (a1, a2, a3, a4) + (0, 1, 0, 0)⊗ (a5, a6, a7, a8)

+(0, 0, 1, 0)⊗ (a9, a10, a11, a12) + (0, 0, 0, 1)⊗ (a13, a14, a15, a16)

for ai ∈ Z2. We can act on these elements by the corresponding 4×4 matrices

of action on C∗1 and Zn2/C2.
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Just like computations of derivations with coefficient set Zn2 . Let us as-

sume that derivation value is zero on 〈h1〉 and compute H1(〈h1, h2〉, C∗1 ⊗

Zn2/C2). Complements of W = C∗1 ⊗ Zn2/C2 in W o 〈h1, h2〉 would be of the

form {(0, h1), (x−xh2 , h2)}, where x is chosen to be elements in W not fixed

by h1 or h2. Elements of W = C∗1 ⊗ Zn2/C1 fixed by h1 = (1257684) can be

obtained from actions on C∗1 and Zn2/C1. Matrix of action on C1 is

M(h1,C1) =


0 1 0 1

0 0 0 1

0 0 1 1

1 0 0 0

 and M(h1,C∗1 )
= M−1

(h1,C∗1 )
=


0 0 0 1

1 1 0 0

0 1 1 0

0 1 0 0


Characteristic polynomial on C∗1 is (x − 1)(x3 + x2 + 1). So characteristtic

polynomial on C1 is (x−1)(x3+x+1). Since characteristic polynomial on Zn2
is (x−1)2(x6+x5+x4+x3+x2+x+1) = (x−1)2(x3+x+1)(x3+x2+1) then

characteristic polynomial on Zn2/C1 is (x − 1)(x3 + x2 + 1). Eigenvalues on

C∗1 are 1, β (zero of (x3 +x2 + 1)), β2 and β4. These are same eigenvalues on

Zn2/C1. So we get an eigenvalue 1 on the tensor product only from eigenvalue

1 on C∗1 and 1 on Zn2/C1. Corresponding eigenspace on C∗1 is spanned by

vector (0, 0, 1, 0) and on Zn2/C1 is spanned by vector (1, 1, 0, 1). Hence fixed

point of h1 on the tensor product is (0, 0, 1, 0)T ⊗ (1, 1, 0, 1). So we need

to pick x 6= (0, 0, 1, 0)T ⊗ (1, 1, 0, 1) to get the derivation set modulo inner

derivations. This is the fixed point of h1 obtained above.

In general if C1 ≤ Z8
2 (or Zn2 for even n), the eigenspace of eigenvalue 1

(over Zn2 ) have dimension 1 for an automorphisms of order 7 (or n − 1 for

the general case). All other eigenvalues are distinct. If p is the characteristic

polynomial of g over Z8
2 (or Zn2 ) and p1 is the characteristic polynomial of

g over C1. Then p̃1 = p/p1 is the characteristic polynomial over C∗1 which

is the same as the characteristic polynomial over Z8
2/C1 (in general Zn2/C1).
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For eigenvalues λ 6= 1 we have λ7 = 1 ( or λn−1 = 1) and λk 6= 1 for k < 7

(or k < n−1). Hence, contribution to fixed point space of C∗1 ⊗Z8
2/C1 comes

only from eigenvalues 1 on C∗1 and Z8
2/C1. So it is of dimension one.

For an automorphisms h of order 3, the eigenspace of eigenvalue 1 over Zn2
have dimension 4. It has 3 other eigenvalues each one gives a 2-dimensional

space. If p is the characteristic polynomial over Z8
2 and p1 is the characteristic

polynomial over C1. Then p̃1 = p/p1 is the characteristic polynomial over C∗1

which is the same as the characteristic polynomial over Z8
2/C1. But in this

case p̃1 = p1. So each eigenvalue on C∗1 contribute to the dimension of the

fixed point space on the tensor product by 1 and dimension of fixed point

space on the tensor product is 4.

Matrices of action of h2 on the two spaces are:

M(h2,C∗1 )
=


1 0 0 0

0 1 0 1

0 0 0 1

0 0 1 1

 and M(h2,Zn
2 /C2) =


1 0 0 0

1 0 1 0

0 0 0 1

1 1 0 0


Then we get,

δ(h2) = x− xh2

= (1, 0, 0, 0)T ⊗ (0, a1 + a2 + a3, a3 + a4, a1 + a2 + a4)

+(0, 1, 0, 0)T ⊗ (a13, a5 + a6 + a7 + a13 + a15,

a7 + a8 + a16, a5 + a6 + a8 + a13 + a14)

+(0, 0, 1, 0)T ⊗ (a9 + a13, a10 + a13 + a15, a11 + a16, a12 + a13 + a14)

+(0, 0, 0, 1)T ⊗ (a9, a9 + a11 + a13 + a14 + a15,

a12 + a15 + a16, a9 + a10 + a13 + a14 + a16)

For x = (0, 0, 1, 0)T ⊗ (1, 1, 0, 1), we get δ(h2) = (0, 0, 1, 0)T ⊗ (1, 1, 0, 1) +
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(0, 0, 0, 1)T ⊗ (1, 1, 1, 0). This is an inner derivation to be excluded from the

solution set at the end of derivation modulo inner derivation computation.

Now we need to start checking derivation conditions for δ(h1) = 0 and

δ(h2) defined above to get H1(〈h1, h2〉,W ). When checking relations we get

for all permutation pairs {f1, f2} using a program in GAP, we get relation

set spanned by a set:

a5 + a6 + a7 + a9 + a10 + a11 + a14 + a15 = 0

a1 + a2 + a4 + a10 + a12 + a16 = 0

a3 + a4 + a7 + a8 + a9 + a10 + a13 + a14 = 0

a7 + a8 + a9 + a11 + a12 + a13 + a15 + a16 = 0

a11 + a13 + a14 + a15 = 0

a10 + a12 + a14 + a15 = 0

a9 + a12 + a14 = 0

a13 + a14 + a15 + a16 = 0

These relations reduce δ(h2) to

δ(h2) = (1, 0, 0, 0)T ⊗ (0, a13, 0, a13)

+(0, 1, 0, 0)T ⊗ (a13, 0, 0, a13)

+(0, 0, 1, 0)T ⊗ (a9 + a13, a9 + a13, 0, a9 + a13)

+(0, 0, 0, 1)T ⊗ (a9, a9, a9 + a13, 0)

For a9 = 1, a13 = 0, we get:

δ(h2) = (0, 0, 1, 0)T ⊗ (1, 1, 0, 1) + (0, 0, 0, 1)T ⊗ (1, 1, 1, 0)

which is the inner derivation to be excluded. For a9 = 0, a13 = 1 we get:

δ(h2) = (1, 0, 0, 0)T ⊗ (0, 1, 0, 1) + (0, 1, 0, 0)T ⊗ (1, 0, 0, 1)

+(0, 0, 1, 0)T ⊗ (1, 1, 0, 1) + (0, 0, 0, 1)T ⊗ (0, 0, 1, 0) = d
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Hence H1(〈h1h2〉,W ) = {0, δ1} where 0 is the 0 derivation and δ1 is defined

by δ1(h1) = 0 and δ1(h2) = d above.

Now to compute H1(G,W ), we check derivation conditions satisfied by,

δ(h1) = 0

δ(h2) = (1, 0, 0, 0)T ⊗ (0, y, 0, y) + (0, 1, 0, 0)T ⊗ (y, 0, 0, y)

+(0, 0, 1, 0)T ⊗ (y, y, 0, y) + (0, 0, 0, 1)T ⊗ (0, 0, y, 0)

δ(h3) = x− xh3

for some x ∈ W not fixed by 〈h1, h2〉. As checked above, the fixed point by

h1 is not fixed by h2. So no nonzero value of x define an inner derivation in

the definition x− xh3 . Checking relations we get by going through a double

loop using GAP, we get a relation set spanned by the following relations:

a1 + a6 + a7 + a8 + a10 + a11 + a12 + a14 + a15 + a16 = 0

a5 + a6 + a7 + a8 = 0

a3 + a4 + a7 + a8 + a9 + a10 + a13 + a14 = 0

a2 + a4 + a6 + a8 + a10 + a12 + a13 + a15 = 0

a13 + a14 + a15 + a16 = 0

a9 + a10 + a11 + a15 + a16 = 0

a7 + a14 = 0

a8 + a14 + a16 = 0

a10 + a12 + a14 + a15 = 0

a16 = 0

a6 + a11 + a12 + a15 = 0

a11 + a12 + a15 = 0

a12 + a14 + a15 = 0
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and a15 = 0 These relations reduce δ(h3) to

δ(h3) = (1, 0, 0, 0)T ⊗ (0, a1, a1, 0) + (0, 1, 0, 0)T ⊗ (0, a1, a1, a1)

+(0, 0, 1, 0)T ⊗ (a1, 0, 0, a1) + (0, 0, 0, 1)T ⊗ (a1, a1, 0, a1) = b

Hence, H1(G,W ) is two dimensional. H1(G,W ) = {0, δ1, δ2} where 0 is the

zero derivation, δ1 is defined by δ1(h2) = d and δ1(h1) = δ1(h3) = 0 ,and δ2

is defined by δ2(h3) = b and δ2(h1) = δ2(h2) = 0. A complete GAP program

for this example is given in the Appendix.

4.3 Defining action of G on C∗1 ⊗ Zn2/C2

Z4-codes are additive subgroups of Zn4 . A permutation group G ≤ Sn acts

linearly on Zn4 preserving subgroup structures. So we can define an action

of G on the set of subgroups of Zn4 . For g ∈ G, we have g · A1 = A2 for

subgroups A1 and A2 with permutation equivalent vectors. Here we are after

a special class of subgroups, Z4-codes with common {C1, C2}. So we choose

the automorphism group to be G = Aut(C1) ∩ Aut(C2). The action of this

automorphism groups is still linear on the set of subgroups of Zn4 preserving

the class C(C1, C2). Action of G need to fix the trivial subgroups 0 and Zn4
itself. Action of G fixes d(C2) and acts on cosets of d(C2) in 2Zn4 . For g ∈ G

to fix a code C ∈ C(C1, C2), we need to have g ·c ∈ C for all c ∈ C. Checking

this condition on a basis of C is sufficient. C is fixed by an automorphism

groupG = 〈{g1, g2, . . . gk}〉 if gi·aj ∈ C for a basis {aj} of C and all 1 ≤ i ≤ k.

Codes of C(C1, C2) correspond to a set of subgroups of an extension of

Zn2 by C1 generated by the subgroup of the extension isomorphic to C2 and

images of liftings; λ : C1 → Zn2 . This extension is not the split extension in

general as we have seen in the hamming example in Section(2.2).
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We can view this set of codes as a fixed coset of a subspace W of a bigger

vector space, say V , where G’s action is linear. The coset W + v is fixed by

G. So,

g · (w + v) = w′ + v for all w ∈ W

The mapping w → w′ is affine since:

g · (w + v) = wg + vg = wg + (vg − v) + v

so w → wg + v0 for v0 = vg − v and v ∈ V . We have a bijection W ↔ W + v

where G’s linear action on W is transformed to an affine action on W + v.

g linear

W → W

↓ ↓

W + v → W + v

g affine

g → v0 defines a derivation, δ : G → W with δ(g) = v0 = vg − v. This

derivation depends on the choice of the coset representative v. If we choose

a different coset representative, we change δ by an inner derivation. For

W + v′ = W + v, considering actin on W + v′ instead, we get, δ′(g) = v′g− v′

and δ′(g)− δ(g) = (v′− v)g − (v′− v) for v′− v ∈ W . Action of G on a fixed

coset of W is set by action of G on W and an element of Der(G,W ).

The derivation of an action is inner if the factor set defining addition

in the extension corresponding to C(C1, C2) is zero, C2 = Zn2 since then

we would have only one code in C(C1, C2) this is E itself in the extension

0→ Zn2 → E → C1 → 0 , when ai ∗ aj = 0 . . . 0 for all different basis vectors

of C1, or when image of 0 is 0 for all elements of a basis of G. These cases

can be considered trivial.
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G = Aut(C1)∩Aut(C2) is a group with linear action on W = C∗1⊗Zn2/C2.

The semidirect product W oG acts on W by

(w, g) : x→ g · x+ w

{(w, I) : w ∈ W} ' W is a normal subgroup of W o G acting on W by

translation.

(−vg−1

g , g−1) + (w, I) + (vg, g) = (−vg−1

g , g−1) + (wg + vg, g) = (wg, I) (4.4)

A complement G∗ of W in W oG is a subgroup with elements (vg, g) where

δ(g) = vg is a derivation. Conversely any derivation give a complement this

way. Two complements are conjugate in W o G if the difference defines an

inner derivation. {Set of derivations/ Set of inner derivations} ' conjugancy

classes of complements. Stabilizer of w ∈ W is {(v, g) : wg + v = w} =

{(w−wg, g) : g ∈ G}. For a fixed w, this is a complement subgroup conjugate

to {(0, g) : g ∈ G} ' G, the stabilizer of zero. The derivation of action is

inner if there is an element a0 ∈ W such that Ga0 = G.

4.3.1 The Derivation of action for G generated by odd

order automorphisms

From Section(4.3) when G is generated by odd order automorphisms; G =

〈{g1, g2, . . . , gk}〉. Then all derivations in Der(G,W ) are defined by images

on the generators of the form:

δ(g1) = a0 − ag10

δ(g2) = (a0 + a2)− (a0 + a2)
g2

. . .

δ(gk) = (a0 + ak)− (a0 + ak)
gk
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where {a2, . . . , ak} are computed in the derivation modulo inner derivations

as in (4.3.4) and a0 varying in W . So the derivation of action can be chosen

from this set using the fact that permutations on Z4-codes fixes complete

weight enumerators. Following is one way of doing this:

• compute H1(G,W ) as in (4.3.4). This would be a set with representa-

tives {0, rep1, rep2, . . .}.

• For a0 ∈ W find the set of derivations defined by images having cwe

same as cweX=0. Let S be the set of derivations having cwe = cweX=0.

• Pick the appropriate element in S matching our action by looking at

corresponding fixed codes for different derivation definitions.

4.3.2 Orbit Decomposition

The orbit of an element x ∈ W is obtained by acting on x by the complement

subgroup corresponding to the derivation of action:

(δ(g), g) · x = xg + δ(g)

Two elements {a0, a1} ∈ W belong to the same orbit if a1 = ag0 + δ(g) for

some g ∈ G. So a1 − a0 = ag0 − a0 + δ(g) for some g ∈ G.

Orbit of 0 ∈ W in an affine action of G on W defined by a derivation

δ is {δ(g) : g ∈ G}. Cardinality of this orbit is |G|/|G0| where G0 = {g ∈

G : δ(g) = 0}, this is the stabilizer of zero. Orbit of a0 ∈ W is the set

{ag0 + δ(g) : g ∈ G} and its cardinality is |G|/|Ga0| where Ga0 = {δ(g) : a0 =

ag0 + δ(g)} = {δ(g) : δ(g) = a0 − ag0}, this is the stabilizer of a0.

If the derivation happen to be inner of the form δ(g) = a0 − ag0 for some

a0 ∈ W . Then orbits of G’s action are the orbits of the linear action shifted
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by a fixed point of the affine action of G. As bgi + (a0−agi0 ) = a0 + (b−a0)gi .

So in this case, orbits of G would be of the form:

| a0 | a0 + aG1 | a0 + aG2 | . . .

where a0 is a fixed point for G and {a0, a1, a2} are elements of W . If the

derivation of action is not linear then orbits would be of the form:

| {δ(gi)} | {agi1 + δ(gi)} | {agi2 + δ(gi)} | . . .

All elements of W oG can be expressed as a linear combination of the form

(a, I) + (δ(g), g) for some a ∈ W and g ∈ G so the problem of decomposing

W into G-orbits is the same as splitting the semidirect product into cosets

(a, I) + 〈(δ(gi), gi)〉.

Orbit decomposition can be made easier when the derivation of action is

not inner using a corrected version of G’s action on W making it inner. Let

g ∈ G act on [W Z2] instead by g δ(g)

0 1


where δ(g) is the derivation of our action. Here, g δ(g)

0 1

 ·
 a

0

 =

 g · a

0


represens the linear action on W and g δ(g)

0 1

 ·
 a

1

 =

 g · a+ δ(g)

1


represents an affine action on W with derivation value δ(g). Orbits for the

example where C1 = C2 = Extended Hamming Code of length 8 are listed

in Appendix (A.1).
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4.3.3 Counting Orbits

Orbits of action can be counted using the orbit counting lemma[7] which can

be deduced as follows. For a ∈ W , the orbit Ga satisfies:∑
ai∈Ga

1

|Gai|
= |Ga| × 1

|Ga|
= 1

and so

no. of orbits = 1 + . . .+ 1︸ ︷︷ ︸
no.of orbits times

=
∑

ai∈Ga1

1

|Gai|
+ . . .+

∑
ai∈Gam

1

|Gai|

{orbits are disjoint so } =
∑
a∈W

1

|Ga|

=
∑
a∈W

|Ga|
|G|

=
1

|G|
∑
a∈W

|Ga|

{but
∑
a∈W

|Ga| =
∑
g∈G

|W g| so } =
1

|G|
∑
g∈G

|W g|

here W g is the set of fixed points of G in W . Hence if the action is affine

defined by a derivation δ, we would have

no.of orbits =
1

|G|
∑
g∈G

|a ∈ W : δ(g) = a− ag| (4.5)

Number of fixed points of an affine action is 0 or equal to the number of

fixed points in the corresponding linear action depending on whether the

derivation is inner or not. If every automorphism fix an element of W then

number of orbits of the affine action is equal to number of orbits of the linear

action. Otherwise, the affine action have less orbits. In general, groups are

classified into three types:
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• G fixes an element of W . The derivation in this case is inner.

• Each g ∈ G fixes an element of W but there is no global fixed point.

The derivation is not inner in this case. It is inner when considering

action of every cyclic subgroup, 〈g〉, on W .

• There is an element of G not fixing any element of W .

In the first two cases, number of fixed points of the affine action is equal to

number of fixed points of the corresponding linear action. So we can consider

the linear action to count the orbits. Let I be a set of indexes of a conjugate

class representatives of G. If g1 = h−1g2h, for some h ∈ G and g2 fixes an

element a0 ∈ W , then

(ah0)g1 = (ah0)h
−1g2h = ag2h0 = ah0

That is g1 fixes ah0 . Hence, Conjugate classes of G have same number of

fixed points. Fixed points are eigenvectors corresponding to eigenvalue 1 as

seen earlier. So if {λi} is the set of eigenvalues of an automorphism g on C∗1

then dimension of fixed point space on W would be d =
∑

λi
multC∗1 (λi) ·

multZn
2 /C2(λ

−1
i ) and |W g| = 2d. So

no.of orbits =
1

|G|
∑
i∈I

|G|
|Ngi |

· |W gi | =
∑
i∈I

1

|Ngi |
· 2d

Example C(C1, C2) for C1 = C2 = Extended Hamming Code of length 8

is an example of the third case. In this example, generators of the automor-

phism group {(2843567), (1234)(5678)} have no common fixed point and for

conjugate classes of G, one conjugate class does not fix any point. Compu-

tation results are shown below. The following tables show conjugate class

representatives of G and their cardinalities, number of their fixed points with

examples of fixed points and derivations of the conjugate class representative:
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Conj. Class rep. Card. no.of f.p.(C/W ) eg. Derivation

(2843567) 192 2


1 1 1 1

0 1 1 0

0 0 1 1

0 1 0 1




0 1 0 1

1 0 1 0

0 0 1 1

0 0 0 0



(2374685) 192 2


1 1 1 1

0 1 1 0

0 0 1 1

0 1 0 1




1 1 0 0

0 0 0 0

0 1 0 1

1 0 1 0



(345)(687) 224 64


0 0 0 0

0 0 0 0

1 0 0 1

1 0 1 0




0 0 0 0

1 0 0 1

0 0 0 0

1 1 0 0



(1234)(5678) 168 16


0 . . . 0

. . .

0 . . . 0




0 . . . 0

. . .

0 . . . 0


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Conj. Class rep. Card. no.of f.p.(C/W ) eg. Derivation

(13)(24)(57)(68) 42 256


0 . . . 0

. . .

0 . . . 0




0 . . . 0

. . .

0 . . . 0



(14)(27)(36)(58) 7 1024


0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 1




1 1 1 1

0 0 0 0

0 0 0 0

1 1 1 1



(45)(67) 42 1024


0 0 0 0

0 0 0 0

0 1 0 0

1 0 1 0




0 0 0 0

1 0 1 0

1 1 0 0

0 0 0 0



(1485)(2736) 84 64


0 0 0 0

0 0 0 0

0 1 0 1

1 0 1 0




1 0 0 1

1 0 1 0

1 1 0 0

1 0 0 1


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Conj. Class rep. Card. no.of f.p.(C/W ) eg. Derivation

(148273)(56) 224 16


1 1 0 0

0 1 1 0

1 0 1 0

1 1 1 1




1 0 1 0

1 0 0 1

0 0 0 0

0 1 1 0



Identity 1 all codes


0 . . . 0

. . .

0 . . . 0




0 . . . 0

. . .

0 . . . 0



(3487)(56) 168 0/64 –


0 1 0 1

1 0 0 1

0 0 0 0

0 0 0 0



Acting by S = 〈(2843567), (13)(24)(57)(68)〉 ≤ G instead we get a fixed

point for every conjugate class but there is still no common fixed point for

the whole group. This group has order 168 with every conjugate class fixing

some points.
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4.4 Action of Zn2 oG on W

Action of Zn2 oG on W can be treated as action of G on W/W0 where W0 is

the set of matrices corresponding to sign changes of coordinates. Zn2 act on

C(C1, C2) (and so on W ) and splits it into W0 cosets:

W0 a1 +W0 a2 +W0 . . .

where a1, a2 /∈ W0 and a1 6= a2 mod W0. When acting by G on W , if a1 =

b1 (mod W0) then g · a1 = g · b1 (mod W0). So G permute W0 cosets and

normalizes action of Zn2 as in equation (4.4). The action of G on W0 cosets

is linear if at least one of these cosets is fixed. That is g · a0 +W0 = a0 +W0

for some a0 ∈ W and all g ∈ G. If this is satisfied for a basis of G it will be

satisfied for the automorphism group. Also checking this for a set of coset

representatives is enough.

If we already have G orbits in hand. We might check orbit cardinalities.

If there were a number of G orbits with cardinalities summing up to |W0|,

check if the union of these orbits is a W0 coset. If so then this is the fixed

W0 coset we are after.

Action of Zn2 o G on W is given by actions of Zn2 and G as described

previously. So we act by an element v o g affinely with the linear action

taken to be g’s linear action and the affine part given by derivations of g and

v.

(v, g) ◦ a = ag + δ(g) + δ(v)

If Zn2 is a principal Z2[G]-module and δ(g) = a0 − ag0 for some a0 ∈ W and

all g ∈ G then a0 +W0 is split into permutation orbits as follows:

| a0 | a0 +Mi | a0 +Mi +Mj 6=i | a0 +Mi +Mj 6=i +Mk/∈{i,j} |
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| a0 +Mi +Mj 6=i +Mk/∈{i,j} +Ml /∈{i,j,k} |

Other cosets a0 + a+W0 will also be decomposed to permutation orbits as:

| a0+aG | a0+aG+Mi | a0+aG+Mi+Mj 6=i | a0+aG+Mi+Mj 6=i+Mk/∈{i,j} |

| a0 + aG +Mi +Mj 6=i +Mk/∈{i,j} +Ml /∈{i,j,k} |

If δ is not inner but δ(g) ∈ a0− ag0 +W0 for some a0 ∈ W and all g ∈ G then

G fixes a0 + W0 and permutes cosets of W0. The decomposition of a0 + W0

above will be mixed up within the coset. So we can define an action of G on

the set of cosets of W0 as:

g ◦ (a+W0) = ag + δ(g) +W0

So the derivation of action is inner on W0 cosets if for some a ∈ W ,

ag + δ(g) +W0 = a+W0

That is δ(g) ∈ a − ag + W0 for some a ∈ W and all g ∈ G. This is what

happen in the Hamming example. In this example, G = Aut(C1) acts on Z8
2

with orbits:

0 . . . 0 10 . . . 0 110 . . . 0 11100000 11110000 11111000 1 . . . 100 1 . . . 10 1 . . . 1

01 . . . 0 101 . . . 0 11010000 11101000 11110100 1 . . . 010 1 . . . 01

. . . . . . . . . . . . . . . . . . . . .

0 . . . 01 0 . . . 011 00000111 00001111 00011111 01 . . . 11 01 . . . 1

wt 0 wt 1 wt 2 wt 3 wt 4 wt 5 wt 6 wt 7 wt 8

1 8 28 56 70 56 28 8 1

Orbits of G’s action on Z8
2/〈1 . . . 1〉 ' W0 are:
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0 . . . 0 100 . . . 0 110 . . . 0 11100000 11110000

010 . . . 0 101 . . . 0 11010000 11101000

. . . . . .

1 8 28 56 35

The W0 coset including the Nordstrom-Robinson code is fixed by action of

W0 oG. This orbit is divided into permutation orbits of cardinalities 64, 56

and 8.

Let Weven ≤ W0 be a subspace corresponding to changing signs of even

number of coordinates. So this is a 6 dimensional subspace of W spanned by

{Mi+Mj, for i 6= j} where Mi are matrices defined in Section (4.2) spanning

W0. Since G does not keep the orbit decomposition of even vectors in this

orbit as in the linear action on even vectors of Z8
2/〈1 . . . 1〉 then the action is

not inner if we act by Weven oG but inner with action of W0 oG since the

orbit decomposition of odd vectors is the same as on the linear one.

In general for an automorphism group G acting affinely with a derivation

δ and a ∈ W , orbits would be of the form:

0 Mj . . . a a+Mj . . .

δ(gi) M gi
j + δ(gi) . . . agi + δ(gi) agi +M gi

j + δ(gi)

Here also we can simplify decomposition of W into Zn2 -orbits using same idea

as in (4.3.2) and let Zn2 act instead on [W 1] by I x

0 1


where I is the identity mapping on W and x ∈ W0 written in a column. And

we get orbits of Zn2 oG by acting on [W 1] by matrices in the multiplication

group: 〈

 I x

0 1

 for all x ∈ W0,

 g δ(g)

0 1

 for g ∈ G〉. Orbits of Zn2 o

G for the Hamming example are supplied in Appendix (A.1).
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If G = 〈g1, . . . , gk〉 and all basis automorphisms are of odd orders then

H1(〈gi〉,W ) = {0} for all i = 1, . . . , k. So all complements of W in W o G

have the form {(a1 − ag11 , g1), . . . , (ak − a
gk
k , gk)}. Derivation of G’s action of

W/W0 is inner if ai − agii ∈ a1 − a
gi
1 +W0 for all i.

Theorem 4.2 Let G = Aut(C1)∩Aut(C2) ≤ Sn. If Zn2 oG act on C(C1, C2)

with a corresponding affine action on W = C∗1⊗Zn2/C2 then number of orbits

is:

no. orbits =
1

|G|
∑
g∈G

(W/W0)
g

=
1

|G|
∑
g∈G

|{a+W0 : δ(g) ∈ a− ag +W0}|

Proposition 4.1 Let G = Aut(C1) ∩ Aut(C2). Then, Zn2 o G has equally

many orbits on C(C1, C2) and C(C⊥2 , C⊥1 ).

Proof Observe first that H = Zn2 oG is generated by scalar multiplications

of coordinates by −1 and the group Aut(C⊥2 ) ∩ Aut(C⊥1 ), since a code and

its dual have the same automorphism group.

We have to show that the linear actions of the group on these two sets of

codes have the same numbers of fixed points. This holds because the actions

are dual:

(C1 ⊗ (Zn2/C2))
∗ ∼= (Zn2/C⊥1 )⊗ C⊥2 ∼= C⊥2 ⊗ (Zn2/C⊥1 ).

We get this isomorphism from:

Claim: If W ≤ V then W ∗ ' V/W⊥
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Proof Define a map θ : V 7→ W ∗ sending v 7→ ϕv where ϕv(w) = v · w.

Here ϕv ∈ W ∗ and ϕv = 0 if and only if v ∈ W⊥. So θ : V/W⊥ 7→ W ∗ is an

isomorphism since it is one to one and |V/W⊥| = |W | = |W ∗|.

We then get the above isomorphism by letting W = C1 ⊗ Zn2/C2.

We also need to show that a subgroup fixes a code in one class if and only

if it fixes a code in the other. This is true because a subgroup fixing a code

C also fixes C⊥, and C ∈ C(C1, C2) if and only if C⊥ ∈ C(C⊥2 , C⊥1 ), as we

have seen. Number of elements in the two sets is the same as |C(C⊥2 , C⊥1 )| =

2(n−(n−m1))(n−m2) = 2m1(n−m2) where mi = dim(Ci).

Corollary 4.1 If C is a self orthogonal Z4-code then all its equivalent codes

are self orthogonal.

Proof Permutation equivalent codes of a self orthogonal code are auto-

matically self orthogonal. Changing sign of a coordinate of a self orthog-

onal code C still give a self orthogonal code since for C to be self dual

v · w =
∑
{v}i{w}i = 0 mod 4 but∑

i

{v}i{w}i =
∑
i 6=j

{v}i{w}i + vj · wj =
∑
i 6=j

{v}i{w}i + (−vj) · (−wj) = 0

In the Hamming Example the self dual codes are the ones in Zn2 o G orbits

(1) and (7) as given in Appendix (A.1).

4.5 The long exact sequence

Let G = Aut(C1) ∩ Aut(C2). The short exact sequence of G modules:

0→ Z2 → Zn2 → Zn2/〈1 . . . 1〉 → 0
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give the long exact sequence of cohomology groups:

0→ H0(G,Z2)→ H0(G,Zn2 )→ H0(G,Zn2/〈1 . . . 1〉)→ H1(G,Z2)→

H1(G,Zn2 )→ H1(G,Zn2/〈1 . . . 1〉)→ H2(G,Z2)→ . . .

G acts trivially on Z2 and permute coordinates of Zn2 . If Zn2 is a principal

Z2[G] module then some of the cohomology groups appearing in the above

long exact sequence are determined completely. For instance,

• H0(G,Z2) = Z2 since action is trivial here.

• H0(G,Zn2 ) = {0 . . . 0, 1 . . . 1}. For a vector v ∈ Zn2 to be fixed by a

permutation g ∈ G, all coordinates of v corresponding to same cycles of

g need to be equal. This need to be satisfied for every automorphism of

G in order to have v fixed by the whole automorphism group. Because

Zn2 is a principal Z2[G] module, all entries of a fixed point of G need to

be equal.

• H1(G,Z2) = Hom(G,Z2). Let φ : G → Z2 be a homomorphism then

if it is not the zero homomorphism Im(φ) = Z2 and G/ker(φ) ' Z2.

So, ker(φ) is a subgroup of index 2. Hence H1(G,Z2) = {0} if and

only if G has no subgroup of index 2. This is satisfied if and only if

G is generated by odd order automorphisms. If G has a subgroup of

index 2 then H1(G,Z2) is nonzero. In fact, |H1(G,Z2)| = number of

subgroups of index 2.

• H1(G,Zn2 ) can be computed as in the method supplied in Section(4.2.2)

if G is generated by odd order automorphisms and using the original

definitions if it is not.
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• H2(G,Z2) is zero if there is no group Ĝ with a normal subgroup N of

order 2 such that Ĝ/N ' G. Also, H2(G,Z2) = 0 ⇔ Schur multiplier

of G has odd order.

• |H0(G,Zn2/〈1 . . . 1〉)| = |H0(G,W0)| is bounded by H0(G,Z2) from

the long exact sequence. So, if G has no subgroup of index 2 then

H1(G,Zn2/〈1 . . . 1〉) = {0}. Otherwise we might just check vectors of

weight n
2

if there is a vector v ∈ Zn2 such that vg = v or (1 . . . 1) + v for

all g ∈ G then |H0(G,Zn2/〈1 . . . 1〉)| = half of number of those vectors.

• H1(G,Zn2/〈1 . . . 1〉) ' H1(G,W0) is what we are after. We get its car-

dinality from the long exact sequence after obtaining other cohomology

groups.

Now consider the short exact sequence:

0→ W0 → W → W/W0 → 0

This sequence of G modules give the long exact sequence:

0→ H0(G,W0)→ H0(G,W )→ H0(G,W/W0)→ H1(G,W0)→

H1(G,W )→ H1(G,W/W0)→ H2(G,W0)→ . . .

Here we have

• H0(G,W0) and H1(G,W0) are obtained in the previous exact sequence.

• H0(G,W ) = space of fixed points of G on W . This is the intersection

of fixed point spaces for a basis set {gi} of G. Here W = C∗1 ⊗ Zn2/C2.

Action of G on the tensor product can be defined from the actions on

C∗1 and Zn2/C2 as done in Section (4.2.5). Space of fixed points for an
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automorphism g ∈ G is the eigenspace of eigenvalue 1. So fixed points

on the tensor product are elements of the form ν ⊗ µ, where ν is an

eigenvector corresponding to eigenvalue λ on C∗1 and µ is an eigenvector

corresponding to eigenvalue λ−1 on Zn2/C2.

• H1(G,W ) is computed as in Section (4.2.5)

• With the help of the long exact sequence, we obtain information about

H0(G,W/W0) and a lower bound for H1(G,W/W0).

A nonzero element δ ∈ H1(G,W ) is mapped to a zero element inH1(G,W/W0).

That is δ is mapped to an element which is equivalent to an element in the

kernel of H1(G,W )→ H1(G,W/W0), if and only if H1(G,W0) is nonzero and

this element is equivalent to an element in image of H1(G,W0)→ H1(G,W ).

Theorem 4.3 A derivation in Der(G,W/W0) is nonzero if and only if it is

not conjugate to any element in Der(G,W0).

In the Hamming example, the derivation of action is not inner on W but

inner in W/W0. So it is equivalent to an element in the kernel of the mapping

H1(G,W )→ H1(G,W/W0). From exactness of the sequence, the derivation

is in the image of the mapping H1(G,W0)→ H1(G,W ).



Summary and Conclusion

For a Z4-code C, we can define a pair of binary codes {C1, C2} as:

• C1 = C and

• C2 = h(C ∩ 2Zn4 )

where h coordinatewise sends 0 to 0 and 2 to 1. Fixing a pair of binary codes

C1 ≤ C2 let C(C1, C2) be the set of Z4-codes giving rise to {C1, C2} as above.

Then

• The cardinality of this set of codes is 2dim(C1)(n−dim(C2)).

• Codes of C(C1, C2) have generator matrices of the form

G =

 Ik1 A B + 2X

0 2Ik2 2C


where Ik1 and Ik2 are identity matrices of dimensions k1 = dim(C1) and

k2 = dim(C2) − dim(C1) respectively. A, B and C are fixed matrices

over Z2 for a fixed pair {C1, C2}. And X is a matrix with entries

varying over Z2.

• C(C1, C2) ' Hom(C1,Zn2/C2) ' C∗1 ⊗ Zn2/C2.

95



CHAPTER 4. ACTIONS ON C(C1, C2) 96

• We get this set of codes from an extension of Zn2 by C1.

• Average symmetrized weight enumerator of codes in C(C1, C2) can be

computed from weight enumerators of C1 and C2 as:

swe(x, y, z) =
|C2|
2n

(weC1(x+ z, 2y)− (x+ z)n) + weC2(x, z)

• G = Aut(C1) ∩ Aut(C2) acts on C(C1, C2) fixing complete weight enu-

merators of codes. Corresponding action on C∗1 ⊗ Zn2/C2 is affine with

the affine element given by an element of H1(G,C∗1 ⊗ Zn2/C2).

• H1(G,C∗1⊗Zn2 ) for a group G generated with odd order automorphisms

can be computed using corresponding actions of G on C∗1 and Zn2/C2.

• If G act on a space W affinely with a derivation δ then number of orbits

is
1

G

∑
g∈G

|{a ∈ W : δ(g) = a− ag}|

• We might define changing signs of coordinates for codes in C(C1, C2)

by an action of Zn2 .

• The combined action of Zn2 o G on C(C1, C2) (permuting coordinates

and changing signs of coordinates) is described as an affine action on

C∗1 ⊗ Zn2/C2 with the affine element given by an element of H1(Zn2 o

G,C∗1 ⊗ Zn2/C2).

• Number of orbits of Zn2 oG on W is

1

|G|
∑
g∈G

|{a+W0 : δ(g) ∈ a− ag +W0}|

• Action of Zn2 o G on W can be described as action of G on W/W0

where W0 is the subspace of W = C∗1 ⊗ Zn2/C2 generated to matrices

corresponding to sign changes in coordinates of codes.
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• Zn2 o G act on W with a zero element of H1(Zn2 o G,C∗1 ⊗ Zn2/C2) if

the derivation of action is conjugate to an element of Der(G,W0).



Appendix A

Orbits and Programming Codes

A.1 Orbits of the Hamming Example

Let C(C1, C1) be the set of all Z4-codes corresponding to the pair {C1, C1} of

Z2-codes, where C1 is the Extended Hamming code of length 8. Let W be its

isomorphic set of matrices of dimension m1× (n−m2) where mi = dim(Ci).

This set has 216 = 65536 elements.

Let G be the automorphism group of C1. This group has order 1344 gen-

erated by permutations (1, 2, 3, 4)(5, 6, 7, 8) and (2, 8, 4, 3, 5, 6, 7). Then G

act on C(C1, C1) by coordinate permutations. This action preserve complete

weight enumerators of codes. Let H be the group generated by G and the op-

erations of changing signs of coordinates. Then H has order 27|G|. Elements

of H act on C(C1, C1) preserving symmetrized and Lee weight enumerators.

I have computed H orbits of C(C1, C1) and their divisions into G orbits.

Number of H orbits is 9 falling into 114 orbits of G. For each orbit, I give

below the size of the orbit, an orbit representative, cwe and swe’s. Orbit

98
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representatives are displayed below as 4 × 4 matrices X with the property

that M + [04 2X] is a generator matrix for the relevant code where 04 is the

4× 4 zero matrix and

M =


1 0 0 0 0 1 1 1

0 1 0 0 1 0 1 1

0 0 1 0 1 1 0 1

0 0 0 1 1 1 1 0


Here is the list of orbits:

Orbit number (1) of size 128 with symmetrized weight enumerator

swe = x8 + 14x4z4 + 112x3y4z + 112xy4z3 + 16y8 + z8 and orbit represen-

tative: 
1 0 0 0

0 1 0 1

0 1 1 0

0 0 1 1


Number of permutation orbits= 3

• Permutation orbit number (1) of size 64 and representative:


1 0 0 0

0 1 0 1

0 1 1 0

0 0 1 1


with complete weight enumerator

cwe = x8 + 14x4z4 + 7x3y4z + 28x3y3zw + 42x3y2zw2 + 28x3yzw3 + 7x3zw4

+7xy4z3 + 28xy3z3w + 42xy2z3w2 + 28xyz3w3 + 7xz3w4 + y7w + 7y5w3

+7y3w5 + yw7 + z8
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• Permutation orbit number (2) of size 56 and representative:


1 0 0 0

0 1 0 1

0 1 1 0

1 1 0 1


with complete weight enumerator

cwe = x8 + 14x4z4 + 8x3y4z + 24x3y3zw + 48x3y2zw2 + 24x3yzw3 + 8x3zw4

+8xy4z3 + 24xy3z3w + 48xy2z3w2 + 24xyz3w3 + 8xz3w4 + 4y6w2

+8y4w4 + 4y2w6 + z8

• Permutation orbit number(3) of size 8 and representative:


1 0 0 1

1 1 0 0

1 1 1 1

0 1 0 1


with complete weight enumerator

cwe = x8+14x4z4+56x3y3zw+56x3yzw3+56xy3z3w+56xyz3w3+y8+14y4w4+z8+w8

This orbit includes the Nordstrom-Robinson Code.

Orbit number (2) of size 7168 with symmetrized weight enumerator

swe = x8 +8x4y4 +14x4z4 +80x3y4z+48x2y4z2 +80xy4z3 +16y8 +8y4z4 +z8

and orbit representative: 
0 0 0 0

0 0 0 1

0 1 0 0

0 0 1 1


Number of permutation orbits= 8



APPENDIX A. ORBITS AND PROGRAMMING CODES 101

• Permutation orbit number (1) of size 1344 and representative:


0 0 0 0

0 0 0 1

0 1 0 0

0 0 1 1


with complete weight enumerator

cwe = x8 + x4y4 + 2x4y3w + 2x4y2w2 + 2x4yw3 + 14x4z4 + x4w4

+6x3y4z + 16x3y3zw + 36x3y2zw2 + 16x3yzw3 + 6x3zw4

+2x2y4z2 + 12x2y3z2w + 20x2y2z2w2 + 12x2yz2w3

+2x2z2w4 + 6xy4z3 + 16xy3z3w + 36xy2z3w2 + 16xyz3w3

+6xz3w4 + 4y6w2 + y4z4 + 8y4w4 + 2y3z4w + 2y2z4w2

+4y2w6 + 2yz4w3 + z8 + z4w4

• Permutation orbit number (2) of size 1344 and representative:


0 0 0 0

0 0 0 1

0 1 0 0

1 1 0 1


with complete weight enumerator

cwe = x8 + x4y4 + 2x4y3w + 2x4y2w2 + 2x4yw3 + 14x4z4 + x4w4

+5x3y4z + 20x3y3zw + 30x3y2zw2 + 20x3yzw3 + 5x3zw4

+2x2y4z2 + 12x2y3z2w + 20x2y2z2w2 + 12x2yz2w3

+2x2z2w4 + 5xy4z3 + 20xy3z3w + 30xy2z3w2 + 20xyz3w3

+5xz3w4 + y7w + 7y5w3 + y4z4 + 2y3z4w + 7y3w5 + 2y2z4w2

+2yz4w3 + yw7 + z8 + z4w4
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• Permutation orbit number(3) of size 448 and representative:


0 0 0 0

0 1 0 1

0 0 1 1

0 0 1 1


with complete weight enumerator

cwe = x8 + x4y4 + 6x4y2w2 + 14x4z4 + x4w4 + 40x3y3zw + 40x3yzw3

+6x2y4z2 + 36x2y2z2w2 + 6x2z2w4 + 40xy3z3w + 40xyz3w3

+4y6w2 + y4z4 + 8y4w4 + 6y2z4w2 + 4y2w6 + z8 + z4w4

• Permutation orbit number(4) of size 448 and representative:


0 0 0 0

1 0 0 1

1 1 0 0

1 0 1 1


with complete weight enumerator

cwe = x8 + x4y4 + 6x4y2w2 + 14x4z4 + x4w4 + 7x3y4z + 12x3y3zw

+42x3y2zw2 + 12x3yzw3 + 7x3zw4 + 6x2y4z2 + 36x2y2z2w2

+6x2z2w4 + 7xy4z3 + 12xy3z3w + 42xy2z3w2 + 12xyz3w3

+7xz3w4 + y7w + 7y5w3 + y4z4 + 7y3w5 + 6y2z4w2 + yw7 + z8 + z4w4

• Permutation orbit number(5) of size 1344 and representative:


0 0 0 1

0 0 1 1

0 0 1 0

0 1 0 0


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with complete weight enumerator

cwe = x8 + 2x4y3w + 4x4y2w2 + 2x4yw3 + 14x4z4 + 5x3y4z + 20x3y3zw

+30x3y2zw2 + 20x3yzw3 + 5x3zw4 + 4x2y4z2 + 12x2y3z2w

+16x2y2z2w2 + 12x2yz2w3 + 4x2z2w4 + 5xy4z3 + 20xy3z3w

+30xy2z3w2 + 20xyz3w3 + 5xz3w4 + y7w + 7y5w3 + 2y3z4w + 7y3w5

+4y2z4w2 + 2yz4w3 + yw7 + z8

• Permutation orbit number(6) of size 1344 and representative:


0 0 0 1

0 0 1 1

0 0 1 0

1 0 1 0


with complete weight enumerator

cwe = x8 + 2x4y3w + 4x4y2w2 + 2x4yw3 + 14x4z4 + 6x3y4z + 16x3y3zw

+36x3y2zw2 + 16x3yzw3 + 6x3zw4 + 4x2y4z2 + 12x2y3z2w

+16x2y2z2w2 + 12x2yz2w3 + 4x2z2w4 + 6xy4z3 + 16xy3z3w

+36xy2z3w2 + 16xyz3w3 + 6xz3w4 + 4y6w2 + 8y4w4 + 2y3z4w

+4y2z4w2 + 4y2w6 + 2yz4w3 + z8

• Permutation orbit number(7) of size 448 and representative:


0 0 0 1

0 1 0 0

0 0 1 1

0 0 1 0


with complete weight enumerator

cwe = x8 + 4x4y3w + 4x4yw3 + 14x4z4 + 3x3y4z + 28x3y3zw + 18x3y2zw2

+28x3yzw3 + 3x3zw4 + 24x2y3z2w + 24x2yz2w3 + 3xy4z3 + 28xy3z3w

+18xy2z3w2 + 28xyz3w3 + 3xz3w4 + y7w + 7y5w3 + 4y3z4w + 7y3w5

+4yz4w3 + yw7 + z8
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• Permutation orbit number(8) of size 448 and representative:


0 0 0 1

0 1 0 0

0 0 1 1

1 0 0 1


with complete weight enumerator

cwe = x8 + 4x4y3w + 4x4yw3 + 14x4z4 + 4x3y4z + 24x3y3zw + 24x3y2zw2

+24x3yzw3 + 4x3zw4 + 24x2y3z2w + 24x2yz2w3 + 4xy4z3 + 24xy3z3w

+24xy2z3w2 + 24xyz3w3 + 4xz3w4 + y8 + 14y4w4 + 4y3z4w + 4yz4w3

+z8 + w8

Orbit number(3) of size 2688 with symmetrized weight enumerator

swe = x8 +8x4y4 +14x4z4 +80x3y4z+48x2y4z2 +80xy4z3 +16y8 +8y4z4 +z8

and orbit representative: 
0 0 0 0

0 0 0 1

0 1 1 0

0 0 1 1


Number of permutation orbits= 8.

• Permutation orbit number (1) of size 672 and representative:


0 0 0 0

0 0 0 1

0 1 1 0

0 0 1 1


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with complete weight enumerator

cwe = x8 + x4y4 + 2x4y3w + 2x4y2w2 + 2x4yw3 + 14x4z4 + x4w4 + 5x3y4z

+20x3y3zw + 30x3y2zw2 + 20x3yzw3 + 5x3zw4 + 2x2y4z2

+12x2y3z2w + 20x2y2z2w2 + 12x2yz2w3 + 2x2z2w4 + 5xy4z3

+20xy3z3w + 30xy2z3w2 + 20xyz3w3 + 5xz3w4 + y7w + 7y5w3 + y4z4

+2y3z4w + 7y3w5 + 2y2z4w2 + 2yz4w3 + yw7 + z8 + z4w4

• Permutation orbit number (2) of size 336 and representative:


0 0 0 0

0 0 0 1

0 1 1 0

1 1 0 1


with complete weight enumerator

cwe = x8 + x4y4 + 2x4y3w + 2x4y2w2 + 2x4yw3 + 14x4z4 + x4w4 + 6x3y4z

+16x3y3zw + 36x3y2zw2 + 16x3yzw3 + 6x3zw4 + 2x2y4z2

+12x2y3z2w + 20x2y2z2w2 + 12x2yz2w3 + 2x2z2w4 + 6xy4z3

+16xy3z3w + 36xy2z3w2 + 16xyz3w3 + 6xz3w4 + 4y6w2 + y4z4

+8y4w4 + 2y3z4w + 2y2z4w2 + 4y2w6 + 2yz4w3 + z8 + z4w4

• Permutation orbit number(3) of size 84 and representative:


0 0 0 0

0 1 0 1

0 0 1 1

1 0 0 1


with complete weight enumerator

cwe = x8 + 2x4y4 + 4x4y2w2 + 14x4z4 + 2x4w4 + 40x3y3zw + 40x3yzw3

+4x2y4z2 + 40x2y2z2w2 + 4x2z2w4 + 40xy3z3w + 40xyz3w3 + y8

+2y4z4 + 14y4w4 + 4y2z4w2 + z8 + 2z4w4 + w8
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• Permutation orbit number(4) of size 168 and representative:


0 0 0 0

1 0 0 1

1 1 1 0

1 0 1 1


with complete weight enumerator

cwe = x8 + x4y4 + 6x4y2w2 + 14x4z4 + x4w4 + 8x3y4z + 8x3y3zw + 48x3y2zw2

+8x3yzw3 + 8x3zw4 + 6x2y4z2 + 36x2y2z2w2 + 6x2z2w4 + 8xy4z3

+8xy3z3w + 48xy2z3w2 + 8xyz3w3 + 8xz3w4 + 4y6w2 + y4z4 + 8y4w4

+6y2z4w2 + 4y2w6 + z8 + z4w4

• Permutation orbit number(5) of size 336 and representative:


0 0 0 1

0 0 1 1

0 0 1 0

0 1 0 1


with complete weight enumerator

cwe = x8 + 2x4y3w + 4x4y2w2 + 2x4yw3 + 14x4z4 + 6x3y4z + 16x3y3zw

+36x3y2zw2 + 16x3yzw3 + 6x3zw4 + 4x2y4z2 + 12x2y3z2w

+16x2y2z2w2 + 12x2yz2w3 + 4x2z2w4 + 6xy4z3 + 16xy3z3w

+36xy2z3w2 + 16xyz3w3 + 6xz3w4 + 4y6w2 + 8y4w4 + 2y3z4w

+4y2z4w2 + 4y2w6 + 2yz4w3 + z8

• Permutation orbit number(6) of size 672 and representative:


0 0 0 1

0 0 1 1

0 0 1 0

1 0 1 1


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with complete weight enumerator

cwe = x8 + 2x4y3w + 4x4y2w2 + 2x4yw3 + 14x4z4 + 5x3y4z + 20x3y3zw

+30x3y2zw2 + 20x3yzw3 + 5x3zw4 + 4x2y4z2 + 12x2y3z2w

+16x2y2z2w2 + 12x2yz2w3 + 4x2z2w4 + 5xy4z3 + 20xy3z3w

+30xy2z3w2 + 20xyz3w3 + 5xz3w4 + y7w + 7y5w3 + 2y3z4w + 7y3w5

+4y2z4w2 + 2yz4w3 + yw7 + z8

• Permutation orbit number(7) of size 336 and representative:


0 0 0 1

0 1 0 0

0 0 1 1

0 1 0 1


with complete weight enumerator

cwe = x8 + 4x4y3w + 4x4yw3 + 14x4z4 + 4x3y4z + 24x3y3zw + 24x3y2zw2

+24x3yzw3 + 4x3zw4 + 24x2y3z2w + 24x2yz2w3 + 4xy4z3 + 24xy3z3w

+24xy2z3w2 + 24xyz3w3 + 4xz3w4 + 4y6w2 + 8y4w4 + 4y3z4w + 4y2w6

+4yz4w3 + z8

• Permutation orbit number(8) of size 84 and representative:


0 0 1 1

0 1 0 1

1 0 1 0

0 0 1 1


with complete weight enumerator

cwe = x8 + 8x4y2w2 + 14x4z4 + 40x3y3zw + 40x3yzw3 + 8x2y4z2 + 32x2y2z2w2

+8x2z2w4 + 40xy3z3w + 40xyz3w3 + y8 + 14y4w4 + 8y2z4w2 + z8 + w8

Orbit number(4) of size 21504 with symmetrized weight enumerator

swe = x8+12x4y4+14x4z4+64x3y4z+72x2y4z2+64xy4z3+16y8+12y4z4+z8
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and orbit representative: 
0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0


Number of permutation orbits= 27

• Permutation orbit number (1) of size 336 and representative:


0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0


with complete weight enumerator

cwe = x8 + 2x4y4 + 2x4y3w + 4x4y2w2 + 2x4yw3 + 14x4z4 + 2x4w4 + 6x3y4z

+8x3y3zw + 36x3y2zw2 + 8x3yzw3 + 6x3zw4 + 4x2y4z2 + 12x2y3z2w

+40x2y2z2w2 + 12x2yz2w3 + 4x2z2w4 + 6xy4z3 + 8xy3z3w + 36xy2z3w2

+8xyz3w3 + 6xz3w4 + 4y6w2 + 2y4z4 + 8y4w4 + 2y3z4w + 4y2z4w2

+4y2w6 + 2yz4w3 + z8 + 2z4w4

• Permutation orbit number (2) of size 1344 and representative:


0 0 0 0

0 0 0 0

0 0 0 1

0 1 0 1


with complete weight enumerator

cwe = x8 + 2x4y4 + 2x4y3w + 4x4y2w2 + 2x4yw3 + 14x4z4 + 2x4w4 + 5x3y4z

+12x3y3zw + 30x3y2zw2 + 12x3yzw3 + 5x3zw4 + 4x2y4z2 + 12x2y3z2w

+40x2y2z2w2 + 12x2yz2w3 + 4x2z2w4 + 5xy4z3 + 12xy3z3w

+30xy2z3w2 + 12xyz3w3 + 5xz3w4 + y7w + 7y5w3 + 2y4z4 + 2y3z4w

+7y3w5 + 4y2z4w2 + 2yz4w3 + yw7 + z8 + 2z4w4
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• Permutation orbit number(3) of size 672 and representative:


0 0 0 0

0 0 0 0

0 0 0 1

0 1 1 1


with complete weight enumerator

cwe = x8 + 2x4y4 + 2x4y3w + 4x4y2w2 + 2x4yw3 + 14x4z4 + 2x4w4 + 6x3y4z

+8x3y3zw + 36x3y2zw2 + 8x3yzw3 + 6x3zw4 + 4x2y4z2 + 12x2y3z2w

+40x2y2z2w2 + 12x2yz2w3 + 4x2z2w4 + 6xy4z3 + 8xy3z3w + 36xy2z3w2

+8xyz3w3 + 6xz3w4 + 4y6w2 + 2y4z4 + 8y4w4 + 2y3z4w + 4y2z4w2

+4y2w6 + 2yz4w3 + z8 + 2z4w4

• Permutation orbit number(4) of size 672 and representative:


0 0 0 0

0 0 0 0

0 0 0 1

1 1 0 0


with complete weight enumerator

cwe = x8 + 2x4y4 + 2x4y3w + 4x4y2w2 + 2x4yw3 + 14x4z4 + 2x4w4 + 5x3y4z

+12x3y3zw + 30x3y2zw2 + 12x3yzw3 + 5x3zw4 + 4x2y4z2 + 12x2y3z2w

+40x2y2z2w2 + 12x2yz2w3 + 4x2z2w4 + 5xy4z3 + 12xy3z3w + 30xy2z3w2

+12xyz3w3 + 5xz3w4 + y7w + 7y5w3 + 2y4z4 + 2y3z4w + 7y3w5

+4y2z4w2 + 2yz4w3 + yw7 + z8 + 2z4w4

• Permutation orbit number (5) of size 336 and representative:


0 0 0 0

0 0 0 0

0 0 1 1

0 0 1 1


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with complete weight enumerator

cwe = x8 + 2x4y4 + 8x4y2w2 + 14x4z4 + 2x4w4 + 32x3y3zw + 32x3yzw3

+8x2y4z2 + 56x2y2z2w2 + 8x2z2w4 + 32xy3z3w + 32xyz3w3 + 4y6w2

+2y4z4 + 8y4w4 + 8y2z4w2 + 4y2w6 + z8 + 2z4w4

• Permutation orbit number(6) of size 672 and representative:


0 0 0 0

0 0 0 0

0 0 1 1

0 1 0 1


with complete weight enumerator

cwe = x8 + 2x4y4 + 8x4y2w2 + 14x4z4 + 2x4w4 + 32x3y3zw + 32x3yzw3

+8x2y4z2 + 56x2y2z2w2 + 8x2z2w4 + 32xy3z3w + 32xyz3w3 + 4y6w2

+2y4z4 + 8y4w4 + 8y2z4w2 + 4y2w6 + z8 + 2z4w4

• Permutation orbit number (7) of size 1344 and representative:


0 0 0 0

0 0 0 1

0 0 0 1

0 0 1 1


with complete weight enumerator

cwe = x8 + x4y4 + 4x4y3w + 2x4y2w2 + 4x4yw3 + 14x4z4 + x4w4 + 4x3y4z

+16x3y3zw + 24x3y2zw2 + 16x3yzw3 + 4x3zw4 + 2x2y4z2 + 24x2y3z2w

+20x2y2z2w2 + 24x2yz2w3 + 2x2z2w4 + 4xy4z3 + 16xy3z3w

+24xy2z3w2 + 16xyz3w3 + 4xz3w4 + 4y6w2 + y4z4 + 8y4w4 + 4y3z4w

+2y2z4w2 + 4y2w6 + 4yz4w3 + z8 + z4w4
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• Permutation orbit number (8) of size 672 and representative:


0 0 0 0

0 0 0 1

0 0 0 1

1 0 0 0


with complete weight enumerator

cwe = x8 + x4y4 + 4x4y3w + 2x4y2w2 + 4x4yw3 + 14x4z4 + x4w4 + 3x3y4z

+20x3y3zw + 18x3y2zw2 + 20x3yzw3 + 3x3zw4 + 2x2y4z2 + 24x2y3z2w

+20x2y2z2w2 + 24x2yz2w3 + 2x2z2w4 + 3xy4z3 + 20xy3z3w + 18xy2z3w2

+20xyz3w3 + 3xz3w4 + y7w + 7y5w3 + y4z4 + 4y3z4w + 7y3w5 + 2y2z4w2

+4yz4w3 + yw7 + z8 + z4w4

• Permutation orbit number(9) of size 1344 and representative:


0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1


with complete weight enumerator

cwe = x8 + x4y4 + 4x4y3w + 2x4y2w2 + 4x4yw3 + 14x4z4 + x4w4 + 4x3y4z

+16x3y3zw + 24x3y2zw2 + 16x3yzw3 + 4x3zw4 + 2x2y4z2 + 24x2y3z2w

+20x2y2z2w2 + 24x2yz2w3 + 2x2z2w4 + 4xy4z3 + 16xy3z3w + 24xy2z3w2

+16xyz3w3 + 4xz3w4 + 4y6w2 + y4z4 + 8y4w4 + 4y3z4w + 2y2z4w2 + 4y2w6

+4yz4w3 + z8 + z4w4

• Permutation orbit number (10) of size 672 and representative:


0 0 0 0

0 0 0 1

0 0 1 0

1 0 0 0


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with complete weight enumerator

cwe = x8 + x4y4 + 4x4y3w + 2x4y2w2 + 4x4yw3 + 14x4z4 + x4w4 + 3x3y4z

+20x3y3zw + 18x3y2zw2 + 20x3yzw3 + 3x3zw4 + 2x2y4z2 + 24x2y3z2w

+20x2y2z2w2 + 24x2yz2w3 + 2x2z2w4 + 3xy4z3 + 20xy3z3w + 18xy2z3w2

+20xyz3w3 + 3xz3w4 + y7w + 7y5w3 + y4z4 + 4y3z4w + 7y3w5 + 2y2z4w2

+4yz4w3 + yw7 + z8 + z4w4

• Permutation orbit number (11) of size 1344 and representative:


0 0 0 0

0 0 0 1

0 0 1 1

0 0 1 1


with complete weight enumerator

cwe = x8 + x4y4 + 4x4y3w + 2x4y2w2 + 4x4yw3 + 14x4z4 + x4w4 + 3x3y4z

+20x3y3zw + 18x3y2zw2 + 20x3yzw3 + 3x3zw4 + 2x2y4z2 + 24x2y3z2w

+20x2y2z2w2 + 24x2yz2w3 + 2x2z2w4 + 3xy4z3 + 20xy3z3w + 18xy2z3w2

+20xyz3w3 + 3xz3w4 + y7w + 7y5w3 + y4z4 + 4y3z4w + 7y3w5 + 2y2z4w2

+4yz4w3 + yw7 + z8 + z4w4

• Permutation orbit number (12) of size 336 and representative:


0 0 0 0

0 0 0 1

0 0 1 1

1 1 0 1


with complete weight enumerator

cwe = x8 + 2x4y4 + 4x4y3w + 4x4yw3 + 14x4z4 + 2x4w4 + 4x3y4z + 16x3y3zw

+24x3y2zw2 + 16x3yzw3 + 4x3zw4 + 24x2y3z2w + 24x2y2z2w2

+24x2yz2w3 + 4xy4z3 + 16xy3z3w + 24xy2z3w2 + 16xyz3w3 + 4xz3w4 + y8

+2y4z4 + 14y4w4 + 4y3z4w + 4yz4w3 + z8 + 2z4w4 + w8
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• Permutation orbit number (13) of size 672 and representative:


0 0 0 0

1 0 0 0

1 0 0 1

1 0 1 0


with complete weight enumerator

cwe = x8 + x4y4 + 2x4y3w + 6x4y2w2 + 2x4yw3 + 14x4z4 + x4w4 + 5x3y4z

+12x3y3zw + 30x3y2zw2 + 12x3yzw3 + 5x3zw4 + 6x2y4z2 + 12x2y3z2w

+36x2y2z2w2 + 12x2yz2w3 + 6x2z2w4 + 5xy4z3 + 12xy3z3w + 30xy2z3w2

+12xyz3w3 + 5xz3w4 + y7w + 7y5w3 + y4z4 + 2y3z4w + 7y3w5 + 6y2z4w2

+2yz4w3 + yw7 + z8 + z4w4

• Permutation orbit number (14) of size 672 and representative:


0 0 0 0

1 0 0 0

1 0 0 1

1 1 0 1


with complete weight enumerator

cwe = x8 + x4y4 + 2x4y3w + 6x4y2w2 + 2x4yw3 + 14x4z4 + x4w4 + 6x3y4z

+8x3y3zw + 36x3y2zw2 + 8x3yzw3 + 6x3zw4 + 6x2y4z2 + 12x2y3z2w

+36x2y2z2w2 + 12x2yz2w3 + 6x2z2w4 + 6xy4z3 + 8xy3z3w + 36xy2z3w2

+8xyz3w3 + 6xz3w4 + 4y6w2 + y4z4 + 8y4w4 + 2y3z4w + 6y2z4w2 + 4y2w6

+2yz4w3 + z8 + z4w4

• Permutation orbit number (15) of size 672 and representative:


0 0 0 0

1 0 0 0

1 0 0 1

1 1 1 1


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with complete weight enumerator

cwe = x8 + x4y4 + 2x4y3w + 6x4y2w2 + 2x4yw3 + 14x4z4 + x4w4 + 5x3y4z

+12x3y3zw + 30x3y2zw2 + 12x3yzw3 + 5x3zw4 + 6x2y4z2 + 12x2y3z2w

+36x2y2z2w2 + 12x2yz2w3 + 6x2z2w4 + 5xy4z3 + 12xy3z3w + 30xy2z3w2

+12xyz3w3 + 5xz3w4 + y7w + 7y5w3 + y4z4 + 2y3z4w + 7y3w5 + 6y2z4w2

+2yz4w3 + yw7 + z8 + z4w4

• Permutation orbit number (16) of size 672 and representative:


0 0 0 1

0 0 0 1

0 0 1 0

0 0 1 1


with complete weight enumerator

cwe = x8 + 4x4y3w + 4x4y2w2 + 4x4yw3 + 14x4z4 + 3x3y4z + 20x3y3zw

+18x3y2zw2 + 20x3yzw3 + 3x3zw4 + 4x2y4z2 + 24x2y3z2w

+16x2y2z2w2 + 24x2yz2w3 + 4x2z2w4 + 3xy4z3 + 20xy3z3w

+18xy2z3w2 + 20xyz3w3 + 3xz3w4 + y7w + 7y5w3 + 4y3z4w + 7y3w5

+4y2z4w2 + 4yz4w3 + yw7 + z8

• Permutation orbit number (17) of size 672 and representative:


0 0 0 1

0 0 0 1

0 0 1 0

0 1 0 1


with complete weight enumerator

cwe = x8 + 4x4y3w + 4x4y2w2 + 4x4yw3 + 14x4z4 + 3x3y4z + 20x3y3zw + 18x3y2zw2

+20x3yzw3 + 3x3zw4 + 4x2y4z2 + 24x2y3z2w + 16x2y2z2w2 + 24x2yz2w3

+4x2z2w4 + 3xy4z3 + 20xy3z3w + 18xy2z3w2 + 20xyz3w3 + 3xz3w4 + y7w

+7y5w3 + 4y3z4w + 7y3w5 + 4y2z4w2 + 4yz4w3 + yw7 + z8



APPENDIX A. ORBITS AND PROGRAMMING CODES 115

• Permutation orbit number (18) of size 672 and representative:


0 0 0 1

0 0 0 1

0 0 1 0

1 1 0 1


with complete weight enumerator

cwe = x8 + 4x4y3w + 4x4y2w2 + 4x4yw3 + 14x4z4 + 4x3y4z + 16x3y3zw + 24x3y2zw2

+16x3yzw3 + 4x3zw4 + 4x2y4z2 + 24x2y3z2w + 16x2y2z2w2 + 24x2yz2w3

+4x2z2w4 + 4xy4z3 + 16xy3z3w + 24xy2z3w2 + 16xyz3w3 + 4xz3w4 + y8

+14y4w4 + 4y3z4w + 4y2z4w2 + 4yz4w3 + z8 + w8

• Permutation orbit number (19) of size 1344 and representative:


0 0 0 1

0 0 0 1

0 1 1 0

0 0 1 1


with complete weight enumerator

cwe = x8 + 4x4y3w + 4x4y2w2 + 4x4yw3 + 14x4z4 + 4x3y4z + 16x3y3zw + 24x3y2zw2

+16x3yzw3 + 4x3zw4 + 4x2y4z2 + 24x2y3z2w + 16x2y2z2w2 + 24x2yz2w3

+4x2z2w4 + 4xy4z3 + 16xy3z3w + 24xy2z3w2 + 16xyz3w3 + 4xz3w4 + 4y6w2

+8y4w4 + 4y3z4w + 4y2z4w2 + 4y2w6 + 4yz4w3 + z8

• Permutation orbit number (20) of size 672 and representative:


0 0 0 1

0 0 0 1

0 1 1 1

0 0 1 1


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with complete weight enumerator

cwe = x8 + 2x4y3w + 8x4y2w2 + 2x4yw3 + 14x4z4 + 5x3y4z + 12x3y3zw + 30x3y2zw2

+12x3yzw3 + 5x3zw4 + 8x2y4z2 + 12x2y3z2w + 32x2y2z2w2 + 12x2yz2w3

+8x2z2w4 + 5xy4z3 + 12xy3z3w + 30xy2z3w2 + 12xyz3w3 + 5xz3w4 + y7w

+7y5w3 + 2y3z4w + 7y3w5 + 8y2z4w2 + 2yz4w3 + yw7 + z8

• Permutation orbit number (21) of size 1344 and representative:


0 0 0 1

0 0 1 1

0 0 1 0

0 0 0 1


with complete weight enumerator

cwe = x8 + 2x4y3w + 8x4y2w2 + 2x4yw3 + 14x4z4 + 5x3y4z + 12x3y3zw + 30x3y2zw2

+12x3yzw3 + 5x3zw4 + 8x2y4z2 + 12x2y3z2w + 32x2y2z2w2 + 12x2yz2w3

+8x2z2w4 + 5xy4z3 + 12xy3z3w + 30xy2z3w2 + 12xyz3w3 + 5xz3w4 + y7w

+7y5w3 + 2y3z4w + 7y3w5 + 8y2z4w2 + 2yz4w3 + yw7 + z8

• Permutation orbit number (22) of size 1344 and representative:


0 0 0 1

0 0 1 1

0 0 1 0

0 0 1 0


with complete weight enumerator

cwe = x8 + 4x4y3w + 4x4y2w2 + 4x4yw3 + 14x4z4 + 3x3y4z + 20x3y3zw + 18x3y2zw2

+20x3yzw3 + 3x3zw4 + 4x2y4z2 + 24x2y3z2w + 16x2y2z2w2 + 24x2yz2w3

+4x2z2w4 + 3xy4z3 + 20xy3z3w + 18xy2z3w2 + 20xyz3w3 + 3xz3w4 + y7w

+7y5w3 + 4y3z4w + 7y3w5 + 4y2z4w2 + 4yz4w3 + yw7 + z8
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• Permutation orbit number (23) of size 672 and representative:


0 0 0 1

0 0 1 1

0 1 0 1

1 1 1 0


with complete weight enumerator

cwe = x8 + 2x4y3w + 8x4y2w2 + 2x4yw3 + 14x4z4 + 6x3y4z + 8x3y3zw + 36x3y2zw2

+8x3yzw3 + 6x3zw4 + 8x2y4z2 + 12x2y3z2w + 32x2y2z2w2 + 12x2yz2w3

+8x2z2w4 + 6xy4z3 + 8xy3z3w + 36xy2z3w2 + 8xyz3w3 + 6xz3w4 + 4y6w2

+8y4w4 + 2y3z4w + 8y2z4w2 + 4y2w6 + 2yz4w3 + z8

• Permutation orbit number (24) of size 1344 and representative:


0 0 0 1

0 0 1 1

0 1 1 0

1 1 1 0


with complete weight enumerator

cwe = x8 + 4x4y3w + 4x4y2w2 + 4x4yw3 + 14x4z4 + 4x3y4z + 16x3y3zw + 24x3y2zw2

+16x3yzw3 + 4x3zw4 + 4x2y4z2 + 24x2y3z2w + 16x2y2z2w2 + 24x2yz2w3

+4x2z2w4 + 4xy4z3 + 16xy3z3w + 24xy2z3w2 + 16xyz3w3 + 4xz3w4 + 4y6w2

+8y4w4 + 4y3z4w + 4y2z4w2 + 4y2w6 + 4yz4w3 + z8

• Permutation orbit number (25) of size 336 and representative:


0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0


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with complete weight enumerator

cwe = x8 + 4x4y3w + 4x4y2w2 + 4x4yw3 + 14x4z4 + 4x3y4z + 16x3y3zw + 24x3y2zw2

+16x3yzw3 + 4x3zw4 + 4x2y4z2 + 24x2y3z2w + 16x2y2z2w2 + 24x2yz2w3

+4x2z2w4 + 4xy4z3 + 16xy3z3w + 24xy2z3w2 + 16xyz3w3 + 4xz3w4 + y8

+14y4w4 + 4y3z4w + 4y2z4w2 + 4yz4w3 + z8 + w8

• Permutation orbit number (26) of size 336 and representative:


0 0 0 1

1 0 0 1

1 1 1 0

1 0 1 0


with complete weight enumerator

cwe = x8 + 2x4y3w + 8x4y2w2 + 2x4yw3 + 14x4z4 + 6x3y4z + 8x3y3zw + 36x3y2zw2

+8x3yzw3 + 6x3zw4 + 8x2y4z2 + 12x2y3z2w + 32x2y2z2w2 + 12x2yz2w3

+8x2z2w4 + 6xy4z3 + 8xy3z3w + 36xy2z3w2 + 8xyz3w3 + 6xz3w4 + 4y6w2

+8y4w4 + 2y3z4w + 8y2z4w2 + 4y2w6 + 2yz4w3 + z8

• Permutation orbit number (27) of size 336 and representative:


0 0 1 1

0 1 0 1

0 0 1 1

0 0 1 1


with complete weight enumerator

cwe = x8 + 12x4y2w2 + 14x4z4 + 32x3y3zw + 32x3yzw3 + 12x2y4z2 + 48x2y2z2w2

+12x2z2w4 + 32xy3z3w + 32xyz3w3 + 4y6w2 + 8y4w4 + 12y2z4w2 + 4y2w6 + z8

Orbit number(5) of size 21504 with symmetrized weight enumerator

swe = x8+16x4y4+14x4z4+48x3y4z+96x2y4z2+48xy4z3+16y8+16y4z4+z8



APPENDIX A. ORBITS AND PROGRAMMING CODES 119

and orbit representative: 
0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 1


Number of permutation orbits = 24

• Permutation orbit number (1) of size 672 and representative:


0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 1


with complete weight enumerator

cwe = x8 + 3x4y4 + 10x4y2w2 + 14x4z4 + 3x4w4 + 24x3y3zw + 24x3yzw3 + 10x2y4z2

+76x2y2z2w2 + 10x2z2w4 + 24xy3z3w + 24xyz3w3 + 4y6w2 + 3y4z4 + 8y4w4

+10y2z4w2 + 4y2w6 + z8 + 3z4w4

• Permutation orbit number (2) of size 672 and representative:


0 0 0 0

0 0 0 0

0 0 0 0

0 1 1 1


with complete weight enumerator

cwe = x8 + 3x4y4 + 2x4y3w + 6x4y2w2 + 2x4yw3 + 14x4z4 + 3x4w4 + 5x3y4z

+4x3y3zw + 30x3y2zw2 + 4x3yzw3 + 5x3zw4 + 6x2y4z2 + 12x2y3z2w

+60x2y2z2w2 + 12x2yz2w3 + 6x2z2w4 + 5xy4z3 + 4xy3z3w + 30xy2z3w2

+4xyz3w3 + 5xz3w4 + y7w + 7y5w3 + 3y4z4 + 2y3z4w + 7y3w5 + 6y2z4w2

+2yz4w3 + yw7 + z8 + 3z4w4
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• Permutation orbit number(3) of size 672 and representative:


0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 1


with complete weight enumerator

cwe = x8 + 2x4y4 + 4x4y3w + 4x4y2w2 + 4x4yw3 + 14x4z4 + 2x4w4 + 4x3y4z

+8x3y3zw + 24x3y2zw2 + 8x3yzw3 + 4x3zw4 + 4x2y4z2 + 24x2y3z2w

+40x2y2z2w2 + 24x2yz2w3 + 4x2z2w4 + 4xy4z3 + 8xy3z3w

+24xy2z3w2 + 8xyz3w3 + 4xz3w4 + 4y6w2 + 2y4z4 + 8y4w4

+4y3z4w + 4y2z4w2 + 4y2w6 + 4yz4w3 + z8 + 2z4w4

• Permutation orbit number (4) of size 1344 and representative:


0 0 0 0

0 0 0 0

0 0 0 1

0 1 0 0


with complete weight enumerator

cwe = x8 + 2x4y4 + 4x4y3w + 4x4y2w2 + 4x4yw3 + 14x4z4 + 2x4w4 + 4x3y4z

+8x3y3zw + 24x3y2zw2 + 8x3yzw3 + 4x3zw4 + 4x2y4z2 + 24x2y3z2w

+40x2y2z2w2 + 24x2yz2w3 + 4x2z2w4 + 4xy4z3 + 8xy3z3w

+24xy2z3w2 + 8xyz3w3 + 4xz3w4 + 4y6w2 + 2y4z4 + 8y4w4 + 4y3z4w

+4y2z4w2 + 4y2w6 + 4yz4w3 + z8 + 2z4w4

• Permutation orbit number (5) of size 1344 and representative:


0 0 0 0

0 0 0 0

0 0 1 0

0 1 0 1


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with complete weight enumerator

cwe = x8 + 2x4y4 + 4x4y3w + 4x4y2w2 + 4x4yw3 + 14x4z4 + 2x4w4 + 3x3y4z

+12x3y3zw + 18x3y2zw2 + 12x3yzw3 + 3x3zw4 + 4x2y4z2 + 24x2y3z2w

+40x2y2z2w2 + 24x2yz2w3 + 4x2z2w4 + 3xy4z3 + 12xy3z3w

+18xy2z3w2 + 12xyz3w3 + 3xz3w4 + y7w + 7y5w3 + 2y4z4 + 4y3z4w

+7y3w5 + 4y2z4w2 + 4yz4w3 + yw7 + z8 + 2z4w4

• Permutation orbit number (6) of size 672 and representative:


0 0 0 0

0 0 0 0

0 0 1 0

1 1 0 0


with complete weight enumerator

cwe = x8 + 2x4y4 + 4x4y3w + 4x4y2w2 + 4x4yw3 + 14x4z4 + 2x4w4 + 3x3y4z

+12x3y3zw + 18x3y2zw2 + 12x3yzw3 + 3x3zw4 + 4x2y4z2 + 24x2y3z2w

+40x2y2z2w2 + 24x2yz2w3 + 4x2z2w4 + 3xy4z3 + 12xy3z3w

+18xy2z3w2 + 12xyz3w3 + 3xz3w4 + y7w + 7y5w3 + 2y4z4 + 4y3z4w

+7y3w5 + 4y2z4w2 + 4yz4w3 + yw7 + z8 + 2z4w4

• Permutation orbit number (7) of size 672 and representative:


0 0 0 0

0 0 0 1

0 0 0 1

0 0 0 1


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with complete weight enumerator

cwe = x8 + x4y4 + 4x4y3w + 6x4y2w2 + 4x4yw3 + 14x4z4 + x4w4 + 3x3y4z

+12x3y3zw + 18x3y2zw2 + 12x3yzw3 + 3x3zw4 + 6x2y4z2 + 24x2y3z2w

+36x2y2z2w2 + 24x2yz2w3 + 6x2z2w4 + 3xy4z3 + 12xy3z3w

+18xy2z3w2 + 12xyz3w3 + 3xz3w4 + y7w + 7y5w3 + y4z4 + 4y3z4w

+7y3w5 + 6y2z4w2 + 4yz4w3 + yw7 + z8 + z4w4

• Permutation orbit number (8) of size 1344 and representative:


0 0 0 0

0 0 0 1

0 0 0 1

0 0 1 0


with complete weight enumerator

cwe = x8 + x4y4 + 4x4y3w + 6x4y2w2 + 4x4yw3 + 14x4z4 + x4w4 + 3x3y4z

+12x3y3zw + 18x3y2zw2 + 12x3yzw3 + 3x3zw4 + 6x2y4z2 + 24x2y3z2w

+36x2y2z2w2 + 24x2yz2w3 + 6x2z2w4 + 3xy4z3 + 12xy3z3w + 18xy2z3w2

+12xyz3w3 + 3xz3w4 + y7w + 7y5w3 + y4z4 + 4y3z4w + 7y3w5 + 6y2z4w2

+4yz4w3 + yw7 + z8 + z4w4

• Permutation orbit number (9) of size 672 and representative:


0 0 0 0

0 0 0 1

0 0 0 1

1 0 1 0


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with complete weight enumerator

cwe = x8 + x4y4 + 4x4y3w + 6x4y2w2 + 4x4yw3 + 14x4z4 + x4w4 + 4x3y4z

+8x3y3zw + 24x3y2zw2 + 8x3yzw3 + 4x3zw4 + 6x2y4z2 + 24x2y3z2w

+36x2y2z2w2 + 24x2yz2w3 + 6x2z2w4 + 4xy4z3 + 8xy3z3w + 24xy2z3w2

+8xyz3w3 + 4xz3w4 + 4y6w2 + y4z4 + 8y4w4 + 4y3z4w + 6y2z4w2 + 4y2w6

+4yz4w3 + z8 + z4w4

• Permutation orbit number (10) of size 672 and representative:


0 0 0 0

0 0 0 1

0 0 0 1

1 1 1 1


with complete weight enumerator

cwe = x8 + 2x4y4 + 4x4y3w + 4x4y2w2 + 4x4yw3 + 14x4z4 + 2x4w4 + 4x3y4z

+8x3y3zw + 24x3y2zw2 + 8x3yzw3 + 4x3zw4 + 4x2y4z2 + 24x2y3z2w

+40x2y2z2w2 + 24x2yz2w3 + 4x2z2w4 + 4xy4z3 + 8xy3z3w + 24xy2z3w2

+8xyz3w3 + 4xz3w4 + y8 + 2y4z4 + 14y4w4 + 4y3z4w + 4y2z4w2 + 4yz4w3

+z8 + 2z4w4 + w8

• Permutation orbit number (11) of size 672 and representative:


0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 0


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with complete weight enumerator

cwe = x8 + x4y4 + 4x4y3w + 6x4y2w2 + 4x4yw3 + 14x4z4 + x4w4 + 3x3y4z

+12x3y3zw + 18x3y2zw2 + 12x3yzw3 + 3x3zw4 + 6x2y4z2 + 24x2y3z2w

+36x2y2z2w2 + 24x2yz2w3 + 6x2z2w4 + 3xy4z3 + 12xy3z3w + 18xy2z3w2

+12xyz3w3 + 3xz3w4 + y7w + 7y5w3 + y4z4 + 4y3z4w + 7y3w5 + 6y2z4w2

+4yz4w3 + yw7 + z8 + z4w4

• Permutation orbit number (12) of size 672 and representative:


0 0 0 0

0 0 0 1

0 0 1 0

1 0 0 1


with complete weight enumerator

cwe = x8 + x4y4 + 4x4y3w + 6x4y2w2 + 4x4yw3 + 14x4z4 + x4w4 + 4x3y4z

+8x3y3zw + 24x3y2zw2 + 8x3yzw3 + 4x3zw4 + 6x2y4z2 + 24x2y3z2w

+36x2y2z2w2 + 24x2yz2w3 + 6x2z2w4 + 4xy4z3 + 8xy3z3w + 24xy2z3w2

+8xyz3w3 + 4xz3w4 + 4y6w2 + y4z4 + 8y4w4 + 4y3z4w + 6y2z4w2 + 4y2w6

+4yz4w3 + z8 + z4w4

• Permutation orbit number (13) of size 1344 and representative:


0 0 0 0

0 0 0 1

0 0 1 1

0 0 0 1


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with complete weight enumerator

cwe = x8 + x4y4 + 6x4y3w + 2x4y2w2 + 6x4yw3 + 14x4z4 + x4w4 + 2x3y4z

+16x3y3zw + 12x3y2zw2 + 16x3yzw3 + 2x3zw4 + 2x2y4z2 + 36x2y3z2w

+20x2y2z2w2 + 36x2yz2w3 + 2x2z2w4 + 2xy4z3 + 16xy3z3w + 12xy2z3w2

+16xyz3w3 + 2xz3w4 + 4y6w2 + y4z4 + 8y4w4 + 6y3z4w + 2y2z4w2

+4y2w6 + 6yz4w3 + z8 + z4w4

• Permutation orbit number (14) of size 672 and representative:


0 0 0 0

0 0 0 1

0 0 1 1

0 1 0 1


with complete weight enumerator

cwe = x8 + x4y4 + 6x4y3w + 2x4y2w2 + 6x4yw3 + 14x4z4 + x4w4 + x3y4z

+20x3y3zw + 6x3y2zw2 + 20x3yzw3 + x3zw4 + 2x2y4z2 + 36x2y3z2w

+20x2y2z2w2 + 36x2yz2w3 + 2x2z2w4 + xy4z3 + 20xy3z3w + 6xy2z3w2

+20xyz3w3 + xz3w4 + y7w + 7y5w3 + y4z4 + 6y3z4w + 7y3w5 + 2y2z4w2

+6yz4w3 + yw7 + z8 + z4w4

• Permutation orbit number (15) of size 1344 and representative:


0 0 0 0

1 0 0 0

1 0 0 0

1 0 1 1


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with complete weight enumerator

cwe = x8 + x4y4 + 4x4y3w + 6x4y2w2 + 4x4yw3 + 14x4z4 + x4w4 + 3x3y4z

+12x3y3zw + 18x3y2zw2 + 12x3yzw3 + 3x3zw4 + 6x2y4z2 + 24x2y3z2w

+36x2y2z2w2 + 24x2yz2w3 + 6x2z2w4 + 3xy4z3 + 12xy3z3w + 18xy2z3w2

+12xyz3w3 + 3xz3w4 + y7w + 7y5w3 + y4z4 + 4y3z4w + 7y3w5 + 6y2z4w2

+4yz4w3 + yw7 + z8 + z4w4

• Permutation orbit number (16) of size 672 and representative:


0 0 0 0

1 0 0 1

1 0 0 1

1 0 0 1


with complete weight enumerator

cwe = x8 + x4y4 + 14x4y2w2 + 14x4z4 + x4w4 + 24x3y3zw + 24x3yzw3 + 14x2y4z2

+68x2y2z2w2 + 14x2z2w4 + 24xy3z3w + 24xyz3w3 + 4y6w2 + y4z4 + 8y4w4

+14y2z4w2 + 4y2w6 + z8 + z4w4

• Permutation orbit number (17) of size 672 and representative:


0 0 0 1

0 0 0 1

0 0 0 1

0 0 1 1


with complete weight enumerator

cwe = x8 + 4x4y3w + 8x4y2w2 + 4x4yw3 + 14x4z4 + 3x3y4z + 12x3y3zw

+18x3y2zw2 + 12x3yzw3 + 3x3zw4 + 8x2y4z2 + 24x2y3z2w + 32x2y2z2w2

+24x2yz2w3 + 8x2z2w4 + 3xy4z3 + 12xy3z3w + 18xy2z3w2 + 12xyz3w3

+3xz3w4 + y7w + 7y5w3 + 4y3z4w + 7y3w5 + 8y2z4w2 + 4yz4w3 + yw7 + z8
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• Permutation orbit number (18) of size 1344 and representative:


0 0 0 1

0 0 0 1

0 0 1 0

0 1 0 0


with complete weight enumerator

cwe = x8 + 6x4y3w + 4x4y2w2 + 6x4yw3 + 14x4z4 + 2x3y4z + 16x3y3zw + 12x3y2zw2

+16x3yzw3 + 2x3zw4 + 4x2y4z2 + 36x2y3z2w + 16x2y2z2w2 + 36x2yz2w3

+4x2z2w4 + 2xy4z3 + 16xy3z3w + 12xy2z3w2 + 16xyz3w3 + 2xz3w4 + 4y6w2

+8y4w4 + 6y3z4w + 4y2z4w2 + 4y2w6 + 6yz4w3 + z8

• Permutation orbit number (19) of size 672 and representative:


0 0 0 1

0 0 0 1

0 0 1 1

0 0 1 0


with complete weight enumerator

cwe = x8 + 6x4y3w + 4x4y2w2 + 6x4yw3 + 14x4z4 + x3y4z + 20x3y3zw + 6x3y2zw2

+20x3yzw3 + x3zw4 + 4x2y4z2 + 36x2y3z2w + 16x2y2z2w2 + 36x2yz2w3

+4x2z2w4 + xy4z3 + 20xy3z3w + 6xy2z3w2 + 20xyz3w3 + xz3w4 + y7w

+7y5w3 + 6y3z4w + 7y3w5 + 4y2z4w2 + 6yz4w3 + yw7 + z8

• Permutation orbit number (20) of size 672 and representative:


0 0 0 1

0 0 0 1

0 0 1 1

1 1 0 0


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with complete weight enumerator

cwe = x8 + 4x4y3w + 8x4y2w2 + 4x4yw3 + 14x4z4 + 4x3y4z + 8x3y3zw + 24x3y2zw2

+8x3yzw3 + 4x3zw4 + 8x2y4z2 + 24x2y3z2w + 32x2y2z2w2 + 24x2yz2w3

+8x2z2w4 + 4xy4z3 + 8xy3z3w + 24xy2z3w2 + 8xyz3w3 + 4xz3w4 + y8

+14y4w4 + 4y3z4w + 8y2z4w2 + 4yz4w3 + z8 + w8

• Permutation orbit number (21) of size 1344 and representative:


0 0 0 1

0 0 0 1

0 1 0 1

0 0 1 0


with complete weight enumerator

cwe = x8 + 4x4y3w + 8x4y2w2 + 4x4yw3 + 14x4z4 + 3x3y4z + 12x3y3zw

+18x3y2zw2 + 12x3yzw3 + 3x3zw4 + 8x2y4z2 + 24x2y3z2w

+32x2y2z2w2 + 24x2yz2w3 + 8x2z2w4 + 3xy4z3 + 12xy3z3w

+18xy2z3w2 + 12xyz3w3 + 3xz3w4 + y7w + 7y5w3 + 4y3z4w + 7y3w5

+8y2z4w2 + 4yz4w3 + yw7 + z8

• Permutation orbit number (22) of size 1344 and representative:


0 0 0 1

0 0 0 1

0 1 0 1

0 0 1 1


with complete weight enumerator

cwe = x8 + 4x4y3w + 8x4y2w2 + 4x4yw3 + 14x4z4 + 4x3y4z + 8x3y3zw

+24x3y2zw2 + 8x3yzw3 + 4x3zw4 + 8x2y4z2 + 24x2y3z2w

+32x2y2z2w2 + 24x2yz2w3 + 8x2z2w4 + 4xy4z3 + 8xy3z3w

+24xy2z3w2 + 8xyz3w3 + 4xz3w4 + 4y6w2 + 8y4w4 + 4y3z4w

+8y2z4w2 + 4y2w6 + 4yz4w3 + z8
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• Permutation orbit number (23) of size 672 and representative:


0 0 0 1

0 0 1 1

0 0 1 1

0 1 0 0


with complete weight enumerator

cwe = x8 + 4x4y3w + 8x4y2w2 + 4x4yw3 + 14x4z4 + 4x3y4z + 8x3y3zw

+24x3y2zw2 + 8x3yzw3 + 4x3zw4 + 8x2y4z2 + 24x2y3z2w

+32x2y2z2w2 + 24x2yz2w3 + 8x2z2w4 + 4xy4z3 + 8xy3z3w

+24xy2z3w2 + 8xyz3w3 + 4xz3w4 + 4y6w2 + 8y4w4 + 4y3z4w

+8y2z4w2 + 4y2w6 + 4yz4w3 + z8

• Permutation orbit number (24) of size 672 and representative:


0 0 0 1

0 0 1 1

0 0 1 1

1 1 0 0


with complete weight enumerator

cwe = x8 + 2x4y3w + 12x4y2w2 + 2x4yw3 + 14x4z4 + 5x3y4z + 4x3y3zw + 30x3y2zw2

+4x3yzw3 + 5x3zw4 + 12x2y4z2 + 12x2y3z2w + 48x2y2z2w2 + 12x2yz2w3

+12x2z2w4 + 5xy4z3 + 4xy3z3w + 30xy2z3w2 + 4xyz3w3 + 5xz3w4 + y7w

+7y5w3 + 2y3z4w + 7y3w5 + 12y2z4w2 + 2yz4w3 + yw7 + z8

Orbit number(6) of size 3584 with symmetrized weight enumerator

swe = x8+16x4y4+14x4z4+48x3y4z+96x2y4z2+48xy4z3+16y8+16y4z4+z8
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and orbit representative: 
0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 1


Number of permutation orbits= 14.

• Permutation orbit number (1) of size 672 and representative:


0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 1


with complete weight enumerator

cwe = x8 + 2x4y4 + 4x4y3w + 4x4y2w2 + 4x4yw3 + 14x4z4 + 2x4w4 + 3x3y4z

+12x3y3zw + 18x3y2zw2 + 12x3yzw3 + 3x3zw4 + 4x2y4z2 + 24x2y3z2w

+40x2y2z2w2 + 24x2yz2w3 + 4x2z2w4 + 3xy4z3 + 12xy3z3w + 18xy2z3w2

+12xyz3w3 + 3xz3w4 + y7w + 7y5w3 + 2y4z4 + 4y3z4w + 7y3w5

+4y2z4w2 + 4yz4w3 + yw7 + z8 + 2z4w4

• Permutation orbit number (2) of size 112 and representative:


0 0 0 0

0 0 0 0

0 0 0 1

1 1 0 1


with complete weight enumerator

cwe = x8 + 3x4y4 + 2x4y3w + 6x4y2w2 + 2x4yw3 + 14x4z4 + 3x4w4 + 6x3y4z

+36x3y2zw2 + 6x3zw4 + 6x2y4z2 + 12x2y3z2w + 60x2y2z2w2

+12x2yz2w3 + 6x2z2w4 + 6xy4z3 + 36xy2z3w2 + 6xz3w4 + 4y6w2

+3y4z4 + 8y4w4 + 2y3z4w + 6y2z4w2 + 4y2w6 + 2yz4w3 + z8 + 3z4w4
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• Permutation orbit number (3) of size 84 and representative:


0 0 0 0

0 0 0 0

0 0 1 1

1 1 0 0


with complete weight enumerator

cwe = x8 + 4x4y4 + 8x4y2w2 + 14x4z4 + 4x4w4 + 24x3y3zw + 24x3yzw3 + 8x2y4z2

+80x2y2z2w2 + 8x2z2w4 + 24xy3z3w + 24xyz3w3 + y8 + 4y4z4 + 14y4w4

+8y2z4w2 + z8 + 4z4w4 + w8

• Permutation orbit number (4) of size 224 and representative:


0 0 0 0

0 0 0 1

0 0 0 1

0 1 1 1


with complete weight enumerator

cwe = x8 + x4y4 + 4x4y3w + 6x4y2w2 + 4x4yw3 + 14x4z4 + x4w4 + 3x3y4z

+12x3y3zw + 18x3y2zw2 + 12x3yzw3 + 3x3zw4 + 6x2y4z2 + 24x2y3z2w

+36x2y2z2w2 + 24x2yz2w3 + 6x2z2w4 + 3xy4z3 + 12xy3z3w + 18xy2z3w2

+12xyz3w3 + 3xz3w4 + y7w + 7y5w3 + y4z4 + 4y3z4w + 7y3w5 + 6y2z4w2

+4yz4w3 + yw7 + z8 + z4w4

• Permutation orbit number (5) of size 336 and representative:


0 0 0 0

0 0 0 1

0 0 0 1

1 0 0 1


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with complete weight enumerator

cwe = x8 + x4y4 + 4x4y3w + 6x4y2w2 + 4x4yw3 + 14x4z4 + x4w4 + 4x3y4z

+8x3y3zw + 24x3y2zw2 + 8x3yzw3 + 4x3zw4 + 6x2y4z2 + 24x2y3z2w

+36x2y2z2w2 + 24x2yz2w3 + 6x2z2w4 + 4xy4z3 + 8xy3z3w + 24xy2z3w2

+8xyz3w3 + 4xz3w4 + 4y6w2 + y4z4 + 8y4w4 + 4y3z4w + 6y2z4w2 + 4y2w6

+4yz4w3 + z8 + z4w4

• Permutation orbit number (6) of size 224 and representative:


0 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0


with complete weight enumerator

cwe = x8 + x4y4 + 4x4y3w + 6x4y2w2 + 4x4yw3 + 14x4z4 + x4w4 + 3x3y4z

+12x3y3zw + 18x3y2zw2 + 12x3yzw3 + 3x3zw4 + 6x2y4z2 + 24x2y3z2w

+36x2y2z2w2 + 24x2yz2w3 + 6x2z2w4 + 3xy4z3 + 12xy3z3w + 18xy2z3w2

+12xyz3w3 + 3xz3w4 + y7w + 7y5w3 + y4z4 + 4y3z4w + 7y3w5 + 6y2z4w2

+4yz4w3 + yw7 + z8 + z4w4

• Permutation orbit number (7) of size 336 and representative:


0 0 0 0

0 0 0 1

0 0 1 1

1 0 0 0


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with complete weight enumerator

cwe = x8 + x4y4 + 6x4y3w + 2x4y2w2 + 6x4yw3 + 14x4z4 + x4w4 + 2x3y4z

+16x3y3zw + 12x3y2zw2 + 16x3yzw3 + 2x3zw4 + 2x2y4z2 + 36x2y3z2w

+20x2y2z2w2 + 36x2yz2w3 + 2x2z2w4 + 2xy4z3 + 16xy3z3w + 12xy2z3w2

+16xyz3w3 + 2xz3w4 + 4y6w2 + y4z4 + 8y4w4 + 6y3z4w + 2y2z4w2 + 4y2w6

+6yz4w3 + z8 + z4w4

• Permutation orbit number (8) of size 336 and representative:


0 0 0 0

1 0 0 0

1 0 0 1

1 0 1 1


with complete weight enumerator

cwe = x8 + x4y4 + 4x4y3w + 6x4y2w2 + 4x4yw3 + 14x4z4 + x4w4 + 4x3y4z

+8x3y3zw + 24x3y2zw2 + 8x3yzw3 + 4x3zw4 + 6x2y4z2 + 24x2y3z2w

+36x2y2z2w2 + 24x2yz2w3 + 6x2z2w4 + 4xy4z3 + 8xy3z3w + 24xy2z3w2

+8xyz3w3 + 4xz3w4 + 4y6w2 + y4z4 + 8y4w4 + 4y3z4w + 6y2z4w2 + 4y2w6

+4yz4w3 + z8 + z4w4

• Permutation orbit number (9) of size 28 and representative:


0 0 0 0

1 0 0 1

1 0 0 1

1 1 1 1


with complete weight enumerator

cwe = x8 + 2x4y4 + 12x4y2w2 + 14x4z4 + 2x4w4 + 24x3y3zw + 24x3yzw3 + 12x2y4z2

+72x2y2z2w2 + 12x2z2w4 + 24xy3z3w + 24xyz3w3 + y8 + 2y4z4 + 14y4w4

+12y2z4w2 + z8 + 2z4w4 + w8
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• Permutation orbit number (10) of size 28 and representative:


0 0 0 0

1 0 0 1

1 0 1 0

1 1 0 0


with complete weight enumerator

cwe = x8 + 2x4y4 + 12x4y2w2 + 14x4z4 + 2x4w4 + 24x3y3zw + 24x3yzw3 + 12x2y4z2

+72x2y2z2w2 + 12x2z2w4 + 24xy3z3w + 24xyz3w3 + y8 + 2y4z4 + 14y4w4

+12y2z4w2 + z8 + 2z4w4 + w8

• Permutation orbit number (11) of size 336 and representative:


0 0 0 1

0 0 0 1

0 0 1 0

0 0 1 0


with complete weight enumerator

cwe = x8 + 6x4y3w + 4x4y2w2 + 6x4yw3 + 14x4z4 + 2x3y4z + 16x3y3zw + 12x3y2zw2

+16x3yzw3 + 2x3zw4 + 4x2y4z2 + 36x2y3z2w + 16x2y2z2w2 + 36x2yz2w3

+4x2z2w4 + 2xy4z3 + 16xy3z3w + 12xy2z3w2 + 16xyz3w3 + 2xz3w4 + 4y6w2

+8y4w4 + 6y3z4w + 4y2z4w2 + 4y2w6 + 6yz4w3 + z8

• Permutation orbit number (12) of size 112 and representative:


0 0 0 1

0 0 1 1

0 1 0 1

0 0 0 1


with complete weight enumerator

cwe = x8 + 2x4y3w + 12x4y2w2 + 2x4yw3 + 14x4z4 + 6x3y4z + 36x3y2zw2 + 6x3zw4

+12x2y4z2 + 12x2y3z2w + 48x2y2z2w2 + 12x2yz2w3 + 12x2z2w4 + 6xy4z3

+36xy2z3w2 + 6xz3w4 + 4y6w2 + 8y4w4 + 2y3z4w + 12y2z4w2 + 4y2w6

+2yz4w3 + z8



APPENDIX A. ORBITS AND PROGRAMMING CODES 135

• Permutation orbit number (13) of size 672 and representative:


0 0 0 1

0 0 1 1

0 1 0 1

1 1 1 1


with complete weight enumerator

cwe = x8 + 4x4y3w + 8x4y2w2 + 4x4yw3 + 14x4z4 + 3x3y4z + 12x3y3zw

+18x3y2zw2 + 12x3yzw3 + 3x3zw4 + 8x2y4z2 + 24x2y3z2w

+32x2y2z2w2 + 24x2yz2w3 + 8x2z2w4 + 3xy4z3 + 12xy3z3w

+18xy2z3w2 + 12xyz3w3 + 3xz3w4 + y7w + 7y5w3 + 4y3z4w + 7y3w5

+8y2z4w2 + 4yz4w3 + yw7 + z8

• Permutation orbit number (14) of size 84 and representative:


0 0 1 1

0 1 0 1

0 0 1 1

1 0 1 0


with complete weight enumerator

cwe = x8 + 16x4y2w2 + 14x4z4 + 24x3y3zw + 24x3yzw3 + 16x2y4z2 + 64x2y2z2w2

+16x2z2w4 + 24xy3z3w + 24xyz3w3 + y8 + 14y4w4 + 16y2z4w2 + z8 + w8

Orbit number(7) of size 896 with symmetrized weight enumerator

swe = x8+16x4y4+14x4z4+48x3y4z+96x2y4z2+48xy4z3+16y8+16y4z4+z8

and orbit representative: 
0 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0


Number of permutation orbits= 4.
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• Permutation orbit number (1) of size 448 and representative:


0 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0


with complete weight enumerator

cwe = x8 + x4y4 + 4x4y3w + 6x4y2w2 + 4x4yw3 + 14x4z4 + x4w4 + 3x3y4z

+12x3y3zw + 18x3y2zw2 + 12x3yzw3 + 3x3zw4 + 6x2y4z2 + 24x2y3z2w

+36x2y2z2w2 + 24x2yz2w3 + 6x2z2w4 + 3xy4z3 + 12xy3z3w + 18xy2z3w2

+12xyz3w3 + 3xz3w4 + y7w + 7y5w3 + y4z4 + 4y3z4w + 7y3w5 + 6y2z4w2

+4yz4w3 + yw7 + z8 + z4w4

• Permutation orbit number (2) of size 336 and representative:


0 0 0 0

0 0 0 1

0 1 0 0

1 1 0 0


with complete weight enumerator

cwe = x8 + x4y4 + 4x4y3w + 6x4y2w2 + 4x4yw3 + 14x4z4 + x4w4 + 4x3y4z

+8x3y3zw + 24x3y2zw2 + 8x3yzw3 + 4x3zw4 + 6x2y4z2 + 24x2y3z2w

+36x2y2z2w2 + 24x2yz2w3 + 6x2z2w4 + 4xy4z3 + 8xy3z3w + 24xy2z3w2

+8xyz3w3 + 4xz3w4 + 4y6w2 + y4z4 + 8y4w4 + 4y3z4w + 6y2z4w2 + 4y2w6

+4yz4w3 + z8 + z4w4

• Permutation orbit number (3) of size 56 and representative:


0 0 0 0

1 0 0 1

1 1 0 0

1 0 1 0


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with complete weight enumerator

cwe = x8 + 2x4y4 + 12x4y2w2 + 14x4z4 + 2x4w4 + 24x3y3zw + 24x3yzw3

+12x2y4z2 + 72x2y2z2w2 + 12x2z2w4 + 24xy3z3w + 24xyz3w3 + y8

+2y4z4 + 14y4w4 + 12y2z4w2 + z8 + 2z4w4 + w8

• Permutation orbit number (4) of size 56 and representative:


0 0 0 1

0 1 0 1

0 1 1 0

0 1 0 0


with complete weight enumerator

cwe = x8 + 8x4y3w + 8x4yw3 + 14x4z4 + 24x3y3zw + 24x3yzw3 + 48x2y3z2w

+48x2yz2w3 + 24xy3z3w + 24xyz3w3 + 4y6w2 + 8y4w4 + 8y3z4w

+4y2w6 + 8yz4w3 + z8

Orbit number (8) of size 7168 with symmetrized weight enumerator

swe = x8+20x4y4+14x4z4+32x3y4z+120x2y4z2+32xy4z3+16y8+20y4z4+z8

and orbit representative: 
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


Number of permutation orbits= 19

• Permutation orbit number (1) of size 56 and representative:


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


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with complete weight enumerator

cwe = x8 + 4x4y4 + 12x4y2w2 + 14x4z4 + 4x4w4 + 16x3y3zw + 16x3yzw3

+12x2y4z2 + 96x2y2z2w2 + 12x2z2w4 + 16xy3z3w + 16xyz3w3

+4y6w2 + 4y4z4 + 8y4w4 + 12y2z4w2 + 4y2w6 + z8 + 4z4w4

• Permutation orbit number (2) of size 672 and representative:


0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0


with complete weight enumerator

cwe = x8 + 3x4y4 + 4x4y3w + 6x4y2w2 + 4x4yw3 + 14x4z4 + 3x4w4 + 3x3y4z

+4x3y3zw + 18x3y2zw2 + 4x3yzw3 + 3x3zw4 + 6x2y4z2 + 24x2y3z2w

+60x2y2z2w2 + 24x2yz2w3 + 6x2z2w4 + 3xy4z3 + 4xy3z3w

+18xy2z3w2 + 4xyz3w3 + 3xz3w4 + y7w + 7y5w3 + 3y4z4 + 4y3z4w

+7y3w5 + 6y2z4w2 + 4yz4w3 + yw7 + z8 + 3z4w4

• Permutation orbit number (3) of size 224 and representative:


0 0 0 0

0 0 0 0

0 0 0 0

0 1 1 0


with complete weight enumerator

cwe = x8 + 4x4y4 + 12x4y2w2 + 14x4z4 + 4x4w4 + 16x3y3zw + 16x3yzw3 + 12x2y4z2

+96x2y2z2w2 + 12x2z2w4 + 16xy3z3w + 16xyz3w3 + 4y6w2 + 4y4z4 + 8y4w4

+12y2z4w2 + 4y2w6 + z8 + 4z4w4
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• Permutation orbit number (4) of size 224 and representative:


0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 0


with complete weight enumerator

cwe = x8 + 3x4y4 + 4x4y3w + 6x4y2w2 + 4x4yw3 + 14x4z4 + 3x4w4 + 3x3y4z

+4x3y3zw + 18x3y2zw2 + 4x3yzw3 + 3x3zw4 + 6x2y4z2 + 24x2y3z2w

+60x2y2z2w2 + 24x2yz2w3 + 6x2z2w4 + 3xy4z3 + 4xy3z3w + 18xy2z3w2

+4xyz3w3 + 3xz3w4 + y7w + 7y5w3 + 3y4z4 + 4y3z4w + 7y3w5 + 6y2z4w2

+4yz4w3 + yw7 + z8 + 3z4w4

• Permutation orbit number (5) of size 168 and representative:


0 0 0 0

0 0 0 0

0 0 0 1

1 1 1 0


with complete weight enumerator

cwe = x8 + 4x4y4 + 4x4y3w + 4x4y2w2 + 4x4yw3 + 14x4z4 + 4x4w4 + 4x3y4z

+24x3y2zw2 + 4x3zw4 + 4x2y4z2 + 24x2y3z2w + 64x2y2z2w2

+24x2yz2w3 + 4x2z2w4 + 4xy4z3 + 24xy2z3w2 + 4xz3w4 + y8 + 4y4z4

+14y4w4 + 4y3z4w + 4y2z4w2 + 4yz4w3 + z8 + 4z4w4 + w8

• Permutation orbit number (6) of size 336 and representative:


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1


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with complete weight enumerator

cwe = x8 + 2x4y4 + 6x4y3w + 4x4y2w2 + 6x4yw3 + 14x4z4 + 2x4w4 + 2x3y4z

+8x3y3zw + 12x3y2zw2 + 8x3yzw3 + 2x3zw4 + 4x2y4z2 + 36x2y3z2w

+40x2y2z2w2 + 36x2yz2w3 + 4x2z2w4 + 2xy4z3 + 8xy3z3w

+12xy2z3w2 + 8xyz3w3 + 2xz3w4 + 4y6w2 + 2y4z4 + 8y4w4 + 6y3z4w

+4y2z4w2 + 4y2w6 + 6yz4w3 + z8 + 2z4w4

• Permutation orbit number (7) of size 672 and representative:


0 0 0 0

0 0 0 0

0 0 1 0

0 0 1 1


with complete weight enumerator

cwe = x8 + 2x4y4 + 6x4y3w + 4x4y2w2 + 6x4yw3 + 14x4z4 + 2x4w4 + x3y4z

+12x3y3zw + 6x3y2zw2 + 12x3yzw3 + x3zw4 + 4x2y4z2 + 36x2y3z2w

+40x2y2z2w2 + 36x2yz2w3 + 4x2z2w4 + xy4z3 + 12xy3z3w + 6xy2z3w2

+12xyz3w3 + xz3w4 + y7w + 7y5w3 + 2y4z4 + 6y3z4w + 7y3w5

+4y2z4w2 + 6yz4w3 + yw7 + z8 + 2z4w4

• Permutation orbit number (8) of size 672 and representative:


0 0 0 0

0 0 0 0

0 0 1 0

0 1 0 0


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with complete weight enumerator

cwe = x8 + 2x4y4 + 6x4y3w + 4x4y2w2 + 6x4yw3 + 14x4z4 + 2x4w4 + 2x3y4z

+8x3y3zw + 12x3y2zw2 + 8x3yzw3 + 2x3zw4 + 4x2y4z2 + 36x2y3z2w

+40x2y2z2w2 + 36x2yz2w3 + 4x2z2w4 + 2xy4z3 + 8xy3z3w + 12xy2z3w2

+8xyz3w3 + 2xz3w4 + 4y6w2 + 2y4z4 + 8y4w4 + 6y3z4w + 4y2z4w2

+4y2w6 + 6yz4w3 + z8 + 2z4w4

• Permutation orbit number (9) of size 224 and representative:


0 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0


with complete weight enumerator

cwe = x8 + x4y4 + 6x4y3w + 6x4y2w2 + 6x4yw3 + 14x4z4 + x4w4 + x3y4z

+12x3y3zw + 6x3y2zw2 + 12x3yzw3 + x3zw4 + 6x2y4z2 + 36x2y3z2w

+36x2y2z2w2 + 36x2yz2w3 + 6x2z2w4 + xy4z3 + 12xy3z3w + 6xy2z3w2

+12xyz3w3 + xz3w4 + y7w + 7y5w3 + y4z4 + 6y3z4w + 7y3w5 + 6y2z4w2

+6yz4w3 + yw7 + z8 + z4w4

• Permutation orbit number (10) of size 672 and representative:


0 0 0 0

1 0 0 0

1 0 0 0

1 0 1 0


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with complete weight enumerator

cwe = x8 + x4y4 + 6x4y3w + 6x4y2w2 + 6x4yw3 + 14x4z4 + x4w4 + 2x3y4z

+8x3y3zw + 12x3y2zw2 + 8x3yzw3 + 2x3zw4 + 6x2y4z2 + 36x2y3z2w

+36x2y2z2w2 + 36x2yz2w3 + 6x2z2w4 + 2xy4z3 + 8xy3z3w + 12xy2z3w2

+8xyz3w3 + 2xz3w4 + 4y6w2 + y4z4 + 8y4w4 + 6y3z4w + 6y2z4w2 + 4y2w6

+6yz4w3 + z8 + z4w4

• Permutation orbit number (11) of size 224 and representative:


0 0 0 0

1 0 0 0

1 0 0 0

1 1 1 0


with complete weight enumerator

cwe = x8 + x4y4 + 6x4y3w + 6x4y2w2 + 6x4yw3 + 14x4z4 + x4w4 + x3y4z

+12x3y3zw + 6x3y2zw2 + 12x3yzw3 + x3zw4 + 6x2y4z2 + 36x2y3z2w

+36x2y2z2w2 + 36x2yz2w3 + 6x2z2w4 + xy4z3 + 12xy3z3w + 6xy2z3w2

+12xyz3w3 + xz3w4 + y7w + 7y5w3 + y4z4 + 6y3z4w + 7y3w5 + 6y2z4w2

+6yz4w3 + yw7 + z8 + z4w4

• Permutation orbit number (12) of size 672 and representative:


0 0 0 1

0 0 0 1

0 0 0 1

0 0 1 0


with complete weight enumerator

cwe = x8 + 6x4y3w + 8x4y2w2 + 6x4yw3 + 14x4z4 + 2x3y4z + 8x3y3zw

+12x3y2zw2 + 8x3yzw3 + 2x3zw4 + 8x2y4z2 + 36x2y3z2w + 32x2y2z2w2

+36x2yz2w3 + 8x2z2w4 + 2xy4z3 + 8xy3z3w + 12xy2z3w2 + 8xyz3w3

+2xz3w4 + 4y6w2 + 8y4w4 + 6y3z4w + 8y2z4w2 + 4y2w6 + 6yz4w3 + z8
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• Permutation orbit number (13) of size 224 and representative:


0 0 0 1

0 0 0 1

0 0 0 1

0 1 1 0


with complete weight enumerator

cwe = x8 + 4x4y3w + 12x4y2w2 + 4x4yw3 + 14x4z4 + 3x3y4z + 4x3y3zw

+18x3y2zw2 + 4x3yzw3 + 3x3zw4 + 12x2y4z2 + 24x2y3z2w + 48x2y2z2w2

+24x2yz2w3 + 12x2z2w4 + 3xy4z3 + 4xy3z3w + 18xy2z3w2 + 4xyz3w3

+3xz3w4 + y7w + 7y5w3 + 4y3z4w + 7y3w5 + 12y2z4w2 + 4yz4w3 + yw7 + z8

• Permutation orbit number (14) of size 224 and representative:


0 0 0 1

0 0 0 1

0 0 0 1

1 1 1 0


with complete weight enumerator

cwe = x8 + 4x4y3w + 12x4y2w2 + 4x4yw3 + 14x4z4 + 4x3y4z + 24x3y2zw2 + 4x3zw4

+12x2y4z2 + 24x2y3z2w + 48x2y2z2w2 + 24x2yz2w3 + 12x2z2w4 + 4xy4z3

+24xy2z3w2 + 4xz3w4 + y8 + 14y4w4 + 4y3z4w + 12y2z4w2 + 4yz4w3 + z8 + w8

• Permutation orbit number (15) of size 672 and representative:


0 0 0 1

0 0 0 1

0 0 1 1

0 0 0 1


with complete weight enumerator

cwe = x8 + 6x4y3w + 8x4y2w2 + 6x4yw3 + 14x4z4 + x3y4z + 12x3y3zw + 6x3y2zw2

+12x3yzw3 + x3zw4 + 8x2y4z2 + 36x2y3z2w + 32x2y2z2w2 + 36x2yz2w3

+8x2z2w4 + xy4z3 + 12xy3z3w + 6xy2z3w2 + 12xyz3w3 + xz3w4 + y7w

+7y5w3 + 6y3z4w + 7y3w5 + 8y2z4w2 + 6yz4w3 + yw7 + z8
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• Permutation orbit number (16) of size 336 and representative:


0 0 0 1

0 0 0 1

0 0 1 1

0 0 1 1


with complete weight enumerator

cwe = x8 + 6x4y3w + 8x4y2w2 + 6x4yw3 + 14x4z4 + 2x3y4z + 8x3y3zw + 12x3y2zw2

+8x3yzw3 + 2x3zw4 + 8x2y4z2 + 36x2y3z2w + 32x2y2z2w2 + 36x2yz2w3

+8x2z2w4 + 2xy4z3 + 8xy3z3w + 12xy2z3w2 + 8xyz3w3 + 2xz3w4 + 4y6w2

+8y4w4 + 6y3z4w + 8y2z4w2 + 4y2w6 + 6yz4w3 + z8

• Permutation orbit number (17) of size 672 and representative:


0 0 0 1

0 0 0 1

0 1 0 1

0 0 0 1


with complete weight enumerator

cwe = x8 + 4x4y3w + 12x4y2w2 + 4x4yw3 + 14x4z4 + 3x3y4z + 4x3y3zw + 18x3y2zw2

+4x3yzw3 + 3x3zw4 + 12x2y4z2 + 24x2y3z2w + 48x2y2z2w2 + 24x2yz2w3

+12x2z2w4 + 3xy4z3 + 4xy3z3w + 18xy2z3w2 + 4xyz3w3 + 3xz3w4 + y7w

+7y5w3 + 4y3z4w + 7y3w5 + 12y2z4w2 + 4yz4w3 + yw7 + z8

• Permutation orbit number (18) of size 56 and representative:


0 0 0 1

1 0 0 1

1 0 0 1

1 1 1 0


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with complete weight enumerator

cwe = x8 + 4x4y3w + 12x4y2w2 + 4x4yw3 + 14x4z4 + 4x3y4z + 24x3y2zw2

+4x3zw4 + 12x2y4z2 + 24x2y3z2w + 48x2y2z2w2 + 24x2yz2w3

+12x2z2w4 + 4xy4z3 + 24xy2z3w2 + 4xz3w4 + y8 + 14y4w4 + 4y3z4w

+12y2z4w2 + 4yz4w3 + z8 + w8

• Permutation orbit number (19) of size 168 and representative:


0 0 1 1

0 0 1 1

0 0 1 1

0 0 1 1


with complete weight enumerator

cwe = x8 + 20x4y2w2 + 14x4z4 + 16x3y3zw + 16x3yzw3 + 20x2y4z2 + 80x2y2z2w2

+20x2z2w4 + 16xy3z3w + 16xyz3w3 + 4y6w2 + 8y4w4 + 20y2z4w2 + 4y2w6

+z8

Orbit number (9) of size 896 with symmetrized weight enumerator

swe = x8+24x4y4+14x4z4+16x3y4z+144x2y4z2+16xy4z3+16y8+24y4z4+z8

and orbit representative: 
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


Number of permutation orbits= 7

• Permutation orbit number (1) of size 224 and representative:


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


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with complete weight enumerator

cwe = x8 + 3x4y4 + 6x4y3w + 6x4y2w2 + 6x4yw3 + 14x4z4 + 3x4w4 + x3y4z

+4x3y3zw + 6x3y2zw2 + 4x3yzw3 + x3zw4 + 6x2y4z2 + 36x2y3z2w

+60x2y2z2w2 + 36x2yz2w3 + 6x2z2w4 + xy4z3 + 4xy3z3w + 6xy2z3w2

+4xyz3w3 + xz3w4 + y7w + 7y5w3 + 3y4z4 + 6y3z4w + 7y3w5 + 6y2z4w2

+6yz4w3 + yw7 + z8 + 3z4w4

• Permutation orbit number (2) of size 28 and representative:


0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 1


with complete weight enumerator

cwe = x8 + 6x4y4 + 12x4y2w2 + 14x4z4 + 6x4w4 + 8x3y3zw + 8x3yzw3 + 12x2y4z2

+120x2y2z2w2 + 12x2z2w4 + 8xy3z3w + 8xyz3w3 + y8 + 6y4z4 + 14y4w4

+12y2z4w2 + z8 + 6z4w4 + w8

• Permutation orbit number (3) of size 112 and representative:


0 0 0 0

0 0 0 0

0 0 1 0

1 1 1 0


with complete weight enumerator

cwe = x8 + 3x4y4 + 6x4y3w + 6x4y2w2 + 6x4yw3 + 14x4z4 + 3x4w4 + 2x3y4z

+12x3y2zw2 + 2x3zw4 + 6x2y4z2 + 36x2y3z2w + 60x2y2z2w2

+36x2yz2w3 + 6x2z2w4 + 2xy4z3 + 12xy2z3w2 + 2xz3w4 + 4y6w2

+3y4z4 + 8y4w4 + 6y3z4w + 6y2z4w2 + 4y2w6 + 6yz4w3 + z8 + 3z4w4
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• Permutation orbit number (4) of size 168 and representative:


0 0 0 0

1 0 0 0

1 0 0 0

1 0 0 1


with complete weight enumerator

cwe = x8 + x4y4 + 8x4y3w + 6x4y2w2 + 8x4yw3 + 14x4z4 + x4w4 + 8x3y3zw

+8x3yzw3 + 6x2y4z2 + 48x2y3z2w + 36x2y2z2w2 + 48x2yz2w3

+6x2z2w4 + 8xy3z3w + 8xyz3w3 + 4y6w2 + y4z4 + 8y4w4 + 8y3z4w

+6y2z4w2 + 4y2w6 + 8yz4w3 + z8 + z4w4

• Permutation orbit number (5) of size 112 and representative:


0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1


with complete weight enumerator

cwe = x8 + 6x4y3w + 12x4y2w2 + 6x4yw3 + 14x4z4 + 2x3y4z + 12x3y2zw2

+2x3zw4 + 12x2y4z2 + 36x2y3z2w + 48x2y2z2w2 + 36x2yz2w3

+12x2z2w4 + 2xy4z3 + 12xy2z3w2 + 2xz3w4 + 4y6w2 + 8y4w4 + 6y3z4w

+12y2z4w2 + 4y2w6 + 6yz4w3 + z8

• Permutation orbit number (6) of size 224 and representative:


0 0 0 1

0 0 0 1

0 0 1 1

1 1 1 0





APPENDIX A. ORBITS AND PROGRAMMING CODES 148

with complete weight enumerator

cwe = x8 + 6x4y3w + 12x4y2w2 + 6x4yw3 + 14x4z4 + x3y4z + 4x3y3zw

+6x3y2zw2 + 4x3yzw3 + x3zw4 + 12x2y4z2 + 36x2y3z2w + 48x2y2z2w2

+36x2yz2w3 + 12x2z2w4 + xy4z3 + 4xy3z3w + 6xy2z3w2 + 4xyz3w3

+xz3w4 + y7w + 7y5w3 + 6y3z4w + 7y3w5 + 12y2z4w2 + 6yz4w3 + yw7

+z8

• Permutation orbit number (7) of size 28 and representative:


0 0 1 1

0 0 1 1

0 0 1 1

1 1 0 0


with complete weight enumerator

cwe = x8 + 24x4y2w2 + 14x4z4 + 8x3y3zw + 8x3yzw3 + 24x2y4z2 + 96x2y2z2w2

+24x2z2w4 + 8xy3z3w + 8xyz3w3 + y8 + 14y4w4 + 24y2z4w2 + z8 + w8

A.2 Programming Code for Computing Deriva-

tions of G with a Coefficent Set W

one:=One(ZmodnZ(2));

C1:=[[1,0,0,0, 0,1,1,1],

[0,1,0,0, 1,0,1,1],

[0,0,1,0, 1,1,0,1],

[0,0,0,1, 1,1,1,0]];

Cdim:=Size(C1); Id:=IdentityMat(Cdim,1);

n:=[]; for i in[1..Cdim]do

Add(n,[Id[i],ListWithIdenticalEntries(Cdim,0)*one]); od;



APPENDIX A. ORBITS AND PROGRAMMING CODES 149

GenList:=[(1,2,5,7,6,8,4),(3,4,5)(6,8,7),(2,8,4,3,5,6,7)]; #<<---

DnGen:=[GenList[1]]; H:=Group(GenList[1]); G:=Group(DnGen);

MatGC1:=[]; oGMatC1:=[]; MatGC2Cos:=[]; oGMatC2Cos:=[]; obtlist:=[];

comp:=[];

a:=[]; for j in[1..(Size(GenList)-1)*Cdim^2]do

Add( a,Indeterminate(GF(2),j) ); od;

dim:=(Size(GenList)-1)*Cdim^2;

ComputeB:=function(g) # action from the left M*v

local t,l,i,j,M,k;

if(g=())then return Id;

elif(g in oGMatC2Cos)then return MatGC2Cos[Position(oGMatC2Cos,g)];

else

t:=Permuted([0,0,0,0,1,2,3,4],g);

l:=[[],[],[],[]];

for i in[1..4]do

if(t[i]=1)then

for k in[1..4]do if (k<>i)then Add(l[k],1);fi;od;

elif(t[i]=2)then

for k in[1..4]do if (k<>i)then Add(l[k],2);fi;od;

elif(t[i]=3)then

for k in[1..4]do if (k<>i)then Add(l[k],3);fi;od;

elif(t[i]=4)then

for k in[1..4]do if (k<>i)then Add(l[k],4);fi;od;
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fi;

od;

for i in[5..8]do

if(t[i]=1)then Add(l[i-4],1);

elif(t[i]=2)then Add(l[i-4],2);

elif(t[i]=3)then Add(l[i-4],3);

elif(t[i]=4)then Add(l[i-4],4);fi;

od;

M:=[[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]];

for i in[1..4]do

for j in[1..4]do

if (j in l[i])then M[i][j]:=1;fi;

od;od;

Add(oGMatC2Cos,g); Add(MatGC2Cos,M);

fi;

return M;

end;#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ComputeMatOnC2Cosets

MofActionC1:=function(g)

local t,i,A;

if(g=())then return Id;

elif(g in oGMatC1)then return MatGC1[Position(oGMatC1,g)];

else

t:=[]; A:=[];

for i in[1..Cdim]do

Add(t,Permuted(C1[i],g));

Add(A,t[i]{[1..Cdim]});
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od; ### altered

A:=InverseMatMod(A,2);

Add(oGMatC1,g); Add(MatGC1,A);

fi;

return A;

end;#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MofActionC1

GetMat:=function(v)

local i,j,M;

M:=NullMat(Cdim,Cdim,Integers);

for i in[1..Size(v)]do

for j in[1..Cdim]do

M[j]:=M[j]+v[i][1][j]*v[i][2];

od;od;

return M;

end;#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ GetMat

delta:=function(g)

local c,var, list, j,i,l,t1,t2,Mat;

if(g in H)then return n;

elif(g in obtlist)then

return comp[Position(obtlist,g)];

else list:=[];

for t1 in G do if t1=() then continue;fi; ### delta(x) or delta(y)

if( ((g*t1 in obtlist)or(g*t1 in H))and((t1 in obtlist)or(t1 in H)) )then

for j in[1..Cdim]do

Add(list,[MofActionC1(t1^(-1))*delta(g*t1)[j][1],
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ComputeB(t1^(-1))*delta(g*t1)[j][2]]);

Add(list,[MofActionC1(t1^(-1))*delta(t1)[j][1],

ComputeB(t1^(-1))*delta(t1)[j][2]]);

od;

break;

elif( ((t1*g in obtlist)or(t1*g in H))and((t1 in obtlist)or(t1 in H)) )then

for j in[1..Cdim]do

Add(list,delta(t1*g)[j]);

Add(list,[MofActionC1(g)*delta(t1)[j][1],ComputeB(g)*delta(t1)[j][2]]);

od;

break;

fi;

for t2 in G do if t2=() then continue;fi; # delta(xy)

if((t1*t2=g)and((t1 in obtlist)or(t1 in H))and((t2 in obtlist)or(t2 in H))) then

for j in[1..Cdim]do

Add(list,delta(t2)[j]);

Add(list,[MofActionC1(t2)*delta(t1)[j][1],ComputeB(t2)*delta(t1)[j][2]]);

od;

break;

elif((t2*t1=g)and((t1 in obtlist)or(t1 in H))and((t2 in obtlist)or(t2 in H)) )then

for j in[1..Cdim]do

Add(list,delta(t1)[j]);

Add(list,[MofActionC1(t1)*delta(t2)[j][1],ComputeB(t1)*delta(t2)[j][2]]);

od;

break;

fi;
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od;

if(Size(list)>0)then break;fi;

od;

if(Size(list)>0)then

Mat:=GetMat(list);

Add(obtlist,g); list:=[];

for j in[1..Cdim]do

Add(list,[one*Id[j],Mat[j]]);od;

Add(comp,list);

return list;

else

for j in[dim+1..dim+(Cdim)^2]do

Add(a, Indeterminate(GF(2),j) ); od;

list:=[];

for j in[1..Cdim]do

l:=[];

for i in[1..Cdim]do

Add(l,a[dim+(j-1)*Cdim+i]);od;

Add(list,[one*Id[j],l]);

od;

dim:=dim+Cdim^2;

Add(obtlist,g); Add(comp,list);

return list;

fi;

fi;
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end;#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ delta

OrdRelations:=function(R)

local ORel, i1, i2;

ORel:=ShallowCopy(ListWithIdenticalEntries(dim,a[1]-a[1]));

for i1 in[1..Size(R)]do

for i2 in[1..dim]do

if(LeadingCoefficient(R[i1],i2)<>(a[1]-a[1]))then break;fi;

od;

ORel[i2]:=R[i1];

od;

return ORel;

end;#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ OrderRelations

ReduceRelations:=function(R)

local mat,row,j1,j2,nR,p;

mat:=[];

for j1 in[1..Size(R)]do

row:=[];

for j2 in[1..dim]do

Add(row,LeadingCoefficient(R[j1],j2));od;

Add(mat,row);

od;

mat:=BaseMat(mat);

nR:=[];

for j1 in[1..Size(mat)]do



APPENDIX A. ORBITS AND PROGRAMMING CODES 155

p:=0*one;

for j2 in[1..dim]do

p:=p+mat[j1][j2]*a[j2];od;

Add(nR,p);

od;

return nR;

end;#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Reduce Relations

ReduceDelta:=function(d,R,Dng,g,t)

# d: delta to be reduced

# R: ordered relations

# Dng: generators of earlier group to reduce delta from fixed points

# g: the aut of delta d, used to define the delta for the fixed point set.

# t: used to make sure diff var’s are used for diff gen’s when redefining

local j1,j2,relcount,dSp,fRel,fSp,e,j3,r,mm,de,v, f,l;

for j1 in[1..Size(d)]do # Here write delta interms of free variables

for j2 in[1..Size(d[1][2])]do

relcount:=1;

while((d[j1][2][j2]<>(a[1]-a[1]))and(relcount<=dim))do

d[j1][2][j2]:=d[j1][2][j2]

+LeadingCoefficient(d[j1][2][j2],relcount)*R[relcount];

relcount:=relcount+1;

od;

od;od;

# get the delta resulting from fixed points
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fSp:=[]; v:=[NullMat(Cdim,Cdim,GF(2))*a[1]];

e:=[];

for j1 in[1..Cdim]do

l:=[];

for j2 in[1..Cdim]do

Add(l,ShallowCopy(a[Cdim*(j1-1)+j2]));od;

Add(e,[one*Id[j1],l]);

od;

fRel:=[];

for f in Dng do

r:=[];

for j1 in[1..Cdim]do

Add(r,[MofActionC1(f)*e[j1][1],ComputeB(f)*e[j1][2]]);

Add(r,e[j1]);

od;

mm:=GetMat(r);

for j1 in[1..Size(mm)]do

for j2 in[1..Size(mm[1])]do

if(not(mm[j1][j2] in fRel)and(mm[j1][j2]<>(a[1]-a[1])))then

Add(fRel,ShallowCopy(mm[j1][j2]));fi;

od;od;

od;

if(Size(fRel)>0)then

fRel:=ReduceRelations(fRel);

fRel:=OrdRelations(fRel);

for j1 in[1..Size(e)]do
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for j2 in[1..Size(e[1][2])]do

relcount:=1;

while((e[j1][2][j2]<>(a[1]-a[1])) and(relcount<=dim))do

e[j1][2][j2]:=e[j1][2][j2]

+LeadingCoefficient(e[j1][2][j2],relcount)*fRel[relcount];

relcount:=relcount+1;

od;

od;od;

de:=[];

for j1 in[1..Cdim]do

Add(de,[MofActionC1(g)*e[j1][1],ComputeB(g)*e[j1][2]]);

Add(de,e[j1]);

od;

mm:=GetMat(de); de:=[];

for j1 in[1..Cdim]do

Add(de,[Id[j1],mm[j1]]);od;

for j3 in[1..dim]do

e:=ShallowCopy(n);

for j1 in[1..Size(de)]do

for j2 in[1..Size(de[1][2])]do

e[j1][2][j2]:=LeadingCoefficient(de[j1][2][j2],j3);

od;od;

mm:=ShallowCopy(GetMat(e));

if not(mm in v)then

Add(fSp,mm);
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for j1 in[1..Size(v)]do Add(v,v[j1]+mm);od;

fi;

od;

fi;

# Here get the subspace spanning delta value

if(GetMat(d)<>NullMat(Cdim,Cdim,Integers)*(a[1]-a[1]))then

dSp:=[];

for j3 in[1..dim]do

e:=ShallowCopy(n);

for j1 in[1..Size(d)]do

for j2 in[1..Size(d[1][2])]do

e[j1][2][j2]:=LeadingCoefficient(d[j1][2][j2],j3);

od;od;

mm:=ShallowCopy(GetMat(e));

if not(mm in v)then

Add(dSp,mm);

for j1 in[1..Size(v)]do Add(v,v[j1]+mm);od;

fi;

od;

mm:=ShallowCopy(NullMat(Cdim,Cdim,GF(2)));

for j3 in[1..Size(dSp)]do

mm:=mm+a[t+j3]*dSp[j3];od;

e:=[];

for j3 in[1..Cdim]do
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Add(e,[Id[j3],mm[j3]]);od;

return e;

else return d;fi;

end;#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Reduce Delta

DefSet:=[n]; newgen:=ShallowCopy(DnGen);

for k in[2..Size(GenList)]do

H1:=Group(DnGen);

Add(newgen,GenList[k]);

G:=Group(newgen);

var:=[];

for j in[1..Cdim]do

l:=[];

for i in[1..Cdim]do

Add(l,a[(k-2)*Cdim^2+(j-1)*Cdim+i]);od;

Add(var,[one*Id[j],l]);

od;

dh:=[];

for j in[1..Cdim]do

Add(dh,[MofActionC1(GenList[k])*var[j][1],ComputeB(GenList[k])*var[j][2]]);

Add(dh,var[j]);

od;

M:=GetMat(dh); dh:=[];

for i in[1..Cdim]do

Add(dh,[one*Id[i],M[i]]);od;
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Add(obtlist,GenList[k]);

Add(comp,ShallowCopy(dh));

Rel:=[];

for f1 in G do if f1=() then continue;fi;

for f2 in G do if f2=() or (f1 in H1 and f2 in H1)then continue;fi;

list:=[];

for i1 in[1..Cdim]do

Add(list,delta(f1*f2)[i1]);

Add(list,[MofActionC1(f2)*delta(f1)[i1][1],ComputeB(f2)*delta(f1)[i1][2]]);

Add(list,delta(f2)[i1]);

od;

rm:=GetMat(list);

for i1 in[1..Size(rm)]do

for i2 in[1..Size(rm[1])]do

if (not(rm[i1][i2] in Rel) and rm[i1][i2]<>one*0 and rm[i1][i2]<>(a[1]-a[1]))

then Add(Rel,rm[i1][i2]);fi;

od;od;

od; od;

Print("\n",k," Done with Relations, no= ",Size(Rel),"\n");

Rel1:=ReduceRelations(Rel);

Print("\nDone with the rel bases, no=",Size(Rel1),"\n",Rel1);

Rel2:=OrdRelations(Rel1);

Add(DefSet,ShallowCopy(ReduceDelta(dh,Rel2,DnGen,GenList[k],(k-2)*Cdim^2)));
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for k2 in[2..k-1]do

DefSet[k2]:=

ShallowCopy(ReduceDelta(DefSet[k2],Rel2,[],GenList[k2],(k2-2)*Cdim^2));

od;

comp:=[]; obtlist:=[];

for k2 in[2..Size(DefSet)]do

Add(comp,DefSet[k2]);

Add(obtlist,GenList[k2]);

od;

DnGen:=ShallowCopy(newgen);

Print("Deltas found",DefSet,"\n");

od;

PrintTo("derHTd.output","\n number of variable",dim,

"\n number of Relations obtained=",Size(Rel),

"\n Size of a bases set is",Size(Rel1),

"\n Bases Relations: ",Rel1,

"\n Delta of generators: ",DefSet);
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A.3 Different Binary Codes with same Weight

Enumerators but Different Correspond-

ing Z4-codes

For a word w ∈ C define the even subword we to be the word consisting of

even positions of w. So we has length equal to k = n− wt(w mod 2).

Proposition A.1 The set of subwords (w + d(C2))e of (w + d(C2)) form a

subspace of 2Zm4 .

Proof C2 is a subspace of Zn2 . So d(C2) form a subspace of Zn2 . Also, for

0 ≤ m ≤ n, any set of subwords of fixed m positions in d(C2) form a subspace

of 2Zm4 since we are dealing with linear codes. Here we might get repeated

copies of the subspace. But (w + d(C2))e is a set of subwords of d(C2) with

the m positions chosen according to w. Hence, result follows.

There are two doubly even self dual codes of length 16:

• C = H+H where H is the Extended hamming code of length 8. Then

we
C

= (x8 + 14x4y4 + z8)2

= x16 + y16 + 28x4y12 + 198x8y8 + 28x12y4

• C ′ spanned by all words of the form:

1 . . . 8 9 . . . 16

1 1 1 1

↑ ↑ ↑ ↑ 0 elsewhere

i j i+ 8 j + 8

And 1 . . . 1 0 . . . 0
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Here all generators have weight 4 and any two are orthogonal. Here

also,

we
C′

= (x8 + 14x4y4 + z8)2

Let us compute possible Symmetrized Weight Enumerators for codes in

C(C,C) and in C(C ′, C ′). We start with the common details we get from

the common weight enumerator of C and C ′.

All Symmetrized Weight Enumerators in the two classes have the form:

swe
C

= weC(x, z)+256y16+y12
28∑
i=1

P4,j(x, z)+y
8

198∑
i=1

P8,j(x, z)+y
4

28∑
i=1

P12,j(x, z)

where Pk,j might be different for the two classes. From earlier discussion, we

get same P4,j for the two classes. These are listed below:

P4,0(x, z) =
28

23

(
4

0

)
(x4 + z4) +

28

23

(
4

2

)
x2z2

= 32(x4 + z4) + 192x2z2

P4,1(x, z) =
28

23

(
4

1

)
(x3z + xz3)

= 128(x3z + xz3)

P8,0(x, z) is of the form:

P8,0(x, z) = 2a0(x
8 + z8) + 2a1(x

6z2 + x2z6) + 4a2x
4z4 (A.1)

Here {Si}e for the different corresponding words would have one of the fol-

lowing options:

• 2 copies of the biggest 27 even subspace.

• 4 copies of a 26 subspace.

• 8 copies of a 25 subspace.
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• 16 copies of a 24 subspace.

Then other P8,j’s depend on the subspace we got.

For P12,j(x, z) the set of even subwords {Si}e will form 2 copies of a 27

subspace (cannot be the biggest even, since this has cardinality 211, more

than what we have, 28). So this polynomial will be of the form:

P12,0(x, z) = 2(x12 + z12) + 2a1(x
10z2 + x2z10) + 2a2(x

8z4 + x4z8) + 4a3x
6z6

Now lets see what computation in the above cases give.

• In the first case where C1 = C2 = H +H, we have:

A word of weight 8 will have its weight distributed in one of the forms

(8− 0), (0− 8) or (4− 4). For the first 2 forms, we will have:

P8,0a(x, z) = 16(x8 + 14x4z4 + z8)

= 16(x8 + z8) + 224x4z4

which is the forth option in the list above and so

P8,1a(x, z) = 16(x7z + xz7) + 112(x5z3 + x3z5)

P8,2a(x, z) = 64(x6z2 + x2z6) + 128x4z4

For words of the form (4− 4), we will have:

P8,0b(x, z) = [2(x4 + z4) + 12x2z2]× [2(x4 + z4) + 12x2z2]

= 4(x8 + z8) + 48(x6z2 + x2z6) + 152x4z4

which is the second option in the list above and so

P8,1b(x, z) = [2(x4 + z4) + 12x2z2]× [8(x3z + xz3)]

= 16(x7z + xz7) + 112(x5z3 + x3z5) = P8,1a

P8,2b(x, z) = [8(x3z + xz3)× [8(x3z + xz3)

= 64(x6z2 + x2z6) + 128x4z4 = P8,2a
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A word of weight 4 would have weight distribution (0 − 4) or (4 − 0)

giving:

P12,0(x, z) = [2(x4 + z4) + 12x2z2]× [x8 + 14x4z4 + z8]

= 2(x12 + z12) + 12(x10z2 + x2z10) + 30(x8z4 + x4z8) + 168x6z6

P12,1a(x, z) = [8(x3z + xz3)× [x8 + 14x4z4 + z8]

= 8(x11z + xz11) + 8(x9z3 + x3z9) + 112(x7z5 + x5z7)

P12,1b(x, z) = [2(x4 + z4) + 12x2z2]× [(x7z + xz7) + 7(x5z3 + x3z5)]

= 2(x11z + xz11) + 26(x9z3 + x3z9) + 100(x7z5 + x5z7)

P12,2a(x, z) = [8(x3z + xz3)]× [(x7z + xz7) + 7(x5z3 + x3z5)]

= 8(x10z2 + x2z10) + 64(x8z4 + x4z8) + 112x6z6

P12,2b(x, z) = [2(x4 + z4) + 12x2z2]× [4(x6z2 + x2z6) + 8x4z4]

= 8(x10z2 + x2z10) + 64(x8z4 + x4z8) + 112x6z6 = P12,2a

P12,3(x, z) = [8(x3z + xz3)× [4(x6z2 + x2z6) + 8x4z4]

= 32(x9z3 + x3z9) + 96(x7z5 + x5z7)

• In the second case where C1 = C2 = C ′ as described above, we have:

A word of weight 8 will have the weight distribution (8− 0), (0− 8) or

(4− 4). In the first 2 forms, we will have:

P8,0a(x, z) = 8(x8 + z8) + 32(x6z2 + x2z6) + 176x4z4

P8,1a(x, z) = 64(x6z2 + x2z6) + 128x4z4

In words of the form (4− 4) we have:

P8,0b(x, z) = 2(x8 + z8) + 56(x6z2 + x2z6) + 140x4z4

P8,1b(x, z) = 16(x7z + xz7) + 112(x5z3 + x3z5)
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For words of weight 4, we have:

P12,0(x, z) = 2(x12 + z12) + 12(x10z2 + x2z10) + 30(x8z4 + x4z8) + 168x6z6

P12,1(x, z) = 4(x11z + xz11) + 20(x9z3 + x3z9) + 104(x7z5 + x5z7)

P12,2(x, z) = 8(x10z2 + x2z10) + 64(x8z4 + x4z8) + 112x6z6

P12,3(x, z) = 32(x9z3 + x3z9) + 96(x7z5 + x5z7)

A.4 Describing Action of an Automorphism

Group on C∗1 ⊗ Zn2/C2

Set of matrices defining the set of codes, W ' A = C∗1 ⊗Zn2/C2. An X ∈ W

can be represented by the sum
∑
{X}ijfi ⊗ wj. Where {fi} and {wj} are

basis of C∗1 and Zn2/C2 respectively as described in Section (2.1).

When G act on two spaces V1 and V2, we can define an action on V1⊗ V2
by:

g(V1 ⊗ V2) = gV1 ⊗ gV2

Let V be a vector space with dimension k. Then, if G acts linearly on V , we

can describe G’s action on V as a matrix multiplication. That is gv = Agv

where Ag is an k×k matrix illustrating g’s action. For instance, if {v1, . . . , vk}

is a basis for V and g : vi 7→
∑

j lijvj then {A}ij = lji.

Proposition A.2 If Ag is g’s matrix of action on V then Ag
−1 is g’s matrix

of action on the dual space of V . This is V ∗ = Hom(V,Z2).

Proof Let {v1, . . . , vk} be a basis for the vector space V . Let {f1, . . . , fk}

be a basis for V ∗, where fi(vj) = 1 if i = j and 0 otherwise. Let vgi =
∑

j lijvj.
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Then

(vi 7→ ti)
g ⇒

∑
j

lijvj 7→ ti

where ti = 0 or 1. So
l11 . . . l1k

. .

. .

lk1 . . . lkk




v1

.

.

vk

 7→


t1

.

.

tk


Let B be a k × k matrix with entries {B}ij = lij then

v1

.

.

vk

 7→ B−1


t1

.

.

tk


If {B−1}ij = bij then we have

v1

.

.

vk

 7→


b11 . . . b1k

. .

. .

bk1 . . . bkk




t1

.

.

tk


and vi 7→

∑
j bijtj. That is fi 7→

∑
j bijfj. Giving matrix, M , of linear

action on V ∗ defined by, {M}ij = bji. So M = (B−1)T . But B = AT . Since

(MT )−1 = (M−1)T , we have M = A−1.

Action on Zn2/C2 is just the normal permutation action on Zn2 taking the

result modulo C2. With this we can compute matrices of action of g ∈ G

on C∗1 , say A, and on Zn2/C2, say B. If we take {f1 ⊗ v1, . . . , f1 ⊗ vk3 , f2 ⊗

v1, . . . , fk1 ⊗ vk3} to be a basis for C∗1 ⊗ Zn2/C2 (here k3 = n− (k1 + k2)) we

have g : fi ⊗ vj 7→ Agfi ⊗Bgvj.
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A.5 Fixed points on C∗1 ⊗ Zn2/C2

As mentioned above, a linear action of g on a vector space V can be expressed

as a matrix multiplication. For g ∈ G, let the matrix representation for g’s

action on V be Ag, then gv = Agv for v ∈ V . Matrix representation for

g−1 is then Ag−1 = (Ag)
−1. If v ∈ V is a fixed point of g then gv = Agv =

v. So space of fixed points of g’s action is precisely the space spanned by

eigenvectors corresponding to the eigenvalue 1. To simplify computing fixed

points note the following:

• If α is an eigenvalue of a matrix A then α−1 is an eigenvalue for A−1

since

Agv = αv ⇔ (Ag)
−1v = α−1v

• Here we are working with vector spaces over Z2. So all calculations will

be in Z2. If t is a root of the irreducible polynomial:

f(x) = xs + as−1x
s−1 + . . .+ a1x+ 1

then t−1 is a root for

f̃(x) = xs + a1x
s−1 + . . .+ as−1x+ 1

We get this by plugging t in f(x), giving us f(t) = 0 then multiplying

the result by t−s.

• If r is a positive integer not divisible by the characteristic of the field

(this is not applicable for char = 0) then xr − 1 has no repeated roots.

In our case char = 2. If g has odd order r, its minimal polynomial

divides xr − 1. Hence, g is diagonalizable over some extension field.

Here the dimension of the fixed point space still equals multiplicity of

1 as an eigenvalue of g.
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Now, Let g act on vector spaces V1 and V2 and let the action be diago-

nalizable on both. Then there is a basis {fi} of V1 and {ei} of V2 such that

g : fi 7→ µifi and g : ei 7→ λiei. So g : fi ⊗ ej 7→ µiλjfi ⊗ ej. With this,

action of g on V1 ⊗ V2 is also diagonalizable. Dimension of the fixed point

space equals number of pairs {i, j} such that µiλj = 1. That is, dimension

of the fixed point space is∑
µ,λ, µ.λ=1

multV1(µ).multV2(λ)

If F1 and F2 are characteristic polynomials of g on V1 and V2 respectively.

Each irreducible of degree s has a contribution of s.multF1(f).multF2(f̃) to

the dimension of the fixed point space in the extension field andmultF1(f).multF2(f̃)

in the ground field.

In our case, we are trying to compute fixed points of an automorphism

group G acting on a vector space over Z2, this is A = C∗1 ⊗Zn2/C2. A way of

computing fixed points of an automorphism g on A would be to check if g’s

action is diagonalizable on C∗1 and Zn2/C2. If g has an odd order for example,

we know it is. If g is diagonalizable on C∗1 and on Zn2/C2 then we proceed as

follows:

• Compute matrix of action on C1, call it X.

• Find characteristic equation of A, say F . Then characteristic equation

of A−1 is F1 = F̃ .

• Factorize F1. The roots are the eigenvalues on C∗1 .

• Compute matrix of action on Zn2/C2. Call it B.

• Find characteristic equation of B, say F2 and factorize it.
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• If f is a factor of F1 and f̃ is a factor F2. This factor contributes to the

dimension of the fixed point space by multF1(f).multF2(f̃) giving us a

dimension for the fixed point space equal to
∑

factors f multF1(f).multF2(f̃).

• If {λ1, . . . , λs} are zeros of f with corresponding basis eigenvectors

{vλ1 , . . . , vλs} and {λ−11 , . . . , λ−1s } are zeros of f̃ with corresponding

basis eigenvectors {v̄λ1 , . . . , v̄λs} then
∑

i vλi ⊗ v̄λi is a fixed element in

V1 ⊗ V2.

If g is not diagonalizable on C∗1 or on Zn2/C2 then write down the matrix

of action on W and check the dimension of its eigenspace corresponding to

eigenvalue 1. If Ag is a permutation matrix (a matrix in which every row

and column have exactly one none zero entry equal to 1), then it has only 1

as an eigenvalue so its corresponding eigenspace is nonempty.
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