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Abstract

Multiple viewpoint systems find statistical structure in multidimensional entities, such as
music, by combining Markov-based models together in order to make probabilistic predictions.
This paper empirically tests two contrasting techniques for predicting multiple attributes of a
musical surface. The first, an established method, predicts each attribute in turn, whilst a second,
a proposed alternative, merges attributes into a new representation in order to make predictions
simultaneously. A set of optimal smoothing techniques are found for both prediction methods
across several harmonic and melodic datasets. Results indicate that when surface attributes are
highly correlated, predicting merged attributes outperforms predicting the attributes separately.
This can allow viewpoint systems with correlated surface attributes to be optimised, giving a
closer fit with the training data as measured by mean information content.

Keywords— Multiple viewpoint, Harmony, Information theory



1 Introduction

Music is fundamentally a multidimensional entity, whether considered at the level of the sound
wave, or at the symbolic level. A complex sound wave is highly multidimensional, requiring
frequency component analysis before useful information can be extracted. At the symbolic level,
most Western tonal music (the focus of this paper) can be described as a sequence of notes,
which themselves consist of dimensions such as pitch, onset, duration, dynamic, and timbre.
Alternatively, since Western tonal music often consists of notes occurring simultaneously, a useful
description could be as a sequence of chords. In this case, the dimensions could be the root, the
bass (the lowest note), the set of pitches in the chord, the set of pitch classes in the chord, and
the chord type (a label for the set of pitches in the chord). This work focusses on music at the
symbolic level and on chord sequences in particular.

Multiple viewpoint systems (Conklin & Witten, 1995) are a useful way of tackling the multi-
dimensional nature of music at the symbolic level. The different dimensions of a musical surface
are represented by basic attributes, which are be modelled by viewpoints. The majority of re-
search using multiple viewpoint systems predicts a single basic attribute, usually pitch (Conklin
& Witten, 1995; Pearce, 2005). However, for chords, a natural minimal representation is to
divide a chord symbol (e.g. C7) into a root (C) and chord type (7) which describes the set of
pitches in the chord. A key question in the current research is how to handle predicting multiple
basic attributes at the same time. Usually, multiple basic attributes are predicted separately
(Conklin, 1990, pp. 68-69). The current work explores an alternative method where basic at-
tributes are merged into a single attribute, allowing them to be predicted simultaneously. The
key contribution of this research is to compare these two methods quantitatively for a range of
datasets and domains, and establish under which conditions they perform best.

A secondary contribution of this work is an extensive empirical test of n-gram techniques
known as smoothing (Pearce & Wiggins, 2004) in melodic and harmonic domains. These meth-
ods, originating from data compression and natural language processing, have been comprehens-
ively tested on monophonic melodic music, but a similar review of their performance for harmonic
data has not been undertaken to the authors’ knowledge.

This study continues a line of research in using multiple viewpoint systems as a cognitive
model of musical expectation. Expectation has been identified as a central aspect of music
cognition in eliciting meaning and emotion from music as well as learning musical structure
(Huron, 2006; Meyer, 1956; Narmour, 1990). The Information Dynamics of Music (IDyOM)
model (Pearce, 2005) is an empirically tested cognitive model of musical expectation, working
primarily with melodic prediction. In part, this research hopes to extend this approach to
the prediction of tonal harmonic sequences. The present research uses the existing IDyOM
implementation of Pearce (2005), freely available as open source software,! with modifications

and additional viewpoints for representing chord sequences.

Thttps://code.soundsoftware.ac.uk/projects/idyom-project



After reviewing related research (§2) and establishing a representation scheme for the cor-
pora used (§3), this paper presents three experiments. Experiment 1 (§4) finds a set of optimal
smoothing parameters for two harmonic and three melodic datasets. Having presented an altern-
ative method for predicting multiple surface (or basic) attributes, Experiment 2 (§5) compares
the established method of predicting multiple basic attributes separately against predicting them
at the same time as a single merged attribute. Finally, Experiment 3 (§6) tests if the results

from Experiment 2 hold when applied to a full multiple viewpoint system.

2 Related Research

The modelling of tonal harmony with computational models is an established topic of research
in computer science, cognitive science, and musicology. To position the current research, most
computational approaches to modelling harmony can be considered as processing information in
either a top-down or bottom-up manner. Bottom-up approaches make minimal assumptions of
the domain, learning structure and regularities purely from the musical surface, whereas typically

top-down models define rules which describe or parse the musical surface.

2.1 Computational Models of Harmony

One of the earliest computational approaches to modelling harmony is a top-down technique
by Ulrich (1977), who tackles the problem of generating melodic jazz improvisations to a chord
structure. Functional harmonic analysis is an important part of the system. It is achieved with
a chord grammar used to label chords and a key analysis which attempts to parse a piece into
the minimal number of segments that comply with a set of music theoretic rules. Ebcioglu
(1986) approaches a similar problem, harmonising Bach chorales at the level of individual voices.
350 production rules, constraints, and heuristics in first-order predicate logic form are carefully
derived from the chorale set (Riemenschneider, 1941) and various harmonic treatise. The hand-
selected output of the system is stylistically convincing and could be described as approaching
that of a competent music student. However, the fact that the number of production rules (350)
almost approaches the number of chorales the knowledge base is derived from suggests that the
system is unlikely to generalise well or be a plausible cognitive model for musical composition and
understanding. Pachet (2000) presents a jazz chord sequence parser based on identifying common
pre-defined harmonic patterns (or shapes) and labelling them as part of a hierarchical structure.
Steedman (1984) uses a small set of six transformation rules to form a generative grammar
capable of generating a large number of variations on a 12-bar blues. Generative grammars are
also used by Rohrmeier (2011) who builds on and formalises aspects of the Generative Theory of
Tonal Music (Lerdahl & Jackendoff, 1983) and tests the model on parsing examples of Western
Tonal music. Rules are presented in a hierarchical structure consisting of phrase, functional scale-
degree, and surface levels. It is often the case that strict (non-statistical) rule-based systems are

unable to handle ambiguous cases, or are not able to quantify how typical a sequence is for a given



style. Granroth-Wilding and Steedman (2014) address this problem with a model combining a
combinatory categorical grammar and a statistical supervised learning approach trained on a
small annotated jazz corpus. The problems of chord function and tonal centre labelling are
approached with a preference rule system by Temperley (2001). The preference rules formulate
musicological principles, such as accepting chord transitions which minimise distance on a circle
of fifths.

Bottom-up approaches are usually unsupervised, often learning structure with statistical
models such as Markov (n-gram) models or Bayesian networks. An early Markovian approach
to modelling harmony is described by Ponsford, Wiggins and Mellish (1999), who generate novel
pieces from n-gram models trained on seventeenth century dances. Perez-Sancho, Rizo and Inesta
(2009) successfully apply Markov modelling to a supervised classification problem; identifying
jazz composers from their chord sequences. In the domain of computational creativity, Pachet
and Roy (2014) use Markov constraints (Pachet & Roy, 2011) to generate novel harmonisations
in hybrid styles for jazz lead sheets. Rohrmeier and Graepel (2012) test a number of statistical
models such as a Hidden Markov Model (HMM), an autoregressive HMM, a Dynamic Bayesian
Model (DBN) and a feature-based (or multiple viewpoint) model on a corpus of jazz lead sheets.
A DBN which incorporates information of features outperforms the Markovian models, but de-
teriorate when temporal information is added to the model. Another DBN model is presented by
Paiement, Eck and Bengio (2005), who models jazz chord sequences with a hierarchical graphical
model capable of capturing global structure, local dependencies and chord substitutions.

The current research positions itself firmly within the bottom-up approaches to modelling
harmony with an unsupervised, Markovian, multiple viewpoint system. The application of mul-
tiple viewpoint modelling to the harmonic domain is not novel in itself. Whorley (2013) builds a
multiple viewpoint system to harmonise Bach chorales at the note level, representing chords as
vertically aligned pitches (Conklin, 2002). It is important to note that the representation level of
the present research is at the chord symbol level, rather than at the level of individual voices. This
removes the need to generalise over the many possible permutations for voicing a chord. Conklin
(2010) uses a multiple viewpoint system over functional chord symbols to identify distinctive,
idiomatic patterns in music. This work aims to develop this approach further by investigating
different harmonic viewpoints, proposing and testing methods for predicting basic attributes and
testing a collection of smoothing techniques (Pearce & Wiggins, 2004) to aid n-gram prediction.

Further work by Whorley, Rhodes, Wiggins and Pearce (2013) deals specifically with the order
in which multiple basic attributes are predicted. As notes in voices are predicted they marginalise
the remaining probability distributions predicting the other voices. The manner in which this
marginalisation occurs affects the model performance measured by mean information content.
However, when building a computational model as a method for investigating a cognitive process,
the order in which different attributes are processed cannot be assumed. An approach which
doesn’t use predicted information from the current event is preferred in the current research,

with basic attributes of a single event assumed to be predicted at the same time.



2.2 Statistical Learning of Sequential Data

Statistical, and especially Markovian, approaches to modelling sequential data frequently en-
counter two main problems when employing fixed-order models. Firstly, symbols which are novel
to the context may be encountered, resulting in probabilities of zero being given to new events.
This has been identified by Witten and Bell (1991) as the zero-frequency problem. Secondly, it
is difficult to determine the context length (or model order) that will give the best predictions.
In general, longer contexts can give more specific predictions, however, they are more likely to
encounter sparsity issues than shorter contexts. Many approaches address this by combining
models with different context lengths (Ron, Singer & Tishby, 1996), a naive implementation of
which would result in polynomial time and space algorithms. A large number of proven meth-
ods and techniques have been established to tackle these problems, a selection of which are
summarised below.

The well-known lossless data compression algorithm by Ziv and Lempel (1978), applicable to
sequence prediction (Rissanen, 1983), parses left-to-right adding unique phrases to a dictionary
used to construct a prediction tree. Encountering symbols novel to a given context (which may
be empty) triggers a return to the root of the tree. A Prediction Suffix Tree (PST) (Bejerano
& Yona, 2001; Ron et al., 1996) forms a suffix set consisting of all substrings in the training
set not exceeding an order bound and occurring sufficiently frequently. Additionally, given the
prediction of a symbol, suffixes are retained only if their maximum likelihood estimate is larger
(defined by a user-defined parameter) than the corresponding parent suffix which is one symbol
shorter. Context Tree Weighting (CTW) models (Willems, Shtarkov & Tjalkens, 1995) combines
predictions from all suffix trees within a bounded depth with probability estimates calculated
using a Krichevsky-Trofimov estimator (Krichevsky & Trofimov, 1981) with a computationally
efficient recursive process. Originally implemented for binary alphabets, Volf (2002) proposes
an extension to finite alphabets of arbitrary size with a hierarchical decomposition into binary
decisions. Prediction by Partial Match (PPM) (Bunton, 1997; Cleary & Witten, 1984) is a
lossless data compression method most efficiently built as a suffix tree with an online construction
algorithm (Ukkonen, 1995). Various escape and smoothing methods can be applied with the
method, most commonly predictions from different context lengths are combined recursively
with a weighted prediction of the (n — 1)** and (n — 2)** length contexts. Cleary and Teahan
(1997) propose an unbounded version called PPM* which dynamically selects the best order
bound at each step. In terms of data compression performance metrics, Begleiter, El-Yaniv and
Yona (2004) provides a comprehensive comparison of the Lempel-Ziv, CTW, PST and PPM
algorithms over English text (the Calgary copurs), music in MIDI format and protein sequences.
CTW and PPM were found to perform best with an average log-loss of 3.02 / 3.03 bits/symbol
for English text, 1.21 / 1.30 bits/symbol for MIDI files and 4.56 / 4.48 bits/symbol for protein
sequences.

Similar methods have been developed as the underlying mechanism behind symbolic music

generation systems capable of composing or improvising in any style given an appropriate training



corpus. For modelling musical style and generation, Dubnov, Assayag, Lartillot and Bejerano
(2003) compares Lempel-Ziv and PST methods, finding that Lempel-Ziv is able to run in real
time and find musically coherent motifs. However, it is also prone to replicating large sequences
of the training data between joined with unexpected juxtapositions. Conversely, PST creates
interesting transitions between replicated sequences, although may produce out of style notes and
cannot be run in real time. Pachet (2003) presents an interactive music generation system built
on prefix trees which learns all substrings of the training corpus and runs in real time. Musical
generations are composed through a random walk method, falling back to shorter contexts in the
prefix tree if the relevant context has not been seen in the training data. The system is reported
to be able to produce fast tempo jazz improvisations which are stylistically indistinguishable from
the user’s input. Comparably, factor oracles (Assayag & Dubnov, 2004) are an acyclic automaton
with a minimal number of states and a number of transitions linear to the length of the training
sequence. They are capable of weak factor recognition, recognising all substrings in the training
sequence, but also contain substrings not in the training data. Assayag and Dubnov (2004)
note that factor oracles do not have a probability distribution over the alphabet at each state.
However, long generated sequences should become asymptotically close to the observed training
data using a generation algorithm which chooses stochastically between replicating a substring

from the training corpus or jumping to a maximal suffix of the string sequence generated so far.

2.3 Information Dynamics of Music

The IDyOM model (Pearce, 2005) is a cognitive model of expectation for the perception of musical
events and is applied in the current research as a statistical learning approach to modelling
harmony. Expectation is an important aspect of music cognition (Meyer, 1956) and is quantified
on an event by event basis by IDyOM with a probabilistic model. Events occupy a basic event
space, &, roughly equivalent to the musical surface (Lerdahl & Jackendoff, 1983). These may be
individual notes (Pearce, 2005), collections of simultaneous notes (Whorley, 2013), or, in the case
of the current research, chord symbols. The multidimensional nature of music is captured with a
multiple viewpoint system, with events comprising of multiple dimensions, or basic attributes. A
multiple viewpoint system predicts one or more basic attributes, referred to as target attributes,
from the event using a set of viewpoints. The advantage of such a system is that it combines
the performance of individual expert models in a way which outperforms a single model by

overcoming problems of sparsity and poor generalisation from the training data.

2.3.1 Viewpoints

Formally, a viewpoint signified by a type, 7, consists of a partial function, ¥, : £* — [7], mapping
sequences from the event space to symbols in the viewpoint alphabet, [7], and a context model
capable of calculating probabilities of sequences in [7]* (Conklin & Witten, 1995). The character-

istics of the partial function provide a useful categorisation for viewpoints. For basic viewpoints



the partial function acts simply as a selector function, selecting the relevant basic attribute ele-
ment from the current event. Derived viewpoints apply some operation to the preceding sequence
of basic attributes, commonly a difference function (e.g. cpint in Pearce, 2005) or a non-injective,
surjective (many-to-one) function (e.g. contour) which groups similar elements into the same
category. Derived viewpoints are defined as all non-basic viewpoints. Threaded viewpoints allow
for patterns from non-adjacent events to be modelled, for example thrbar (Pearce, 2005) models
pitch interval between the first notes of adjacent bars. Relevant events for threaded viewpoints
are selected by test viewpoints, which simply return boolean values. Single viewpoints may be
combined to form a linked viewpoint to explicitly model interactions between them. These are
denoted by 71®...Q7,, where n, the number of constituent viewpoints, is usually capped for a
multiple viewpoint system. The viewpoint alphabet of the linked viewpoint is the cross product

of its constituent viewpoints: [7] = [11] X ... X [7,].

2.3.2 Probability Calculations and Performance Metrics

The probabilistic model at the core of IDyOM takes a Markovian approach, with the goal being
to estimate the probability function p (ei | ei_l), in other words assigning a probability to every
symbol in a sequence, given preceding symbols. A sequence of symbols from a viewpoint of type
7, running from indices i to j, is expressed as e{ , where symbols are drawn from a finite alphabet,
e € [r], specific to that viewpoint. Assuming that the probability of an event is affected only by
the previous n — 1 events, these probabilities can be assigned with an n-gram model (also known
as an (n — 1) order model) using the mazimum likelihood estimate (Equation 1).2 Trivially, the
probability of a whole sequence is then estimated using the chain rule (Equation 2). In practice,
IDyOM makes use of a collection of techniques known as smoothing which modify a standard

Markov model (see §4.1).

i C(ei | eﬁihl)
P& | 62—111 = — (1)
( +1) ZeG[T] C(@ | ei7711+1)
J .
plef) =[] p(eilezhy) (2)
1=1

Following a natural language processing approach (Manning & Schiitze, 1999), the quality of
a probabilistic model can be measured by the degree to which its probability function describes
the data. Information content (Mackay, 2003; Shannon, 1948) is a useful performance metric,
representing an estimate of the number of bits required to describe an event drawn from a discrete
probability distribution. Mean information content can also be a measure of the cross entropy
between two distributions (Manning & Schiitze, 1999), even when one probability distribution
is unknown. In other words, the degree of fit between the probability distribution of the model

and the true probability distribution of the stochastic process that generated the training data.

QC(ei | 62:711+1> is a count of the number of occurrences of the symbol e; following the subsequence eii}wrl.



The information content of a single event is given by Equation 3 and the mean information
content of a sequence of length J by Equation 4. An information theoretically efficient model
will return a low mean information content, resulting from relatively high probability estimates
for events, suggesting a close fit between the model and statistical structure underlying the
training data. Typically, the mean information content of a corpus is calculated with a k-fold
cross validation (Conklin & Witten, 1995; Pearce & Wiggins, 2004), with the probability function
p (e | e’fl) estimated from k training sets and the mean information content calculated from

the corresponding testing sets.

h(ei | e;::'}ri-l) = —logs p(ei ‘ 62::L+1) 3)

J
_ 1 -
h(ef) = -3 Z loga p(e; | € h 1) (4)

i=1
2.3.3 LTM and STM

Conklin and Witten (1995) introduce the notion of a long-term model (LTM) and short-term
model (STM) to model global and local statistical structure respectively. The LTM is built
from the held-out training set of the k-fold cross validation, whilst the STM model is built
dynamically on an event-by-event basis for each composition in the test set and then discarded
after the composition has been processed. A third type of model, LTM+, merges qualities from
both models, building both from the training set and dynamically on an event-by-event basis.
The current research follows both Conklin and Witten (1995) and Pearce, Conklin and Wiggins
(2005) in combining predictions in two stages: firstly viewpoint predictions within the LTM(+)
and STM, and secondly combining the predictions from the LTM(+4) and STM themselves.

3 Corpora and Representation

To investigate methods for predicting multiple basic attributes and the effect of different smooth-
ing techniques on a variety of data, five symbolic datasets across melodic and harmonic domains
are selected (Table 1). Dataset 1 consists of the chord sequences of 348 jazz standards from the
original Real Book (Leonard, 2012), compiled by Pachet, Suzda and Martin (2013). Composi-
tions from the original source with ambiguous structure or section orders were not included in
the experimental dataset. A second harmonic dataset comprises of the chord sequences from all
179 Beatles songs, compiled by Harte, Sandler, Abdallah and Gémez (2005). The three melodic
datasets, all used by Pearce and Wiggins (2004), are a set of 185 Bach chorale melodies from
Riemenschneider (1941), 556 German folksongs from the Essen Songbook Collection (Schaffrath,
1995), and 152 Canadian folksongs ballads from Nova Scotia (Creighton, 1966). Although the
primary goal of the current research is to model harmonic sequences, the melodic datasets are

included to check the generality of the techniques tested.



3.1 Basic Harmonic Attributes

Events in the harmonic domain are equivalent to the chord symbols of a lead sheet (e.g. G7, C4,
Ab), which can be represented fully by the basic attributes Root, ChordType, and PosInBar. A
pre-processing step is required to reduce the alphabet size of the original ChordType attribute
(67 for the Real Book) and incorporate slash chord notation (e.g G7/C). Each chord is converted
to a pitch class set (see Forte, 1973) and transposed so that the root (signified by the chord
symbol prefix) is 0. In the case of slash chords, the bass note (the note name after the slash) is
considered to be the root unless it is already present in the chord, or if it is a minor or major
7t (10 or 11 semitones) above the root of the chord. This implies that the bass note of a slash
chord signifies only a change of inversion, but not function, if it is present in the original chord
(Levine, 1995, Ch. 5). Finally, Algorithm 1 (see Appendix) assigns one of 13 symbols to a given
pitch class set according to the combination of pitch classes in the set. Functionally equivalent
chords with differing notation can, therefore, be represented by the same symbol. For example
C1(no3rd) and G7/C both represent 11*" chords with an omitted major 3"¢ and a functional
root of C. All 13 ChordTypes, including the special symbol NC (signifying that no chord is being
played), are given in Table 2 alongside corresponding typical chords from the Real Book source.

Root has a full alphabet size of 13 and represents the pitch class (assuming enharmonic
equivalence) of the functional root of the chord after pre-processing the ChordType. Again, the
special symbol NC' denotes that no chord is played, therefore, by definition when Root is NC|
ChordType is also NC and vice versa.

PosInBar signifies the metrical position in the bar of the chord onset. A timebase (see Pearce,
2005, p. 63) of 2 allows all metrical positions to be expressed as an integer, where 0 represents the
first beat of the bar and 2 is a crochet (quarter-note) into the bar. The full alphabet of PosInBar
in dataset 11is {0, 2, 3,4,5,6,7,8,9,10,11}, and {0, 2, 3,4, 5,6,7,8,9,10,11, 12,13, 14, 15} for data-
set 2. By definition, the start of every bar in the harmonic datasets has a chord onset, if a chord
is repeated consecutively within a bar it is ignored. This gives the PosInBar alphabet a dynamic
quality, as it shrinks throughout each bar. For example, if a chord on the final beat of the bar
has been processed, the next chord cannot occur on a second beat, it must occur on the first
beat of the next bar.

3.2 Basic Melodic Attributes

Pitch and Duration are the basic attributes used to describe notes in the melodic datasets.
Pitch (equivalent to cpitch in Pearce, 2005) can be thought of as the MIDI number of a note,
in other words ignoring pitch class equivalence, but assuming enharmonic equivalence. The full
alphabet sizes of Pitch for datasets 3, 4 and 5 are 21, 37 and 26 respectively. Duration is
an integer signifying the duration in timebase units of a note, with the full alphabet sizes for
datasets 3, 4 and 5 being 14, 17 and 14.



3.3 Derived Harmonic Viewpoints

A pool of derived viewpoints are defined to improve the modelling of chord sequences in the
current research. Seven viewpoints are derived from Root and three from ChordType. RootInt
is the root interval in semitones modulo-12 between two adjacent chords. If either Root symbol is
a NC then the symbol -1 is returned. MeeusInt categorises root movement (RootInt) using root
progression theories (Meeus, 2000; Rameau, 1971; Schoenberg, 1969), which describe harmonic
progression exclusively through root transitions. Meeus (2000) simplifies all root progressions
to a set of two: dominant progressions descend by a perfect fifth, descend by a third or ascend
by a second, and subdominant progressions rise by a perfect fifth, ascend a third or descend a
second. Conklin (2010) defines a similar viewpoint, meeus, although the current research uses a
slightly different definition owing to the fact that enharmonic equivalence is assumed for Root.
Dominant root progressions (where RootInt = 1,2,5,8 or 9) are given the symbol 1, subdominant
progressions (RootInt = 3,4,7,10,11) the symbol -1, no root movement (RootInt = 0) the symbol
0, a RootInt of 6 (the diminished fifth/ augmented fourth) the symbol -2, and when either root
is NC the symbol -3. A ChromaDist viewpoint aims to exploit the notion that tonal harmony
progresses mainly in intervals of a perfect fifth (Chew, 2002; Longuet-Higgins, 1979; Piston,
1948; Rameau, 1971; Riemann, 1895). ChromaDist is simply the minimum number of perfect
fifths required to get from one root pitch class to the next, or the smallest distance around a
cycle of fifths. Again, if either Root is NC, then -1 is returned. All of these viewpoints return
the undefined symbol, |, for the first event of a piece, when the previous event does not exist.

Three further viewpoints, RootIntFiP, MeeusIntFiP and ChromaDistFiP, apply RootInt,
MeeusInt and ChromaDist to the current event and the first event of the piece instead of the
previous event. This provides a crude measure of capturing some structure from non-adjacent
events. As there is no reliable representation for key or tonal centre in the corpora (especially
considering modulations are frequent) there is no way of directly representing the harmonic
function or scale degree of a chord. RootIntFiP can provide a rough estimate of chromatic scale
degree, given that pieces frequently begin on the tonic chord. Of course, there are many occur-
rences where this is not the case, so RootIntFiP should not be considered a pure representation
of scale degree, merely that it is able to capture some of the statistical properties associated with
it. Finally, a threaded viewpoint, RootInt & FiB, aims to capture further non-local structure
by measuring the RootInt between chords on the first beats of successive bars.

Levine (1995) notes that the properties of the third and seventh in a chord are the most
important indicators of its function. With this in mind, three viewpoints derived from ChordType
group chords into different categories according to their pitch class set contents. MajType simply
assigns a 1 to all chords where the third is major (4 is a member of the pitch class set), a 2 to all
chords where the third is minor, and a 0 to all chords without a third. 7Type assigns a 0 to all
chords with a minor 7th and a 1 to all other chords (except a NC which is given a -1 symbol).
Finally, FunctionType assigns all chords with a major third and minor seventh a 0, all other

chords with a major third a 1, all chords with a minor third and minor seventh a 2, all other



minor chords a 3, and NC a -1. Roughly, these four categories correspond to dominant, tonic
major, pre-dominant,® and tonic minor chord functions. Table 3 summarises all of the harmonic

viewpoints used in this research over a sample chord sequence.

4 Experiment 1: Optimal Smoothing Parameters for Har-

monic and Melodic Domains

Of the statistical learning methods discussed in §2.2, PPM (used by IDyOM) offers a number of
advantages over similar methods which are attractive for the current research. PPM is among
the best performing lossless data compress algorithms available (Begleiter et al., 2004; Bunton,
1997; Shkarin, 2002), and whilst not the most efficient in terms of time and space complexity,
this does not concern the current research which is not required to run in real time (c.f. Assayag
and Dubnov, 2004; Pachet, 2003). The method does not require hand-tuned parameters (c.f.
Bejerano and Yona, 2001; Ron et al., 1996) or bounded context lengths if the unbounded PPM*
variant (Cleary & Teahan, 1997) is used. Finally, with the PPM framework various smoothing
and escape methods can be easily implemented (Bunton, 1996, ch. 6) to optimise the algorithm
for different domains corpora.

This experiment investigates the optimal smoothing parameters for linked viewpoints pre-
dicting separate attributes in a variety of harmonic and melodic datasets (Table 1). Pearce
and Wiggins (2004) find an optimal set of smoothing parameters for a collection of monophonic
melodic datasets, however, these are not guaranteed to apply to new datasets or domains. In
the context of studying merged representations, it is necessary to first understand the effects of
smoothing parameters on viewpoint models in different domains before comparisons are made

across different forms of representation (§5).

4.1 Prediction by Partial Match and Smoothing Techniques

PPM uses a collection of techniques from data compression known as smoothing which im-
prove the performance of Markov models, in particular tackling problems associated with zero-
frequency counts (Witten & Bell, 1991) and fixed order models. In general, this is achieved by
adjusting the maximum likelihood estimates to save probability mass for novel events and finding
a way to combine models of different orders in a meaningful way.

Two frameworks exist to achieve this aim, commonly referred to as backoff smoothing (Kneser
& Ney, 1995) and interpolated smoothing (Chen & Goodman, 1999; Jelinek & Mercer, 1980).
Both frameworks utilise a global order bound, g, to recursively combine predictions from the
g'" order down to the —1%" order. a(e; | efjl 1) represents the prediction probability, essentially

an adjusted maximum likelihood estimate (Equation 1). ’y(eﬁj}lﬂ) is the escape probability, or

the amount of weight given to lower order models. t(ej

7) is the type count of a sequence and

3A chord which precedes the dominant, typically ii or IV.

10



returns the number of different symbol types seen after the sequence eg . t(€) is the type count
of the empty sequence; in other words, the total number of symbol types already seen by the
model. The fundamental difference between backoff and interpolated smoothing is that backoff
smoothing (Equation 5) escapes to the next order only when it encounters a novel symbol for
a given context, whilst interpolated smoothing (Equation 6) always escapes to the lower order,

blending predictions from the (n — 1)** and (n — 2)" orders recursively until termination.

1
- - if 1
[E1+1— 1) nre
p<€i | €i7n+1) = a(ei | 62:711+1) if c(ei | 62:’}%1-1) >0 (5)

V(Gtiﬂ) ‘P(Ci | 62:71&2) otherwise

1
4 TET T i ifn<1
pleil €ing1) = &1 +1 =) (6)

a(ei | eﬁ:}H_l) +’y(e§:}1+l) -p(ei | 62:7114-2) otherwise

4.1.1 Unbounded Context Lengths

Many of these smoothing techniques were developed as variants of PPM, a leading data com-
pression scheme. The original algorithm proposed by Cleary and Witten (1984) used backoff
smoothing with a fixed order bound and made use of two escape methods: A and B (see §4.1.2).
Variations of PPM relevant to the current research include additional escape methods (Howard,
1993; Moffat, Neal & Witten, 1998; Moffat, 1990), the use of interpolated smoothing (Bunton,
1997), and unbounded length contexts (Cleary & Teahan, 1997), also known as PPM*. Unboun-
ded length contexts remove the need for a fixed order bound by exploiting the fact that novel
symbols tend to occur less frequently after deterministic contexts (ones which are followed by
only one symbol type, i.e. t(e!) = 1) than non-deterministic contexts (where t(e) > 1) when
compared to a uniform prior distribution (Cleary & Teahan, 1995). Cleary and Teahan (1997)
propose that for unbounded length contexts an order bound can be found dynamically for each
symbol in a sequence by selecting the shortest deterministic context as the order bound, or, if

no such context exists, the longest matching context.

4.1.2 Escape Methods

-1
—n+1

the amount of weight assigned to novel events for a given context. Table 4 summarises five escape
methods reviewed and empirically tested by Pearce and Wiggins (2004). Method A (Cleary &

Witten, 1984) effectively assigns a count of one to all novel events given a context. Method

Escape methods are different methods for calculating a(e; | €/~ ) and (e ), determining

B (Cleary & Witten, 1984) introduces the type count t(eﬁi}wl) to the escape probability, so
that more weight is given to novel symbols occurring after a context that is usually followed
by more symbol types. Additionally, the effect of anomalies is reduced by subtracting one from

the symbol count of the prediction probability so that novel symbols must occur twice before
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they are counted. Moffat (1990) proposed method C (also known as Witten-Bell smoothing) as
a hybrid of the previous two methods, with the escape probability adjusted by the type count
as in method B, but the symbol count of the prediction probability unaltered as in method A.
Forcing symbols to occur twice before they are counted by subtracting one from the prediction
probability is considered wasteful. Howard (1993) proposes method D as a compromise, which
subtracts only half from the symbol counts of the prediction probability. Finally, method AX
(Moffat et al., 1998) is a simplified and corrected version of method P (Witten & Bell, 1991),
which assumes the occurrence of novel events follows a Poisson distribution. Note the special
type count tl(ez;ll +1) signifies the number of symbol types which have appeared only once after
a given context. In data compression studies, methods similar to method AX tend to outperform
methods C and D, with methods A and B performing worst (Bunton, 1997; Cleary & Teahan,
1997; Moffat, Sharman, Witten & Bell, 1994; Witten & Bell, 1991). Since various qualities of
the training and test data such as alphabet size and skew (Moffat et al., 1994) have an impact
on the performance of different escape methods, there is no informed way of selecting an escape
method without a priori knowledge of the corpus (Witten & Bell, 1991). The optimal escape

method can, therefore, only be found with an experimental approach.

4.1.3 Update Exclusion

Update exclusion is a method proposed by Cleary and Witten (1984) which aims to improve
probability estimates with an altered counting scheme for n-grams. The rationale behind the
method is that, when escaping down to lower orders, n-grams which would have already been seen
at higher orders (therefore preventing escape in the case of backoff smoothing) are still included
in calculating predictions for the lower order models. This wastes a portion of the probability
mass which would otherwise be assigned to possible predictions. To borrow an example from
Cleary and Teahan (1997), the task is to give a probability estimate to the symbol ‘d” following
the sequence ‘abracadabra’ with a backoff model, with an order bound of g = 2. A 3-gram model
will escape to the lower order, since ‘d’ does not occur in the context of ‘ra’ in the sequence.
Without update exclusion, a simple maximum likelihood estimate would assign a probability of
% for the 2-gram model, as the context ‘a’ occurs four times, and is followed by a ‘d’ on one of
those occasions. If update exclusion is used, the 2-gram model will give a maximum likelihood
estimate of %, since ‘c’ has already been seen in the context of ‘ra’ and is therefore removed
from the predictions following the context ‘a’.

4.1.4 IDyOM Smoothing Parameters

Pearce and Wiggins (2004) established empirically the optimal smoothing parameters for IDyOM
on a variety of monophonic melodic datasets. Interpolated smoothing consistently outperformed
backoff smoothing across all datasets and for most other smoothing parameter combinations.
Method C was the most consistently high performing escape method, although method AX
also performed well for the STM. The effect of update exclusion was found to be sensitive
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to other smoothing parameters, the dataset and whether the LTM or STM was being used.
Unbounded length contexts (PPM*) outperformed the best fixed-order models when combined
with interpolated smoothing, but with backoff smoothing, improvements were inconsistent. The
LTM+ was found to outperform the LTM when both were given the best smoothing parameters.
Overall, the best LTM+ and STM were both unbounded, used interpolated smoothing and escape
method C, but not update exclusion.

Model are given a shorthand notation (Pearce & Wiggins, 2004) indicating their set of smooth-
ing parameters. The long- and short-term models are depicted by LTM and STM respectively,
with LTM+ representing the hybrid model (see §2.3.3). Escape methods are indicated by ‘A’,
‘B’, ‘C’, ‘D’, and ‘X’ (for method AX). The order bound is given by an integer, or ‘*’ if un-
bounded. If update-exclusion is used, a ‘U’ appears next in the shorthand string. An ‘I’ shows
the model uses interpolated smoothing, otherwise backoff smoothing is used. For example, the
best performing models found by Pearce and Wiggins (2004) were LTM+C*I, a hybrid long-
term interpolated smoothing model, using escape method C and unbounded context lengths,

and STMC*I, a short-term model otherwise with the same parameters.

4.2 Experimental Design

This experiment aims to find the optimal smoothing parameters for various basic attribute com-
binations across different datasets. Future experiments require the prediction of two attributes
simultaneously, therefore, the linked viewpoint of the two basic attributes is chosen for optim-
isation, as opposed to the basic viewpoints individually. The harmonic datasets each have three
basic attributes, giving three possible combinations of linked viewpoints to test. Model per-
formance is assessed by mean information content, h (Equation 4) calculated by a 10-fold cross
validation of the dataset being assessed. The mean is taken over all events, rather than over all
pieces.

In theory, it is possible that each viewpoint in a multiple viewpoint system has different
optimal smoothing parameters for every viewpoint predicting every target attribute. However,
as the pool of possible viewpoints in a system is large* the current study and previous research
(Conklin & Witten, 1995; Pearce & Wiggins, 2004; Whorley, 2013) avoids this approach. Instead,
all viewpoints are given the same smoothing parameters, although the LTM(+4) and STM are
optimised separately. The parameters to be optimised are interpolated/backoff smoothing, the
escape method and use of update exclusion. Different global order bounds will not be investigated
since unbounded context lengths (PPM*) make minimal assumptions on the dataset and domain
and were found to perform consistently well by Pearce and Wiggins (2004). Furthermore, the
LTM will not be used, instead, experiments will be run using the LTM+ and STM which is found
to be the best combined model in Pearce and Wiggins (2004). For a given dataset and linked

viewpoint, mean information content is calculated for all possible parameter combinations, with

4 An upper bound estimate would be Zle (”l”) where vy, is the number of single viewpoints and L the maximum
number of links permitted in a linked viewpoint.
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the lowest value of h signifying the optimal model.

4.3 Hypothesis

It is predicted that there will be some subtle differences in optimal parameters across different
domains, although some techniques are expected to be universally beneficial: in particular escape
methods C, D and X. Models using interpolated smoothing are expected to outperform those
that do not, and prediction models using update exclusion are predicted to be less effective than
those that do not (Pearce & Wiggins, 2004).

4.4 Results

The results are summarised in Table 5, using mean information content to compare the optimal
backoff and interpolated smoothing models, as well as the best models with and without update
exclusion. For the LTM+ it is clear that escape methods C and D are consistently effective,
however, this pattern does not extend to the STM where methods A, C, D, and X are all optimal
for at least one dataset and viewpoint combination. The performance of interpolated over backoff
smoothing across all datasets was assessed by taking the best performing interpolated and backoff
models for each of the 18 model, dataset, and viewpoint combinations. A one-sided paired
Wilcoxon signed-rank test over h values confirmed interpolated significantly outperformed backoff
smoothing by 0.055 bits/event (N = 18, W = 167,z = 3.549,p < 0.001). Likewise, models
that didn’t use update-exclusion significantly outperformed those that did by 0.077 bits/event
(N =18, W =149,z = 2.765,p < 0.01).

4.5 Conclusions and Discussion

The variety of optimal parameter combinations suggests that differing domains and viewpoints
do have an impact on the effectiveness of different smoothing techniques. Therefore, when
comparing models across domains and viewpoints it is necessary to optimise each first. Without
optimal smoothing parameters it is difficult to attribute any results to genuine differences in
statistical structure or simply the varying impact of non-optimal smoothing parameters.

In general, the relative performance of smoothing techniques established by Pearce and Wig-
gins (2004) was upheld. Escape methods A and B performed poorly overall, method C per-
formed well, update exclusion was found to slightly damage model performance, and interpolated
smoothing outperformed backoff smoothing. One notable difference is the high performance of
escape method D over C when predicting Root®@PosInBar or ChordType®PosInBar with the
LTM+. It is also interesting to note that escape method A was optimal for four of the nine STM
tests undertaken, as it has been found to perform poorly in data compression (Cleary & Witten,
1984; Moffat, 1990) and melodic prediction (Pearce & Wiggins, 2004). The instability of optimal
parameters for the STMs could be attributed to the fact that the STMs themselves are highly
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dependant on local, dynamic statistical structure to make predictions. Therefore, the local ef-
fects of each dataset and viewpoint combination have a varying impact on the performance of
different smoothing techniques. Optimal smoothing parameters for each dataset and viewpoint

found in this experiment are retained for future experiments.

5 Experiment 2: Predicting Merged Attributes from a
Linked Viewpoint

In past research (Conklin & Witten, 1995; Pearce, 2005), multiple viewpoint systems have primar-
ily been used to predict a single basic attribute (although this is not exclusively the case, e.g.
Pearce, Mullensiefen and Wiggins, 2010). The current research requires the prediction of chord
symbols, comprising of two attributes: Root and ChordType. This experiment empirically tests
two methods for predicting multiple attributes with viewpoint systems: one that predicts at-
tribute symbols separately and a proposed alternative that predicts merged attribute symbols.
The optimal smoothing parameters for predicting merged attributes are found and then the two

methods are compared.

5.1 Merging Basic Attributes

Traditionally, multiple viewpoint systems follow Conklin (1990, p. 69) when calculating prob-
abilities of multiple basic attribute predictions. It is assumed that the basic attributes are
statistically independent, so the overall probability of multiple attributes co-occurring is simply
the product of the individual probabilities. Suppose a multiple viewpoint system models two ba-
sic attributes, 7, and 7, predicted by the linked viewpoint 7,®,. At a given point in a sequence
the system is required to predict an event represented by the tuple (X,Y) from a probability
distribution over [7,] x [r,]. Prediction is done in stages for each basic attribute to be predicted,
including the matching of symbols and contexts in the PPM model. Probabilities for all symbols
in [7;] % [r,] matching X and then matching Y are calculated. The total probability of X is
the sum of all probabilities where X matches, with an identical case for the total probability
of Y. Assuming statistical independence, the probability of (X,Y’) is the product of the two
probabilities. In other words, separate predictions are both marginalised over the other basic

attribute before being combined:

p(X,Y) = > p(X,y)- Y pla,Y). (7)

yE[my] T€[Ta]
An alternative method is proposed which merges the basic attributes before prediction so
that the probability of the merged symbol is matched and calculated directly. In this sense, X
and Y are matched simultaneously and p((X,Y)) is calculated directly by the PPM model. A

merged attribute simply combines multiple basic attributes into a single representation and is
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modelled by a linked viewpoint. Any number of basic attributes, 7,, may be linked to form a
merged attribute which will, therefore, have a domain of [73,] X ... X [1,]. A merged attribute
can be predicted by linked viewpoints that contain the merged attribute in their type sets. A
type set is defined as the “basic types the viewpoint is derived from and is, therefore, capable
of predicting” (Pearce, 2005, p. 59). Originally, the type set of a linked viewpoint would be
(11®...97,) = {7b,---» T, } Where 7, is a basic viewpoint predicted by 71. A small adjustment
to this definition is required to enable the prediction of merged attributes. The type set of a linked
viewpoint is now the power set of its constituent viewpoints, for example, the type set of 7 &7
would be {7y, , 7, , Tp, ®Tp, . Note that merged attributes may be predicted by linked viewpoints
comprising of derived viewpoints, providing the merged attribute is contained within the type
set. For example, the linked viewpoint RootInt®MajType may predict Root®Chordtype, but
not Root®PosInBar.

Using merged attributes can be viewed as partly addressing issues concerning appropriate
levels of representation. When formulating a multiple viewpoint system the appropriate basic
attributes, or input representation, must be defined. In some cases it is clear that different
dimensions of music should be modelled separately, for example, pitch and duration. However,
for others an appropriate representation is less clear, for example, pitch could be represented as a
MIDI note (as in cpitch) or with two basic attributes representing pitch class and octave number.
These two representations contain identical information about the musical surface, however, their
statistical properties are likely to be very different. Similarly, in the current research, Root and

ChordType can be considered as two basic attributes or as a single attribute: Root®ChordType.

5.2 Experimental Design

The experimental design broadly follows §4.2. For each merged attribute in the datasets the
optimal smoothing parameters are found with an exhaustive search of the escape method, in-
terpolated /backoff, and update exclusion smoothing parameters (§4.1). Model performance is
assessed by mean information content, h, calculated with a 10-fold cross validation of each data-
set. An ‘M’ on the end of the shorthand model description (see §4.1.4) signifies the model
predicts merged rather than separate attributes. By way of example, the shorthand notation
for an unbounded STM using escape method AX, backoff smoothing, and update exclusion to
predict a merged attribute is STMX*UM.

5.3 Hypothesis

As the predictive linked viewpoints are all the same as §4, the optimal smoothing paramet-
ers should remain similar. Interpolated smoothing is expected to outperform backoff, models
without update exclusion should perform better than those with, and escape methods C and D
should perform consistently well at least for the LTM+. The performance of models predict-

ing merged attributes will be compared to predictions of separate basic attributes. When the
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basic attributes are statistically independent, modelling with separate basic attributes should
give truer probability estimates than with merged attributes. However, when basic attributes
are highly correlated resulting in small areas of high probability density in the prediction dis-
tribution, it is expected that predicting merged attributes will outperform predicting separate
attributes. This is because the merged prediction is able to take advantage of the areas of high
probability density by matching both symbols directly. On the other hand, the marginalisation
process required to predict separate attributes dilutes these areas of high probability in order to
match both symbols independently. Therefore, it is hypothesised that when basic attributes are

more correlated predicting merged attributes will be more effective.

5.4 Results

The optimal smoothing parameters for predicting merged attributes broadly follow the precedents
established for separate attribute predictions (§4.4). Table 6 shows escape methods C and
D dominate the LTM+ results, while C, D, and AX are the optimal escape methods for the
various STMs. Interpolated smoothing outperformed backoff smoothing by 0.058 bits/event
(N =18, W = 171,z = 3.724,p < 0.001), and non-update exclusion performed better than
update exclusion models by 0.070 bits/event (N = 18, W = 138,z = 2.286,p = 0.011).

A way of quantifying correlation between basic attributes must be established in order to test
the relationship between basic attribute correlation and the performance of merged attribute
prediction. A chi-squared test gives a good indication of correlation between two basic attributes,
however, the test statistics, x2, of experiments with different sample sizes cannot be compared
meaningfully. Cramer’s V, . = \/szf, is an effect size statistic where N is the sample size
(number of events), and df the degrees of freedom.

Additionally, a metric to quantify the difference in performance between the merged and
separate attribute prediction methods is presented. Paired t-tests over all pieces show that
almost all differences in h are statistically significant, except for the STM of Root®PosInBar and
ChordType®PosInBar for dataset 2 (Table 6). However, in this case t-tests are not necessarily
meaningful because the sample sizes are large (N > 150) resulting in high ¢ values.® Instead,
hi—ho

Opooled

performance difference is quantified by Cohen’s d, an effect size calculated by

where opo0led
is the pooled standard deviation of both populations.

Figure 1 plots the relationship between basic attribute correlation and performance difference,
confirming the general trend that more highly correlated basic attributes are better predicted as
merged attributes. A linear regression confirms this trend, returning a significant effect (df =
16, F = 12.540,p < 0.01) and an R? value of 0.439.

5Note that it is not possible to infer from this the magnitude of the difference, only that the null hypothesis
(that there is no difference between the means) can be rejected.
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5.5 Conclusions and Discussion

The main results of this experiment are that, in certain circumstances, predicting a merged
attribute rather than separate attributes is more effective. Those circumstances are that the
basic attributes themselves are correlated with each other, creating areas of high probability
density in the distribution. A clear example of this is predicting Root and ChordType in both
harmonic datasets, for both the STM and LTM+. On the other hand, when attributes are not
correlated, such as Pitch and Duration in all melodic datasets, it is often more effective to predict
attribute separately. This result calls into question that basic attributes can be assumed to be
statistically independent (Conklin, 1990, p. 69), showing they can be strongly correlated. An
argument can, therefore, be made that basic attribute correlation should be measured in order
to determine whether merged or separate basic attributes should be predicted by a multiple
viewpoint system.

Although the overall effect of smoothing techniques on the datasets was found to hold for
merged attribute prediction, there were differences in optimal parameters found between corres-
ponding separate and merged prediction models, even though they use the same linked viewpoint
model to make predictions. This may be because different smoothing techniques have differing
impacts on the sparsity of models. For example, escape method A punishes the event probability
more when escaping to lower orders compared to method B, so could give a sparser distribution
when predicting a symbol novel to a long context. As discussed in §5.1, the relative sparsity of
models is likely to have an impact on how well merged attributes are predicted.

It is interesting to note that all of the STMs for the melodic datasets found update exclusion
to be effective, going against the general trend found so far in the current research. This suggests
that those datasets share a property that makes counting n-grams with the adjusted exclusion
method more effective. Since the alphabet sizes for the melodic datasets are larger than harmonic
ones and an STM model is unlikely to come close to seeing all of the alphabet, the rate at which
new symbols are seen is high and consequently the model frequently escapes down to lower order
models. In this case, using an excluded count method may be beneficial as probability mass is
preserved in the lower orders by excluding symbols that would have been seen in higher order

models.

6 Experiment 3: Predicting Merged Attributes with Mul-
tiple Viewpoint Systems

Full multiple viewpoint systems such as IDyOM are complex models with several components.
It is not always clear how individual components of the model will interact to give a final
prediction, and therefore it follows that an improvement in one component of the model does
not necessarily imply an overall improvement in performance. This final experiment tests the

prediction of merged and separate attributes with a full multiple viewpoint system including
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viewpoint selection on the primary domain of the current research, jazz chord sequences. A
full multiple viewpoint system requires a method for combining viewpoints (§6.1) and a way of
selecting a set of viewpoints which returns the lowest mean information content from the large
number of possible sets (§6.2).

This experiment uses all of the basic and derived harmonic viewpoints defined in §3.1 and
§3.3 to predict the two basic attributes Root and ChordType; in other words, the chord symbol
itself. PosInBar is not predicted in the current research as it is not clear whether temporal
structure follows the same Markovian properties as other dimensions of music (e.g. pitch) in
music perception. However, it is likely that temporal structure does play a role in the statistical
properties, so PosInBar can be linked with other viewpoints to make predictions. As PosInBar
is not being predicted its value is assumed to be known at the point of a symbol prediction, as
such it is considered to be a given attribute. Therefore, linked viewpoints containing PosInBar
are constrained such that they match the PosInBar attribute for the predicted event.

A viewpoint pool is required which is large enough to perform well, but small enough to
be computationally practical. For the current study, up to three viewpoints may be linked for
a linked viewpoint, but with the condition that a link between three viewpoints must include
PosInBar. For a system predicting Root and ChordType separately this gives a pool of 156
viewpoints and when predicting Root ® ChordType a pool of 64. Note that the difference in
viewpoint pool size is due to the fact that every viewpoint in the second system must predict
both of the merged attributes together, whilst for separate predictions a viewpoint need only

predict one so long as the system as a whole predicts both.

6.1 Viewpoint Combination

In a multiple viewpoint system predictions from various viewpoint models and STMs / LTMs
must be combined in order to make a prediction over the basic event space, £, or more specifically,
the attributes of the event space which are being predicted: {7y, , ..., 7, }. For derived viewpoints,
sequences of the derived symbols are converted back into the basic event space with an inverse
mapping function (see Pearce et al., 2005, p. 301). The combination function must be monotonic,
give a probability between the minimum and maximum probabilities, and the relative weightings
for each model must be dependant on their certainty (Conklin, 1990, p. 70-71). Let M be the
set of all models at a stage of viewpoint combination, p,,(t) be the probability assigned to the
basic attribute ¢ € [7,] by model m € M, w,, be the weight given to the model m, and R a
normalisation constant to ensure the entire distribution over [73] sums to one. Pearce et al.
(2005) showed a weighted geometric combination function (Equation 8) to be optimal for both
combining viewpoint predictions and STM and LTM predictions, therefore, this is upheld for the

current research. L

P =5 ( II v~ <t>”m> Bt 5)
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The weights, w,,, are determined by the relative entropy (Equation 9), calculated using the
Shannon entropy (Equation 10) and maximum entropy (Equation 11) of the distributions over
[7] arising from p,,. A maximally certain distribution (i.e. when one outcome has a probability
of one and the rest zero) will have H (p,,) = 0. A maximally uncertain (i.e. uniform) distribution
will have an entropy determined by its alphabet size. The weight for a model is then given by
Equation 12 where b € Z+ is a bias parameter giving an exponential bias towards models with
lower relative entropy as it decreases. The bias parameter must be found experimentally for each
dataset and domain, however, a useful starting point is b = 7 for LTM-STM combination and
b = 2 for viewpoint combination (Pearce et al., 2005). Following the precedent set by previous
research (Conklin & Witten, 1995; Pearce, 2005), for each basic attribute® to be predicted
viewpoint predictions are combined first, followed by LTM-STM combination.

e i H s (D) > 0
Hrelative (pm) = { Hoax(Pm) ( ) (9)

1 otherwise

H(pm) = Z pm(t) 10g2pm(t) (10)
te[y]

Hynaw (pm) = logy |[7]| (11)

W, = Hyelative (pm>_b (12)

6.2 Viewpoint Selection

The space of possible multiple viewpoint models is too large to search exhaustively, since it
is the power set of the viewpoint pool. The size of the viewpoint pool for merged attribute
predictions is 64, giving 264 = 1.8 x 10" possible viewpoint models, whilst for separate attribute
predictions the number of possible viewpoint models is 2! = 9.1 x 10%4. Pearce (2005, pp.
122) proposes a viewpoint selection algorithm which follows the principle of Ockham’s razor in
finding an acceptable, simple solution in the search space. The algorithm is referred to as forward
stepwise selection, using h as a heuristic. Starting initially from the empty set, each iteration
consists of two stages. During the deletion stage each viewpoint in the model is removed in turn,
with the deletion that yields the largest drop in h selected for the next iteration. If no deletions
improve the heuristic, an addition stage adds each viewpoint in the viewpoint pool to the model
in turn, with the addition that gives the greatest improvement in performance selected for the
next iteration.

Ordinarily, the algorithm terminates when no additions or deletions improve performance.
However, Whorley (2013, pp. 189-191) notes that viewpoint selection typically results in a long

tail, where the later iterations yield only small improvements in performance at the cost of time

6Note that a merged attribute is treated as a single basic attribute.
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and memory complexity. Whorley (2013) curtails viewpoint selection post hoc; a large number
of viewpoint models are processed only to be discarded. For practical purposes, a method for
curtailing viewpoint selection at run time is proposed. Let h; be the mean information content

of the current iteration and h;y; the mean information content of the proposed next iteration.
h'i—h' ;11

Opooled

Performance improvement is measured in terms of effect size by Cohen’s d = over
events, with the algorithm terminating if d < 0.005. This is the equivalent to an improvement

of less than 0.5% of a standard deviation over the population of all events.

6.3 Experimental Design

This experiment is carried out on the corpus of jazz lead sheets from the Real Book (dataset
1), predicting the attributes Root and ChordType. To build a full viewpoint system, view-
point selection is undertaken first using bias weights of b = 7 and b = 2 (established by
Pearce et al., 2005) for LTM-STM and viewpoint combination respectively. Afterwards, the
best bias values are found for each multiple viewpoint model with an exhaustive search where
be{0,1,2,3,4,5,6,7,8,16,32}. As in previous experiments, h is calculated with a 10-fold cross
validation of the dataset. Throughout the experiment the optimum smoothing parameters found
in Experiments 1 (§4) and 2 (§5) are retained. A model predicting separate attributes will,
therefore, use STMD*IU and LTM+C*I, whilst a model predicting merged attributes will use
STMC*IUM and LTM+C*IM.

6.4 Hypothesis

The hypothesis tested is that when using the full viewpoint system the prediction of merged
attributes will outperform the prediction of separate attributes, as Root and ChordType are
highly correlated in this corpus. Since the initial estimated bias weights are optimal for similar
data (Pearce et al., 2005), it is likely that this difference in performance will be observed both

after viewpoint selection alone and after bias optimization.

6.5 Results

The viewpoint selection results for predicting separate and merged attributes are described in
Figure 2. Both follow strikingly similar patterns, with five addition steps before curtailed ter-
mination on the sixth iteration. For this initial result, predicting merged attributes (h = 3.037)
outperformed separate attributes (h = 3.425) by 0.389 bits/event. A paired t-test over all pieces
proved this to be statistically significant (df = 347,¢ = 20.287,p < 0.001) with an effect size of
d = 0.320. However, these results are calculated using preliminary bias parameters from melodic
datasets (Pearce et al., 2005). In order to make a proper comparison between the two methods,
the bias parameters must be optimal for the harmonic corpus at hand.

Model performance across all bias parameters for separate prediction is shown on Table 7

and for merged prediction on Table 8. A lowest h of 3.393 for separate attribute prediction was
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found with the LTM-STM+ and viewpoint biases both set to 2. The merged attribute prediction
improved further with a lowest A of 2.963 with the LTM-STM+ and viewpoint biases set to 2
and 1 respectively, reinforcing it as the best prediction method. An improvement in performance
of 0.430 bits/event, with an effect size of d = 0.378, was again found to be statistically significant
(df = 347,t = 35.586,p < 0.001).

6.6 Conclusions and Discussion

The main result of this experiment is that the prediction of merged attributes outperforms
predicting the same attributes separately in a dataset where those attributes are highly correl-
ated. The difference in performance of 0.430 bits/event is substantial, equivalent to 37.8.4%
(d = 0.378) of the pooled standard deviations of the population of events and warrants consid-
eration in future research using multiple viewpoint models. Interestingly, this is greater than
both of the improvements in performance for the STM and LTM+ found in Experiment 2. It
seems that in this instance the improvements over separate prediction seen in the individual
models are exaggerated by the extra components of the full multiple viewpoint system, rather
than diminished.

Both methods resulted in similar multiple viewpoint models through viewpoint selection,
presumably because PPM components of both merged and separate methods are identical. Root,
RootInt, and RootIntFiP were present in both viewpoint selections and in both cases were
selected in that order, giving a strong indication of importance (since the algorithm greedily
selects viewpoints). In contrast to viewpoint selection of melodic data (Pearce, 2005, pp. 127-
128), the root interval viewpoints (RootInt, RootIntFiP) are poorer predictors than Root
itself. Pearce (2005) found that cpint was an important predictor of cpitch as it generalised
statistical structure by allowing transpositionally equivalent sequences to be considered the same.
The fact that this does not appear to translate to the harmonic domain could be attributed to
a mixture of three factors. Firstly, the alphabet size of Root is 13, considerably smaller than
the typical alphabet size of cpitch (21 to 37 for the datasets in the current study). Large
alphabets have a problem of sparsity, partially solved by generalising with interval viewpoints,
however, this need not be a problem for the small alphabet of Root symbols. Secondly, given that
Root models are not particularly sparse, it may be the case that most of the common harmonic
progressions occur in almost (or all) transpositions in the dataset. As this happens, there will
be enough statistical structure in the model for any given transposition without having to revert
to a derived viewpoint such as RootInt to describe it successfully. Finally, the occurrence of the
special NC' root symbol slightly damages the predictive power of the RootInt viewpoint. Since
it does not have a proper pitch class value, RootInt must divide the prediction probability over
the whole alphabet (Pearce, 2005, p. 115). This final effect is unlikely to be particularly large;
for dataset 1 only 0.863% of chords (131 of 15,197) are NC.

None of the viewpoints derived from ChordType, namely MajType, 7Type, and FunctionType,

were selected for either model. These viewpoints simplified sequences by categorising ChordType
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into smaller categories. Viewpoints such as these are only successful if the information gained by
generalising sequences of sparse data outweighs the information lost when converting from the
derived sequences back to the event space, £. It appears this was not the case for the current
study, suggesting that ChordType is not particularly sparsely distributed in the jazz dataset.

The appearance of PosInBar twice in each model suggests that temporal structure is cor-
related to a degree with harmonic structure for the corpus. This implies that certain harmonic
functions are more likely to occur on different beats of the bar, for example, a tonic may be likely
to occur on the first beat of a bar.

The bias combination results contrast strikingly with those established for melodic corpora.
Notably, Pearce et al. (2005) establishes a high LTM-STM bias of 7 to predict cpitch, whilst
the current study finds an LTM-STM bias of 2 predicts Root and ChordType best (both merged
and separately). The suggestion that the high LTM-STM bias helps to weight away from cases
where the STM produces high entropy predictions (because of a lack of context) does not appear
to apply to the current domain and dataset. It is possible that the STM in general performs well

for the jazz dataset as there is often a large amount of repetition within a lead sheet.

7 Summary and Discussion

Contrasting methods for the prediction of multiple attributes of a musical surface have been
presented and tested with multiple viewpoint systems across three experiments. One method
predicts basic attributes separately, whilst another forms a merged representation so that simul-
taneous predictions can be made. As hypothesised, it was found that when the basic attributes
are highly correlated in a corpus they are better predicted by the merged method, whereas if
they are relatively uncorrelated a separate model is best (§5). With a full multiple viewpoint
system predicting the primary domain of the study, jazz chord sequences, the merged method
statistically significantly outperformed predicting separate attributes by 0.430 bits/event (§6).
A secondary contribution of this work was to explore the optimal smoothing techniques
for melodic and harmonic domains, predicting separate and merged attributes. Experiment 1
(§4) reinforced that techniques found to be effective for monophonic melodic prediction (Pearce
& Wiggins, 2004) performed well when predicting chord sequences. Interpolated smoothing
statistically significantly outperformed backoff smoothing. The use of update exclusion was in
general found to damage model performance. One notable difference was that escape method
D performed well for certain harmonic attribute combinations involving temporal information
(PosInBar). Escape method C predicted the melodic datasets and chord symbols (consisting
of Root and ChordType) effectively, confirming the results established by Pearce and Wiggins
(2004). These results held for the prediction of merged attributes in Experiment 2 (§6) with
only minor discrepancies. A useful avenue for future research might be to investigate whether
the optimal smoothing techniques for a dataset can be ascertained from it’s qualities. The chief

predictors might be the alphabet size, a measure of its distribution (Shannon Entropy), and
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the rate at which new symbols are seen. The problem could be solved as a supervised machine
learning task, with those predictors as variables, and the optimal set of smoothing parameters
found with exhaustive search.

The effectiveness of predicting merged attributes for highly correlated basic attributes hints
at some interesting implications for cognitive representation. In hand constructed multiple view-
point systems (Conklin & Witten, 1995), as well as for viewpoint selection (Pearce, 2005, pp.
127-128), it has been speculated that linked viewpoints are effective predictors when their con-
stituent viewpoints are correlated. The current research supports this idea but goes further,
suggesting that correlated attributes are merged not only at the prediction level (the linked
viewpoint), but also on the surface level. How this translates onto a cognitive system is not
clear, as it would be naive to directly map processes within IDyOM onto human cognition.
Tentatively, it could be hypothesised that representations which are found to be correlated are
merged into a single representation. Certainly, from a computational perspective this study has
shown that this gives a more compact representation in terms of information theoretic proper-
ties; lower mean information contents imply closer fits between the model and training data. A
merged representation contains identical absolute information about the surface compared to sep-
arate representations; no information is lost since a merged representation is simply a Cartesian
product of its constituent attributes. However, the representation is more compact owing to a
lower mean information content, therefore, it is estimated that less bits are required to represent
each event. This gain in representational efficiency does not increase time or space complexity
since the predictive part of the model (the viewpoints) are identical for both methods, only the

surface representation is different.
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Appendix

Algorithm 1 Pitch class set Categorisation Algorithm.

Require: pceset = {z |z € Z,x > 0,z < 11}
function CATECORISE(pcset)
if 4 € pcset then
if 10 € pcset then
if 8 € pcset then
return alt
else
return 7
else
if 9 € pcset then
return 6
else if 8 € pcset then
return aug
else
return mayj

else if 3 € pcset then
if 10 € pcset then
if 6 € pcset then
return halfdim
else
return min7
else
if 6 € pcset then
return dim
else
if 8 € pcset then
return minf5
else
return min
else if | peset |> 0 then
if 7 € pcset then
return sus
else
return special
else
return NC
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Tables

ID  Description Compositions FEvents Basic Attributes
1 Real Book Vol. 1 348 15,197 Root ChordType PosInBar
2 Complete Beatles 179 17,557 Root ChordType PosInBar
3 Bach chorales 185 9,227  Pitch Duration
4 German folksongs 566 33,087 Pitch Duration
5  Canadian folksongs 152 8,552  Pitch Duration

Table 1: Two harmonic and three melodic datasets used in the current research.
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ChordType

Chord types from the Real Book

7th
maj.
maj.6th
man. Tt
min.
min.g5
dim.

hal fdim.

aug.
alt.
sus

special
NC

7,9, 13, 719, Th9b5
M. M7. M° M7b9 M7b5

6, 6f11, 69
m7, ,,nS)7 m137 m7u5’m7add4
m, mG’ m69’ mM7’madd9
mb67 mi

b5b13

dim, dim7, m
halfdim?, m7b5b13’ 7n7(b5I72)7 m7b5u5

+, augtd

745, 945, 134945, 745b5

Tsus, sus2, 6sus4, 13b9sus, Phrygian

various unclassified slash chords e.g. FM"/ Eb
NC

Table 2: The complete alphabet of ChordType with typical corresponding chords mapped from

the Real Book using Algorithm 1.
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BM" D7 GMT BT EOMT NC Am’
Root 11 2 7 10 3 -1 9

ChordType maj 7 maj 7 maj NC m7
PosInBar 0 4 0 4 0 4 0
RootInt 1L 3 5 3 5 -1 -1
MeeusInt 1L -1 1 -1 1 -3 -3
ChromaDist 1L 3 1 3 1 -1 -1
RootIntFiP 4 3 8 11 4 -1 10
MeeusIntFiP L -1 1 -1 -1 -3 -1
ChromaDistFiP L 3 4 5 4 -1 2
RootInt © FiB 1 1 8 1 8 1L 6
MajType 1 1 1 1 1 0 2
TType 0 1 0 1 0 -1 0
FunctionType 0 1 0 1 0 -1 2

Table 3: Sample chord sequence with basic and derived viewpoints. A timebase of 2 is used.

32



Escape Prediction Probability Escape Probability

Method
i—1
(el | ez n+1) 7(€;fn+1)
A “("7|e» n+1) 1
Seerr clele;Tnin)+1 Seerr e(eleiTnia)+1
B c(el|el W+1) 1 t(ej:;_*_.l)
Seeiclelei™hyy) Seercleleinin)
C c(eile;"n 1) t(eizni1)
Yeeln © ( ele;” n+1)+t(1 n+1) een © ( elej” n+l)+t( i n+1)
D c(eile;” n+1) 0.5 0.5¢(e;”044)
Seerr cleleiZng) St clelei—nin)
AX c(el|el n+1) tl( i— n+1)+1

266[7’] C( ‘el n+1)+t1( i— n+1)+1 Zeé[ ( ‘ez n+1)+t1( i— n+1)+1

Table 4: Prediction and escape probabilities of five escape methods empirically tested by Pearce
and Wiggins (2004).
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Figure Captions

Figure 1: Relationship between correlation of basic attributes, and relative performance of
merged vs. separate attribute predictions. Merged attribute prediction outperforms separate
when d > 0.

Viewpoint selection predicting Root and ChordType separately (dotted line):
1 + Root®ChordType®PosInBar

2 4+ RootInt®ChordType®PosInBar

3 + RootIntFiP®ChordType

4 + ChordType®PosInBar

5 4+ RootInt®RootIntFiP®PosInBar

Viewpoint selection predicting Root®ChordType as a merged attribute (dashed line):
1 + Root®ChordType®PosInBar

2 + RootInt®ChordType

3 4+ RootIntFiP®ChordType®@PosInBar

4 4+ Root®ChordType

5 4+ RootInt®ChordType®PosInBar

Figure 2: Viewpoint selection for multiple viewpoint model systems predicting Root and
ChordType as separate and merged attributes. Viewpoints added at each iteration are shown
below the graph.
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