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Abstract

This thesis concerns the enumeration and structural properties of lattice paths.

The study of Dyck paths and their characteristics is a classical combinatorial

subject. In particular, it is well-known that many of their characteristics are

counted by the Narayana numbers. We begin by presenting an explicit bijection

between Dyck paths with two such characteristics, peaks and up-steps at odd

height, and extend this bijection to bilateral Dyck paths.

We then move on to an enumeration problem in which we utilise the Kernel

method, which is a cutting-edge tool in algebraic combinatorics. However, while it

has proven extremely useful for finding generating functions when used with one

or two catalytic variables, there have been few examples where a Kernel method

has been successfully used in a general multivariate setting. Here we provide one

such example.

We consider walks on a triangular domain that is a subset of the triangular

lattice. We then specialise this by dividing the lattice into two directed sublattices

with different weights. Our central result on this model is an explicit formula

for the generating function of walks starting at a fixed point in this domain and
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ending anywhere within the domain. We derive this via use of the algebraic Kernel

method with three catalytic variables.

Intriguingly, the specialisation of this formula to walks starting in a fixed corner

of the triangle shows that these are equinumerous to bicoloured Motzkin paths, and

bicoloured three-candidate Ballot paths, in a strip of finite height. We complete

this thesis by providing bijective proofs for small cases of this result.
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Introduction

Lattice walks have been extensively studied in the field of enumerative combina-

torics, and more widely both within classical combinatorics and outside, in areas

such as algebraic combinatorics, asymptotic analysis, and the behaviour of poly-

mers [18, 29, 31].

Counting lattice walks in unrestricted domains is a relatively simple problem,

that can be easily solved using elementary combinatorial methods. However, once

restrictions are placed on the lattice, this is no longer the case.

Recently there has been significant development of the Kernel method [1, 2, 27],

a technique first introduced in [15]. This method can be used to solve linear

combinatorial functional equations in so-called catalytic variables, in particular to

find the generating functions of lattice paths.

While the Kernel method has been reasonably well understood when only one

or two catalytic variables are involved, once there are more the situation is far from

clear. There are indications that the structure of the solution, such as whether

the generating function is algebraic or even differentiably finite, depends on the

group of symmetries of the kernel of the functional equation [4, 20]. Only recently
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has there been some progress using a multivariate Kernel method in a special case

[3].

Based on the Kernel method, it is possible to derive generating functions for

counting problems in previously inaccessible situations. As an example, the exact

solution of a lattice model of partially directed walks in a wedge has only been

possible using an iterative version of the Kernel method [14], leading to a gener-

ating function that is not differentiably finite, as its singularities accumulate at

limit points. This example also shows that as a by-product of enumerative combi-

natorics, deep combinatorial insight into connections between seemingly unrelated

systems can be uncovered, leading to spin-off research in bijective combinatorics

[26, 28].

Dyck paths are one of the most well-studied random walk models, and have

links to many other combinatorial objects. In particular, they are enumerated by

the Catalan numbers, and so are in bijection with many other Catalan objects

[32].

It is an established fact that many patterns in Dyck paths, such as peaks,

valleys and double ascents, are enumerated by the Narayana numbers N(n, k), a

refinement of the Catalan numbers [16, 17, 33]. These are most easily proven by

generating function techniques [8]. Equinumeracy then follows from showing that

different counting problems have the same generating function. However, many

of these results can be proven bijectively, which clearly provides more structural

insight than a proof using generating function techniques. As a consequence, there
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are many bijections on Dyck paths in the literature [19, 25, 30, 32].

In this thesis we take a dual approach to tackling problems on lattice paths,

splitting our focus between utilising the Kernel method to gain enumerative re-

sults, and bijections to gain understanding of structure.

In Chapter 1 we introduce all the key definitions necessary for this thesis,

including Dyck paths, Motzkin paths and the triangular domain. We also give an

overview of the Kernel method.

In Chapter 2, taken from [21], we present a bijection between two character-

istics of Dyck paths. It is known that both the number of Dyck paths with 2n

steps and k peaks, and the number of Dyck paths with 2n steps and k up-steps at

odd height, follow the Narayana distribution; we give a bijection which explicitly

illustrates this equinumeracy. Moreover, we extend this bijection to bilateral Dyck

paths.

In Chapter 3, taken from [22], we use a multivariate Kernel method to give

a solution to an enumerative lattice path problem that is expressed in terms of

a functional equation with three catalytic variables. We do so by exploiting the

high symmetry of the Kernel. The resulting generating function solution allows

us to prove a result linking walks on a triangular domain to Motzkin paths.

The equinumeracy result in Chapter 3 naturally leads to the question of finding

a bijective proof. In Chapter 4 we examine this problem, giving solutions for the

three smallest cases.



Chapter 1

Background

1.1 Dyck paths

In Chapter 2, our results are on the well-established notions of Dyck paths and

bilateral Dyck paths, so we begin by defining these.

Definition 1.1. A bilateral Dyck path is a directed walk on Z2 starting at (0, 0)

in the (x, y)-plane and ending on the line y = 0, which has steps in the (1, 1)

(up-step) and (1,−1) (down-step) directions.

In the literature these are also referred to as free Dyck paths [7] or Grand-Dyck

paths [19]. Let B denote the set of all bilateral Dyck paths.

Definition 1.2. A Dyck path is a bilateral Dyck path which has no vertices with

negative y-coordinates.

We will use D to denote the set of all Dyck paths.
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We will also need the following definition.

Definition 1.3. A negative Dyck path is a bilateral Dyck path of nonzero length

which has no vertices with positive y-coordinates.

We now move on to define some characteristics of bilateral Dyck paths (and

therefore also of Dyck paths and negative Dyck paths). Given a path π ∈ B, we

define the semilength n(π) to be half the number of its steps. We say that an

up-step is at height j if it starts at a vertex (i − 1, j − 1) and ends at a vertex

(i, j); it is at odd height if and only if j is odd. A down-step is at height j if it

starts at a vertex (i, j) and ends at a vertex (i+ 1, j−1); it is at odd height if and

only if j is odd. Thus the height of a step is the larger y-coordinate of the two

vertices appending it. Therefore the first and last steps in any Dyck path are at

height 1, and an up-step and its matching down-step have the same height. This

definition of height is consistent with that in [23].

We define a peak as an up-step followed immediately by a down-step, and the

height of a peak as the height of the steps which form it, or equivalently as the

y-coordinate of the vertex common to both steps of the peak. We define a valley

to be a down-step followed immediately by an up-step. We define a contact as a

down-step at height 1 or an up-step at height 0, and is used to denote a vertex at

which the path touches the x-axis. We define a crossing to be either a down-step

at height 1 followed immediately by a down-step at height 0, or an up-step at

height 0 followed immediately by an up-step at height 1. We define a prime Dyck
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path to be a Dyck path with exactly one contact.

In Chapter 2, we use some conventions to concisely describe our maps, which

we now introduce. Let W be the set of words with the symbol set {U,D}. A

bilateral Dyck word of semilength n is an element of W such that the letters U

and D each appear n times. A Dyck word of semilength n is a bilateral Dyck word

such that no initial segment has more Ds than Us. There is an obvious bijection

between paths and words, mapping up-steps to Us and down-steps to Ds, and we

will use words and paths interchangeably in Chapter 2. For example, we say that

a Dyck word is prime if it corresponds to a prime Dyck path.

We conclude this section by defining the types of numbers that count Dyck

paths and some of their characteristics respectively.

Definition 1.4. The Catalan numbers Cn are defined by

Cn =
1

n+ 1

(
2n

n

)
.

Definition 1.5. The Narayana numbers N(n, k) are defined by

N(n, k) =
1

n

(
n

k

)(
n

k − 1

)
.

1.2 Motzkin and Ballot paths

We now move on to the concepts needed for Chapters 3 and 4, and begin with the

also well-established notions of a Motzkin path, and that of a bicoloured Motzkin

path.
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Definition 1.6. A Motzkin path is a directed walk on Z2 starting at (0, 0) in the

(x, y)-plane and ending on the line y = 0, which has steps in the (1, 1) (up-step),

(1,−1) (down-step) and (1, 0) (horizontal step) directions, and has no vertices

with negative y-coordinates.

Definition 1.7. A bicoloured Motzkin path is a Motzkin path where each of the

steps can be one of two colours.

A Motzkin path can alternatively be viewed as a Dyck path with horizontal

steps inserted. Note that in our second definition, all steps are bicoloured, not

just the horizontal steps as in some definitions in the literature [24].

We now introduce some notation which we will need in Chapter 4. In line with

the notation used for Dyck paths, in a Motzkin path we say that an up-step is at

height j if it starts at a vertex (i−1, j−1) and ends at a vertex (i, j), a down-step

is at height j if it starts at a vertex (i, j) and ends at a vertex (i+ 1, j − 1) and a

horizontal step is at height j if it starts at a vertex (i− 1, j) and ends at a vertex

(i, j). As in Chapter 2, to concisely describe our maps, we will use words and

paths interchangeably. When referring to Motzkin paths, we will use the letters

Uj, Dj and Hj to denote up-, down- and horizontal steps at height j, respectively.

When we are referring to steps of a bicoloured Motzkin path, we will use the colours

white and black, and so denote the steps as U
{w}
j , U

{b}
j , D

{w}
j , D

{b}
j , H

{w}
j and H

{b}
j .

We also need to define the notions of Motzkin paths in a strip, and in a

restricted strip. We will only define it for bicoloured Motzkin paths, but the
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equivalent definition holds for monocoloured Motzkin paths.

Definition 1.8. A bicoloured Motzkin path in the strip of width H is a bicoloured

Motzkin path with no vertices with y-coordinates greater than H.

Definition 1.9. A bicoloured Motzkin path in the restricted strip of width H is a

bicoloured Motzkin path with no vertices with y-coordinates greater than H, and

no horizontal steps at height H.

Let MH denote the set of bicoloured Motzkin paths in the strip of width H,

MH denote the set of bicoloured Motzkin paths in the restricted strip of width

H (no horizontal steps at height H), M′
H denote the set of Motzkin paths in the

strip of width H, andM
′

H denote the set of Motzkin paths in the restricted strip

of width H.

We denote the general step-sets for Motzkin and bicoloured Motzkin paths in

a strip by the sets

L′i = {Uj, Dj, Hk : 1 ≤ j ≤
⌊
i

2

⌋
, 0 ≤ k ≤

⌊
i− 1

2

⌋
}

and

Li = {U{w}j , U
{b}
j , D

{w}
j , D

{b}
j , H

{w}
k , H

{b}
k : 1 ≤ j ≤

⌊
i

2

⌋
, 0 ≤ k ≤

⌊
i− 1

2

⌋
},

where for i odd we have the step-set for the strip of width (i− 1)/2, and for i

even we have the step-set for the restricted strip of width i/2.

We define a Ballot path as a Dyck path which does not have the constraint

of ending on the x-axis, in line with [6]. The idea behind the name is that these
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paths can be thought of as a ballot, where votes are cast for one of two candidates

(A or B), with up-steps being votes for candidate A and down-steps votes for B.

The count then has the property that candidate A is never behind candidate B

(similarly the Ballot path never drops below the x-axis.) Expanding this concept

from two to three candidates, we have the following definition.

Definition 1.10. A three-candidate Ballot path is a walk on Z2 starting at (0, 0)

with the steps (1, 1), (1,−1) and (1, 0), such that after r steps the number of (1, 1)

steps is greater than or equal to the number of (1,−1) steps, which is greater than

or equal to the number of (1, 0) steps, for all 0 ≤ r ≤ n.

These can also be thought of as a coding for Yamanouchi words with three

letters [10, p. 2], where a Yamanouchi word with n letters is a word on the alphabet

Zn = {1, 2, . . . , n} such that any initial segment contains the letter i at least as

many times as the letter i+ 1, for 1 ≤ i ≤ n− 1 . We further define the excess L

of a three-candidate Ballot path as max(Li), where Li is the difference between

the number of (1, 1) steps and (1, 0) steps after i steps. As with Motzkin paths

we have the notion of bicolouring.

Definition 1.11. A bicoloured three-candidate Ballot path is a three-candidate

Ballot path where each of the steps can be one of two colours.
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1.3 The Kernel method

In this section, we will present a brief introduction to the Kernel method. We will

give Knuth’s original example [15], also given in Prodinger’s survey paper [27], in

which he finds the generating function for Dyck paths.

We begin by examining the wider class of Ballot paths. Let fi =
∑

n≥0 an,i z
n

denote the generating functions for Ballot paths ending at height i, at the vertices

(n, i). The generating variable z is used to weight a step in a path; a path of n

steps is weighted by zn. Thus the coefficients an,i of zn are the number of Ballot

paths ending at (n, i). We can then see the following recursions:

fi(z) = zfi−1(z) + zfi+1(z), i ≥ 1 , (1.1a)

f0(z) = 1 + zf1(z) . (1.1b)

We now introduce our catalytic variable x, which we use to denote the height

of the path. Clearly this is not a variable we are interested in directly, as we are

only interested in paths that end on the x-axis. However, it is the use of this extra

variable which gives us the extra machinery we need to solve this problem.

We examine the bivariate generating function F (z, x) =
∑

n≥0 fn(z)xn, which

uses two generating variables to track both the length and height of paths. Mul-

tiplying the above recursions (1.1) by xi and summing, we find that

F (z, x)− f0(z) = zxF (z, x) +
z

x

[
F (z, x)− f0(z)− xf1(z)

]
. (1.2)

Notice that the term zx corresponds to an up-step, and z
x

corresponds to a

down-step. The term corresponding to down-steps is more complex as we are only
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counting paths that finish at height 1 or above. Thus our down-step must be taken

from at least height 2, so we subtract the terms corresponding to paths ending at

heights 0 and 1.

Rearranging and substituting in equation (1.1b), we find that

F (z, x) = zxF (z, x) +
z

x

[
F (z, x)− f0(z)

]
+ 1 , (1.3)

and so

F (z, x) =
zF (z, 0)− x
zx2 − x+ z

. (1.4)

Note that for equation (1.4) we have used the identity F (z, 0) = f0(z) .

Substituting in x = 0 gives us nothing, however the denominator factors as

z(x− r1(z))(x− r2(z)) , where

r1,2(z) =
1∓
√

1− 4z2

2z
. (1.5)

Note that x − r1(z) ∼ x − z as x, z → 0, so the factor 1/(x − r1(z)) has no

power series expansion around (0, 0) . However F (z, x) does have one, so this ”bad”

factor must disappear, i.e. (x−r1(z)) must also be a factor of the numerator. This

implies that zF (z, 0) = r1(z), and so

F (z, 0) =
1−
√

1− 4z2

2z2
, (1.6)

which is recognisable as the generating function for the Catalan numbers.

The solution presented above is an example of the normal Kernel method. In

this solution, our Kernel was the denominator zx2−x+z; it was manipulations and
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observations on this term that allowed us to reach our solution. In the algebraic

Kernel method, which is the method we use in Chapter 3, we use a slightly different

formulation of the functional equation. In particular, we have that zx2 − x+ z =

−x
[
1− z

(
x+ 1

x

)]
, so equation (1.4) can be rewritten as

[
1− z

(
x+

1

x

)]
F (z, x) = 1− z

x
F (z, 0) . (1.7)

We now use the factor on the left side of the equation as our Kernel. We proceed

by exploiting symmetries of this Kernel to remove the boundary term, which allows

us to solve the equation. In particular, we can easily see that substituting 1
x

for x

leaves the Kernel unchanged, and we have that

[
1− z

(
x+

1

x

)]
F (z,

1

x
) = 1− zxF (z, 0) . (1.8)

Using the summation x(1.7)− 1
x
(1.8) we can cancel the F (z, 0) terms and find

that

xF (z, x)− 1

x
F (z,

1

x
) =

x− 1
x

1− z
(
x+ 1

x

) . (1.9)

Notice that the term xF (z, x) has only positive powers in x , and 1
x
F (z, 1

x
) has

only negative powers, so the left side of (1.9) splits in terms of powers of x . Using

this observation, and reading the right side of the equation as a formal power

series in z whose coefficients are Laurent polynomials in x, we can then extract

terms from the right side to find F (z, x).
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1.4 The triangular domain

In this section we introduce the model which is the primary source of interest in

Chapter 3. Consider walks (ω0, ω1, . . . , ωn) on Z3 with steps ωi−ωi−1 in a step-set

Ω2 such that with each step exactly one coordinate increases by one and exactly

one coordinate decreases by one. More precisely,

Ω2 = {(1,−1, 0), (−1, 1, 0), (1, 0,−1), (−1, 0, 1), (0, 1,−1), (0,−1, 1)}.

The step-set Ω2 ensures that walks lie in planes {(nx, ny, nz) ∈ Z3 | nx + ny +

nz = L} determined by the starting point ω0 = (u1, u2, u3) of the walk, where

L = u1 + u2 + u3. In this thesis, we will study walks on domains given by finite

subsets of these planes by restricting the walks to the non-negative orthant (N0)
3

(cf Figure 1.1). In particular, the walks lie on a bounded triangular domain;

henceforth this model will be referred to as the triangle model .

We will also consider walks on the 1-dimensional analogue of the triangle model,

i.e. walks (ω0, ω1, . . . , ωn) on Z2 with steps ωi − ωi−1 in a step-set

Ω1 = {(1,−1), (−1, 1)} .

Ω1 ensures that walks lie on lines {(nx, ny) ∈ Z2 | nx + ny = L} determined by

the starting point ω0 = (u1, u2) of the walk, where L = u1 + u2. As with the

triangle model, we will study walks on domains given by finite subsets of these

lines, by restricting the walks to the non-negative quadrant, in this case (N0)
2

(cf Figure 1.2). From here on, this model will be referred to as the line model.
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(0,0,
L)

(L,0,
0)

(0,L,
0)

nx

nz

ny

Figure 1.1: A 10-step walk on the bounded triangular domain intersecting

the axes at (L, 0, 0), (0, L, 0) and (0, 0, L), where L = 6. Points on the

domain are given by (nx, ny, nz) with nx, ny, nz ≥ 0 and nx +ny +nz = L.

This model has been studied before [5, pp. 7-8], and has obvious connections to

Chebyshev polynomials.

Note that the line and triangle model have strong links to directed walks; in

particular the triangle model can also be formulated as two directed walks in a

strip (cf Figure 1.3).

We conclude this section by noting that these models can be framed as the

low-dimensional cases of a larger class of models. Consider walks (ω0, ω1, . . . , ωn)

on Zd+1 with steps ωi−ωi−1 in a step-set Ωd such that with each step exactly one

coordinate increases by one and exactly one coordinate decreases by one. More
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(L,0)

(0,L)

nx

ny

Figure 1.2: The line model, intersecting the axes at (L, 0) and (0, L).

precisely, Ωd is the set of steps with coordinates (e1, e2, . . . , ed+1) such that for all

ordered pairs (i, j) with 1 ≤ i, j ≤ d + 1 and i 6= j, ei = 1, ej = −1 and ek =

0 for all 1 ≤ k ≤ d+ 1 and k /∈ {i, j}.

The step-set Ωd ensures that walks lie in a d-dimensional hyperplane

{(nx1 , . . . , nxd+1
) ∈ Zd+1 | nx1 + . . .+ nxd+1

= L} determined by the starting point

ω0 = (u1, . . . , ud+1) of the walk, where L =
∑d+1

j=1 uj. Walks on domains given

by finite subsets of these hyperplanes may be studied by restricting the walks to

the non-negative orthant (N0)
d+1. Fixing the dimension d, this class of walks is

referred to as the d-dimensional case. The 1-dimensional case is the line model,

and the 2-dimensional case is the triangle model. In the 3-dimensional case, the

domains would be tetrahedra of side-length L.
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ny

nz

nx

Figure 1.3: The image of the 10-step walk in Figure 1.1. The k-th point

(nx, ny, nz) of the walk in Figure 1.1 maps to two points with coordinates

(k, nx) and (k, nx + ny), respectively. This mapping generates two non-

crossing directed walks that are confined to the strip 0 ≤ y ≤ L. In this

example, the two walks touch after 2 steps and the top walk hits the top

of the strip after 7 steps, corresponding to the points where the walk in

Figure 1.1 touches the sides of the domain.

1.5 Continued fractions

In this section, we discuss the continued fraction expansion for Motzkin paths,

as given by Flajolet [12, pp. 6-11]. For a good exposition of this, see Flajolet

and Sedgewick [13, pp. 319-323]. We have the result that the following infinite

continued fraction counts weighted Motzkin paths with weight ai on up-steps at

height i, weight bi on down-steps at height i and weight ci on horizontal steps at

height i:
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c0

c2

a
1

a
2

a
3

a
2

b3

b2 b2

b1

Figure 1.4: An example of a Motzkin path with the step weights ai , bi

and ci applied to up-, down- and horizontal steps respectively at height i.

1

1− c0t−
a1b1t

2

1− c1t−
a2b2t

2

1− c2t−
a3b3t

2

. . .

. (1.10)

A visual interpretation of this is given in Figure 1.4. Note that if ai = bj =

ck = 1 for all i, j, k then we have the interpretation for normal Motzkin paths,

and if ai = bj = ck = 2 for all i, j, k then we have the interpretation for bicoloured

Motzkin paths. Setting ci = 0 for i ≥ 0 gives the interpretation for Dyck paths.

It is easy to see that we get a truncated continued fraction by setting ak = 0

for some k ∈ N . From Figure 1.4 we can see that such continued fractions would

correspond to weighted Motzkin paths in a strip of width k − 1. If we also set

ck−1 = 0, the continued fraction would correspond to weighted Motzkin paths in

a restricted strip of width k − 1.



Chapter 2

A Bijection on Bilateral Dyck

Paths

In this chapter we give a direct bijection between bilateral Dyck paths of semilength

n with k up-steps at odd height and bilateral Dyck paths of semilength n with k

peaks. This map restricts to normal Dyck paths, where the paths are counted by

the Narayana numbers N(n, k). We begin by defining the bijection on D before

extending it to bilateral paths in Section 2.3.

2.1 The Bijection on Dyck Paths

If P is a Dyck path of nonzero length with s ≥ 0 down steps at height 2 before the

first contact, the corresponding Dyck word WP can be uniquely decomposed into

a word of the form UUW1DUW2DU . . .WsDDWs+1 = U
(∏s

i=1 UWiD
)
DWs+1 ,

30
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where each Wi is a Dyck word. Using this decomposition, we define the map

φ : D → D recursively by setting

φ(WP ) = φ
(
U
( s∏
i=1

UWiD
)
DWs+1

)
=
( s∏
i=1

Uφ(Wi)
)

(UD)Dsφ(Ws+1) ,

and φ(ε) = ε, where ε denotes the empty word.

As the decomposition expresses a Dyck word in terms of strictly smaller Dyck

words, the recursion terminates. Therefore φ is well-defined on all Dyck words.

Theorem 2.1. φ gives an explicit bijection from the set of Dyck paths of semilength

n with m contacts and k up-steps at odd height to the set of Dyck paths of

semilength n with m contacts and k peaks.

Proof. The decomposition implies that the parity of a step in the path correspond-

ing to the sub-word Wi is the same as its parity in the original path P . As the

first step of each sub-path corresponding to nonempty Wi is at odd height, each

recursive iteration either maps the empty word to itself or maps exactly one up-

step at odd height (the first step of the path P ) to a peak. Thus φ maps a path

with k up-steps at odd height to a path with k peaks. Clearly, φ does not change

the number of contacts.

We now show that φ is indeed a bijection by giving its inverse. If P is a Dyck

path whose right-most peak before the first contact is at height s+ 1 with s ≥ 0,

the corresponding Dyck word WP can be uniquely decomposed into a word of the

form UW1UW2U . . . UWs(UD)DsWs+1 =
(∏s

i=1 UWi

)
UDs+1Ws+1 , where each
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Wi is a Dyck word. Let ψ : D → D be defined recursively as

ψ(WP ) = ψ
(( s∏

i=1

UWi

)
UDs+1Ws+1

)
= U

( s∏
i=1

Uψ(Wi)D
)
Dψ(Ws+1) ,

with φ(ε) = ε, where ε denotes the empty word. We note in passing that each

recursive iteration of ψ to a nonempty path maps exactly one peak to an up-step

at odd height.

To show that ψ is the inverse of φ, we proceed by induction on n, the semilength

of the word. For n = 0,

ψ(φ(ε)) = ψ(ε) = ε and φ(ψ(ε)) = φ(ε) = ε .

Now take a Dyck word W of semilength n > 0 and assume that ψ(φ(W ′)) =

φ(ψ(W ′)) = W ′ for all words W ′ of semilength less than n. W can be decomposed

as either W = U
(∏s

i=1 UWiD
)
DWs+1 or W =

(∏s
i=1 UWi

)
UDs+1Ws+1, where

the Wi are Dyck words of semilength strictly less than n. Hence, by the inductive

hypothesis,

ψ(φ(W )) = ψ
(
φ
(
U
( s∏
i=1

UWiD
)
DWs+1

))
= ψ

(( s∏
i=1

Uφ(Wi)
)
UDs+1φ(Ws+1)

)
= U

( s∏
i=1

Uψ(φ(Wi))D
)
Dψ(φ(Ws+1)) = U

( s∏
i=1

UWiD
)
DWs+1 = WP ;

φ(ψ(W )) = φ
(
ψ
(( s∏

i=1

UWi

)
UDs+1Ws+1

))
= φ

(
U
( s∏
i=1

Uψ(Wi)D
)
Dψ(Ws+1)

)
=
( s∏
i=1

Uφ(ψ(Wi))
)
UDs+1φ(ψ(Ws+1)) =

( s∏
i=1

UWi

)
UDs+1Ws+1 = WP .
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Corollary 2.2. The number of Dyck paths of semilength n with m contacts and

k up-steps at odd height is equal to the number of Dyck paths of semilength n with

m contacts and k peaks.

2.2 An Example

Figure 2.1: φ mapping a Dyck path W (top) with semilength 9, 4 up-

steps at odd height and 1 contact to a Dyck path φ(W ) (bottom) with

semilength 9, 4 peaks and 1 contact, and ψ performing the inverse mapping.

Intermediate stages after each recursive iteration of φ and ψ are shown on

the left and right respectively. Black dots correspond to the occurrence of

empty words in the decomposition of the corresponding words.
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An example of the bijection φ and its inverse ψ is given in Figure 2.1, explicitly

showing the intermediate stages after each recursive iteration. When writing the

corresponding words below, we insert bracketing corresponding to the decomposi-

tions, e.g. we write

UUUUDDDUUUUDDUDDDD = UU
(
UU

()
DD

)
DU

(
UU

(
UD

)
DU

()
DD

)
DD .

Note in particular that the double bracket () signifies an empty word in the decom-

position. For the sake of legibility, we have avoided the occurrence of non-prime

words in this example.

The mapping φ corresponding to the left arrows in Figure 2.1 is now performed

as follows:

φ

(
UU
(
UU
()
DD

)
DU

(
UU
(
UD

)
DU

()
DD

)
DD

)
top path

= Uφ
(
UU
()
DD

)
Uφ
(
UU
(
UD

)
DU

()
DD

)
UDDD left path

= U
(
Uφ
()
UDD

)
U
(
Uφ
(
UD

)
Uφ
()
UDDD

)
UDDD bottom path

= U
(
U
()
UDD

)
U
(
U
(
UD

)
U
()
UDDD

)
UDDD . bottom path

The first recursive iteration of φ gives

φ(UUW1DUW2DD) = Uφ(W1)Uφ(W2)UDDD ,

and the second step applies the recursion to the sub-words W1 and W2 respectively.

In the third step the recursion is applied to empty subwords, and hence the path

no longer changes; the corresponding figures look identical. Note in particular that

while φ(UU()DD) = Uφ()UDD = U()UDD does not change the word UUDD,
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the position of the empty word (), and correspondingly the position of the black

dot in Figure 2.1 changes.

The inverse mapping ψ corresponding to the right arrows in Figure 2.1 is

performed similarly, with different intermediate stages:

ψ

(
U
(
U
()
UDD

)
U
(
U
(
UD

)
U
()
UDDD

)
UDDD

)
bottom path

= UUψ
(
U
()
UDD

)
DUψ

(
U
(
UD

)
U
()
UDDD

)
DD right path

= UU
(
UUψ

()
DD

)
DU

(
UUψ

(
UD

)
DUψ

()
DD

)
DD top path

= UU
(
UU
()
DD

)
DU

(
UU
(
UD

)
DU

()
DD

)
DD . top path

2.3 Extension to Bilateral Dyck Paths

We now give an extension of φ to bilateral Dyck paths. Before we do this, we

must define the following two maps.

We define the map α : B → B as follows. If P is a bilateral Dyck path of

semilength n with corresponding bilateral Dyck word WP = A1A2 . . . A2n, where

Ai ∈ {U,D}, then (i) α(U) = D, (ii) α(D) = U and (iii) α(WP ) = α
( 2n∏
i=1

Ai

)
=

2n∏
i=1

α(Ai).

The map α reflects bilateral Dyck paths in the x−axis. In particular, it maps

nonempty Dyck paths to negative Dyck paths and vice versa. It maps steps at

odd height to steps at even height, and vice versa. It also maps peaks to valleys,

and maps valleys to peaks.

We define β : D → D as follows. If P is a Dyck path of nonzero length, the
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corresponding Dyck word WP can be uniquely decomposed into a word of the form

UW1DW2 where W1 and W2 are Dyck words. Then

β(WP ) = β(UW1DW2) = UW2DW1 .

Note that β illustrates the equinumeracy between paths with k+ 1 up-steps at

odd height and k up-steps at even height; excepting the first up- and down-steps

at height 1, β maps steps at odd height to steps at even height, and vice versa

(surprisingly, we have not been able to find this simple argument in the literature).

It preserves the number of peaks or valleys, but does not preserve the number of

contacts. We also note that both α and β are involutions. We are now in a position

to state the extended bijection.

Let ε denote the empty word. We define φ′ : B → B in the following way:

(a) if P is a Dyck path with corresponding Dyck word WP , then

φ′(WP ) = φ(WP ) ;

(b) if P is a negative Dyck path with corresponding negative Dyck word WP ,

then

φ′(WP ) = α(φ(β(α(WP )))) ;

(c) if P is a bilateral Dyck path with l > 0 crossings then we can uniquely

decompose the corresponding bilateral Dyck word WP into W1W2 . . .Wl+1 =∏l+1
i=1Wi, where each Wi is alternately either a Dyck word of nonzero length

or a negative Dyck word. Then
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φ′(WP ) = φ′
( l+1∏
i=1

Wi

)
=

l+1∏
i=1

φ′(Wi) .

Theorem 2.3. φ′ gives an explicit bijection from the set of bilateral Dyck paths

of semilength n with k up-steps at odd height to the set of bilateral Dyck paths of

semilength n with k peaks.

Proof. By Theorem 2.1, (a) maps Dyck paths with k up-steps at odd height to

Dyck paths with k peaks.

If P is a negative Dyck path with k up-steps at odd height and corresponding

negative Dyck word WP , then α(WP ) corresponds to a Dyck path with k up-steps

at even height. Applying β to this new path gives a Dyck path with k+1 up-steps

at odd height. Then φ(β(α(WP ))) corresponds to a Dyck path with k + 1 peaks

(and so k valleys). Finally, applying α again will give a negative Dyck path with

k peaks. Thus (b) maps negative Dyck paths with k up-steps at odd height to

negative Dyck paths with k peaks.

Application of (c) does not alter the parity of steps or the number of peaks.

Thus φ′ maps bilateral Dyck paths with k up-steps at odd height to bilateral Dyck

paths with k peaks.

We now show that φ′ is a bijection by giving its inverse. Let ψ′ : B → B, be

defined as follows:

(a’) if P is a Dyck path with corresponding Dyck word WP , then

ψ′(WP ) = ψ(WP ) ;
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(b’) if P is a negative Dyck path with corresponding negative Dyck word WP ,

then

ψ′(WP ) = α(β(ψ(α(WP )))) ;

(c’) if P is a bilateral Dyck path with l > 0 crossings then we can uniquely

decompose the corresponding bilateral Dyck word WP into W1W2 . . .Wl+1 =∏l+1
i=1Wi, where each Wi is alternately either a Dyck word of nonzero length

or a negative Dyck word. Then

ψ′(WP ) = ψ′
( l+1∏
i=1

Wi

)
=

l+1∏
i=1

ψ′(Wi) .

To show that ψ′ is the inverse of φ′, we proceed as follows. Let W be a bilateral

Dyck word. If the path associated to W has l > 0 crossings then we can uniquely

decompose W into W1W2 . . .Wl+1 =
∏l+1

i=1Wi, where each Wi is alternately either

a Dyck word of nonzero length or a negative Dyck word. Then

ψ′(φ′(W )) = ψ′
(
φ′
( l+1∏
i=1

Wi

))
= ψ′

( l+1∏
i=1

φ′(Wi)
)

=
l+1∏
i=1

ψ′(φ′(Wi)), and

φ′(ψ′(W )) = φ′
(
ψ′
( l+1∏
i=1

Wi

))
= φ′

( l+1∏
i=1

ψ′(Wi)
)

=
l+1∏
i=1

φ′(ψ′(Wi)) .

If W is a Dyck word then φ′ = φ and ψ′ = ψ so

ψ′(φ′(W )) = ψ(φ(W )) = W and

φ′(ψ′(W )) = φ(ψ(W )) = W .
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Using the fact that φ and ψ are inverses of each other, together with the

involutive properties of α and β, it is easy to show that for negative Dyck words

ψ′(φ′(W )) = W = φ′(ψ′(W )) also holds:

ψ′(φ′(W )) = ψ′(α(φ(β(α(W )))) = α(β(ψ(α(α(φ(β(α(W ))))))))

= α(β(ψ(φ(β(α(W )))))) = α(β(β(α(W )))) = α(α(W )) = W , and

φ′(ψ′(W )) = φ′(α(β(ψ(α(W )))) = α(φ(β(α(α(β(ψ(α(W ))))))))

= α(φ(β(β(ψ(α(W )))))) = α(φ(ψ(α(W )))) = α(α(W )) = W .

Corollary 2.4. The number of bilateral Dyck paths of semilength n with k up-

steps at odd height is equal to the number of bilateral Dyck paths of semilength n

with k peaks.

2.3.1 Remarks

In [23] a bijection between Dyck paths of semilength n with k−1 up-steps at even

height and Dyck paths of semilength n with k peaks is given, using the machinery

of checkmark sequences. That bijection is given as a restriction of a bijection

between bilateral Dyck paths.

To make a connection of our result with the work in [23], we recall that any

Dyck path with k−1 up-steps at even height can be mapped bijectively to a Dyck

path with k up-steps at odd height by the involution β defined in Section 2.3. By



2.3. Extension to Bilateral Dyck Paths 40

mapping Dyck paths via β, followed by application of the map φ given in Section

2.1, we also have a bijection between Dyck paths of semilength n with k − 1 up-

steps at even height and Dyck paths of semilength n with k peaks. Already from

inspecting the five Dyck paths of semilength n = 3 one can see that this bijection

is different from the one presented in [23].

We note that the extension of the bijection in [23] to bilateral Dyck paths needs

a slightly modified definition of peaks. More precisely, in [23] an initial down-step

or final up-step in a bilateral Dyck path is also counted as a peak, and the bijection

given is between bilateral Dyck paths of semilength n with k− 1 up-steps at even

height and bilateral Dyck paths of semilength n with k (modified) peaks.

In contrast, our bijection extends to a bijection between bilateral Dyck paths of

semilength n with k up-steps at odd height and bilateral Dyck paths of semilength

n with k peaks.

We also note that the restriction of our bijection to Dyck paths is essentially

identical to a bijection given in [30]. There, the authors used two length-preserving

bijections on Dyck paths to show the equidistribution of statistics of certain strings

occurring at odd height, at even height, and anywhere. However, the problem

discussed here, regarding the equidistribution of up-steps at odd height and peaks

anywhere, was not addressed in [30].



Chapter 3

Walks on a triangular domain

Recall from Chapter 1 the definitions of the triangle and line models. In this

chapter we will give a number of results on these models. We present a complete

solution for the line model, and a solution for the triangle model in the case where

endpoints are not weighted, along with a high-symmetry case. We also prove

an equinumeracy with Motzkin paths, for a special case of walks on the triangle

model.

3.1 Statement of Results

We begin by considering the line model. Given a fixed starting point ω0, we denote

the number of n-step walks starting at ω0 and ending at ωn = (i1, i2) by Cn(i1, i2)

and consider the generating function

G(x, y; t) =
∞∑
n=0

tn
∑

ωn∈(N0)2

Cn(ωn)xi1yi2 , (3.1)

41
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where t is the generating variable conjugate to the length of the walk. Due to

the choice of the step-set Ω1, when counting walks starting at (u1, u2), G(x, y; t)

is homogeneous of degree L = u1 + u2 in x, y, i.e.

G(γx, γy; t) = γLG(x, y; t) . (3.2)

It is easy to solve this model, and we get the following result.

Proposition 3.1. The generating function G(x, y; t), which counts n-step walks

starting at fixed ω0 = (u, v), is given by

G(x, y; t) =
1

1−
x
y

+ y
x

p+ 1
p

(
xuyv − xu+v+1pv+1(1− p2u+2)

y(1− p2u+2v+4)
− yu+v+1pu+1(1− p2v+2)

x(1− p2u+2v+4)

)
,

(3.3)

where

p =
1−
√

1− 4t2

2t
(3.4)

is the generating function of Dyck paths.

This simplifies considerably when specifying x = y = 1.

Corollary 3.2. The generating function G(1, 1; t), which counts n-step walks

starting at fixed ω0 = (u, v) with no restrictions on the endpoint, is given by

G(1, 1; t) =
(1 + p2)(1− pu+1)(1− pv+1)

(1− p)2(1 + pu+v+2)
, (3.5)

where

p =
1−
√

1− 4t2

2t
. (3.6)
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β

α

α

α

β

β

α

⟲

⟳
⟲

⟳

β

Figure 3.1: The step-set for the triangle partitioned into two smaller step-

sets Ω′2 and Ω′′2, with associated weights α and β respectively. Using only

steps from Ω′2 restricts to allowing steps in only one orientation (clockwise or

anti-clockwise) around each triangle in the domain, with neighbouring triangles

(those sharing an edge) permitting opposite orientations. Using only steps from

Ω′′2 reverses these orientations.

The main results in this chapter concern the triangle model, or more precisely,

a weighted generalisation of this model. We can partition Ω2 into

Ω′2 = {(1, 0,−1), (−1, 1, 0), (0,−1, 1)} and

Ω′′2 = {(1,−1, 0), (−1, 0, 1), (0, 1,−1)} ,
(3.7)

with steps in Ω′2 and Ω′′2 given the weights α and β, respectively (cf Figure 3.1).

Given a fixed starting point ω0, we denote the number of n-step walks starting

at ω0 and ending at ωn = (i1, i2, i3) by Cn(i1, i2, i3) and consider the generating

function

G(x, y, z; t) =
∞∑
n=0

tn
∑

ωn∈(N0)d+1

Cn(ωn)xi1yi2zi3 , (3.8)

where t is the generating variable conjugate to the length of the walk. Due to the

choice of the step-set Ω2, when counting walks starting at (u1, u2, u3), G(x, y, z; t)
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is homogeneous of degree L = u1 + u2 + u3 in x, y, z, i.e.

G(γx, γy, γz; t) = γLG(x, y, z; t) . (3.9)

The main result of this chapter is as follows.

Theorem 3.3. The generating function G(t) ≡ G(1, 1, 1; t), which counts n-step

walks starting at fixed ω0 = (u, v, w) with no restrictions on the endpoint, is given

by

G(t) =
(1− p3)(1− pu+1)(1− pv+1)(1− pw+1)

(1− p)3(1− pu+v+w+3)
(3.10)

with

p = (α + β)tM((α + β)t) , (3.11)

where

M(t) =
1− t−

√
(1 + t)(1− 3t)

2t2
(3.12)

is the generating function of Motzkin paths.

For walks starting in a corner of a triangle of side-length L we find the following

intriguing equinumeracy result.

Corollary 3.4.

(a) Walks starting at a corner of a triangle of side-length L = 2H + 1 with

arbitrary endpoint and taking p steps on Ω′2 and q steps on Ω′′2 are in bijection

with bicoloured Motzkin paths in the strip of width H which have p steps

coloured with colour A and q steps coloured with colour B.
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(b) Walks starting at a corner of a triangle of side-length L = 2H with arbitrary

endpoint and taking p steps on Ω′2 and q steps on Ω′′2 are in bijection with

bicoloured Motzkin paths in the restricted strip of width H which have p steps

coloured with colour A and q steps coloured with colour B.

In particular, this immediately implies that walks starting in a corner of a

triangle of side-length L = 2H + 1 (resp. L = 2H) with arbitrary endpoint

are in bijection with bicoloured Motzkin paths in the strip of width H (resp. the

restricted strip of width H). Additionally, setting q = 0 implies that walks starting

in a corner of a triangle of side-length L = 2H + 1 (resp. L = 2H) with arbitrary

endpoint, which only take steps on Ω′2, are in bijection with Motzkin paths in the

strip of width H (resp. the restricted strip of width H). Henceforth we will call

these the undirected and directed cases respectively.

For walks starting in the centre of a triangle of side-length L = 3u, there is a

further result.

Proposition 3.5. The generating function g(t) ≡ G(1, 1, 0; t), which counts walks

starting at ω0 = (u, u, u) and ending at a fixed side of the triangle, is given by

g(t) = pu
(1− p3)(1− pu+1)

(1− p)(1− p3u+3)
, (3.13)

with p as in Theorem 3.3.

For our final result in this chapter, we draw a link between walks on the triangle

and Ballot paths.
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Proposition 3.6. Walks starting in a corner of a triangle of side-length L with

arbitrary endpoint, restricted to the sublattice Ω′2, are in bijection with three-

candidate Ballot paths with excess L.

3.2 Proofs

3.2.1 Line Model

We will examine the line model first, and then apply the same techniques to the

triangle model.

Functional Equation

An n-step walk is uniquely constructed by appending a step from the step-set Ω1

to an (n − 1)-step walk, provided n > 0. This leads to the following functional

equation for the generating function G(x, y; t):

G(x, y; t) =xuyv +G(x, y; t)t

(
x

y
+
y

x

)
−G(x, 0; t)t

(
x

y

)
−G(0, y; t)t

(
y

x

)
. (3.14)

Here, the monomial xuyv corresponds to a zero-step walk starting (and ending)

at ω0 = (u, v). The term G(x, y; t)t
(
x
y

+ y
x

)
corresponds to appending any of the

steps in Ω1 irrespective of whether the resulting walk steps violates the boundary

conditions and leaves the domain. This overcounting is adjusted by the remaining

terms. For example, G(x, 0; t) corresponds to walks which end at (i1, 0; t), and
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therefore G(x, 0; t)x
y

corresponds precisely to walks stepping across that boundary.

As this is a functional equation for the generating function G(x, y; t) in the

catalytic variables x, y only, the t-dependence is dropped by writing G(x, y; t) ≡

G(x, y). We rewrite the functional equation (3.14) as

G(x, y)

[
1− t

(
x

y
+
y

x

)]
= xuyv −G(x, 0) t

(
x

y

)
−G(0, y) t

(y
x

)
. (3.15)

The Kernel

This gives us the Kernel K(x, y; t) ≡ K(x, y) of the functional equation,

K(x, y) = 1− t
(
x

y
+
y

x

)
. (3.16)

Symmetry properties of this Kernel are central to the arguments. Note that the

Kernel is homogeneous of degree zero, i.e. it is invariant under rescaling of all the

variables. This trivial symmetry will be implicitly assumed in the considerations

below.

We now introduce G(S), the group of transformations which leaves the Kernel

of the functional equation invariant for the step-set S. This is in line with the

notation introduced by Fayolle et al. [11]. For the line model, the step-set is

S1 =

{
x

y
,
y

x

}
,

where here and henceforth, steps are identified with their associated combinatorial

weights.
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Lemma 3.7. The Kernel K(x, y) is invariant under action of the group of trans-

formations

G(S1) = 〈(y, x)〉 ∼= C2 .

Here (y, x) is shorthand notation for the map that sends (x, y) to (y, x). In par-

ticular, we arrive at the following result.

Lemma 3.8. The Kernel K(x, y) is invariant under the following 1-parameter

substitutions.

K(p, 1) = K(1, p) = 1− t
(
p+

1

p

)
.

The dependence between p and t is henceforth fixed such that

1− t(p+ 1/p) = 0, (3.17)

which when solved for p gives p = tD(t), where D(t) is the generating function

for Dyck paths

D(t) =
1−
√

1− 4t2

2t2
, (3.18)

as proven in Section 1.3. In particular, p is a well-defined power series with zero

constant.

Using this dependency and substituting the two choices from Lemma 3.8 into

the functional equation (3.15) implies

tpG(p, 0) +
t

p
G(0, 1) = pu, (3.19a)

t

p
G(1, 0) + tpG(0, p) = pv. (3.19b)
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Using homogeneity of the generating function, we replace

G(p, 0) = pu+vG(1, 0) , G(0, p) = pu+vG(0, 1) , (3.20)

and solve the two equations (3.19a) and (3.19b) in the two variables G(1, 0) and

G(0, 1) to find that

G(1, 0) =
pv+1(1− p2u+2)

t(1− p2u+2v+4)
, G(0, 1) =

pu+1(1− p2v+2)

t(1− p2u+2v+4)
. (3.21)

Applying the homogeneity argument of (3.20) to (3.21), we determine that

G(x, 0) =
xu+vpv+1(1− p2u+2)

t(1− p2u+2v+4)
, G(0, y) =

yu+vpu+1(1− p2v+2)

t(1− p2u+2v+4)
. (3.22)

Substituting these into (3.15) and eliminating t via (3.17) gives the result stated

in Proposition 3.1,

G(x, y; t) =
1

1−
x
y

+ y
x

p+ 1
p

(
xuyv − xu+v+1pv+1(1− p2u+2)

y(1− p2u+2v+4)
− yu+v+1pu+1(1− p2v+2)

x(1− p2u+2v+4)

)
,

(3.23)

and substituting x = y = 1 into (3.23) then gives Corollary 3.2,

G(1, 1; t) =
(1 + p2)(1− pu+1)(1− pv+1)

(1− p)2(1 + pu+v+2)
. (3.24)

3.2.2 Triangle Model

We now apply the same method to the triangle model, including the weights α

and β corresponding to the directed sublattices (equation (3.7).



3.2. Proofs 50

Functional Equation

Again, an n-step walk is uniquely constructed by appending a step from the step-

set Ω2 to an (n − 1)-step walk, provided n > 0. This leads to the following

functional equation for the generating function G(x, y, z; t):

G(x, y, z; t) =xuyvzw +G(x, y, z; t)t

(
βx

y
+
αy

x
+
αx

z
+
βz

x
+
βy

z
+
αz

y

)
−G(0, y, z) t

(
αy

x
+
βz

x

)
−G(x, 0, z) t

(
βx

y
+
αz

y

)
−G(x, y, 0) t

(
αx

z
+
βy

z

)
. (3.25)

Similarly to equation (3.14), the monomial xuyvzw corresponds to a zero-step

walk starting (and ending) at ω0 = (u, v, w), the second term corresponds to

appending any of the steps in Ω2 (irrespective of whether the resulting walk steps

violates the boundary condition and leaves the domain), and any overcounting is

adjusted by the remaining three terms, each of which accounts for stepping over

one of the three boundary edges of the triangle.

Again, as this is a functional equation for the generating function G(x, y, z; t)

in the variables x, y, z only, the t-dependence is dropped by writing G(x, y, z; t) ≡

G(x, y, z). We rewrite the functional equation (3.25) as

G(x, y, z)

[
1− t

(
βx

y
+
αy

x
+
αx

z
+
βz

x
+
βy

z
+
αz

y

)]
= xuyvzw

−G(0, y, z) t

(
αy

x
+
βz

x

)
−G(x, 0, z) t

(
βx

y
+
αz

y

)
−G(x, y, 0) t

(
αx

z
+
βy

z

)
.

(3.26)
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The Kernel

Again, the Kernel K(x, y, z; t) ≡ K(x, y, z) of the functional equation,

K(x, y, z) = 1− t
(
βx

y
+
αy

x
+
αx

z
+
βz

x
+
βy

z
+
αz

y

)
, (3.27)

is needed, and symmetry properties of this Kernel are central to our arguments.

As before, note that the Kernel is homogeneous of degree zero, i.e. it is invariant

under rescaling of all the variables, and this trivial symmetry will be implicitly

assumed in the considerations below.

Looking again at G(S), the group of transformations which leaves the Kernel

of the functional equation invariant for the step-set S, the step-set for the triangle

model is

S2 =

{
βx

y
,
αy

x
,
αx

z
,
βz

x
,
βy

z
,
αz

y

}
,

and G(S2) is generated by a rotation and an inversion.

Lemma 3.9. The Kernel K(x, y, z) is invariant under action of the group of

transformations

G(S2) =

〈
(y, z, x),

(
1

x
,

1

y
,
1

z

)〉
∼= C3 × C2 .

Moreover, there is a one-variable sub-set which has useful consequences.

Lemma 3.10. The Kernel K(x, y, z) is invariant under the following 1-parameter

substitutions.

K(1, 1, p) = K(1, p, 1) = K(p, 1, 1) = K(1, p, p) = K(p, 1, p) = K(p, p, 1)

= 1− t(α + β)

(
p+ 1 +

1

p

)
. (3.28)
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Fixing the dependence between p and t such that

1− t(α + β)(p+ 1 + 1/p) = 0 (3.29)

gives p = (α + β)tM((α + β)t), where

M(t) =
1− t−

√
(1 + t)(1− 3t)

2t2
(3.30)

is the generating function of Motzkin paths [9, p. 6]. In particular, p is a well-

defined power series in t with zero constant.

Using this dependency and substituting the six choices from Lemma 3.10 into

the functional equation (3.26) then implies

(α + β)t

p
G(0, 1, 1) + t(α + βp)G(p, 0, 1) + t(αp+ β)G(p, 1, 0) = pu , (3.31a)

(α + β)t

p
G(1, 0, 1) + t(αp+ β)G(0, p, 1) + t(α + βp)G(1, p, 0) = pv , (3.31b)

(α + β)t

p
G(1, 1, 0) + t(α + βp)G(0, 1, p) + t(αp+ β)G(1, 0, p) = pw , (3.31c)

(α + β)tpG(0, p, p) + t

(
α +

β

p

)
G(1, 0, p) + t

(
α

p
+ β

)
G(1, p, 0) = pvpw ,

(3.31d)

(α + β)tpG(p, 0, p) + t

(
α

p
+ β

)
G(0, 1, p) + t

(
α +

β

p

)
G(p, 1, 0) = pupw ,

(3.31e)

(α + β)tpG(p, p, 0) + t

(
α +

β

p

)
G(0, p, 1) + t

(
α

p
+ β

)
G(p, 0, 1) = pupv .

(3.31f)

Using homogeneity of the generating function, we replace

G(p, p, 0) = pLG(1, 1, 0) , G(p, 0, p) = pLG(1, 0, 1) , G(0, p, p) = pLG(0, 1, 1) ,

(3.32)
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and from the linear combination [(3.31a)+(3.31b)+(3.31c)]−p[(3.31d)+(3.31e)+

(3.31f)] it is easily found that

(α + β)t[G(0, 1, 1) +G(1, 0, 1) +G(1, 1, 0)] =

pu+1 + pv+1 + pw+1 − p2+L(p−u + p−v + p−w)

1− p3+L
. (3.33)

Substituting (x, y, z) = (1, 1, 1) into (3.26) shows that G(1, 1, 1) can now be com-

puted explicitly, as

(1− 3(α+β)t)G(1, 1, 1) = 1− (α+β)t[G(0, 1, 1) +G(1, 0, 1) +G(1, 1, 0)] . (3.34)

Substituting (3.33) into (3.34) and eliminating t via (3.29) gives the desired final

result,

G(1, 1, 1) =
(1− p3)(1− pu+1)(1− pv+1)(1− pw+1)

(1− p)3(1− p3+L)
. (3.35)

Finally, note that substituting p(t) = (α+β)tM((α+β)t) followed by (α+β)t = s

into (3.29) implies that

M(s) = 1 + sM(s) + s2M(s)2 , (3.36)

whence M(s) is the Motzkin path generating function. This completes the proof

of Theorem 3.3.

Letting (u, v, w) = (L, 0, 0) in (3.10) implies that the generating function for

walks starting in a corner is given by

G(1, 1, 1) =
(1− p3)(1− p1+L)

(1− p)(1− p3+L)
. (3.37)
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Continued Fractions

Equation (3.37) is intimately related to the convergents of the continued fraction

expansion of the Motzkin path generating function. We can show by mathematical

induction that in this case G(1, 1, 1) can be written as a continued fraction. More

precisely, for L = 2H even, there is a continued fraction of length H,

1

1− (α+ β)t−
(α+ β)2t2

1− (α+ β)t−
(α+ β)2t2

. . . −
(α+ β)2t2

1− (α+ β)t− (α+ β)2t2︸ ︷︷ ︸
length H

=
(1− p3)(1− p1+2H)
(1− p)(1− p3+2H)

,

(3.38)

and for L = 2H + 1 odd, there is a continued fraction of length H + 1,

1

1− (α+ β)t−
(α+ β)2t2

1− (α+ β)t−
(α+ β)2t2

. . . −
(α+ β)2t2

1− (α+ β)t︸ ︷︷ ︸
length H + 1

=
(1− p3)(1− p2+2H)
(1− p)(1− p4+2H)

. (3.39)

Using equation (3.29) it is easy to show that equations (3.38) and (3.39) hold for

the base case H = 0 ,

1 =
(1− p3)(1− p1+0)

(1− p1+0)(1− p3+0)
, (3.40a)

1

1− (α + β)t
=

(1− p3)(1− p2+0)

(1− p)(1− p4+0)
, (3.40b)
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and the inductive step follows from showing that

(1− p3)(1− p1+(L+2))

(1− p)(1− p3+(L+2))
=

1

1− (α + β)t− (α + β)2t2
(1− p3)(1− p1+L)

(1− p)(1− p3+L)

. (3.41)

From the combinatorial theory of continued fractions discussed in Section 1.5,

the combinatorial interpretation in terms of Motzkin paths follows easily. This

immediately implies Corollary 3.4. Substituting α = 1, β = 1 into (3.38) and

(3.39) gives coefficients 2 and 4, of t and t2 respectively, following from the fact

that the relevant Motzkin paths are bicoloured, and substituting in α = 1, β = 0

gives the interpretation in terms of normal Motzkin paths.

Further Results

Attempting to solve the triangle model in full generality proved beyond the reach

of the techniques used here, as the system of equations (3.31) is underdetermined,

linking nine quantities with six equations. The only case in which we can extract

further information from it is one of high symmetry, namely when the starting

point is chosen to be in the centre of the triangle, i.e. ω0 = (u, u, u), in which the

triangle has size L = 3u. The equations (3.31) then reduce to two equations in

two unknowns,

(α + β)t

p
G(1, 1, 0) + (α + β)t(1 + p)G(p, 1, 0) = pu , (3.42a)

(α + β)tp1+3uG(1, 1, 0) + (α + β)t

(
1 +

1

p

)
G(p, 1, 0) = p2u . (3.42b)
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This can readily be solved, and

(α + β)tG(1, 1, 0) =
p1+u(1− p1+u)

1− p3+3u
. (3.43)

Eliminating t by using (3.29) proves Proposition 3.5.

It now remains to prove our final result. Without loss of generality, starting

in the corner marked by coordinates (L, 0, 0), the steps (−1, 0, 1), (0, 1,−1), and

(1,−1, 0) can be mapped to (1, 1), (1,−1), and (1, 0), respectively. This maps

steps in Ω′′2 to steps in three-candidate Ballot paths and the restrictions imposed

by the boundaries of the triangle clearly transfer to the restrictions on a Ballot

path with excess L. This proves Proposition 3.6.

3.3 Remark

We conclude this chapter with a remark on the general problem for the triangle

model.

Generating functions for walks in finite domains are rational; this is a direct

result of the fact that the adjacency matrix for such systems has finite dimension.

In particular, in the triangle model, a triangle of side-length L contains
(
L+2

2

)
vertices, or states, and therefore we would expect the degree of the numerator and

denominator of the generating function to grow quadratically in L. However, for

the cases where we are able to prove results, there is some cancellation such that

the growth is linear in L.

The process of finding our results began with some initial series generation
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which allowed us to predict the form of the generating functions. Using this for

the general problem for the triangle model, of walks with arbitrary fixed start

and end points, we have numerical evidence that in general the degrees of the

numerator and denominator grow quadratically in L, and it may be this extra

complexity that has prevented us from solving this problem with our method.



Chapter 4

Bijections between the triangular

domain and Motzkin paths

In the previous chapter, we proved an intriguing equinumeracy result in Corol-

lary 3.4. Of particular interest are the two special cases noted beneath it; the

equinumeracy between walks on the undirected triangular domain and bicoloured

Motzkin paths, and that between walks on one of the directed sublattices and

normal Motzkin paths. Taking only steps on the directed sublattice Ω′2 halves

the out-degree of every vertex in the domain, and so it is clear that the result for

bicoloured Motzkin paths implies the result for normal Motzkin paths. This leads

us to the problem of finding a purely bijective proof of Corollary 3.4. Were one

to be found, this might elucidate the connections between the triangle model and

continued fractions, and thus open avenues towards solving other models. Eu [10]

gives a bijective proof of the directed case for triangular domains of infinite side-

58
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length via standard Young tableaux (which are a coding of Yamanouchi words),

and Yeats [34] gives a bijective proof of the undirected case for domains of infi-

nite side-length using intermediate markings. This leaves open the problem for all

finite side-lengths.

In this chapter we present bijective proofs for the directed and undirected cases

for side-lengths L = 1, 2 and 3. These bijections are heavily based on symmetry

and restrictive properties of the small domains the paths lie on. Unfortunately, as

the domains become larger, these properties fade, and thus we have been unable

to expand the ideas behind these bijections to larger domains. We are therefore

forced to leave open the general problem. We note that Proposition 3.6 provides

a possible alternative route to a bijective proof, via three-candidate Ballot paths.

In this chapter we will use the word walks when we are referring to walks on

a triangular domain, and paths when referring to Motzkin paths. Let TL denote

the set of walks, starting in the corner, on the undirected triangle of side-length L

and T ′L denote the set of walks, starting in the corner, on the directed triangle of

side-length L. We note that the result for side-length L = 0 is trivial, and begin

by proving the result for L = 1.

4.1 Bijections for side-length 1

In this case we will begin by giving the bijection for the undirected domain. The

result to prove here is a bijection between walks on a triangular domain of side-
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length 1 and bicoloured Motzkin paths in the strip of width 0. As expected,

this is a trivial result. We divide the steps on T1 into two classes; those which

move in a clockwise direction, which we denote by a, and those which move in an

anticlockwise direction, denoted by b (see Figure 4.1). Then we define the map φ

as follows.

Let a walk of n steps be denoted by ω1ω2 . . . ωn. We define the map φ : T1 →

M0 as follows:

• φ(ε) = ξ ,

• φ(a) = H
{w}
0 ,

• φ(b) = H
{b}
0 ,

• φ(ω1ω2 . . . ωn) = φ
(∏s

i=1 ωi

)
=
(∏s

i=1 φ(ωi)
)
,

where ωi ∈ {a, b} and ε and ξ denote the empty walk on T1 and the empty

path on M0 respectively.

The inverse to this map is clear, and it is clear that it performs the required

mapping. Note that the map easily restricts to one between the directed triangle

and the monocoloured Motzkin strip. This restricted map similarly has an obvious

inverse, so is a bijection.
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a a

a

b b

b

Figure 4.1: Triangle of side-length 1 with associated steps.

4.2 Bijections for side-length 2

In this section we will give bijections between the triangular domain of side-length

2 and the restricted Motzkin strip of width 1.

4.2.1 The directed case

We start by giving a bijection for directed walks and normal Motzkin paths. This

bijection works on the heuristic idea that a walk on the directed triangular domain

of side-length 2 which starts and ends at middle vertices (vertices of degree 4) looks

like a Motzkin path in a restricted strip of width 1 (Figure 4.2). That is, a path

at a middle vertex has two options - it can either take one step and end back at

another middle vertex, or it can take a step to a corner vertex and then another

step back to a middle vertex. In a similar way, if a Motzkin path is at height zero,

it has two options - it can take one horizontal step and remain at height zero, or it

can take an up-step followed immediately by a down-step, ending back at height

zero. However, we must apply some corrective steps to take into account the first,
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Figure 4.2: The two short triangular walks that are the building blocks

for all walks starting and ending at middle vertices compared against the

two short Motzkin paths that are the building blocks for all Motzkin paths

in the restricted strip of width 1.

and possibly the last, step of the walk.

As in Section 4.1, let a walk of n steps be denoted by ω1ω2 . . . ωn. We label

the steps of the domain as in Figure 4.3. Note that we only consider walks that

start in the corner of the triangle, so walks where ω1 = a.

Defining S ′ to be the set of symbols {a, b, c}, we can define the map ψ′ : S ′ →

L′2 as follows:

• ψ′(a) = D1 ,

• ψ′(b) = H0 ,

• ψ′(c) = U1 .

We can then define our bijection φ′ : T ′2 →M
′
1 as follows:
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a

a

a

b

b b

c

c

c

Figure 4.3: The step-set for the directed triangle of side-length 2

• if n = 0 then φ′(ε) = ξ ;

• if n ≥ 1, ω1 = a and ωn = c, then

φ′(ω1 . . . ωn) = U1D1

( n−1∏
i=2

ψ′(ωi)
)

;

• if n ≥ 1, ω1 = a and ωn 6= c, then

φ′(ω1 . . . ωn) = H0

( n∏
i=2

ψ′(ωi)
)

;

where ε and ξ denote the empty paths on T ′2 and M′
1 respectively.

Two examples of φ′ acting on walks are given in Figure 4.4. The two mappings

shown illustrate the fundamental property of the mapping, which alters the initial

steps of the Motzkin path in accordance with where the triangular walk ends, but

preserves the structure of the main body of the path.

4.2.2 The undirected case

We now generalise φ′ to the undirected case by giving the triangular domain two

orientations, with each orientation linked to one colouring of the corresponding
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1

2

4

5 1

2 3

4

5

6

( a(cabb)) = H0( U1D1H0H0) ( a(cabb)c) = U1 ( U1D1H0H0) D1

3

' '

Figure 4.4: Examples of paths mapped under φ, showing how the mapping

changes depending on whether the path ends at a middle or at a corner

vertex.

Motzkin path. Here, we label the steps of the domain as in Figure 4.5. Note that

now ω1 ∈ {a, a′}.

We define S to be the set of symbols {a, b, c, a′, b′, c′}, and then define the map

ψ : S → L2 as follows:

• ψ(a) = D
{w}
1 , • ψ(a′) = D

{b}
1 ,

• ψ(b) = H
{w}
0 , • ψ(b′) = H

{b}
0 ,

• ψ(c) = U
{w}
1 , • ψ(c′) = U

{b}
1 .

We can then define our bijection φ : T2 →M1 as follows:

• if n = 0 then φ(ε) = ξ ;
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c
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c c

c

c

b
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a

a

a' ' ' '
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'
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Figure 4.5: The step-set for the undirected triangle of side-length 2.

• if n ≥ 1, ω1 ∈ {a, a′} and ωn ∈ {c, c′}, then

φ(ω1 . . . ωn) = U
{w}
1 D

{w}
1

( n−1∏
i=2

ψ(ωi)
)

if ω1 = a and ωn = c ,

φ(ω1 . . . ωn) = U
{w}
1 D

{b}
1

( n−1∏
i=2

ψ(ωi)
)

if ω1 = a and ωn = c′ ,

φ(ω1 . . . ωn) = U
{b}
1 D

{w}
1

( n−1∏
i=2

ψ(ωi)
)

if ω1 = a′ and ωn = c ,

φ(ω1 . . . ωn) = U
{b}
1 D

{b}
1

( n−1∏
i=2

ψ(ωi)
)

if ω1 = a′ and ωn = c′ ;

• if n ≥ 1, ω1 ∈ {a, a′} and ωn /∈ {c, c′}, then

φ(ω1 . . . ωn) = H
{w}
0

( n∏
i=2

ψ(ωi)
)

if ω1 = a ,

φ(ω1 . . . ωn) = H
{b}
0

( n∏
i=2

ψ(ωi)
)

if ω1 = a′ ;

where ε and ξ denote the empty walk on T2 and the empty path on M1

respectively.
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4.2.3 Proof

We now proceed to prove that φ is our required bijection. It should be noted that

this proof easily restricts to φ′.

Proposition 4.1. φ gives an explicit bijection from the set of walks of length n

on the triangle of side-length 2 to the set of bicoloured Motzkin paths of length n

in the restricted strip of width 1.

Proof. We begin by noting that φ maps walks in T2 to Motzkin paths of the same

length. We must now show that walks on the triangle map to paths in M1; that

is, bicoloured Motzkin paths in the restricted strip of width 1. For a walk with last

step ωn ∈ {c, c′}, this maps to a path where the first two steps U
{x}
1 D

{x}
1 (where

x ∈ {w, b}) form a path in M1. As the concatenation of two paths in M1 is also

a path in M1, it remains to show that
∏n−1

i=2 ψ(ωi) is a path in M1. To show

this, we note that ω1 ends at a middle vertex, and ωn starts at a middle vertex, so

the walk ω2 . . . ωn−1 both starts and ends at middle vertices. Similarly, for a walk

where the last step ωn /∈ {c, c′}, we just need to show that
∏n

i=2 ψ(ωi) is a path

in M1, and as ω1 ∈ {a, a′} and ωn /∈ {c, c′}, the walk ω2 . . . ωn both starts and

ends at middle vertices. Thus in both cases, we are finished once we show that, if

ωj . . . ωk is a walk that both starts and ends at middle vertices, then
∏k

i=j ψ(ωi)

is a path in M1.

As is clear from Figure 4.5, if any ωi ∈ {c, c′}, then ωi+1 ∈ {a, a′} (note that

ωk /∈ {c, c′}). As c and c′ are the only steps which map to up-steps under ψ, both
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map to up-steps at height 1, and a and a′ both map to down-steps under ψ, this

means that, in any path in the image, the only up-steps are at height 1 and must

be immediately followed by a down-step. Thus the path never goes above height

1, and any horizontal step must be at height ≤ 0. Similarly, if any ωi ∈ {a, a′},

then ωi−1 ∈ {c, c′} (note that ωj /∈ {a, a′}), and as a and a′ are the only steps

which map to down-steps under ψ, any down-step must be immediately preceded

by an up-step. As the only up-steps are at height 1, this means that the only

down-steps are at height 1, and the path never goes below height 0. Similarly, if

any ωi ∈ {b, b′} for j + 1 ≤ i ≤ k, then ωi−1 ∈ {a, a′, b, b′}. As b and b′ are the

only steps which map to horizontal steps under ψ, any horizontal step must be

preceded by either a horizontal step or a down-step at height 1. Thus the only

horizontal steps are at height 0. Finally, as the path starts and ends at middle

vertices, ωj ∈ {b, b′, c, c′} and ωk ∈ {a, a′, b, b′}, so ωj maps to a step starting at

height 0, and ωk maps to a step ending at height 0. Thus, all walks starting and

ending at middle vertices are mapped to paths in M1, so φ maps paths in T2 to

Motzkin paths in the restricted strip of width 1.
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We now proceed to showing that φ is a bijection by giving its inverse f :M1 →

T2. We first define g : L2 → S :

• g
(
D
{w}
1

)
= a , • g

(
D
{b}
1

)
= a′ ,

• g
(
H
{w}
0

)
= b , • g

(
H
{b}
0

)
= b′ ,

• g
(
U
{w}
1

)
= c , • g

(
U
{b}
1

)
= c′ .

Let a path of n steps be denoted by κ1κ2 . . . κn. We then define f :M1 → T2

as follows:

• if n = 0 then f(ξ) = ε ;

• if n ≥ 1, κ1 ∈ {U{w}1 , U
{b}
1 } and κ2 ∈ {D{w}1 , D

{b}
1 }, then

f(κ1 . . . κn) = a
( n∏
i=3

g(ωi)
)
c if κ1 = U

{w}
1 and κ2 = D

{w}
1 ,

f(κ1 . . . κn) = a
( n∏
i=3

g(ωi)
)
c′ if κ1 = U

{w}
1 and κ2 = D

{b}
1 ,

f(κ1 . . . κn) = a′
( n∏
i=3

g(ωi)
)
c if κ1 = U

{b}
1 and κ2 = D

{w}
1 ,

f(κ1 . . . κn) = a′
( n∏
i=3

g(ωi)
)
c′ if κ1 = U

{b}
1 and κ2 = D

{b}
1 ;

• if n ≥ 1, κ1 ∈ {H{w}0 , H
{b}
0 }, then

f(κ1 . . . κn) = a
( n∏
i=2

g(ωi)
)

if κ1 = H
{w}
0 ,

f(κ1 . . . κn) = a′
( n∏
i=2

g(ωi)
)

if κ1 = H
{b}
0 ;
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where ε and ξ denote the empty walk/path on T2 and M1 respectively.

Note that g is an inverse to ψ:

g(ψ(a)) = g(D
{w}
1 ) = a , g(ψ(a′)) = g(D

{b}
1 ) = a′ ,

g(ψ(b)) = g(H
{w}
0 ) = b , g(ψ(b′)) = g(H

{b}
0 ) = b′ ,

g(ψ(c)) = g(U
{w}
1 ) = c , g(ψ(c′)) = g(U

{b}
1 ) = c′,

ψ(g(D
{w}
1 )) = ψ(a) = D

{w}
1 , ψ(g(D

{b}
1 )) = ψ(a′) = D

{b}
1 ,

ψ(g(H
{w}
0 )) = ψ(b) = H

{w}
0 , ψ(g(H

{b}
0 )) = ψ(b′) = H

{b}
0 ,

ψ(g(U
{w}
1 )) = ψ(c) = U

{w}
1 , ψ(g(U

{b}
1 )) = ψ(c′) = U

{b}
1 .

It remains to show that f is an inverse to φ. We first deal with the trivial

cases. If n = 0 then f(φ(ε)) = f(ξ) = ε and φ(f(ξ)) = φ(ε) = ξ. Now if a path of

n ≥ 1 steps ω1ω2 . . . ωn is in T2, we have that:

• if ω1 ∈ {a, a′} and ωn ∈ {c, c′}, then

f(φ(ω1 . . . ωn)) = f
(
U
{x}
1 D

{y}
1

( n−1∏
i=2

ψ(ωi)
))

= p
( n−1∏
i=2

g(ψ(ωi))
)
q

= p
( n−1∏
i=2

ωi

)
q

= ω1 . . . ωn

where

x = w and p = a if ω1 = a ,

x = b and p = a′ if ω1 = a′ ,
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y = w and q = c if ω1 = c ,

y = b and q = c′ if ω1 = c′ ;

• if ω1 ∈ {a, a′} and ωn /∈ {c, c′}, then

f(φ(ω1 . . . ωn)) = f
(
H
{x}
0

( n∏
i=2

ψ(ωi)
))

= p
( n∏
i=2

g(ψ(ωi))
)

= p
( n∏
i=2

ωi

)
= ω1 . . . ωn

where

x = w and p = a if ω1 = a ,

x = b and p = a′ if ω1 = a′ .

If a path of n ≥ 1 steps κ1κ2 . . . κn is in M1, we similarly see that:

• if κ1 ∈ {U{w}1 , U
{b}
1 } and κ2 ∈ {D{w}1 , D

{b}
1 }, then

φ(f(κ1 . . . κn)) = φ
(
p
( n∏
i=3

g(κi)
)
q
)

= U
{x}
1 D

{y}
1

( n∏
i=3

ψ(g(κi))
)

= U
{x}
1 D

{y}
1

( n∏
i=3

κi

)
= κ1 . . . κn

where

x = w and p = a if κ1 = U
{w}
1 ,
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x = b and p = a′ if κ1 = U
{b}
1 ,

y = w and q = c if κ1 = D
{w}
1 ,

y = b and q = c′ if κ1 = D
{b}
1 ;

• if κ1 ∈ {H{w}0 , H
{b}
0 }, then

φ(f(κ1 . . . κn)) = φ
(
p
( n∏
i=2

g(κi)
))

= H
{x}
0

( n∏
i=2

ψ(g(κi))
)

(?)

= H
{x}
0

( n∏
i=2

κi

)
= κ1 . . . κn

where

x = w and p = a if κ1 = H
{w}
0 ,

x = b and p = a′ if κ1 = H
{b}
0 .

(?) This equality is valid as κn /∈ {U{w}1 , U
{b}
1 }, so g(κn) /∈ {c, c′}

)
.

Thus f is an inverse to φ and so φ is a bijection.
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4.3 Bijections for side-length 3

In this section we will give bijections between the triangular domain of side-length

3 and the Motzkin strip of width 1. As in Section 4.2, we will begin by giving the

bijection for the directed triangular domain, and monocoloured Motzkin paths.

4.3.1 The directed case

The heuristic idea behind this bijection is that on the directed triangular domain,

the vertices can be divided into three subsets (labelled 0, 1, 2), such that any walk

of length 3 which starts at a vertex in one subset will end at a vertex in the same

subset. Using this property, we can cut a walk into segments of length 3, which

we then individually map to segments of a Motzkin path, and concatenate to form

a Motzkin path. As we shall see below, this process requires ’flipping’ some of the

segments of the Motzkin path to ensure that the last vertex of one segment is the

same as the first vertex of the next segment. It also requires that the first step

acts as a corrective step, and a corrective segment at the end of the walk when the

length of the walk n 6≡ 1 mod 3. We will label the steps of the directed domain

of side-length 3 as in Figure 4.6, with the condition that all walks start at the

bottom left corner.

Mapping individual segments of a walk

We begin by defining the three maps α′, β′ and γ′ which respectively map segments

of lengths 1, 2 and 3 of triangular walks to segments of Motzkin paths. Let L′3 be
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Figure 4.6: The step-set for the directed triangle of side-length 3, with

walks starting at the bottom left corner. The vertices are labelled according

to the subset they lie in.

as defined in Section 1.2. Defining W ′ to be the set of symbols {a, b}, we define

the map α′ :W ′ → L′3 as follows:

• α′(a) = H0 ,

• α′(b) = D1 .

Defining W ′′ to be the set of symbols {ac, ad, bc, bd}, we define the map β′ :

W ′′ → (L′3)2 as follows:

• β′(ac) = H0H0 ,

• β′(ad) = H1D1 ,

• β′(bc) = D1H0 ,
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• β′(bd) = U1D1 .

DefiningW ′′′ to be the set of symbols {ace, adf, adg, adh, bce, bdf, bdg, bdh}, we

define the map γ′ :W ′′′ → (L′3)3 as follows:

• γ′(ace) = H0H0H0 , • γ′(bce) = D1H0H0 ,

• γ′(adf) = H1H1D1 , • γ′(bdf) = U1H1D1 ,

• γ′(adg) = H1D1H0 , • γ′(bdg) = U1D1H0 ,

• γ′(adh) = H0U1D1 , • γ′(bdh) = D1U1D1 .

Flipping and concatenating the segments

We now proceed to define the map δ′ which flips the segments of the Motzkin path

to ensure that the vertices in consecutive segments match. Once the segments have

been mapped under α′, β′ and γ′, we have an ordered list of k segments of Motzkin

paths, where the first segment is of length 1, segments 2 to k − 1 are of length

3, and the final segment is of length 1, 2 or 3. We need to match the ends of

these segments up to ensure that they form a Motzkin path, which we do by

flipping them if the vertices do not match. The final segment ends at height 0

(on the x-axis), so we leave that unchanged. We then proceed backwards through

the segments. All end at height 0, so we flip a segment precisely when the next

segment starts at height 1. More rigorously, this is defined as follows.
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Let M = {H0H0H0, H1H1D1, H1D1H0, H0U1D1, D1H0H0, U1H1D1, U1D1H0,

D1U1D1}

and N = {H0H0H0, H1H1D1, H1D1H0, H0U1D1, D1H0H0, U1H1D1, U1D1H0,

D1U1D1, H0H0, H1D1, D1H0, U1D1, H0, D1} .

LetM<∞×N denote the set of words with finitely many letters in the setM

followed by exactly one letter in the set N . Let (L′3)<∞ denote the set of words

of finite length with all letters in L′3.

We denote by λ1 . . . λn a word of n letters in M<∞ ×N . Each letter λi ∈ M

can be written as a word in (L′3)3, where λi = λ
(1)
i λ

(2)
i λ

(3)
i . Its image under δ′

can also be written as a word in (L′3)3, δ(λi) = λ
(1)

i λ
(2)

i λ
(3)

i . Similarly, the letter

λn ∈ N , and its image δ′(λn), can be written as a word in either L′3, (L′3)2 or (L′3)3.

We now have the necessary notation to define δ′ :M<∞ ×N → (L′3)<∞, which

we do as follows:

• δ′(λn) = λn ;

• for 1 ≤ i ≤ n− 1, if λ
(1)

i+1 ∈ {H0, U1} then δ′(λi) = λi ;

• for 1 ≤ i ≤ n− 1, if λ
(1)

i+1 ∈ {H1, D1} then
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◦ if λi = H0H0H0, δ
′(λi) = H1H1H1 , ◦ if λi = D1H0H0, δ

′(λi) = U1H1H1 ,

◦ if λi = H1H1D1, δ
′(λi) = H0H0U1 , ◦ if λi = U1H1D1, δ

′(λi) = D1H0U1 ,

◦ if λi = H1D1H0, δ
′(λi) = H0U1H1 , ◦ if λi = U1D1H0, δ

′(λi) = D1U1H1 ,

◦ if λi = H0U1D1, δ
′(λi) = H1D1U1 , ◦ if λi = D1U1D1, δ

′(λi) = U1D1U1 ;

•

δ′(λ1λ2 . . . λn) =
n∏
i=1

δ′
(
λi
)
.

Mapping the first step

We now define the map which uses the first step as a corrective step, to ensure

the path in the image starts on the x-axis. As in Section 4.2, from here on

let ω1ω2 . . . ωn denote a walk of n steps on the triangular domain, starting in

a corner. Using the notation introduced for δ′, we have that λ
(1)

1 is the first

step of the path δ′
((∏k/3

i
3
=1
γ′(ωi−1ωi ωi+1)

)
χ′(ωk+2 . . . ωn)

)
, where k = 3bn−2

3
c

and χ′ = α′, β′ or γ′ depending on the value of n − k. Thus we can define

ρ′ : {e} → {H0, U1} as follows:

• if n = 1 then ρ(ω1) = H0;

• if n ≥ 2 and λ
(1)

1 ∈ {H0, U1} then ρ(ω1) = H0;

• if n ≥ 2 and λ
(1)

1 ∈ {H1, D1} then ρ(ω1) = U1.
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The bijection

We can now define the bijection σ′ : T ′3 →M
′
1, which we do as follows:

• if n = 0 then φ(ε) = ξ;

• if n ≥ 1 and n ≡ 1 mod 3 then

σ′(ω1 . . . ωn) = ρ′(ω1) δ
′

( n−1
3∏

i
3
=1

γ′(ωi−1ωi ωi+1)

)
;

• if n ≥ 1 and n ≡ 2 mod 3 then

σ′(ω1 . . . ωn) = ρ′(ω1) δ
′

(( n−2
3∏

i
3
=1

γ′(ωi−1ωi ωi+1)

)
α′(ωn)

)
;

• if n ≥ 1 and n ≡ 0 mod 3 then

σ′(ω1 . . . ωn) = ρ′(ω1) δ
′

(( n−3
3∏

i
3
=1

γ′(ωi−1ωi ωi+1)

)
β′(ωn−1ωn)

)
;

where ε and ξ denote the empty walk on T ′3 and the empty path on M′
1

respectively.

Figure 4.7 shows an example of the map σ′ acting on a path in T ′3 .
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The path is cut into segments of length at most 3, 
which all start at a vertex in subset 0 (excluding

 

e bdh adg ace bc

 the first step).

The segments (except the first) are mapped 

 

D1 U1 D1 H1 D1 H0 H0 H0 H0 D1 H0

D1 U1 D1 H0 U1 H1 H1 H1 H1 D1 H0

The last four segments are mapped under δ',  
which flips some of them, the first segment is 

U1

under α', β' or γ'.

1

2 3

4 5

6

7

8

9 10

11

12

mapped under ρ', and they are concatenated.

Figure 4.7: An example of σ′, mapping a 12-step triangular walk to a

12-step Motzkin path.
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4.3.2 The undirected case

We now generalise σ′ by giving the triangular domain two orientations, with each

orientation linked to one colouring of the corresponding Motzkin path. We will

label the steps of the undirected domain of side-length 3 as in Figure 4.8, with

the condition that all walks start at the bottom left corner. When defining the

bijection for the undirected case, we must proceed somewhat carefully. From

hereon we will define a return to 0 as a step which ends at a vertex in subset 0,

and an exit as a step which starts at a vertex in subset 0. We will also use the

notions of clockwise and anticlockwise steps to refer respectively to the step-sets

shown on the left and right triangles in Figure 4.8, and will label these as C and

A respectively.

As before, with the directed case, we split a path on the triangular domain

into segments, divided by exits/returns to 0. However here, the segments can be

arbitrarily long. They can be divided into three subsets. The first subset consists

of just the first segment, which begins with the first step of the path and ends

with the first return to 0 (or ends with the last step of the path if it never returns

to 0). The third subset consists solely of the last segment, which begins with the

last exit (this segment does not exist if the path never returns to 0). The second

subset consists of all the intermediate segments, which start with an exit and end

with the next return to 0.
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Figure 4.8: The step-set for the triangle of side-length 3, with walks start-

ing at the bottom left corner. The vertices are labelled according to the

subset they lie in. Note that if two consecutive steps are aa′, bb′, cc′ and ee′,

the start and end vertices are the same, but the same is not true for edges

going into or away from the central vertex, where dd′, ff ′, gg′ and hh′ are

not valid subpaths.

In the directed case there were a very limited number of types of path in each

subset. The first subset consisted of only one path of length 1, the second subset

consisted of one type of path, of length 3, and the third subset consisted of three

types of path, of lengths 1, 2 or 3. However, the addition of anticlockwise steps

introduces many more variations, and each segment can be of almost any arbitrary

length, as the path can move between vertices in subsets 1 and 2 for an unlimited

number of steps without ever reaching a vertex in subset 0. Using the labelling

introduced above, we can categorise these types as follows.
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The first subset can be any of the following 5 types: C, A(CA)nA, A(CA)nCC,

A(CA)n, A(CA)nC. Note that the first three are initial segments which end with

the first return to 0, but the latter two never return to 0, so are necessarily the

whole path.

The second subset can be any of the following 5 types: C(CA)nCC, C(CA)nA,

AA(CA)nCC, AA(CA)nA, AC.

The third subset can be any of the following 10 types: C(CA)nCC, C(CA)nA,

AA(CA)nCC, AA(CA)nA, AC, C(CA)n, C(CA)nC, AA(CA)n, AA(CA)nC, A.

Note that the first five types listed in the third subset are the same as those in

the second subset.

Furthermore, the segments can be broken down more finely by splitting them

whenever the path reaches a vertex in subset 1. From hereon we will define a

return to 1 as a step which ends at a vertex in subset 1. For example, the segment

bdg′cc′df , which is of the type C(CA)2CC, can be split into four segments as

(b)(dg′)(cc′)(df), split uniquely by returns to 1. As such, we only need to map

certain segments of length 1 or 2.

Mapping individual segments of a walk

We first define the map α which maps segments of lengths 1 and 2 of trian-

gular walks to segments of bicoloured Motzkin paths. Let us define the set

of symbols T = {a, b, c, d, a′, b′, d′, e′, ce, df, dg, dh, cc′, df ′, dg′, dh′, e′e, d′f, d′g, d′h,

e′c′, d′f ′, d′g′, d′h′}, and let L3 be as defined in Section 1.2. We define the map
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α : T → L3 ∪ L3
2 as follows:

• α(a) = H
{w}
0 • α(a′) = H

{b}
0

• α(b) = D
{w}
1 • α(b′) = D

{b}
1

• α(c) = H
{w}
0 • α(e′) = H

{b}
0

• α(d) = D
{w}
1 • α(d′) = D

{b}
1

• α(ce) = H
{w}
0 H

{w}
0 • α(e′e) = H

{b}
0 H

{w}
0

• α(df) = H
{w}
1 D

{w}
1 • α(d′f) = H

{b}
1 D

{w}
1

• α(dg) = D
{w}
1 H

{w}
0 • α(d′g) = D

{b}
1 H

{w}
0

• α(dh) = U
{w}
1 D

{w}
1 • α(d′h) = U

{b}
1 D

{w}
1

• α(cc′) = H
{w}
0 H

{b}
0 • α(e′c′) = H

{b}
0 H

{b}
0

• α(df ′) = H
{w}
1 D

{b}
1 • α(d′f ′) = H

{b}
1 D

{b}
1

• α(dg′) = D
{w}
1 H

{b}
0 • α(d′g′) = D

{b}
1 H

{b}
0

• α(dh′) = U
{w}
1 D

{b}
1 • α(d′h′) = U

{b}
1 D

{b}
1 .

Note that the set T has been chosen as it contains exactly the segments which

correspond to the finer segments in the elements of the subsets listed directly

above. For example, cc′, df ′, dg′, dh′ correspond to the segments CA which appear

as (CA)n in most elements of the subsets, while e′e, d′f, d′g, d′h correspond only

to the segment AC in the element AC, in the second and third subsets. The only

segments missing are the first step of segments in the first subset (i.e. the first
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steps of walks). The reason for this is that these will be mapped separately later

on, when we define our corrective map ρ.

As an aside, we note that we have made a number of choices in defining α,

and making different choices would result in a different, but equally valid, map.

In fact, there are (2!)4(4!)4 = 484 ways of defining α which have a consistent

correspondence between triangular step direction and Motzkin step colour.

Flipping and concatenating the segments

We now proceed to define the map that flips segments, as in the directed case. We

begin by defining the set P , which consists of all 20 elements in the image of α.

Let P =



H
{w}
0 , H

{b}
0 , D

{w}
1 , D

{b}
1 ,

H
{w}
0 H

{w}
0 , H

{w}
1 D

{w}
1 , D

{w}
1 H

{w}
0 , U

{w}
1 D

{w}
1 ,

H
{w}
0 H

{b}
0 , H

{w}
1 D

{b}
1 , D

{w}
1 H

{b}
0 , U

{w}
1 D

{b}
1 ,

H
{b}
0 H

{w}
0 , H

{b}
1 D

{w}
1 , D

{b}
1 H

{w}
0 , U

{b}
1 D

{w}
1

H
{b}
0 H

{b}
0 , H

{b}
1 D

{b}
1 , D

{b}
1 H

{b}
0 , U

{b}
1 D

{b}
1



.

Let P<∞ denote the set of words of finite length with all letters in P , and let

(L3)
<∞ denote the set of words of finite length with all letters in L3.

Let us denote by λ1λ2 . . . λn a word of n letters in P<∞. Each letter λi ∈ P

can be written as a word in (L3) or (L3)
2, where λi = λ

(1)
i or λi = λ

(1)
i λ

(2)
i . Its
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image under δ can be written as a word in the same set, as either δ(λi) = λ
(1)

i

or δ(λi) = λ
(1)

i λ
(2)

i . We now have the necessary notation to define δ : P<∞ →

(L3)
<∞, which we do as follows:

• δ(λn) = λn ;

• for 1 ≤ i ≤ n− 1, if λ
(1)

i+1 ∈ {H0, U1} then δ(λi) = λi ;

• for 1 ≤ i ≤ n− 1, if λ
(1)

i+1 ∈ {H1, D1} then

◦ if λi = H
{w}
0 , δ(λi) = H

{w}
1 , ◦ if λi = D

{w}
1 , δ(λi) = U

{w}
1 ,

◦ if λi = H
{b}
0 , δ(λi) = H

{b}
1 , ◦ if λi = D

{b}
1 , δ(λi) = U

{b}
1 ,

◦ if λi = H
{w}
0 H

{w}
0 , δ(λi) = H

{w}
1 H

{w}
1 , ◦ if λi = H

{b}
0 H

{w}
0 , δ(λi) = H

{b}
1 H

{w}
1 ,

◦ if λi = H
{w}
1 D

{w}
1 , δ(λi) = H

{w}
0 U

{w}
1 , ◦ if λi = H

{b}
1 D

{w}
1 , δ(λi) = H

{b}
0 U

{w}
1 ,

◦ if λi = D
{w}
1 H

{w}
0 , δ(λi) = U

{w}
1 H

{w}
1 , ◦ if λi = D

{b}
1 H

{w}
0 , δ(λi) = U

{b}
1 H

{w}
1 ,

◦ if λi = U
{w}
1 D

{w}
1 , δ(λi) = D

{w}
1 U

{w}
1 , ◦ if λi = U

{b}
1 D

{w}
1 , δ(λi) = D

{b}
1 U

{w}
1 ,

◦ if λi = H
{w}
0 H

{b}
0 , δ(λi) = H

{w}
1 H

{b}
1 , ◦ if λi = H

{b}
0 H

{b}
0 , δ(λi) = H

{b}
1 H

{b}
1 ,

◦ if λi = H
{w}
1 D

{b}
1 , δ(λi) = H

{w}
0 U

{b}
1 , ◦ if λi = H

{b}
1 D

{b}
1 , δ(λi) = H

{b}
0 U

{b}
1 ,

◦ if λi = D
{w}
1 H

{b}
0 , δ(λi) = U

{w}
1 H

{b}
1 , ◦ if λi = D

{b}
1 H

{b}
0 , δ(λi) = U

{b}
1 H

{b}
1 ,

◦ if λi = U
{w}
1 D

{b}
1 , δ(λi) = D

{w}
1 U

{b}
1 , ◦ if λi = U

{b}
1 D

{b}
1 , δ(λi) = D

{b}
1 U

{b}
1 ;

•

δ(λ1λ2 . . . λn) =
n∏
i=1

δ
(
λi
)
.
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Mapping the first step

We now define the map which uses the first step as a corrective step, to ensure

the path in the image starts on the x-axis. From here on let υ1υ2 . . . υk denote

a walk on the triangular domain, starting in a corner, where υi ∈ T for 2 ≤ i ≤

k and υ1 ∈ {e, c′}. Using the notation introduced for δ, we have that λ
(1)

1 is the

first step of the path δ
(∏k

i=2 α(υi

)
. Thus we can define ρ : {e, c′} → {H0, U1} as

follows:

• if k = 1 then ρ(e) = H
{w}
0 and ρ(c′) = H

{b}
0 ;

• if k ≥ 2 and λ
(1)

1 ∈ {H
{w}
0 , H

{b}
0 , U

{w}
1 , U

{b}
1 } then

ρ(e) = H
{w}
0 and ρ(c′) = H

{b}
0 ;

• if k ≥ 2 and λ
(1)

1 ∈ {H
{w}
1 , H

{b}
1 , D

{w}
1 , D

{b}
1 } then

ρ(e) = U
{w}
1 and ρ(c′) = U

{b}
1 .

The bijection

We can now define the bijection σ : T3 →M1:

• if k = 0 then φ(ε) = ξ ;

• if k ≥ 1 then

σ(υ1 . . . υk) = ρ(υ1) δ
( k∏
i=2

α(υi)
)

;
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where ε and ξ denote the empty walk on T3 and the empty path on M1

respectively.

Note that we have defined the maps for the directed and undirected cases, σ′

and σ, slightly differently. In both maps we cut the triangular walk into segments,

map these segments to segments of a Motzkin path, then concatenate these new

segments. The difference is that while for the directed case, we cut the walk at

vertices in subset 0, for the undirected case we cut at vertices in subsets 0 and

1. These extra cuts are necessary in the undirected case to account for arbitrarily

long sections where the path does not reach a node in subset 0. It would be

possible to define σ′ in the same way, however we feel that doing this would lose

the intuition behind why the map works.

Despite this difference, we note that the map σ does in fact restrict to σ′ when

we restrict walks to T ′L, the clockwise orientation. This equates to restricting α to

acting only on the set {a, b, c, d, ce, df, dg, dh} and ρ to acting only on {e}. This

can be illustrated by applying σ to the triangular path in Figure 4.7:

σ(ebdhadgacebc) =

= ρ(e) δ
(
α(b)α(dh)α(a)α(dg)α(a)α(ce)α(b)α(c)

)
= ρ(e) δ

(
(D
{w}
1 )(U

{w}
1 D

{w}
1 )(H

{w}
0 )(D

{w}
1 H

{w}
0 )(H

{w}
0 )(H

{w}
0 H

{w}
0 )(D

{w}
1 )(H

{w}
0 )

)
= U

{w}
1 D

{w}
1 U

{w}
1 D

{w}
1 H

{w}
0 U

{w}
1 H

{w}
1 H

{w}
1 H

{w}
1 H

{w}
1 D

{w}
1 H

{w}
0

= σ′(ebdhadgacebc).
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4.3.3 Proof

We now proceed to prove that σ is our required bijection. It should be noted that

this proof easily restricts to σ′.

Proposition 4.2. σ gives an explicit bijection from the set of walks of length n

on the triangle of side-length 3 to the set of bicoloured Motzkin paths of length n

in the strip of width 1.

Proof. We must first show that walks on the triangle map to paths inM1; that is,

bicoloured Motzkin paths in the strip of width 1. Firstly, we should note that the

map δ ensures that disjointed segments are connected, so σ does indeed map to a

valid path. As α only maps to segments which end at height 0, it is clear that the

path ends at height 0, and ρ uses the first step as a corrective step to ensure the

path starts at height 0. α, δ and ρ only map to the steps H
{χ}
0 , H

{χ}
1 , U

{χ}
1 , D

{χ}
1

with χ ∈ {w, b}, so all steps lie in the strip of width 1. Thus all paths in the

image of σ lie inM1. We note that walks in T3 map to Motzkin paths of the same

length. This is clear as α and ρ only map between segments of the same length.

We must also show that σ is defined on all walks in T3. To do this we must

show that all segments are mapped by ρ and α. Recall that the segments of a

walk in T3 are uniquely defined by cutting the walk whenever it reaches a vertex

in subset 0 or 1. Thus it is clear that all segments are of length 1 or 2. For the

purposes of ease of reading, we will now introduce the notation that vertices in

subsets 0, 1, or 2 are written as v0, v1, or v2 respectively. As all walks in T3 start
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at a corner vertex v2, the first segment must be a one-step path, either v2 → v3

or v2 → v1. Thus it must be either e or c′, which is exactly the set on which ρ is

defined.

A middle segment (one which is not the first or last segment) must both start

and end at vertices in {v0, v1}. Thus it is either a one-step path of the form v0 → v1

or v1 → v0, or it is a two-step path of the form v1 → v2 → v1, v1 → v2 → v0,

v0 → v2 → v1 or v0 → v2 → v0. The last segment can be any of the middle or first

segments. However, it may also end at v2, which allows for the one-step paths

v1 → v2 and v0 → v2. This list corresponds precisely to the set T on which α is

defined. Thus σ is defined on all walks in T3.

It remains to show that σ is indeed a bijection, which we do by giving its

inverse t : M1 → T3. As with σ, we must first define some other maps and

variables. For a path in M1, we define xi to be the number of white steps

(H
{w}
0 , H

{w}
1 , U

{w}
1 , D

{w}
1 ) in the first i steps of the path, and yi to be the number of

black steps (H
{b}
0 , H

{b}
1 , U

{b}
1 , D

{b}
1 ) in the first i steps of the path. We then define

zi = xi − yi + 2. We proceed to cut the path whenever zi = 0 or zi = 1, creating

k segments ζ1 ζ2 . . . ζk, where each segment ζi consists of either 1 or 2 steps (it is

in either L3 or L3
2).

We now define the set Q, which consists of the 40 possible segments of a path

in M1 of length 1 or 2. It consists of all 8 elements of L3 plus the 32 connecting

elements of L3
2 (for example, H

{w}
0 H

{w}
0 connects but H

{w}
0 H

{w}
1 does not, as H

{w}
0

ends at height 0 and H
{w}
1 begins at height 1). The list of elements could also
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be viewed as the 20 elements in the set P (defined above immediately before the

definition of δ), plus their flips, or more precisely, their images under δ.

Let Q =



H
{w}
0 , H

{w}
1 , D

{w}
1 , U

{w}
1 , H

{b}
0 , H

{b}
1 , D

{b}
1 , U

{b}
1 ,

H
{w}
0 H

{w}
0 , H

{w}
1 D

{w}
1 , D

{w}
1 H

{w}
0 , U

{w}
1 D

{w}
1 ,

H
{w}
1 H

{w}
1 , H

{w}
0 U

{w}
1 , U

{w}
1 H

{w}
1 , D

{w}
1 U

{w}
1 ,

H
{w}
0 H

{b}
0 , H

{w}
1 D

{b}
1 , D

{w}
1 H

{b}
0 , U

{w}
1 D

{b}
1 ,

H
{w}
1 H

{b}
1 , H

{w}
0 U

{b}
1 , U

{w}
1 H

{b}
1 , D

{w}
1 U

{b}
1 ,

H
{b}
0 H

{w}
0 , H

{b}
1 D

{w}
1 , D

{b}
1 H

{w}
0 , U

{b}
1 D

{w}
1 ,

H
{b}
1 H

{w}
1 , H

{b}
0 U

{w}
1 , U

{b}
1 H

{w}
1 , D

{b}
1 U

{w}
1 ,

H
{b}
0 H

{b}
0 , H

{b}
1 D

{b}
1 , D

{b}
1 H

{b}
0 , U

{b}
1 D

{b}
1 ,

H
{b}
1 H

{b}
1 , H

{b}
0 U

{b}
1 , U

{b}
1 H

{b}
1 , D

{b}
1 U

{b}
1



.

Recall that earlier (immediately preceding the definition of α) we defined the

set of symbols T = {a, b, c, d, a′, b′, d′, e′, ce, df, dg, dh, cc′, df ′, dg′, dh′, e′e, d′f, d′g, d′h,

e′c′, d′f ′, d′g′, d′h′} . We now define the map r : Q → T , which maps segments of

Motzkin paths ζi, for 2 ≤ i ≤ k, to segments of triangular walks, as follows:

• r(H
{w}
0 ) = r(H

{w}
1 ) = c when i = k and zk ≡ 2 mod 3

r(H
{w}
0 ) = r(H

{w}
1 ) = a otherwise ,

• r(D
{w}
1 ) = r(U

{w}
1 ) = d when i = k and zk ≡ 2 mod 3

r(D
{w}
1 ) = r(U

{w}
1 ) = b otherwise ,
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• r(H
{b}
0 ) = r(H

{b}
1 ) = e′ when i = k and zk ≡ 2 mod 3

r(H
{b}
0 ) = r(H

{b}
1 ) = a′ otherwise ,

• r(D
{b}
1 ) = r(U

{b}
1 ) = d′ when i = k and zk ≡ 2 mod 3

r(D
{b}
1 ) = r(U

{b}
1 ) = b′ otherwise ,

• r(H
{w}
0 H

{w}
0 ) = r(H

{w}
1 H

{w}
1 ) = ce , • r(H

{b}
0 H

{w}
0 ) = r(H

{w}
1 H

{b}
1 ) = e′e ,

• r(H
{w}
1 D

{w}
1 ) = r(H

{w}
0 U

{w}
1 ) = df , • r(H

{b}
1 D

{w}
1 ) = r(H

{w}
0 U

{b}
1 ) = d′f ,

• r(D
{w}
1 H

{w}
0 ) = r(U

{w}
1 H

{w}
1 ) = dg , • r(D

{b}
1 H

{w}
0 ) = r(U

{w}
1 H

{b}
1 ) = d′g ,

• r(U
{w}
1 D

{w}
1 ) = r(D

{w}
1 U

{w}
1 ) = dh , • r(U

{b}
1 D

{w}
1 ) = r(D

{w}
1 U

{b}
1 ) = d′h ,

• r(H
{w}
0 H

{b}
0 ) = r(H

{b}
1 H

{w}
1 ) = cc′ , • r(H

{b}
0 H

{b}
0 ) = r(H

{b}
1 H

{b}
1 ) = e′c′ ,

• r(H
{w}
1 D

{b}
1 ) = r(H

{b}
0 U

{w}
1 ) = df ′ , • r(H

{b}
1 D

{b}
1 ) = r(H

{b}
0 U

{b}
1 ) = d′f ′ ,

• r(D
{w}
1 H

{b}
0 ) = r(U

{b}
1 H

{w}
1 ) = dg′, • r(D

{b}
1 H

{b}
0 ) = r(U

{b}
1 H

{b}
1 ) = d′g′,

• r(U
{w}
1 D

{b}
1 ) = r(D

{b}
1 U

{w}
1 ) = dh′ , • r(U

{b}
1 D

{b}
1 ) = r(D

{b}
1 U

{b}
1 ) = d′h′ .

We now define the map s : {H{w}0 , U
{w}
1 , H

{b}
0 , U

{b}
1 } → {e, c′}, which will be

used to map the first segment ζ1, as follows:

• s(H{w}0 ) = s(U
{w}
1 ) = e ,

• s(H{b}0 ) = s(U
{b}
1 ) = c′ .

We can now define our inverse map t :M1 → T3:
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• if k = 0 then φ(ξ) = ε ;

• if k ≥ 1 then

t(ζ1 . . . ζn) = s(ζ1)
k∏
i=2

r(ζi) ;

where ξ and ε denote the empty path on M1 and the empty walk on T3

respectively.

It remains to show that t is an inverse to σ. We first deal with the trivial

cases; if n = 0 then t(σ(ε)) = t(ξ) = ε and σ(t(ξ)) = σ(ε) = ξ. We now note that

s(ρ(υ1)) = υ1 for υ1 ∈ {e, c′}, and r(δ(α(υi))) = r(α(υi)) = υi for υi ∈ T , i ≥ 2.

We also have that δ(α(r(ζi))) = ζi when ζi ∈ Q, i ≥ 2 and ζ1 ζ2 . . . ζk ∈ M1.

This last equality can easily be shown using an induction-style argument, working

from the last step backwards; by inspection, α(r(ζi)) equals either ζi or the flip

of ζi. δ leaves the last step ζn unchanged, and ζn must end on the x-axis, so

δ(α(r(ζn))) = α(r(ζn))) = ζn, and then working backwards, we see that δ(α(r(ζi)))

must end at the same height as ζi for all i. Following this reasoning, we also get

that ρ(s(ζ1)) = ζ1.

We also note that the cuts which split up a walk P ∈ T3 occur at exactly

the same vertices (after the same numbers of steps) as the cuts in the Motzkin

path σ(P ), and vice versa (for P ∈ M1 and t(P )). This is because of the similar

parity arguments used to make the cuts, and the link between clockwise steps and

white steps, and anticlockwise and black steps. Thus when considering t(σ(P ))

and σ(t(N)), for walks P ∈ T3 and paths N ∈M1 respectively, we do not need to
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be concerned about re-cutting the path midway through the mapping, and we are

justified in using the same value k to denote the number of cuts in each path/walk.

Now, using the observations above, if a path of n ≥ 1 steps in T3 is written as

υ1υ2 . . . υk, where υi ∈ T for 2 ≤ i ≤ k and υ1 ∈ {e, c′}, we have that

t(σ(υ1 . . . υk)) = t
(
ρ(υ1) δ

( k∏
i=2

α(υi)
))

= t
(
ρ(υ1)

k∏
i=2

δ(α(υi))
)

= s(ρ(υ1))
k∏
i=2

r(δ(α(υi)))

= υ1

k∏
i=2

υi

= υ1 . . . υk .

If a path of n ≥ 1 steps in M1 is written as ζ1 ζ2 . . . ζk, where ζi ∈ Q for

2 ≤ i ≤ k and υ1 ∈ {H{w}0 , U
{w}
1 , H

{b}
0 , U

{b}
1 }, we have that

σ(t(ζ1 . . . ζn)) = σ
(
s(ζ1)

k∏
i=2

r(ζi)
)

= ρ(s(ζ1)) δ
( k∏
i=2

α(r(ζi)
)

= ρ(s(ζ1))
k∏
i=2

δ(α(r(ζi))

= ζ1

k∏
i=2

ζi

= ζ1 . . . ζn .

Thus t is an inverse to σ and so σ is a bijection.
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