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Abstract

This thesis investigates the use of multidimensional control of synthesis parameters

in electronic music, and the impact of controller mapping techniques on creativity.

The theoretical contribution of this work, the EARS model, provides a rigorous

application of creative cognition research to this topic. EARS provides a cognitive

model of creative interaction with technology, retrodicting numerous prior findings

in musical interaction research. The model proposes four interaction modes, and

characterises them in terms of parameter-space traversal mechanisms. Recommen-

dations for properties of controller-synthesiser mappings that support each of the

modes are given.

This thesis proposes a generalisation of Fitts’ law that enables throughput-based

evaluation of multi-dimensional control devices.

Three experiments were run that studied musicians performing sound design tasks

with various interfaces. Mappings suited to three of the four EARS modes were

quantitatively evaluated.

Experiment one investigated the notion of a ‘divergent interface’. A mapping geom-

etry that caters to early-stage exploratory creativity was developed, and evaluated

via a publicly available tablet application. Dimension reduction of a 10D synthesiser

parameter space to 2D surface was achieved using Hilbert space-filling curves. Inter-

action data indicated that this divergent mapping was used for early-stage creativity,

and that the traditional sliders were used for late-stage fine tuning.

Experiment two established a ‘minimal experimental paradigm’ for sound design

interface evaluation. This experiment showed that multidimensional controllers were

faster than 1D sliders for locating a target sound in two and three timbre dimensions.
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The final study tested a novel embodied interaction technique: ViBEAMP. This

system utilised a hand tracker and a 3D visualisation to train users to control 6

synthesis parameters simultaneously. Throughput was recorded as triple that of

six sliders, and working memory load was significantly reduced. This experiment

revealed that musical, time-targeted interactions obey a different speed-accuracy

trade-off law from accuracy-targeted interactions.
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CHAPTER 1

Introduction

1.1 The Controller

Can we control more than one thing at once? More specifically, can a musician

simultaneously manipulate multiple aspects of a sound in a spontaneous yet con-

trolled fashion? This question is the central thread that runs through this thesis.

Addressing this question will raise further, more complex questions, which will re-

quire ideas taken from a wide range of scientific and creative disciplines to answer.

What are the limits of the human brain’s ability to control multiple parameters in

parallel, and do these cognitive processes differ from controlling a single parameter?

Are there speed (or other) gains to be made using this parallel mode? Are there

certain ways of presenting parameters that our brains can more easily process? How

can we measure the amount of control achievable with a controller? When is control

creative? Can something be out of control but still be useful, creatively speaking?
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In this thesis, we will tackle these questions by focusing the design of interfaces

for the control of sound synthesiser timbre and the creation of electronic music.

We shall investigate how the design of these interfaces has an effect on the creative

process, how different types of interfaces may suit different stages of the creative

process, and how interaction in a creative or musical fashion differs from everyday

computer use. In particular, this work focuses on the difference between using single

dimensional controls such as sliders and knobs, and multidimensional controllers

with many degrees of freedom.

The overwhelming majority of commercial musical interfaces still involve editing

musical parameters in a serial, one-at-a-time fashion. This is quite different from

more traditional musical instruments, where performers play many notes simultane-

ously, and can often control multiple aspects of timbre in real-time. The difference

between these control paradigms is quite marked. Not only in the practical senses,

such as the way the musician learns their operation, how long the parameters take

to adjust, or how accurately the musical details can be specified; but also the sub-

jective ‘feel’ of these interfaces, what musicians are consciously attending to when

using them, and even the kind of music that emerges from them. Do these more

subjective experiences relate to the objective dimensional structure of the interface?

Is it impossible to relate quantitative measures such as speed and accuracy to rich

and complex artistic experiences, or can we construct a theory that bridges this se-

mantic gap? With the increasing availability of new multidimensional input devices

such as multi-touch screens, the Kinect, and the Leap Motion hand tracker these is-

sues are becoming increasingly relevant for musical instrument designers, electronic

musicians, digital artists and the HCI field in general.

The principal goals of this research were to:

1. Theorise about some of the mental processes that underlie the navigation of

musical parameter spaces, and propose a cognitive model of these creative
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search strategies.

2. In view of the above model, establish a methodology to evaluate interfaces

with respect to their creativity-supporting ability.

3. Design a variety of novel interfaces using new multidimensional input devices

to augment these different control strategies.

4. Quantitatively test these interfaces, via user studies of synthesiser sound design

tasks.

5. Relate these results to existing issues in NIME (New Interfaces for Musical

Expression) research.

First, we shall discuss the general motivations behind this thesis topic. If the

above questions can be answered, is it just electronic musicians that benefit? What

other knowledge is to be gained that may have benefits further afield? What draws

people to study musical interaction?

1.2 Motivating Musical Interaction Research

It could be thought that the study of electronic musical interfaces is something of

a niche subject. Put bluntly, why should we devote time and energy studying the

workflow of a small minority of individuals producing music that, on average at

least, hardly anyone will ever hear? Why should universities spend their limited

budget on the research into exotic noise making contraptions that few people will

ever use1? Will we increase the productivity of the world economy? Will it make

humankind happier? Will we be delving into any fundamental scientific mysteries?

1Digital Musical Instruments often suffer from the “problem of the second performer” [McPher-
son and Kim, 2012; Jordà, 2004]
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Surprisingly perhaps, I think the answer on all three counts is yes. In this section

I argue that the New Interfaces for Musical Expression (NIME) research field has

unique potential with regard to transforming the way we interact with computers,

and potentially of great interest to researchers in the wider field of Human-Computer

Interaction (HCI).

1.2.1 Computer Music as “Extreme HCI”

Musical performance is consistently mentioned as being a very special form of inter-

action by researchers in other fields. In psychology literature it is cited as being one

of the pinnacles of human cognitive and motor abilities [Penhune and Steele, 2012;

Barrett, 1998; Limb and Braun, 2008; Ericsson, 2006]. It is also an aspirational,

and even therapeutic endeavour in that it may give rise to peak experience states

such as Flow [Wrigley and Emmerson, 2013; O’Neill, 1999], and self actualisation

[Maslow, 1968]. In the HCI literature it represents an example of a highly opti-

mal interaction, in terms of speed, accuracy, engagement and embodiment [Buxton,

1997; Kirsh, 2013].

Reasons why electronic music interaction is an exciting proving ground for novel

interaction technologies include the following:

1. Extreme technological reliance: without electronics, electronic music does not

exist. Therefore the technology’s benefits and disadvantages, and the effects

of interface design on the creative process are brought into sharp relief.

2. High user motivation: The electronic music community are enthusiastic, mo-

tivated, novelty-seeking, and willing to put in time and effort in testing new

technologies.

3. Ability of users to reflect and critique: The electronic music community is

technologically literate, highly self-aware, and take a great interest in how

5



technology affects their creative process, as attested by responses to the sur-

veyB.

4. A single individual takes responsibility for the entire creative process. The

proliferation of easily accessible music software and hardware has empowered

a large number of solo music producers, who alternately take on the roles of

composer, producer, arranger, stage performer and audio engineer. This makes

the study of the creative life-cycle simpler than for, say, orchestral music.

5. Altered subjective states : The creative process is very different from casual

computer use. The brain is calling on all its resources: imagination, technical

skill, emotion, experience and the desire for self expression. Mental states are

heightened, but also quite delicate and fleeting, even indescribable. The way

the mental states of the performer are conveyed to the audience is still myste-

rious, some would say impossible to investigate scientifically. What happens

when these high-level mental states run up against the nuts and bolts of tech-

nology? How is it possible to design for psychological processes about which

so little is known?

6. Complex, high-dimensional spaces : The parameter space of electronic music

features many interacting perceptual dimensions. A single sound object may

be the result of setting tens or even hundreds of controls. Other creative

domains, such as writing, seem well served by current serial input devices

such as the keyboard. Music poses far tougher questions about how best to

navigate these higher-dimensional spaces.

7. Obvious catastrophic failure: If technology falls short in terms of speed, ac-

curacy or flexibility, this becomes painfully highlighted when in musical sit-

uations. Any short-fall in this regard leads to real-time music becoming im-
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possible. Music is an extreme use case: where interface ideas can be tested to

destruction. Buxton [1997] noted:

“There are three levels of design: standard spec., military spec.,

and artist spec. Most significantly, I learned that the third was

the hardest (and most important), but if you could nail it, then

everything else was easy. After my work with artists, my research

career at the University of Toronto and Xerox PARC was relatively

simple.”

In addition, music technology research is a unique area in terms of the skills

of the individual researchers that are drawn to it. As we shall see, an individual’s

ability to span multiple creative domains is considered an important factor con-

tributing to transformational creativity [Cśıkszentmı́hályi, 2009; Simonton, 1996].

NIME research — being located at the nexus of art, music, philosophy, computer

science, signal processing and cognitive science — seems to attract those individu-

als with both the explicit knowledge and implicit intuitions that could give rise to

radical synthesis between these disparate disciplines. There is potential to narrow

the divide between the “two cultures” [Snow, 2012] of art and science. Not only

does this research field have a unique set of problems, but also a unique set of skills

with which to solve them. The solutions to these problems may be of great benefit

in other fields, as we shall discuss next.

1.2.2 Digital Productivity and Input Device Throughput

Much of the global economy is fuelled by human creativity. That is, by the hu-

man brain’s ability to generate novel, useful concepts and artefacts. These novel

ideas can then be replicated across society and utilised, ideally, to increase quality
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of life. Much of this creativity may go on in the minds of people having conversa-

tions, walking in the countryside, or mulling over a book. However, an increasing

amount of creativity occurs whilst using a computer. Computers are a means — like

writing, diagrams, and mathematical symbols — of extending the abilities of the

mind [Clark and Chalmers, 1998]. The flexible externalisation of words, images, and

numerical quantities can significantly augment cognitive abilities such as memory,

spatial reasoning and numerical calculations.

Creativity is already augmented by computers to certain extent, but could it

be augmented better? What is different about augmenting creativity compared to

other cognitive processes? First of all it would seem we need a definition of what

creativity is, and a model of the processes of which it comprises (this is the subject

of Chapter 3). Creativity is complex, and our understanding of it still poor, but

even given a most prosaic definition — that creativity is the production of some new

information — we already see that the interface is crucial. The computer’s interface

is the means of transforming mental information into digital form. Enhancing the

speed and fidelity of the connection between the creator’s intentions and the data

within the computer is an essential prerequisite to the development of digital creative

artefacts. Therefore the bandwidth, or throughput of the human-computer input

channel will have a significant effect on how long it takes for an idea to be realised,

and quite possibly whether it is realised at all.

In recent years we have come to expect constant improvement in information

technology. What progress are we making in increasing the throughput of these

input channels? Some futurists, most famously Kurzweil [2005], extrapolate Moore’s

law (the exponential increase in information processing power throughout history)

to apply to machine intelligence in general, and propose a “singularity”, where the

speed of technological intelligence outstrips our ability to understand it. Vinge

[1993] claimed:
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Figure 1.1: Fifty years of interface research has not resulted in many revolutionary
designs reaching the mainstream, though perhaps a tendency to construct devices from
plastic instead of wood. Top left: Douglas Engelbart’s mouse [English et al., 1967]. Bottom
left: a modern mouse (2014). Top right: the Minimoog (1970)[Pinch, 2003]. Bottom right:
the Moog Sub 37 (2014).

“Within thirty years, we will have the technological means to create

superhuman intelligence. Shortly after, the human era will be ended.”

But Moore’s law is not universally applicable to all technologies, not even all

information technologies. The speed of many non-informational processes appear

stagnant, or even declining, for example the speed of inner city traffic or transatlantic

passenger flights. But more surprisingly, human-computer input devices would ap-

pear to number among these stagnant technologies. Whilst the responsiveness and

expressiveness of the graphical user interface (GUI) has undoubtedly improved, the

physical channel between our hands and our machines has barely changed since the

advent of the era of personal computing2.

Why should interface throughput be stagnant? Due to the inflexibility of proce-

dural knowledge, humans demand interfaces that are consistent with learned skills

2Will we have to wait Vinge’s remaining “eight years” for a superhuman intelligence to arrive
and redesign our input devices for us?
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[John and Kieras, 1996; Shneiderman and Plaisant, 2004]. Therefore user inter-

face metaphors can become “locked in”, for example the QWERTY keyboard is

locked in to preserve existing typing skills. In the musical domain, the multi-track

recording studio paradigm expressed in most DAWs3, or the rotary dials used to

control software synthesis (soft-synth) parameters, seem also to have become locked

in. Granted, making use of existing interface skill is important [Antle et al., 2009];

but it is a surprising fact that both the rotary knob synthesiser interface format

and the computer mouse [Myers, 1998] are half a century old (Fig. 1.1). Despite

the hundred million-fold increase in CPU processing power since the 60’s, human to

computer throughput has barely changed.

It does not seem to be the case that high-throughput devices exist and have

merely been overlooked, or failed to gain mainstream acceptance. Rather, it ap-

pears that nobody has yet designed a device, or even a theoretical approach that

will significantly increase throughput. In a recent study the mouse was compared

to two more recent input technologies: a touch screen and a hand tracker. The

mouse and touch-screen performance showed comparable throughput, free gesture

was worse [Sambrooks and Wilkinson, 2013]. Are we even going backwards? Syn-

thesiser interfaces made a move toward being virtualised in the computer in the late

90’s, but consensus seems to be that this was a bad move: substantial numbers of

musicians and manufacturers having back-pedalled to analogue technology [Barlind-

haug, 2007]. Take, for example, promotional material such as this, from synthesiser

manufacturer Korg4, persuading us to return to 60’s style analogue step sequencing

using rotary pitch controls:

“Liberate yourself from the numerically-bound parameter editing that’s

typical on a DAW; you’ll enjoy truly musical inspiration as you train

3Digital Audio Workstations
4http://www.korg.com/us/products/dj/sq_1/
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your ears and concentrate on what your fingertips are doing. Don’t miss

the experience of music that’s driven by your instinct.”

Whether or not you buy these claims, what is interesting is that no less than four

cognitive processes are mentioned: inspiration, training, concentration and instinct.

Can we actually use cognitive science to investigate claims like these? Why would

seemingly more advanced technology be a step backwards? Is there a mistake that

interface designers keep making, or is increasing throughput impossible for some

fundamental cognitive reason?

Witnessing even a moderately competent musical performance would persuade us

that higher throughput is possible. To watch the performance of a concert pianist is

to witness a virtuoso display of “space-multiplexed” [Fitzmaurice and Buxton, 1997]

user input. In their discussion of high-performance interfaces, Despain and Wester-

velt [1997] estimate the throughput of a virtuoso pianist at 300 bits/s, contrasting

with about 50 bits/s for a good typist. Estimates of throughput values for a mouse

range from 4 to 5 bps [MacKenzie, 2015]. Epworth [2013] cites more conservative

figures of around 25 bits/s for piano playing (and similar figures for the fastest ever

typing speed). This would imply that the rate at which a musician can produce

information, i.e. their potential for ‘digital productivity’ is much higher than that of

the average computer user, and higher even than conscious processing itself, which

has been estimated around 15-18 bits/s [Epworth, 2013]. The increase in speed that

comes with virtuosity is obvious, but usually comes at a cost in training time: some

tens of thousands of hours in the pianist’s case [Ericsson, 2006]. So a key question is

how much practice is required to reach a throughput greater than that of a standard

‘serial’ computer interface. The second and third experiments in this thesis tackle

this question.

I argue that there are two main factors retarding interface throughput:
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1. The lack of a methodology to measure the throughput of high-dimensional

controllers.

2. Over reliance on conscious thought. A failure to design for implicit brain

systems, and a refusal to accept technologies that require training of implicit

skill.

In fact, almost all our thoughtlessly performed everyday movements, such as

reaching, grasping an object, talking to a friend, or walking through a crowd, are

likely to have an information rate exceeding that of a WIMP interface. “Thought-

lessly performed” is the key phrase here, however. There is considerable evidence

that explicit thought processes have surprisingly limited bandwidth, consciousness

itself is an information processing bottleneck [Epworth, 2013]. The fact that we

constantly mistake our conscious abilities for our complete abilities is considered

to have had a negative effect on interaction design [Nørretranders, 1991; Norman,

2002].

When using an overly complex and analytical interface a musician feels the

bottleneck instinctively: almost like a “barrier” to their musical instinct. One of

the goals of this thesis is to show that this barrier is not some eternally mysterious

incompatibility between the fiery artistic temperament and cold digital technology;

it is a failure to utilise high-bandwidth, subconscious cognitive5 machinery: those

sensorimotor brain modules that we use every day to turn our intentions into reality.

Musical interaction may be an ideal experimental arena to investigate the bandwidth

of conscious and unconscious control, and look at the effect of changes in throughput

on the subjective experience of expressive performance. By studying and improving

musical interaction — such that this invisible barrier to expression is removed — we

5Some psychology fields take “cognitive” to imply conscious explicit processing of symbolic
information, and would say subconscious movement control is non-cognitive. I will use the word
in its broadest sense, to refer to any information processing in the brain.
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may discover secrets to unlocking the bandwidth and productivity of user interfaces

across many other domains.

1.2.3 Towards More Rewarding Interactions

Digital productivity may or may not be a worthwhile goal, but there is a deeper,

more philosophical slant to musical interaction research, which relates to what our

technology is ultimately for. One of the interesting aspects of NIME research, as

opposed to 21st century technological culture in general, is that it raises questions

about the motivation for computer use.

A large amount of computer science research seems to be driven by a tacit goal of

automating human cognitive processes. The goal of a machine is to automate some

laborious task that the human would have done, and do it faster and more accurately.

According to this goal, the ideal musical interface would be a single button labelled

“make music for me”. But what if the task is not laborious, what if it is fun? What

if the task has no fixed objective? What if the goal is self-expression? In these

cases the assumptions that motivate automisation are undermined. Asking what

interface designs produce most engagement between human and machine changes

our perspective somewhat: suddenly the human is not something to imitate and

replace, but someone to assist and inspire.

This thesis draws on a number of models of creativity taken from the compu-

tational creativity field, but is less focused on creating an artificial musician, and

more in using these models to assist the musician. Artificial creativity is certainly

a fascinating exploit, and one that will produce a great deal of valuable knowledge

— some of which I have drawn on heavily in this thesis. But it is an endeavour

that would not seem to contribute directly to our quality of life. Philosophically,

my approach is to consider the expression of the human creative drive as the self
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evident good. This generates a very different stance toward the role of the com-

puter. Rather than “doing the work of a man”, the technology should be considered

as a tool or a medium for the unfolding of the creative act. In modern society, we

see the “work” as the goal, and plan our temporal experiences in order to achieve

the completion of the work. In reality, peak experience is the goal, and we should

plan our work such that we can enter and reside within this optimal cognitive state.

Automating physically embodied, skilled work is therefore suspect [Morris, 2002].

By doing so, we are undermining the preconditions for the peak experience of Flow

[Cśıkszentmı́hályi, 1991].

In this regard, the current work shares many sympathies with the “third wave”

of HCI research [Harrison et al., 2007]. Third wave HCI deals with more affec-

tive concerns: embodiment, intimacy, and a reduced emphasis on work. On the

other hand, the methodology presented in his thesis is firmly in the 2nd wave camp.

With its emphasis on information processing, cognitive models and and quantita-

tive measurement, this work may seem to hark back to an earlier, more aggressively

reductionist era. I take the view that whilst newer approaches certainly have huge

relevance for musical interaction, the second wave programme is far from complete6,

and far from becoming obsolete. Just because artistic concerns appear to be un-

amenable to a reductionist analysis does not mean they aren’t. On the contrary,

considering the accelerating progress in cognitive neuroscience, one might predict

that the application of neuroscientific concepts to third wave concerns will become

increasingly fruitful over the coming decades.

One novel approach taken in this thesis is that some concerns that may have been

considered marginal in second wave HCI (see Harrison et al. [2007]) are addressed

in a quantitative fashion, including indirect, fluid and multiple goals; an emphasis

on skilled, embodied cognition; and an acknowledgement of curiosity, exploration

6See for example, the debate concerning Fitts’ law and device evaluation in Section 2.4.1
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and fun7. One of the theoretical contributions of this thesis is to propose how

exploratory interaction may be thought of in information processing terms. In short,

this work concurs with the critiques of task-based HCI methodologies that arise in

the NIME literature [Johnston, 2011; Stowell et al., 2009; Dobrian and Koppelman,

2006] but seeks to extend reductionist quantitative models and methods such that

these critiques can be addressed.

Millions of people now use digital technology to make music. Most of these mu-

sicians have no real chance of making a living from it. For some reason, they feel

that it is is worth their while spending many hours working on intricately wrought

sonic artefacts with little or no obvious utility. Obviously the activity is rewarding.

Why? Perhaps if we knew why musical interaction was so motivating, other inter-

actions could be designed to be equally rewarding. Consider the impact on, not just

productivity, but job satisfaction if the office workers of the world were interacting

with their computers with the virtuosity of a concert pianist. What if all our inter-

actions in supermarkets, public transport networks and political systems could take

on the qualities that make peak musical experience so intrinsically magical, joyful

and frictionless?

Music, therefore, represents a way to interact with technology that all system

design should aspire to emulate. If people are tremendously productive when they

are doing it, and they feel good while doing it, then it seems a very good idea to

research why this should be so. A greater understanding of the cognitive science

of artistic interaction may one day uncover interaction design strategies that help

bring about a radical transformation of computer use during working life.

7It may seem that the concept of fun is incommensurate with the information processing
paradigm, but as we shall see in Chapter 3, information-theoretic considerations may shed consid-
erable light on what fun really is, e.g. [Schmidhuber, 2010].
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1.2.4 Scientific Questions

The third motivation for studying musical interaction is to answer some more fun-

damental scientific questions about the operations of the human brain.

The development of music throughout the ages is a fascinating case of technology

inspiring and enabling creativity. First via new acoustic instruments with richer

tones and increased playability, and then through increasingly sophisticated audio

manipulation technology. The carved bones of neolithic flutes, the cast iron frame

of the piano, magnetic tape recorders, digital samplers, and the computer studios

of today have all utilised and reflected the science and technology of the day. All

have transformed the very music we produce. To say that technology is just a tool

by which we realise our internal ideas is therefore very wrong: it provides entirely

new conceptual spaces to explore.

Scientifically, the observation that the technological means of realisation mas-

sively affects the creative process should immediately alert us to a potential ‘way in’

to investigating the mysteries of creativity. The experimenter can set up a number

of experimental conditions by providing an artist with different technologies, and

then can observe creative outcomes as a result of manipulating these conditions.

Furthermore, if that technology can record data-traces of the path the artist takes

through the space of possible solutions, then the researcher is given quantitative

data to analyse for each experimental condition. They can then investigate in detail

the smaller individual actions that make up the larger creative process.

If musical interaction experiments are carefully designed to test hypotheses about

the structure of creative thought, they not only have the potential to find out which

interface is better for creativity, but more importantly to find out why, and perhaps

even shed light on the mental processes involved. This thesis sits alongside other

work such as Nash [2012] and Jennings et al. [2011] in attempting this type of
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research programme.

1.3 Scope and Outline

‘Deep not wide’ is a guideline often heard with regard to approaching doctorate level

research, with the implication that it is better to investigate a narrow field in depth

than be spread too thinly. Nevertheless, as we shall see in the review of creativity

research, diversity is essential to any creative endeavour. Diversity of influences and

recombination of ideas are a vital aspects of creative cognition and the progress

of human culture. Some research topics are necessarily multidisciplinary, and the

NIME field is one. Diversity on its own is not useful however, rather it is the synthe-

sis of remote concepts that provides insight, by connecting and explaining previously

unrelated phenomena. In order to investigate how interfaces and creativity interact,

I regard it necessary to draw on research from further up the hierarchy of scientific

knowledge. Figure 1.2 illustrates the scope of both the background literature and

the thesis. The principal focus of the experimental work is timbre control during a

sound design task. This topic principally falls under the umbrella of New Interfaces

for Musical Expression (NIME): the investigation of how an interface affects the

production of music, and how technology can be used to enable musical expression

and creativity. Next up is the wider field of HCI and interaction design: the art

and science of producing interfaces that enable humans to accomplish their infor-

mation manipulation goals; in particular content creation software, or “creativity

support tools”. These are computer systems that are designed to enable creative

content composition and enhance or augment creativity. This in turn can draw on

psychological research into creativity, which in turn requires background knowledge

of cognitive science, the study of information processing in the brain.
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Figure 1.2: Illustration of the scope of the literature review, and the contribution of this
thesis. This work, though ostensibly about timbre control, contains some contributions to
HCI and creative cognition.

1.3.1 Thesis Outline

This thesis starts by presenting a broad overview of some fundamental concepts in

cognitive science and creative cognition in Chapter 2. This includes the distinctions

between implicit and explicit processing in the brain; perception, action and move-

ment control; and embodied cognition. Also presented are information-theoretic

approaches to Human-Computer Interaction such as Fitts’ law.

In Chapter 3, models of creative cognition are discussed. Stage models such as

the incubation-illumination model are reviewed. Complementary processes such as

divergent and convergent thinking are outlined. Computational creativity models

are presented, such as the Creative Systems Framework, blind variation and selective

retention (BVSR), and the notion of creativity resulting from a drive to predictively

code experience data.

A number of founding notions for the rest of the argument are distilled from the

cognitive science literature:

1. The free-energy principle.

2. Dual Process theory, Global Workspace theory.
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3. Embodied Cognition, affordances and active inference.

From HCI literature:

1. The cognitive mirroring principle.

2. The cognitive pipelining principle.

3. Interface bandwidth maximisation principle.

From the creative cognition literature:

1. PSVSR model of creative cognition.

2. The Creative Systems Framework.

3. Creativity as data compression.

Some literature regarding Digital Musical Instruments and interaction with mu-

sic technology is reviewed in Chapter 4. In particular, design frameworks, evaluation

methodologies, and work that has investigated the geometry of mappings between

gestural controllers and the synthesiser engine parameters.

In the theoretical contribution, Chapter 5, a model of the interacting agent in

a perception-action loop is developed. The creative process is portrayed in terms

of a search through parameter space. The connection between a technological pa-

rameter space, a mental conceptual space, and a hypothetical fitness function is

outlined. The role of entropy reduction in creative interactions is proposed. Artistic

creativity is connected to the free-energy principle, and described as as an extension

of an agent’s desire to reduce surprise in their environment via creation of sensory

data. Portraying the musical instrument as a communications channel leads to a

role for Shannon information in musical expression. Consideration of information

flow through the perception-action loop leads to the proposal that the potential
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expressivity of an instrument is closely related to the throughput achievable with

the interface.

Fitts’ law can be used to measure the effectiveness of interfaces for 1D and 2D

target based interaction, but the methodology is the subject of some controversy. I

therefore propose an alternative measure of throughput, one applicable to arbitrary

n-dimensional search spaces. This is termed the “Index of Search Space Reduction”,

or ISSR. If a target is specified in advance, the rate of convergence on that target is

best measured by the amount of search-space volume reduction that is achievable in

a certain time. Given a large ensemble of recordings of users’ search trajectories, the

entropy of this distribution of search points can be calculated. The reduction of the

entropy of this distribution as the searches converge on the target provides a measure

of the average amount of information that ‘flowed’ from the participants through

the interface. If an interface demonstrates higher throughput than another at an

identical sound search task, it can then be said to be more effective. This approach

deviates somewhat from the ISO standard for Fitts’ law experiments. Whilst it may

sacrifice the predictive aspect of Fitts’ law, it has a number of useful advantages

over the current standard for device evaluations.

In live performance, this communications channel connects to the audience, but

perhaps more importantly also feeds back to the artist, and becomes a perception-

action loop. I claim that the tight coupling of perception and action (via affordances,

or active inference) results in the interface having a substantial influence on the

interaction strategy. This has knock-on effects on the route the artist takes through

solution space. Given that this route through parameter space is intimately related

to the route through conceptual space, the geometry of the parameter mappings

should reflect the geometry of the creative process in mental space. In other words,

the interface should augment whatever creative strategy the user seeks to employ

at a given time. This is an extension of the cognitive mirroring principle.
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The second part of the theory chapter then looks at the nature of four creative

strategies. In order to build a usable model of the geometry of creative thought pro-

cesses, I draw a distinction between divergent and convergent interaction. I attempt

to define these terms in a more rigorous way, with appeal to the cognitive models

discussed in Chapter 3. Convergence is defined as solution space traversal driven by

a prediction of increasing value. Divergence is traversal independent of these predic-

tions. I then claim that both explicit and implicit thought can generate divergent

and convergent strategies. This results in four ‘quadrants’, or parameter-traversal

strategies, that have fundamentally different properties. This forms the EARS

model of creative interaction. The four quadrants consist of Exploratory (implicit-

divergent), Algorithmic (explicit-convergent), Reflective (explicit-divergent), and

Skilled (implicit-convergent).

Once the connection between creativity and parameter space is made, this opens

up the possibility to investigate the actual paths that musicians take through pa-

rameter space, and design navigation strategies (via different mapping geometries)

conducive to creative results. I then offer a critique8 of the current standard of uni-

dimensional knobs and sliders or WIMP interfaces. I propose that these interfaces

can be understood to cater for only one quadrant of the EARS model (the algo-

rithmic/analytic). Analytic thought places excessive demands on working memory.

This cognitive load may inhibit reflective quadrant processes, leading to the subjec-

tive experience of “loss of perspective” and an interference with high-level aesthetic

goals.

The theoretical background established, we then move onto the design and imple-

mentation of some novel interfaces, and experimental studies that aim to test their

effectiveness. The investigation of alternative interfaces, ones that are design for the

“exploratory” and “skilled” quadrants, in direct comparison to standard “analytic”

8A development of the critique found in Hunt and Kirk [2000]
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interfaces, then forms the methodological basis for the three experiments.

Experiment 1, presented in Chapter 6, investigated the idea that divergent and

convergent phases of creative interaction require very different mapping strategies.

For this experiment, a novel, exploratory interface (Sonic Zoom) was developed,

which enables lossless dimension reduction of a synthesiser parameter-space to two

dimensional surface. The mapping is lossless in that it preserves access to the

entire combinatorial space of the high dimensional interface: this is achieved using

Hilbert space-filling curves. This 2D, zoomable interface is then provided alongside

a more traditional slider-based interface and released into the wild. The exploratory

interactions of over 400 users were logged, and a survey conducted. This experiment

revealed that the divergent mapping was indeed preferred for early-stage creativity,

and that the traditional sliders were used for late stage honing. Survey responses

revealed that users felt this interface did enhance the exploratory aspect of sound

design.

Experiment 2, in Chapter 7, attempted to establish a ‘minimal experimental

paradigm’ for investigating the difference between skilled and algorithmic interaction

quadrants. The principal aim was to compare separate, 1D parameter controls

(touchscreen sliders) to multidimensional controllers (an XY touchpad for 2D, the

Leap Motion for 3D), and determine whether the multidimensional controllers were

more suited to skilled interaction. This was carried out via a target matching sound

design task. Subjects had to match randomly generated target sounds as quickly

and accurately as possible by setting the parameters to the right values. Results

showed that after about two hours of practice, the XY pad was 9% faster than two

sliders for no accuracy loss, and the Leap was 17% faster than 3 sliders with 9%

accuracy loss. The results of this experiment were analysed using the Fitts’ law

based ISSR methodology presented in Chapter 5.

The final experiment (Chapter 8) built on the second, in that it was again a
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sound matching task, and again tried to ascertain if multidimensional controllers

were more effective for skilled interaction. This study, however, altered the task

to be tempo-based: users had to match targets in time to a metronome. It also

used 6 degrees of freedom, and only 8 target sounds, in order to more specifically

investigate well practised movements in a higher dimensional space. A system for

learning high-throughput interactions by means of visually matching hand poses

was developed: ViBEAMP9. This system allowed participants to rehearse matching

6 parameters at once by lining their hand up with a visual target; subjects would

then perform the target sequence again without guides to test how well they could

be memorised. This task revealed large differences between interface types, with the

leap motion being far more effective at fast matches than 6 sliders, in faster condi-

tions demonstrating over three times the throughput. The leap also exhibited far

less working memory load, as tested by participants having to perform a secondary

task of memorising and recalling sequences of up to 3 sound targets. Plotting en-

tropy reduction against movement time reveals that tempo-based interactions do

not conform to Fitts’ law. Rather they conform to a linear relationship between

movement velocity and absolute accuracy (sometimes referred to as the “Schmidt

paradigm”). This resulted in a throughput peak at a particular tempo.

In Chapter 9 I discuss the experimental results as a whole. I propose that

exploratory, algorithmic and skilled modes have different quantitative signatures

when analysed in terms of entropy reduction. Detection of these signatures may

enable researchers to investigate which modes are being used at any one time within

interaction data at longer time-scales for real creative projects. Detection of steady

algorithmic progress, exploratory wandering, and even moments of ‘inspiration’ may

be possible. I reflect upon how the experimentally untested ‘reflective’ mode of

creative interaction may be designed for and evaluated. I sketch out how all 4

9Virtual Body Emulation Assisted Multidimensional Performance
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quadrants, and the transitions between them, might be provided for in a single

system, and open research challenges in doing this. This leads to recommendations

of how designers can provide technology that better supports musicians’ creativity.

Finally, in a more speculative discussion, I extrapolate from the 9 cognitive

principles, and investigate the idea that these modes might display these distinctive

throughput signatures even within the brain: in conceptual spaces of vastly higher

dimensionality. This may have interesting implications for creative cognition, and

the nature of inspired states such as Flow.

The thesis concludes with a discussion of future directions for this research

project.

As background motivation for this work, a survey of 45 electronic musicians was

conducted. This investigated their attitudes to how technological interactions relate

to the creative process. The results of this survey serve to link the abstract problems

addressed by the theoretical work in Chapter 5 to the real-world problems faced by

musicians. The responses are analysed in terms of the EARS theory. The responses

showed that throughput and cognitive load are important issues to address, and that

EARS is a useful framework with which to investigate musical interaction issues.

Results from this questionnaire are presented in Appendix B.

1.3.2 Novel Contributions

This thesis makes a theoretical contribution to musical instrument research by:

1. Providing a condensed and concise theory of creative interaction with music

technology: the EARS model. This draws on some state-of-the-art develop-

ments in the cognitive science of creativity, and presents them in a way so as

to be useful for the design of interactive systems. This theory retrodicts and

clarifies some of the issues in the NIME research field.
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2. Providing some recommendations for design of musical interfaces that follow

from the above theory. This is done by describing four interaction modes

that need to be supported in music production software, detailing the rela-

tionships between them, and proposing geometrical properties that controller

to synthesis engine parameter mappings should possess in order to support

them.

3. Proposing a method for measuring the speed, accuracy and flexibility of mul-

tidimensional musical interfaces in terms of information throughput.

Empirical results that contribute to the NIME field include:

1. Implementing and testing an interface specifically designed for divergent, ex-

ploratory interaction. The value of this approach is tested ‘in the wild’ via a

publicly available mobile app.

2. Establishing a minimal experimental paradigm for multidimensional controller

evaluation, revealing differences between standard and multidimensional con-

trollers.

3. Proposing a high-bandwidth embodied interaction technique: the ViBEAMP

system, and experimentally confirm its effectiveness for timbre performance.

4. Revealing that musical performance, as in timely, rhythmic interaction, is

unique in the HCI field. Time-based interactions obey a different speed/accuracy

trade-off law from accuracy-based interactions such as mouse pointing.

This thesis also makes contributions to the more general HCI field by:

1. Proposing an way to measure the effectiveness of high-dimensional continuous

parameter interfaces. This approach provides a new perspective on Fitts’ law,
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and a clarification of some of the issues surrounding its application to interface

evaluation.

2. Investigating some causes of interface-induced working memory load.

3. Demonstrating that multidimensional controllers such as hand trackers provide

a route to higher bandwidth interaction, and proposing an easier way to train

users to make effective use of them, via virtual hand pose imitation.
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CHAPTER 2

The Interacting Brain: Cognitive Science and HCI

2.1 The Interacting Brain

This chapter reviews necessary elements of psychology and cognitive science, as they

apply to Human-Computer Interaction, creativity support technology, and electronic

music production. Attempting to characterise the human brain in a simple way poses

some immediate problems. Firstly, being the most complex system in the known

universe, the brain’s operations are still full of mystery. Even with modern brain

imaging techniques such as fMRI, and increasingly sophisticated neurologically in-

spired computational models, researchers are still just beginning to understand how

the brain supports complex human behaviour. Secondly, the literature is vast and

diverse: there are many ways to approach the study of behaviour, and many lev-

els of analysis; from individual neural computations—already a immensely intricate

system of molecular biology—right up to the study of culture and society: where in-
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teractions between many minds over human history have formed systems of immense

complexity.

A third difficulty is that restricting the scope to research that has relevance to

music production scarcely narrows the focus at all. Musical creativity is an ex-

tremely complex behaviour and makes use of almost all human faculties. Music is a

‘whole brain’ phenomenon [Ball, 2010; Limb and Braun, 2008]. Likewise, interact-

ing with computers requires a huge variety of cognitive processes [Card et al., 1983].

Almost all of what is omitted here may surely be relevant for musical interaction:

such topics as emotion [Juslin and Sloboda, 2010], music perception [Pearce, 2005],

linguistic and semantic thought [Koelsch et al., 2004], social bonding [Freeman III,

1998], and many more. However, as mentioned in the introduction, we restrict the

scope by focusing on a particular time-scale, ranging from the motor actions involved

in musical performance (around 100ms), to the completion of moderately complex

musical components (less than an hour). The eliminates consideration of the be-

haviour of neurons and low-level brain architecture, and also wider considerations

of long term artistic development, cultural value systems and so on.

The caveats above do not imply that a broad review of cognitive science is useless

for the study and design of creative musical interaction. On the contrary, the field

of Human-Computer Interaction (HCI) is necessarily based on knowledge of human

cognitive abilities [Card et al., 1983]. A wide range of key concepts in HCI such

as embodied cognition, affordances, working memory load and the speed-accuracy

trade-off can be directly motivated by considerations of cognitive architecture. In

fact, almost all areas of design can benefit from better understanding of how our

the mind works [Forsythe et al., 2014; Norman, 2004].

Whilst studying the mind is an immense challenge, the past few decades have

seen an astounding rate of progress in the cognitive sciences. The various disparate

strands of psychology are, as one would hope from any scientific endeavour, increas-
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ingly converging into a more unified picture. This review attempts to present this

unified picture, and make it accessible for digital music researchers. Cognitive sci-

ence and neuroscience are perhaps not as intimidating as might be imagined outside

the field. The real challenge in cognitive science is obtaining significant evidence for

theories, rather than the conceptual difficulty of the theories themselves.

This chapter is more of a broad ‘review of reviews’, rather than a presentation

of the state of the art in any particular specialism. Little attention will be paid to

the history and development of psychological theories. The experimental evidence

for these models, from brain lesion studies, brain imaging, animal and human be-

havioural studies and so on is not discussed. Also omitted are the open controversies

and scientific debates within the field. The aim here is to provide a brief overview

of the most relevant, well established, and concise theoretical constructs in order to

inform the theory of creative musical interaction in Chapter 5. As these theories are

presented, their relevance to Human-Computer Interaction and musical situations

will be considered.

Readers more familiar with cognitive science may proceed to Section 2.4, which

looks at Human-Computer interface design principles and evaluation methods in

more detail. Section 2.4.1 will investigate information-theoretic ideas of human

action such as Fitts’ law. Fitts’ law finds wide application in HCI, and will be

relevant to the proposed methods of quantitatively evaluating musical interfaces in

later chapters. Prior work with multidimensional controllers will be discussed.

Finally, we summarise by outlining and justifying the assumptions and simpli-

fications we will use for the rest of the thesis, outlining 3 principles of cognition,

and 3 principles of cognitively-inspired interaction design. These form the basis for

the review of creative cognition in Chapter 3, and the creative interaction model in

Chapter 5.
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2.2 Perceiving and Acting

2.2.1 What is the Brain For?

Fundamentally, what distinguishes brains from other biological organs is that it is

primarily responsible for controlling actions [Wolpert et al., 2001]. Actions are com-

plex, coordinated physical movements that maximise the chances of the survival

and flourishing of an animal1. In order to generate meaningful actions, the organ-

ism must obtain relevant information from the environment, by means of sensory

perception. It must process and transform that information: in order to generate

the optimal actions given the state of the world. Action is costly, in that it requires

energy, which is in limited supply. Also costly is information processing, for exam-

ple, the human brain consumes around twenty percent of the body’s energy budget

[Laughlin et al., 1998]. Therefore there is considerable selection pressure for brains

to process information in the most efficient way possible, as well as generating the

most efficient actions [Attwell and Laughlin, 2001].

Once the ability to sense and act upon the environment is established, it becomes

advantageous to evolve more sophisticated processing, to address such issues as:

• What aspects of the sensory information are most relevant?

• How can I move in order to better sense the environment?

• How can I predict the environment without direct access to the relevant sen-

sory data?

• If I act in a certain way, what will the effects be?

• How can I do all this using as few resources as possible?

1Or rather the genes of the animal [Dawkins, 2006]
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Consideration of possible solutions to the above problems already hints at the

complexity that can arise from the simple ability to sense and act, and the impor-

tance of predictive abilities. The continuity of evolution gives us hope that higher

forms of cognition can be understood better by looking at how the brain carries out

simpler actions. From basic cognitive functions such as memory and reinforcement

learning, to more sophisticated human behaviours such as curiosity, exploration,

science, art, and even electronic music: all are likely to be elaborations of this fun-

damental perception-action loop, indeed models of musical interaction often feature

action-perception feedback [Leman, 2008; Armstrong, 2006; Nash, 2012; Wessel and

Wright, 2002].

Efficiency of information processing is closely related to predictive coding and

information theory. In the same way that it would be inefficient to email an uncom-

pressed video file, it would be highly inefficient to perceive or act upon uncompressed

data. Data with causal regularities can be compressed by using predictive coding

[Bar, 2007], and hence also be used to anticipate future events in an efficient manner

Schmidhuber [2009]. The picture of the brain as a hierarchical, predictive model

generator is seen as an important unifying principle in modern cognitive science

[Dietrich and Haider, 2014; Friston, 2010; Clark, 2013], and is returned to in Section

2.2.7.

2.2.2 Brain Modules and Networks

The brain is not an amorphous mass of thinking material. The modular mind

hypothesis [Fodor, 1983; Meunier et al., 2010], which, in various forms, has been part

of psychology since its earliest days, is the conjecture that the brain is composed of

various subsystems, each with its own functional specialisation. It is the concerted

action of these systems working in unison that gives rise to more complex forms of
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Figure 2.1: Highly simplified layout of some important brain structures. The eyes would
face to the left. Some regions with a perceptual role are shown in blue, some regions with
a role in producing actions in red. The temporal lobe is mainly devoted to episodic and
semantic memory.

thought. Whilst not all cognition is encapsulated and modular, there certainly exist

regions of the brain devoted to specialised processing, and a number of aspects of

behaviour are well localised in specific anatomical structures. Figure 2.1 shows a

highly simplified version of the brain, illustrating some regions that will be referred

to later. A number of modules are shown in their approximate anatomical layout,

principally the main regions relevant to perception and action.

The emerging science of brain networks investigates the connections between

brain regions. Techniques such as Diffusion Tensor Imaging (DTI) enables re-

searchers to map the longer range connectivity (white matter) between regions

of the cortex (grey matter) [Le Bihan et al., 2001]. The complete map of these

connections is the so called ‘human connectome’ [Sporns et al., 2005]. The net-
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work architecture of the connectome resembles a ‘small world’ network: a graph

structure that features many local connections but fewer long range connections.

Hierarchically modular, small world topology provides resilience in complex sys-

tems [Meunier et al., 2010]. Minimising the number of long distance connections is

important for efficiency reasons, as they are costly to maintain, and introduce sig-

nalling latencies. Modular processes, then, are anatomically localised, encapsulated,

fast, specialised, and resource-light. Conversely, brain-wide processing utilises many

modules, involves long-range connections, and is slow and resource-hungry. How-

ever, this connectivity results in far more flexible and generalised processing due to

the ability to integrate information from very different memory sources and sensory

modalities. The encapsulated nature of smaller, less connected modules enables

them to run independently of one another, whereas the central ‘hubs’ and multi-

module network operations necessarily suffer more bottlenecks in their operation

[Marois and Ivanoff, 2005]. Nørretranders estimates that the ratio of subconscious

to conscious throughput may be as much as 1010 to 16 bits per second, and claims

that user interfaces being limited to the speed of conscious processing is therefore

highly inefficient [Nørretranders, 1991].

One of the most significant brain network findings in the last few decades is that

there exist two major networks in the brain that associate with conscious process-

ing. These networks are based around the ‘rich-club’ of some highly interconnected

nodes in the brain network, principally those in frontal regions (attentional control),

temporal regions (episodic and semantic memory) and parietal regions (associative

multi-modal processing and self-perception). Consciously reportable mental states

are strongly associated with these large networks [Dehaene, 2014]. The Default

Mode Network (DMN) is associated with the brain’s resting state [Buckner et al.,

2008]. The wakeful brain is rarely ‘resting’ as such, rather, it tends to be engaged

in ‘mind wandering’ [Mooneyham and Schooler, 2013; Schooler et al., 2011; Baird
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et al., 2012]. When the subject is not engaged with any particular task, they will of-

ten be ruminating over past events, simulating future events, conducting an internal

monologue, or merely wandering through an associative chain of thoughts: what we

would call a ‘stream of consciousness’. When subjects are engaged with an external

task and attending to their environment, another network is active: the Task Posi-

tive Network (TPN). Activation in these two networks are generally anti-correlated:

in other words we are either engaged with carrying out a task, or we are mind-

wandering, but not both at the same time. Intriguingly though, some brain imaging

experiments appear to show that creative improvisation simultaneously utilises some

components of both networks [Ellamil et al., 2012].

This distinction between localised, unconscious modules running in parallel, and

wide, conscious networks being serial will surface repeatedly in later discussions of

Dual Process Theory (Section 2.3.5), consciousness, attention and Global Workspace

Theory (Section 2.3.4), Creative insight (Section 3.3), and indeed the rest of this

thesis.

2.2.3 The Perceptual Hierarchy

An obvious example of a specialised, hierarchical set of brain modules—one of the

most well mapped areas within the brain—is the visual system. Visual perception

is the most information rich of our senses, and demands the most processing power:

the visual cortex accounts for around 30% of cortical neurons (as opposed to just

3% for the auditory cortex). The optic nerve projects from the back of the eye onto

the cortex at the rear of the brain, the primary visual cortex. It then joins groups

of neurons, arranged in a retinotopic map of the visual field: that is, the relative

positions in the retinal image are mapped on to the physical arrangement of neurons

in a highly organised, geometry-preserving fashion. It then, as it passes further
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towards the front of the brain, goes through various stages of further refinement:

from basic feature extraction, such as edge and movement detection [Hubel and

Wiesel, 1968], to more sophisticated functions, such as object recognition, which

occurs via the lower path (the ‘ventral stream’). Object recognition has been shown

to use distinct regions for distinct categories of stimuli, such as faces, tools and

animals [Perani et al., 1995]. Hence, some of the neural architecture of the brain

actually resembles the structure of conceptual categories. The upper path (the

‘dorsal stream’) undergoes completely different processing, more related to spatial

awareness, movement and actions [Wilson, 2002]. In addition to propagating up

the hierarchy, information also propagates downwards: that is, processing of the

perceptual information is dependent on higher level expectations in addition to low-

level input features [Bar et al., 2006; Clark, 2013]. Therefore, sensory processing

involves a combination of top-down and bottom-up information flow: resulting in

highly non-linear feedback processes.

Topographical maps are found in numerous regions of the brain [Kaas, 1997],

for instance both the somatosensory and the primary motor cortex contain maps

of the body2, and the auditory cortex contains a ‘tonotopic’ map of the frequency

spectrum. The other sensory modalities also undergo similar processing, filtering to

remove irrelevant information, and extraction of distinct meaningful objects.

Beyond these specialised sensory pathways, perception becomes increasingly

multi-modal. Areas in the parietal cortex bind sensory information into representa-

tions that begin to resemble concepts. These concepts form an associative network.

Multi-sensory experiences are stored as ‘episodic’ memory. Concepts are associ-

ated with symbolic languages and grammars and stored as ‘semantic’ memory. The

binding of complex multimodal information into individual, efficiently coded units is

2often referred to as ‘homunculi’ due to having the structure of a miniature, somewhat distorted
human being.
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called ‘chunking’ [Miller, 1956; Bor and Seth, 2012; Mathy and Feldman, 2012]. New

chunks are being formed all the time, both explicitly, via attentional processes, and

implicitly, via consolidation. Related chunks form an associative, semantic network

[Wickelgren, 1979]. This associative network is thought to be traversed in a fast,

massively parallel fashion by the subconscious process of ‘spreading activation’ [An-

derson, 1983]. This associative traversal will be discussed in relation to mechanisms

underlying creativity and insight 3.3.

Therefore, much of the brain is devoted to taking in sensory information, and

inferring from it a concise explanation of what it observes in terms of well coded

concepts. Thus the world, as presented to higher level awareness, tends to arrive

already chunked into action-meaningful units. As a corollary of this, most of the

information that is potentially available to us through our senses is simply thrown

away, or at least never reaches the higher levels of conscious awareness, resulting in

the phenomenon of ‘inattentional blindness’ [Simons and Chabris, 1999].

2.2.4 Perceptual Dimensions

When electronic musicians interact with synthesis algorithms, they are adjusting

parameters that affect the resulting perceptual qualities of the sound. These qual-

ities could be thought of as ‘perceptual dimensions’ [Garner, 1970]. Perceptual

dimensions are qualities that can differentiate perceptions and conceptualisations of

perceived objects. For instance, whilst colour is physically just a mixture of pho-

tons of differing wavelengths, perceptually it can be expressed as a point within

a three-dimensional “perceptual space” (often represented computationally as red-

green-blue (RGB) or hue-saturation-brightness (HSB) space).

Physical properties of sound map onto perceptual dimensions. The physical

quantity of frequency maps to the perceptual dimension of pitch, amplitude maps

36



to loudness, and so on. The exact nature of this mapping can be rather complex.

Pitch, one of the most salient dimensions, has already a dual topological nature.

Pitch is both a linear-continuous (low to high pitch) and circular-discrete (chroma-

key) quantity. Distance metrics can therefore be difficult to ascertain: should notes

an octave apart be considered closer together (chroma-similar) than two notes sep-

arated by a semitone (frequency-similar)? When timbre is considered, the situation

becomes even more challenging. In-depth discussions of timbre can be found in

[Stowell, 2010; Osaka, 2004; Grey, 1977].

Perceptual dimensions have been conjectured to fall along an axis of separable

to integral [Garner, 1970]. Separable dimensions are those dimensions that are

easily manipulated separately, for instance size and colour. Integral dimensions

tend to be perceived and processed holistically, for instance hue and brightness.

Distance metrics for these different qualities are also assigned differently. Separable

dimensions are judged by a city-block (or Manhattan distance) similarity metric,

whereas integral ones seem to be estimated by a Euclidean metric [Dunn, 1983].

This distinction has been shown to be important for HCI by Jacob et al. [1994].

They conducted an experiment to test the different performance of various control

devices, and found that the integral dimensions were best controlled by multidimen-

sional controllers (see Section 2.4.2), and the separable dimensions best controlled

by independent, one-dimensional controllers. This indicates that the structure of

the interface should match the perceptual nature of the task. This is a key result

for our current investigation, as it implies that multi-dimensional controllers will

be more suitable for timbre navigation [Vertegaal and Eaglestone, 1996]. Timbre

dimensions are almost certainly integral. Even pitch and loudness show evidence

of integrality [Grau and Nelson, 1988; Melara and Marks, 1990], however there is

evidence that musical training influences how well the dimensions can be separated

[Pitt, 1994].
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Perceptual dimensions have also been used as a foundation for more general

models of cognition. Gärdenfors’ notion of ‘conceptual space’ [Gärdenfors, 1996,

2004], is an important one, as it makes the connection between mental concepts

(chunks), and the dimensions of perception. A conceptual space is a space described

by perceptual dimensions. A concept is a convex volume within this space: a shape

without holes or indents. For instance, the color blue is a volume in HSB space.

These spaces have certain topological structure, and this topology can be mapped

onto different conceptual spaces: analogical thinking can be thought of in this way.

This clearly has import for HCI, for example, hue is a circular dimension, therefore

can be mapped on a circle in space, hence the use of a ‘color wheel’ when designing

color selection interfaces. The fact that we do refer to these other spaces as ‘spaces’,

and make use spatial metaphors for a huge range of phenomena (e.g. the future

is ‘ahead’ of us, prices have gone ‘up’ etc.) indicates that spatial dimensions are

probably the most fundamental of all. This is to be expected from an embodied

brain designed to produce movement. Gärdenfors’ claim is that many cognitive

processes are more akin to geometrical manipulations than to serial, symbolic and

logical operations3.

The notion of conceptual spaces provides a basis for Wiggins’ Creative Systems

Framework, described in Section 3.4.1. Later, this link between perceptual dimen-

sions and conceptual space enables us to propose a link between the artist’s mental

model of a creative artefact, and the dimensions of control of a musical instrument.

2.2.5 The Motor Hierarchy

We must necessarily interact with our environment and our technology via the body.

The body is controlled by the motor system. Like the perceptual systems, the motor

3The symbolic manipulations promoted by what he calls the ‘sentential paradigm’ of earlier
cognitive science and GOFAI (Good Old-Fashioned Artificial Intelligence)
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Figure 2.2: Perception-action cycles of increasing generality, and operating over increas-
ing time-scales (adapted from [Fuster, 2001]).

system is hierarchical in nature. Figure 2.2, adapted from [Fuster, 2001], illustrates

this hierarchy. Actions, in general, are motor outputs that are intended to affect

future events in the environment, therefore they extend over a given time-scale.

Fuster portrays progressively more frontal regions of the cortex (ascending up the

left hand side in Fig. 2.2, or from centre to left in Fig. 2.1) as associated with ever

larger time-scale action planning (temporal integration windows). The various levels

of motor control act in concert with increasingly integrated, generalised and flexible

forms of sensory information (right hand side).

The simplest, and fastest, responses are spinal reflexes: these connect simple

stimuli, such as pain, to basic muscular actions, such as withdrawing a limb. These

processes operate on the scale of tens of milliseconds. Next up the simplified motor

hierarchy in Fig. 2.2 is the primary motor cortex. Stimulating parts of this region

electrically will cause simple movements in various parts of the body [Banich and
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Compton, 2011].

At the mid-level, the Premotor Cortex is believed to contain representations of

more complex, goal-directed actions. In addition to sending movement commands

to the primary motor cortex, predictions of the feedback that the senses should be

recieving (an ‘efference copy’ of the movement, or ‘corollary discharge’) are sent to

the relevant sensory areas, enabling faster error correction on the basis of sensory

feedback [Miall and Wolpert, 1996]. By this means we gain the ability to distin-

guish external from internal causes [Wolpert and Flanagan, 2001]. The unimodal

association areas (the corresponding level in the perceptual hierarchy) also associate

certain sensory inputs with relevant motor goals: for instance, when a certain shape

of object is perceived, it triggers similar neural activity as when actually grasping

that object [Rizzolatti and Luppino, 2001]. This type of predictive circuitry may

be the neural basis for ‘affordances’ [Gibson, 1977] and Embodied Cognition, a key

concept for HCI and interaction design; this is further discussed in Section 2.2.6.

It should be noted that such predictive signals will be present at all levels of the

hierarchy [Kiebel et al., 2008].

The top level of this hierarchy, associated with the Prefrontal Cortex, consists

of higher level thought, such as the ability to plan and act according to longer

term goals, and the ability to coordinate and evaluate our own thoughts. Higher

level goal processing can involve recalling episodic information in the distant past,

and projecting hypothetical situations into the distant future. These processes work

with more complex multi-modal information, however there is considerable evidence

that even our most abstract and sophisticated behaviours are still grounded in bod-

ily actions, having evolved from them [Wilson, 2002]. These higher level thought

processes are the hardest to model, but are considered indispensable for creative

cognition [Dietrich, 2004a; Limb and Braun, 2008].

One useful concept from control theory is that of closed loop and open loop con-
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trol. Open loop, or feed-forward control consists of a pre-packaged command being

sent to the actuator. This action just plays out like a recording, and once triggered

cannot be adjusted. ‘Motor program’ is one term used for this open loop control

signal [Schmidt et al., 1979]. Closed-loop, or feedback control, in contrast, uses in-

formation returning from sensors to continually correct for errors in the movement.

The advantage of closed-loop control is that by using information from sensory feed-

back, more accuracy and more robustness to noise and unexpected changes can be

achieved. This adaptability comes at a cost of speed however: it takes time to

process the sensory feedback. Therefore open-loop control is more suited to rapid

tasks, and closed-loop to accurate ones. The only way open-loop performance of a

movement can be trained is by repetition and error based reinforcement learning.

This idea will be familiar to any performer learning a rapid passage of notes on an

instrument: one simply has to run through the sequence repeatedly until no more

errors are made. There is simply not enough time to notice and correct errors whilst

playing [Zatorre et al., 2007].

A theoretical result from control theory [Touchette and Lloyd, 2000; Klyubin

et al., 2008] states that the information that an agent can use to find a target in

a parameter space is the sum of that available to the open loop and the amount

of information that is sensed from the environment. Thus, to achieve an accuracy

greater than the existing internal representation of a target, feedback must be used.

This has relevance to a musician seeking to create a certain sound: either they must

know to certain accuracy how to move through parameter space to where that sound

is located, or they need to recourse to a slower, trial-and-error mode of interaction

based on evaluating auditory feedback.

One issue with the idea of ‘motor programs’ is that there are an infinite number

of possible movements, even an infinite number of ways to achieve a single outcome

(the ‘degrees of freedom’ problem [Bernstein, 1967]). So whilst there is evidence
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that a motor program must play out to completion regardless of feedback, clearly it

is not simply a static recording of muscle activation amounts: motor programs must

be extremely adaptable. One example of this adaptability is how we can write a

much larger version of our signature on a blackboard, the rhythms of the movements

are the same as writing on paper, but are scaled to use the whole arm rather than

the wrist and fingers, i.e. a completely different set of muscle activations [MacKay,

1982]. ‘Motor primitives’ are one proposed solution to this problem [Wolpert et al.,

2011; Thoroughman and Shadmehr, 2000]. A motor primitive is a basic scalable

unit in a generalised coordinate system that forms the basic building block of more

complex actions. Stored primitives can be combined in various amounts and at

various times, and parameters such as size, speed, rotation and muscle groups, and

can therefore be adjusted according to context, rather like a vector basis. They then

act in concert to produce a large repertoire of actions.

There is increasing evidence that motor control is not as simple as an either-or

firing of a closed or open-loop program. A highly influential theory [Wolpert and

Kawato, 1998] claims that competing populations of forward and inverse models

are generated. The forward model is a prediction of the sensory feedback that is

expected to result from the movement. An inverse model is a movement instruction

‘reverse engineered’ from the desired sensory state. In reaching to grasp a cup, the

initial intention (grasping certain shaped object in a certain position) is converted

into both a model of the movement sequence that is required, and also the expected

visual, kinaesthetic, haptic and proprioceptive sensory data that is expected to

result throughout the movement (an ‘efference copy’). This enables lower level feed-

back loops between the motor and sensory modules to quickly compare the forward

model with the actual sensory data, minimise a cost function, select the current best

performing models, and hence fluidly adapt the movement. Reinforcement learning

mechanisms then learn from the errors encountered to reinforce or downgrade the
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relative contributions from amongst the population of models appropriately.

Further refinements of this picture seem to do away with the inverse models,

and simply have the movement proceed via a continual reduction of the gap be-

tween predicted and actual sensory feedback [Friston, 2011]. Kiebel et al. [2008]

dispense with the need for two separate hierarchies all together, as action and per-

ception are tightly interlinked. This is justified on the basis of the ‘free energy

principle’ (see Section 2.2.7); which states that actions are also a means to predict,

i.e. minimise the ‘surprise’ from, sensory data. They state: “Generators of motor

output simply predict sensory consequences of anticipated movements”. This idea

will be returned to when discussing the Free-Energy Principle in Section 2.2.7, and

embodied cognition in Section 2.2.6.

If we wish to study musical, time-based interaction, it is advantageous to have

estimates for the time-scales predictive feedback loops of various levels in the cogni-

tive hierarchy: the ‘temporal integration window’ over which the predictor operates.

One way the brain’s time-scale hierarchy can be investigated is by studying Elec-

troencephalography (EEG) results, in particular Event Related Potentials (ERP)

[Banich and Compton, 2011, p. 73]. ERPs are spikes in the electrical activity of the

brain emitted by large numbers of neurons firing on response to some instantaneous

sensory stimulus. Spikes occurring sooner than 100ms are related to low-level early

sensory processing. The P100 and N100
4 are also related to specific sensory processes,

but these peaks are modulated by attention: if a stimulus is subject to attention,

then the P100 and N100 will have greater amplitude. The N200 is known as ‘mismatch

negativity’ and can be elicited by an unexpected stimulus. The P300 is associated

with an attended stimulus that necessitates an update in working memory. With-

out conscious attention, the P300 is not seen at all. N400 is thought to occur when

4P and N refer to positive and negative peaks in the electrical potential, the subscript refers
to the time in milliseconds after the stimulus.
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some semantic anomaly is detected. For expectation related ERPs relating to more

musically relevant stimuli, see Pearce and Wiggins [2012]. It seems that these differ-

ent time delays really are associated with different levels in the predictive hierarchy

[Wacongne et al., 2011].

Similar time-scales apply to outgoing motor control. Therefore for simple stimulus-

response tasks, the reaction time is around 200ms, whereas for more complex seman-

tic processing, the round trip could be more than 800ms. If we contrast this with the

time-scales of musical events such as a fast sequence of notes, which can occur at in-

tervals around 100ms, we reach the somewhat perplexing conclusion that volitional

control cannot be exerted at these time-scales. The conscious action-perception

feedback loop could span more than a whole beat. Therefore, improvising musi-

cians must be explicitly working with higher level phrases, and not individual notes

[Johnson-Laird, 2002].

2.2.6 Embodied Cognition

Given the likelihood that higher order cognition evolved from motor control, we

might expect that more sophisticated planning and executive functions will be ex-

tensions of this fundamental architecture. That is, given a successful and supremely

flexible solution to the problem of movement control, evolutionary pressures meant

the brain reused (“exapted”) the same mechanisms to enable cognitive control. Pro-

cesses that effectively orchestrated coordination of the limbs were re-routed amongst

disparate brain modules in order to orchestrate mental processes. This would lead

to the idea of ‘forward models’ of sensory predictions applying to conscious thought

also.

Embodied cognition, a topic with an interesting history [Chemero, 2011], is in-

creasingly seen as both a means to explain certain aspects of human cognition, and
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an approach to creating more natural and engaging computer interfaces [Klemmer

et al., 2006; Dourish, 2004]. Philosophers such as Heidegger and Merleau-Ponty

came to acknowledge that mental existence was intimately tied up with the body

and the environment, these themes being taken up by others such as Dreyfrus and

Varela and applied to our relationship with technology [Dourish, 2004]. Gibson

[1977] introduced the notion of “affordances”: perceived action possibilities, which

found their way into the HCI literature via Norman [2002].

The literature is diverse and features various degrees of departure from the cog-

nitive science mainstream [Goldman, 2012], in some cases being directly opposed to

the idea of the brain as a computational system processing Shannon-Weaver type

information [Gibson, 2014]. It is worth describing a clarifying review conducted by

Wilson [2002], which critically investigates six claims of embodied cognition:

1. Cognition is situated.

2. Cognition is time pressured.

3. We off-load cognitive work onto the environment.

4. The environment is part of the cognitive system.

5. Cognition is for action.

6. Off-line cognition is body-based.

The claims Wilson treats with caution are 1, 3 and 4. They are sometimes

interpreted to mean that we cannot analyse cognition at all without taking the en-

vironment and the context into account. We certainly do off-load computation onto

the environment, notably to assist with working and long term memory. However,

Wilson points out that cognition in the brain is fairly consistent and independently

ongoing, whilst cognition using the environment is intermittent. It therefore makes
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sense to study the brain as the fundamental unit of cognition. I would make a further

point that it must not be forgotten just how much computation the brain is per-

forming: surely the activity carried out by 1015 synaptic junctions vastly outweighs

anything we can outsource to the environment in real-time, even with extremely

generous estimates for the throughput of physical interactions and sensory inputs.

Nevertheless, in the case of musical interaction, it will be essential to incorporate

the immediate environment: the interface and synthesis algorithm that the user

is controlling and listening to, which forms part of the perception-action loop (see

Section 5.3).

The view on Embodied Cognition taken for the purposes of this thesis is that

designing for the body is, in fact, designing for the implicit sensorimotor system:

the vast majority of the computational power of which resides in the cortex. The

great contribution of embodied approach is that it highlights just how much pro-

cessing does go on in the implicit system: using embodiment to downgrade the

computational significance of the brain is probably unwise.

Another aspect of embodied cognition that is particularly important for creativ-

ity, is that it is becoming increasingly apparent that perceptual and motor areas

make a substantial contribution to the ability to imagine [Lotze et al., 1999]. When

imagining carrying out an action, imagining a visual image or imagining music, the

areas of the brain that would have been involved in actually performing or sensing

those phenomena become active. So ‘virtual’ actions and perceptions utilise the

same mid-level modules as ‘real’ perception and action, but the connections to the

lower level modules that would actually sense or act have been inhibited. There-

fore imagination may make use of the ‘top-down’ paths that are used for sensory

prediction [Stokes et al., 2009].

Embodied cognition is frequently cited as being an important principle for the

future direction of HCI research [Kirsh, 2013]. Many see a historical neglect of
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consideration the body [Djajadiningrat et al., 2007]. In [Klemmer et al., 2006], five

ways that embodiment can integrate the physical and computational worlds are

described:

1. Thinking through doing: manipulating concrete physical objects enable off-

loading of thought processes into the environment, make learning a more active

and exploratory process, and make evaluation more tangible.

2. Performance: “the intimate incorporation of an artefact into bodily practice

to the point where people perceive that artefact as an extension of themselves;

they act through it rather than on it”. This is the claim that action-centred

skills and motor memory vastly speed up and lighten the cognitive load of

dealing with external information.

3. Visibility: the ability to access information at a glance is a huge cognitive

aid. Spatial arrangements contain large amounts of information that can be

quickly gleaned.

4. Risk: Our physical bodies provide an element of vulnerability and immer-

sion that changes our relationship to and responsibility for elements of the

environment.

5. Thick Practice: in some situations leveraging existing ‘real world’ skills is

important. Kelmmer et. al. cite the musical example of Final Scratch: time-

coded vinyl records that enable DJs to manipulate digital audio with their

existing turntable skills.

Despite these clear advantages to embodied interactions, it is hard to find quan-

titative proof that designing for the body can bring measurable benefit in terms

of the rate at which tasks can be accomplished. Very often novel interfaces claim
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to be embodied and tangible, but do not provide any experimental comparison of

their effectiveness against a ‘non-embodied’ counterpart. Perhaps this is one reason

why “technologies... continue to place demands on our cognitive abilities, and deny

us the opportunity of building bodily skill” [Djajadiningrat et al., 2007]. Whilst

embodied interaction is a hot research topic, there is perhaps a perception that em-

bodied interaction methods as mere novelties, or somehow un-serious. Heavyweight,

professional office or creative work will still be carried out using a standard com-

puter interface. But if embodied cognition is as powerful as it seems, there are very

serious gains to be made in productivity by ‘pipelining’ the autonomous modules in

the brain that deal with complex sensorimotor skills. If these gains could be proved,

perhaps embodiment would be taken more seriously.

2.2.7 Unifying Perception and Action via Hierarchical Pre-

diction

The free-energy principle5 is one of the most exciting developments in recent cogni-

tive research. It shows great potential as a unifying principle, making many testable

predictions for which evidence is accumulating rapidly. Friston summarises the free

energy principle thus:

“In brief, the motivation for this minimization [of free-energy] is to ex-

plain how biological systems maintain their biophysical states within

bounds and thereby resist the second law of thermodynamics, in other

words, to explain how they maintain a homeostasis. They can do this

by minimizing the long-term average of surprise, which implicitly min-

imizes the entropy of their sensory states. Surprise is just the negative

5Similar models have gone by various names over the years, the ‘Helmholz machine’ [Dayan
et al., 1995], the ‘Bayesian brain’ [Knill and Pouget, 2004], or the ‘predictive brain’ [Wacongne
et al., 2011].
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log probability of the sensory signals encountered by an agent. In in-

formation theory, surprise is called self information, while in statistics

it is the negative log model evidence or marginal likelihood. Although

agents cannot minimize surprise directly, they can minimize a free en-

ergy that is always greater than surprise; hence the free-energy principle.

Under some simplifying assumptions, this free energy can be thought of

as prediction error. This means that perception can reduce prediction

errors by changing predictions, while action reduces prediction errors by

changing sensations.”

This last point is intriguing: the agent can either update their model to align

with patterns in the sensory environment, or they can act so as to produce patterns

in sensory data that align with their internal model. The latter may be a possible

starting point for artistic behaviour, and will be explored further in Section 5.3.1.

For an excellent review of theoretical, experimental and philosophical aspects of

this paradigm see [Clark, 2013].

2.3 Implicit and Explicit Processes

From the earliest beginnings of the field, the distinction between conscious and

subconscious thought has been one of the most essential, but yet most perplexing

distinctions in psychology. Why are we aware of some thought processes and not

others? The unconscious mind is clearly important for creative endeavours. Many

great works of art and music and discoveries in science are claimed to have emerged

from the unconscious [Zhong et al., 2008].

So what is the nature of the distinction? What can the conscious mind do that

the unconscious cannot, and vice versa? The question of what mechanisms and

correlates distinguish the two is the so called ‘easy’ problem of consciousness. The
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‘hard’ problem of consciousness is how exactly ‘qualia’ (the ineffable qualities of

sensation, awareness, the feeling of what it is like to be a conscious entity) can arise

from these mechanisms [Chalmers, 1995]. There has been considerable progress

with regards to the easy problem, but arguably very little with regard to the hard

problem, so we shall not deal with it here.

Skills can be transferred between these realms via repetitive practice [Anderson,

1981]. When initially faced with learning a skill, one will follow explicit instructions,

one’s actions will be deliberate, slow and consciously controlled. With practice, the

actions become more fluid and automatic, but can still be accessed and adjusted if

needed. With very well practised skills, particularly those learned from an early age,

the actions become so automatic that they cannot be accessed at all: one knows

how to do something, but one doesn’t know how one knows. This is sometimes

referred to as ‘overlearning’, and is not always desirable [Langer and Imber, 1979].

This process of skill consolidation may be related to chunking.

2.3.1 Correlates of Consciousness

The reason that we should possess consciousness at all is similarly mysterious, but

there are a number of functions consciousness seems to be associated with that may

provide clues as to its purpose, if not its essence:

1. The spotlight of attention: attention is the process by which certain informa-

tion is selected for further processing. The focus of attentional processes tends

to be what we are ‘conscious of’, often the most important or most surprising

information in the environment6.

2. Integration of information [Tononi, 2012]: The flexibility of explicit thought

6However, there is evidence for attentional selection occurring unconsciously [Bor and Seth,
2012].
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implies that information in working memory can be transferred across do-

mains, i.e. is flexibly routed across many different areas of the brain.

3. The contents of consciousness (i.e. working memory) tends to be that which

requires sustained preservation of mental states : multiple steps of reasoning

over time-scales of more than a second.

4. Consciousness is a gateway to episodic memory : all the memories and facts

that we can explicitly recall once occurred as conscious moments.

5. Stimuli that make it into consciousness are often more unexpected that those

processed by lower-level processes. The explicit system is adept at dealing

with unexpected situations.

6. The stream of consciousness can be analysed in a meta-cognitive fashion, and

can be reported to other people.

There are also ‘neural correlates of consciousness’ (NCC) [Dehaene et al., 2014].

For instance:

1. Integrated brain-wide processing: conscious processing seems to correlate with

the activation of the largest brain networks involving frontal and parietal hubs

[Chennu et al., 2014; Bor and Seth, 2012].

2. A non-linear cascade of electrical activity occurs after 300ms of a consciously

reportable stimulus, but not a subliminal one. This is known as the P3/P300

wave [Dehaene et al., 2014].

3. Late, sudden bursts of gamma oscillations located in the area associated with

the item that is raised to conscious access [Hameroff, 2010].
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So there do indeed seem to be ‘neural correlates of consciousness’ [Sergent and

Dehaene, 2004] that can be seen whenever the subject reports awareness of a stim-

ulus, and not seen when they cannot [Dehaene, 2014].

2.3.2 Attention and The Frontal Lobes

Another cognitive process related to consciousness is attention. Attention is the

process by which certain information is selected for further processing and other

information is discarded. This selectivity is needed to avoid sensory overload. The

relevance of sensory information depends very much on what kind of task we are

engaged in. Whilst a surprising stimulus, such as a sudden loud noise, will imme-

diately command our attention (‘bottom up attentional selection’), often it is ‘top

down’, goal-directed actions that determine the objects of our attention. The focus

of attention is clearly related to the contents of consciousness, however it is more

the mechanism by which salient information is selected and prioritised [Baars, 1997].

The brain does not have the capacity to fully process all the information it receives.

Nor would it be efficient for it to do so. As such, attention is often likened to a filter,

or a bottleneck in processing [Marois and Ivanoff, 2005]. To attend to a particularly

demanding stream of information requires ignoring and actively suppressing others

[Payne and Sekuler, 2014].

As mentioned in Section 2.2.5 on the motor hierarchy, one of the functions of the

Pre-Frontal Cortex (PFC, see Fig. 2.1) is to control attention and manage higher

level goals. These areas at the front of the brain are thought to direct attention so as

to carry out structured actions. The PFC is one of the most highly connected brain

regions, and the region that is most highly developed in humans relative to other

species. It appears able to integrate many sources of information, internal states

such as emotions, sensory input, and long term memory. On the basis of this inte-
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grated information it orchestrates other brain regions in order to carry out planned

actions, hence the term ‘executive’ functions often used in reference to the frontal

lobes. It is possible to function with damage in this area, so it should not be consid-

ered as controlling everything—that would lead to infinite regress—but regulation

of behaviour, decision making, personality and social judgement seem to suffer in

patients with PFC damage (specifically ventromedial prefrontal cortex (VMPFC)).

One interesting condition is ‘environmental dependency’, where patients’ actions

become overly dependent on the objects in their environment: the affordances of

the external world seem to completely determine their actions.

Dietrich highlights the importance of the PFC for creative behaviour [Dietrich,

2004a], and lists the following essential functions, along with references to experi-

mental evidence for them:

1. self construct and self-reflective consciousness,

2. complex social function,

3. abstract thinking,

4. cognitive flexibility,

5. planning,

6. willed action,

7. temporal integration,

8. sustained and directed attention,

9. working memory.

The last function is deemed particularly important. Working memory provides
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“...the infrastructure to compute these complex complex cognitive func-

tions by providing a buffer to hold information in mind in order to order

it in space-time. It is this superimposing of already highly complex men-

tal constructs that dramatically increases cognitive flexibility.”[Dietrich

and Haider, 2014]

Without this buffer, a chain of reasoning is incapable of extending over more

than the time it takes a excitatory signal to traverse the brain, less than a second

or so [Dehaene, 2014]. In order to sustain a controlled train of thought, and put

multiple concepts together, the explicit system must be used.

Whilst attention and consciousness may not be synonymous, explicit conscious

processing and working memory are increasingly being thought of as tightly in-

terlinked. In the next section we focus on working memory, and its relevance to

HCI.

2.3.3 Working Memory

Working memory (or the now lesser used term short-term memory) is a form of

memory that is preserved over short time-scales, is limited in capacity: the so-called

‘magic number’ of chunks: 7 ± 2 [Miller, 1956]. The number of simultaneous items

has been revised down to 4 by some researchers. Working memory is effortful to

maintain, and overloading it causes discomfort and frustration. Rather than these

memories being stored in a particular region of the brain, like procedural or episodic

memory, more recent theories propose that it is an attentional process, whereby

memories stored in various modules are kept activated [Banich and Compton, 2011].

So rather than the PFC being a ‘storage area’ for chunks, it is more like a juggler

of chunks, and is engaged in top-down activation of particular information in other

brain modules [Banich and Compton, 2011, p. 295]. This activation fades over time
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if not maintained by executive processes.

Other short-term memory stores are associated with individual senses. There

seems to be a short-term auditory store, for example, that can maintain a few sec-

onds of sound information ready to be accessed as the need arises. Our ability

to suddenly understand a previously misheard, or non-attended sentence indicates

that the phonemes from the start of this sentence must have been stored in this

auditory buffer: thus they can be reinterpreted and retrospectively raised to con-

sciousness and understood. These sensory buffers fade after a short period, and can

be overwritten by new salient information.

Another aspect of short-term memory that was considered as separate from

generalised working memory is the ‘visuospatial sketchpad’ [Baddeley, 1992], where

non-verbal visual and spatial imagery can be manipulated. There may be more such

sketchpads however, with the possibility that top down attentional processes may

use a number of the brain’s mid-level modules to simulate, or emulate, hypothetical

realities [Stokes et al., 2009; Dietrich and Haider, 2014].

Working memory is an essential cognitive aspect of Human-Computer Interac-

tion. Whilst computers obviously shoulder a huge amount of the cognitive burden,

they may also place quite high demands on explicit thought. Interface design is

very much the art of minimising working memory demand7. In HCI research the

maintenance of task relevant information can be studied in multi-tasking and task

interruption experiments [Salvucci and Taatgen, 2010]. An important determinant

of what makes an interruption disruptive is ‘problem state’. Problem state consists

of the temporary contextual information needed to be maintained in working mem-

ory in order to complete the task. It appears that the speed at which a user can

resume a task after an interruption is affected by three things: firstly how complex

7It is now possible to monitor working memory demand by measuring blood flow in frontal
regions; hence design human-machine interfaces in order to maintain suitable levels of mental load
[Ayaz et al., 2012].
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the problem state is, secondly how long the interruption is; and finally how task-

relevant the interruption was [Borst et al., 2015]. For example, if one interrupts a

timbre design task by experimenting with that same sound on a keyboard, this will

be less disruptive than, say, answering an email. Experiments reveal that the acti-

vation of the task context fades more or less exponentially, and requires time and

effort to reactivate in proportion to the amount of fading. When designing musical

interfaces, if we take the pessimistic view that manipulating the interface is a form

of ‘interruption’, it would be vital to design for interactions that have a low amount

of problem state; are as rapid as possible; and are as ‘musical’ as possible.

Human beings tend to overestimate how much of their actions rely on conscious

abilities. After all, this is where conscious, executive control tends to reside, and

these processes are the only ones we have meta-cognitive access to. Our self-model

is a model of the conscious self. But it must be stressed that the explicit system

is really the tip of the cognitive iceberg, the implicit modules maintain the vast

majority of everyday behaviour, and without them we would be helpless. Even

highly analytical tasks such as mathematics, chess or computer programming must

rely on a vast amount of tacit knowledge [Wagner and Sternberg, 1985]. Some

even claim that decisions about complex matters can be better approached with

unconscious thought [Dijksterhuis and Nordgren, 2006].

2.3.4 Global Workspace Theory

Baars’ global workspace theory (GWT) is one of the most widely accepted theories

of consciousness [Baars, 2005]. It attempts to explain the division between conscious

and unconscious thought by proposing that there is a central workspace in the brain

that can flexibly work with information (see Fig. 2.3). GWT is often illustrated by a

theatre metaphor. The objects/actors on stage are the contents of working memory.
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Figure 2.3: Global Workspace Theory (GWT): an illustration of the threshold paradox
(adapted from [Wiggins, 2012]). The global workspace broadcasts its content to generators
(blue arrows). Generators (mid-level modules in the predictive hierarchy), constantly
suggest ideas that are associative variations on the content of the workspace (small red
arrows). The only way a generator can gain access to the global workspace (large red
arrow) and get their ideas heard is by recruiting other generators into a coalition of
agreement. This seems to be a Catch-22 situation, because the only way to recruit other
generators is by knowing about other generators, which requires a broadcast mechanism
such as the GW.

The stage of the theatre is lit up by the spotlight of attention. Backstage, there are

many actors and technicians playing a vital role in what transpires on stage, but

are unseen, i.e. carrying out subconscious processing. The activity on stage is being

broadcast, in that everyone in the theatre is aware of the action on stage (hence the

‘global’ workspace). Conversely, behind the scenes activity goes unnoticed, therefore

exhibits the encapsulated and modular properties discussed in Section 2.2.2.

In recent years this model has been supported in neuroscientific work, namely

in the Global Neuronal Workspace model [Dehaene et al., 1998], which integrates

Baars’ theory with brain network-topological and ERP phenomena.

One thing missing from Baars’ model is a mechanism by which items are selected
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and raised into consciousness. If every actor is capable of taking the stage as needed,

how is it decided who actually does? This is known as the ‘threshold paradox’ (see

Fig. 2.3). Wiggins and Bhattacharya [2014] propose a solution to this using an

information-theoretic notion of surprise. Surprise can be thought of as a violation

of expectation. This leads us neatly to the idea that spontaneous creativity can

be explained by the ability of subconscious processes to produce a concept that

is surprising, and hence raised into consciousness by exactly the same mechanisms

that maintain the implicit-explicit threshold in everyday waking cognition:

“...non-conscious creativity is happening all the time as a result of ongo-

ing anticipation in all sensory (and other) modalities. When conditions

are right, this essential survival mechanism is not so much exapted for

creativity, but gives rise to creativity as a side effect.”[Wiggins, 2012]

This ties in neatly with Friston’s cascade of prediction error ‘surprisal’. Violation

of expectation has indeed been used as an experimental variable to trigger conscious

processing [Dehaene et al., 2014].

2.3.5 Dual Process Theory

A word heard again and again in discussion of user interfaces and particularly music

technology is “intuitive”. Obviously if a device conforms to Shneiderman’s consis-

tency rule (see section 2.4), or makes use of an obvious similarity to an existing

device, then users will be familiar with the way it works and may declare it intu-

itive. However the notion seems to express something deeper than mere familiarity.

The truly valuable intuitive interface is one that may be new, but nevertheless im-

mediately satisfies our most basic expectations of what kind of results will follow our

gestures, and not require time and effort to “figure out”. The formal definition states

that intuition is the ability to acquire knowledge without the use of reason. This is
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a rather negative definition. So the question must be asked: what mechanisms are

present in the brain apart from reason?

Much of the literature regarding intuition occurs in the context of “dual process

theories” of reasoning [Evans, 2003; Kahneman, 2011]. There are a variety of differ-

ent views on this topic. The principal source for our purposes is Stanovich [2011].

The hypothesis is that two systems, of different evolutionary origin and different ca-

pabilities, are present in the brain. The first (‘implicit’ or System 1) is fast, parallel

and associative, but can suffer from inflexibility and bias. The second (‘Explicit’

or System 2) is more rational and analytical but is slower, requires more effort and

makes use of limited working memory. It is often used by social psychologists to

explain why many decisions that humans take (under, for example time constraints)

seem to be irrational, however the theory is also relevant to a great deal of other

cognitive behaviour.

Memory also has implicit and explicit flavours. Implicit memory is knowledge

of ‘how’ e.g. how to ride a bike, this is known as procedural memory. Explicit is

knowledge of ‘what’, e.g. Paris is the capital of France, this is also known as declara-

tive memory. Evaluation, or judgement, also comes in explicit and implicit versions.

Explicit, analytical judgements tend to take time, and are not good at dealing with

large amount of information or uncertainty. Therefore intuitive hunches, gut feelings

and judgements based on affect are often used instead [Sadler-Smith, 2012]. One

particularly relevant circumstance where implicit judgement may be more effective

is in problems that involve multidimensional data [Dietrich, 2004b], leading us di-

rectly to the one of the principal hypotheses of this thesis: that multidimensional

controllers should be more suited to implicit processing.

The ‘cognitive miser’ hypothesis is that the brain will tend to process information

in the cheapest way possible [Stanovich, 2011, 98-100]. Therefore the biases of

the implicit system can be explained in terms of people taking mental shortcuts
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(Heuristics) that reduce the attentional cost of arriving at satisfactory, rather than

optimal, solutions.

Characterisations of these dual processes are summarised in Section 2.3.7.

2.3.6 Reflective Meta-cognition

Attention is not just focused on external stimuli. Attention can also shift to internal,

mental states. Stanovich proposes the need for a tri-process model [Stanovich,

2009], in which the explicit system is divided into two systems: the ‘analytic’ and

the ‘reflective’. A separate ‘reflective’ or ‘metacognitive’ system must flag up the

need for the explicit algorithmic system to re-analyse the low effort solution and

check that it is not in error, in other words acting as an advisor to encourage the

‘cognitive miser’ to invest a little more. This ties in with the multiple functions

of the frontal lobes: orchestrating cognitive operations, but also switching tasks

and attentional set if necessary. The act of realisation is known as ‘decoupling’,

as it decouples attention from the algorithmic task that it is involved in. The

fact that the ability to carry out complex abstract thinking (e.g. in standard IQ

tests) does not correlate well with the ability to overcome implicit biases provides

evidence that these are in fact two separate brain systems that contribute to an

individual’s rationality [Stanovich, 2011, p. 154]. Stanovich also proposes that,

rather than consideration of an single ‘implicit system’, Type 1 thinking should be

thought of as being carried out by many different specialised systems, christened

‘The Autonomous Set of Subsystems’, or TASS. Figure 2.4 shows this model of

cognition. What is not clear is if the reflective and algorithmic systems can operate

in parallel. We shall assume that they can interfere with each other, as they may

both require access to limited working memory8. It also seems justified to promote

8The parallels between the reflective and algorithmic mind and the Default and Task-Positive
Network are certainly extremely suggestive: one might speculate that these non-correlated cogni-

60



Reflective Mind

Algorithmic Mind

Autonomous Mind

Beliefs, Goals and 
General Knowledge

Strategies and Production 
Systems

ENB

ENB

TCLI

ENB = Encapsulated knowledge base
TCLI = Tightly Compiled Learned Information

Figure 2.4: The tri-process model. Adapted from Stanovich [2011, p. 96]. Stanovich
posits another system higher in the hierarchy than the algorithmic mind, which is respon-
sible for questioning the ‘quick and dirty’ results of autonomous processing.

the reflective system as being a contributor to creative thinking. In fact I will argue

in Section 5.5.3 that it shows a number of hallmarks for being a mechanism for

divergent thinking and transformational meta-exploration.

In [Baumer, 2015] the literature on reflection in philosophy, cognition and design

is reviewed, and the following three conceptual dimensions are discussed:

1. Breakdown: reflection is called for when existing solutions prove inadequate.

2. Inquiry: questioning, re-examining and hypothesis forming.

3. Transformation: transforming understanding by changing the rules by which

other thought systems act.

The first two seem to relate to problem finding stage of creativity, the latter with

transformational creativity (see Section 3.1). From a predictive coding perspective,

tive abilities to have a counterpart in the high-level functional anatomy of the brain.
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it seems that the purpose of reflection is to go over existing knowledge and experience

and attempt to recode it in a more effective form. Baumer summarises Kant’s notion

of reflective judgement like so:

“For Kant, reflective judgement is that which reorders our conceptual

schema. Reflection occurs precisely when our existing conceptual schema

do not apply (or do not apply well) and thus we need to reschematize

nature in order to come to a (better) understanding of it.”[Baumer, 2015]

As we shall see, this ‘reschematizing’, or coding of the world is thought by some

to be an essential component of creativity. Pearce and Wiggins [2002] also contend

that reflective strategies — as in the construction of hierarchies of abstractions —

are an essential component of music composers’ creative cognitive processes.

2.3.7 Summary of Consciousness

Looking at the literature concerning heuristics and biases, analysis of brain network

architectures, and global workspace style cognitive models, clear convergence can

be seen when it comes to the problem of how the conscious and unconscious relate

to behaviour, hierarchical brain architecture, and information processing. Table 2.1

gives a list of properties for the two systems. The issue of whether ‘System 2’ explicit

thought equates precisely with that which is conscious, that which is the subject of

attention, and the contents of working memory is perhaps not settled, but will not

be deal with further. We shall assume that these various strands of research are

converging on a unified picture, and that the distinct constructs correlate strongly

enough to treated as identical [Bor and Seth, 2012], or at least to the extent that re-

sults from musical interaction studies will not be precise enough to reveal differences

to any statistically significant degree. In any case, any ‘two-system’ model is likely

to be a gross oversimplification. To simplify terminology the difference between
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Implicit Explicit
Dual Process Theory: System 1 System 2

associative system rule-based system
heuristic processing analytic processing
tacit thought processes explicit thought processes
interactional intelligence analytic intelligence
experiential system rational system
quick and inflexible modules intellection
intuitive cognition analytical cognition
recognition-primed deci-
sions

rational choice strategy

automatic processing controlled processing
Properties: associative rule-based

holistic analytic
automatic controlled
relatively undemanding of
cognitive capacity

demanding of cognitive ca-
pacity

fast acquisition by biology slow acquisition by formal
tuition

slow acquisition via rein-
forcement learning

fast one-shot learning

procedural memory episodic and declarative
memory

Task Construal highly contextualized decontextualized
personalized, conversational
and socialized

asocial

interactional analytic (psychometric IQ)
Neuroscience encapsulated modules brain-wide networks

unconscious conscious
unreportable, unavailable to
introspection

reportable, available to in-
trospection

parallel serial
P100,N100,P200 waves P300 wave

Evolution early recently, particularly in hu-
mans

Table 2.1: Summary of distinctions between explicit and implicit cognition. Dual process
terms are taken from Stanovich and West [2000], Cognitive Neuroscience from Dehaene
[2014].
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unconscious/conscious System 1/System 2 thought shall henceforth be referred to

as Implicit/Explicit.

2.4 Human-Computer Interaction

Many of the pioneers in HCI research were concerned with applying cognitive sci-

ence to interface and interaction design. Foundational texts by Norman [1986],

Shneiderman [1982], Card et al. [1983], Anderson et al. [1997], Winograd and Flo-

res [1986], and Suchman [1987], whilst focussing on various different approaches,

all stress the importance of understanding how our cognitive processes shape our

interactions with artificial systems. Indeed, the discipline has been referred to as

‘Cognitive Engineering’ which

“...is a type of applied Cognitive Science, trying to apply what is known

from science to the design and construction of machines ... the goal of

Cognitive Engineering is to come to understand the issues, to show how

to make better choices when they exist, and to show what the trade-offs

are when, as is the usual case, an improvement in one domain leads to

deficits in another. ”[Norman, 1986]

A good, accessible and current overview of topics from cognitive neuroscience as

they apply to design of everyday interactions can be found in [Forsythe et al., 2014].

If a single focus of investigation sums up the field, it would be the effective transfer

of information between human and machine. According to [Hinckley et al., 2004]:

“The fundamental task of human-computer interaction is to shuttle in-

formation between the brain of the user and the silicon world of the

computer. Progress in this area attempts to increase the useful band-

width across that interface by seeking faster, more natural, and more
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convenient means for users to transmit information to computers, as

well as efficient, salient, and pleasant mechanisms to provide feedback

to the user.”

With that in mind, we next discuss how measuring information transmission has

been used to evaluate and design interfaces.

2.4.1 Input Devices, Movement Laws and Human-Computer

Interaction

Entropy is a measure of uncertainty, and is also a measure of information [Shannon

and Weaver, 1949]. When an agent reduces the uncertainty of a quantity, i.e reduces

the spread of its probability distribution, it reduces its entropy. The entropy of a

discrete probability distribution, or information in bits, is given by the formula

H = −
N∑

n=1

pn log2(pn), (2.1)

where pn is the probability of the nth alternative in the distribution. For example,

if all the possibilities are equally likely, pn = 1
N

for all n and the entropy is

H = log2(N), (2.2)

which states the fact that an H bit number can express 2H possibilities.

Information can be used to reduce uncertainty, and hence make predictions.

Conversely, to decrease the entropy in a system (for example, creating a piece of

music on a hard drive), requires information to be input from the environment, i.e.

work must be done by the person operating the computer.

Information theory has been applied to many musically relevant areas, for in-

stance perceptual laws [Norwich, 1993], music perception, and creativity [Wiggins
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and Forth, 2015; North and Hargreaves, 1995]. It has also motivated two laws

relating to Human-Computer Interaction, discussed in the next section.

Quantifying the variability of human cognitive and motor processes in terms of

information theory became popular in the 50’s, shortly after Shannon introduced

the idea. Miller stated the case as follows:

“The advantages of this new way of talking about variance are simple

enough. Variance is always stated in terms of the unit of measurement

— inches, pounds, volts, etc. — whereas the amount of information is

a dimensionless quantity. Since the information in a discrete statistical

distribution does not depend upon the unit of measurement, we can

extend the concept to situations where we have no metric and we would

not ordinarily think of using the variance. And it also enables us to

compare results obtained in quite different experimental situations where

it would be meaningless to compare variances based on different metrics.

So there are some good reasons for adopting the newer concept.” [Miller,

1956]

In other words, measuring uncertainty in bits is an excellent way to investigate

how well a certain task can be achieved.

Fitts’ Law and Rapid Aimed Movement

Fitts’ law [Fitts, 1954; MacKenzie, 1992a] applies to rapid aimed movements in a

single dimension towards a visible target. The original experiment studied subjects

moving a stylus between two target strips as fast as they could [Fitts, 1954]. It is a

linear relation between movement time, MT , and an “index of difficulty”, ID :

MT = a+ b× ID . (2.3)
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MT

ID

MT = a + b ID

a

gradient = b

Figure 2.5: A typical Fitts’ law plot. Movement time (MT) is linearly related to the
index of difficulty ID. The intercept a could be thought of as reaction time, and the
gradient b as the reciprocal of throughput, in bits per second, however this interpretation
is the subject of some debate.

The ID is a measure of task difficulty in bits. It is calculated from the target

width W , and the distance moved to reach the target D. Fitts’ law can be used

to predict the time taken for various common interaction tasks, such as moving a

cursor to a GUI button. It can also be used to compare the effectiveness of input

devices, via the “throughput” (TP): the rate at which a user can input information

to the system, in bits per second, calculated as TP = ID/MT . A typical Fitts’ style

interface evaluation proceeds as follows:

1. Establish a number of movement distances and target sizes to achieve a range

of values for ID.

2. Participants then move a pointing device to hit to these targets in the quickest

time possible. Two or more different interface devices are provided as different

experimental conditions.

3. Movement times for each ID are averaged, and a regression line fitted to these

points in order to obtain constants a and b (see Fig. 2.5)

The device with the highest value for TP = 1
b

is considered more effective.
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Fitts’ original formula for ID [Fitts, 1954] can be derived by considering the

movement as a series of smaller movements with iterative corrections [Card et al.,

1983, p. 53]. However, there are alternative formulae, around seven different deriva-

tions [Hoffmann, 2013], and even power laws fit the data well in many cases [Gold-

berg et al., 2013]. For around 20 years the accepted ISO standard has been that of

[MacKenzie, 1992a]:

ID = log2

(
D

We

+ 1

)
, (2.4)

which is the so-called ‘Shannon formulation’ obtained by considering the nervous

system as a noisy communication channel, and making an analogy to Shannon’s

Theorem 17 [Shannon and Weaver, 1949]. In this formula We is the ‘effective width’:

the standard deviation of the distribution of end points multiplied by 4.119.

However the debate continues, causing some frustration for those who simply

want to carry out interface evaluations. A glaring issue is that the HCI community

have followed MacKenzie [Soukoreff and MacKenzie, 2004], whilst the psychology

and ergonomics communities have continued to use Fitts’ original law. Some see

this as a sign of an endemic failure of the HCI community to critique [Drewes, 2010;

Hoffmann, 2013].

Another point of debate is the exact relationship between the law and ‘informa-

tion’ [Soukoreff et al., 2011; Zhai, 2004; Hoffmann, 2013]. Whilst it is clear that the

‘noise’ in MacKenzie’s noisy channel analogy is the end point variability, it is not

clear what the signal is. A discrete movement is not a continuous signal [Hoffmann,

2013]. Another discrepancy in this analogy is that Shannon uses signal power, not

amplitude [Drewes, 2010; Hoffmann, 2013].

A further issue is how exactly one calculates throughput from the obtained

9This adjustment is because the distribution of the end points is generally Gaussian, rather
than a uniform distribution over the target width.
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straight lines. One way to do this is to use the gradient of the line (b). The

ISO standard however, recommends to average MT
ID

across the whole line. This has

issues, because if a is non-zero, the TP value will vary linearly across the line, and

the final average then depends on the experimental range chosen for ID [Zhai, 2004].

This is precisely the sort of thing using a predictive law is supposed to eliminate:

why even debate the formula giving the best regression line if the data all along the

line are to be averaged? One argument is that a should be kept near zero, and “A

large intercept value in the absence of an explanation indicates a problem with the

methodology.” [Soukoreff and MacKenzie, 2004]. However Zhai [2004] argues for

the gradient approach. Zhai claims that 1/b is the ‘informational’ component, and

a is the ‘non-informational’ component of the task. Input device evaluations should

consider both. This makes far more sense. If a should for some reason be very large,

then surely this is a sign that the device has a high time cost associated with any

movement. It is perfectly possible that some devices are more effective at high IDs

and others at low IDs: reporting both a and b characterises this behaviour. The

accuracy of the end point distribution will eventually saturate at high ID , due to

the maximum accuracy with which people can see and point to very small targets.

Movement time will saturate for very low ID . Therefore attempting a perfect linear

fit for all conditions may be an impossible task.

A number of attempts have been made to extend Fitts’ law to more than one

dimension. The first, [MacKenzie and Buxton, 1992], considers the effect of rect-

angular targets. They approach the problem by using the diagonal width of the

rectangle, but preserving the one dimensionality of the law. Fitts’ law has also been

investigated in 3D [Murata and Iwase, 2001; Grossman and Balakrishnan, 2004;

Cha and Myung, 2010]. The most recent expression for the ID is dependent on the
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elevation (θ1) and the cosine of the azimuth (θ2) angles to the target:

ID3D = cθ1 + d cos θ2 + log2

(
D

We

+ 1

)
. (2.5)

All these extensions take the approach that the goal of the ID formulation is

to predict movement times. Whilst this certainly results in useful findings, and

recommendations for arrangement of interface elements, the underlying theoretical

approach is questionable. No attempt is made to consider how these models relate

to information theory. How is the above formula to be understood with relation to

the amount of information that can be achieved with a 3D interface? Shouldn’t a 3D

space be providing more information than a 2D one? Using the 1D equation with

constant terms added for the difficulty of angle will not tell us this, and might miss

the potential to make throughput gains with high-dimensional control. Furthermore

this approach will become increasingly unwieldy as dimensionality increases, and

probably impossible to extend to n > 20 dimensional spaces such as hand and body

pose parameters [Rautaray and Agrawal, 2015]. Will new experiments have to be

conducted in every single dimensionality, resulting in n regression constants?

There is also a slight circularity in this whole process, if we are defining through-

put using an ID obtained from experimental data conducted with a certain device in

a certain dimensionality, then how can throughput be considered a device/dimension

independent quantity? There is a danger that establishing regression constants on

the basis of movement time will rule out the detection of any cognitive speed-up

due to the parallelism of skilled multidimensional movements. Ideally, throughput

should be defined theoretically first, and then measured experimentally.

If the goal is to compare input devices, predicting movement times is a secondary

consideration to measuring effectiveness. In this regard, the approach taken by

Soukoreff et al. [2011] shall be considered most promising for our purposes. Here,
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the informational component of the task is defined with regard to the probability

distributions of the start and end points of the movement. It advances a strong

theoretical argument, makes few assumptions, and abstracts away the complexities

of the human motor system. In section 5.4.1 we extend this probability distribution

approach to generalised n-dimensional search paths. This enables us to analyse

arbitrary parameter adjustments in target based tasks (including sound design and

timbre performance tasks) in terms of information throughput. Further distinctions

are drawn between the predictive and comparative uses of the index of difficulty.

Other Movement Paradigms

Further complexity is added to the debate when considering ‘ballistic’ movements,

and when considering movements where allowed movement time is the independent

experimental variable rather than accuracy. In the former case, where the hand is

‘thrown’ towards the target with no corrective behaviour, end point variability We

is proportional to distance. In the latter case, referred to by Guiard and Olafsdottir

[2011] as the “Schmidt paradigm” [Schmidt et al., 1979],

We = K1 +K2

(
D

MT

)
, (2.6)

where We is again effective target width, calculated as the standard deviation of

the finishing position (in more than one dimension, this can be calculated as the

square root of the mean squared Euclidean distance to the target), D is the initial

distance to target, MT is the (pre-specified) movement time, and K1 and K2 are

constants. In other words, accuracy is linearly related to movement velocity. The

underlying reason for this is thought to be that noise in the muscle activation signals

is proportional to the force [Schmidt et al., 1979; Meyer et al., 1988]. Clearly, this

is a very different relationship from Fitts’ law.
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In addition to time constraints resulting in non-Fitts style behaviour, there is

evidence that cyclical movements also utilise different mechanisms, and result in

more effective and efficient movements [Boyle et al., 2012a]. Guiard [1997] argues

that cyclical movements, such as walking, hitting, throwing and reaching should be

considered the general case and discrete movements are in fact a ‘degenerate’ case.

In one sense, this throws doubt on the information processing account of movement

analysis. However, in my view, just because Fitts’ law is not universally applicable,

this does not mean that throughput becomes a meaningless quantity. Information

is still flowing into the computer, it just has a different dependence on movement

parameters. As we shall see in Experiment 3, throughput actually peaks at a certain

speed in the Schmidt paradigm. To date, there has been very little research into

the implication of the Schmidt linear relation with respect to input devices. In my

view, rather than being a theoretical anomaly, this throughput peak may in fact be

a good opportunity for designing high-throughput interaction.

Fitts-style tasks seem to show little improvement with practice [Boyle et al.,

2012b], presumably because reaching movements are carried out in many everyday

situations, and are therefore already well optimised. This indicates that the learning

curve (the amount of time it takes a novice to gain enough skill with the device that

the experience of using it is rewarding [Levitin et al., 2002]) is quite fast for these

reaching and pointing based interactions.

Finally we should note that “performance and user satisfaction are not neces-

sarily correlated” [Macleod et al., 1997]. Therefore, just because an interface has

high average throughput, this doesn’t mean it will be more pleasant to use. For

instance, higher throughput at the cost of higher mental load would not be satis-

factory. This is one reason why subjective questionnaires are often used alongside

Fitts’ law style investigations [Bachmann et al., 2014]. Experiment 3 specifically

tests for both throughput and working memory, and also for subjective workload
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using the NASA TLX questionnaire [Hart and Staveland, 1988].

2.4.2 Multidimensional Controllers

How best to control the multiple parameters provided by digital content creation

software? Multidimensional, or high Degree-of-Freedom (high-DOF) control devices

seem an obvious candidate. Work in this area goes back at least 25 years10, with

much activity in the early 90’s relating to Virtual Reality [Cruz-Neira et al., 1993;

Conner et al., 1992] and hence devices for controlling items in 3D space [Jacob and

Sibert, 1992; Jacob et al., 1994; Zhai, 1993]. This spawned corresponding investi-

gations using these VR devices for musical interaction [Mulder, 1994; Bargar et al.,

1994; Vertegaal and Eaglestone, 1996; Choi, 2000].

Many device evaluations relate to navigation, pointing and object manipulation

in 3D worlds. For instance [Zhai and Milgram, 1998a] look at 6-DOF input devices,

and propose that one measure of efficiency is ‘coordination’: how well users can

travel diagonally through the space, as opposed to moving one dimension at a time

(via ‘Manhattan’ or ‘city block’ style navigation). Diagonality can be calculated by

several methods:

1. Coordination [Zhai and Milgram, 1998a]: the difference between the shortest

path and the recorded path between start and end points.

2. The time series correlation between movements in the different dimensions.

3. Diagonal thresholding [Jacob et al., 1994]: i.e. dividing the trajectory into

small sections and counting how many exceeded an angular threshold.

10Though multidimensional control was the focus of research during WW2, when a pressing
concern was how to rapidly and accurately control the two degrees of freedom of gun turrets
[Ellson, 1947].
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4. Time on Target (TOT): how much of the path was pointed in the target

direction [Ellson, 1947].

Early attempts to provide multidimensional interaction made little impact on the

mainstream, probably because of the poor accuracy and reliability of the devices

[Vertegaal and Eaglestone, 1996]. Recent years have seen a resurgence of interest

however, with very high-DOF input devices such as the Kinekt [Sambrooks and

Wilkinson, 2013; Pino et al., 2013; Zeng et al., 2012] which enables skeletal tracking

of the entire human body (albeit with latency and accuracy that is a little less than

desirable for fast musical interaction), and the Leap Motion [Weichert et al., 2013;

Bachmann et al., 2014], which tracks hand pose in a fast and accurate manner.

Whilst the Leap motion has been evaluated via Fitts’ law based method, these

studies only assessed its ability for 2D pointing tasks [Seixas et al., 2015; Bach-

mann et al., 2014], where it was found to perform poorly in comparison to a mouse

(approximately doubling movement times). Using a 20 plus DOF controller for 2D

interaction seems to miss the point somewhat. Given the lack of a Fitts evaluation

technique for higher dimensions, perhaps this may be understandable. In Experi-

ment 3 we demonstrate that using the Leap for 6D musical interaction can show a

factor of three increase in throughput compared to the usual figures reported with

a mouse.

Musical research using the Leap Motion [Hantrakul and Kaczmarek, 2014; Ritter

and Aska, 2014; Han and Gold, 2014; Mandanici and Canazza, 2014] has seen some

interesting musical applications, and revealed a number of important issues (such

as occasional, but musically catastrophic loss of tracking), but are yet to follow any

rigorous quantitative evaluation method.
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2.4.3 Usability: Some HCI design Principles

In this section we investigate some design principles from the HCI literature. These

often consist of lists of recommendations based on user studies. It is worth attempt-

ing to distil these in reference to the above review of cognitive science principles.

In fact, most of them relate to a single principle: that of off-loading as much of the

cognitive burden from the brain’s explicit system as possible.

There have been a number of attempts to provide concise, general guidelines

for creating user interfaces. One set is the eight golden rules [Shneiderman and

Plaisant, 2004], a good starting point for any user interface designer:

1. Strive for consistency. Similar tasks should require similar actions. Termi-

nology in text should be the same across labels, menus etc. Copy and Paste

is a good example of successful, widely applicable and consistent interaction.

Cognitively, this relates to the fact that implicit systems are fast and auto-

matic, but are slow to learn and inflexible. Consistency encourages procedural

memories to form, hence relieving cognitive load.

2. Enable frequent users to use shortcuts. As a user’s expertise increases, so does

their desire to access frequent commands via keyboard short-cuts. This results

from the same implicit-offloading principle. It is quicker for the motor system

to press Ctrl-C than to move a cursor to an icon, not just because of the time

taken to move the mouse, but also due to the speed difference of visuo-motor

vs. haptic-motor feedback. There is an implied cost-benefit analysis in which

the effort of learning lots of key commands is weighed against the efficiency

gain of faster interactions in future use. It goes without saying that a musician

who spends years using a software package will benefit from shortcuts, and will

be willing and able to develop virtuosity in their motor skills. High throughput

from keyboard typing skill is one argument for tracker style sequencers [Nash
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and Blackwell, 2011] and also for the practice of ‘live coding’ [Nilson, 2007].

3. Offer informative feedback. When a user enters some instruction, it is neces-

sary that some form of feedback occurs to indicate that this was performed.

This is usually visual, but obviously audible feedback occurs in music software.

This aspect is crucial in music and is related to the idea of “liveness”.

4. Design dialogue to yield closure. This relates to an overall task composed of

subtasks. When something is completed it should feel as such. The state

of the brain should mirror the state of the task data. The computer is ‘re-

porting back’ the state of its processes, such that the brain’s predictions are

either confirmed or an error is noted. A simple example is a ‘progress bar’.

This principle of the human and computer needing mutual updating of their

progress through a task-space will be referred to as ‘cognitive mirroring’.

5. Offer simple error handling. Design the system so the user cannot make a seri-

ous error. If something does go wrong, offer clear and unobtrusive notifications

and remedies.

6. Provide an undo option. Reversibility is important in all user interfaces. This

can get complex in a music system that is designed for both off-line serial

editing and live parallel performance. This and the previous point seem to

be related to the cognitive mirroring principle, in that an error is a deviation

from the solution trajectory that both human and machine seek to follow. If

either party has deviated from that path, they need to inform the other.

7. Support internal locus of control. The feeling of autonomy is extremely im-

portant for a computer user. It increases motivation, and has been shown to

aid creativity [Amabile, 1998]. Whilst the computer and human are cognitive

partners, the human ultimately has the goals and intentions. The explicit sys-
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tem is at the top of the cognitive hierarchy. Attempts to interrupt the user’s

thought processes with error messages or even well-meaning ‘recommenda-

tions’ can be incredibly distracting.

8. Reduce short-term memory load. Multiple windows and complex dependencies

should be minimised. This is essential for creative software too, as a creator

may have a complex overall goal, or a sudden fleeting idea in mind. An excess

of interface related material in working memory may interfere with this [Tano

et al., 2012]. This is a restatement of the explicit offloading principle.

Direct Manipulation [Shneiderman, 1982; Beaudouin-Lafon, 2000] is another one

of Sheiderman’s influential interaction models based on the above principles. This

model proposes a number of principles which clearly relate to the embodied cognition

approach, and to reducing cognitive load. These include: continuous representation

of objects of interest; fast incremental and reversible operations with an immediately

apparent effect; and “physical” actions on objects rather than complex syntax.

Whilst the WIMP GUI11 model is clearly based on ideas of direct interaction,

perhaps it does not go far enough. Beaudouin-Lafon uses direct manipulation princi-

ples to critique this model and propose a post-WIMP model known as “instrumental

interaction”. This is inspired by tool use in the physical world, where instruments

(such as pens and hammers) are used to affect change on “domain objects” (paper,

nails). This paradigm is made use of in music software that provide different tools

for selection, drawing, zooming, slicing and so on.

Cognitive Dimensions of Notation

How musical information is represented is immensely important for its creation

and manipulation. The “Cognitive Dimensions of Notations” [Green, 1989], is a

11Windows, Icons, Menus, Pointers, Graphical User Interface
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useful set of criteria for evaluating how demanding notations are to understand and

manipulate. They originally pertained to software development, but are applicable

to all forms of abstract notation, and in particular have been applied to musical

representations in software by Nash [Nash, 2012; Duignan, 2008].

The 14 dimensions run as follows (quoted from [Duignan, 2008]):

1. Hidden dependencies occur when important links between entities are not

visible.

2. Premature commitment places constraints on the order of doing things.

3. Provisionality is the degree to which users are committed to actions or marks.

4. Secondary notations allow extra information to be added using means other

than the formal syntax, such as notes and comments.

5. Viscosity is the resistance of aspects of the notation to change.

6. Visibility is the extent to which components can be easily viewed.

7. Consistency occurs when similar semantics are expressed in similar syntactic

forms.

8. Diffuseness of the notation is determined by the verbosity or terseness of the

notation.

9. Error-proneness is defined by how difficult it is for the user to avoid mistakes.

10. Hard mental operations occur when a high demand is placed on the users

cognitive resources.

11. Progressive evaluation allows work to be checked at any time.

12. Role-expressiveness is how easily the purpose of a component can be inferred.
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13. Closeness of mapping is how well a representation fits to a specific domain.

14. Abstraction is the extent to which higher level abstractions are provided in

the notation.

These dimensions relate to how well the notation functions as an extension of

the user’s cognitive processes, or how well the software functions as part of the

user’s ‘extended mind’ [Clark and Chalmers, 1998]. Ideally one would design for all

these dimensions to be optimised, but in practice trade-offs exist between them. For

example, increasing the amount of abstractions available may increase the number of

hidden dependencies. In the case of sequencers it might be desirable to have a main

theme clip and then variations on that theme. If one decided to change the main

theme and have those changes cascade down to the variants, this would introduce a

dependency that may result in unpleasant surprises. Shneiderman’s principles also

feature some trade-offs. A consistency in style may interfere with the expressiveness

of graphical icons. There may also be trade-offs between Norman’s emotional and

behavioural levels [Norman, 2004]. For example, the folders in Apple’s OSX have

been forced to all look identical for aesthetic reasons, making visual recognition of

particular locations harder.

2.5 Summary: Seven Principles

This chapter has tried to present a unified account of some of the most important

aspects of human cognition, and how they relate to our interactions with information

technology. Here we summarise the central ideas that will be utilised throughout

the rest of this thesis.
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2.5.1 Three Cognitive Principles

The three main cognitive theories, along with key texts providing a background to

the subsequent discussion, are as follows:

• The Free-Energy Principle [Friston, 2010] The brain is a hierarchically organ-

ised, modular predictive system. It attempts to encode/explain the world in

as efficient a manner as possible, and act on the world so as to minimise sur-

prise, and hence keep its entropy down. The agent does not passively receive

and encode sensory information, it actively seeks out information by which to

advance the sophistication of its prediction mechanisms.

• Dual Process Theory [Stanovich, 2011] and Global (Neuronal) Workspace The-

ory [Baars, 2005; Dehaene, 2014]. The higher levels of the predictive hierarchy

are thought to be associated with conscious processing: ‘explicit’ thought. The

brain-wide fronto-parietal networks are able to utilise lower level modules to

process complex information in an immensely flexible, concerted manner. The

wealth of episodic memory enables the explicit system to carry out ‘mental

time-travel’ in order to establish predictions over much larger time-scales than

the implicit system. However, brain-wide processing can suffer from bottle-

necks at network hubs, and is therefore slower, serial and more effortful. It

also necessarily requires information to be manipulated as encoded chunks,

rather than probabilistically. Limited working memory is one limitation of

this ‘explicit’ system, meaning that high-level information used in the ‘Global

Workspace’ is easily displaced. Dual Process Theory specifically highlights

the difference between fast implicit processes and slow explicit processes and

how they affect everyday reasoning. For our purposes, we shall assume that

both dual process and global workspace theories are referring to the same

dichotomy.
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• Embodied Cognition [Wilson, 2002] : Action and perception are tightly in-

terlinked. The motor system produces predictions of sensory feedback when

initiating motor actions and vice versa. Similarly the brain actively infers

possible motor activities in sensing its environment. A stronger claim is that

higher level cognitive process are ‘exapted’ from more basic action-perception

mechanisms. This has significant implications for tangible and embodied in-

teraction design.

2.5.2 Human Interface Design

We can attempt to condense the rules for creative human-computer interface design

into a more concise form, with reference to both the principles in Section 2.4.3, and

the cognitive principles above.

1. Reduce cognitive load on the explicit brain system. Quite possibly the reason

we started using writing, algebra, musical notation and digital computers in

the first place is to offload cognition onto the environment. This is done in

two ways: cognitive mirroring and cognitive pipelining.

2. Cognitive Mirroring Principle: The computer can relieve the burden on the

explicit brain by carrying out some of its computation. In effect the computer

attempts to mirror what the brain would have done itself, but faster and more

accurately. This means that the computer should ‘know’ what the human

intends to accomplish, as if it were receiving the top-down prediction infor-

mation from the brain directly. The principle works both ways, the human

too needs to be able to predict the consequences of a computational action,

know what the computer is doing, and be able to evaluate the current state

of the data. The human or machine may deviate from one another, or deviate

from progress toward the goal, therefore these discrepancies need to be easily
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correctable. How fast the human and the machine can synchronise themselves

is important (this leads to the fourth principle of throughput maximisation,

below).

3. Cognitive Pipelining Principle:

The process of instructing the computer of one’s intentions is itself associated

with cognitive load. Complex interfaces can demand a lot from the human’s

explicit processing capacity. If the implicit modules in the brain carry out in-

terface manipulation beneath conscious awareness, cognitive load is reduced.

The lower level, and the more encapsulated the module entrusted with these

manipulations, the better. For every interface action one needs to ask how

it can be presented in a way so as to be processed with as little dependency

on context, and within as fast a perception-action loop as possible. This is

reminiscent of pipelining instructions to a computer processor, and features

in models of multitasking such as ‘threaded cognition’ [Salvucci and Taat-

gen, 2010]. We have evolved for natural interactions with the environment:

therefore our brains possess sophisticated machinery for dealing with physical

materials in 3D space. These built-in modules can be utilised by interface

designers to provide skilful and intuitive interactions. If physical intuitions

are inapplicable, a means for the user to train themselves to attain skilled

automaticity should be provided.

4. Throughput maximisation: How fast does the data in the machine change to

mirror an idea in the mind, and vice versa? How easy is it to faithfully express

our ideas digitally? This can be measured using throughput—the rate at which

information enters the input device. Expressive output from the machine to

the user is also important. This corresponds to maximising throughput in the

return path of the perception-action loop, and involves the human inferring
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the computer’s state from its output. How well does the visual systems inter-

pretation of the display relate to the structure of the data, the current task,

and the potential actions one can take? How quickly can one evaluate the mu-

sical components one is working on? An expressive display offloads cognition

because complex information is accessible ‘at a glance’. Proprioceptive and

haptic feedback contain less detailed information, but are far lower-level and

hence faster than visual feedback.

There is still a long way to go before our everyday computing practice is fully

embodied. One of the aims of this thesis is to show that throughput, as in the

number of bits successfully specified per second, can be measurably improved using

ideas of designing for the implicit sensorimotor system.
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CHAPTER 3

Creativity

3.1 Introduction

Creativity is one of our most exalted and, some would say, mysterious behaviours.

Creativity has acquired an almost mythical status in our society. Our artists, physi-

cists, pop musicians and film stars seem to be allocated far higher social kudos than

politicians, bankers and estate agents; jobs that are perhaps not seen as quite so

creative. And yet, the study of the mechanisms by which creativity happens is

still in its nascent stages. Not even artists would appear to have a clear grasp of

their own creative process. It is no surprise that it represents a major challenge to

research.

There is, at least, a general consensus on what one could call the ‘minimal

definition’ of creativity. Creativity is defined as the generation of new, original

ideas that are also useful. As the term ‘useful’ is perhaps biased toward utilitarian
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disciplines, the more general word ‘valuable’ will be used here.

The first necessary clarification here is, as Boden [1992] points out, that the

mere novelty or improbability of an idea is not sufficient to capture true originality.

She states that “A merely novel idea is one that can be described and/or produced

by the same set of generative rules as are other, familiar ideas. A genuinely orig-

inal idea is one that cannot.”. So true originality not only generates something

different, but that also alters the very rules, assumptions and methods of a do-

main. Lesser forms of creativity are divided by Boden into “Combinatory”: ideas

obtained by combining previously unrelated ideas, and “Exploratory”: ideas arrived

at by randomly exploring parameters of the creative artefact. The production of

truly revolutionary ideas that cannot be arrived at by merely exploratory processes

is termed “Transformational Creativity”.

Another distinction found in Boden’s work is that between creative products that

are completely new to human culture, and widely regarded as valuable by experts

within a domain (referred to as historical, or H-creativity), and those which are

merely new for a certain individual (referred to as psychological, or P-creativity).

The former is obviously accorded higher status, involves a large amount of domain

knowledge on the part of the creative person, and is highly dependent on the social

and historical context of the work.

One might also draw a line between scientific and artistic creativity. Science

and engineering address ‘well-structured problems’, where there are clear criteria

for determining the success of a solution. In contrast, artistic endeavours tend to

deal with ‘ill-structured’ or ‘under-constrained’ problems [Simon, 1974]. Here the

rules are culturally generated, negotiable and provisional. This gives the artist more

freedom to invent their own rules of evaluation, but makes objective assessment and

generalisation difficult for researchers.

The line between artistic and scientific creativity is not as severe as it might
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appear however, and modern treatments tend not to treat them separately. Some

of the most important ideas in science rewrote the rules of the domain, and artistic

developments may often proceed via analytic, incremental processes [Root-Bernstein

and Root-Bernstein, 2004].

Creativity theorists, according to Shneiderman [2000], fall into three general

categories: Structuralists, those who hold that creative accomplishments can be at-

tained by following some ordered process; Inspirationalists, who focus more on the

‘Eureka moment’ and who encourage breaking away from familiar thought processes

and taking a more free-form approach; and Situationalists : those who emphasise

social context and collaborative networks within a domain. This thesis, whilst ac-

knowledging its importance, does not consider the Situationalist approach in any

great depth. We will not claim to tackle the question of assisting truly original

H-creativity, as this involves far too many wider issues of personality, historical or

social context [Cśıkszentmı́hályi, 2009], and a consistently underrated amount of

luck [Taleb, 2005]. What is attempted here is enhancement of the process of dis-

covering, or performing, new, original and valuable material in a P-creative sense. I

consider, along with many other researchers, that P-creativity involves a combina-

tion of both structuralist and inspirationalist approaches.

In this chapter we look at those cognitive aspects of creativity that are use-

ful and interesting for designers of, and researchers into, digital musical interactive

technology. We shall discuss models that involve two opposing but complemen-

tary mechanisms, in particular divergent and convergent thinking. Next we look at

the phenomenon of insight, and the spontaneous emergence of ideas from the un-

conscious. We then describe Wiggins’ computation models of creativity, including

the ‘suprisal threshold’ for conscious access, and the Creative Systems Framework

(CSF).

Some compelling results from the cognitive neuroscience of creativity will be
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mentioned, along with a particularly useful cognitive model (partially sighted vari-

ation and selection) that shall be used in later chapters. The subtle, but essential

topic of how constraints can affect innovation is investigated in Section 3.6. The

phenomenon of Flow is discussed in Section 3.7, along with its possible relation to

the idea of creativity as a form of data compression.

Finally we look at some of the research into creativity support tools, and how

interface design can affect creativity.

3.2 Divergence and Convergence,

Variation and Selection

Guilford [1967] was one of the first prominent psychologists to draw attention to

creativity as something that could be studied scientifically. The creative process

was characterised as a combination of “convergent” and “divergent” thinking. Di-

vergent production is the generation of many provisional candidate solutions to a

problem, whereas convergent thinking is the generation of the unique solution. Oth-

ers have taken convergence to mean the narrowing of the options to find the most

appropriate solution, in other words idea selection. Whilst this is a simple model

of a complex process, and throws up just as many questions as it answers (why

should the mechanism for generation of a single solution be different from the gen-

eration of many?), most modern theories have these two processes present in some

form. Sometimes the distinction is made between “Generative” and “Evaluative”

instead. The fundamental ideas, that creativity is not ‘magic’, is exhibited by all

human brains, and may be broken down into simpler, computable sub-processes is

now fairly mainstream amongst researchers, and ultimately forms the foundations of

the “Creative Cognition” [Sternberg, 1999; Smith et al., 1995] and“Computational
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Creativity” fields [Colton et al., 2012].

Campbell [1960] and Simonton [1999] considered creativity as a Darwinian pro-

cess, and propose a process of idea variation and selection. The most extreme version

of this theory is Blind Variation and Selective Retention (BVSR) [Simonton, 2012].

BVSR is a process in which large numbers of alternative solutions to a given problem

are generated blindly, that is to say that the variations are made without knowing

whether they progress toward more valuable solutions or not. These solutions are

then tested, or evaluated, and then the most valuable solutions are selected. The

process can then iterate by varying the most successful selections from the previous

iterations until some value criteria is met, or a definitive solution is found. The

advantage of this model is that it can easily be modelled formally and numerically.

However, it seems unlikely that idea generation is entirely blind, and the theory

has been criticised on this and other accounts [Gabora, 2005]. Nevertheless, the

key concepts of variation (by whatever means), evaluation and selection are cer-

tainly important for all theories of creativity. A Darwinian approach also provides

a bridge to many powerful and illuminating ideas from evolutionary biology, such

as the ‘fitness landscape’ [Wright, 1931]: the hypothetical assignment of a value

function across all points in ‘design space’ [Dennett, 1995].

In my view, BVSR should be considered as a form of ‘null hypothesis’: a cheap

fall-back when other more sophisticated processes are not available. We should

not be surprised to find it operating in human creativity: Darwinian evolution is

a mechanism that operates whether designed for or not. It is a fundamental and

inevitable result of the passage of time in a complex system of mutating, repli-

cating information. However, BVSR on its own would be immensely inefficient.

Whilst a Darwinian process will find optimal solutions given enough time, there

are limits to the size of its leaps through solution space. The presence of variation

and selection does not rule out other mechanisms, particularly if those mechanisms
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are more efficient. Indeed, it is likely that natural selection will have selected pre-

cisely those cognitive mechanisms that were more efficient. The brain demonstrates

a supreme aptitude both at predicting the direction of increasing fitness in solu-

tion space, and predicting the effectiveness of purely hypothetical solutions without

testing them [Dietrich and Haider, 2014]. Simonton thus reformulates BVSR to

incorporate the ability of the creative agent to predict value, and hence increase the

sightedness of the variation mechanism [Simonton, 2012]. Therefore we could refer

to a slightly sighted version of BVSR as ‘partially sighted variation and selective

retention’ (PSVSR), this will be described in more detail in Section 3.5.

The Geneplore model [Ward et al., 1999] also features two complementary pro-

cesses. The first is the generation of so called “pre-inventive structures”, fluid col-

lections of provisional, experimental concepts. The “-plore” stage is the exploration

of those concepts in further depth. Generation of pre-inventive structures can hap-

pen in a variety of ways. Combination is where existing concepts are conjoined,

and their properties merged in some way. Transformation is where properties of

an existing concept are altered. Analogy is where a concept is transferred from one

domain to another. A successfully applied analogy results if some properties that

solved the problem in the first domain also apply in the new one. Analogy and

conceptual blending are seen by Fauconnier [2001] as inherent in all our thought

processes. A third component of the Geneplore model is problem constraints: these

may be applied to constrain the type of ideas in the generation stage, or be used

to guide the exploration stage. Constraints will be investigated in more depth in

Section 3.6.

In all of these models, flexible, fast alternation between the processes is seen as

crucial: innovation is often an iterative cycle.
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3.3 Insight: The Role of the Unconscious

Stage models break down the creative problem-solving process into distinct phases.

Helmholtz, Wallas [1926] and Hadamard suggest that the creative process breaks

down into four main stages:

1. Preparation: involves researching the problem in question and trying, con-

sciously, to solve it using existing techniques.

2. Incubation: in which the problem is left alone for a time, but the unconscious

mind is hypothesised to be still working on the problem.

3. Illumination: where a sudden flash of insight occurs and the solution presents

itself—seemingly out of nowhere.

4. Finally, Verification is when the solution is checked for its suitability.

Illumination is said to often happen when the mind is on other things, having

just woken up in the morning, taking a walk or otherwise engaged in some non-

demanding task. Illumination is more or less synonymous with “insight”, and is

characterised by a sudden “Aha!” or “Eureka!” moment [Kounios and Beeman,

2009]. Insight problems are a tool that psychologists have used to study this phe-

nomenon. These are puzzles that no amount of step-by-step reasoning can solve.

These problems often involve setting up some “functional fixedness” [Duncker and

Lees, 1945], commonly known as a “mental block”. The insight occurs when the

problem is suddenly seen from a different angle. The “special process” model holds

that these problems require different brain processes from logical or verbal problems,

and are non-conscious or at least indescribable. This is evinced by the fact that ver-

balisation of the problem solving process hampers progress in insight problems but

not in non-insight problems [Schooler et al., 1993].
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There may also be preliminary stages to problem solving, namely problem finding

and problem definition [Cśıkszentmı́hályi, 2009]. In fact asking the right questions

may be the key to a breakthrough. As Einstein, quoted by Getzels [1975] put it:

“The mere formulation of a problem is far more often essential than its

solution, which may be merely a matter of mathematical or experimental

skill. To raise new questions, new possibilities, to regard old problems

from a new angle requires creative imagination and marks real advances

in science.”

This is strongly reminiscent of reflective cognition, discussed in Section 2.3.6.

3.3.1 Remote Associations and Spreading Activation

One mechanism that has been proposed for the operation of insight is ‘spreading

activation’ [Anderson, 1983]. The properties of associative memory—the network of

associated concepts, where one can pass from concept to concept if they are closely

related—can be employed to explain the effect of priming [Meyer and Schvaneveldt,

1971] and insight [Langley and Jones, 1988]. Priming is the phenomenon where if

a subject is presented with a word or image, even subliminally, related concepts

are processed faster. Therefore there must be some means by which heightened

availability of concepts resonates outward through the associative network. This is

clearly related to the idea of ‘divergence’ in the previous section.

An individual’s ability to utilise this branching network can be tested using

‘Remote Associates Tests’ (RATs) [Mednick, 1962]. In these studies, subjects are

given pairs or triplets of seemingly unrelated words, and asked to find another word

that links them, so as to form compound words. For example, given the triple:

‘safety’, ‘cushion’ and ‘point’, the correct answer would be ‘pin’. There are more

prosaic methods of solving these problems, for instance enumerating every possible

91



word that could go before or after ‘safety’, then checking each in turn with the

other two words. Therefore in some experiments subjects are asked to self-report

their feeling of having solved the problem in a flash, via insight. The solving of

insight problems has been found to be facilitated by exposing subjects to subliminal

cues [Hattori et al., 2013], further bolstering the case for unconscious associative

processing being involved.

The associative nature of memory does not always assist in generating original

solutions, however. Smith et al. [1993] demonstrate that prompting subjects with

examples of potential solutions to a design problem diminished the originality of

their suggestions, because they tended to closely resemble the examples.

Given the importance of fluently generating a large quantity of varied ideas, a

proposed test for creative abilities is the ‘Unusual Uses’ test [Wilson et al., 1953].

This evaluates a subject’s ability to generate ideas via divergent production. The

subject is required to come up with as many unusual uses as possible for an everyday

object such as a brick or a cardboard box. The ideas are then simply counted, and

can also be rated for originality. The unusual uses test has been used to study the

effects of various externally imposed conditions on divergent abilities. One relevant

example is an experiment to investigate incubation [Baird et al., 2012]. After an

initial unusual uses session, different groups of subjects carried out an undemanding

task, a cognitively demanding task, and a period of complete rest. The subjects that

carried out the undemanding task performed the best when returning to the task,

despite not having consciously thought about it. This suggests that incubation can

be assisted by mind wandering. This finding clearly has ramifications for creative

interfaces, as a demanding interface will be less supportive of mind wandering than

a simple one (see Section 5.5.4).

The quality of attentional processes has also been regarded as important for cre-

ativity [Ansburg and Hill, 2003; Vartanian et al., 2007]. In particular, the spectrum
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between diffuse and narrowed attention. When focused on a task, executive control

activates those regions of the brain needed to carry out task-relevant processes. It

is also inhibiting other regions, and discarding sensory input deemed to be irrele-

vant. Whilst this is a good thing for carrying out convergent, step-by-step tasks,

it is hypothesised to have negative effects on remote associations: hence inhibiting

creativity. The opposite of this narrowed focus is ‘diffuse’ or ‘distributed’ attention,

where the mind is more open to extraneous information, both internal and exter-

nal [Takeuchi et al., 2011]. This relates back to an earlier idea, that of a ‘stimulus

generalisation gradient’ [Mednick, 1962]: the idea that the width of the associative

hierarchy is important for remote associations, and indeed can be measured. An

individual with a narrow associative spread will tend to only activate concepts that

are closely related to a stimulus, whereas a highly creative individual may have a

shallower gradient that will activate many, less related concepts. Gabora [2002] de-

scribes a process by which the creative agent moves from an associative mode, where

the activation function is widely spread across many related concepts, to a causation

based mode of thinking, which enables the investigation of the ramifications and im-

plementations of the creative work. Again, it is the ability to combine ‘conceptual

fluidity’1, with analytic reasoning that is seen as the key to creative ability. More

recent investigations [Benedek and Neubauer, 2013] of this idea seem to indicate

that creative people are not so much characterised by a flat associative hierarchy,

rather by ‘fluency’, or the speed with which they can traverse the network.

Whilst insight and illumination may be synonymous, inspiration can refer to

more of an affective state than a particular mechanism [Oleynick et al., 2014]. One

may deliver an ‘inspired performance’, where the mind seems to be in a particularly

productive, motivated, receptive and heightened state. In this state the probability

of insight is higher, or feels to be so subjectively. One can also be inspired by

1Otherwise known as defocused/diffuse attention or ‘reduced latent inhibition’
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some external influence (evocation), and hence be put into some state where one

wants to be creative, and feels enabled to be so. Inspiration may be thought of

as a disinhibition mechanism, as proposed in improvisation experiments [Limb and

Braun, 2008; Liu et al., 2012], where, given the right conditions, the artist seems

to let go of normal everyday inhibitions and error correction processes in order to

enhance top-down creative expression.

3.3.2 The Informational Dynamics of Insight

An important question is whether insight requires both generation and evaluation

to occur beneath the level of consciousness. Does the subconscious mind need to

post all its productions into consciousness, which is forced to evaluate them all ex-

plicitly? Or is there a preconscious selection process operating? To evaluate the

combinatorial possibilities of all connected concepts consciously would take a huge

amount of time, so it seems likely that some form of evaluation and selection must

be conducted subconsciously. Wiggins [2012] draws on Global Workspace Theory

to propose a mechanism for how unconscious probabilistic processing can give rise

to the phenomenon of insight; highlighting the importance of the ‘informational dy-

namics’ of the interplay between the implicit and explicit systems. His hypothesis

is that the generating units of GWT monitor their own information-theoretical ex-

pectation violation i.e. ‘surprise’. The likelihood of obtaining access into the GW

is proportional to this surprise2. The formulae for the threshold of consciousness is

given as the product of the number of generators making a certain prediction, p, and

the surprisal/novelty of the prediction h, divided by the entropy of the distribution

of possible events, prediction-H: which is the uncertainty a predictor has about its

2Strongly reminiscent of the prediction errors in the Free-Energy principle described in Section
2.2.7.
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prediction:

T =
p× h
H

. (3.1)

There are therefore three ways of increasing the chance of crossing the threshold:

• If lots of predictors have the same idea, and the likelihood p is large.

• If the idea is very surprising, and h is large.

• If prediction-H is low, the generator is very certain that its idea is ‘right’. This

also encourages admission into explicit awareness.

It should be noted that this is a highly competitive process: the idea will be

in competition with myriad other ideas and with incoming sensory data. The idea

that internally generated ideas are in competition with externally generated ideas

is returned to in Section 5.3.1

3.4 Computational Models of Creative Cognition

3.4.1 The CSF

Creativity is also studied in the context of artificial intelligence: a field known as

Computational Creativity. By attempting to build artificial systems that exhibit

creative behaviour, we may form models of how creativity might function in our

own minds. Wiggins’ Creative Systems Framework (CSF) [Wiggins, 2006] is a more

formal descendent of Boden’s theories of artificial creativity [Boden, 1992]. In this

framework creativity is seen as a way of extending conceptual space: using a traver-

sal mechanism that produces a concept falling outside of the existing space (an

“aberration”), but is nevertheless seen as valuable and appropriate according to the

evaluation function of the domain.
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Wiggins describes creativity in terms of the exploration of conceptual space. It

consists of the universe of all possible concepts U , an existing conceptual space

(for example domain knowledge) C , rules (domain constraints) that define this

conceptual space R, a set of techniques to traverse the space T , and an evaluation

method E : a way to assign value to a location c that yields a “fitness function”.

Exploratory creativity is said to proceed as follows: if a traversal rule takes

us outside the space of existing concepts, this results in an “aberration”: a novel

concept. If the aberration proves valuable according to E , then the new point is

included in the domain, and the conceptual space is extended to include this point.

Wiggins claims that transformational creativity (a fundamental shift in the rules

of the domain) can be viewed as no different from exploratory creativity but on a

meta-level. This is to say that a transformation of conceptual space can be achieved

by exploring the conceptual space of conceptual spaces. Clearly there is no limit

to how ‘meta’ this process can get, giving rise to a creative ratchet effect [Leman,

2008, p. 54]. Later we attempt to adapt this model to apply to a parameter space,

to propose what creativity might mean in the case of adjusting continuous controls

of a sound synthesis engine (Section 5.2.1).

3.4.2 Novelty Based Search

An interesting critique of convergence oriented algorithms is found in neuroevolu-

tion literature [Lehman and Stanley, 2011; Nguyen et al., 2015]. By evolving differ-

ent neural networks with reward based on either progress or novelty, this research

demonstrated that novelty-oriented search can significantly outperform objective-

based search. Even well-defined problem spaces—such as maze navigation and sim-

ulated biped walking tasks—seem to be performed better by selecting for novelty-

generating behaviour. The reason for this is that novelty producing behaviours are
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more generalisable than progress oriented behaviours. An agent that has discov-

ered how to walk, crawl or hop in any direction, and ‘enjoys’ exploring new areas

will do better in a maze than an agent that can only crawl towards the goal. This

point needs to be emphasised. According to Stanley and Lehman [2015], planned

progress may in fact be a ‘myth’. By enforcing a constant need for measurable

progress toward an explicitly defined goal, society may be stifling innovation in

the most important and complex of domains. Therefore creativity is not just ‘evo-

lutionary cheesecake’ [Pinker, 1999; Bown, 2012]: the drive to produce novelty is

fundamentally adaptive.

In domains where originality is often seen as intrinsically desirable, such as art

and music, novelty driven exploration should be even more appropriate. Evaluat-

ing musical interfaces by exclusively testing goal directed behaviour may therefore

miss the most important part of the picture. User studies that test for unplanned

behaviour may be more revealing (e.g. Gurevich et al. [2012]; Zappi and McPherson

[2014b]).

3.4.3 Evaluating Creative Output

The cognitive processes by which artists and audience evaluate cultural artefacts

are quite possibly the most complex of all the aspects of creativity. It is perhaps the

biggest challenge facing the computational creativity field: how to get a computer to

judge its own work in a sophisticated, cultured way [Cardoso et al., 2009; Galanter,

2012]?

How can we tell ‘how much’ creativity has happened? Empirical studies of

creativity may require that a participant’s output must be judged for its originality

and appropriateness. Of course, it is a tough prospect to reduce creativity to a

scientifically or computationally measurable quantity [Jordanous, 2012]. It may
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necessitate the ‘consensual assessment technique’ where a panel of (human) experts

in the field are called upon to judge the outputs of the experimental participants

[Hennessey and Amabile, 1999]. This may be an effective method of evaluating

creativity in terms of its final products, but is quite costly in terms of time and

resources.

For these reasons, the full cultural and aesthetic complexity of how creative

works are evaluated lies outside the scope of this thesis. In general we assume that

musicians must evaluate their own output as they create it. This self-evaluation lies

outside the design of music technology, as the full complexity of the fitness function is

latent in the artist’s or listener’s brain. Nevertheless, it is important to acknowledge

that the musician’s evaluative process may be a complex and demanding one, and

an interface that induces high cognitive load may interfere with this [Mycroft et al.,

2013]. We must also consider that evaluation may also proceed in a predictive

fashion: the adjustment of musical parameters may proceed by means of a prediction

of the direction of increasing value in some conceptual space. In Section 5.5.2

we propose that the difference between divergent and convergent interactions is

entirely characterised by the engagement and disengagement of these predictive and

evaluative processes. Whilst acknowledging the importance of evaluation, the actual

details of evaluative processes will be spared.

3.5 The Cognitive Neuroscience of Creativity

There have been a number of studies investigating creative cognition using brain

imaging techniques. For recent overviews, see Dietrich and Kanso [2010] and Sawyer

[2011]. Reviews such as this point out that much of the literature is inconsistent,

and approaches the topic in too vague a way to produce clear results. For instance

distinctions such as divergent and convergent thinking, or generative or evaluative
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thought, are not sufficiently low-level constructs to produce distinct activation pat-

terns in neuroimaging studies. No ‘creativity region’ or ‘divergence module’ is likely

to be found in the brain. Nevertheless, some studies contain some interesting and

suggestive findings.

Ellamil et al. [2012] have conducted fMRI scans of people engaged in creative

activity, and report on the activation of different brain regions during generative

and evaluative stages. Their findings indicate that the generative stage makes use

of associative processing. Perhaps more interesting is that the evaluative stage

appears to activate components of two brain systems thought to be seldom used in

conjunction: the default (task-negative) network and the executive (task-positive)

network. They speculate that this is because creative evaluation involves a mixture

of introspective and analytical thought.

Another method to separately investigate the generative and evaluative stages

is to study improvisation: which presumably emphasises generation rather than

evaluation. There is some evidence that improvised, spontaneous creativity involves

the disinhibition of certain evaluative, monitoring processes. In an fMRI brain

imaging study of jazz improvisation on the piano, Limb and Braun [2008] found

that:

“Improvised performance is characterized by dissociated activity in me-

dial and dorsolateral prefrontal cortices, providing a context in which

stimulus-independent behaviors may unfold in the absence of conscious

monitoring and volitional control.”

The dorsolateral prefrontal cortex (DLPFC) is one of the main nodes in the

‘task positive network’, and is implicated in the maintenance of working memory

and control of attention. It seems that reducing cognitive control allows faster,

more fluent generation of content. These results were replicated in another study of

99



improvisation, this time lyrical (freestyle rap):

“Improvisation, contrasted with conventional performance, was in gen-

eral associated with relative decreases in activity in supervisory atten-

tional and executive systems... An alternative, direct route through cin-

gulate pathways into the motor system may allow the medial frontal re-

gions to generate novel, exploratory behaviours, bypassing conventional

executive controls and thereby providing the cognitive flexibility neces-

sary for successful improvisation.”[Liu et al., 2012]

It seems action commands are sent down the motor hierarchy but not across

to the evaluative systems at the top level, therefore in some ways this mechanism

resembles an ‘open-loop’ motor command, but operating at a higher level in the

predictive hierarchy. Of course, this requires that the lower-level systems are already

highly trained to produce appropriate behaviours: both the studies above were

conducted with expert practitioners. The idea of implicit modules autonomously

generating skilled behaviour recurs in the discussion of Flow (Section 3.7).

Flying in the face of this compelling idea, Bengtsson et al. [2007] found that

DLPFC regions were more activated during piano improvisation, one of the many

contradictory findings in this area. These disagreements indicate that greater rigour

is needed in constructing computational models of creative thought, and mapping

them onto brain processes [Dietrich, 2007]. One preliminary candidate for such a

model is proposed in Dietrich and Haider [2014]. Here, an evolutionary (but partially

sighted) approach is proposed. Like Wiggins, they stress the contribution of—and

interplay between—implicit and explicit cognition. The free-wheeling generative,

associative mode of unconscious ‘noise’ can fuel creative thought, therefore provide

an element of blind variation. On the other hand, the ability of the explicit system to

chain together distantly related concepts and to explore and evaluate hypothetical
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‘thought trials’ may vastly accelerate this generate and test process. They make

reference to embodied cognition, and the connection between sensory prediction

and action:

“The fact that our cognition is embodied implies that movements, or

the emulation of movements, are important in finding new ways to solve

problems. Creativity, in this case, is to generate a predictive goal rep-

resentation as well as to emulate our way to it; that is, creativity is to

find the evolutionary algorithm that binds the goal state to the problem

by way of a series of motor plans.”

By preserving purely hypothetical, imaginary world states in working memory

(‘predictive goal representations’), the explicit system can then work backwards to

construct the means to this end, thus leaping over possibly non-viable regions of

solution space via ‘cognitive scaffolding’.

This PVRSR model features three of the four strategies of the EARS theory of

creative interaction in Section 5.5.3. What I believe is missing from this picture is

the reflective component of the explicit system. The ability to introspect, question

and alter patterns in one’s own creative behaviour has a huge impact on creativity.

‘Cognitive scaffolding’, whilst immensely important, is not the only role that the

explicit system can play. Therefore in Section 5.5.3 we will appeal to Stanovich’s

notion of the reflective mind [Stanovich, 2009], and posit a second, more divergent,

contribution from consciousness.

3.6 The Constraint Paradox

The phrase ‘creative freedom’ seems to imply that the less constraints one is bound

by, the more creative one can be, but in reality the situation is more complex.
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One thing that the proliferation of music technology has made clear is that it is

often necessary to restrict one’s options in order to be more creative [Magnusson,

2010; Gurevich et al., 2012]. Whilst there is obviously no such thing as completely

unconstrained creativity—we are operating within a universe with physical laws,

and we have cognitive limitations—there are also constraints that culture imposes,

and rules that artists agree to submit to. More tellingly, many artists choose to

deliberately constrain themselves. Stravinsky claimed:

“My freedom will be so much the greater and more meaningful the more

narrowly I limit my field of action, and the more I surround myself with

obstacles. Whatever diminishes constraint diminishes strength. The

more constraints one imposes, the more one frees one’s self of the chains

that shackle the spirit.” [Stravinsky, 1970].

Stokes relates how Picasso, Monet, Schoenberg and many others used constraints

to guide the creative process [Stokes, 2006]. She touches upon the notion of creativity

being a strategic search through solution space, and refers to constraints as

“...barriers that lead to breakthroughs. One constraint precludes (or

limits search among) low-variability tried and true responses. It acts as

a barrier that allows the other constraint to promote (or direct search

among) high-variability novel responses.”

A comprehensive study of creativity in organisations was conducted by Joyce

[2009]. She found “that the degree of constraint imposed on a creative task affects

individuals’ creative outcomes in a curvilinear fashion, such that a moderate degree

of constraint was optimal”, and “the benefits of choice to creative outcomes quickly

drop off as the number of choices becomes overwhelming”. Her conclusion was:

“Paradoxically, the freedom of creating with very little constraint can re-

sult in a narrow-minded creative process. The logistical overwhelm and
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confusion resulting from unfocused search can actually restrict teams’

open mindedness... members increase their reliance on their own as-

sumptions.”

Whilst some studies have found evidence for constraints leading to enhanced cre-

ativity, some have found the exact opposite. There are many examples of situations

in which loosening constraints leads to creative breakthrough. For example, Ama-

bile and Gitomer [1984] showed that children who were allowed to choose their own

materials produced more creative collages. Polya descibes the “Inventor’s paradox”

[Polya, 2004], where the inventor has to free themselves from the ostensible con-

straints of the problem. Amabile also found that overly strict constraints imposed

from the outside can inhibit creativity [Amabile, 1998]. This is principally because

intrinsic motivation is an important determinant of creativity. Intrinsic motivation

is the willingness to do something for its own sake, and has also been linked to Flow

(see section 3.7).

Constraints are a recurring topic in the literature relating to musical interac-

tion. Later, in Section 5.5.4 we propose an explanation of why constraints should

encourage creativity. This explanation should help to make the situation seem less

paradoxical, and make designing and interacting with these constraints more pro-

ductive.

It could be that there is an optimal level of constraint. Elster [2000] states

“inspiration — defined as the rate at which ideas move from the subconscious into

the conscious mind — can be defined as an inversely U shaped function of the

tightness of the constraints”. Next, we will discuss how, if the balancing act between

constraint and freedom is achieved successfully in a challenging activity, it can have a

significant positive effect on the subjective well-being of an individual, contributing

to an phenomenon known as “Flow”.
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3.7 Flow, Complexity and Creativity as Data Com-

pression

3.7.1 Flow Theory

Flow was a term coined by Cśıkszentmı́hályi [1991] to mean a state of complete ab-

sorption in an activity, and is particularly associated with creative work. Another

popular term, for instance in sports psychology, is “being in the zone” [Young and

Pain, 1999]. Flow is “an almost automatic, effortless, yet highly focused state of

consciousness” [Cśıkszentmı́hályi, 2009]. Flow goes beyond mere enjoyment. This

state of mind is both a productive one—in that people experiencing Flow feel that

they are operating in a highly effective and creative manner—and one that also gen-

erates very positive affective states, counting alongside some of the best experiences

in people’s lives. It frequently arises in discussions of music listening and perfor-

mance [Armstrong, 2006; Diaz, 2013; Pachet et al., 2013; Wrigley and Emmerson,

2013; Nash, 2012].

The defining characteristics of the Flow experience are:

• Being engaged in a challenging activity, but having the skills to meet that

challenge.

• The merging of action and awareness: the person feels ‘at one’ with the task.

• Clear goals, and immediate and unambiguous feedback.

• Concentration: irrelevant information does not impinge on consciousness.

• The sense of control: somewhat paradoxically, despite the task being challeng-

ing and perhaps unpredictable, the person feels as though they are in control,

and fear of failure does not arise.
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• Loss of self-consciousness: the person ceases to concentrate on egoistic con-

cerns.

• Transformation of time: a single task can seem to pass very slowly, on the

other hand large amounts of time seem to fly past quickly.

• Autotelic experience: the activity becomes intrinsically rewarding, and con-

cerns about external threats or rewards diminish.

Presumably the tools we use can also hinder or encourage the Flow experience

[Selker, 2005]. Whilst Cśıkszentmı́halyi himself draws no distinction between pre-

conditions for this state and the characteristics of it (it is a psychological process

that feeds into itself, in that state is interdependent with process), he also encourages

changes to be made in our working environment, and society in general, such that

flow becomes more natural. For the purposes of ‘designing for flow’ [Pearce and

Howard, 2004], it seems useful to separate the eight dimensions into preconditions

and resultant subjective experiences. For instance, the transformation of time and

the merging of action and awareness are more emergent mental qualia, but clear

goals and feedback are more external preconditions. The sense of control, and the

necessity of applying skills are also properties of interactive systems that can be

designed for. HCI research has been carried out in this area [Ghani and Deshpande,

1994; Webster et al., 1994; Bederson, 2004; Van Schaik and Ling, 2012]. Typically,

Flow is measured by applying the ‘experience sampling form’ relating to the eight

dimensions of Flow, and correlating these dimensions with the various experimental

conditions [Bakker, 2005; Nash and Blackwell, 2011; MacDonald et al., 2006].

Despite Flow being a highly influential notion, the theory3 does not have much

to say about the cognitive processing underlying the state. Dietrich claims “Next

to nothing is known about the brain mechanisms that give rise to such exceptional

3It may be more of an observation than a “theory”.
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human functioning” [Dietrich, 2004b]. His hypothesis is that the implicit system

becomes so effective at performing skilled tasks that the frontal lobes do not need to

process any un-dealt with information. The successful completion of tasks activate

reward mechanisms, therefore the experience is pleasurable. Dietrich describes the

flow state as:

“...a period during which a highly practised skill that is represented in

the implicit system’s knowledge base is implemented without interference

from the explicit system... a necessary prerequisite to the experience of

flow is a state of transient hypofrontality that enables the temporary

suppression of the analytical and meta-conscious capacities of the explicit

system.”

In other words, the lower levels of the brain’s hierarchy are anticipating events so

well that the explicit system receives no top-level prediction errors at all: and is free

to simply sit back and enjoy the spectacle unfolding. This state of ‘hypofrontality’

(low activation of the Prefrontal Cortex, see Section 2.3.2) has interesting parallels

with altered states of consciousness [Dietrich, 2003].

Flow has been found to correlate with musical creativity [MacDonald et al., 2006].

Reassuringly, it seems that optimal subjective experience of the user is very much

related to optimal quality of the created artefact, bolstering the “research through

design” approach to creative composition software [Zimmerman et al., 2007]: if the

user feels good, then one would hope they are producing valuable artefacts. On the

other hand, some musicians report that bouts of Flow experiences do not always

produce valuable creative works. There is a danger that excessive absorption in

the task may inhibit the essential reflective, meta-cognitive component of creativ-

ity. Dietrich’s ‘hypofrontality’ might imply reduction of critical thinking abilities.

This would perhaps explain the widespread “it didn’t sound so great the next day”
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Figure 3.1: Optimal complexity: the right amount of challenge produces the conditions
for flow.

phenomenon that musicians find all too familiar.

3.7.2 Flow and Predictive Coding

Returning to the question of complexity vs. constraint, Cśıkszentmı́halyi also indi-

cates that “It is likely that both too little and too much freedom... are inimical

to creativity” [Cśıkszentmı́hályi, 1999]. Fig. 3.1 sketches this enjoyment peak at

the happy medium between boredom and anxiety. This mirrors the situation de-

scribed in Section 3.6, and similar results can be found throughout psychological

research. Many inverse-U type figures resemble both in shape and conceptual basis

the Wundt curve of novelty vs. affect Berlyne [1970], whereby the pleasure derived

from a stimulus varies as an inverse-U curve with its complexity, and also Hebb’s

plot of arousal vs. rate of response and learning [Hebb, 1955]. It also recurs in a

study of enjoyment vs. familiarity in popular music [North and Hargreaves, 1995],

and studies of anxiety vs. performance in sports [Raglin and Turner, 1993]. Of

course, just because all exhibit a similar shaped curve doesn’t mean they are truly

related, or stem from the same mechanisms. However all are related to complexity,

i.e. entropy, and all are related to reward mechanisms, i.e. reinforcement learning.

This leads us to the provocative and powerful idea put forward by Schmidhuber

[2009, 2010], which may be a route to establishing Flow theory on a more rigorous
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computational foundation. Schmidhuber posits that this optimal complexity point

represents the point of maximum rate of change of experience-data compression.

The brain’s desire is to encode and predict the environment, and therefore seeks out

experiences that involve active reduction of the subjective complexity of the world.

The faster the brain reduces the complexity, the more the reward mechanisms of the

brain make us feel good. This is a highly adaptive trait: better coders/predictors

of their environment will tend to thrive within it. If the input is too complex, the

brain lacks the necessary tools to encode it: it will feel subjectively anxious and seek

to move toward less challenging sense data. If the input is too simple, there is no

subjective complexity reduction potential: in the extreme case that it is uniformly

ordered, there is no initial subjective complexity, and in the opposite extreme case

that the data is uniformly random, there is also no chance of reducing that com-

plexity. In these cases the brain experiences the subjective feeling of boredom, and

attention will switch to more ‘interesting’ data. Interestingness being defined as

having more compression-potential.

This elegantly explains exactly why we are curious and novelty-seeking creatures.

It also chimes well with the scientific endeavour as a whole: science is the drive to

explain the world using simple mathematical models4. Most relevantly to our current

analysis it may also explain why we enjoy art and music: it is a way to experience

artefacts that often appear intricately complex, but have some underlying patterned

structure that reveals itself to us over time. It also explains the intrinsic reward that

artists get when they produce art that ‘expresses themselves’: their own experiences

are complex and subtle, therefore to express/compress them in something as simple

as a 3 minute pop song, or a 17 syllable Haiku [Buchanan, 2001], renders their self-

knowledge more compact and activates these reward mechanisms [Schmidhuber,

2012]. Clearly this idea chimes neatly with the Free-Energy principle discussed

4Perhaps the most surprising thing of all is how well these simple models work [Wigner, 1960]
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earlier: our creative drives emerge naturally out of our predictive drives.

Cśıkszentmı́halyi defines the opposite of Flow to be ‘psychic entropy’, a term

borrowed from Jung [Butz, 1992]. This is far from being a formally defined concept,

but is described as a disordered state of mind, involving conflicting internal goals,

or ‘noise’ in the mind. There seems to be no attempt to utilise entropy reduction as

an actual measure of Flow, perhaps because the idea smacks of naive reductionism.

Nevertheless, a reduction of entropy does equate to information flow. And as we

saw in Section 2.2.7, reduction of relative entropy in both an organism’s internal

model and sensed environment is a fundamental behaviour. So could we have, if not

a rigorous proof, at least a strong connection between the ability to reduce entropy

in a parameter space, and the resulting psychological state of the interacting agent?

This potential link between Flow, entropy and information raises many tantalis-

ing questions. Is there an optimal level of subjective complexity for music making?

Is it possible to relate the information-theoretic processes involved in a creative per-

ception action loop to some of the more enigmatic subjective aspects of the Flow

state? Is there a way to measure the rate of reduction in entropy that the creator

is achieving? This last question will be tackled in the next chapter.

3.8 Creativity Support Tools

Computers obviously provide a great extension to our creative powers [Shneiderman,

2000]. Not only this, but the possibilities they open up may increase the ability

to think creatively: for example, Hanna [2012] monitored two groups, ‘intensive’

users of Computer Aided Design (CAD) software and ‘casual’ users. This study

found significant positive correlation between increased CAD use and individuals’

ideational fluency (see Section 3.3.1).

Despite the advantages, there are many points of friction between computer
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systems and creative practice. According to Selker [2005], “Possibly the most im-

portant creativity enhancers include recognizing and promoting a state of flow”, but

he points out that this can be broken by interruptions, shallow inflexible undo op-

tions, and working memory load: “interface design can carelessly add extra mental

effort when it is not necessary”.

How can software systems be designed to aid creativity? According to Lubart

[2005], computers may facilitate:

1. the management of creative work,

2. communication between individuals collaborating on creative projects,

3. the use of creativity enhancement techniques,

4. assisting the creative act through integrated human-computer cooperation

during idea production.

Many studies look at item 1 and 2 in Lubart’s list, investigating organisational

creativity, and the potential for information technology to enhance creativity in

groups [Nunamaker Jr et al., 1987]. However, the last two of these are of particular

interest here.

One set of design principles for creativity support tools specifically relates to in-

terfaces. Shneiderman [2007] and Resnick et al. [2005] propose the following guide-

lines, listed with some relevant connections to musical interaction design:

• Support exploratory search. Divergent navigation through the solution space

is essential.

• Low thresholds, high ceilings, wide walls. The barrier to entry for novices must

be low, but there must be enough power for experts to engage in highly skilled

interaction. There must be a large space to explore. These notions recur in

the musical interaction literature time and again (see Section 4.2).
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• Support many paths and styles. Creativity can be a highly individual activity,

therefore unique ways of using a tool must be allowed. There are multiple

routes to attain a creative goal, and they may be highly indirect.

• Enable collaboration. Collaboration is certainly important for musicians, and

more research in this area (e.g. [Hattwick and Wanderley, 2012; Xambó et al.,

2013; Bengler and Bryan-Kinns, 2014; Murray-Browne et al., 2014]) is surely

needed, given the currently poor provision for groups in commercial music

software. However, collaboration lies outside the scope of this thesis.

• Support open interchange. This relates to the idea of being able to move

information around, place it in different contexts, and transform it in different

ways.

• Make it simple. Reducing cognitive load is again essential.

• Choose black boxes carefully. Whilst encapsulated processing of information

is good for reducing cognitive load, it may reduce the feeling of autonomy and

inhibit the artist’s ability to experiment with the processes.

• Invent things you would want to use yourself. A personal, implicit understand-

ing of the creative community’s practices is immensely helpful in designing

‘cultural’ artefacts such as musical instruments.

• Provide rich history keeping. Session histories can promote new ways of think-

ing by providing an overview of one’s own creative process [Shneiderman,

2000]. This may relate to reflective meta-cognition (Section 5.5.3).

• Balance user suggestions with observation. Users know what they want, but

don’t always know their own mind, especially with regard to the unconscious

aspects of cognition that are essential for creativity.
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• Evaluate the creative product. Ultimately the success of a tool is measured by

the success of what is produced with it. However, in creative fields evaluation

is complex and somewhat subjective. Evaluation of musical instruments will

be discussed in Section 4.2.1, however we intentionally leave aside the issue of

evaluating musical output.

Each of these topics is extremely relevant to music creation technology and

surfaces in a number of places in the computer music literature (see Chapter 4).

They also tie in well with the HCI principles in the last chapter. Many of these

guidelines make sense in view of the four-strategy model detailed in section 5.5.

These considerations have been formalised into a psychometric test to measure

how well creativity is supported by computer systems: the Creativity Support Index

(CSI) [Cherry and Latulipe, 2014]. It provides six carefully de-correlated5 dimen-

sions by which to assess the various aspects of creativity: Exploration, Expressive-

ness, Immersion, Enjoyment, Results Worth Effort, and Collaboration.

Cognitive models of creativity have been used for the design of creativity aug-

mentation systems. The distinction between divergent and convergent thinking has

been used to this effect. Work in this area includes software that generates ‘in-

teractive suggestions’, where the designer can see both divergent variations and

convergent suggestions for improvement alongside their current work [O’Donovan

et al., 2015]. Drawing software that elaborates on the artist’s input [Davis et al.,

2014] has been inspired by an enactive, embodied approach to computer use: here

the computer becomes an ‘artistic colleague’. The injection of randomness into the

creative process has been used for a number of ‘divergent’ systems, but as André

et al. [2009] point out, there may be more structure to serendipitous discoveries than

mere random variation. Darwin’s Gaze [DiPaola et al., 2013] is a visual art system

5These six dimensions were distilled down from more, using a similar methodology to the NASA
TLX workload questionnaire [Hart and Staveland, 1988] used in Experiment 3.
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inspired by genetic programming and dual process theories that provides associative

variations of portrait images.

Despite the fact that almost all creative disciplines now use computers in some

way, and that almost all content creation work could benefit from increased creativ-

ity, specific research into how technology can support or encourage creativity is not

as widespread as one might expect. In their review of the creativity support system

literature, Müller-Wienbergen et al. [2011] identify:

“...a lack of research on how to design IT systems that support both con-

vergent and divergent thinking in creative work. Existing research either

postulates rather generic design requirements lacking any detailed spec-

ification on how to address these requirements, or it focuses on a specific

IT system that only supports divergent thinking. Due to the central role

of both modes of creative cognition, and their intimate relationship in

solving creative problems, we contend that there is a need for a detailed

design specification considering both ‘levers’ to support creativity. ”

They also propose a number of design principles and experimental hypotheses,

reminiscent of those in Experiment 1, but for discrete ‘knowledge item’ search sys-

tems, rather than continuous parameter spaces.

Finally, the interactive process itself can be used to study the creative process:

the ‘studio as laboratory’ approach [Edmonds et al., 2005]. How people interact with

a parameter space can be logged, and their search trajectories studied [Jennings

et al., 2011].

3.9 Summary

To design for creativity, augment it, or even just to avoid interfering with it, it would

seem to be useful to have a model of how creativity operates. Whilst these models are
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far from the level of sophistication required to artificially generate transformational

creative works, there seems to be consensus on a number of themes. These we

can utilise for the purpose of informing musical interaction design. There are a

variety of models of creative cognition with varying terminology, but all necessitate

a mechanism for combining or transforming existing ideas, a means of evaluating

and selecting the best ideas, and all posit a crucial role for the interplay between

conscious and subconscious mind.

Creativity is a complex phenomenon, and one that is unlikely to be pinpointed

as emerging from a single brain region. Rather, this discussion of recent creativity

models such as Dietrich’s, Schmidthuber’s, and Wiggins’, points towards creative

principles being built into the fundamental workings of the mind. Even our basic

everyday perceptions of the world could be considered, by any reasonable definition,

creative, as they project onto sensory data an internally generated predictive model

of the world. The modularity we find in biological structures such as the brain has

evolved for the purposes of extreme flexibility, and this implies we are capable of

continuously generating novel behaviour. Therefore, great H-creative works differ

from everyday P-creativity in degree, not kind.

Flow is a remarkable mental state that may accompany the optimal use of cre-

ative tools. Designers of technologies where interaction in the Flow state is desirable

should think equally about the state of mind of the user, as well as the goals of the

user. Use of a content creation system should perhaps be considered less as a means

by which a brain turns its desires into reality, and more as a facilitator of a constantly

unfolding, delicate mental balancing act; in which the artist maintains themselves in

an optimal state for creativity to occur. Therefore, rather than seeking to enhance

creativity by targeting some ‘special’ aspect of human computer interaction, in a

way we simply need to enable the brain to do what it does best, and enjoys most.

However the role of implicit skill seems to be a crucial precondition to Flow, and
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thus should be designed for carefully.

The following characterisations of creative cognition inspire the EARS theory in

Chapter 5:

1. The Creative Systems Framework (CSF) [Wiggins, 2006] Exploratory creativ-

ity occurs when a solution space traversal mechanism produces a useful ‘aber-

ration’: a concept that falls outside the current conceptual space. Transforma-

tional creativity can occur if conceptual space is extended on the meta-level.

2. PSVSR theory [Dietrich and Haider, 2014] Creativity features variational pro-

cesses that can vary between blind and sighted, hence ‘Partially Sighted Vari-

ation and Selective Retention’. The implicit system provides short term pre-

dictions and evaluations unconsciously; the explicit system can leap over large

unviable regions of solution space via ‘cognitive scaffolding’.

3. Everyday insight from the ‘surprisal’ threshold. [Wiggins, 2012] This is the

claim that creative cognition differs from our everyday cognition in degree but

not in kind. Artistic behaviour may have evolved from more basic action-

perception coupling. Imagination — and ultimately creativity — can emerge

naturally from the cognitive principles outlined in the previous chapter. Nov-

elty, being defined as something surprising or unexpected, can be formalised

as having high information content relative to some agent’s predictive model.

Creativity may be an inherent property of implicit-explicit thresholding, due

to the selection mechanism’s dependence on information-theoretic surprisal.

Truly sudden and momentous insights progress via a similar process, but would

involve far more preparation and training of implicit solution generators and

solution recognisers.

4. Expression as Compression [Schmidhuber, 2010] An important corollary of
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the free-energy principle is that it is vital for the brain to encode predictive

models of the world in an efficient form, i.e. in concise rules of broad explana-

tory power. This means that the brain has evolved to be exceptionally good

at finding patterns. Finding a pattern (coding progress) generates reward,

and proceeds via reinforcement learning. The brain actively seeks out high

information content in order to improve the adaptability of its world model.

Encountering unexpected events in the world can cause anxiety if the agent is

unable to deal with it, but at the right level of complexity (the mid point of

the Wundt curve), the new information can be encoded and understood, and

this is rewarding. As well as seeking novelty in external events, the brain also

seeks novelty internally, for the same reason: the vast wealth of memories the

mind possesses may still be able to be encoded in a more efficient form, or

be used to simulate hypothetical events. Creative works could be seen as at-

tempts by agents to encode their complex experiences in a compressed format,

for the benefit of themselves and other members of society.

With regards to Human-Computer interaction, there seems to be huge, and

largely untapped potential in applying these state-of-the-art creativity models to the

design of creativity support systems. There is also great potential for researchers

intimately connected with creative technological practice (such as NIME designers

and users) to ‘join the dots’ between their findings and these models. Computa-

tional formalisations of the creative mind may provide a gateway for designers and

researchers to start analysing their interactive systems more quantitatively with re-

spect to their ultimate purpose: which is to generate novel and valuable artefacts,

and enable users and audiences to achieve the peak experiences that creativity offers.
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CHAPTER 4

Interfaces for Musical Expression

In this section we survey the relevant literature concerning musical interaction and

Digital Musical Instruments (DMIs).

A DMI [Wanderley, 2001; Miranda and Wanderley, 2006] is a synthesis engine

controlled by a gestural controller. The design of the control device and the sound

synthesis engine are both clearly important for the playability and sound quality

of a DMI, but also important is the mapping between them, this will be discussed

in Section 4.3. A DAW (Digital Audio Workstation) on the other hand, is a piece

of software geared towards the construction of finished musical works. Most are

software equivalents of the analogue multi-track recording studio, and inherit the

abstractions, metaphors and workflow of the studio [Duignan et al., 2010]. DAWs

are best suited to complex non real-time editing and arrangement, whereas DMIs

are usually designed with solo, expressive performance in mind.

In this review I usually refer to DMIs, but with the view that DAW-style compo-
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sition technology may one day benefit from similar support for faster, more creative

interaction modes. Certainly for many musicians, the production process features

rapid switching between instruments and editing tools, and in many cases the dis-

tinction blurs1.

In this review we tend to focus more on the background and frameworks behind

design of music making tools, rather than looking at specific devices, systems, or

instruments. For a comprehensive review see Miranda and Wanderley [2006].

4.1 Digital Musical Instruments

Until relatively recently, the means to control musical sound was fundamentally

bound to the physical mechanisms of sound production. Musicians necessarily

learned to accommodate their instrument, developing their motor skills through

years of practice to enable them to play complex music. The advent of analogue

electronic devices increased the amount of abstraction available for musical control.

Any voltage control signal could now be routed so as to modulate a wide variety

of synthesis parameters and signal processors; this also brought the possibility of

automating musical sequences. For various reasons—principally the influence of

the first widely available consumer synthesisers such as the Minimoog [Pinch et al.,

2009]—the most common arrangement for synthesiser interfaces has been a piano

style keyboard to control pitch, accompanied by rotary potentiometers to control

timbre. In the last few decades the power of digital processing units and the variety

of control devices has vastly expanded, and with it (as a combinatorial explosion

of controller-synthesis parameter connections) the number of possible instruments.

However, it seems few specific controller-synthesis pairings appear to have achieved

1There do exist hybrids that sit between these two extremes, Native Instruments’ Maschine and
Ableton Push, for example, are both physical controllers that enable real-time improvisation and
a degree of instrumental control, but act as physical interfaces for DAW-type software.
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wider acceptance, or attracted communities of virtuoso performers. This has been

called the ‘problem of the second performer’ [McPherson and Kim, 2012]. A number

of factors may be behind this:

1. Performers like to customise and create their own instruments, but there are

so many possible mappings to explore, it is tempting to choose exploration of

a new mapping over development of skill with an existing one.

2. Without visible proof of other performers having attained virtuosity (role mod-

els), ‘investment of play’ [Cannon and Favilla, 2012] in a particular instrument

can be perceived as risky. There is simply no way to know how high the ceiling

on virtuosity is before having invested large amounts of time in both practice

and exploration.

3. Musical material that is too complex to play can be edited together off line,

so motor skill is now no longer a prerequisite to composition.

4. Technology becomes obsolescent too fast for the slow development of social

institutions, teaching structures, or the development of a musical canon. Ob-

solescence further adds to the risk of investment of play.

Traditional instruments are sometimes seen as having expressive properties which

modern technology lacks. A survey of musicians by Thor Magnusson [2007], inves-

tigated contrasts between computer music software and acoustic instruments. The

themes that emerged from these surveys are summed up in Table 4.1, describing

the advantages and disadvantages of acoustic instruments, and Table 4.2 listing the

same for digital software2. Why these properties are seen as positive and nega-

tive with regard to creative processes may seem obvious to musicians, but it will

2A number of these issues are marked as being incorporated with in the EARS model of Chapter
5 (where it is assumed that acoustic instruments fall into the ‘skilled’ quadrant, and digital fall
into the ‘analytic’), which aims to propose underlying cognitive explanations for some of these
phenomena.
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Figure 4.1: The mapping between a gestural controller and a synthesis engine. This is
the standard definition of a DMI (digital musical instrument) [Wanderley et al., 2000].

be worth exploring these in more depth. For instance tactile feedback may seem

clearly advantageous, but what is special about it that enables better performance?

Exploration too seems obviously good for creativity, but how do we define it and

how do we design for it? If we can quantify these concepts then we stand a better

chance of discovering which aspects are unavoidable trade-offs, and which can be

combined to construct systems with the advantages of both digital and traditional

acoustic instruments3.

4.1.1 Musical Expression

Research into expressive performance often focuses on the subtle nuance that an

instrumental performer puts into their playing in order to convey, say, emotion. One

working definition of expression is the difference between the mechanical playing of a

score by a computer and a performance by a human involving variations in “tempo,

sound level, timing, intonation, articulation, timbre, vibrato, tone attacks, tone

decays and pauses” [Poepel, 2005]. An expressive performance adds humanity and

3One powerful way to achieve this is with augmented instruments [Newton and Marshall, 2011],
which are DMIs based on incorporating technology into existing instruments. These leverage
existing musical skills, but offer further control over novel transformations of their sounds.
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Acoustic - positive Acoustic - negative
Tactile feedback X Lacking in range X

Limitations inspiring X No editing out of mistakes X
Traditions and legacy No memory or intelligence

Musician reaches depth Prone to cliche playing X
Instrument becomes 2nd nature X Too much tradition/history

Each instrument is unique No experimentation in design
No latency Inflexible no dialog X

Easier to express mood X No microtonality or tunings
Extrovert state when playing X No inharmonic spectra

Table 4.1: Advantages and disadvantages of acoustic instrument, taken from [Thor Mag-
nusson, 2007]. Marked issues are discussed in Chapter 5, with regard to their contribution
to the creative process.

Digital - positive Digital - negative
Free from musical traditions Lacking in substance
Experimental explorative X No legacy or continuation

Any sound and any interface No haptic feedback X
Designed for specific needs Lacking social conventions

Freedom in mapping X Latency frequently a problem
Automation, intelligence Disembodied experience X
Good for composing with X Slave of the historical/acoustic

Easier to get into X Imitation of the acoustic
Not as limited to tonal music Introvert state when playing X

Table 4.2: Advantages and disadvantages of digital music software Thor Magnusson
[2007].

brings the music to life. Of course there are performance variations that result

naturally from the noisiness of the human nervous system, but more important are

the variations that result from the musicians expressive intent [Palmer, 1996].

Studies of expressive performance may focus on particular aspects of expression,

such as timing and tempo changes and how they relate to the structure of the

score [Repp, 1998]. Alternatively they might focus on the ability of the musician to

effectively convey a particular concept or emotion to the listener by means of these

variations [Gabrielsson and Juslin, 1996]. In the latter case there appears to be some

‘coding’ process occurring, whereby a complex mental state can be encoded in the
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music by the performer and then decoded by listeners [Poepel, 2005]. The idea that

the audience decodes the intention of the performer is an important one. One of the

most frequent critiques of the computer music performance is that the mappings

between intention, action and sound are not ‘transparent’ [Murray-Browne et al.,

2011]. In extreme cases it may be impossible for the audience to see what the

performer is doing, or even if they are performing at all, leading to suspicions of

inauthenticity [Cascone, 2002; Keith, 2010].

Digital instrument designers and researchers are particularly concerned with

expression, hence the umbrella term “New Instruments for Musical Expression”

(NIME) for this research field [Poupyrev et al., 2001; Caramiaux et al., 2014]. Tech-

nology may encourage expression both in the way it provides access to sonic variation

and nuance, but also in its physicality, stage presence and the bodily forms of the

gestures that are required [Bergeron and Lopes, 2009]. The physical movements of

the performer, both those that directly contribute to the sound and those that do

not (e.g. body poses, exaggerated motions, running around the stage etc. ) may

also be important aspects of expressive performance. However, here we focus solely

on control of sound.

Matthews investigated the idea of performing only these expressive dimensions

of music using the Radio Baton [Mathews, 1991]. By moving the baton in space,

and mapping it to the tempo and dynamics of a MIDI score playback, the per-

former (or perhaps conductor) is able to control only those aspects of the music

deemed expressive in this traditional sense. Automation is sometimes seen as re-

moving humanity and character from our lives, but this approach illustrates the

potential for automation to relieve us of the difficult low-level mechanics of musi-

cal performance, and purely concentrate on expressive aspects. This highlights the

potential for technology to provide what is known as meta-control of higher-level

aspects of the performance [Brown and Sorensen, 2009; Van Nort and Wanderley,
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2007; De Campo, 2014; Jordà et al., 2007; Sheridan, 2004]. However, there seems to

be an awkward tension between the freedom of being relived of the drudgery of play-

ing every individual note, and the alienation that results from losing the visceral,

moment by moment connection of the mind to sound events via the body. Both

approaches can be valuable in different artistic contexts [Gurevich and Cavan Fyans,

2011].

Arfib et al. [2005] state that nuance requires both flexibility and precision. Jordà

et al. [2007] say “music performance outstandingly combines precision with free-

dom”. In other words, musicians require ability to move freely through a rich

parameter space, and also the ability to quickly and accurately locate points within

that space. Arfib et. al. highlight that expression may extend over various time-

scales. At the note or sound-object level expressiveness may occur via vibrato or

damping, whereas at the phrasing level, dynamic and rubato trajectories may be

used to impart expressive structure. They also describe four methods of learning

gestures: imitating gestures, performing gestures to copy specific sounds, interpret-

ing a score or a gestural notation, and inventing new gestures.

Whilst dynamics and timing form the principal dimensions of expression (par-

ticularly for semi-mechanical instruments such as the piano), in general any musical

parameter could count as expressive, including melodic improvisation or sound ob-

ject selection. Many styles of electronic music raise challenges to the notion that

timing and dynamics are essential expressive dimensions. For instance, much of

electronic dance music (EDM) is quantised to a precise metrical grid, and often

amplitude is ‘brick wall’ limited for maximum loudness. In fact, the “expressive”

aspect is often to be found in the timbral changes that drive the musical structure.

Also less important in EDM is the distinction between the composers score and the

performers rendition of that score. Whilst there is a certain division between the

composition (or “production”) of a track and the live performance of it (e.g. play-
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back by a DJ or live hardware performance), for many live electronic performances

with an improvised component, the line between composition and performance blurs

somewhat. These distinctions notwithstanding, the idea that meaning, intention or

emotion is encoded into sound and then decoded by the audience is still very much

applicable.

Relevant to this change of emphasis is the critique of the ‘dominant model’ of

expression found in Gurevich and Treviño [2007]. They see the NIME community’s

model as being too firmly rooted in the western classical tradition of separating score

from performance (text vs. act). They argue for a more ecological view, accounting

for the diversity of aesthetic goals, and complex interrelation between performer and

technology. Another very relevant aspect of this paper is the reference to Norman’s

three levels of processing in the human brain: the visceral, the behavioural and the

reflective. These map onto performance of musical expression as:

• low-level nuance (visceral),

• Practised gesture and phrasing (behavioural),

• Large-scale form (reflective).

Norman’s model fits well with the hierarchical structure of increasing time-scale

predictors discussed in the last chapter, and also with the cognitive model utilised

by [Malloch et al., 2006] 4. Gurevich and Treviño [2007] note that many artists

choose to avoid expression altogether, and focus on the reflective level (John Cage

being a prominent example).

This thesis agrees with many of the points in this critique, with the exception of

this final provocative statement:

4For the purposes of this thesis we only use 2 levels. The visceral and behavioural are both
lumped into ‘implicit’ processes, whereas ‘reflective’ becomes ‘explicit’, in line with the majority
of the reviewed cognitive science literature. A three level model may be more useful in some
circumstances however.
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As an ecological model of musical creation prohibits the isolation of

musical interfaces from their artistic contexts, it is meaningless for the

authors to make prescriptive statements regarding [future directions for

the design of new instruments].

As mentioned in Section 1.2.3, the current work takes quite the opposite atti-

tude. If one cannot isolate NIME’s from their artistic contexts, then this would

seem to undermine the entire existence of the field. Conducting and disseminating

research findings that do not generalise seems an unsatisfactory endeavour. In this

thesis therefore, I attempt to both generalise and distil the notion of expression

somewhat. Whilst many consider expression to be “a concept that is unquantifiable

and dynamically subjective” [Malloch et al., 2006], I will consider expression as a

kind of coding: encoding high-level representations in the brain into audio data

on the computer. The artists nervous system, body, DMI interface and synthesis

software form a communications channel, as Wessel and Wright [2002] put it:

“Our human performer has intentions to produce a certain musical re-

sult. These intentions are communicated to the bodys sensorimotor sys-

tem (motor program). Parameters are sensed from the body at the ges-

tural interface. These parameters are then passed to controller software

that conditions, tracks, and maps them to the algorithms that generate

the musical material.”

Throughput, or bandwidth, of interaction has been mentioned a number of times

in the music interaction literature [Pennycook, 1985; Jordà et al., 2007; Pachet,

2012], but seems never to have been actually measured for any musical task. There

does seem a general reluctance to equate controllability to expressivity [Dobrian and

Koppelman, 2006] but the exact difference, and what is left when controllability is

eliminated from expression seems unclear. If it relates to what is being expressed,
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then surely this is the artist’s responsibility. If it relates to the finer sonic qualities

of the output, then this is the synthesis engine’s responsibility, something not dealt

with in this work. A final possibility is that it relates to the effectiveness of the

embodied metaphor [Antle et al., 2009] used in the gesture: how well the ‘percep-

tual structure’ of the gesture maps onto the qualities of the sound. Metaphor is

certainly a powerful tool for aiding the musician’s learning of the instrument, and

also for the audiences perception of the connection between gesture and sound [Fels

et al., 2002]. However, metaphorical mappings run into a problem in parameter

spaces large enough to support exploration. It would seem immensely challenging

to construct a mapping with multiple (and mutually consistent) gestural metaphors

that apply to the whole space, therefore mapping via metaphor runs the risk of

producing one-off use instruments that do not provide the longevity of continual

discovery.

4.2 Instrument Design and Evaluation Frameworks

In this section we discuss proposals for frameworks that assist in designing and eval-

uating music technology, DMIs and DAWs. Frameworks provide a a dual purpose

in design: to both inform the design process via a set of principles/guidelines, and

also provide metrics by which to measure the success of the result. Therefore the

design and evaluation of DMIs is often an circular, iterative process.

Three desirable DMI properties are a ‘low threshold’, a ‘high ceiling’ and ‘wide

walls’. These are criteria borrowed from HCI [Resnick et al., 2005]. The first refers

to a low barrier to entry for novices, the second an unbounded potential complex-

ity/virtuosity for experts. The last refers to having a wide variety of possibilities

to explore. Virtuosity is difficult to test, because it takes such a long time for

users to develop. Longitudinal studies such as [Cannon and Favilla, 2012; Nash and
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Blackwell, 2011; Zappi and McPherson, 2014a] attempt to address this problem.

Given the potential complexity and variety in creative outcomes over these long

time-scales, quantitative comparisons become challenging.

Jordà [2004] looks at these three criteria, and synthesises them into a heuristic

formula for the “efficiency” of a DMI:

Musical Instument Efficiency =
Musical Input Complexity

Musical Output Complexity
× Performer freedom

Efficiency relates to the ability to produce as complex and expressive sound as

possible with minimum input effort. However there must be an extra ‘freedom’

term introduced to specify the variability, or liveness of the output (otherwise the

most efficient approach is to just press play on a recording!). Jordà states “Good

musical instruments must strike the right balance between challenge, frustration and

boredom.”, harking back to Flow theory (Section 3.7). Complexity is a tricky thing

to define, however we shall reconsider this efficiency formula in terms of information

throughput in Section 5.4.2.

Mooney [Mooney, 2011] presents a model in which the ‘frameworks’ — both the

physical instruments and the conceptual tools of music making—are viewed in terms

of what they allow us to do, i.e. their affordances:

The frameworks used have an influence upon the musical results. This

cannot be over-emphasized. If a composer chooses to write for violin,

for example, (s)he is buying into a certain set of affordances and there-

fore the musical results will be infused with violin-ness. If the composer

chooses to use the five line staff framework to notate the composition,

then the musical results will be constrained to those attainable using

that system of representation.
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Mooney goes on to look at the frameworks and affordances of music technology

in more detail. The fact that sequencers start up with a metrical grid — often in

4/4 time and with a default tempo of 120bpm — immediately means it is easier

to create music within this time signature than any other. Also considered are the

affordances of the fader: its one dimensionality, the necessity to travel through in-

tervening positions to reach another setting, and its limited extent. This makes a

very important point: despite the entire parameter space being accessible in theory,

some regions are more accessible than others in practice. No matter how logically

and innocuously the parameters seem to be presented, the affordances of the inter-

face necessarily render some regions of the space more probable than others5, and

encourage certain methods of navigation. Thus, affordances set up certain proba-

bilistic tendencies toward action in the implicit system of the perceiver. Interface

design may subtly, and perhaps subliminally, guide the thinking of the artist along

certain channels.

Malloch et al. [2006] uses the human information processing model of Rassmussen

[1986] to propose three levels of control: model, rule and skill. These control methods

operate on symbols, signs and signals respectively. These refer to different levels of

abstraction. Skilful interaction will manipulate the audio signal itself at a low-level

and in real-time. Rule based interaction “consists of the selection and execution of

stored procedures in response to cues extracted from the system”, and model based

refers to reference to the artist’s internal model of a conceptual goal. This model

then generates rule and skill based actions. This framework is rather similar to

that developed in Chapter 5, but the EARS model extends this by introducing a

divergent thinking component.

5Taking control of the probability distribution over the parameter space is one theme of this
thesis, in particular Experiment 1.
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4.2.1 Evaluation of Musical Interfaces

How should a musical interface be evaluated? Some find that mappings form part of

the composition [Doornbusch, 2002], in which case it is an art, and the instrument

should be judged using aesthetic criteria. Others claim it as part of the synthe-

siser [Arfib et al., 2002b], which would imply that it is engineering, suggesting that

quantitative measures of effectiveness should be used. Jorda [2005] maintains that

it is both. The first challenge to the music technologist is to be very aware that

engineering is a field adapted to solving well-structured problems, but to apply these

techniques to art—a world of ill-structured problems—is to run the risk of apply-

ing an inappropriate methodology. Should we measure the efficiency of performing

various pre-specified musical tasks and run the risk of missing the real point, which

is the performing of as-yet-unspecified tasks? Or should the technology be judged

as if it were a work of art itself, and then run the risk of losing objectivity and

generalisability?

It has been noted before that rigorous evaluation is rare in the NIME litera-

ture[Poepel, 2005; Barbosa et al., 2015]. [Stowell et al., 2009] look at both quantita-

tive and qualitative methods for evaluating computer music systems, and provide a

useful breakdown of which methodology is applicable where. One recent approach

to evaluating DMIs is a dimensional approach Cannon and Favilla [2012]. They

propose 8 dimensions by which to assess instruments. The overall expressivity can

then be given by looking at how well all of these dimensions are rated. This has

the advantage that performers can assess many different aspects of the instrument

and provide a more detailed view of its characteristics, but has the disadvantage of

many of the dimensions being subjective judgements.

Most relevant for the current work, Wanderley and Orio [2002] suggest borrowing

input device evaluation techniques from the HCI community. In this approach
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various tasks are set for users, for example the performance of a specific musical

melody, and objective numerical results such as speed and accuracy are measured. In

this way devices can be compared against one another in performing the same task.

They also discuss the notion of “Usability”, breaking this into four desirable features:

learnability, explorability, feature controllability, and timing controllability. The last

is somewhat different in DMI research as opposed to normal HCI research: rather

than judging a device on just how quickly a task can be accomplished it is also

essential that input events possess high timing accuracy. One important suggestion

in this paper is using the quantitative laws such as Fitts’ law for interface evaluation.

However it seems that no one has attempted this, perhaps due to lack of a suitable

extension to high dimensional control spaces. The current work heeds the following

advice:

“From HCI research, it appears that musical tasks should in general

strive for maximum simplicity. Even though it may seem entirely non-

musical, the use of a few simple tasks may help...”

By reducing musical interaction to its most basic components, clearer results can be

obtained. This approach may not always ‘scale up’ to real-world, long-term creative

use however [Gelineck and Serafin, 2012].

One of the most basic evaluation methodologies is that of target finding, or

sound imitation. In this approach, a sound is provided by the experimenter, and

the user has to imitate that sound with a variety of different control devices. This

is the approach taken by [Hunt and Kirk, 1999], where sounds produced by various

controller trajectories were imitated using various different control devices. Target

matching was also the approach taken by [Vertegaal and Eaglestone, 1996], where a

target timbre had to be found in a 4D space using various input devices, including

a 2-dimensional controller (a mouse) and a 4-dimensional controller: the Nintendo
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Power Glove. This study is the closest antecedent to the target matching experi-

ments in chapters 7 and 8 of this thesis, in that it looked at speed, accuracy and

control integration (simultaneous alteration of multiple dimensions) when locating

a desired timbre. It was found that the mouse performed better for this search task,

but this was attributed to the unreliability of the Power Glove, rather than inher-

ent difficulty in the multidimensional tasks. We aim to revisit this type of study

by using more reliable, state-of-the-art controllers and applying a Fitts’ law based

methodology to the analysis of the results.

4.3 Representation and Mapping of Musical Pa-

rameters

Much research has been carried out into reducing the difficulty of navigating large

timbre parameter space. Indeed, almost all music technology must address this

problem in one way or another, as it is impossibly laborious to specify by hand an

entire musical signal [Smith, 1991].

The mapping of physical controllers to sound synthesis parameters has been

an active research topic for at least twenty years [Winkler, 1995; Wanderley and

Depalle, 2004]. The question addressed is, what aspects of physical movement should

be detected (control parameters), and how should those control signals affect the

parameters of some sound synthesis engine (synthesis engine parameters)? Mapping

has a significant effect not only on what sounds are easy or difficult to create, but

also the subjective experience of the user: the ‘feel’ of the interface.

The main focus of mapping strategies has been in the realm of real-time control

of DMIs. A good review of mapping techniques can be found in [Wanderley and

Depalle, 2004]. Mapping is a topic amenable to mathematical and geometrical
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analysis. The geometry of the mappings, as in how one space is embedded in

the other, and the smoothness of the resulting hypersurface, is seen as extremely

important for the playability and the identity of the resulting instrument [Van Nort

et al., 2004]. Considered mathematically, the control space is a manifold embedded

in the parameter space. An interesting treatment of this concept, describing control

of vowel formant synthesis in a virtual environment can be found in [Choi, 2000].

The principal distinctions between types of mappings are as follows [Hunt et al.,

2000].

• One-to-many: one control dimension is mapped to many synthesis parameters.

• Many-to-one: many control parameters affect one synth parameter.

• Many-to-many: a combination of the above (also known as ‘complex’ map-

pings).

[Hunt and Kirk, 2000] complex many-to-many mappings appear to be more effec-

tive for expressive performance, and may lead to greater performance improvements

with practice. This may seem counter-intuitive, as a complex mapping would appear

to be less understandable or predictable than the alternative.

“The sliders interface, whilst it physically allowed people to control mul-

tiple parameters, forced the user to mentally ‘strip apart’ the control task

into separate control streams. This caused a form of cognitive overload

which users generally found restricting and frustrating.”

[Hunt and Wanderley, 2002]

This particular claim is more thoroughly investigated in this thesis, both theo-

retically and empirically. Hunt’s work is worth revisiting for several reasons:
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1. More recent work in cognitive science and cognitive neuroscience may shed

more light on the underlying cognitive processes that explain this finding. For

instance, Hunt speculates that it arises from a distinction between left and

right brained thinking, which may not be the case.

2. The ratings of how well subjects managed to match the target sounds relied

on subjective judgements by the experimenter. It would be useful to develop

more objective ways of measuring target matching ability.

3. The HCI-based methodology (of comparing multiple interface types being used

for the same task) revealed some important and counterintuitive results. How-

ever this methodology is very rarely used in NIME evaluations [Stowell et al.,

2009]. It seems more work could be done in this area.

Hunt also found that movements requiring greater energy should map onto

sounds with greater perceived energy, reflecting intrinsically embodied nature of

sound perception. He also suggested that preventing the explicit system from con-

centrating on individual dimensions frees up explicit resources to work on other

things. In later sections we propose what these other things might be, and why

they are so important for creative interaction.

Other properties that have been noted as desirable for controller mappings are

(after [Van Nort et al., 2004]):

1. Low dimensionality: Control devices often have fewer parameters than syn-

thesis engines. Given the brain’s limited conscious multi-tasking abilities and

working memory capacity, simple controllers are preferable. This has led to

a variety of dimensionality-reduction algorithms being used for this purpose

(see Chapter 6).
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2. Locality, or distance preservation: Having travelled a certain distance in con-

trol space, we want that to be reflected in the distance travelled in parameter

space, and ideally perceptual distance too.

3. Revisitability: If we return to the same point, we wish it to sound the same.

The location of preset points should be stable.

4. Continuity: If a point is adjacent to another point on the low-dimensional

surface, they should be adjacent in the high-dimensional space.

5. Smoothness: Continuous higher derivatives are desirable to eliminate sudden

changes in direction, this has relevance to the predictability of a control.

6. Linearity: When a gesture, such as a scroll, occurs it will have a certain effect

on that sound, more extreme versions of this gesture should produce more of

the same effect. This property is hard to achieve with any dimensionality re-

duction method, however smoothness implies some linearity in the immediate

neighbourhood.

It should also be noted that manually constructing these mappings is a demand-

ing process in itself. “Programmability is a curse” Cook [2001] and “There are

simply way too many combinations of features and parameters to manually think

about trying too many decisions to make and too many combinations that are

useless. Its a process that invariably takes way too much time” [Fiebrink et al.,

2010]. If the parameter space is large, the space of possible mappings is magnitudes

larger. The interfaces usually provided that map controllers to synthesis parameters

are themselves not considered ‘musician-friendly’.

Machine learning seems to offer great potential in this regard. Interesting work

is being carried out where the musician can perform a control gesture along to a
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parameter trajectory, and a mapping between the two is then learned automati-

cally [Fiebrink et al., 2009; Françoise, 2013]. This approach greatly simplifies the

programming of mappings6.

Another important distinction is dynamic vs. static mappings [Arfib et al., 2005].

A static mapping is one for which visiting a certain point in contol-space always maps

directly to a point in parameter-space. A dynamic mapping may rely on temporal

variations in the control movements to determine the location in parameter-space.

For example, the parameter space position could be attached to the control-space

position via a model of a spring, and have momentum or friction, resulting in com-

plex and emergent dynamic behaviour based on the time derivatives and history

of the controller’s movement. Arbitrarily complex spatio-temporal responsive be-

haviours can be established, for instance by the use of recurrent neural networks

[Bown and Lexer, 2006; Kiefer, 2014]. For simplicity, the experiments in this thesis

only investigate static mappings.

4.3.1 Preset Interpolation

The simplest, and most widely used way to make a parameter space quickly naviga-

ble is simply to save the coordinates of preferred points (these are referred to here as

“presets”). Once a set of presets has been created, a low dimensional subspace can

be created from them (e.g. the simplest being a line that interpolates between two

preset points). The presets can then be ‘morphed’ by navigating the subspace using

a gestural controller. Given a D dimensional controller, and a P dimensional pa-

rameter space, D+ 1 presets can be used to form a D dimensional subspace within

RP . In-depth treatments of the geometry of these interpolation-based mappings

can be found in Goudeseune [2002] and Van Nort et al. [2004]. Applications that

6Chapter 8 demonstrates that this idea can be inverted, such that the user can be shown a
gesture (via an animated 3D representation of a hand) and then can imitate and learn it.
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have implemented these ideas include SYTER [Allouis and Bernier, 1982], Bencina’s

metasurface [Bencina, 2005], and the “nodes” object in Max/MSP.

There are a number of issues with this approach. Firstly, the piecewise-linear

P-space interpolation between two favoured sounds will not necessarily be pleasing,

or conform to a linear route through perceptual space [Van Nort and Wanderley,

2007]. For instance, interpolating between two ‘realistic’ FM synthesised instrument

sounds may produce decidedly unrealistic movements in the individual partials.

Furthermore, many synthesis parameters are discrete switches and discontinuities

may result. Nevertheless, preset interpolation is an intuitive and computationally

simple way of creating useful subspaces in which to perform and improvise. It is

perhaps surprising that more commercially available software and hardware does

not implement preset interpolators.

4.3.2 Timbre space approaches

Researchers have tried to create dimensions that correspond to high-level perceptual

descriptors of the character of the sound, using techniques such as multidimensional

scaling to create a “timbre space” [Grey, 1977; Wessel, 1979; Arfib et al., 2002a].

This approach certainly fits many users expectations of an intuitive control space,

but the nature of timbre is extremely hard to quantify [Pachet and Aucouturier,

2004]. Useful dimensions may vary widely between musical styles and different

users. This timbre space approach has been used in zoomable interfaces, where

large parameter spaces can be zoomed into to provide smaller variations. Examples

include SoundExplorer by [Yee-King, 2011] uses an MFCC based timbre similarity

metric and multidimensional scaling to create a 2-D zoomable timbre map, and the

ISEE (Intuitive Sound Editing Environment) by [Vertegaal and Bonis, 1994], where

zooming in to a region of timbre space would take the user further down a hierarchy
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of instrument categories.

Most techniques that reduce dimensionality in order to provide lower numbers of

control parameters throw away a large proportion of the space. Even with the best

subspace finding algorithm, many interesting settings will become inaccessible. In

Chapter 6 an interface is proposed that reduces dimensionality whilst maintaining

access to all possibilities.

4.4 Cognitive Approaches, Flow and Liveness

Many musical interaction researchers have highlighted the importance of the perception-

action loop as a basis for cognitive models of musical interaction [Armstrong, 2006;

Leman, 2008; Jones et al., 2012]. That the loop feeds back on itself is vital for any

description of musical interaction, as unexpected sonic results may influence the

performers subsequent gestural input [Wessel and Wright, 2002].

A further important aspect of this loop is the speed of feedback, otherwise re-

ferred to as the ‘liveness’. An important influence on this thesis is Nash’s study of

computer sequencer and tracker use [Nash, 2012]. Nash finds a correlation between

Flow (Section 3.7) and liveness [Nash and Blackwell, 2012]. Liveness is associated

with the delay in receiving feedback about ones alterations of musical parameters;

Nash found that the faster the feedback the greater the chance of experiencing Flow.

Scientifically investigating Flow experiences is difficult, as they are somewhat rare,

spontaneous, and may not occur at all under controlled test conditions involving

simple tasks. Nash overcomes this by conducting a longitudinal study of real-world

use of music tracker software ‘in the wild’; logging all interaction with a musical

sequencer over a period of 2 years. This thesis also contains an useful review of cre-

ativity literature. The importance of the speed of interaction is backed up by many

other researchers [Wanderley and Orio, 2002], particularly the tactile and haptic as-
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pects that provide fast feedback. The experiments in this thesis do not investigate

haptic controllers, but note that the haptic channel is obviously one of the fastest

and most effective ways for the body to recieve feedback about its actions. For a

good studies of haptic controls see Marshall [2009], Wanderley et al. [2000], and

Bongers [2000].

Relatively little work has been carried out on how cognitive load might affect

musical interaction. However one important result was that interface complexity

could have a negative effect on critical listening skills [Mycroft et al., 2013]. The

necessity to drag more windows during a mixing task inhibited people’s ability to

detect changes in the volume of particular tracks. Maes et al. [2015] found that

the accuracy of continuous cello bowing gestures were less affected by a dual task

than discrete gestures, and that faster movements were less disrupted than slow

movements. This indicates that fast rhythmic interaction may involve different

timing mechanisms7, and hence result in less cognitive load than discrete, slow

controlled gestures.

Embodied cognition has been very influential in recent studies of musical in-

teractions. One comprehensive discussion of this is found in Leman [2008]. Music

performance is clearly an embodied activity, as one must move to make sound hap-

pen (with the exception of brain-computer interfaces [Moore, 2003]). However the

relationship between embodiment and music runs deeper than that: even when

just listening to music, structures such as metric levels may be parsed using real

or imagined bodily movements [Toiviainen et al., 2010]. The body and the mind

entrain to audible rhythm, presumably for some evolutionary adaptive purpose such

as social bonding [Bispham, 2006]. Therefore embodiment is not just a necessary

means to generate the sounds that make up music, it is also a way to listen, pro-

cess and understand music. The power of embodied cognition is a justification to

7Probably originating in the motor cortex rather than fronto-parietal networks
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develop ‘tangible’ musical interfaces [Jordà et al., 2007; Newton-Dunn et al., 2003].

However, as mentioned in Section 2.2.6, there has yet to be a study that measures

any quantitative increase in effectiveness for an ‘embodied’ way to control synthesis

parameters. There is the possible exception of Hunt and Kirk [1999], where it could

be argued that complex mappings are more embodied, but it is not clear how.

4.5 Exploration, Appropriation, and Meta-control

Exploration and serendipity frequently emerge as desirable aspects of musical inter-

action in user surveys [Fiebrink et al., 2010; Doornbusch, 2002; Kiefer, 2010].

The notion that evolutionary processes can generate creative artefacts (see Sec-

tion 3.2) has been investigated by many [Johnson, 1999; Yee-King, 2007]. [Dahlst-

edt, 2001] developed an ‘interactive evolution’ interface to explore large parameter

spaces. This acknowledges that the user must perform the evaluation of the sound,

but uses genetic algorithms to iteratively generate novel sounds based on mutations

and offspring of previous user selected favourites.

The serendipitous results of interacting with complex content creation systems is

often claimed as as primary motivation for using them [Fiebrink et al., 2010; Pease

et al., 2013].

“Appropriation” could be seen as a special case of exploration. Musicians do

not simply use their technology according to the intentions of the designers. On a

trivial level, it is usually impossible for the designers of a flexible synthesis engine

to investigate the entire parameter space of their creation. It is also impossible to

foresee the extra processing that the synthesised signal may undergo, or to imagine

the musical contexts it may be placed in. Therefore exploratory creativity is a

given. On another level, it is impossible to imagine how unintended capabilities

inherent in an artefact may be ‘appropriated’ by artists [McPherson and Zappi,
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2015]. The guitar amplifier was not originally intended to be distorted via huge

gains, the Roland TB-303 was never intended to have its timbre controls altered

live as part of a performance [Barlindhaug, 2007]), and the turntable was never

intended to be ‘scratched’, or to synchronise and mix two records [Smith, 2000].

Indeed, some the first electronically synthesised sounds of all were an appropriation

of the optical encoding of film sound tracks: these were waveforms recorded onto

the side of cellulose film [Levin, 2003].

What we will refer to as ‘reflective’ creative interaction — the ability to step

outside of a constraining parameter space via some creative misuse — is therefore

a vital part of the history of music technology.

Magnusson [2010] looks at DMI design as being the art of constructing con-

straints:

Composing an instrument therefore implies some degree of affordance

design, but the core activity typically involves the iterative process of

experiencing and adopting the system’s constraints.

There is a basic fact that synthesis engines provide such a huge range of options

that the instrument must attempt to constrain them in order to be playable. But

there is also an acknowledgement of constraints as being good for creativity for

more subtle reasons. Experiments have investigated the interesting question is how

the complexity (or dimensionality) of an instrument affects the likelihood of appro-

priation and diversity of behaviour [Gurevich et al., 2012; Zappi and McPherson,

2014b]. These studies reveal that constraint (in this case low numbers of controllable

parameters) encourages unusual uses. The studies implement a ‘minimal experimen-

tal paradigm’ by providing two groups of artists with instruments with one or two

controls. The counter-intuitive result was that the box with a single control was

perceived as having more possibilities that the box with two. The more minimal
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device also resulted in more diversity of behaviour. Section 5.5.4 suggests a possible

explanation of this behaviour in terms of a cognitive model of creativity.

Musical structure is not ‘flat’, rather it is in general hierarchical. This hierarchy

is very often represented in music software, and therefore imposed on the artist. In

many cases the composer themselves may want to generate alternative conceptual

hierarchy, and use it as a framework for creativity. Algorithmic and generative mu-

sic involves the artist/programmer creating computer algorithms that can generate

many of the low level details of the music themselves. In this case the performer can

either play along with the emerging music, control high-level meta-parameters or

simply let the music unfold autonomously [Collins, 2008]. Livecoding, on the other

hand, is the generation of generative music in near-real time via a musical program-

ming language [Collins et al., 2003; Brown and Sorensen, 2009]. These programming

languages enable the artist to construct their own music abstractions, and hence free

themselves of the affordances and constraints provided by commercial software.

Leman [2008, p. 54] describes the ability to reflect on previous creations and focus

on fruitful or interesting zones as a ‘ratchet’ effect. By means of building a repertoire

of tricks and meta-tricks and then automating them, the artist, and indeed culture

as a whole, is able to continually build on past successes and create new complexity-

generating interactions amongst existing cultural artefacts. This ratchet mechanism

is present in musical creativity, and also scientific and technological progress: in that

technology builds and recombines what comes before it, producing new complexities

and emergent behaviours as it goes. By incorporating useful abstractions into our

tools we can more efficiently navigate solution space. Alternatively, the tricks may

be practised until they become automatic skills. This ability to reflect upon past

creative behaviour and extract effective meta-strategies is an important component

of the EARS model (the reflective quadrant).
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4.6 Summary

Many of the consistent themes in music interaction research tie up with those in

the previous chapters. The nature of “expressivity” is the subject of considerable

debate, but it seems certain that the more mainstream HCI goals of responsiveness,

speed and accuracy are important contributors to expressive range. However, for

creative situations where foals are fluid, increased flexibility and exploratory ability

is required.

The NIME research field has highlighted many areas in which work-oriented

computer interfaces are lacking. Musical interaction design often throws up ex-

tremely radical new ways to interact with digital information. Studies of these new

interaction methods have highlighted the following points:

1. The speed the speed and accuracy of input devices, and the speed of feedback

on the effects of one’s actions are both essential.

2. The geometry of the gesture to parameter mapping has a significant effect on

the feel of the instrument, and an effect on the creative process.

3. Embodiment and tangibility adds richness to interactions.

4. Exploration is vital.

5. Constraints are often good for creativity.

6. The artist often wants to radically misuse, customise or transform the instru-

ment they are working with.

Surveys of the electronic music community reveal a number of consensus opinions

and recurrent themes. The existence of recurrent themes in qualitative research

raises the possibility that there are underlying cognitive principles at work. In the

142



next chapter we attempt to connect themes in NIME research with the cognitive

principles discussed in the preceding two chapters. It is clear that more work could

be done that more explicitly attempts to link theories of creative cognition with

musical interaction research. There may be many aspects of the former that can be

tested by experiments involving computer interfaces, and many issues in the latter

that could be better explained with reference to cognitive science.

This may help to address the following three outstanding challenges in musical

interaction research:

1. The need for a clearer definition of the goal of DMI and DAW design. Creativ-

ity is often a tacit goal underlying NIME research, but without a clarification

of the processes involved, progress may be difficult. A grounding in creativity

theories such as those in Section 3.9 can clarify the types of processes to be

assisted/augmented.

2. The need for a methodology that distils the simplest set of empirical tools with

which to investigate musical interaction: a minimal experimental paradigm

with which to compare interface types for quantitative and qualitative differ-

ences.

3. The need for connections between objectively measurable quantities and sub-

jective mental states. A good example of this is the connection between the

speed of feedback and the experience of Flow made by [Nash, 2012].

The next chapter proposes a theoretical account of how this may be achieved.
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CHAPTER 5

The EARS Theory of Creative Interaction

5.1 Introduction

A musician creatively engaged in music making with a computer forms an immensely

complex system. There will never be any hard and fast rules governing this system,

indeed if some could be established, some artist somewhere would immediately set

about subverting them. Every instrument is different, every musician is different.

Can we hope for a theory of creative interaction design that applies generally? Or

must we always look at artistic interactions individually, and accumulate a body

of knowledge that is simply a mass of disparate subjective opinions? This chapter

aims to set out a theory of creative interaction. It aims to begin the process of

building a bridge between two seemingly incompatible worlds: the computational,

information-theoretic and probabilistic models of cognition that were outlined in

Chapter 2, and the electronic musician’s subjective experience of the production
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process.

First of all, it is helpful to establish what is to be gained by theorising, and

what may be the dangers. Theory can bring benefits to many of the stakeholders in

digital music. The designers of systems can benefit from a more structured design

and evaluation methodology, and artists may benefit from greater insight into their

own creative process and how technology may affect it. Researchers can gain from a

more structured approach to looking at musical interaction, such as a more rigorous

experimental method driven by testing of competing hypotheses.

Theorising may have its downsides however: it can excessively narrow the focus

on testing only those phenomena that the theoretician assumes necessary to explain.

This danger becomes particularly acute in rich and varied social contexts such as the

creative arts; historically this has resulted in a widespread wariness regarding the

reductionist “agenda”1. Another danger is the large resource overhead in evidence

based hypothesis testing. If every aspect of a theoretical model needs to be carefully

tested in highly controlled experimental settings, then the design and implementa-

tion of fully fledged music creation systems—ones that are actually complex enough

to make music with—may get indefinitely postponed. Therefore there is often a

trade-off between rigour and relevance [Fallman and Stolterman, 2010].

In an ideal world, a theoretical account of creative musical interaction would

achieve the following:

1. Be based on more fundamental underlying cognitive principles.

2. Have explanatory power : explain, unite, and connect disparate observations.

3. Encompass a wide range of creative behaviour.

1E.g. “Contrary to an information technologist’s reductionist perspective... creation is more
than the mere movement and manipulation of bits and bytes of so-called ‘information’.” [Gouzoua-
sis, 2005]

145



4. Be simple, concise, and elegant, and communicable to both designers and

artists.

5. Generate design recommendations for future technologies.

6. Enable quantitative comparisons between designs.

7. Make testable, falsifiable hypotheses for future experiments.

This chapter makes an attempt to address these concerns. Whilst it is unlikely to

be definitive, it aims to be the most comprehensive attempt to date to put musical

parameter control on a more quantitative basis.

In Section 5.3, a method is outlined for quantitatively evaluating the effective-

ness of multidimensional controllers (in Chapters 7 and 8 this methodology is used

to evaluate the control of timbre in sound design and performance scenarios). Next

we look at the properties of creative strategies themselves, and relate them to the

geometry of parameter mappings. By building on the cognitive, creative, and HCI

principles discussed in Chapters 2 and 3, a four-quadrant model of creative interac-

tion is developed. This describes four cognitive strategies: Exploratory, Algorithmic,

Reflective, and Skilled (EARS).

Much of the EARS theory is intended to apply to a wide range of creative

interaction behaviour (not necessarily musical). These four modes could be observed

in any Human-Computer hybrid creative systems, and be applicable to to thought,

movement, interaction or data manipulation. Nevertheless, a considerable number of

simplifying assumptions and simplifications are made for the purpose of establishing

a ‘minimal paradigm’ for investigating creative interaction. These are as follows:

1. Assume a single solo artist interacting with a single piece of technology.

2. Assume that the evaluation of the creative artefact is carried out by the mu-

sician whilst engaged with the interface.
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3. Assume a finite, continuous parameter space, for example some audio synthesis

parameters that can be manipulated via a controller in real time.

4. Assume these parameters correspond roughly to musical, perceptual attributes

of the sound e.g. musical time, pitch, amplitude, decay time, filter frequency

and so on. Distances between synthesis parameter settings are assumed to be

roughly equal to that of the perceptual differences of the sound itself2.

These assumptions obviously apply to some musical practices better than others.

In particular, the electronic dance music production process is an example of this

kind of human-computer creative system. The respondents for Appendix B’s survey

were mainly drawn from this community.

If a theory does not simplify matters, it is not doing its job. Although inspired by

cognitive research, and capable of being deepened and formalised further, the con-

cepts EARS introduces need not be described in overly complex or mathematical

language, and do not necessitate detailed knowledge of brain anatomy or low-level

computation to understand. Hence the EARS model should should be conveyable

to moderately technologically competent artists and software designers. The ingre-

dients of EARS are certainly not entirely novel, many of the ideas it deals with

will be very familiar to computer music researchers (see, for example, Jones et al.

[2012]). However, it is intended to provide these ideas in a more condensed form:

hopefully drawing somewhat tighter connections between brain processes, feedback,

prediction, movement, unconscious skills, information and technology.

The theory generates several hypotheses. By no means all of these hypotheses

have been addressed in the experimental work, therefore the tested and untested

predictions will be explicitly stated in Section 5.6.

2This is probably the most questionable assumption. For the simple synthesiser in Experiment
2 it holds well enough, but one might doubt that this assumption would scale up to entire musical
projects.
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5.2 The Human-Computer Hybrid

Creative System

In this section, a model of the artist interacting with content creation technology

is developed. This model establishes a framework within which to analyse the

information flow in a creative perception-action loop. The human-computer hybrid

[Burleson, 2005; Jones et al., 2012] is depicted as a distributed creative system in

its own right. Various aspects of the creative process can occur at different points

in the system, therefore novel information flows around the loop in various ways,

not just from the artist to the machine. I propose that the traversal through the

parameter space of a piece of software or hardware is a ‘mirror’ of the traversal

through conceptual space occurring within the brain of the artist, and vice-versa.

How fast, and how faithfully the movements in the two spaces reflect each other

is an important determinant of how effective the creative system will be, and the

interface design is crucial in determining the speed and accuracy of this mirroring.

Designing an interface for a DMI or DAW establishes the probabilistic geometry of

the solution space navigation strategies. It is argued that the traversal mechanisms

provided by the interface should mirror those strategies the brain uses to be creative.

5.2.1 Linking Conceptual Space to Parameter Space via

Cognitive Mirroring

At the end of Chapter 2, an underlying principle of human-computer interaction was

suggested, that of “cognitive mirroring”. This principle is based around the idea

that the human and the computer are partners on an expedition through solution

space. The goal of the expedition is to discover and ascend peaks of high value in

the fitness landscape. Like mountain climbers, they need to stick together. With-
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out the technology, the actual audio data of electronic music could not be produced.

Without the human, the data could not be evaluated or imbued with cultural mean-

ing. The two explorers have very different skills: the computer has a immense and

precise memory, and can process large amounts of raw data. The human, on the

other hand, is rather good at seeing the way ahead and guessing routes through

challenging terrain, and is the only party who can evaluate the height (value) of the

point in the landscape. The human cannot actually see the territory in detail unless

the computer renders it in concrete form. Loosely speaking, the faster and more

faithfully the computer can be told where the human is trying to get to, the bet-

ter a climbing companion it will be. Likewise, the more descriptive the computer’s

‘display’ (auditory, visual or haptic) can be about the current state of the data, the

better. The role of the interface is to yoke the two explorers together such that they

can communicate, collaborate, and utilise their differing skills to their best effect.

It is worth discussing the geography of conceptual space. The space of possible

pieces of electronic music is, of course, combinatorially vast, and high-dimensional3.

The space is also rather foggy, in that it suffers from low “sightedness” [Simonton,

2012]. The human may be able to judge their immediate surroundings and get a

sense of the gradient of the terrain, but predicting what will happen beyond that

requires either knowledge from a previous expedition, or some tricks of the trade

such as musical (geographical?) expertise. In this space, there are vastly more

boring, random pieces of noise than good music: most of the landscape is flat

‘desert’. Therefore the agent might need to learn or invent some techniques to limit

the space to well structured pieces. Even then, the artists who have gone before are

likely to have discovered many of the obvious regions of interest already. The most

accessible peaks will have been claimed. If there exists an unconquered mountain

there must be some reason why: it is probably the other side of a huge desert,

3Our spatial intuitions can be very wrong in high dimensional spaces [Aggarwal et al., 2001].
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CSF Electronic Musical Interactive Systems
U Space of all possible concepts Uparam All possible electronic music pieces
C Space of all existing concepts Cparam All existing electronic music pieces
T Traversal mechanism Tparam Interface manipulations
E Evaluation function Eparam Currently unavailable

Table 5.1: Analogies between components of the Creative Systems Framework, and
creative interaction with music technology. Without a way for the machine to evaluate its
own progress, high bandwidth communication with the human is still essential.

beyond a deep chasm, where previous explorers have turned back or perished, or

on another planet entirely. Clearly, simple strategies such as hill climbing or map

following will not find novel, or particularly lofty peaks.

The CSF terminology (Section 3.4.1) is useful for asking what creativity might

mean when navigating such a parameter space as that provided by a DAW or music

synthesiser. The various components of the CSF constitute a powerful analogy for

the various elements of the human-computer system. As the musician is interacting

with the parameter space, and is constrained by it, it is ostensibly a space of possible

compositions Uparam, and the interface provides Tparam: the mechanisms to navigate

the space (for example, a knob provides the means to travel in a single dimension

across the width of the space of possible compositions). Cparam corresponds to the

conceptual space of existing, non-novel compositions. Table 5.1 summarises these

correspondences.

Obviously there are cultural and emotional associations that sounds may possess

that are not represented in the very reduced domain of their digital representations.

This means conceptual space possesses a far richer and more complex structure than

parameter space. Parameters such as pitch, filter cut-off frequency, and amplitude

envelopes only represent the lowest levels in the hierarchical conceptual space of

music4; nevertheless, data structures such as MIDI and DAW project files are far

4For this work we assume that higher level aesthetic concepts are outside the domain of user
interface design, they are still the responsibility of the human artist. By assuming that the aesthetic
evaluation of the fitness of a given point in parameter space is carried out by the user, difficult
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Conceptual space U

Parameter space Uparam

c1

c2

c3

c1p

c2p

c3pReturn channel

Input channel

EvaluationFitness landscape

Experimental
observations

Figure 5.1: An illustration of the cognitive mirroring principle. Some initial parameter
settings c1p are perceived by the artist via the return channel (the audio ‘waveform space’,
not shown), giving rise to the point in conceptual space c1. The artist then evaluates
c1 to give E (c1), some point on the fitness surface. The artist then varies the idea in
order to increase its value, this gives c2, which then needs to be input via the interface
to give c2p. At this point, instead of the idea occurring in the artists mind, the computer
generates a variation c3p, which is then listened to and evaluated. All these transfers of
information take place via band-limited channels of varying degrees of lossiness — this
lossiness will determine the amount of mutual information between the two spaces. An
experimenter cannot observe U or E , but they can observe what is happening in Uparam. If
mutual information is high, creative behaviour in Uparam may leave distinctive signatures
in Uparam.

questions such as the cultural conceptual dimensions of particular musical sounds can be side-
stepped. For now, we assume some complex fitness function is being optimised, without needing
to know its exact form (though interesting work has been done both tracking users’ paths through
solution space and obtaining value ratings [Jennings et al., 2011]). This does not mean that the
navigation of solution space is exclusively carried out within the brain, however. The constraints
and affordances of the tools, notations and abstractions used for composition have a significant
effect on the routes the artist takes through solution space, and thereby on the form of the finished
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from being the ‘ground floor’ of conceptual space, as they include a large amount of

structure based on music-theoretical conceptual frameworks such as western tonal

scales, metrical time signatures, conceptual units such as ‘instruments’ and ‘effects’,

and so on5. Creating a piece of electronic music could be seen as a form of projection

operation: projecting the high-level ideas in the artist’s head down onto numerical

representations of musical data. One possible depiction of the artistic endeavour

is that another listener experiencing the creative artefact will be able to faithfully

reconstruct the high-level aesthetic dimensions by the act of perception, analogous

to how shining laser light on a 2D pattern can reproduce a 3D form holographically.

Indeed, the artist may need to simulate their audience’s de-projection process when

evaluating the current state of their work.

We shall therefore assume there is some mapping, or coupling, between concep-

tual space, parameter space and waveform space. Given effective communication

between these domains, movements in one will be reflected in movements in the

other. Fig. 5.1 illustrates this exchange of information between the conceptual

space within the artists brain, the evaluation function, and the parameter space of

the technology. The mapping from physical gesture to synthesis parameters is a

crucial link in this larger mapping process.

As a concrete example of how the technology may take on a role in the creative

process, consider the two scenarios below:

1. The composer has a clear idea in mind, and will therefore need to optimise

parameter settings such that the idea is realised.

2. The composer does not have anything specific in mind, and is looking to engage

in an exploratory process that may produce a moment of inspiration.

product [Mooney, 2011; Magnusson, 2010]. This makes the traversal mechanisms Tparam provided
by the interface an essential topic of enquiry.

5Flexibly navigating the depth of the abstraction hierarchy is an interesting avenue of research
[Duignan et al., 2010].
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These two scenarios seem to map very well to notions of convergent and diver-

gent thinking (see Section 5.5.1), however, in the latter case the divergent traversal

of solutions is being carried out within the machine, via the interface. In scenario

1 the creative act has already occurred in the brain of the composer, and all that

is necessary is an interface that enables the user to adjust parameters such that the

data converges to match the idea. This can be seen in Fig. 5.1 in the steps from c1

to c2p: the move occurs in conceptual space, and then information flowing through

the input channel produces a reflection in parameter space. The goal would be to

find the point in Uparam that, when rendered and perceived, best approximates c2.

Scenario 2 is just as important: the composer embarks on an interactive journey,

and unpredictability is a key ingredient. The artist is using the data generation

capabilities of the technology to diverge from their previous works. In Fig. 5.1 this

process is seen in the route from c2p to c3. The move occurs in parameter space, via

some exploratory interface manipulation, and is then reflected in conceptual space

upon perception of the results. Therefore, it would appear that some divergent

thought has been outsourced to the technology. This leaves the human as the eval-

uator rather than the generator of ideas. These technological flukes are analogous

to aberrations in the CSF. A technological aberration is a movement in parameter

space that takes one out of one’s existing conceptual space. Thus, the interface may

mirror exploratory creativity to a greater or lesser extent, depending on its provision

of a traversal strategy that might produce these aberrations.

Perhaps more than any other creative domain, the electronic musician’s concep-

tual space is closely tied to the parameter space of tools such as sequencers, synthe-

sisers and effects. Many electronic musicians carry out their creative work whilst

actually manipulating the interface. In addition, abstractions of musical data are

handled within the machine, having a large effect on the mental representation of

the material [Duignan et al., 2010]. This means Cparam will possess high mutual
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information with C . The tighter the feedback loop, the more cognition may be

mirrored in the trajectories through C. Study of these parameter space trajectories

may reveal more about the trajectory through C . By logging interactions with a

certain set of controls, some clues as to the artist’s navigation strategies may be

obtained [Jennings et al., 2011].

The input and output communication channels between C and Cparam are of vital

importance. They determine how well the creative agent can realise their concepts.

The bandwidth of the input channel will determine how fast changes in conceptual

space (the musicians own ideas) can be implemented in the creative artefact. The

bandwidth of the return channel will determine how fast the artist can hear the

effect of those implementations, and hear the results of transformations carried out

within the computer. Therefore the information-theoretic properties of the input

and return channel are crucial areas of study. In the next section information flow in

various subsections of this communications loop is described in detail, and methods

are proposed to calculate and measure throughput experimentally.

5.3 Entropy and Information Flow in the

Creative Perception-Action Loop

A blank canvas, a blank word processor document, or an empty DAW project may

appear to be a highly ordered, low entropy piece of information. Appearances can

be deceptive. At the start of the process, each part of the blank canvas has the

potential to take on many different possible colour values. Due to this uncertainty,

it possesses a much higher entropy than a finished work, where all degrees of freedom

have been specified. By making many large and small decisions, the artist gradually

reduces the entropy of the canvas until each area is specified to their satisfaction,
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Figure 5.2: Information flow around the perception-action loop.

and the work is finished. The electronic musician, by altering the values of synthesis

parameters of various events in time, traces a path through a space of possibilities, a

trajectory that, after many hours reaches a target point: the finished piece. Whilst

the decisions the artist makes may be unobserved, tell-tale traces of these decisions

are left in the interaction data. By logging the search trajectory, and measuring how

it progresses towards the target, it may be possible to infer such things as the rate

of entropy reduction. This can tell us how much information has been transmitted

from the artist to the artefact as a function of time.

Figure 5.2 illustrates how information flows from the artist’s brain to the creative

artefact (and back). Similarities should be noted with Leman’s perception-reaction

cycle [Leman, 2008, p. 54], Wessel and Wright’s conceptual framework for controller

research [Wessel and Wright, 2002], the ‘extended composer’ [Jones et al., 2012],

Pressing’s cybernetic perspective [Pressing, 1990], and Nash’s feedback loops [Nash,

2012, p. 101]6. In this loop, six points of information transfer are identified:

6Nash investigates in detail the relationship between the user, the notation and the music
(audio), using a three node network with bi-directional feedback loops between all three.
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1. Intention to Gesture: This is the transition between the user’s goals and their

bodily movements. The information loss depends on things such as the noise

in the efferent motor nerve signals, amount of practice, and basic physical

limitations.

2. Action to Interface: Movements of the body will translate, via sensors, to a

data stream emerging from the input device. The information loss will depend

on the accuracy of the sensor devices.

3. Interface to Synthesis Parameters: Control device parameters can be mapped

to synthesis parameters in a variety of ways. This transfer point is the subject

of DMI mapping research, and the focus of the three experimental studies in

later chapters.

4. Synthesis Parameters to Audio: The synthesis engine will render audio on

the basis of the parameter settings. In general, the amount of information ex-

pands many-fold here, as the synthesiser will produce complex waveforms (e.g.

44.1KHz 16-bit audio) on the basis of a smaller number of parameters [Smith,

1991]. The design of the synthesis engine is of course incredibly important,

and will have knock-on effects throughout the loop, but is out of the scope of

this work.

5. Audio to Perceptual Dimensions: The amount of musical information the

artist consciously perceives is, in general, far smaller than that contained in

the audio information. It is also highly dependent on what aspect of the

sound is the current focus of attention, which may in turn depend on the

artist’s current sub-goals and associated interface operations.

6. Perceptual Dimensions to Musical Evaluations: Finally, the perception is eval-

uated in some way, and possibly compared to the artists original intent. The
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artist may then produce a prediction as to how to increase the quality of the

sound, form the intention to realise it via gestural interface manipulations,

and the cycle continues.

Ideally, the interface exhibits an interaction bandwidth (Channel 2) at least equal

to the rate at which the brain can control the motor system (Channel 1). This is far

from the case for the majority of computer interfaces, and this results in a certain

amount of frustration, and many claims that the computer is not expressive or

sufficiently ‘embodied’. On the other hand, many instruments (e.g. a piano) have

a far greater potential bandwidth than the rate at which a novice can control their

movements, which can also result in frustration.

To complicate matters, information can also cascade backwards around some

parts of this loop. Mini-feedback paths may well have an effect on the overall

throughput. For instance, if there is fast7, informative haptic or visual feedback it

may significantly speed up interaction [Cockburn and Brewster, 2005]. The user

will gradually learn the peculiarities of the interface, therefore a representation of

the mappings at points (2), (3) and (4) will gradually be formed in the mapping

from intention to body movement (1).

As [Wessel and Wright, 2002] mention, in relation to the perception-action loop:

“Admittedly this diagram is schematic and incomplete. One aspect that

is not well captured by it is the way in which performers’ intentions

are elaborated upon by discovery of new possibilities afforded by the

instrument.”

If the majority of the content is emergent, and goals are fluid, then how do we

measure effectiveness? Any attempt to measure information flow must define the

7Perhaps counter-intuitively, the fastest feedback of all is no feedback, i.e. ‘open loop’ control
(see Section 2.2.5). This does require the user to have an accurate internal model of the exact
movements required to achieve a certain result. Experiment 3 will reveal evidence to support this
claim.
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input and output, and what is signal and noise. This is not obvious. If the artist’s

goal is ill-defined, extremely abstract and high level, or the emerging audio is eval-

uated as actually being better than the artists original intent, then at any moment

the noise could become the signal. In fact many electronic musicians estimate that

this ‘noise’ generates the majority of their material (see Appendix B). The noise

could be generated anywhere within this loop. Even data produced as a result of

the artist’s incompetence may occasionally be novel and valuable!

In view of the potential for the sudden redefinition of noise, it seems neces-

sary to develop two evaluation methodologies to separately tackle ‘divergent’ and

‘convergent’ interaction modes. The effectiveness of convergent interaction can be

measured by comparing the current data to a pre-specified target, and timing how

fast the user can achieve a suitable match. This will be the approach taken in exper-

iments 2 and 3, and is similar to the traditional approach taken in HCI research: in

particular by use of Fitts’ law for pointing tasks. Put more specifically, throughput

can only be measured if we know (or have specified) the user’s prior intent, and

the user sticks to that intent for the duration of the interaction. Developing a sim-

ilar model for divergent processes involves the acknowledgement of more fluid goal

states. Next, a model will be sketched out of how an information-theoretic approach

may go towards dealing with these situations, and how the creative loop may be a

phenomenon that emerges from the Free-Energy principle.

5.3.1 Towards A Free-Energy Account of Fluid Artistic Goal

Hierarchies

A probabilistic, free-energy-minimising view of the artists underlying intent leads

to quite a different balance of information processing in the human-machine hybrid

system. Let us say that the musician has an internal, probabilistic predictive model
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Brain’s model of artefact = ch

Musical
Parameters

Input throughput TPhp

Return channel throughput TPph

Computer’s model of artefact = cp

Conceptual 
dimensions

Entropy of model = Hh Entropy of model = Hp

Figure 5.3: Notation for this section. The artist has some vague probabilistic model of
their goal state ch, with entropy Hh. The computer has the current specification of the
data cp, but there is a degree of uncertainty over whether this is the final artefact or not,
and degrees of freedom remaining to be specified, giving rise to a hypothetical entropy
Hp.

of what they desire to the creative artefact to be: the human’s conceptual model,

ch. If ch is extremely vague, then we could say the model has high entropy (Hh is

large). The computer has a data representation of what the artefact currently is:

the computer’s parameter model, cp. If data is yet to be specified, cp too will possess

many potential degrees of freedom and hence has high entropy: Hp is large8.

Recall that Friston states there are two ways for an agent to minimise free-

energy [Friston, 2010]. The first is to act so as to change the sense data to match

the internal model. In this case the human has an ‘idea’ that is better specified

(lower entropy) than anything yet present in the machine: Hh < Hp. The human

then seeks to change the data on the machine such that it comes to resemble ch. The

human then needs to act, by manipulating the interface, to reduce Hp, the entropy

of cp. We shall see in later sections that the amount of search space reduction can

8Of course, the data in a digital computer is perforce precisely specified, however considered
relative to the user’s final goal state there are many parameters that exist in a yet-to-be-specified
state.
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be used to measure how fast the data converges on the desired result, and hence the

throughput of the input channel TPh→p = dHp

dt
.

The second route to free-energy minimisation is to update the internal model to

match the sensory environment. For instance, if some accidentally discovered aspect

of cp resonates with artist’s higher level aesthetic goals more than the current ch,

then the artist updates their internal model of mid-level structure accordingly. In

this case Hh > Hp, as some pattern in the data in the computer has been utilised

to reduce Hh, information has flowed in the opposite direction: from computer to

human, via the return channel. This process, more akin to discovery than invention,

is a far quicker update process due to the higher bandwidth of the return channel.

This leads us to a number of interesting predictions. If the interface is indeed a

highly restrictive bottleneck, as some electronic musicians feel, then one of the things

we would expect to see is that the artist increasingly relies on the exploratory aspects

of the interaction to generate material. If the random traversal of the parameter

space tends to generate interesting material at a rate faster than competing ideas

in the mind can be input via the interface, i.e. TPp→h � TPh→p, then the opti-

mum strategy is increased reliance on the return channel. Put simply, there is no

use having an excellent, intricately detailed idea if the chances of realising it are

very small, or prohibitively laborious. Much better to explore the actual achievable

options, and select that which meets your evaluation criteria. In the exploratory

mode, the high bandwidth of the return channel is making up for the low bandwidth

of the input channel. This may indeed be what we observe in electronic musicians

behaviour. The ability to ‘talent spot’ parts of the parameter space with potential

becomes more important than the ability to ‘think up’ musical ideas9. If we believe

Schmidthuber that rate of coding progress is the generator of subjective reward in

9Indeed the most lauded ‘musicians’ in electronic dance music tend to be DJs, whose artistic
expression is more or less exclusively related to their ability to select music, rather than to create
it. Their status as artists is founded on their evaluation abilities.
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artistic domains, then the sudden discovery of a valuable pattern in the return chan-

nel data will actually be more rewarding than a gradual and effortful reduction in

entropy via the interface. The suddenness of this experience in some way resembles

the suddenness of insight, and may induce a similar subjective ‘aha!’ experience.

A second prediction relates to when the return channel bandwidth decreases

for some reason, as for instance when the musician is attempting to structure a

whole piece, when quite small control changes may take minutes to evaluate rather

than seconds. In this case, the exploratory mode becomes non-viable, and far more

predictive effort is required from the musician. Serendipitous discovery of song

structure will be rare. This may be one contributor to the observation that musicians

feel that structuring a track is hard mental work (see Appendix B).

So how do we measure the effectiveness of an interface for the ‘divergent’ mode?

Calculating dHh

dt
does not seem possible: this would entail witnessing some model

update in the artist’s mind. The only ways to do this would be to

1. Instruct the artists to self-report moments of discovery. The user saves all the

discovered points. The interface with the highest average number of discoveries

in a given amount of time is deemed more effective.

2. Infer a discovery via some tell-tale signature in Hp.

The second approach must be done in light of the goals that emerged during the

process. If we know the final state of the data, then throughput can be calculated

retrospectively: post-hoc analysis may reveal information surges when a discovery

was made, or plateaus when the musician was making no progress. This may have

a different time series signature from more monotonic, convergent processes such as

the linear throughput-time relation in Fitts’ law. Seeing as discovery is a rewarding,

and often sudden thing, these discrete events might be countable as both spikes

in throughput plots, and subjective ‘aha!’ moments reported by the user, and
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these could be correlated. Alternatively, survey questions could be used, asking

the user which interface they preferred for various correlates of divergent behaviour:

properties such as being able to generate and evaluate lots of novel sounds, traversing

the space quickly, or feelings of surprise. We will return to the question of how

exactly an interface might provide an effective divergent traversal strategy in Section

5.5. In the mean time, we focus on the ‘convergent’ mode, and propose a way to

measure throughput for multidimensional parameter space searches by looking at

how the point in the parameter space cp evolves over time.

5.4 Measuring Throughput in Synthesiser Param-

eter Space

Wanderley and Orio [2002] make recommendations are made for improving DMI

research by borrowing tools from HCI. Fitts’ law is mentioned as having potential,

but has not yet been seriously investigated, perhaps due to lack of a easily appli-

cable methodology for either multidimensional controllers or time-based rhythmic

interaction. Information “throughput” has certainly been mentioned in relation to

synthesiser interfaces [Pennycook, 1985] and musical virtuosity [Pachet, 2012], but

has yet to be seriously investigated experimentally. Whilst there are many analogies

between visual target pointing and sound target matching tasks, there are a number

of differences and extra challenges with an auditory search. The following must be

considered when finding an analogue of Fitts’ law for sound target acquisition:

1. Delayed Assessment. Visual differences in position can be assessed extremely

quickly. Sounds, however, take more time to listen to. Some control adjust-

ments may have delayed effects, particularly time envelope controls. Differ-

ences between two sounds cannot be easily assessed with them playing simul-
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taneously.

2. Anisotropy. Timbre space does not look the same in all directions. Pitch,

timbre and temporal features are all very different perceptual qualities. In

contrast, 3D space can be considered isotropic, although evidence for some

anisotropy in pointing tasks has been found [Murata and Iwase, 2001].

3. Low sightedness : Differences in sounds are harder to judge, and take far more

effort to process that differences in position. Parameter spaces could be said to

vary between being “sighted”, where the distance and direction to the target

is predictable, and “blind” where it is impossible to know which direction to

move in, or how far away one is from the target. Sightedness will have an effect

on the extent to which information about the target position can inform the

movement. Sightedness depends on the user’s expertise with an instrument:

how well do they know the parameter space?

4. Due to this low sightedness, it is hard to specify a target size, therefore move-

ment accuracy needs to be inferred post hoc.

5. Timbre space can possess a dimensionality far higher than that of ordinary

space.

This section is devoted to developing a method of measuring throughput that can

deal with these considerations. This requires several new approaches with regards to

the use of Fitts’ law in device evaluation. In fact, this technique is not music-specific,

and may clear up a number of points of debate in the wider HCI field.
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5.4.1 Sidestepping the Fitts’ debate via

Index of Search Space Reduction (ISSR)

In Section 2.4.1 we encountered several issues with the existing Fitts’ law-based

device evaluation methodology:

1. Uncertainty over which formula to use.

2. Uncertainty of how to calculate throughput from plots of MT vs. ID.

3. Uncertainty over the exact relationship of ID to Shannon information.

4. The necessity to devise new experiments and movement laws for increasing

dimensionality.

The Index of Search Space Reduction (ISSR) approach aims to resolve (or at

least circumvent) these issues.

The first novel aspect of this approach is a change of perspective on exactly

what we are trying to achieve by using Fitts’ law in HCI. Considerable debate has

gone into which formula gives the straightest regression lines. In other words, the

assumed goal is to establish a predictive scientific law. Granted, in some cases, an

HCI researcher is interested in estimating how long tasks will take given different

interface arrangements, and requires Fitts’ law to provide a predictive model of

human abilities [MacKenzie, 1992b]. This model can then be used to optimise

interface layouts, without the laborious process of user-testing each one, as in [Zhai

et al., 2002]. However, a far more common use of Fitts’ law is to establish which

devices are most effective via user testing [MacKenzie, 1992a]. I argue that these

two scenarios are distinct, and propose that many of the issues with Fitts’ law in

the former disappear for the latter if an ISSR-based methodology is used.

In fact, the ISSR approach dispenses with the notion that we must base through-

put measurements on a linear time-ID relationship. A constant rate of information
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Figure 5.4: Two uses of Fitts’ law in HCI. The top paradigm (blue) uses Fitts’ law as a
model of human behaviour to predict task completion times. The bottom paradigm (green)
uses Fitts’ law to estimate throughput (TP) for the purpose of comparatively evaluating
input devices. ISSR sidesteps the debate over the relationship between throughput and
movement laws, by redefining TP in terms of search space reduction.

flow is not a prerequisite for measuring the rate or amount of information trans-

mitted. Even if we would abandon Fitts’ law altogether, Fitt’s idea of information

transferral via aimed movement should still prove very useful for interface evalua-

tion.

Evaluation is methodologically distinct from establishing predictive scientific

laws. In essence, evaluation is to measure some property X in a variety of ex-

perimental conditions, with the relative values of X reflecting how well the various

experimental conditions contribute to the user being able to achieve their goals. If

the user’s goal is to adjust some data within the memory of the computer so as to

align with a target value, then surely the convergence of this data on the target

value is the process of interest. So the the point at which X should be measured is

the change in this parameter data.

This evaluative quantity X should have the property that if, say, Xa > Xb, then
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we know interface a is more effective than interface b. The units of X should be

comparable in a variety of situations, because the input device may be mapped

to all kinds of different tasks: the rate of transmission of Shannon information is

certainly an ideal candidate, for the reasons given in Section 2.4.1. Whilst it would

be a tremendous boon if there were indeed a linear relationship between X and task

completion time T , such that Xa = γXb entails Ta = α + γTb , this is by no means

guaranteed. If we do know the relationship, we then get an idea of how much faster

interface a really is for an arbitrary task. Nevertheless, nowhere in our desiderata for

the effectiveness measure X do we require that it should be able to precisely predict

absolute movement times, only that it provides a way to compare input devices via

some quantitative ratio. Fig. 5.4 illustrates this methodological ‘short cut’, from

experimental data directly to throughput comparison.

So, rather than defining throughput on the basis of an empirical fit to movement

data, with all the debate that involves, let us instead recall the definition of infor-

mation gain: the entropy reduction of a probability distribution. The details of this

calculation are established in the next section. The first approach is to look at the

probability distributions of an ensemble of search paths. The second approach is

to make some simplifying assumptions about these probability distributions. This

results in a simple formula for calculating the throughput of a target search in n

dimensions.

Probability Distribution Approach

Fig. 5.5 shows the distributions of points obtained from search path data from

Experiment 2. Participants were searching for a target sound randomly positioned

in a 2D parameter space. Each point is positioned according to the 2 parameter

settings obtained from an individual trial. Six points in time are shown. The

target position has been normalised to the centre of the image. It can be seen that,
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t = 1.6s t = 3.2s t = 4.8s

t = 6.4s t = 8s t = 9.6s

Figure 5.5: The “search ensemble” for the 2D sound target matching trials in Experiment
2. The target sound has been normalised to the centre of the image. The gradually
coalescing probability distributions have decreasing entropy.

although individual search paths can be quite random, the overall tendency over

time is for the distribution to converge on the target. Given a large enough number

of these search paths, this ensemble approximates a probability distribution. Like

Soukoreff et al. [2011], we take the approach that it is the reduction in the entropy

of this distribution that reveals information gain, and hence throughput:

“to calculate entropy, we must first identify the set of possible outcomes,

and their probabilities. The ultimate goal of a rapid aimed movement

is to enter a specific area of space, and so the movement endpoints

seem to be the natural quantity of interest that reflects the result of

the movement task.”

Task information gain, or index of difficulty (ID), is given as the difference be-

tween the starting and ending entropy: ID = Hstart −Hend.

Not only this, but if we have trajectory data for the whole path, entropy can be
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measured at all points in time throughout the movement, potentially giving greater

statistical power than simply looking at the end points. If Fitts’ law is indeed a result

of a constant information processing rate, then presumably this can be observed in

the course of the movement as well as for its end points (with the possible exception

of the initial acceleration phase).

The entropy of this probability distribution at each point in time H(t), discre-

tised into B equally large bins can be calculated for each point in time like so:

H(t) = −
B∑
i=1

pi(t) log2(pi(t)), (5.1)

where pi(t) is the probability of a search point being found in bin i at time t. This

can be calculated from a distribution of N points via pi(t) = ni(t)
N

, where ni(t) is the

number of points in bin i at time t.

Fig. 5.6 shows the decline in entropy for the distributions shown in Fig. 5.5. The

narrower and more focused the distribution becomes, the lower the entropy.

Unfortunately this does not give us a generalisable means of calculating the

throughput. Imagine every search path started at the same distance to the target.

This would be an extremely narrow starting distribution, resulting in a very low

starting entropy. As the users set off, their paths will more randomly disperse and

the entropy will increase. This would give us very strange results. This problem

can be seen in the first 4 seconds of the plot in Fig. 5.6, where the entropy initially

increases due to the hole caused by there being a minimum absolute distance from

starting point to target (see Fig. 5.5, top left). Because this bunches up the starting

points, the entropy of the initial distribution is artificially low.

The attitude to this issue taken in [Soukoreff et al., 2011] is justified on the basis

of

“...the principle of maximum entropy, which states that the probability
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Figure 5.6: Entropy decreasing with time, calculated for the search ensemble in Fig. 5.5.
The initial increase is due to the hole in the middle of the search paths: this low starting
entropy does not accurately reflect the participants’ uncertainty of the target position.
Once the distribution has had time to settle out and more approximates a Gaussian, the
entropy decreases approximately linearly. The gradient of this linear region represent
throughput.

distribution that best represents a given phenomena is the distribution

that gives the largest entropy subject to what is known about the phe-

nomena”.

In other words, it is not the experimenter’s knowledge of the distribution that

determines the entropy, it is the subject’s. Therefore the starting distribution should

reflect the participant’s knowledge/ignorance of the target just before the particular

trial is presented. They therefore assume that the initial distribution is uniform

across the range of possible target positions. The formula for the entropy of a 1D

uniform distribution of width d1 is

Hunif = log2(d1). (5.2)
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They also assume that the distribution of the end points is Gaussian. The

formula for the entropy of a 1D normal distribution of standard deviation σ is

Hnorm =
1

2
log2(2πeσ

2) =
1

2
log2(πe

d22
8

), (5.3)

where the effective target width d2 has been substituted for σ. By subtracting

the final entropy from the starting entropy one can get a formula for the ID of a

movement ensemble

ID = log2(d1)−
1

2
log2(πe

d22
8

). (5.4)

What about the case of the our 2D trials in Fig. 5.5? We could assume that all

the subject knows is that the target is somewhere within the range of the 2D square.

Unfortunately however, this would then raise the question of what point in time the

‘maximum entropy’ distribution no longer applies and the actual data distribution

begins to accurately reflect the subjects’ uncertainty. It seems we need to make some

simplifying assumptions. If we assume that the distribution is symmetrical around

the target, and the same (let’s say uniform) for both start and end points, then we

start with a uniform distribution of width 2d1 and end with a uniform distribution

of width 2d2. We then obtain

ID = log2(2d1)− log2(2d2) = log2(
d1
d2

). (5.5)

Gaussian distributions give the same result. Therefore, if the distribution main-

tains its shape and symmetry, only the ratio of start and end distances matter. Is

this assumption justified? Obviously the end distribution in Fig. 5.5 is not perfectly

symmetrical. But judging the exact initial state of knowledge of the participants

prior to the commencement of a search is hard to do. They may not be aware of the
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extent of the search space (for example when using a 3D hand tracker as in Experi-

ment 2). They may have implicitly noticed some underlying pattern in the distance

to the end points. A further point of confusion is that different trials take different

amounts of time, and users submit their trials at different points—how should the

multiple paths be time aligned? Should t = 0 be aligned, the commencement of

the trial, or should the end points, when the user felt they had finished their at-

tempt? With all these “unknown unknowns”, assuming the distributions maintain

their shape seems fairly innocuous.

Next, we build on this ‘log ratio of distances’ idea in order to define the Index of

Search Space Reduction (ISSR), a informational quantity of search volume reduction

for a single search path in an n-dimensional parameter space.

Index of Search Space Reduction (ISSR) Approach

In this analysis, we look at a single search trajectory, as opposed to an ensemble.

Assume a target point xt has been given to the user to find in an n-dimensional

parameter space, P n (refer to Chapter 7 for the specific experimental method).

They make a movement in order to progress toward xt, and have reached a current

position x2, having started at a point x1 (see Fig. 5.7).

We first calculate the distances to the target before and after the movement,

d1 = ‖xt − x1‖, d2 = ‖xt − x2‖.

We define the search space reduction factor R as the ratio of the n-volumes

corresponding to radii of the distances. Volume is calculated as V = Cdn. The

exact shape of the volume, or even whether it has some probabilistic fuzziness, does

not in fact matter, as the multiplier C cancels:
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Figure 5.7: Search space reduction. The target is xt, x1 and x2 are the start and end
points of the movement along path a. V1 and V2 are the volumes associated with distances
to target d1 and d2. The logarithm of the ratio between these two volumes gives a measure
of information gain. Path b is an alternative, more convoluted search route to achieve the
same result. Summing over all the steps of b gives the same amount of information gain
as a (Eq. 5.9).

R =
V1
V2

=
Cdn1
Cdn2

=
d1

n

d2
n .

The fact that parameters have finite extent, and these limits may truncate some

larger volumes is assumed to have no significant effect.

In general, any search task can be said to be a reduction of a set of possibilities.

For a task involving a fixed number of options, the entropy reduction (or information

conveyed) by a choice of a subset of these possibilities will be the logarithm of the

ratio of the number of possible states before the choice was made and the number

of possible states afterwards. If the remaining search volume is reduced by a factor

of two, then we have successfully completed one bit of the search. This relationship

between parameter space volume and information in bits gives the “index of search
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space reduction”,

ISSR = log2 (R) = log2

(
d1

n

d2
n

)
= n log2

(
d1
d2

)
. (5.6)

This makes intuitive sense. The proportion of the search space one can select

for a given radial accuracy scales exponentially with dimensionality n, therefore the

informational content of that selection scales proportionally to n. This hints at the

promise of multidimensional controllers: if they achieve even roughly similar levels

of accuracy in absolute terms, their throughput will be considerably greater. Whilst

a negative “difficulty” seemed meaningless, it seems reasonable to say that moving

away from the target results in lost information, and ISSR < 0 when d1 < d2. If no

progress is made and d1 = d2, then ISSR = 0.

In complex search spaces such as for synthesis parameters, there may be no

guarantee of a linear relationship between ISSR and movement time. But if Fitts’

law holds, and information processing speed is constant, the movement time (MT)

will have a linear relationship with ISSR. For MT, dependence on dimensionality

would be simple: a constant multiplier of the gradient,

MT = a+ bn log2

(
d1
d2

)
. (5.7)

Where does this leave the Fitts’ law formula debate? In fact this alternative

derivation, for the one dimensional case, gives us Fitts’ original equation [Fitts,

1954]: by substituting n = 1, D = d1 and taking the target width as twice the final

distance to the target centre, W = 2d2 we get

MT = a+ b log2

(
2D

W

)
. (5.8)

Fig. 5.8 illustrates the relationship between 1D search “volume” and Fitts’ orig-

173



inal variables.

Target “volume” V2 = W = 2d2

Start “volume” V1 = 2d1

Start position x1 End position x2

Target position xt

d1

d2

Figure 5.8: In 1D, these substitutions give an ISSR identical to Fitts’ original ID .

A further reassuring property of the ISSR is that it conserves information, i.e.

the total information gain of a search path can be considered as the sum of the infor-

mation of all its sub-paths, irrespective of how it is divided. The sum of information

gain for M steps is

ISSR =
M−1∑
m=1

n log2

(
dm
dm+1

)

= n
M−1∑
m=1

(
log2 (dm)− log2 (dm+1)

)
.

All the terms cancel except the first dm and the last dm+1 term, giving

ISSR = n log2

(
d1
dM

)
. (5.9)

This is identical to Eq. 5.6 for the start and end points of the whole path. It is

difficult to see how the Shannon formulation in the ISO standard ID (Eq. 2.4) can

conserve information in this way.

Finally, as noted by Jacob et al. [1994], we must acknowledge a the possibil-

ity that a position close to the target was attained by sheer chance. In cases like
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these, thresholding might be desirable. The remaining search space will be what-

ever volume the remaining search path is constrained within. In other words the

thresholded value for the current remaining search radius should be taken as the

maximum value of all subsequent search radii,

dthresh(tc) = max(d(t) : {tc < t ≤ tfinal}). (5.10)

This will restrict ISSR to be a monotonically decreasing function of time.

Advantages of ISSR

In summary, the proposed ISSR characterisation of Fitts’ law proves useful for the

following reasons:

1. It provides a theoretical baseline of how throughput should scale with dimen-

sionality.

2. It measures information throughput at the point of interest: the effectiveness

of the search.

3. Where varying accuracy levels cannot be specified in advance, it enables us

to extract a range of difficulty values from the trajectory data, giving a large

number of “retroactively simulated” experiments, as in Jacob et al. [1994].

4. It has a simple and generalisable definition, and can be applied to a wide

variety of search task situations.

5. Information is always conserved, no matter how convoluted the search path.

6. It avoids the difficulty of having to empirically establish a predictive relation-

ship. By measuring throughput by looking at the reduction of entropy of an

ensemble of search paths, we avoid the question of whether the human nervous
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system really does approximate a noisy channel, or which formula is the most

accurate fit to the data. Thus the usefulness of the ISSR quantity does not

rely on the experimental validity of any particular version of Fitts’ law10.

As mentioned, plots of movement time against ISSR may not be straight. Nev-

ertheless such plots may prove revealing. For example, if the gradient becomes more

shallow as time progresses, this would indicate the search is becoming easier as it

progresses and that more information is being successfully input. These kind of

plots will reveal a number of interesting results in Experiment 2.

One potential theoretical problem is that ISSR, averaged across an ensemble of

search paths, will be the mean of the log distance ratios, whereas the probability

distribution approach calculates the log of the ratio of mean distances. This is po-

tentially a different quantity. Further work is needed to more carefully analyse the

relationship between the two approaches, more carefully deal with changes in the

shape of the probability distributions, establishing the exact state of the partici-

pant’s uncertainty before, during and after the search.

5.4.2 Throughput, Expression and Jordà’s Efficiency

Whilst throughput should by no means be the only measure used to evaluate musical

interfaces, it nevertheless captures three important ideas in one single quantity:

flexibility, speed and precision. Precision, in that it reflects how small the target

achieved was. Speed is expressed through how long it takes to achieve a given

accuracy. Flexibility is expressed via the fact that the calculation takes into account

what the user could have done: the size of the search space that was selected from.

Throughput based analysis may be one useful step towards measuring Jordà’s

notion of musical instrument efficiency. This relied on three terms, output complex-

10Indeed, in Experiment 3 8 we shall find that Fitts’ linear relationship does not hold for rhyth-
mical interaction, nevertheless ISSR comparisons remain revealing.
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ity Cout (the complexity of the musical output), input complexity Cin (how difficult

the movement is) and performer freedom F (the size of the possibility space).

efficiency =
Cout × F
Cin

(5.11)

Performer freedom could be related to the total size of the combinatorial space

Vtotal, perhaps the maximum amount of bits achievable Imax = log2 Vtotal. Com-

plexity (at least in the sense of the potential intricacy of the control trajectories)

might be considered the amount of fine grained specification achieved in unit time

i.e. ISSR-throughput. Input complexity seems related to movement difficulty, as

in the original conception of Fitts’ ID-throughput. Therefore rather than being

‘competing theories’, ID and ISSR may be quantities that are useful to compare

to find out the ratio between how challenging the movement was, and how much

that movement actually achieved in the task-space. Referring back to Fig. 5.2, ID

would seem to measure information flow at point (1), whereas ISSR would measure

information flow through the whole input channel (1),(2) and (3). The difference

between the two, ID − ISSR, might be able to tell us how much information was

lost in the device (2) and mapping (3) channels.

For high dimensional spaces, ID and ISSR may actually diverge: the movement

may be easy but the search space reduction could be large. Further work is needed

to establish how throughput may be measured at all points along this loop. For

instance, the “liveness” of feedback is crucial [Nash, 2012]. This aspect could be

measured by return channel throughput.

Another important aspect of Jordà’s conception of instrument effectiveness more

closely looks at the notion of diversity, and how it extends over various time scales.

The nuance control of fine sonic structure is termed ‘micro-diversity’. ‘Mid-diversity’

pertains to how different two performances can be, and ‘Macro-diversity’ refers to

177



how well the instrument adapts to stylistically different contexts across different

genres, performers or even cultures. This conception of diversity is probably not

addressed by simply measuring throughput—which seems to apply more to short

time-scales of micro-diversity. However one could argue that a synthesiser with a

larger, more controllable parameter space is likely to be better adaptable to different

stylistic contexts.

Another essential question is how the complexity of the audio output changes as

a function of the parameter changes. Optimising this measure, and testing it with

relation to all the other points in the loop may be a potentially fruitful direction for

future sound synthesis research.

For real-time musical performance the ability to sustain a high bit-rate is es-

sential, if the performer cannot realise a musical event to a certain accuracy in a

certain time, many types of music will be unplayable. However, musical expression

is a far more subtle concept than mere controllability. Like all artistic notions it is

multidimensional, and perhaps should be left to artists to define. The instrument

designer, straddling engineering and art, must deal with both the artistic qualities

of their instrument (the sonic qualities, the visual aesthetics, the stylistic and cul-

tural resonances) and the engineering aspects (the controllability, the reliability the

range of sounds that can produced). Expressivity is a notion that seems to span

this spectrum. Nevertheless, approaching from an engineering perspective, if we

were to demand a single, objective means to assess expressiveness, then throughput

would appear to be a strong candidate. The more complexity and nuance that can

be imparted to a musical event, the greater the expressive range. The larger the

parameter space that can be reliably selected from, the more range the instrument

will have, thus throughput is a at least a precondition for expressiveness [Dobrian

and Koppelman, 2006].

For off-line interaction, for example in sound design or studio production, the

178



need for high throughput is less urgent, nevertheless the speed of interaction is very

important. Obviously it is unpleasant to use a slow interface, but more importantly,

ideas are fleeting and easily lost: therefore the speed of their realisation can affect

whether they get realised at all, and the longer they need to be preserved in working

memory, the higher the cognitive load (see the survey responses in Appendix B).

There is also an argument for viewing live music as a form of communication between

the performer and the audience, in which case the clearer and faster a musical intent

can be expressed to an audience the better.

I am not advocating that throughput must be maximised at all times during the

actual performance with an instrument. That would be quite antithetical to the idea

of artistic expression, and would rather be a meaningless competitive maximisation

of virtuosity. Besides, the perception of the music (Channel (6) in Fig. 5.2) is also

a limited bandwidth process — it may be counter productive to generate musical

content that is far too complex for the performer or audience to assimilate [North

and Hargreaves, 1995]. The point is that the bandwidth should be there as and

when the musician requires it. The artist is then free to express themselves in as

‘minimal’ or ‘maximal’ fashion as they see fit.

One could argue that the artistic aspects of expressivity pertain to “what is

expressed” i.e. the information content; whereas the engineering aspects pertain to

“how the content becomes expressed” or how efficiently this content can be trans-

mitted from the mind into sound. By this argument one can see that throughput

seems an ideal quantity for the interface engineer to investigate if musical content

is to be abstracted away, however in the design of a real instrument the two aspects

are inevitably much intertwined. For instance, the sonic qualities of the instrument

will require many engineering decisions to alter, but inevitably possess aesthetic

and evocative qualities which will change the what seems to be expressed when it

is played.

179



5.4.3 Information Flow Summary

In this section we have seen how throughput, measured via entropy reduction, may

be a good correlate for the effectiveness of a content creation interface. By side-

stepping the necessity for Fitts’ law to be established using experimental data for

each and every increase in dimensionality, a simple formula was established for

calculating input information for high-DOF controllers.

ISSR = n log2

(
d1
d2

)
. (5.12)

This quantity seems to encapsulate many of the desiderata established in prior

Digital Musical Instrument research. However, the vital ‘divergent’ aspect of cre-

ative interaction is missing. ISSR can only measure the rate of convergence upon a

pre-identified target. Thus it is only applicable to the two convergent modes in the

EARS model described in the remaining parts of this chapter.

Also, yet to be established is a method of actually designing high-throughput

interfaces, which necessitates due consideration of people’s cognitive and motor

control abilities. Is it really possible to control multiple dimensions at once, fast

enough to take advantage of the dimensional multiplier in equation 5.7? If so what

disadvantages are there to this form of interaction? What other modes of interaction

are necessary in order to fully augment creative cognition?

A further question is that of cognitive load. If higher throughput comes at

the cost of greater working memory demands, then it may not be a worthwhile

goal. As we have seen in Chapter 2, the explicit brain system is also thought to

be a processing bottleneck [Marois and Ivanoff, 2005]. According to the cognitive

pipelining principle, it is vital for the throughput of the loop as a whole if low-level

short time-scale interface operations are designed to bypass the explicit system when

at all possible. Do we really need to consciously keep track of the value of every
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single parameter, or is it enough to just evaluate the music as a whole? Is it only

when consciously noticeable errors occur that it becomes necessary to explicitly drill

down to individual parameters and correct them? What properties of interaction

are suited to low cognitive demand? The next section attempts to address these

questions.
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5.5 A Four-Strategy Model of

Creative Interaction

This theory details how a simple two stage model of creativity (divergent vs. con-

vergent thinking) and dual process theory (implicit vs. explicit cognition) can be

combined to construct a more principled approach the design of creative compo-

sition interfaces. It is worth setting out the exact scope of this model. It only

addresses what Boden [1992] terms P (psychological) creativity, rather than the H

(historical) creativity found in culturally significant achievements, therefore ignores

ecological factors that contribute to true artistic breakthroughs. It is not intended

to be a model of how information is processed in separate modules within the brain.

It is not computationally detailed enough to be implemented as a genuine artifi-

cial creative system. Specifically, it is intended to be a categorisation of parameter

search strategies, a summary of how those strategies work together (or not) to create

novelty and value, and how parameters could be mapped to interface gestures to

assist each of these processes. This design methodology should prevent the designer

forcing the user into the wrong creative problem solving strategy at the wrong time.

At the time of the original formulation of this theory, the links between im-

plicit and explicit thinking, predictability, creative insight and solution spaces were

novel. However since then several other publications have made a similar connection

[Sowden et al., 2015; Wiggins and Bhattacharya, 2014; Dietrich and Haider, 2014].

However I believe this characterisation of 4 unique strategies is unique, simple and

useful. It is intended to be a basic minimal amount of cognitive creativity required

for effective design of a creative tool, i.e. a necessary (if not sufficient) model of

human-computer creative interaction.

After the four quadrants are described, Section 5.5.5 reveals how this model

sheds light on a number of issues in NIME research.

182



5.5.1 Divergent and Convergent Solution-Space Traversal

To start this section, it is worth tackling Dietrich’s criticism that the notions of

divergent and convergent thinking are ‘intellectual duds’. In reference to the lack of

progress in cognitive neuroscience of creativity, Dietrich states

“...divergent thinking is way too broad a construct to be of any real use

as a process. It is a compound construct that must be dissolved into its

constituent processes before meaningful research can be done. In short,

the concept of divergent thinking doesn’t do any explanatory work for

the study of creativity and it is high time that we heave it into the

dustbin of outdated ideas.”[Dietrich, 2007]

His other objections are firstly, that divergent or convergent processes on their

own can result in creativity; and secondly, that convergent thinking tests, such as

RAT (see Section 3.3.1), don’t measure what they claim to measure [Dietrich and

Haider, 2014]. The argument that RAT tests measure convergent thinking rests

on two things: first, the fact that they have a single valid answer as opposed to

many possible solutions (stemming from Guilford’s definition of convergent [Guil-

ford, 1967]), and second the fact that peoples RAT scores correlate better with other

convergent tests than other divergent tests. I would argue that the RAT tests mea-

sure both divergent and convergent thinking11, if we take divergence in this case

to be spreading activation in the associative network, and convergence to be the

eventual selection of the correct item. Clearly the latter ability is crucial, but that

doesn’t preclude a initial divergent component. The fact that these tests do not

measure what they purport to measure does not mean the terms are meaningless12.

11The unusual uses test on the other hand does seem to measure pure divergence, i.e. fluent idea
generation abilities.

12Utilisation of the terms divergence/convergence or the Darwinian terms variation/selection
probably boils down to preference. If a definition of a term turns out to be inadequate do we
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Given the massive parallelism and inherent noisiness of the brain, it is almost

certain that divergent thinking is a fundamental component of all cognition, not

just high-level creativity. For instance, recall that movement may create a parallel

populations of forward models, which are then whittled down as the movement

progresses [Wolpert and Kawato, 1998]. Multiple parallel ideas may be constantly

competing for entry into in the Global Workspace, and may be selected on the basis

of surprisal [Wiggins and Bhattacharya, 2014]. This does indeed make divergence

a non-starter for neuroscientists aiming to isolate the “secret sauce” that highly

creative people possess. The creativity support tool designer, on the other hand, can

simply acknowledge that this compound construct of divergence may be augmented.

Nevertheless, it is certainly worth heeding Dietrich’s warnings, firstly that these

concepts as they stand are not sufficiently well defined to produce unambiguous

scientific results, and secondly that it is worth applying the principles of predictive,

embodied cognition to investigate these thought mechanisms.

So next we shall attempt to define divergence and convergence in more detail,

with references to their relation to:

1. Conceptual space traversal strategies.

2. The structure of the fitness function.

3. Their relation to prediction mechanisms.

4. Their relation to evaluation mechanisms.

scrap the terms or just refine the definition? My preference is to keep these terms for the following
reasons. Convergence is a widespread term in optimisation literature, meaning the settling of an
algorithm on a preferred value, or the gradual narrowing of the distribution of some population.
This is both descriptive and clear. Convergence implies a more anticipatory, value-driven traversal
of solution space than mere “selection”. Divergence is its ideal counterpart, being linguistically its
opposite, and also highly descriptive of a parallel spreading network of associations, or a spreading
probability distribution.
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Definition of a Convergent Process:

Convergent processes are conceptual/parameter space traversal mechanisms that

work upon improving the fitness of solutions. This could either be a selection of a

discrete option, for example selecting the best sound from a number of candidates,

or the honing in on an optimal point along a continuum, for example finding the

preferred setting for a synthesis parameter via incremental adjustments.

In the continuous case, convergence requires both fitness evaluation E , and some

prediction of what changes will increase value, which yields a conceptual space

traversal strategy T . Prediction of increasing value is therefore actively employed

in guiding T , analogous to a gradient descent algorithm. So whilst some models

of creativity postulate generative and evaluative stages, where the latter is just

selection of the best solutions, an important aspect of the EARS model is that

convergence can still change the solution via incremental, predictive improvement

(c.f. the ‘honing’ theory of creativity [Gabora, 2005]).

If the fitness function is very rough and unpredictable, convergent processes

will not prove very effective at finding optimal solutions. Convergence by itself

will rarely produce novelty, as multiple runs will have a tendency to follow the same

paths. Therefore creativity requires a mechanism to extract itself from local optima:

hence the need for divergent strategies.

Definition of a Divergent Process

Divergent processes are different in that they set aside questions of fitness, and

generate candidate solutions via traversal mechanisms that ignore any prediction of

increasing value, e.g. creating lots of scattered points. These points might occur

according to some probability distribution, the variance of which may be controlled

185



by the creator to a greater or lesser extent13. This would entail that some distance

metric may still be important for divergent processes, but the direction of traversal

is not. E may still operate in the background in order to spot promising new ideas,

but predictions of value are disengaged from directly determining T , in order to

prevent it revisiting unoriginal ideas.

Divergence by itself will produce useless noise, unless evaluation and/or selection

processes are applied at some point. So it is the careful blending of these processes

that yields progress. Of course, the exact way to combine these processes in the

optimal way is an entire research field in itself. Examples abound from AI machine

learning that combine both divergent and convergent behaviours, such as random

forests, genetic algorithms and particle swarm optimisation. Balancing the two ten-

dencies is sometimes known as the exploration-exploitation trade-off [Barto, 1998],

or as diversification vs. intensification [Blum and Roli, 2003]. The brain, presum-

ably, has attained a masterful blending of these two tendencies. Luckily, we do

not necessarily need to know the exact details of how the brain achieves this bal-

ance, however the implicit-parallel and explicit-serial distinction seems extremely

suggestive of a mechanism of variation (unconscious-parallel) and selection (entry

into the global workspace). In the next section we incorporate this distinction into

our creativity model.

As noted before, sightedness, or the ability of the agent to predict the value

of a local region of the solution space, may vary. Absolute certainty is rare, ab-

solute uncertainty is impossible. Therefore the divergence/convergence distinction

is a continuum, rather than two truly distinct states. Lest this confuse the issue,

for descriptive purposes we shall portray the two processes as distinct, whilst ac-

13Defining divergence in a probabilistic manner maintains the spirit of Guilford’s initial con-
ception, but removes the misleading idea that divergent thinking necessarily produces multiple
solutions to a problem, it is rather the extent to which predictions of value drive the generation
process that is the key factor.
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Figure 5.9: An illustration of how sightedness and fitness function complexity affect the
appropriateness of divergent or convergent strategies. A successful convergent process is
show on the top left. The process is able to make improvements by predicting the direction
of increasing fitness. For a more complex fitness function, or when sightedness is reduced,
convergence becomes less effective, and has a tendency to get stuck in local maxima (top
right). An injection of exploratory randomness (bottom), can overcome “barriers” in the
fitness function, but this comes at the expense of less efficient search paths.

knowledging that it would be good to design for varying amounts of divergence,

so that the user can ‘adjust the novelty thermostat’ [Jennings, 2008]. Stochastic

optimisation algorithms often progressively reduce the diversity component as the

search progresses, a trait seen in human creativity too.

Therefore, how well the artist can predict the effect of their interactions (sight-

edness), how complex the search space (and the fitness function) is, both affect

whether convergent or divergent strategies are appropriate. Figure 5.9 illustrates

this.
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5.5.2 The Importance of Explicit, Strategic Divergence:

Evaluative Decoupling

In this section we claim that by intentionally inhibiting predictions of increasing

value, the artist can disrupt their own convergent thought processes. Therefore, in-

hibiting evaluation can be an important creative strategy. This leads to a discussion

of how both unconscious and conscious brain processes can generate divergent and

convergent thought.

It should be noted that divergent processes may be considerably cheaper, cog-

nitively speaking, than convergent processes. It should not take as much ‘effort’

to generate a random sojourn through parameters than to generate an accurate

prediction of an optimal route. As we saw in Section 2.2.5, the further into the

future the predictions extend, the more demanding they are, and the higher the hi-

erarchical level employed to deal with them. However, this does not mean divergent

behaviour emerges automatically. In fact, if forward models drive all human actions,

this entails that prediction of the value function E drives T at a very fundamental

level14. It would seem that our current definition of divergence becomes impossible

under this scheme. If prediction always drives action, then how do we ever produce

exploratory, unpredictable behaviour? It seems to only become possible if other

levels in the hierarchy play an inhibitory role. Here are three divergence inducing

strategies:

1. Predictive mechanisms have not yet been trained for the parameter space in

question. The agent has no choice but to fall back on blind variation.

14The cost/value function can in fact be shown to be equivalent to a Bayesian prior: “the
replacement of value and cost functions with prior beliefs about movements removes the optimal
control problem completely” [Friston, 2011]. In other words, the probabilistic forward models
underlying movement are a value function, albeit one with some uncertainty. Without wishing to
belabour the point, it could also be argued that evaluation is a form of predictive simulation too:
the producer in the studio may not be asking themselves ‘how much am I enjoying this music right
now?’, rather ‘how much would I be enjoying this music if I was hearing it as part of an audience?’.

188



2. Higher levels in the cognitive hierarchy can somehow interfere with lower level

predictions by top-down inhibitory processes. If an action-generating brain

module can be decoupled from its error-correcting feedback, it may gain free-

dom to generate more divergent behaviour. Some researchers claim to have

found evidence for this decoupling in improvisatory creativity (see Section

3.5).

3. The ‘objective driven’ value function is abandoned, and replaced by a value

function based purely on novelty. The agent is no longer searching for anything

other than surprising things [Lehman and Stanley, 2011].

Divergent strategy 1 implies that to produce exploratory interaction one must

force oneself to venture into unpredictable parameter spaces, such that the brain’s

prediction machinery fails. This is the motivation behind the Sonic Zoom experi-

ment (Chapter 6), where deliberately unpredictable mappings are introduced. Here

a higher level explicit strategy has deliberately put a ‘spanner in the works’ of the

lower level perception-action couplings.

Regarding strategy 2, a ‘convergence interrupt’ could be one of the functions

of the reflective system, which prevents conscious attention from ‘collapsing’ the

parallelism of implicit thoughts to a single solution. Alternatively, by engaging in

a skilled interaction whose speed is too fast to pass judgement on consciously (see

Section 2.3.1), the musician may be forced into a state of evaluative decoupling,

hence subconsciously generated novelty may increase. This may explain why some

musicians are so drawn to live, improvisatory forms of interaction [Barrett, 1998;

Johnson-Laird, 2002].

If we assume that conscious selection is a discrete process (i.e. a ‘sampling’

from the implicit, parallel distributions [Dehaene, 2014, chap. 3]), the rate at which

selection occurs will determine the spread of the parallel solutions. Fig. 5.10 sketches
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Figure 5.10: An illustration of how different evaluative feedback (shown as EFB) rates
could give rise to differing amounts of spread amongst creative solutions. The less frequent
selection events produce wider associative trees (top). The shorter the evaluation cycle,
the narrower the spread of parallel concepts (bottom).

this process. The longer the time period dt between evaluations, the more diverse

the associative tree. Perhaps, by suspending judgement, more novel solutions may

be reached. This bears a strong similarity to the incubation process, which can be

inhibited by top-down conscious effort [Baird et al., 2012]. It also bears a distinct

similarity to the fact that use of slow feedback paths can slow down movements: it

is the feedback that whittles down the population of forward models to make them

more accurate, but at the cost of parallelism and speed15.

Strategy 3 seems also to be a explicit, reflective strategy. An artist can con-

15In later speculations, we take this idea to its logical conclusion. Evaluative decoupling is linked
to the concept of open loop control, and the subjective experience of inspiration and Flow.
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sciously take the attitude of engaging in a curiosity driven process rather than an

objective driven process.

As we have seen in Chapter 2, the distinction between implicit and explicit

cognitive processes is crucial for studies of behaviour in both HCI and creative

cognition. Therefore it seems pertinent to ask how these two systems relate to

divergent and convergent thought, and how this will impact creative technological

interactions. How do these two axes interact? There are a number of possibilities.

First, we could consider that the unconscious is the source of divergent thought, and

consciousness handles convergence, via selection of the best solution from a number

of parallel unconscious ideas. Our unconscious appears very capable of generating

divergent thought. When the autonomous modules are left to themselves they seem

to ‘freewheel’ and generate many ideas in parallel, via recombination and associative

chaining [Wiggins, 2012]. But it is clearly not the case that implicit cognition cannot

carry out convergent thought. Our implicit knowledge clearly excels at selecting

‘correct’ solutions to the various everyday problems of life. Thoughtlessly reaching

and picking up a cup of coffee clearly involves unconscious control, which is carrying

out processing to converge on a specific outcome. The explicit mind can converge

on solutions too, via semantic reasoning, episodic recall, and algorithmic problem

solving procedures.

Furthermore, it seems that consciousness can also carry out divergent thought

— i.e. produce genuinely new concepts — in a fundamentally different way from the

implicit system. The implicit system can carry out exploratory and recombinatory

creativity via freewheeling associative generation. What it cannot do is introduce

new, higher levels in the abstraction hierarchy. Noticing and encoding a new pattern,

or ‘meta-concept’ seems to be the exclusive preserve of conscious reflective thought16.

16It could be argued that ‘consolidation’—the more efficient recoding of recently formed
memory—occurs unconsciously. However, there is evidence that consolidation occurs during
dreams [Wamsley et al., 2010]. Dreams are very much conscious states.
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So it seems that we can consciously decide to generate novel things purely for

the sake of it. We can ask questions with no answer. We can take an existing set of

concepts and abstract from them new meta-concepts. We can take an overview of

our existing solutions, declare them not good enough, and intend to think differently.

We can notice connections and patterns that no one has noticed before, and then use

them generatively. This explicit-divergent ability has clear parallels with Stanovich’s

reflective mind [Stanovich, 2009].

So having made the argument that both implicit and explicit systems can carry

out both convergent and divergent thinking—giving four quite distinct traversal

strategies—the next section establishes what properties these four quadrants display,

including how they may relate to the geometry of parameter mappings.

5.5.3 The EARS Model

The central hypothesis in this section is that both fast-parallel-unconscious and

slow-serial-conscious brain systems may conduct convergent or divergent searches.

This results in four conceptual space traversal strategies. Different representations

(mappings) of the parameter space suit these different strategies to a greater or

lesser extent.

Figure 5.11 shows the four quadrants: divergent-implicit (Exploratory), divergent-

explicit (Reflective), convergent-implicit (Skilled) and convergent-explicit (Algorith-

mic). These may be strategies carried out within the brain (conceptual space traver-

sal), or actual manipulations of the controls of an instrument (parameter space

traversal). Below, each quadrant is described in more detail, both in terms of cog-

nitive processes and musical interaction styles. We also discuss their relation to

various speeds of feedback from the interface. These various aspects of the four

quadrants are summarised in Table 5.2.
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Figure 5.11: The four quadrants formed by drawing distinctions between implicit vs.
explicit thinking (left/right) and divergent vs. convergent thinking (top/bottom).

Skilled (Implicit-Convergent)

Skill is intended to refer to those instinctive or learned techniques that quickly

produce a valuable, but probably unoriginal local solution to a problem. These

could be instinctive, or learned well enough to become automatic. If the gestural

location of a target is stored as chunked unit, the motor system can proceed there

in a diagonal fashion: taking the shortest path between solutions. In this mode

the separate parameters of a problem are hypothesised to be treated in an integral

fashion, and processed in parallel.

The appropriate interface is a well learned complex, multi-dimensional, space-

multiplexed interface, but could also be an interaction metaphor such as a physical
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model that makes use of instinctive understanding of the physical world. Skilled

interaction often involves a large amount of training: such that the solution space

becomes predictable, and hence navigable, by subconscious encapsulated processes.

The feedback for this mode of interaction should be as rapid as possible, therefore

be processed low down in the predictive hierarchy. For instance, haptic or proprio-

ceptive feedback is important for skilled interaction. The information required for

location of a correct solution is a by-product of errors in a previous reinforcement

learning scenario, therefore the feedback need not be consciously evaluated in real

time, hence gestural control can proceed as ‘open-loop’ motor programs. Any inter-

action that requires a temporary goal state to be stored in working memory (e.g. a

means-ends analysis) is therefore not possible to process in a skilled fashion.

Whilst live performance may be the archetypal example of this mode, implicit-

convergent interaction is not exclusively real-time musical performance. Any fast,

automatic action—for example our everyday use of keyboard short-cuts—could be

referred to as skilled.

Exploratory (Implicit-Divergent)

Exploration consists of experimentation with random adjustments of parameters.

Such randomisation may extract an agent from local optima and overcome the

barriers in the cost function formed by regions of poor solutions. These barriers

ensure that convergence oriented processes tend to get channelled toward non-novel

solutions.

Cognitive examples are the unconscious process of spreading activation, concep-

tual recombination, techniques such as brainstorming, dreaming, or simple uninhib-

ited playfulness.

Computers effectively generate random, transformed and recombined data, there-

fore for an electronic musician exploration is quite easily augmented, and to a certain
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extent is well catered for already. Nevertheless there may be room for improving

this process, as attempted with the Sonic Zoom application in Chapter 6.

In terms of interaction, the traversal strategy could provide a way to alter the

unpredictability of the results, and also select meaningful subsets of the parameters

to explore, whilst keeping previously converged parts of the solution intact.

The feedback required during exploration is simply a way to evaluate the results

as quickly as possible, and pick the most promising candidates for further refinement.

Providing responsive feedback for the lower-level brain modules is not particularly

important because they are not required to generate predictions. In fact, it may

be important to thwart automatic skilled responses in order to generate more novel

exploratory behaviour. Dimensions can be treated as integral, as there is no need

for specific prediction of changes in individual perceptual dimensions.

Algorithmic (Explicit-Convergent)

Analytic/algorithmic17 processes break a search into separate components, and solve

them in a sequential way. In the solution space they would tend to proceed in a

city-block fashion, one dimension at a time.

In a more predictable, sighted solution space it may be possible to converge on

solutions via some explicit step by step processes. If the individual operations are

independent, they may commute18. If I wish to produce a short synthesised sub-bass

note, then I can proceed via a recipe: I simply set an oscillator to a sine wave, set

its frequency low, and the amplitude envelope to decay quickly. As long as each

dimension is set correctly it does not matter what order these steps occur in.

17Stanovich calls the analytic part of the explicit system ‘algorithmic’. An unfortunate aspect
of this term is that it suggests a thoughtless, inflexible and formulaic process. Analysis, ‘resolution
of anything complex into simple elements’ better reflects sub-goaling and the ‘taking apart’ of the
individual steps in a complex action that is hypothesised to be the function of the cognitive control
network.

18As in the mathematical term: the order of applying the operations does not change the result.
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In more complex spaces, without independence of operations, this strategy be-

comes much less effective. A more demanding method of step-by-step convergence is

possible: where again, the route can be broken down into smaller individual success

criteria, but this time each may depend on previous and future steps in some com-

plex way. These kind of situations are surprisingly common in music software use.

As a simple example, if a GUI has many floating windows one first has to find the

correct window, and then find the parameter one wished to adjust, swapping the or-

der these operations will fail. A more complex example is obtaining real time control

of a parameter via a hardware control surface: One first has to plug in the controller,

then select the parameter, enable mapping mode, turn the physical control, enable

automation recording mode, de-select other record enabled tracks, and so on and so

forth. Many of these steps depend on previous steps. In all likelihood some error

is made and one needs to work backwards through the chain to troubleshoot the

problem. This is referred to as “mean-ends analysis”, as the traversal strategy steps

have to be calculated by working backwards from the goal to generate a sequence of

sub-goals. Note that, as discussed by Sweller [1988], “conventional problem solving

in the form of means-ends analysis requires a relatively large amount of cognitive

processing capacity”. Obviously this type of solution finding is heavily reliant on

explicit thought and working memory.

An example of an analytic interface is a DAW that provides individual parame-

ters as knobs and sliders, may have many views and sub-views, and where param-

eters are accessible one at a time via serial, time-multiplexed input devices such as

the mouse. Hardware synthesisers are also fairly analytically oriented. The great

advantage of this mode is that complex problems can be broken down into simpler

parts. With well defined goals and predictably behaved parameters, accurate lo-

cation of desired solutions can be achieved in linear time, despite the exponential

increase in the size of the space.

197



Reflective (explicit-divergent)

There are no doubt a wide variety of means by which the explicit system might

produce novel concepts. However the following seem to be the two main deliberate

reflective strategies:

• Introducing new levels of abstraction: generating concepts on a meta-level.

• Top-down inhibition of previous best solutions: encouraging novelty by pre-

cluding non-novelty.

As opposed to barriers or walls, which are just regions of poor or non-viable

solutions in an existing conceptual or parameter-space, ceilings represent the barriers

caused by the lack of tools to traverse a space, lack of correct dimensions to describe

that space, or even the lack of rules for evaluation of points in the space. To

overcome such ceilings requires some form of ‘vertical divergence’: mere horizontal

exploration will not suffice. One way this can be achieved is to introduce new levels

of abstraction. Abstraction could be thought of as a way to more efficiently code

some data, either by creating a new chunk in order to manipulate large quantities

of data as a single unit, or by defining a new generative technique or pattern that

is considered as a way to produce both the existing data, and new data of a similar

type [Schmidhuber, 2012]. This process may heavily rely on ‘meta-cognition’: the

ability to think about ones own thoughts, and hence investigate and alter one’s

own creative processes. Reflection provides the capability for exploration on the

meta-level that Wiggins sees as the essence of transformational creativity:

“For true transformational creativity to take place, as described in my

framework, above, the creator needs to be in some sense aware of the

rules he/she/it is applying. This follows from the need to explore the

space of possible rule sets defining the conceptual space... Self-awareness
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is generally cited as the property which distinguishes the artist from the

craftsperson.” [Wiggins, 2006]

As an example, imagine a child hitting random notes on a piano. They may

happen to notice that it becomes easier to create pleasing sounds using only the

black notes. By introducing a new higher level rule, ‘stick to black notes’ they have

delineated a subspace within which exploration is more effective than it was in the

space of all notes. This may seem like a convergent strategy, after all it was driven

by an expectation of increased value for an average note, however in the meta-

space of note-subspaces it was a exploratory strategy. This is because it was found

by exploring the space of note-subspaces. The note-space ‘all notes’ was tried and

found rather discordant, so then the note subspace ‘black notes’ was tried and found

to be better. The divergence was being carried out on the meta-level (exploration

of the conceptual space of conceptual spaces), which then drives a more efficient

convergence mechanism on the lower level: that of the individual notes. Whilst

this is an exploratory process, exploration on its own would not be enough, as a

reflective abstraction mechanism that can generate meta-concepts is required.

A reflective musical interface might be one that offers the ability to create new

musical abstractions, for example a musical programming language [Blackwell and

Collins, 2005; Bresson et al., 2011]. The phenomenon of ‘livecoding’ [Collins et al.,

2003] seems a particularly salient example of reflective strategies generating new

meta-parameter spaces, and even managing to do so in a skilled and rapid fash-

ion. Other examples of reflective meta-control in the mapping literature include

[De Campo, 2014; Van Nort and Wanderley, 2007], where the parameter mappings

themselves are altered in real-time. NIME research as a whole could be considered

a reflective endeavour: the aim to find an elegantly represented set of principles for

designing the tools to navigate musical space.

A related strategy, but somewhat different in emphasis, is inhibiting of lower
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Figure 5.12: An analogy for a reflective strategy. In this solution space, the 2D coor-
dinates of the balls cannot be directly manipulated. Rather, the gradient of the fitness
function itself has to be manipulated in order to encourage convergence on optimal loca-
tions.

level convergent processes in order to eliminate their non-novel tendencies. Habits

are tremendously powerful forces for generating of non-original behaviour [Duhigg,

2012]. Explicit strategies that can prevent habitual patterns from playing out can

therefore generate novelty.

A reflective strategy that bears similarity to both inhibition and coding is to

enforce stringent, arbitrary or even bizarre constraints or rules (see Section 3.6).

This eliminates previous solutions by fiat. Looked at in terms of the solution space,

self-imposed constraints can be regarded as creating a subspace: one that throws

away regions of the space likely to contain non-novel material a priori in order to

more efficiently traverse the more novel regions. This ‘lossy code’ could be viewed

as a new concept in itself, these codes can in turn be explored, learned as skills
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and formalised as algorithmic techniques. Reflective divergence could be considered

‘vertical divergence’, in that it introduces a new level to the conceptual hierarchy,

and a new meta-parameter space to explore19.

5.5.4 Interplay between EARS Quadrants: Illuminating

perceived interface problems in electronic music

All four quadrants play their part in creativity. Take incubation-illumination style

problem solving as an illustration. Preparation is the process of asking a new ques-

tion, or finding a new problem (reflective), and attempting to solve it, consciously via

the (algorithmic) methods of the past. Applying methods based on past rules and

concepts leads to repeated failure, but this process is both activating concepts in the

subconscious for recombination (a process known as priming), and tacitly learning

how to quickly and skilfully apply methods that seem as though they should work

(constructing a neural fitness landscape that will function as an unconscious solution

generator). At some point one of the many divergent (exploratory) subconscious

combinations will be implicitly recognised according to some surprise/likelihood cri-

teria, and then “miraculously” provided to the conscious mind20. In this way the

implicit system can be set to work exploring large regions of a complex solution

space in a parallel fashion.

Insight may be an example of when the four EARS strategies gel, however there

are also numerous inhibition effects (some are shown as red arrows in figure 5.13),

when they actually trade-off against one other. The single most important inhibition

19However, the more novel the parameter space, the less widespread will be the social acceptance
of this novel, and perhaps arbitrary, fitness landscape. Indeed one could hypothesise that value
systems cannot exist without inter-subjective consensus.

20Recall that Wiggins proposes that the criterion for admission into consciousness is not only
the certainty of the idea as a good solution, but also an information theoretic measure of surprise:
implying that novelty generation is practically hard-wired into the threshold between implicit and
explicit thought [Wiggins, 2012].
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Figure 5.13: The four quadrants of implicit vs. explicit thinking (left/right) and diver-
gent and convergent thinking (top/bottom). Examples of useful mode swaps are shown
in green. Examples of detrimental interference effects shown in red.

effect is that explicit processing is a serial bottleneck, with limited working memory.

Therefore if it is fully engaged with analytic processing, there will be less resources

available for meta-cognition and high-level reflection.

The way virtuosity is presented in much of the literature suggests that it is more

a precondition for deeper aspects of musical expression and creativity, than a goal in

itself [Pachet, 2012]. The above model would seem to explain why high-throughput

skilled interaction is considered so vital: it has to do with the resolutely serial nature

of consciousness. If the interface is not virtuosity-supporting then this implies that

the lower level modules of the motor hierarchy cannot be trained well enough to

relieve the cognitive burden on the explicit system. This means working memory

is occupied with interface-related tasks rather than higher level artistic goals. The

reason analytic interfaces are not ‘expressive’ is not only that they lack nuance

with which to express mental states, but also that the artist may have no cognitive

capacity left for forming any spontaneous mental states to express! Furthermore, if
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the Task-Positive algorithmic network is occupied with interface tasks, then this will

inhibit the reflective mind-wandering that may be essential for remote associations

and creative incubation to occur. In order for a brain to carry out a coherent

connected sequence of operations, it must necessarily inhibit the ideas that ‘bubble

up’ from remote associations. Even assuming the incubation process could still run

in the background, illumination’s ‘Aha! moment’ may be damped out by narrow

attentional processes focussing on manipulating the interface. Therefore everything

points to the fact that the interface designer must at all costs relieve the burden on

the explicit system. Thus the cognitive pipelining principle, already vital for HCI

in general, becomes even more essential for creativity support tools.

Ideally, any interface that involves the user working backwards from a goal to

a series of sub-goal related actions via a means-ends analysis should be completely

redesigned. Instances include the dreaded ‘menu-diving’ style interfaces that musi-

cians tend to revile, where one has to mentally work upwards and then physically

work downwards through a conceptual hierarchy of sub-menus. Hierarchical organ-

isation is certainly a way to speed up navigation through items (t = O(log(nitems)),

but it does rely on explicit, semantic reasoning.

The artist’s musical goals will tend to form hierarchies too. Higher level goals

(e.g. make a piece of music) are made up of lower-level sub-goals (e.g. make a bass

line) which eventually are made up of even lower-level operations (e.g. alter the

pitch of a single note). The lower level these goals, the more clearly defined they

are, the shorter time-scales they extend over, and the easier they are to express

in terms of interface components and manipulations (cf. GOMS [John and Kieras,

1996]). An important consideration is how much of this goal hierarchy must be

maintained in working memory. Some goals can be assumed from context—if you are

seated at a musical keyboard, you’re probably making music—but other goals may

be easily displaced from working memory by complex sub-goaling, interface tasks,
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serendipitous discoveries, or ideas spontaneously emerging from the subconscious.

Given that the highest level aesthetic goals are the top of the ‘stack’ and probably

the least well defined, it is likely that they are particularly delicate, and prone to

interference when working memory is taxed. This is investigated in the survey by

asking artists about ‘losing perspective’—the idea that one might be so embroiled in

low-level editing tasks that one’s higher level artistic goals are compromised. As we

shall see, artists state that low-level editing tasks do indeed have the most negative

impact on maintaining perspective (see Survey, Appendix B).

Traversing the goal stack takes cognitive effort. The deeper the goal stack, the

more disconnected the low-level actions can become from the higher level goals. So

another prediction here would be that it is easier to express a high-level aesthetic

concept or emotion using a simple, well learned instrument than a complex piece of

technology. This is because there are less intermediate layers between one’s aesthetic

goals and one’s physical actions. In terms of our ‘projection’ analogy, despite the

fact that with a simple instrument we are projecting into a more restricted space, the

projection operation itself may be easier, thus more faithful when communicating

the original intention. As we have seen, the motor hierarchy is designed precisely

for astonishingly fluent execution of exactly this type of projection operation: the

conversion of a high-level intention into physical parameter changes. The cognitive

pipelining principle would urge interface designers to utilise this ability. Rather

than time-multiplexed algorithmic interface operations, which require a complex

goal stack, space-multiplexed skilled interactions should be designed that can utilise

the human nervous system’s ability to convert intentions into data streams.

Another inhibition effect of the algorithmic mode is also shown in Fig. 5.13: nar-

rowed attention. Carrying out a sequence of one dimensional tasks involves narrowed

perceptual focus: users may be less open to peripheral cues and remote associations

emerging from exploratory processes if they are highly focused on interacting with
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one perceptual dimension of the sound [Ansburg and Hill, 2003]. This may be a

contributor to Hunt and Kirk’s findings concerning complex mappings [Hunt and

Kirk, 1999]. This prediction seems to align with many users’ reports of using com-

puters to make music. Evaluation of one’s own work requires taking a step back to

get a “big picture perspective” of musical structure at longer time-scales [Nash and

Blackwell, 2012], and is interfered with if one is too focused on detail:

Participants voiced strong feelings that computer-music systems encour-

aged endless experimentation and fine-tuning of the minutiae of sound

design, in conflict with pushing forward and working on higher-level

compositional decisions and creating finished works. [Duignan et al.,

2010]

Ideally, the musician would realise this was happening and try another approach.

Unfortunately, the reflective attention-monitoring system may itself be inhibited,

therefore preventing the meta-awareness that perspective has been lost [Schooler

et al., 2011]. This would mean that not only is one mired in low-level editing, one

is also incapable of realising that it may not be the best strategy to employ at this

current stage, and incapable of noticing some way to proceed more efficiently. So

there seems to be a high risk that interfaces that overly rely on explicit-convergent

processes may inhibit meta-level transformational creativity.

Analytic thought can interfere with skilled performance too. “Explicit moni-

toring”, also known as “analysis paralysis” is a phenomenon where if an attempt

is made to consciously control an automatic action, performance suffers [Masters,

1992; Wan and Huon, 2005]. This is for two reasons: firstly that much implicit

procedural knowledge is simply not available to the explicit system, and secondly

that the explicit system features a much longer round-trip processing time than the

implicit.
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The algorithmic mode is not the exclusive inhibitor of other processes. Habit,

the ‘dark side’ of skill, naturally inhibits exploration. An automatic action will tend

to be repetitive and inflexible, requiring conscious effort to suppress [Barrett, 1998].

Another problem, particularly for instrument mappings, is that the reflective

transformation of a parameter space may render the musician’s inflexible, implicitly

trained mappings useless. Whilst the ability to remap a controller to multiple syn-

thesis parameters might be a bonus for exploratory and reflective strategies, every

time the mapping is changed, the time consuming process of building procedural

knowledge has to start again. With luck, there may be at least some transferable

skills to the new domain. For example, when using an unusual guitar tuning, knowl-

edge of the positions of notes becomes obsolete (perhaps encouraging novel chord

exploration), but the dexterity and strength to apply the fingers to produce rapid

and clean notes is still very much applicable.

Finally, does this model have anything to say about why constraints are perceived

as good for creativity? Two factors suggest themselves. First, a smaller parameter

space is more easily automatisable, therefore interaction places less load on working

memory, freeing up cognitive resources. Second, in a small parameter space finding

novelty via exploration becomes less viable, prohibiting divergence via mere random

variations. Quite possibly the narrowness of the walls forces the artist to attempt

escape via the roof: with the reflective system freed up, the artist can utilise more

conscious reflection, introduce higher levels of abstraction, and carry out exploration

on this meta-level. The artist is forced to think outside of the restricted parameter

space, resulting in more transformational creativity.
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5.5.5 Mapping Quadrants to Mapping Techniques

The first objection to this model that might be raised is, what real difference does

the interface make? Doesn’t the human adapt such that they know how to use the

interface to get what they want regardless? Do properties of a tool really affect the

cognitive functioning of its user? The amount of time, money and effort musicians

spend on their equipment would imply that it does, but it requires testing more

thoroughly. From a purely theoretical standpoint we can say this: every computer

interface expects a certain form of input; the interface is a presentation of a number

of options. Therefore the creative question has already been framed in a certain

way. In the case of separate controls for timbre parameters, there is an immediate

question posed to the user by the technology: which control needs altering? In the

case that the user has no precise idea (yet) of what kind of sound they wish to create,

this is already the wrong question, and a glaring case of premature specification. The

precise direction does not matter, only that one can explore sounds in as effortless

a way as possible, and leave the higher cognitive functions free to listen, evaluate

and possibly be inspired. This scenario requires a divergent-implicit exploratory

interface, not a skilled or analytic one. In the case where the user does have an

idea, this idea must be either (a) broken down in the user’s mind into its separate

properties and then built up step by step (explicit-convergent) or (b) performed real-

time using the performer’s expert implicit-convergent skills. The more the musician

can rely on (b) the more high-level creative reflection their frontal lobes can engage

in.

Most interfaces render some regions of the space more probable than others. For

instance a a pair of 1D linear controls render a cross shaped region more probable

than the other regions, for the reason that swapping controls takes time. Hence

regions of the space with many different control alterations will come at a ‘switch-
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cost’ in time and effort. This reduces the explorability of the space. Fig. 5.14

shows a ‘heat map’ of explorability diminishing towards the corners of the space.

Multidimensional controllers seem promising for exploratory interaction, because

they should decrease the cost of diagonal movements.

A more fundamental argument for the effect of an interface on cognition is ob-

tained by considering free-energy and embodied cognitive principles that link action

to perception. An array of 1D controls are tools that imply a certain action by

means of its affordances [Mooney, 2011]. When a musician engages with a control,

they will implicitly attempt to create a prediction of what the effects of their actions

will be: with a 1D control, this will be a 1D perceptual prediction. Therefore the

attentional processes will be directed towards only that single aspect of the sound,

and inhibit everything else happening in the music. Hence ‘narrowed attention’.

Action-perception coupling cascades back round the loop from the interface to af-

fect the actual perception of the creative artefact. A parameter space ‘sliced’ by

1D controls might entail a sliced perceptual window on the music. On the other

hand, if the effects of their actions are unpredictable and multidimensional, users’

perceptual processes are decoupled from their actions, and hence the focus of at-

tention is broader and more flexible. This retrodicts the findings in studies such as

[De Campo, 2014], where complex relationships between action and perception were

“...a far cry from telltale single slider/single parameter movements; and

players appear quite absorbed in listening, so possibly the very opacity

of the mapping does free players to listen more attentively to the changes

their actions induce”

Since it is difficult to provide any mapping that satisfies all criteria for all situ-

ations, it is useful to indicate how different geometrical properties become more or

less important for the four EARS modes. Table 5.3 enumerates the four creative
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(a) (b)

(c) (d)

Figure 5.14: An illustration of how separate 1D controls can lower the explorability of a
2D parameter space. Increasing darkness indicates a larger time taken to travel from the
centre to that part of the space. Explorability could be quantified as the inverse of the
average amount of time to reach an arbitrary point, in other words the average brightness
of the image. In figure (a), point in all directions are equally accessible, for example with a
multidimensional controller (time increases according to a Euclidean distance metric). (b)
shows what happens when controls must be adjusted one at a time (time increases with
city-block distance). The corners of the space get darker: they become less accessible.
What happens due to a ‘switch cost’ is shown in (c). Here there is some time delay
associated with swapping between the dimensions: everything off the central cross becomes
harder to reach. Finally, (d) shows what happens when highly diagonal movements incur
repeated control swaps due to parameter interdependence. In higher dimensional spaces
explorability will be even more compromised, as the ratio between Euclidean and city-
block distance increases by a factor of

√
n as the dimensionality n increases. Large volumes

necessitate n control swaps with the zero-swap cross becoming an ever smaller proportion
of the space. Even the switch cost for a single control swap may increase according to
Hick’s law (∝ log(n)), given the increased number of controls to decide between [Hick,
1952].

stages, and which mapping properties may suit them best.

Predictability of a mapping (a result of geometrical properties such as linearity

and smoothness) is clearly important for both analytic step by step construction of
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solutions and live, skilled performance; but becomes less necessary for exploratory

interaction.

Separability of parameters can have a negative effect on performance due to

encouraging slow, 1D sequential thinking [Hunt and Kirk, 2000], but certainly be-

comes useful when fine tuning details. Explorability should be better with integral

controls, to avoid swap-cost (Fig. 5.14).

Distance Preservation seems to be useful in most mappings. Even in exploratory

mode one may wish to produce larger or smaller variations.

Similarly location preservation seems desirable generally: the ability to get back

to known favourite points when needed.

Space Elimination: A gigantic parameter space may be undesirable for per-

formance, because it would take too long to learn. However for exploration and

algorithmic construction of sounds, freedom is desirable.

Dimension reduction is useful for reducing complexity, but again if fine tuning

details one wants specific parameters to be accessible.

Speed: How long does it take to do something? How fast can one traverse

the space? This is a ‘nice-to-have’ in most modes, but is particularly relevant for

skilled performance. Reflection, on the other hand, may actually be aided by things

happening slowly [Hallnäs and Redström, 2001]. The size of jumps in the exploratory

mode can be as high as one likes, but in convergent modes the size of the jumps

must be balanced with predictability.

Hierarchical Structure: Structured information aids explicit comprehension, and

new hierarchical levels are essential for abstraction and reflective divergence. How-

ever complex data structures may inhibit skilled performance.

There are probably many more mapping properties that can be considered and

allied to EARS quadrants. The above examples show that EARS can be a useful

conceptual model for approaching mapping geometries. Consideration of the com-
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Exploratory Algorithmic Skilled Reflective
Predictability & Control × X X ×
Separability × X × ×
Distance Preservation X X X ×
Location Preservation X X X ×
Space Elimination × × X X
Dimension Reduction X × X X
Traversal speed X X X ×
Hierarchical Structure × X × X

Table 5.3: Desirable properties of controller mappings for different creative stages.

ponents of the model can inform designers as to exactly when certain features are

necessary, and when they are not. Later chapters concerning the three experiments

will test some mapping geometries in more detail.

5.6 Testable Predictions: How EARS informs the

Experiments

The EARS model generates many hypotheses, not all could be investigated during

the course of this work. Some of the more speculative notions are perhaps too high-

level to test without a considerable amount of further methodological work. Below

is an enumeration of the hypotheses tested in each experiment, and the remaining

untested hypotheses. Table 5.4 provides an overview of the experiments.

5.6.1 Experiment 1

Experiment 1 investigates the relationship between exploratory and algorithmic

modes. A mapping that provides divergent traversal is contrasted to one that

provides convergent. The hypothesis is that an unpredictable multidimensional

controller will be preferred for exploratory early-stage creativity such as fast idea

discovery and generation, but separate 1D controls will be preferred for fine-tuning
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during late-stage creativity. A further prediction is that the combination of these

two interfaces provided together will be preferred than either individually, and pro-

duce more ideas. This study also investigates the notion of measuring explorability

by counting the ‘aha!’ moments: the number of favourites that are saved in a certain

time spent exploring.

5.6.2 Experiment 2

This experiment attempts to set up a minimal paradigm for testing interfaces for

synthesis parameter control. The increase in difficulty for target sound location in

differing numbers of dimensions (1, 2 and 3) was tested, the hypothesis being that

difficulty of the search would scale disproportionately with dimensionality.

The single dimensional controls were hypothesised to be more suited to analytic

control, whereas the multi-dimensional controllers were thought to be more suited

for automatic, skilled control, therefore evidence of diagonal movement i.e. parallel

processing of dimensions was sought.

A further hypothesis was that multidimensional controller (an XY pad and a 3D

hand tracker) would be faster for locating a target sound than single dimensional

controllers, but only with skill development via practice.

Another tested claim was that a time and memory constraint would lead to a

higher throughput, and a more diagonal navigation strategy (i.e. more parallelism).

5.6.3 Experiment 3

This experiment looked in more depth at attaining a skilled mode of interaction

using the Leap Motion hand tracker. The hypothesis was that for a small number

of well practised locations in a 6D space, the multidimensional controller would

be considerably faster, and all dimensions would be processed in parallel. This
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experiment also tested the notion that associating a preset location with a visual

representation of the hand in space would provide an undemanding way to learn

skilled, high-dimensional interaction. The second hypothesis was that imposing

a time constraint (by conducting sound matches to a metronome) would further

reveal the throughput differences between skilled and algorithmic control methods.

The other hypothesis was that skilled interaction with a multidimensional controller

would place less working memory load on the user. This was tested by participants

having to memorise sequences of matches. Lower working memory load was expected

to result in a more pleasant, flowing experience.

5.6.4 Untested Hypotheses

The reflective mode is yet to be designed for in any detail, implemented or tested.

The experiments do not provide much evidence for the claim that reducing work-

ing memory load will lead to more reflective thought and hence higher levels of

transformation-type creativity. The considerable challenge of measuring interface

dependent occurrences of transformational creativity is left for further work; some

speculations as to how to achieve this can be found in Section 9.2.2.

The increase in exploratory behaviour as a result of input bandwidth decrease

(as discussed in Section 5.3.1) is not tested, though is investigated informally in the

survey in Appendix B.

The claim that “evaluative feedback decoupling” (Section 5.5.2) leads to in-

creased creativity is not tested, at least in terms of high-level cognitive processes

that generate creative products. However, at a lower, motor control level, pre-

venting subjects defaulting to slow evaluative feedback modes is shown to increase

performance in both Experiment 2 and Experiment 3.

The claim that throughput is a good measure of the expressivity of an instru-
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ment is not confirmed with any rigour. However, questionnaire feedback from the

participants seems to support this notion.

Finally, creating a system that supports all 4 modes, and showing it enhances

creativity has not been attempted. A brief discussion of how this might be attempted

can be found in Section 9.2.2.

5.7 Summary

In this chapter, a theoretical analysis of the structure of creative thought has pro-

vided a platform from which to investigate the relationship between the artist and

the interface.

In the first half of the chapter, by looking at the creative perception-action

loop in terms of information flow and entropy reduction, we made a number of

predictions about creative interaction. Inspired by Fitts’ law, we proposed a way

to measure the rate at which information flows through the interface to shape the

creative artefact. In the second half of the chapter, four types of creative strategy

were identified. These four quadrants were related to the design of interfaces by

asking how the cognitive strategies traverse conceptual space, and therefore how an

interface should enable an artist to traverse parameter space. By asking how these

four EARS modes interact, a number of clarifying explanations have been proposed

for some of the peculiarities of the behaviour of a human-computer creative system

in the particular case of electronic music.

The principal practical application of the above framework is to generate a num-

ber of guidelines by which to design and evaluate creative interfaces. Some of these

already correspond to those put forward within the HCI and DMI literature, some

may be novel. For a discussion of design recommendations see Section 9.2. However,

one underlying principle is proposed: just as the dimensional structure of the inter-
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face (how the parameters are presented and mapped) must match the perceptual

nature of the task [Jacob et al., 1994], so also the structure of the interface must

be able to match the current creative strategy of the artist. The computer interface

should follow the human thought process as closely as possible, not only in terms

of the steps required to render a final product, but also in terms of the different ge-

ometries of the search strategies employed to discover that final product. Therefore

the interface must support exploratory, reflective, skilled and analytic modes.

This analysis has provided considerable motivation for the further investigation

of multidimensional controllers. The explorability of a parameter space can be

expected to be enhanced, and high-throughput skilled interaction may be enabled

via high-DOF input. This is the motivation for the experimental studies.

Having established a theoretical framework for creative musical interaction, this

research can go in a number of directions. The first is to test the predictions of the

model, and attempt to confirm its hypotheses. This would entail trying to isolate

individual cognitive processes. The second is to actually use the model to design a

fully functioning musical interface, and provide a complex and engaging experience

for participants. The experiments to follow aim to strike a balance between these

two directions by providing extremely simple, low dimensional systems, but that

present complex and novel enough tasks to engage participants with rewarding, and

ecologically valid interactions.
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CHAPTER 6

Sonic Zoom: A Divergent Mapping Strategy Using

Hilbert Curves

6.1 Introduction

This chapter presents a novel interface for navigating a musical parameter space,

based around the Chapter 5’s definition of a exploratory traversal strategy. The

entire combinatorial space of a ten parameter synthesiser is laid out as a two-

dimensional surface on a multi-touch screen. The surface can be scrolled and zoomed

using touchscreen swipe and pinch gestures, reminiscent of a maps application. The

user can place markers on the surface to flag favourites, and explore different sized

regions around these points. The mapping from the two dimensional surface to the

high dimensional parameter space uses a space-filling curve. Hilbert curves con-

structed from Gray codes with long bit runs can be used to preserve locality in

the mapping, whilst still maintaining access to all timbral possibilities. A crowd-
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Figure 6.1: Sonic Zoom compares two interfaces, hypothesised to be suited to exploratory
and algorithmic modes of the EARS model.

sourced user study was performed to compare with a more traditional one-slider-

per-parameter interface. Over 300 users competed a 15 minute interaction session

and questionnaire.

The experiment was conducted using a publicly available iPad app: “Sonic

Zoom” (Fig. 6.2). Participants were encouraged to conduct an open-ended ex-

ploration of the different timbres available from a 10 parameter FM-subtractive

synthesiser, using a combination of two different interfaces. The first was a stan-

dard interface with ten sliders, hypothesised to be suited to the “convergent” stage

of creation. The second was a 2D surface with a space filling curve mapping, in-

tended to facilitate “divergent” exploration. In terms of the EARS quadrants, these
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relate to exploratory and algorithmic modes (Fig. 8.1). Both the interaction data

and questionnaire results show that the different interfaces did tend to be used for

different stages of the sound creation process. The combination of the two inter-

faces was deemed more useful than either individually, reinforcing the notion that a

combination of divergent and convergent processes is important for creative tasks.

In the next section, we discuss some prior work on dimension reduction for syn-

thesis parameter mappings, and recap on some ideas in Chapter 5 relating to the

exploratory interaction mode. In Section 6.3, we discuss the Hilbert space filling

curve, and the particular variant used in this application. The implementation and

the evaluation experiment are described in section 6.4. Results from the question-

naire, analysis of the interaction logs, and users’ comments are reported in section

6.5.

6.2 Divergent Strategies, Mapping and Dimen-

sionality Reduction

In the synthesis mapping literature relating to controlling synthesis algorithms via

physical controllers, there tends to be a focus on expressive musical performance.

But for this study, we investigate a mapping technique for a different stage of the

creative process: namely the idea generation phase. Here, predictability is deemed

less important, and access to the full range of sonic possibilities more so. We attempt

to reveal whether speeding up the transitions between the exploration, evaluation

and refinement stages is conducive to the creative process.

Recall from section 3.4.1, the Creative Systems Framework (CSF, [Wiggins,

2006]). A solution space traversal mechanism can occasionally produce a novel
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Figure 6.2: Sonic Zoom screenshot. The red cross-hairs show the point corresponding
to the slider settings, so scrolling the surface alters the synth timbre. The users path can
be seen as a white line, with blue circles indicating points previously listened to.

concept falling outside of the existing conceptual space. This is termed an “aber-

ration”, and can sometimes be seen as useful according to the artist’s evaluation

criteria. However, given the huge amount of cultural exploration that has gone be-

fore, it is perhaps unlikely that purely sighted, predictive mechanisms will yield a

point outside the existing domain: rather they will tend to lead to into non-original

local optima. Therefore it is an interesting question whether increasing the blind-

ness of the variation mechanism can actually encourage aberrations, and hence the

likelihood of novel solutions. It is possible that certain mapping geometries may

enable a user to traverse and evaluate large parameter spaces faster, bypassing their

existing predictive bias, such that local optima can be avoided.
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In the survey in Appendix B, it was found that musicians, particularly those

working in the purely electronic domain, say that a large proportion of the raw

material they use comes from unplanned, emergent phenomena. Many claim that

in the process of making music, accidents will occur and sounds will be discovered

that were never intended, but prove invaluable. It seems that a surprising amount

of the divergent process has already been outsourced to the computer. The aim be-

hind the Sonic Zoom investigation was to propose and test a parameter exploration

mechanism that would be effective for generating this kind of aberrant material, and

hence accelerate innovative sound design, albeit in a very reduced creative domain:

a simple 10 parameter synthesiser.

Dimension reducing mappings are potentially useful for both exploration and

performance. In particular, there are numerous advantages to two-dimensional rep-

resentations of data. The main advantage is that activity within the space is easily

visualised. Favourite presets can appear as points arranged on the plane, and can

be recalled in a more integrated way than using a drop down text list: scrolling to

a preset utilising exactly the same gestural context as scrolling to explore. This has

the potential to build a memorable “geography” of the sound-space, and may take

advantage of spatial memory [Cockburn and McKenzie, 2002]. There is a compelling

metaphor of exploration of physical terrain. The path that has been explored to date

can be displayed, providing a history that can be in turn be explored. Multitouch

control can be made completely consistent with maps applications: a widespread,

familiar interaction paradigm. Interaction with large 2D surfaces can be made very

efficient by the use of zooming [Bederson and Meyer, 1998; Guiard et al., 1999].

Prior work with explorable 2D surfaces frequently takes a timbre space approach.

For example, SoundExplorer [Yee-King, 2011] constructs a zoomable 2D surface

using multi-dimensional scaling on the MFCC distance. CataRT [Schwarz, 2012]

enables rapid exploration of concatenative synthesis via a 2D surface that arranges
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the sample corpus according to various descriptor axes. SoundTorch [Heise et al.,

2008] enables browsing of audio samples via a 2D surface, the sounds being arranged

by timbral distance using a Self-Organising Map. Alternatively, a 2-D subspace

can be generated by interpolating between existing preset points (e.g. Bencina’s

metasurface [Bencina, 2005], the preset explorer in [Van Wijk and van Overveld,

2003] and the “nodes” object in Max/MSP).

One criticism of preset interpolation techniques from an exploratory point of view

is that they build the low-dimensional space from pre-selected favourites. This leaves

open the question of how the favorites can best be discovered in the first place—

presumably by manipulating the individual parameters in the traditional fashion.

Furthermore, dimension reduction techniques that eliminate large regions of the

parameter space on the basis of prior discoveries may in fact lower the probability

of generating aberrant points that are essential for novelty generation. MDS and

SOM based approaches will have the advantage that timbral distances are better

preserved, but the computational cost of creating a surface from a fine grained

timbre analysis of a large combinatorial space might be enormous. Therefore there

is scope for developing low dimensional interfaces for the initial exploratory phase.

Reduced dimensionality may also be suited to the exploratory mode for cognitive

reasons. It can confound the separability of perceptual dimensions. That is, the

user is not forced to make a decision about which parameter to change, and is not

prematurely encouraged into optimising this individual aspect of the sound. This

might have a number of interrelated beneficial effects:

• Encourage users to take a holistic rather than analytic perceptual stance [Hunt

and Kirk, 2000]. Unpredictability in the mapping may decouple the evaluation

of the sound from the actions required by the interface, hence the subject’s

perception of the sound will not be biased by action-oriented efference predic-

tions.
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• Enable defocused rather than narrowed attention [Gabora, 2002].

• This interaction style appeals to the musicians sense of curiosity. Discoveries

become more surprising, and hence may feel more rewarding from the musi-

cians perspective.

• A simple, low dimensional interface may free up working memory for other

tasks (e.g. critical listening [Mycroft et al., 2013]).

• A single, large control surface eliminates both physical and cognitive switch

costs of constantly swapping between small controls.

If the musician is looking to the instrument for discoveries and inspiration, it

makes no sense to enforce predictability. Put simply, if you do not yet know where

you want to go it scarcely matters if you don’t know how to get there.

So, referring to the mapping recommendations in Section 5.5.5, let us define an

“exploratory interface”. It should enable traversal speed, low dimensionality and

repeatability, whilst preserving access to all possibilities. It intentionally sacrifices

some degree of predictability and transparency in the action-perception coupling.

Preserving locality would be useful, such that users can deliberately explore the

closer neighbourhood of a sound to create larger or smaller variations according to

preference. Another vital consideration is that once an interesting sound has been

discovered, it should not incur too much effort to swap to a convergent interaction

mode to hone it in a more predictable, separable fashion. The next section describes

an intriguing mathematical object that may be a good candidate for this type of

mapping.
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Figure 6.3: Four iterations of Hilbert curve construction in two dimensions. Arrow a
demonstrates a locality violation: a small movement in the 2D plane can result in a large
1D distance along the curve.

6.3 The Hilbert Curve

How can we navigate continuously through a high dimensional space with a low

dimensional controller, without rendering some regions inaccessible? A space-filling

curve [Gotsman and Lindenbaum, 1995] is a continuous parameterised function that

maps a line segment to a continuous path in a higher dimensional space. The curve

is usually constructed recursively, is self-similar, and can approach any point in the

space arbitrarily closely as the iteration parameter is increased. These mappings
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have proved to be useful in all kinds of applications such as clustering, data index-

ing, parallel computing and even a computationally cheap solution to the travelling

salesman problem [Bartholdi and Platzman, 1982], due to their locality preserva-

tion properties. They have also been used for data visualisation, for instance a 3-D

colour space can be distributed onto a 2-D swatch chart [Jaffer, 2005], a good ex-

ample of dimension reduction increasing usability. Hilbert curves in particular are

easy to construct using binary operations, and have good locality [Gotsman and

Lindenbaum, 1996]. The locality property relates very well to a zoomable interface:

the further the user zooms in, the smaller the accessible sonic neighbourhood will

become. A zooming function will be essential, because the length of the curve will

become huge as the dimensionality increases.

Fig. 6.3 shows four iterations of a Hilbert curve in R2. In its first iteration,

the curve simply visits each corner of a square. For the next iteration, sub-squares

are formed at these 4 corners, and the corners of each of these are visited in a

similar manner, but the bottom left and right sub-squares are rotated to ensure the

continuity of the line. The process is iterated until the plane is filled to some desired

resolution. In this way, a 1D line visits every point in a 2D plane. A single control

can move a point along this line: thereby altering 2 parameters.

For an N -dimensional Hilbert curve, there are always upper bounds for distance

in RN given a certain distance in R1. This locality property is illustrated in Fig.

6.4. Unfortunately, distance preservation in the opposite direction can be worse,

as can be seen if the x direction is traversed at the bottom of Fig. 6.3 (d). In the

application this corresponds to moving a slider a small amount, but yet jumping to

a distant point on the Zoomer surface.

For a higher dimensional curve, the basic unit is an N-dimensional hypercube.

Each hypercube, at each level of iteration, must have all of its corners visited exactly

once, and the path must only run along the edges of the cube. Such paths are
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1

Figure 6.4: The locality property in the high dimensional space as a result of zooming
into a segment of the low dimensional space. Assume, for some current zoom magnification
level, the bold portion of the line is visible in some “1D view”. Zooming in will shorten
the line segment: this is in the progression from the top left to bottom right figures. This
results in a smaller compact region of the 2D space being visible/accessible.

called “Hamiltonian paths”, and if the corners of the cube are labelled with binary

coordinates the sequence forms a “Gray code” (Fig. 6.5 shows this for 3 dimensions).

Gray codes are binary numeral systems where only one digit changes at a time [Gray,

1953]. Fig. 6.6 (a) shows the binary numerals for five digits, and Fig. 6.6 (b) shows

the standard ‘reflected’ Gray code.

For the purposes of parameter mapping, there is a problem with this Gray code:

the rightmost bit flips sixteen times whereas the leftmost only flips once. This

would be rather frustrating for the user, as the user scrolls, one parameter will flip

extremely fast and another will hardly ever change. We wish to achieve some kind
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Figure 6.5: The Hamiltonian path visiting the 8 corners of a cube. The sequence of
coordinates is a Gray code (right).

of balance in the speed of the changes by distributing these transitions more evenly.

Gray codes with two particular properties can mitigate this issue. The first is a

“balanced” Gray code [Bhat et al., 1996]. Here the transitions are spread as evenly

as possible between dimensions (Fig. 6.6 (c)). The second property is “minimum

run length” or MRL [Goddyn et al., 2003]. If the MRL is maximised then the bit

swaps of any specific bit never occur within a certain distance of one another (Fig.

6.6 (d)). This is also desirable: when one parameter goes high we would not want

it to immediately flip low again.

Beyond three dimensions there are rapidly increasing numbers of alternative

Gray codes and Hilbert curves. It is beyond the scope of this paper to investigate

these in detail, as their construction seems to follow no simple method. For prac-

tical purposes we assume that the long MRL code shown in Fig. 6.6 (d) will be

indistinguishable from better balanced codes.
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(A) Binary (B) Reflected Gray (C) Balanced (D) Long MRL

Figure 6.6: 5 digit binary codes. (a): Standard binary numbers in ascending order. (b):
The Gray code: a single bit flips from row to row. (c): “Balanced” Gray code: all the
digits transition either 6 or 7 times. (d): “High MRL” Gray code: The minimum distance
between flips is 4 steps.

6.3.1 The Mapping Algorithm

The 2D surface is displayed as a grid, and the ten individual parameters as 1D sliders

(see Fig. 6.2). Consideration of the 2-D curves in Fig. 6.3 may help imagine the

result. In this case, the winding path would be traversed by a single 1D control, and

cause two parameters to change: altering according to the horizontal and vertical

coordinates the path visits. In the case of Sonic Zoom, each dimension of the

zoomable surface uses a separate 5D Hilbert curve: moving in the x direction will

change the first five sliders, and moving in the y direction will change the other five.

When zoomed in fully, the smallest subdivisions of the grid become visible. These
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correspond to sliders changing by a single unit. Zooming out fades these low level

grid lines, revealing lines corresponding to the entry and exit points of larger and

larger hypercubes. When zoomed out fully, the grid divisions delineate hypercubes

of 64 units per side.

The algorithm for converting an x or y coordinate to P N-bit parameters, giving

2P parameters for each point on the surface, is as follows:

Each coordinate is first expressed as a base-2P N-tuple

a = (aN−1, ..., a1, a0), (6.1)

where the individual base 2P digits are calculated like so

an =
⌊ x

2Pn

⌋
mod 2P . (6.2)

Each of the an are then converted to P-digit binary numbers (bn,P−1, ..., bn,1, bn,0)

using the Gray code G(), via a look-up table such as the code in Fig. 6.6 (d).

bn,p = G(an) (6.3)

Then the parameter control values cp can be built up by treating the N different

scales as standard binary digits.

cp =
N−1∑
n=0

bn,p2
n (6.4)

The number of points along one coordinate necessary for full resolution is (2P )N . In

our implementation we require ten 7-bit MIDI control parameters (five per axis), so

P = 5 and 0 ≤ x < 327.
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6.3.2 Sub-Cube Permutations for Hilbert Curves

with arbitrary Gray Codes

For the pilot study implementation [Tubb and Dixon, 2014], there was no way found

to orient the 5D hypercubes such that the ends of the Hamiltonian paths always

connected between adjacent cubes. This would cause large discontinuities at major

divisions. If the user happened to be zoomed in to a great extent, and cross over

one of the highest-level divisions, the sliders may have jumped 64 units instead

of 1. There seems to be no algorithm to determine these rotations for arbitrary

Gray codes. Hamilton and Rau-Chaplin [2008] provide a method for aligning N

dimensional cubes in Hilbert curves, but the proof relies on the symmetry of the

reflected Gray code in his Lemma 2.6, and therefore Theorem 2.9 relating to the

intra-sub-cube dimensions, and 2.10 giving the entry points do not hold.

Extending this method by mathematical proof is beyond the scope of this re-

search. However, as dimensionality increases there are more and more ways to

construct continuous paths through the cube, therefore there are likely to be many

valid rotations that satisfy any given Gray code. A brute force search was applied

combined with the following three heuristics to limit the search space.

Due to the cyclical nature of Gray codes, entry and exit points of any sub-cube

only change a single bit of a single dimension. This direction of travel is referred

to as the “internal direction” for that sub-cube. Therefore given an N-dimensional

cube and an entry point there are only N−1 valid exit points (ruling out 2N−N+1

other corners). Sub-cube orientations for a 3D Hilbert curve are shown in Fig. 6.7.

Fig. 6.7 also shows that sub-cubes must be aligned such that entry and exit

points in the super-cube are at extremal points. This is so that the super-cubes

can connect to other super-cubes in the same manner as the sub-cubes, enabling

recursion.
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Figure 6.7: A 3-D Hilbert curve with 2 iterations. Entry and exit points of a super-
cube must be in the extreme corners (bottom left). Black dotted arrows show the first
four sub-cubes’ internal directions. Coloured bold lines joining these black lines are the
intra-sub-cube directions.

The final rule is that if the entry point is on the opposite side of the sub-cube

from the next sub-cube, we must travel in that direction, otherwise the exit point

cannot connect with the next cube. This can also be seen in Fig. 6.7: the first and

second internal directions necessarily traverse the y and z directions respectively,

whereas the third, having its entry point already adjacent to the next sub-cube, is

actually free to travel in the x or z direction.

Given these three constraints, a brute force algorithm can then try a variety

of super-cube Hamiltonian paths. Faced with a choice of orientation such as the

ones above, a random direction is chosen. If we get to the end of the path and
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cannot satisfy the extremal exit point, simply start again. Of course, this is highly

inefficient, but was found for 5D that after 100 to 1000 runs (a few seconds of

computation time) a path was found. Repeated runs showed that there were many

such paths. The specific internal direction sequence used for the released software

was:

[2, 1, 0, 4, 0, 3, 0, 2, 2, 3, 4, 3, 0, 4, 0, 2, 2, 4, 4, 3, 1, 3, 4, 1, 1, 4, 4, 1, 1, 2, 3, 0]

With entry vertices:

[0, 0, 0, 0, 0, 5, 5, 5, 3, 3, 27, 10, 0, 5, 29, 29, 9, 9, 27, 10, 18, 20, 20, 5, 5, 3, 3, 18, 18, 20, 24, 17]

Where these decimal numbers are converted to 5-bit binary numbers and used

as 5-D coordinates for the corners of the sub-cubes. This was for the Gray code

with transition bits:

[2, 3, 4, 0, 2, 1, 4, 3, 2, 0, 4, 3, 2, 1, 4, 0, 2, 3, 4, 0, 2, 1, 4, 3, 2, 0, 4, 3, 2, 1, 4, 0]

If dimensionality was increased it is likely that this method would become in-

tractable, in which case a depth-first search tree would be recommended [Cormen

et al., 2001, p. 540-549], providing a way of back-tracking and eliminating options.

It is likely that this approach too would eventually become unfeasable for even

higher dimensions.
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6.4 Implementation: The “Sonic Zoom” app

A scrollable, zoomable 2-D surface is well suited to implementation on a multitouch

screen. Sonic Zoom is an iPad app made publicly available on the Apple App Store.

Fig. 6.2 shows the interface. In the application two interfaces are provided. The first

is a standard set of ten sliders (sending 7-bit MIDI continuous control (CC) values),

used to control the timbre of a subtractive synthesiser. The second interface is the

scrollable, zoomable surface: a map of every possible slider combination (referred

to from now on as the “Zoomer”).

The sliders appear as an overlay at the bottom of the screen. When both the

sliders and the Zoomer are on screen together, movements with one interface are

immediately reflected in the other. The “listen point” location is represented as a

cross-hair in the middle of the screen. The absolute locations of touch points have

no bearing on the sound. A single dragged touch point scrolls the surface: changing

the coordinates of the listen point, and hence the positions of the sliders. Of course,

the space is huge: in the case of ten 7-bit midi parameters, each axis contains

25×7 ' 1010 points. Zooming functionality is therefore essential. A two finger

pinch-out gesture will zoom into an area around the listen point, whilst keeping the

listen point stationary. As the user zooms, smaller sub-divisions of the grid become

visible. Due to the Hilbert curve’s locality properties, these smaller grid squares will

correspond to smaller 10-D hypercubes which can then be explored in further detail.

The sub-divisions are coloured according to their Hilbert curve iteration level. Both

scrolling and zooming have momentum (i.e. the surface will keep moving at the speed

the finger was travelling when it left the screen) and a small amount of friction, to

enable fast navigation. The “lock sequencer” and “lock synth” buttons constrain

the surface to move in only the x or y direction, respectively. Once a preset is

saved, it appears as a coloured dot on the surface. If the listen point moves near to
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a preset, it will snap to the preset coordinates. Without snapping it is impossible

to line the preset up precisely.

On opening the application, participants were simply instructed to search for

sounds they liked, or thought were useful or interesting. They were told to make

sure to save favourites as presets. This introductory text is given in Appendix B.

The different interfaces were presented individually and in combination for 5

minutes each, in a randomised order. After the timed session a questionnaire was

presented, and on completion further features were unlocked: such as the ability

to show and hide the two interfaces, and MIDI connectivity. Users agreed to a

statement of consent before their interactions were logged.

One important point about doing research via an App Store distribution model,

is that it is critical that the implementation and the data collection is done correctly

first time. Fig. 6.8 shows the number of events generated by day. Clearly most

activity takes place within the first week, so if an update is necessary, due to a bug

or unanticipated problem, it will then take another week to get the app approved,

and vital user data would be lost. This initial flurry is possibly due to appearance

on the “what’s new” part of the service, but also the rapid spread of the news of

the release through a small community of keen iPad musicians.

6.4.1 Extensions After the Pilot Study

During a pilot study (14 participants), many users suggested smoother transitions,

both in a general sense, and between specific presets. Therefore a ‘smooth’ mode

was implemented that, rather than exposing the full 7-iteration Hilbert curve, in-

terpolated between the different iterations. This made it possible to move between

various complexity levels: detail will only reveal itself as one zooms in. The draw-

back of this mode was that the vast majority of the saved locations could not be
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Figure 6.8: Number of interaction log events generated by users per day.

seen on the surface.

There were frequent requests for an easier way to return to where you had visited

before, but had not saved. It is too easy to accidentally overshoot something that

caught your ear. Two users came up with the intriguing suggestion of a visual,

scrub-able undo trail for these situations. Session histories can promote new ways

of thinking by providing an overview of one’s own creative process [Shneiderman,

2000]. This was implemented for the public release. Points that had been listened to

before showed up as blue circles, the diameter of the circle indicating how long you

had listened to that point. The crosshairs would snap to these ‘evaluation points’

similarly to the presets, so that previously evaluation points could be returned to

easily.

A featureless grid was not enough to make use of visual spatial memory. Colour
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coded lines were not sufficient for people to instantly grasp what scale they were

at, though this can be learnt with use. One user suggested using audio feature

extraction techniques to create a texture that would convey the nature of the sounds

underneath. Alternatively, patterns or shapes could be associated with presets and

then morphed, as in [Van Wijk and van Overveld, 2003].

In the pilot study, five of the interface’s ten parameters were used for a simple

melodic pattern generator. This sequencer creates a 16-step sequence based on

five sine waves of integer frequencies; this “Frequencer” is detailed in Tubb [2015].

However most participants felt these parameters were confusing, so for the public

release, the 10 parameters only controlled timbre. The melodic sequences were

randomly selected from those saved in the pilot study. Buttons for play, pause

and skip to next sequence were provided (see top of Fig. 6.2), but the sequences

themselves were not editable, so as to restrict interaction to timbre adjustments.

In summary, from the conclusions and suggestions from the pilot study, a number

of changes were implemented:

• The sequencer controls were removed and five new timbre controls were added.

• The sequencer now just played saved sequences from the pilot study, these

could be skipped through.

• The user’s path across the grid surface was shown as a white line, and previ-

ously evaluated points (hovered over for more than 300ms) were shown and

could be snapped to. This enabled easy reversal of actions.

• Double tapping on a preset will move the listen point to that preset, and over

one second smoothly interpolate all parameters.

• Sliders were moved to the bottom of the screen and made iOS generic..
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• As a reward for completing the experiment, users were allowed to swap inter-

face type, and an interpolation mode was implemented. This mode truncated

the Hilbert curve at the current zoom level, creating a much smoother surface.

A further interpolation was employed between levels when zooming in.

6.5 Results

At the time of writing, the app has been available for over two years, and the total

number of downloads now stands at 1970. The number of successfully completed

experiments is 384, with a total interaction time of over 100 hours. The number of

valid questionnaire responses was 361. Unfortunately, there were over 1000 started

but uncompleted experiments. This may have been due to the inconvenience of

finding a solid 15 minutes to participate, or may indicate a lack of interest in the

application. It is important to note that in the absence of supervision, only those

who are actually interested in such an interface will complete the experiment. This

may bias the questionnaire results in favour of the Zoomer.

6.5.1 Questionnaire

Tables 6.1 and 6.2 show the questions asked at the end of the timed sessions. The

former (question numbers prefixed by AD) required Likert style agree-disagree re-

sponses, the latter (question numbers prefixed by SZ) required respondents to rate

how strongly different interfaces were preferred for various tasks. Fig. 6.9 and 6.10

show the results as diverging stacked bar charts [Robbins and Heiberger, 2011].

Results where the user had answered every question identically were discarded.

Most respondents were clearly very familiar with electronic music (AD 1). The

participants self select, so some bias in favour of novel interfaces can be expected.

Highly positive responses to this application include the ability to see the presets as
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AD 1 I am familiar with music software and sound syn-
thesis.

AD 2 The ability to retrace my steps using the history
path was useful.

AD 3 The correspondence between the sliders and the
grid was understandable.

AD 4 Scrolling a greater distance on the grid seemed to
correspond to larger difference in the sound.

AD 5 The ability to see other presets laid on the grid
was useful.

AD 6 The range of sounds was too limited/poor quality
to be able to judge the eventual usefulness of the
interface.

AD 7 The Zoomer was an improvement on just using a
randomiser.

AD 8 The combination of Zoomer and Sliders was bet-
ter than either individually.

AD 9 I enjoy “happy accidents” in the creative process

Table 6.1: Questions requiring a 5 point agree/disagree answer.
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Figure 6.9: Questionnaire responses to agree/disagree (AD) Likert items. Neutral re-
sponse is centred.
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SZ 10 The best interface for discovering interesting
sounds quickly was...

SZ 11 The best interface for fine tuning a sound was...
SZ 12 Interface that I felt more in control using...
SZ 13 The interface that felt more creative was...
SZ 14 Interface better for generating new ideas...
SZ 15 Interface better for performing live would be...
SZ 16 Overall, the interface I preferred using was...

Table 6.2: Questions requiring a 5 point sliders vs. Zoomer answer.
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Definitely sliders

Maybe sliders

Neither/both

Maybe zoomer

Definitely zoomer

Figure 6.10: Interface preference responses. Blue bars indicate preference for sliders,
red for the Zoomer. “No preference” is centred. 11 and 12 reveal slider preference for
convergent properties, 10 and 14 show Zoomer preference for divergent.

points in space, and to see the “undo” path (AD 2 and 5). The question of whether

the mapping was understandable was less conclusive (AD 3), but most users did

get a sense of the locality property (AD 4). The Zoomer was deemed considerably

more useful than a simple randomiser (AD 7). The strongest response of all (albeit

to a heavily loaded question!) was that people highly value happy accidents in the

creative process (AD 9).
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Particularly of interest was the hypothesis that sliders would be preferred for

convergent tasks and the Zoomer preferred for divergent. Responses to SZ 10 and

14 (divergent aspects) contrast sharply with SZ 11 and 12 (convergent aspects).

There was a large significant difference between the means of these two properties

(difference = −2.6, t(768) = 3.2, p < 0.01), confirming this hypothesis. Most par-

ticipants felt that the Zoomer was the more creative (SZ 13) which may reflect the

popular identification of creativity with novelty and divergent thinking, or simply

the fact that new experiences with novel technologies can be inspiring in themselves.

The Zoomer was slightly favoured as an interface for performing live (SZ 15). This

is surprising considering its unpredictability. Nevertheless, at moderate zoom levels,

interesting variations can be performed that are always kept within certain bounds,

and a visible cluster of presets can make revisiting regions known to be performable

easy.

6.5.2 Sound Discovery Rates

Interface Sliders Combination Zoomer
No. saves (timed) 693 630 762
No. saves (free) 15 505 103

Table 6.3: Total number of presets saved for the three interface views, during timed
stages and after the completed experiment. The Zoomer proved most prolific.

One hypothesis was that if more presets were saved in a particular mode, it

might indicate that this interface was best for locating good sounds quickly. The

total numbers of presets saved in each different session are shown in Table 6.3.

The upper row of values show the totals when the users spent 5 minutes on each

interface, the lower shows the number of saves during the subsequent free-use period.

For timed sessions, the most presets were saved in the Zoomer-only mode, indicating

that this may have been the fastest interface for sound discovery. However these
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results are not statistically significant (2 sample t-test, t(384) = 0.34, p > 0.05), as

the number of saves per user is rather low and highly variable. Greater incentive to

find as many sounds as possible may have improved the experiment in this regard.

The large number of saves in the combination interface after the experiment reveal

that people much preferred the combination, given the choice. Unfortunately, the

fact that the combination interface has the lowest number of sound discoveries in the

timed session seemingly contradicts the participants’ preference for the combination,

and rather undermines save rate as a reliable measure of effectiveness.

6.5.3 Interface Preference for Divergent

and Convergent Traversal

Was divergent or convergent behaviour detectable from the interaction data? One

indication of this was the average zoom level at which people scrolled around com-

pared to the average zoom level at which they saved a preset. The hypothesis would

be that people zoomed in to hone the sound before saving. Therefore the prediction

was that the average level for scrolling would be higher than the average level at

which they saved a preset. This was indeed the case, although the difference was

small. The total amount of time users spent scrolling at 7 different zoom scales is

shown in Fig. 6.11. The zoom levels are the logarithm of the scale factor rounded

to the nearest integer. Data from before the zoom functionality was first used (i.e.

the default zoom level when the app loaded) were omitted from the calculation.

Users showed a clear preference for larger scales, despite the unpredictable timbre

changes: they spent 200 minutes in total scrolling at the largest scale (where sliders

change by 64 MIDI CC units per grid division), and only 30 minutes at the lowest

scale (1 MIDI CC unit per division). The mean scroll and save levels are marked.

With both Zoomer and sliders present, there was less of a tendency to zoom
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Figure 6.11: Histogram of the time users spent at each of seven zoom levels. Vertical
lines show the means of zoom levels when presets were saved and when scrolling the grid
for both the Zoomer and Combination stages. These values show that people would zoom
in before saving a preset. However with the sliders also present, this tendency was reduced
slightly.

in in order to save a sound: this indicated that when the sliders were present the

Zoomer’s convergent functionality was eschewed in favour of convergence using sep-

arate parameters. However, this difference between mean zoom level in Zoomer-only

and combined mode was not significant (2 sample t-test, t(384) = 1.18, p = 0.12).
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A far clearer asymmetry between the two interfaces is seen when both interfaces

were on screen, by investigating which interface was being used immediately before

and after saving a preset. The hypothesis was that users would exhibit a repeating

diverge - converge - save approach, therefore the interface used immediately after

saving would be the one preferred for exploration, and the one immediately prior

would be the one preferred for honing. Table 6.4 shows the results, indicating that

people were about five times more likely to follow a Sliders - Save - Zoomer pattern

than the reverse, strongly supporting this hypothesis. It is hard to confirm actual

divergent or convergent behaviour by analysing the search trajectories, as they are

hugely different for the different interfaces1. Path properties are easier to analyse

for a single interface: Fig. 6.12 shows that, for the Zoomer only sessions, the average

speed of scrolling tends to reduce by about a factor of two as the user converges

on a saved point. Evidence for convergent behaviour using the sliders is given in

section 6.5.5.

Another point to note is that presets were around five times more likely to be

saved during Zoomer manipulation than during Slider manipulation when both were

on-screen. It could be argued that this merely shows an overall preference for using

the Zoomer, but the total interaction time was only 2:1 in favour of the Zoomer.

Overall, engaging with the Hilbert mapping seems more conducive to discovering

and saving sounds.

6.5.4 Distribution of Saved Presets and Evaluation Points

Many saved presets (4006) begin to make possible the analysis of the distribution

of favourites in the parameter space. Fig. 6.13 shows these presets, arrayed as they

would be on the 2D zoomer, and coloured according to whether they were saved

1The average parameter space distance-per-event was 60 CC for the Zoomer and 10 CC for the
sliders, so obviously the Zoomer was intrinsically more rapid, random and divergent.
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Before Save Zoomer Sliders Zoomer Sliders
After save Zoomer Sliders Sliders Zoomer
Total 1020 175 93 446

Table 6.4: Which interface was used immediately before and after saving favourites.
This includes free interaction after the timed sessions. Note the difference between the
last two figures, showing a strong asymmetry as to which interface was used in the early
and late stages of a search. By far the most common sequence was Zoomer-Save-Zoomer,
reflecting the overall popularity of this interface.
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Figure 6.12: Scrolling speed between preset saves, averaged across all pairs of consecutive
saves. Time is normalised such that the time of the previous save t = 0 and time of next
save t = 1.

in slider, zoomer or combination mode. It is clear that the presets are not evenly

distributed. Two sparser horizontal bands show up, these correspond to regions of

the space that were likely to generate no sound whatsoever, due to the combination

of filter parameters. For instance if a high pass filter was set above the range of

human hearing with no envelope amount to sweep it down. It is worth noting that

these bands occur in all three interface modes, indicating that this distribution is

interface-independent.

One could argue that the presence of very sparse regions indicates a ‘sub-optimal’

synthesiser. Large areas of uninteresting sounds will have a negative effect on the

effectiveness of random exploration. This distribution could be used to either: re-

design the parameters so that unusable settings are not achievable at all, or to warp

the space so that the likelihood of finding a ‘good’ sound is equal over the whole
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Figure 6.13: All 4006 saved presets for all users and all interface stages. The arrangement
is exactly as they appear on the 2-D surface.

space. This would be a similar approach to that of [Loviscach, 2008]. However there

may be interesting oases of novel sounds in these deserted regions.

The distribution of “evaluation points” was obtained (Fig. 6.14). A total of

around 50,000 evaluation points were recorded in the successfully completed exper-

iments, and 122,000 overall. These show an extremely similar distribution to the

presets, but with far greater resolution due to more data points. This is probably

due to the tendency of people to be zoomed in around the location of an existing
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preset, as can be seen with the 3 “factory” presets that were provided to everyone

in the application, which have dense clusters surrounding them. Further inspection

(not shown) showed that any perceived clustering is due to individual users explor-

ing a small area in detail, rather than that area being particularly popular with all

users.

Evaluation points for the slider mode were obtained in a similar fashion as the

Zoomer by noting a setting that has not been changed for 300ms. Note that given

the smoother nature of the sliders it is easier to evaluate the sound whilst moving

them (on account of their linearity and predictability).

Distributions can also be taken by individual parameter. Histograms of slider

settings for saved presets are shown in Fig. 6.15. The sliders tend to get set to

the end points; this makes sense for some parameters that have particularly useful

extremal values. For example reverb may often be set to completely dry, but for

other parameters this might indicate an insufficient range for that parameter.

Whilst there are some patterns in these distributions, the chances of designing

radically more effective instruments by means of analysing the positions of these

points and extracting what constitutes a ‘good’ sound seems slim. It is likely that

more sophisticated analysis of the actual audio output from these points would be

needed to attempt this.
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Figure 6.14: Distribution of all users evaluation points, combined interface stage. Dark
regions are presumably sounds of more interest to the participants, light regions less
interesting. The distribution is similar to the saved presets.
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Figure 6.15: Histograms of slider settings for all saved presets.
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Figure 6.16: Example of how an interaction with a single slider is divided into blocks
and adjustments. Yellow stems are the raw slider events. Green indicates start of block,
blue indicates a change in direction, and black indicates the end of a block.

6.5.5 Analysis of Slider Adjustments

To analyse navigation strategies in the slider-only case, slider movement data were

separated into discrete “interaction blocks”. This was defined as a series of move-

ment events on a single slider. Blocks were defined as being separated by a swap

to another slider, or a gap of at least a second. These blocks were then divided

into “adjustments” by segmenting them according to changes in direction. Fig. 6.16

shows how an example of how a series of slider events is grouped into blocks and

adjustments. Slider values run from 0 to 127 CC units.

The first question is: how many adjustments does it take before people are happy

with their engagement with a particular slider? Fig. 6.17 shows this, broken down by

each parameter. A single movement or one double-back are the most common, with

higher numbers falling off more or less exponentially. An interesting thing occurs in

the tail of this distribution (Fig. 6.18). It does not fall off towards high values as

much as expected. Very high numbers of adjustments probably don’t indicate that
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it took more than ten adjustments to find a sound, they probably indicate that the

user was just playing in an instrumental, expressive fashion with these parameters.

The way these instrumental interactions break down by different parameter type is

revealing, if not especially surprising. For low numbers of consecutive adjustments,

interactions are fairly evenly distributed (Fig. 6.17). By contrast, for high num-

bers of adjustments the distribution is not even. Filter cut off is the most popular,

followed by FM amount and filter envelope amount. Filter type (which morphed

between low-pass band-pass and high-pass) is least popular, followed by filter reso-

nance and reverb amount. This result has a fairly obvious interpretation in terms

of the “standard” synth parameters that people may want to perform in real-time.

However, one could imagine that given a novel synthesis technique, and the question

of which parameters would be best for gestural control, by observing this type of

user behaviour, one could obtain an indication as to which controls people feel are

most ‘performable’.
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Figure 6.17: Histogram of number of blocks with different numbers of direction changes.

Did slider use show any indication of convergent optimisation-style behaviour?
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Figure 6.18: Histogram of number of blocks with different numbers of direction changes
greater than 9. Detail showing that large numbers of consecutive reversals only occur with
those parameters typically associated with performance-style interaction, for example filter
cutoff.

Fig. 6.19 shows the absolute size of consecutive adjustments in the case where 3

direction changes were made before the interaction with this slider was ended. The

different distribution shapes do seem to indicate different interaction stages. From

the second movement onwards, the average sizes of adjustments get progressively

smaller, rather similar to gradient descent algorithm exhibiting some overshoot. A

tentative model to explain this would consist of three basic stages:

1. Initial effect query : the humped distribution, and the fact that there are

hardly any small adjustments indicates that this might be just an exploratory

enquiry: “what happens when I move this?”.

2. Exploratory scan: the second movement possesses a fairly uniform distribution,

indicating that all sizes of change are equally likely. Given that moving the

entire length of the slider is less likely a priori (if the starting position is

uniform), this might indicate that the previous move takes on to an extreme
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value and now people are scanning the length of the slider. This stage usually

takes more time (See the middle distribution in Fig. 6.20).

3. Honing : there can be several of these stages becoming smaller and more fo-

cused on the eventual preference. The last movement is usually very small

(M < 30CC) indicating that the desired setting has just been found, but has

been overshot somewhat.

This tendency to progress toward smaller adjustments can be seen for all in-

teraction blocks, up to around 7 direction changes. So, one could speculate that

slider interaction may reveal a smaller, one dimensional microcosm of divergent and

convergent behaviour, with an initial exploratory scan of the length of the control,

followed by convergence on the favoured setting. Most of the time however, little ex-

ploration is necessary with a slider: the most common number of direction changes

is one or none.

Of course, investigating the actual slider plots such as Fig. 6.16 we see that this is

far from being the “rule”. Notwithstanding this the presence of these distributions

in all blocks from 2 to 7 adjustments long indicates that it is a definite pattern, and

appears to confirm that behaviour using sliders is convergence oriented.
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Figure 6.19: Histogram of the size of consecutive slider adjustments, in the case of 3
changes of direction (first top, last bottom). Thin vertical line shows the mean.
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Figure 6.20: Histogram of the time taken for consecutive slider adjustments, in the case
of 2 changes of direction (first top, last bottom). Red vertical line shows the mean. The
second adjustment takes the most time, hypothesised to be a slow exploratory scan of a
range of values.

253



6.5.6 User Comments

It should be noted that participants were aware of the focus being on “creativity”

so many of the comments to the effect that this was a “creative” interface could

have been primed by the introductory text. Users were told in the instructions that

zooming in was meant to “hone in on the sound”, but not that the hypothesis was

that the sliders would be preferred for fine tuning.

Some users enjoyed the zoomer for both divergent and convergent strategies:

“The zoomer interface was really great for being able to try out different

sounds and then be able to hone in on variations. I’ve used a lot of

music apps and haven’t run across any that enable you to do this sort of

creative exploration. The zoom really allows you to fine tune and focus

in on a particular sound in a way that sliders or other input controls

can’t do.”

“I have many, many iOS synths, and this interface is the best for explo-

ration and creativity, and then dialing it in.”

One user mentions disillusionment with standard interfaces that imitate classic

devices:

“I think I’m going to love it. I really found regular emulations of synths

increasingly discouraging in order to find new sounds and expressions.”

There were specific mentions of importance of using a combination of both in-

terfaces:

“I will use combined mode from now on as the experience with both inter-

faces brought completely different ways to find and manipulate sounds.”
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“Nice to see new experiments in sound creation, but any useful synthesis

must rely on both methods for fine tuning sounds or for small changes

if using it in a live performance”

The strength of combining the two interfaces seemed to pursuade this user that

a randomiser was crucial when the zoomer wasn’t present:

“At one point in the Zoomer I felt I was close to the sound I wanted but

not having the slider made me feel like I couldn’t experiment with exactly

what I wanted. The randomizer button was crucial for just using the

slider to find creative sounds, just having the Zoomer only really helped

when looking for something that catches your attention and then refining

on a macro level.”

Some appreciated the very tiny changes available when using high zoom levels:

“I especially enjoyed being able to go hi-res, so as to change the sound

very, very slowly.”

“The Zoomer is brilliant. Being able go that deep was good.”

“Amazing when you can zoom so deep into the sound to edit.”

Some comments relate to parts of the EARS theory that were not mentioned

in the help text. This remark reveals what was discussed in Section 3.6, but also

perhaps reveals the subjectivity of what constitutes a constraint:

I’ve currently moved from digital to analog synths for the greater feeling

of control, and feel that some restrictions are useful or even required

for creativity. Less is more and stricter bounds make one work harder

and more innovatively to break them. Thus my preference of the slider
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interface, but on the other hand I love the simple and quick intuitiveness

of touch zoom interface.

Some people specifically enjoyed the unintentional result of the sounds that

emerged when moving across the surface:

“My favourite sounds came from moving the cursor around on the grid,

not when it is sitting in one spot.”

“I really enjoyed the sound created when moving the curser in zoom

mode ie the sounds that were generated in between the stationary points.”

This user was not experienced, and does not make music, but still enjoyed the

exploratory process:

“I have no musical training so am hard pressed to make anything that

resembles a song. Yet, as a hobby, I am immensely entertained just

coming up with new sounds. So this experiment app was extremely fun

for me... I found the grid to be more for larger changes in sound, and

then use the sliders to fine tune.”

There were a number of more negative comments. Many comments highlighted

how important connectivity is for computer musicians: e.g. requests for MIDI (8

mentions) and Audiobus2 (ten mentions). If users cannot easily integrate a tool

into their existing work-flow, with synchronisation and audio transfer capabilities, its

utility is severely compromised. There were also more than 13 complaints/requests

for a sequencer. However all these features would have interfered with the exper-

iment, as they would have distracted users from timbre adjustments. One user

suggested using two zoomers, one for the sequence and one for the synth timbre.

2Audiobus allows iOS to transfer audio and MIDI between different music apps.
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As anticipated, many (ten) comments featured complaints about the unpre-

dictability and inconsistency of the surface. Chiming with results across HCI, per-

ceived control is important:

“The grid seems too random”

“No obvious correspondence between movement on the graph and sound

changes. It all felt random, which is ok, but precludes using it as an

instrument in its own right, which would need more predictable and

useful changes which would be learnable.”

“Zoomer was creative and good for inspiration but a bit unpredictable”

“Only at the deep zoom level could I hear a change and associate the

change with my hand motion.”

“The zoomer doesn’t feel like it maps a space except locally, and there

the mapping feels like it doesn’t mean the same as it does elsewhere

in the grid. I would have preferred finding a happy accident with the

zoomer and then be able to hunt around in parameter space with the

axes corresponding more directly to parameters in a consistent way.”

This next comment indicates that a plain grid was not enough to make use of

spatial memory:

“The mapping of the parameters into the 2d plane seemed very arbi-

trary, so it was difficult to get any real grip on the process. Doing the

same thing to a greater number of variables would likely exacerbate the

problem. The zoomer was slightly interesting when the sliders were also

present, but on its own was just too featureless and abstracted.”
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There were many requests for the recording, playback and looping of movements

across the 2D surface, indicating that certain paths produced interesting dynamic

changes and that meta-control and abstraction methods would be useful.

6.6 Conclusion: No Need to Leave

Serendipity to Chance

This study strongly indicates that different ways of navigating parameter space are

suited to different stages of the creative process. For exploration the Zoomer was

preferred, for fine tuning the sliders were preferred. Users responded very positively

to the assertion that the combination of the two interfaces was better than either

individually. This indicates that being able to alternate navigation styles is valuable.

In terms of the EARS model, we have compared interfaces presumed to suit the

exploratory and algorithmic modes, and found that they were used roughly as ex-

pected. The strongest result from the interaction data was that, when a predictable

one-to-one mapping interface is combined with an unpredictable, exploratory inter-

face, a clear asymmetry in interface preference is seen before and after the locating

of favourites. Users were five times more likely to be using a “Zoomer, then sliders,

then save” strategy than the reverse. This asymmetry seems well explained with

reference to divergent and convergent search strategies.

Whilst there are many experimental variables at play in the comparison of these

interfaces, there seems to be a clear link between the predictability of a mapping

and its use for the differing creative stages.

The fact that people tended to use very high zoom levels (i.e. they were zoomed

out to levels where movements had large effects on the sound) indicates that during

the exploratory phase, an overview of the entire space is a very useful feature, but
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access to every level of detail at this stage is not. Given that users prefer to fine-

tune with the sliders, we could eliminate access to some of parameter space with

no noticeable ill effect. Further testing should be done to establish what users feel

is the ideal scale, but certainly the lowest two levels seem disposable: leading to at

least a millionfold reduction in the area of the surface.

Combining this finding with the questionnaire feedback we can claim the follow-

ing:

• Divergent exploration and convergent honing behaviour can be detected in

interaction logs.

• Different parameter navigation strategies are suited to different stages of the

creative process.

• Users will naturally gravitate toward the most suitable interface for these

strategies, given a choice.

• The ability to switch between navigation styles is important.

So, even in an uncontrolled experiment such as this, some clues as to musicians’

creative processes can be obtained.

The Hilbert curve is far from an ideal instrumental mapping per se, due to

its unpredictability, lack of smoothness and nonlinearity. It can however be very

useful in cases where a low dimensional representation of a complete parameter

space is desired, and was shown to be preferred to a randomiser. Even with more

sophisticated dimensional reduction techniques such as MDS and SOMs, collapsing

a 10D space down to 2D will cause some unpredictable twists in the subspace.

This experiment shows that this is not necessarily a bad thing. One advantage

of the Hilbert approach over these other methods is that it is extremely cheap
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computationally3, and requires no audio rendering or analysis time. Further work

could directly compare these approaches to generating 2D surfaces: the collected

preset points from all the participants could be used as input to an MDS or SOM

algorithm to generate another surface, provided as a new interaction mode in the

application.

The use of a balanced Gray codes greatly improves the usability of the Hilbert

mapping. Problems can be expected when trying to scale this method up to higher

dimensionality, however. Doubling the dimensionality to 10D per axis may be

feasable, but beyond this finding balanced Gray codes and their associated sub-

cube orientations becomes considerably harder. The size of the scrollable surface

may become prohibitive. Given that many soft-synths possess over 100 parameters,

this is certainly not an easily applicable technique for a general commercial synth,

unless some subset of the parameters are chosen—which would rather defeat the

object of the exercise. One solution to the exponentially increasing size of the space

may be abandoning the idea of exploring every corner of a cube, and rather explore

every corner of a simplex. The number of corners will then be proportional to P

rather than 2P .

Evaluating genuine creativity is a hard task, and this study has not addressed

many issues, for instance whether this type of exploration can improve the value of

the final musical results. What is missing is some attempt to obtain user evaluations

of the discovered sounds, and to ascertain whether adding a divergent component

had a positive effect on the quality, as well as the quantity of the discoveries. A

social media aspect could be introduced to enable users to rate each others presets (in

the manner of Amabile’s consensual assessment technique [Hennessey and Amabile,

1999; Amabile, 1996]). Alternatively users could listen back to their exploration

3The grid to slider coordinate transformation took negligable computation time compared to,
say, graphically displaying the grid lines on the screen.
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session and use a slider to evaluate the sounds they had just navigated through.

This approach to revealing the fitness function would be reminiscent of the work of

Jennings et al. [2011].

The exact motivation for the users to save the sounds in this experiment was

probably too unclear, reflected in the very low average number of presets saved.

Perhaps if the app was better integrated into musicians’ everyday workflow, and

less of a one-off experiment, the saved sounds would be more indicative of presets

though genuinely valuable.

A promising avenue to analyse this interaction data would be to use more so-

phisticated statistical behavioural analysis tools. For example, when analysing large

amounts of animal location data, techniques exist to detect discrete hidden states

(such as feeding, resting or migrating) from the statistical properties of the animal’s

movement time series [Jonsen et al., 2005]. It would be interesting to apply these

to the navigation paths across the Zoomer surface, and attempt to detect if diver-

gent and convergent interaction really are statistically distinct states. Is a two state

model really the most appropriate, or are there perhaps other interaction modes?

It might be objected that the creation of a finished piece of music is a truly

creative act, but sound design is not. A very reduced domain, such as this ten

parameter synthesiser, might not be considered powerful or high-dimensional enough

system enough to study anything as sophisticated as creativity. If this is true, then

the results from studying sound design will not ‘scale up’ to more complex creative

works. Certainly this experiment has not investigated transformational creativity.

However, in Appendix B’s survey, many artists claimed that sound design discoveries

could indeed inspire entire tracks. In addition, the solution space of the entire

ensemble is a combinatorial superset of the parameters of the separate devices.

Therefore the individual adjustments of instruments are still navigations within this

larger space, and can presumably exhibit more or less innovation. Considerations
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of small-scale exploratory creativity in the reduced domain should, in theory, still

apply in the larger one. According to the everyday creativity principle, even in very

basic interactions small amounts of creativity may be present.

Musicians freely admit to a role for unpredictability and serendipity in their

work. Due to music technology’s roots in the recording studio, and the designers’

tendency to think in terms of objective-oriented search strategies, there has perhaps

been a lack of acknowledgement of the more serendipitous aspects of creation when

designing interfaces and controller mappings. The happy accidents that do emerge

are often seen as uncontrollable by-products, and not something possible to design

for. The results of this experiment indicate that, whilst completely removing con-

vergent control of individual parameters would certainly be a bad idea, deliberate

design according to the considerations in Section 6.2 may unlock divergent traversal

strategies and yield increased engagement and innovation.

A video of Sonic Zoom in use can be found at https://youtu.be/485FnfJOuhI,

and the app can be obtained from http://appstore.com/soniczoom.
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CHAPTER 7

Evaluating Multidimensional Controllers

for Sound Design Tasks

7.1 Introduction

This experiment investigated the differences between single dimensional controllers

(touchscreen sliders) and multidimensional controllers (an XY touchpad for 2D,

the Leap Motion hand tracker for 3D) for matching a target sound. The original

hypothesis behind this experiment was that the Leap would suit the ‘skilled’ mode

and the sliders would suit ‘algorithmic’ interaction mode of the EARS model. Thus,

the intention was to search for evidence that, after enough practise, using the Leap

would result in faster and more intuitive manipulation of multiple dimensions simul-

taneously, but when using the sliders this behaviour would be absent. The corollary

of this hypothesis is that the Leap should provide higher throughput measurements.

Both skilled and algorithmic modes are ‘convergent’ in that they seek to locate
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Figure 7.1: This experiment contrasted two methods of controlling synthesis parameters
during a sound design task, hypothesised to be suited to skilled and algorithmic modes of
the EARS model.

some predefined, optimal target point in the parameter space. This study assumes

that if we provide the user with a target sound, which they need to alter the con-

trols to match, this will resemble the process of trying to find an imagined sound.

The interface that is fastest for finding the specified target will presumably be the

interface that is faster for realising a well specified internal goal. Subjects had to

alter the timbre of their controllable sound match a target sound as quickly and

accurately as possible. This task was ‘gamified’ [Deterding et al., 2011] in that par-

ticipants were provided with real time feedback as to their performance, a running

score based on speed and accuracy, and a small prize for the best result.
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Figure 7.2: Screen shot of the 3 slider interface during the search task. The “Target”
button plays the target sound, the “Current” button plays the sound that is being adjusted
using the sliders. When the user has matched the two sounds, “Submit” is pressed.

The methodology used for analysing the results of this experiment is the one

based on Fitts’ law described in Section 5.4. The amount of convergence on a target

is quantified using ISSR: the logarithm of the ratio of start distance to current

distance to the target, multiplied by the dimensionality. One thing the study aims

to establish is if Fitts’ law, or rather our ISSR version of it, holds for auditory

target matching as well as visual target matching. In other words, does the rate at

which people hone in on a synthesiser sound indicate a constant rate of information

processing in the sensorimotor loop? Can we use ISSR based analysis to determine

any difference between multidimensional and separate 1D controls, and if there is

one, determine the cognitive or physical reason for it? If there is a difference between

single and multi dimensional controllers, does it increase with dimensionality? By

carrying out sound matching tasks in 1, 2 and 3 dimensions, we investigate how the
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speed of information processing scales with increasing numbers of parameters.

Another phenomenon of interest in this experiment is how different types of

feedback will affect the target matching process. How does the location of a visual

target (i.e. the standard Fitts’ paradigm) differ from location of an auditory one?

Is the difference between interfaces in the auditory case explained by the differences

in the visual target case, or are there more subtle ways in which the perceptual

qualities of timbre interact with the affordances of multidimensional controllers?

We also compare the case where users can repeatedly compare their sound to the

target, to the case where they have to memorise a target.

Figure 7.3 shows a possible cognitive model for the sound matching process. If

an implicit, holistic way to compare the differences in sounds exists, then it should

show up as diagonal movements in the parameter space. However, there are two

possible mechanisms for this diagonal movement. The first is the prediction of a

diagonal direction that makes the current sound more like the target, the second

being a prediction of the absolute location in the space.

In the next section, the experimental method is described. Then, in Section 7.3

we discuss how the data was analysed using the Index of Search Space Reduction

(ISSR) method. Then the results are reported, first in terms of the speed and

absolute accuracy of the search end points (Section 7.4.1), then in terms of ISSR

for the entire search trajectories (Section 7.4.2).

7.2 Experimental Method

The study was a within-subjects repeated measure design. 8 subjects carried out 8

blocks of 94 sound matches. Whilst it is generally better to use more subjects for less

trials, a pilot study revealed that performance was still improving after numerous

runs, so a more longitudinal study was required. ‘Expert’ participants were selected,
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Figure 7.3: A speculative cognitive model of the user’s sound matching strategy. The
grey box is the technology, the pink box contains cognitive processes. For analytic com-
parisons (lower, blue processes), each feature Fn needs to be compared by being in working
memory separately for both the target Fn,t and the current controllable sound Fn,c, result-
ing in a single-dimensional parameter adjustment dPn. If a way to holistically compare
sounds using the implicit system exists (upper, green processes), then it will result in
parallel manipulation of the interface parameters according to the difference vector dP.
A more likely method of implicit interaction is associative recall of the (approximate)
absolute position Pt of the target sound St.

with at least 5 years experience of music, sound synthesis or working with audio.

They were paid 30 GBP for participating. To avoid fatigue, participants completed

four blocks on one day, and four the following day. Table 7.1 shows the sequence

of trials for a single block. All users conducted the trials in this order, which was

designed to ramp up in difficulty, whilst balancing the multi-D and separate slider

conditions. The sequence could have been better balanced or randomised, but at

the expense of a coherently gamified user experience. It was assumed that after
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Figure 7.4: XY pad trial. A successfully located sound has been submitted.

8 blocks the effects of the ordering would have balanced out, but this could be a

limitation of the study.

The sound generator was a basic digital subtractive synthesiser, constructed

in Pure-Data [Puckette, 1996]. The sound could be described as a short “pluck”

with varying pitch, duration and brightness, as often heard from classic synths

such as the Minimoog. The application ran on an iPad multi-touch tablet, the

hand’s coordinates being sent from the Leap via a MIDI connection. The following

parameters were sent to the synth as 7-bit MIDI CC1 values:

1. Pitch: a one octave range, midi note 40 (E2) to 52 (E3).

1Musical Instrument Digital Interface, Continuous Control
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REP DIM UI PRC VIS MEM PIT DEC FLT

1 1 Slidr Y - - 1 - -

1 2 XY Y - Y 1 2 -

1 3 Leap Y Y - 1 2 3

2 1 Slider - - - 1 - -

2 1 Slider - - - - - 1

2 1 Slider - - - - 1 -

4 2 Slider - - - 1 2 -

4 2 XY - - - 1 2 -

4 2 XY - - - - 1 2

4 2 Slider - - - - 1 2

8 3 Leap - - - 1 2 3

8 3 Slider - - - 1 2 3

1 1 Slider - Y - 1 - -

1 1 Slider - Y - - - 1

1 1 Slider - Y - - 1 -

2 2 XY - Y - 1 2 -

2 2 Slider - Y - 1 2 -

4 3 Slider - Y - 1 2 3

4 3 Leap - Y - 1 2 3

2 1 Slider - - Y 1 - -

2 1 Slider - - Y - - 1

2 1 Slider - - Y - 1 -

4 2 XY - - Y 1 2 -

4 2 Slider - - Y 1 2 -

4 2 Slider - - Y - 1 2

4 2 XY - - Y - 1 2

8 3 Slider - - Y 1 2 3

8 3 Leap - - Y 1 2 3

Table 7.1: The trial sequence for one block. REP column gives the number of repeti-
tions of this trial. PRC indicates a practice run, not scored and not included in results.
Controlled conditions were: DIM: number of parameters, UI: interface type, VIS: Visi-
ble target, MEM: only one listen to target sound. PIT: indicates which control (if any)
operated pitch, DEC: decay time, FLT: filter cut-off. For Multi-D controls 1, 2 and 3
correspond to X,Y and Z dimensions respectively.

2. Decay time: this affected both the decay of the amplitude, and also the rate

of decay of high frequencies. The maximum note length was 500ms.

3. Filter cut-off: the cut-off frequency for the resonant low-pass filter.

The multidimensional controller used for the 3D hand tracking was the Leap
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Motion (Section 2.4.2). Skeletal hand tracking can generate at least 20 DOF, how-

ever the number of parameters was limited to 3: the XYZ position of the hand.

More parameters would likely have increased the difficulty of the search beyond

most people’s capabilities.

For each trial, after an initial 3 second countdown the user was presented with

two sounds: the “target” and the “adjustable” sound, with parameters set to random

values and a required minimum Euclidean distance between the two2. The task was

to alter the adjustable sound so that it matched the target sound. Participants were

told that speed and accuracy were equally important, and this was reflected in the

scoring system. Controls were adjusted with the right hand, and the results heard

by retriggering the sounds with the left3. In the standard test, either sound could be

triggered whenever the user wished. In the target sound memorisation test (Table

7.1, MEM condition) the target button would disappear after a single listen. The

intention behind this test was to more closely approximate a realistic sound design

task, where the user may have a sound “in their head” that they wish to create, but

was assumed to be a more difficult condition due to memory fade.

When the user was happy that their settings matched the target, they would

press the “submit” button (centre bottom Fig. 7.2) and were given a score and a

visual indication of where the target really was (e.g. Fig. 7.4). A small prize was

offered for the best score for one block. Participants stated that ‘gamification’ of

the task increased their motivation and engagement.

Figure 7.5 shows how the various experimental conditions feature in the perception-

action loop (discussed in Section 5.3).

A number of tests were control tests with a visual target (Table 7.1, VIS con-

2For the Leap, the initial settings would correspond to wherever the user’s hand was when
the test started. This start position was taken into account when calculating ISSR from distance
ratios.

3In the pilot test the sounds played automatically in alternation (reducing variability in this
part of the task), but people found it too hard to determine which sound was which.
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Figure 7.5: Different experimental conditions in the perception-action loop. The inter-
face can be multidimensional (Leap) or unidimensional (sliders). The return channel is
swapped between a visual target (VIS condition) and auditory target (AUD). The VIS
condition is a more accurate and immediate feedback modality, so revealed interface dif-
ferences more clearly.

dition). The user simply had to line the controls up with this visual indicator, the

sound being irrelevant. This was to test for interface effectiveness independent of

the more complex perceptual aspects of sound matching. In the Leap motion case

a 3D scene was displayed on the touch-screen, with “jack” style crosshairs to be

aligned.

For the 3D trials, parameters 1 to 3 were always assigned to the x (left/right),

y (forward/backward) and z (up/down) axes respectively. The 2D tests alternated
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between pairs of parameters 1 & 2 and 2 & 3. The 1D tests alternated between all 3

parameters. There were an equal number of trials for 2D and 3D tasks, sliders/Leap

control type and normal/memorise conditions.

The 1D controls were 10cm vertical sliders on the tablet screen. The 2D XY

pad’s height and width was also 10cm. Users did not have to pick up the position

indicator from its current position before moving it. Unfortunately this meant losing

data in the VIS scenario, as users could just tap the target and hardly any of the

trajectory would be recorded. The iPad was directly in front of the user, and the

Leap was positioned 20cm to the right of the top right corner of the iPad. The

size of the Leap’s active volume was 30cm cubed, 15cm above the device/table. All

interaction movements and events were logged at a sample rate of 50Hz.

7.3 Interpreting the data using ISSR

Throughput (TP) seems like it should be a useful measure of progress in this target

acquisition task. One question is if the prerequisites for Fitts’ law apply for this

experiment. The search is certainly not “rapid”, and may not be “aimed”, due

to low sightedness. The size of a sonic target is impossible to specify to the user,

therefore they cannot implement different accuracy levels to provide a range of

values for a regression line. One can calculate W from the standard deviation

of the results to obtain the “effective width” We = 4.133σ. However, the high

variance in accuracy generates extremely low ID values (for the 3D search in this

study σ ≈ 10, D/We ≈ 64/40, ID ≈ 2bits), and this single error distribution would

not provide a range of difficulties, which is necessary for ascertaining any linear

relationship. On the other hand, we carried out a large number of trials, and have a

record of all the search paths, many resulting in high accuracies. Therefore, it would

be helpful to have a method of extracting useful information from these trajectories.
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Figure 7.6: Average time taken to reach a given Euclidean distance threshold for each
interface condition, day 2, obtained using the method in Jacob et al. [1994] . Whilst
different dimensionalities may not be directly comparable here, they are shown on the
same plot for brevity. Whiskers display 95% confidence ratios at points where difference
between interfaces is significant.

As mentioned in Section 5.4.1, Jacob et al. [1994] performed a retroactive analysis

of the search trajectory that measured the time taken to reach various accuracy

thresholds (or stopping criteria). This produces a series of simulated experiments

with different target sizes. We can set as many of these levels as we wish, and

average many trials to get a mean time-to-threshold value. One can then produce

plots of time against accuracy (e.g. Fig. 7.6). For our purposes, these plots have a

number of issues:

1. The lines often curve up steeply at smaller thresholds. Straight lines would

be preferable, as would expressing the accuracy in terms of information gain,

in order to investigate Fitts’ law.

2. The starting point is not taken into account: if the user starts close to the

target, then achieving an absolute distance threshold will be easier.
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Figure 7.7: Movement time for ISSR thresholds, day 2. The lines are much straighter
than for Fig. 7.6 which plots the time to achieve absolute accuracies. Participants rarely
achieved accuracies over 8 bits, therefore variance gets much larger towards higher ISSR.

3. In more dimensions, the search space is larger, therefore achieving a given

threshold will be harder.

We can avoid these issues by expressing the simulated stopping criterion in terms

of ISSR. If the sensorimotor loop is processing information at a constant rate, then

plotting average MT against ISSR should give straight lines. Their gradients should

reflect the relative difficulties in different dimensionalities.

There is a statistical dilemma with this multiple threshold technique, however.

One can include all the trials, but poor performances never reach high bit levels,

and will not be represented towards the right of the plot. This will tend to make

the lines curve downwards, due to higher accuracies only resulting from “luckier”

trials or more skilled users. High ISSR values will also display less reliable averages,

due to the averaging of fewer observations. On the other hand, if the tests where

the threshold was never reached are omitted entirely, the good performances are

over-represented and statistical significance decreases due to the smaller sample
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Pitch Decay Cut-off

1S 5.28 9.21 9.75

2S 4.49 13.94 12.99

XY 6.13 13.76 13.34

3S 6.67 14.79 14.24

LM 7.93 16.07 15.21

Table 7.2: Inaccuracies (standard deviation from the target in CC units) of individual
parameters for all trials. Pitch is always most accurate.

size. The policy here is to use the best half of all the trials for a given condition,

i.e. set a threshold at the median ISSR achieved. Any trial that did not reach the

median bit threshold are categorised as ‘failed searches’ and discarded4. Whilst

this means the final TP values may seriously underestimate the task difficulty as

a whole, they should at least provide a relative comparison between experimental

conditions. Higher ISSRs for the successful tests are not featured on the plot,

therefore sample size is the same for every point along the line. This should not

unfairly favour any particular control device, though it will favour the results from

users more comfortable with the task. If the ISSR version of Fitts’ law holds, then

this technique should give straight lines across a range of bit values.

7.4 Results

7.4.1 Speed and Absolute Accuracy

Scatter plots of speed (time to submit) and accuracy (Euclidean distance to target

at submission) for all 2D and 3D trials are shown in figures 7.8 and 7.9. Both axes

display approximately log-normal distributions. No correlation between speed and

accuracy is seen.

Overall, the decrease in completion time for the multidimensional controllers

4Note that this discarding of sub-median trials only applies to ISSR plots in Section 7.4.2. All
the trials were used in the scatter plots and speed/accuracy results in Section 7.4.1
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Figure 7.8: Distributions of log speed and accuracy results for the two parameter case,
on the second day of the test. The XY-pad is as accurate as the sliders, but has more
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Figure 7.9: Speed and accuracy results for the three parameter case (day 2). Accuracy
is slightly less with the leap but it yields many more results faster than 7 seconds.
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compared to equivalent numbers of sliders is around 8 percent for the XY and 13

percent for the Leap. However, people significantly improved across the two days

(see later). If we look at results for the last 4 blocks (day 2), post practice the XY

was 9% faster (paired T-test between interfaces t(527) = 5.22, p < 0.01). The leap

was 17% faster than 3 sliders (t(527) = 9.61, p < 0.01), for an accuracy reduction

of 9% (t(527) = −2.36, p < 0.05). Individual analyses for each user reveal similar

patterns. Here we assume that different dimensionalities are not comparable, but

if 2-way ANOVA is run for both dimensionality and interface type, the speed-up

due to interface type is still significant (F (1, 1) = 192.4, p < .01) and there is a

significant interaction (F (1) = 5.58, p < 0.05).

Accuracy errors for all trials are given in Table 7.2, in the form of the standard

deviation of the difference between the target value and the value of the parameter

at submission. Not surprisingly, the accuracy for each parameter decreases the more

sliders need to be set (the one exception being the good result for pitch in the 2D

case). Timbre errors were around twice the size of pitch, despite a pitch range of

only 1 octave, illustrating the “anisotropy” mentioned earlier.

We may already conclude that the higher DOF controllers are marginally more

effective, but it would be preferable to have a single measure of throughput and

trajectory progress plots giving more insight into the cause of the differences.

7.4.2 Throughput

Figure 7.6 shows the average time taken to reach a given Euclidean distance thresh-

old for all 2 and 3 dimensional trials. The Leap and XY pad are faster than the

corresponding number of sliders for thresholds > 5CC. Figure 7.10 shows ISSR

plots for day 1 and day 2. Most lines now appear straighter than in Fig. 7.6, sup-

porting the idea that a Fitts-style law applies. Table 7.3 shows that if a regression
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is fit to the raw data, the wide distributions generate low R2 values, but confidence

bounds for the slope and intercept are reasonable.

On day 1 the leap was faster than the 3 sliders up to 3 bits, but the gradient bLM

is obviously steeper. Day two, the gradients bLM and b3S appear the same, so the

Leap’s throughput has improved with practice much more than the sliders’. The

intercept a is lower for the Leap. This pattern is not seen in the 2D case, here aXY

and a2S appear equal but bXY is shallower than b2S . The XY pad is faster even on

day 1. Throughput values on the plots are calculated by averaging ISSR/MT for

all data points.

The lines appear straight, the high R2 values for the averaged points indicate

a good linear fit. This indicates a Fitts-style constant information processing rate

applies for auditory search as well as visual target pointing. However, the lines for

the 3D controllers are slightly sub-linear. This would indicate that the search is

slightly harder when further away from the target. This would make sense if people

were conducting the search one parameter at a time, because the first parameter

adjustments will tend to be slightly oblique to the target direction. This may also

be the reason that throughput decreases with dimensionality (see line 3, Table 7.3).

1S 2S XY 3S LM

Intercept 1.6±0.2 1.8±0.1 2.0 ± 0.1 2.2±0.1 1.2±0.15

Slope (b) .51±.04 .79±.03 .70±.02 .85±.02 .87±.02

TP (1/b) 1.96 1.26 1.42 1.17 1.14

R2(all) 0.123 0.204 0.156 0.175 0.156

R2(mean) 0.984 0.999 0.997 0.990 0.994

Table 7.3: Results of regression line fitting for each interface on day 2. Throughput (TP)
here is taken as the reciprocal of the slope. R2(all) refers to the goodness of fit for a linear
relationship to the points for all trials, R2(mean) refers to the goodness of fit when trials
are averaged.

The intercepts can be largely explained by calculating reaction times (RT), these

are shown in Table 7.4. Firstly, RT is the average time from the presentation of the
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TP (3S) = 0.44
TP (LM) = 0.39

0 2 4 6
0

2

4

6

8

10

Index of search space reduction (bits)
T

im
e

 t
a

k
e

n
 (

s
e

c
o

n
d

s
)

(b) Day 2

TP (1S) = 0.72
TP (2S) = 0.61
TP (XY) = 0.73
TP (3S) = 0.56
TP (LM) = 0.66

Figure 7.10: ISSR vs. MT, day 1 and day 2. The points are averaged across all partici-
pants and all trials that reached the median accuracy (i.e. the accuracy of the rightmost
point on the line). Colours and markers are consistent with Fig. 7.6. The gradient for
the Leap improves (becomes shallower) with practice to match the sliders, but is about 1
second faster at all bit levels. Throughput (TP) values are calculated from the average of
MT/ISSR for every point along the line.

test until the sound is triggered. Second, listening time, LT , is taken as the time

taken from the first sound trigger until the first significant control adjustment5.

RT s are the same for all interfaces (around 1s). LT is more variable. With the

Leap, people start moving within 0.25s, even before they have time to listen to the

sound they are adjusting. This could be just random hand waver triggering the

movement threshold, but the advantage carries through to higher accuracies, so it

would appear to be real progress. The quick start also seems to explain the lower

intercept on the Leap’s plots. The question then becomes: what was it about the

Leap that enabled people to start making progress sooner? One hypothesis is that

people can categorise a sound quickly, and associate it with an approximate region

in 3D space. On hearing the target, they can move in roughly the right direction

5A significant adjustment was defined as being a movement with a velocity of over 10CC/s
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1S 2S XY 3S LM

RT 0.99 0.99 0.98 0.96 1.03

LT 0.85 1.26 1.05 1.39 0.24

Table 7.4: Reaction times (RT) and initial listening times (LT) for different interfaces.
People seem to start moving much faster with the leap, explaining the lower intercepts.

1S 2S XY 3S LM

Time −22 ? −21 † −28 † −21 † −37 †

Median Acc. −6 4 9 ? −3 8

Throughput 27 32? 48† 28? 70†

Table 7.5: Percentage difference for time taken, accuracy, and throughput between day
1 and day 2 (See Fig. 7.10). Two sample t-test, ?p < 0.05, †p < 0.01.

without even listening to their current position or considering individual parameters.

This would indicate a completely distinct learning process from that occurring with

separate controls. This will be investigated further in the next experiment (Chapter

8). Alternatively, one could argue that differences in reaction times reveal a flaw in

the methodology, in which case some way of eliminating this effect should be found.

Table 7.5 summarises the effects of practice. The sliders show around a 21%

speed improvement from day 1 to day 2, the XY improves by 28%, the Leap improves

37%. Participants keep their accuracy threshold relatively steady.

People quite often needed to revisit a slider once the others were closer to the

correct values. In theory, setting 3 parameters necessitates 2 slider swaps. In fact the

mean number of swaps was 3.3: indicating that adjustments became less accurate

if the other parameters were not set. The mean time for a swap was 0.9s. In the

2D case, number of swaps = 1.7 and swap time = 0.86s. When a visible target

was present the swap times were faster: 0.65s. So an extra 0.2s was required to re-

orient to another perceptual dimension in the sound task, probably to re-compare

the sounds and listen out for that particular difference. These swap-cost issues will

get worse in higher dimensions, leading to increased difficulty of navigation. This

bears out the hypothesis behind the ‘explorability’ heat maps in Section 5.5.5.
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Figure 7.11: ISSR plot for the visible target condition (left) the kinks in the plots for
the sliders are caused by having to swap controls. If we imagine the curves extrapolated
onwards to higher accuracies, it seems that the 3 sliders will overtake the Leap. The right
hand plot uses MacKenzie’s ID, introducing sharp drops at low IDs.

7.4.3 Comparisons with Visual Target Acquisition

Figure 7.11 shows the results for acquisition of the visual targets. Around twice the

speed and twice the bit accuracy was achieved compared to the sound task. The

only interface that gives a straight line is the Leap. The mostly flat lines for the 1

slider and XY plots are because users could simply tap the target, so unfortunately

the movement data was not recorded until their finger was on the screen for the final

adjustments. However, the straightness of the Leap’s plot does seem to indicate a

linear relation between ISSR and movement time.

In the left plot the difference between the 3 sliders and Leap is more apparent.

The sliders plot has two kinks in it. This is a result of the two control swaps, and

the fact that the first slider will be moving at a tangent to the target direction, and
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will therefore be far less efficient than the last slider: this lower initial efficiency

results in a steeper initial slope. Reaction times are similar to the auditory feedback

task (but without the extra listen time).

The second plot shows the lines when a +1 is incorporated in the ID calculation

(i.e. Eq. 2.4). This results in a sharp curve when ID < 1bit. If a regression line is

fitted to the data, this reduces R2 from 0.32 to 0.24 in the Leap’s case. So the ISSR

formula does seem more appropriate for handling this time-to-threshold data.

By subtracting these results from the results for the sound matching, we can

obtain an estimate for a residual measure: the difficulty of searching the sonic

parameter space independent of the physical control element. We may then be able

to see if the interface has an effect on the cognitive processing of the dimensions, in

addition to its effect on the physical manipulations of those dimensions. Fig. 7.12(a)

shows that the lines seem to coincide, and the intercepts and gradients of the lines

become very similar. This suggests that differences in performance were mostly

attributable to the physical issues, rather than any specific cognitive suitability to

sound design. Fig. 7.12(b) shows that, if the volumetric multiplier n is omitted

from Equation 5.7, gradients become inversely proportional to dimensionality. This

lends support to the volume reduction derivation. One could claim this as evidence

against the perceptual structure matching theory of Jacob et al. [1994], but it is

likely that the effect due to perceptual structure is too small to detect in such high

variance task.

.

7.4.4 Integration: Diagonal Movement

Another quantity of interest is whether people really did operate more than one

dimension at a time, i.e. move diagonally in the integral controller case. Diagonal
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Figure 7.12: ISSR plot for the “interface independent” component of the task (nonVIS
- VIS). Slopes and intercepts become very similar, confidence intervals are larger than
differences (left plot omits confidence intervals for clarity). Right hand plot shows that
omitting the dimensionality multiplier from the ISSR equation destroys this coincidence,
lending support for Equation 5.7.
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Figure 7.13: A small but significant correlation between amount of diagonal movement
and speed for the XY pad (left) and Leap (right).

travel is also referred to as “coordination” [Zhai and Milgram, 1998a] and “controller

integration” [Vertegaal and Eaglestone, 1996]. The former is calculated from the cor-

relation of different dimensions, but here, as in [Jacob et al., 1994], integration was

calculated as being the ratio between the amount of time that more than one dimen-
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Figure 7.14: ISSR vs. MT, for the normal (left) and MEM (right) case, day 2 only. Not
surprisingly, final accuracy has decreased, but the speed up for a given accuracy is quite
surprising.

1S 2S XY 3S LM

Mean Accuracy -6? -15† -10† -21† -18†

Time to mean acc. −14? −26† −17† −33† −29†

Throughput 8 17 8 26? 22

Table 7.6: Percentage change from normal to MEM conditions (See Figure 7.14). ?P <
0.05, †P < 0.01

sion was moving to the time only one dimension was moving. The speed threshold

distinguishing a moving/stationary dimension was set at 10CC/s. Integration values

were heavily dependent on the threshold value, but results comparing experimental

conditions were not. A scatter plot of diagonality vs. completion speed (Fig. 7.13)

shows that the amount of diagonal travel did slightly correlate with speed, however

most navigation was being carried out in a city-block fashion, with integration ratios

< 1.
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7.4.5 Target Memorisation Test

Fig. 7.14 shows the differences in the MEM case, where only a single listen to the

target sound was allowed. Accuracy, not surprisingly, worsens. Participants said

that auditioning the sound they were controlling degraded their memory of the

target. However it is interesting that the actual time to a given bit threshold is

much faster. Table 7.6 shows these differences as percentages. So for rough matches

it is actually faster to not keep re-listening to the target. Nevertheless, participants

failed to implement this strategy when they were given the choice, indicating that

they underrate their own ability to either memorise a target or predict the effect of

parameter adjustments. This would indicate that deliberate practice of a feedback-

free strategy would result in better performance.

Another interesting aspect of the MEM condition was that search trajectories

were more diagonal. For the XY pad, the integration ratio was 1.2 (MEM), vs.

0.8 (non-MEM), t(1022) = 6.95, p < 0.01. For the Leap it was 2.2 (MEM) vs. 1.3

(non-MEM), t(1022) = 7.4, p < 0.01. It seems that if people are forced not to

repeatedly compare the two sounds, they treat the dimensions in a more integral

fashion. Could this be because a back and forth comparison encourages a slower,

analytical mode of thinking, whereas a sound stored in a short term auditory buffer

is treated in a more holistic fashion? This result shows that the type of feedback

the user has access to can change their interaction strategy in quite subtle ways.

7.5 User Survey

7.5.1 Workload

Figure 7.15 shows how people rated interface difficulty. Subjects were asked to “rate

the following aspects of the task in terms of difficulty”:
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Figure 7.15: User ratings for difficulty of various aspects of the task: Physical effort,
ability to know which direction to travel in (i.e. sightedness), ascertaining the effect of
movements on timbre, locating a coarse match, and locating a fine match.

1. Physically operating the interface.

2. Deciding which dimension/direction to move (when there were multiple di-

mensions)

3. Working out what effects my movements were having (when using sliders/ XY

/ Leap)

4. Locating an approximate match

5. Fine tuning an exact match

Despite the fact that the multidimensional controllers were quantitatively deter-

mined to be more effective, both for absolute speed and throughput, users felt they

were harder to use. The Leap in particular rated as extremely difficult. So, for this
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particular task it seems that the gain in speed has come at a cost in both physical

effort and cognitive load.

7.5.2 Self-reported Strategies

Next we look at participants’ responses to questions that asked how they approached

the task.

With the multi-dimensional controllers (XY / Leap) did you try to cam-

pare and adjust each dimension separately, or could you begin to associate

sound type with locations in the space and move to them diagonally? Did

this change over time?

This question revealed that with practice most people did begin to use more diagonal

movements with the multidimensional controllers.

“In the last 2/3 runs I felt ability in 3d environment improve greatly and

even began to feel instinctual on final few attempts, rather than using in-

dividual parameter thinking. Started using lots of diagonal movements.

This might have happened earlier on if I had had more personal experi-

ence with the controller before doing the study as part of the improve-

ment might have been down to familiarity with how the device behaves.

I tend to be very sensitive to pitch so was good to be able to adjust that

at same time as homing in on filter parameters - made doing the two

tasks together quite easy.”

“With XY control I found I could work with both parameters at the

same time but with the Leap I found myself working with two parameters

primarily and then trying to adjust the third one separately. I think the

effect was the same over time”
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This participant tried to remember absolute 3D locations to move diagonally to

sounds, but found thinking about separate dimensions easier:

“I think I would have gotten to that [skilled/automatic] state eventually

with the leap controller... it may have been that i was trying to associate

sound type locations within the space and just wasn’t very good at

it. when i started to think about the dimensions separately, i think i

performed much better.”

Similarly, this user also said that they had not reached the stage at which diag-

onal movements would be possible:

“I felt like was still adjusting the dimensions individually, and I think I

always started with pitch in all cases (the easiest and largest effect, so

removing that first leads to easier homing in on the other differences). I

may have moved diagonally in specific cases, but I didn’t feel like I was

doing it very systematically - perhaps I was more so near the end when

I was getting much more confident on the system. I reckon I’d need 100

hours to get really good at it though, much like driving a rally car on

mud for the first time - the first half hour you go from not driving to

driving, but you don’t get the fluidity until you’ve done a week of it.”

Several users reported that they did use diagonal movements, but would switch

back to individual dimensions for fine tuning:

“Movement in XY pad became more free later on (last 3 runs) but

throughout I was generally thinking about individual parameters when

using XY. Did begin to use diagonal movement in this for approximation

but reverted to individual parameter thinking for fine tuning. Found it
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easy to get confused between which parameter the x and y axis were con-

trolling, despite being labelled, so sometimes free / diagonal movement

left me not knowing what was going on.”

“I used the space more, generally moved around to find the right sort of

area and then fine tune by using the parameters separately.”

“With the XY pad I tended to listen to each dimension separately. With

the Leap I did a lot of diagonal movements and this greatly improved

my ability to find the target sound I think. When making precise ad-

justments I always switched back to thinking one dimension at a time.”

This seems to support the fact that fine tuning is an analytic process. Perhaps

this is because small differences are easier to break down into separate dimensions

than large ones?

Was the task when you had to memorise the target sound from a single

listen easier or harder? Why? What difference did it make to your

strategy?

This question revealed that most participants found the task harder, but many

noticed that they made faster progress toward the approximate location of the sound.

“I found the memory task easier; I didnt have to think about matching

the sound while toggling back and forth between the target and current

sample. I think it was easier because i could store the sound in memory

and not toggle the sounds. I was also able to find the sounds in the space

of the controllers better, albeit for time after hearing the target sound.

if I took too long, or had to think of where in the space the sound was,

I lost the sound in my memory.”
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“Actually, I was pretty convinced I was better at the memory version of

the task.”

“Both easier and harder. Easier because I was forced to listen and con-

centrate more which helped focus on parameter analysis before making

lots of noise with user sound. Harder because memory of target degraded

with every triggered version of user sound. Overall it made the matching

task quicker as I had to be more economical and pragmatic with initial

adjustments. I think it improved my performance at approximation but

made it harder to fine tune the sound. The strategy used for the memory

test involved far fewer test of the user sound.”

“Harder. I paid much more attention to the sound on the single listen

as I couldn’t keep going back to compare it. I probably submitted my

sound quicker.”

“I found it harder overall as I could not carry on checking how close I was

to the target sound. However I surprised myself at how well I managed

to do on it. The XY graph i found the easiest to to the memory test.”

“Harder. I found it easier to converge to the target sound by switching

rapidly between target and current sound. While fine-tuning the sound

I tended to switch more rapidly. On the other hand, the memorising

task made it easier to find the approximate space.”

Did you feel at any point that you were conducting the task “without

thinking about it?” Were certain interface types better for this?

Some users did report that “not thinking” seemed to make the task easier, particu-

larly toward the end of the last session.
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“The less I second-guessed my positioning, and the more I made it intu-

itive and immediate, the better I think I did. I.e., I felt like, after I’d got

into the swing of it, my first stab was usually spot on, and quite often

I observed that my ’last minute adjustment’ moved me right out of the

bullseye!”

“Occasionally early on I found this with the XY pad but mostly in first

4 runs I was thinking about and adjusting 1 parameter at a time in all

3 environments. Later on I found myself being more free with the 3D

controller and using more instinct, thinking more about the space and

movement rather than about 3 individual parameters.”

“There were moments when it felt like I was intuitively seeking out a

note. This was more acute with the 3D hand tracker, then as the X/Y

box and finally the sliders gave less room for feeling where the note was

rather than working it out / constructing it. ”

Other Comments

Whilst most reported the Leap motion as being harder to use, several users really

took to it. There seem to be quite large individual differences with regard to how

comfortable people feel in the 3D space.

“Just really enjoyed using the Leap, I felt a lot more comfortable with it

after the 8 sessions. Each time I felt like I knew exactly where to place

my hands to create the sound I wanted.”

“After playing the 3D notes, it often felt clumsy and mechanical to return

to using the sliders.”
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7.6 Discussion

This experiment provides evidence that multidimensional controllers are more effec-

tive, though not by a huge margin. However, they were showing greater improve-

ments with practice, so may be expected to become faster still. The reasons for

the speed improvement appeared different for the different devices, however. The

XY pad showed a greater throughput due to a shallower gradient: it was faster

traversing the space. The speed gains with the Leap, on the other hand, seemed to

be a result of faster reaction time: for some reason people felt they could start the

search quicker, without waiting to compare the sounds first. Speculatively, this is

the result of associating regions of the space with approximate sound characters.

For achieving high accuracies, the sliders were still preferable to the Leap, which

was 9% less accurate. Therefore, in terms of sound production work-flow, high-DOF

controllers may be better for early stage exploratory creativity and live performance,

but individual controls better for late stage creativity and fine tuning, as hypothe-

sised. However it seems doubtful that these small speed gains in 2D and 3D would

be worth the extra effort. It is unlikely that this interaction method fits painlessly

into the music production workflow. There are a number of other costs apart from

the during-sound-search physical effort: for instance the initial practice time, the

pre-session effort of mapping the parameters, and the effort of raising the hand into

the air to engage with the Leap.

There is a small correlation between diagonal movement and speed, but not yet

enough to be the sole cause of significant speed up for multidimensional control.

Far more practice seems to be needed to be able to be completely comfortable

taking the shortest path through the parameter space. The text responses to the

questionnaire seemed to indicate that people did notice themselves beginning to

use a more intuitive, unconscious movement strategy, but seemingly not to the
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extent that it would have unambiguously appeared in the quantitative analysis.

One user guessed that about 100 hours would be required before they had learned

the perceptual space well enough to move directly to the target in 3D. Indeed, one

of the most striking findings is how hard the perceptual component of this task

really is. Even with three simple audio parameters, experienced participants, and

elimination of the worst half of the results, throughput is only around 0.5bit/s,

around a quarter of that for the visual target pointing tasks.

As regards the initial hypothesis, this experiment has not generated any definitive

indication that multidimensional controllers are best for the skilled quadrant of the

EARS model. For one thing, participants never consistently achieved this level of

skill (only one participant felt they had achieved accurate manipulation of more

than one parameter at a time by the end of the experiment). For another, even if

the participants had moved diagonally through parameter space this would not have

indicated automatic subconscious processing taking place. In the next experiment

we propose a methodology that addresses these problems.

The proposed ISSR characterisation of Fitts’ law proved useful for the following

reasons:

1. It enabled us to plot and compare information throughput for interfaces of

different dimensionality.

2. Varying accuracy levels could not be specified in advance, but ISSR enabled

us to extract a range of difficulty values from the trajectory data.

3. For the multi-DOF controllers, ISSR generated straight lines on movement

time plots. This leads to the conclusion that there is a constant rate of infor-

mation processing in the perception-action loop when engaged in a convergent

sound design task. Unlike the Shannon formulation of Fitts’ law, the thresh-

olded ISSR plots were straight near the intercept, and these intercepts appear
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to agree well with reaction time measurements.

This experiment was probably not precise enough to expose subtle cognitive

effects such as the integrality or separability of timbre parameters. One of the main

problems in this experiment was the variability in performance. Whilst the main

results are significant, the high variance means that detailed analysis of the shape

of the plots is probably not meaningful. In the case where subjects were matching

visual targets, the differences between separate and integral controllers can be seen

more clearly. Another unanswered question is whether it becomes possible to predict

the effects of diagonal movement, or whether the only way to effectively process

dimensions in parallel is to associate certain timbres with absolute positions in the

space.

Given that the differences between controller types seems to increase with di-

mensionality, it seems the best way to obtain a definitive answer is to increase the

number of timbre parameters. However, as it stands, this experimental method

will probably become unviable for higher numbers of parameters, simply because

it will take subjects too long to find a match. Furthermore it seems that subjects

were not using the fastest strategy: the memorisation test showed that there was

a sub-optimal reliance on slow comparative feedback. It seems a new approach is

needed—can we ‘cognitively pipeline’ a task such that participants are forced to use

skilled, diagonal traversal in a higher dimensional space? Can we provide them with

an easier way to train themselves using a fast, associative, location based naviga-

tion strategy, instead of a city-block predictive one? This is the goal of the next

experiment.
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CHAPTER 8

Experiment 3: Evaluating 6-DOF hand tracking

for Rhythmic Timbre Performance.

8.1 Introduction

The final experiment was similar to the second experiment, in that it compared the

Leap motion and touch screen sliders for target matching. In this case however,

the task is modelled on a practised performance scenario, instead of a studio-based

sound design task. The user, rather than trying to locate an arbitrary sound in

the parameter space, is assumed to have specified a number of preferred locations

(presets) which they wish to access in a timely fashion during a performance. Never-

theless, they may desire to maintain scope for improvisation, and require the entire

parameter space to be accessible if needed.

Shifting from off-line sound design to live performance alters the sound matching

task in the following ways:
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Figure 8.1: Similarly to experiment 2, this experiment contrasted two methods of con-
trolling synthesis parameters hypothesised to be suited to skilled and algorithmic modes
of the EARS model. The difference in this case was that the task was far more rapid,
easier to learn, and more akin to a practised performance. This task was expected to
accentuate the advantages of multi-dimensional control.

1. Strict time constraints: there is no longer an arbitrary amount of time to find

a target. Most music must be performed at a set tempo, so the most pressing

accuracy demand is temporal rather than spatial.

2. Memorisation and sequence recall: rather than a one-off search for a sound

that is then saved, now parameter settings must be memorised, strung together

into sequences, and reliably retrieved many times.

3. Higher mental load: during a live performance there is more sensory input from
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the environment (e.g. the audience, other musicians), and perhaps more anx-

iety. Larger temporal structures may need to be attended to and performed,

introducing further demands on explicit cognition.

Whilst the task presented here is a little more artificial than a genuine live per-

formance, it features all the above characteristics. It should utilise similar cognitive

mechanisms, and the method could easily be adapted to create a genuine perfor-

mance tool. The findings from the survey in Appendix B provide motivation that

real-time performance of timbre variation is a crucial aspect of electronic musical

interaction. The software developed for this study makes a design contribution by

proposing a system for visualising and learning stored parameter sets: Virtual Body

Emulation Assisted Multidimensional Performance (or “ViBEAMP”). By displaying

presets as virtual hand positions, this system enables the user to train themselves to

perform these sounds via a gamified sequence-matching task. By utilising some of

the cognitive principles expounded in the EARS model, a framework has been de-

veloped where the user can quickly recall and locate a position in a high dimensional

space.

In terms of which aspects of the EARS model are being investigated, this inter-

face is specifically designed for skilled (convergent-implicit) interaction. Therefore

we are aiming to find evidence of fast, open loop control for movements toward

well-known locations in the space. The experiment specifically tests the hypoth-

esis that multidimensional control is more suited to the skilled interaction mode,

and furthermore tests the hypothesis that this frees up working memory for other

musically relevant tasks. In addition, Part 1 of the session featured a short sound

design task to briefly assess this interface’s applicability to exploratory and algo-

rithmic modes. Incorporation of all-quadrant interaction is not yet implemented or

tested, due to lack of specific provision for the reflective mode; however, relevant

observations from the user survey will be touched upon in section 8.5.5.
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Figure 8.2: Illustration of the two sound sequence matching task for the 6-DOF con-
troller. Subjects need to move their controllable block hand (U) to match the neutral
setting (N), then to match the position and rotation of preset A (in this case a kick drum
with a “bricks” texture), then preset B (a bongo with a “graffiti” texture), and then back
to N. This same sequence repeats four times. Note that during the real task only the next
preset polyhedron would be showing at any one time. The kick drum is embedded in the
back wall — this type of relative reference point made position memorisation easier.

There were a number of issues that prevented the results of Experiment 2 be-

ing entirely conclusive, including high task variance and long and variable reaction

times. The requirement that the user triggered the sounds to obtain feedback on

progress also introduced variability. The metronome based performance task, de-

scribed in detail in section 8.3, addresses these issues in the following ways:

1. Any difference between uni- and multi-dimensional control should increase

with dimension. Increasing the dimensionality to six should produce a greater

effect size.

2. There was no explicit test of working memory load in the previous experiments.
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By using six parameters, it should be possible to saturate working memory in

the slider condition. Resulting interference with a secondary task can then be

measured.

3. Large variances resulted from the difficulty of the perceptual component of

the task i.e. the analysis of audio feedback. The previous experiment failed

to reveal any significant interface dependence for this perceptual component,

so this aspect has been eliminated. By using a limited repertoire of preset

targets, and increasing reliance on associative and visuospatial memory, timbre

analysis is eliminated from the perception-action loop.

4. There was no way to specify the independent variable for Fitts’ law style

regression, for either index of difficulty or movement time. However, musicians

can accurately predict how long they have to complete a task by synchronising

to a metronome. By varying the tempo, a range of movement times can be

specified.

5. Reaction times were both a source of variance, and also of a possible bias

toward the hand tracker. By using continuous, repeating target sequences,

the reaction time due to the unpredictability of the next target is reduced.

A cyclical sequence of matches also conforms better to the multi-directional

tapping task detailed in the ISO standard for pointing devices [ISO, 2002].

6. The sounds are now triggered automatically in time to a beat. This eliminates

the button presses required to trigger the sounds and to submit the matched

sound. This should result in less variability in subjects task completion strate-

gies.

7. Participants were, in general, still approaching Experiment 2 in a slow, ana-

lytical way. If the hypothesised faster modes of cognition exist, we should be
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able to expose them by using short time constraints and well practised targets.

8. Enforcing time constraints whilst engaging subjects in a continuously unfold-

ing sequence of events has the added benefit of generating more data points

for a given amount of participants’ time.

9. Tasks on shorter time-scales tend to be easier to analyse, simply because there

far fewer cognitive processes that can occur.

Therefore by introducing the idea of performing sequences to a beat, many of

the uncertainties in the last experiment can be avoided.

The following section describes the design of the ViBEAMP Leap Motion in-

terface, and how it solves one of the main problems with hand tracking based in-

struments. Next, in section 8.3, the experimental method is discussed, the task

that participants performed is detailed, and the methods for analysis of the data

are described. In section 8.5 the results of the experiment are presented. Finally,

in section 8.6 we summarise and draw conclusions, and then suggest avenues for

further research, including extending the design of this instrument.

8.2 Interface Design: ViBEAMP

8.2.1 Design Principles

The motivating principle behind ViBEAMP is that there exist dedicated systems in

the brain to process hand pose information quickly and holistically (i.e. the motor

cortex). Furthermore there are specific systems dedicated to chaining sequences

of movements (the “supplementary motor cortex”), and systems that respond to

seeing others perform certain actions and mapping them onto ones own body (the

“mirror system” [Rizzolatti et al., 1996]). In order to increase the bandwidth of the
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Figure 8.3: Slider interface for 6-DOF per-
formance. Visual target settings (“guides”)
appear as textured bars on the slider. Simi-
larly to Experiment 2, a tap anywhere along
the slider would set the bar to that location.

Figure 8.4: figure

Visualisation for 6-DOF hand tracker.
The white polyhedron indicates the users
current hand position, the guide for the
neutral preset is the black polyhedron in

the centre.

connection between the high-level artistic goals of the musician and the parameters

of the audio engine, these brain systems can be utilised: this is done by encoding

the parameters in a form that is well suited for the motor cortex to process. The

innate ability to imitate actions carried out by another body naturally leads us

to the concept of mapping parameter settings to a hand-space, displaying to the

user a virtual hand carrying out gestures, and then getting the user to imitate that

movement. How well the user can imitate the virtual hand can then be measured

experimentally, and compared to an equivalent imitation task using a less ‘embodied’

representation of the parameters, i.e. sliders or knobs.

One of the main problems with free hand tracked performance is the lack of any

visual or haptic reference points. This system goes some way to addressing the visual

aspect, if not the haptic. Recalling a given sound with the current implementation

of ViBEAMP relies on a basic motor task, that of matching a position and rotation

of a hand-like object in space. The 6-DOF1 alignment task is often referred to

as “docking” [Zhai and Milgram, 1998b]. These preset hand positions are shown

1In this study we only use 6 dimensions, but the skeletal structure of the arm/hand has at least
20 degrees of freedom, and this design could be easily extended to incorporate them.
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Figure 8.5: ViBEAMP’s “cognitive engineering’. Information flows in the direction of
arrows. The main loop (shown with bold arrows) involving the visual system, motor
system and hand-space is fast and high-bandwidth. The multidimensional data always
remains “chunked”. Much of the cognitive processing on the right can operate without
interfering with generalised working memory.

as virtual block-hands in a 3D scene (see Fig. 8.4). The user’s hand appears as a

similar shape, but animated according to the hand tracking data. Hence, setting the

parameters to play a desired preset sound is then a matter of aligning the controlled

hand with the displayed preset hand. The matching process intentionally bypasses

any individual processing of dimensions, in order that the user can concentrate on

remembering sequences of movements, improving their performance, or listening to

the resulting sounds.

Fig. 8.5 illustrates the design of the information flow through both the computer

and the brain. At no point in the perception-action loop does the information about

presets need to be de-chunked. Furthermore, the system is able to use a number

of short-term memory systems that may operate independently of general working

memory.
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Recalling the position of a given sound will involve associative memory. Associa-

tive memory is aided by concrete mental imagery [Paivio, 1969]. A mental image of

a hand positioned in a space should be far more easily recalled than an abstract set

of parameter values. The more distinctive features a location possesses, the easier

will be its recall, therefore associative memory should be aided further by giving the

preset hand polyhedron a distinctive visual texture (e.g. bricks, water, sweets etc.),

therefore the user learns to associate a given sound with a given appearance of the

hand, as well as the hand position. Texture is recommended rather than colours, as

there are vastly more distinct and recognisable textures than colours. A saved preset

is now a multi-modal associative cluster, rather than a text item in a drop down

menu, a series of slider or knob positions, or a step by step sound design algorithm.

This is a generalisable approach to learning multidimensional control settings as a

chunked unit.

8.2.2 Implementation

As in experiment 2, the iPad was used for the touch screen slider controls and

rendering the 3D scene. The Leap Motion was again used for hand tracking. As

fast simultaneous manipulation of 6 sliders was rather challenging, their width was

increased to 3cm (Fig. 8.3). For interaction with the Leap, the user’s hand position,

and saved preset positions, were conveyed graphically using an animated polyhedron

in a 3D box with 3 walls (Fig. 8.4). The walls of this box featured grid lines

to help with orientation. A triangular outcrop on the block-hand indicated the

thumb position, and lines indicated the finger end of the block, in order to make

the orientation clear.

The synthesiser used was a simple drum synthesiser, modelled on analogue drum

machines of the 80’s. These machines use a simple sine wave for the pitched com-

303



ponent, and a noise source for the stochastic components. Similar drum sounds are

still widely used today despite, or perhaps because of, a lack of realism. The noise

component was generated from two oscillators, frequency modulating each other via

feedback, producing a range of timbres from inharmonic, metallic tones to coloured

noise. The three noise controls were highly interdependent, therefore deemed more

appropriate for the 3 rotation dimensions.

The reason for using a drum synthesiser, rather than the pitched notes of the

last experiment, were as follows:

1. Drum sounds are short, therefore can be performed and listened to rapidly

without overlapping.

2. The previous experiment indicated that the pitch dimension was prioritised,

and more accurately adjusted than timbre. Drums tend to be distinguished

more by timbre, so pitch should be treated in a more integral fashion.

3. There are a number of widely recognised categories of synthesised drum sounds.

4. For rhythmic tasks that needed to be conducted in time to a metronome,

percussive sounds may help the user maintain timing accuracy.

For now, no dimension reduction or complex mapping was carried out. The

one-to-one mappings for the Leaps degrees of freedom are detailed in Table 8.1.

8.3 Method

The different interfaces (Leap and Sliders) were used in two separate sessions of

about 1 hour and 20 minutes. Interface order was counterbalanced. There were

two parts to each session, the first being a short exploratory task, and the second a

performance training session. Twelve subjects participated, graduate students aged
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DOF Synthesis Parameter Physical Range
x (left/right) Sine pitch -150mm to + 150mm
y (up/down) Sine pitch decay time 100mm to 400mm

z (in/out) Sine amplitude decay time -150mm to + 150mm
roll FM noise 1 pitch −45◦ to +45◦

pitch FM noise 2 pitch −45◦ to +45◦

yaw Noise amplitude decay time −45◦ to +45◦

Table 8.1: Mapping from the 6 degrees of freedom of the hand to the drum synthesis
parameters. Physical position range is relative to the coordinates of the Leap Motion
device. Angular ranges are relative to the direction the subject was facing.

between 26 and 41. 11 were male and 1 female. Three of the participants had

completed Experiment 2, no others had experience of using a Leap Motion. All had

at least 3 years experience of playing a musical instrument (M = 14, SD = 7.7),

but 5 had little experience of synthesisers or sound design.

Task 1: Sound Design

This part of the experiment was a sound design task, aiming for a middle ground

between the completely open-ended exploration of experiment 1 and the precisely

specified target location of experiment 2. Participants had to search the parameter

space for 8 drum sounds, conforming to the following drum categories: kick drum,

snare drum, tom-tom, hand clap, closed hi-hat, cymbal, bongo and cowbell. They

were told to search for a sound that they liked, but that was also appropriate to

the category. Only 6 participants felt experienced enough to carry out this task,

therefore the other 6 were provided with examples randomly chosen from the ones

saved by other users. When they had located the sound they would save it, and the

parameter settings would be stored for use in part 2. Participants were told to take

about 10 minutes to find these 8 sounds. All interactions were logged.
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Task 2: Performance

This task took the form of a training exercise, where the goal was to match targets

in time to a metronome. These targets were selected from the 8 presets saved with

the same interface in part 1. The target would appear as a floating block-hand for

the Leap, or indicator bars on the sliders (Fig. 8.3). These guides were textured

with the relevant texture image, in a position determined by the 6 parameters of

the relevant preset. Hence, by continually moving the hand to align with the next

guide in time for the next downbeat, the user would perform a rhythmic sequence

of drum hits. Users received immediate feedback as to their accuracy, in the form of

their block-hand momentarily flashing a colour based on the accuracy of the match.

A running total score was displayed in the top right hand corner.

First, participants were shown a demonstration performed by the experimenter.

They could then practice at a slow tempo, until they felt they fully understood the

task. During the Leap demonstration, an indicator displayed the current Euclidean

distance to target to assist the user in learning how to align the blocks precisely.

Table 8.2 summarises the terminology used for the series of events. Whilst the

sequence of events was somewhat complex, in fact it could be reasonably summed

up by the heuristic “watch the preview of the sequence, then imitate that repeatedly

Table 8.2: Summary of terminology used regarding the order and grouping of trials.

Target A single trial, featuring a target to be matched within a given time.
Sequence A randomly selected sequence of 1-3 targets to be matched consec-

utively. The neutral position bookended these sequences.
Tempo Level A set of 5 repetitions of the same sequence at the same tempo (1

preview, 2 guided and 2 unguided). Each level was slightly faster
that the last.

Run A continuous 5 minute training sequence featuring 15 tempo levels.
Set 3 runs of sequence length 1, 2 and 3.

Session Consists of the sound design task, and 4 training sets. There was
one session per interface.
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until the next preview”.

A session with one interface consisted of 4 ‘sets’ of 3 ‘runs’, a run being about

5 minutes of continuous interaction. A run was performed to a metronome click,

increasing in tempo for each level. Participants would need to continuously keep up

with the targets during this run, but could rest between runs. For each run there

were 15 different sequences, at 15 different speeds: these are referred to as ‘tempo

levels’. A sequence always started and ended at a neutral setting (preset N), where

all parameters needed to be set to the middle position (64CC). In the Leap’s case,

preset N was the hand being held horizontally in the middle of the space. Subjects

were told that the neutral position was scored, and important to match accurately,

but results for this target were not used in any data analysis. The neutral position

both provided a reference event for people to know when the sequence was starting

and ending, and also ensured that participants would not start moving towards

preset A before the allowed movement period. The neutral preset sounded like a

low snare drum.

The sequence for the first run of a set was only 1 sound long, therefore involved

alternating between the neutral and a random selection from the 8 preset sounds

(N,A, N,A...N). The second run featured two preset sounds (N,A,B, N,A,B...,N), and

the third run of a set featured a sequence length of 3 (N,A,B,C, N,A,B,C...,N). The

selection of the presets was random for each new level. There were no repeating

sounds in one sequence. Figure 8.2 illustrates how a two sound sequence would

proceed in the 3D visualisation.

Figure 8.6 shows the format of a single level in more detail. The user would be

played a preview of the sequence, and shown the control settings for each one in

turn. To help the user to judge the movements required, an animated block hand

was shown moving from target to target during the preview. For the sliders, dimmed

slider bars would animate between the guides. Subjects were allowed to rehearse
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their movements along to the preview, but were advised they could rest at this point.

The animation was an exponential curve adjusting each dimension simultaneously.

The preview also offered an opportunity to mentally adjust to a slight increase in

tempo. Subjects would then have to recreate this sequence 4 times, by moving the

controls to the right settings: twice through the sequence with visual guides to align

with, and then twice with no guides. These unguided sequences were to test how well

they could memorise and recall both the control settings and the sequence ordering.

By the time users reached the unguided stage they had seen the target sequence

3 times, this repetition was intended to eliminate a large amount of uncertainty in

reaction times, visual search and so on. The participant’s own block-hand was still

visible during the unguided runs2.

The metronome played in 4/4 time, with the drum sounds being triggered on

the first beat of each bar. This beat was also the point in time at which the distance

from the target was measured. Visual guides for a target needed to be shown the bar

previously, so that they appeared in time for users to match them. Unfortunately,

this caused a little “cognitive dissonance” for some users, as the icon for the next

sound would appear as the sound for the previous target was playing (for illustration,

refer to the difference between the sound output and visual guide rows in Fig. 8.6).

This clash is largely unavoidable: alternative orderings of events were tested and

found to be even more confusing. A potential visual reference that could have helped

orient people in the sequence would be to display the whole sequence as a DAW style

timeline, with a play-head marker scrolling through it.

Some care was put into specifying the tempo range. On one hand it is useful

to test the limits of performance: generating an intercept on the time/ISSR plot,

and hence deriving an estimate for processing latency. This would imply taking the

2For future work it may be interesting to remove the visualisation entirely, in order to investigate
proprioceptive memory, and how well the instrument would function on-stage without an obtrusive
screen.
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Figure 8.6: Order of events for a single tempo level, for a 2 preset sequence. N refers
to the neutral preset, A and B the first and second randomly chosen presets. A’ refers to
the user’s attempt to match the settings of A. Time runs from left to right. Long vertical
lines represent bars, with beats (audible as metronome ticks) marked along the bottom.
At the end of this series, the next tempo level starts, and this series repeats.

tempo up to the limits of people’s abilities to make any progress at all. On the

other hand it is unwise to provide subjects with a task so bewildering that they

become discouraged and demotivated. In preliminary tests it was found that an

allowed movement time (MT ) of 2.5 seconds was certainly enough time to reach a

saturation point for accuracy for both interfaces, and a comfortable speed to get

used to the process. MT = 0.5s seemed to be the point at which the slider task

became impossible. Therefore the initial tempo was 96 bpm, and the final tempo

was 480 bpm3. The demo runs ran considerably slower for explanatory purposes

(MT = 5 seconds). The tempo increased linearly, therefore MT was spaced inverse-

linearly. A linear increase in tempo is preferable to a linear decrease in movement

time; for example, the transition from 2.5 to 2.4 seconds is almost imperceptible,

3Note the matches were only every 4 beats. At the upper end of the tempo range (> 300bpm)
the clicks would probably be interpreted as 16th notes.
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but one from 600ms to 500ms is abrupt and hard to adjust to. This spacing also

generates more data points in the region of interest: where performance starts to

degrade significantly.

To alleviate unnecessary anxiety, participants were forewarned that the tempo

would reach a point beyond their abilities, and to try to keep their motivation

relatively steady throughout the task.

Ideally, we would have had some way to measure performance on the secondary

task, which was to remember the drum category sequence. This could have been

self reported by pressing an extra button to indicate a “blank mind” sensation,

or an extra stage where the user would to enter the drum sound categories in the

previous sequence via another interface. It was felt that this extra demand would

have overloaded the user still further, and interfered with the rhythmic nature of

the interaction. We assume that forgotten sequences will be distinguishable in the

data nevertheless, as by the end of the test the 8 sound positions will be fairly well

memorised, but the random sequences will not. Therefore poor performance on the

longer sequences will be mostly due to failure to recall the sequence, rather than

inaccuracies in recalling the control settings.

After the two sessions subjects completed an online questionnaire (see Section

8.5.5).

8.4 Data Analysis Methods

As in the previous experiment, accuracy results are transformed into search space

reduction (ISSR) in bits, measured relative to the start point of the movements. For

trajectory analysis, the thresholding technique is again performed, to ensure acci-

dental movements towards the target do not count as real search space reductions.

With highly sighted aimed movements this becomes less necessary, and thresholding
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only affected the trajectory shape of the slowest trials and the exploratory sessions.

For calculation of throughput (TP), ISSR is divided by movement time and

averaged across all trials. As we shall see, TP values could be very different for dif-

ferent tempi: this makes averaging the TP across all results and drawing statistical

conclusions problematic. For instance, if the experimenter carries out more trials

at slower tempos, averages and relative results could be very different. The aver-

age of a quantity that changes under different experimental conditions is not very

meaningful. Despite this problem, it is still worth reporting average TP, if only for

the sake of clarity in summarising the results. However for determining statistical

significance, only comparisons between distributions at a given tempo level can be

made. No confidence intervals are shown on the averaged throughput bar charts

for this reason. Instead, significance levels for all reported effects are given in the

ANOVA results, and confidence intervals for each tempo condition are shown on the

ISSR plots.

8.4.1 Hypothesised Results

Here follows a summary of the main hypotheses in terms of the expected observa-

tions.

1. The operation of the sliders will be generally slower than the Leap. This will

result in lower values for throughput for all tempo levels.

2. The latency to process 6 separate dimensions, visually, cognitively and phys-

ically, will be higher than for hand poses. For the sliders, at a certain tempo

the latency will be too great, and motor productions will simply not be ready

in time. This will result in slider throughput falling off more steeply towards

high tempo levels.

311



3. Chunking of hand poses will result in spare cognitive capacity, enabling better

memorisation of preset sequences. Hence, with the Leap, longer sequences

will show less information loss, relative to their guided counterparts, than

the separate controls. Furthermore, reduced cognitive load is expected to

have other beneficial side effects, including enabling participants to pay more

attention to the audible results, and producing a greater sense of rhythm and

flow. The slider task will feel unpleasant and frustrating.

4. Reaching is one of the most essential and innate motor tasks, therefore is

hypothesised to make use of a well coded and highly efficient “motor program”.

The fact that the task is time constrained will encourage this motor program

to be executed as an “open loop” or “ballistic” motion, rather than as a “closed

loop”, iterative motion. Therefore trajectory analysis may produce differently

shaped curves from those derived from the iterative correction model and Fitts’

law. Rather, results are more likely to show the linear relationship given in

[Schmidt et al., 1979].

5. Due to the holistic nature of the position-rotation chunk, and parallel pro-

cessing of hand pose dimensions, a high degree of coordination between the

dimensions (direct diagonal movement through the 6 DOF) is expected.
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Figure 8.7: Averaged ISSR values against movement time, for all guided trials. Whiskers
show 95% confidence interval. Differences were significant for all tempo levels.

8.5 Results

An 11-way ANOVA was run on the matching accuracy values (in ISSR bits) for all

the trials. Details can be found in Table 8.3. Highly significant effects were found

for interface (Leap/Sliders), user (1-12), tempo level (15 steps from 2500-500ms),

guidedness (visual guides present or not), order (order in which users performed in-

terface sessions), set (practice effects), preset (which drum type was being matched),

location in sequence (1st, 2nd or 3rd sound), and repetition (1st or 2nd repetition

of either guided or memorised sequence). Clearly the visually guided, tempo based

scenario produces more statistically robust results compared to the unguided search

in Experiment 2.

313



0 500 1000 1500 2000 2500
0

2

4

6

8

10

12

14

16

T
h

ro
u

g
h
p
u

t 
(b

it
s
/s

e
c
)

Allowed Movement Time (ms)

 

 

Leap, Guided

Sliders, Guided

Figure 8.8: Throughput against movement time, for all guided trials. The Leap’s
throughput keeps rising for increasing tempos, but the sliders reach a peak at 900ms.

8.5.1 Throughput Results for Guided Trials

For guided matches, the average accuracy did not differ significantly between differ-

ent sequence lengths4. Therefore, ISSRs for all guided trials at a given tempo level

were averaged.

The most important results of this experiment can be seen in Fig. 8.7. This

plots search space reduction (in bits) against the time allowed for the movement—

with faster tempos to the left5—for both interface types. In this, and all subsequent

ISSR plots, vertical whiskers indicate 95% confidence intervals, the slider interface

4The only exceptions were the very fastest trials, at these speeds the Leap showed a 2 bit
decrease in accuracy for longer sequences, the sliders a 3 bit decrease. These were still averaged
across.

5To avoid confusion, note that as the trials were performed in order of decreasing movement
time, so curves with positive gradient may be referred to in the text as “decreasing towards faster
tempos”.
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Source d.f. F Prob F
Interface 1 6457 < 0.001

User 11 438 < 0.001
TempoLevel 14 430 < 0.001

Guided 1 2635 < 0.001
Order 1 100 < 0.001

Set 3 267 < 0.001
Preset 7 33.1 < 0.001

Position in sequence 2 26.3 < 0.001
Seq. length 2 232 < 0.001

Seq. repetition 1 20.06 < 0.001

Table 8.3: 11-way analysis of variance of ISSR for the various experimental conditions.
All sources produced significant effects. Many cross terms (not shown for clarity) were
also significant.

results will be shown in green, and the Leap’s in magenta. The plot shows that for

movements towards visual targets, the Leap outperformed the sliders for all tempo

levels, but in particular the faster trials. At 500ms the sliders performance is less

than 2 bits, while users can still achieve 7 bits of search space reduction with the

Leap. This result is highly significant (e.g. T-test carried out on ISSR values for

the 500ms trials, t(574) = 21.1, p < 0.001).

If we divide these results by the allowed time, we get values for throughput. Fig.

8.8 shows how throughput alters with allowed movement time. According to Fitts’

law, the line should be straight, and approximately horizontal, however this is not

the case. The Leap’s throughput significantly increases as the task gets faster, from

6b/s at the slowest tempo, to a peak of around 14b/s at the fastest tempo. The

sliders throughput begins to increase slightly, but hits a peak far earlier than the

Leap, achieving 8b/s at around 900ms and then rapidly declines. The total average

throughput for the Leap was 11b/s, and for the sliders 5.9b/s.

The sliders’ ISSR curve would appear to be intercepting the time axis at around

400ms, for both guided and memorised targets. Data for sub-500ms movements was

not recorded, so the zero bit intercept for the Leap is harder to predict. In order to
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Figure 8.9: ISSR (left) and TP (right) plotted against movement time, for the author’s
high tempo trials with the Leap (shown in red), along with the author’s session at the
standard speeds (black). Throughput peaks at around 400ms. The intercept is predicted
to be around 150ms.

produce an estimate, the author carried out a number of faster trials and the results

are shown in figure 8.9. Here we can see that the intercept is around 150ms, with

peak throughput being at around 400ms. So, as expected, the latency is higher

for the sliders, by nearly a factor of three6. Values quoted in Kieras and Meyer

[1997] estimate that each motor command ‘feature’ takes about 50ms to prepare,

with another 50ms to send to the muscles. Therefore it appears that the hand pose

requires two prepared features (position and rotation?), whereas the sliders require

7 (i.e. approximately siz, the number of features). It should be noted that this plot

shows what kind of performance would be expected with approximately 5 hours

more practice.

6The author’s fast, unguided results (not shown) are roughly 5 bits less accurate at 2500ms,
stay flat until joining up with the guided results at around 750ms. The intercept is again around
150ms.
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8.5.2 Throughput Results for Unguided Trials
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Figure 8.10: Throughput decreasing with the length of the memorised sequences. The
sliders suffer more for long memorised sequences.

Fig. 8.10 shows a bar chart of average throughput for the different lengths of

guided and memorised sequences. When sequences were recalled from memory,

performance suffered for both interfaces, but the sliders significantly more so. For

single sound sequences, the Leap performed almost as well as for the guided task

(11.4b/s guided, 10.9b/s memorised). The sliders did not suffer too much for a

sequence length of 1 either (5.9b/s guided, 5.6b/s unguided), but for two and three

sound sequences average slider TP declined by 3.0 and 4.5 bits per second, compared

to a decline of 1.6 and 3.4 b/s for the Leap.

In the sliders case, this loss of information is rather more catastrophic, as there

was far less information there to begin with. Stated in relative terms, the Leap’s

decline for lengths 1, 2 and 3 compared to guided sequences was 5%, 11% and 26% .

Using the sliders, TP was reduced by 21%, 52% and 73% respectively. So the sliders

suffer disproportionately for longer sequences, supporting the hypothesis that by

placing more demand on working memory, concurrent tasks suffer as a result.

Fig. 8.11 shows the memorised trial results, again plotting ISSR against MT.

The upper plot reveals that the Leap’s ISSR stays very flat for most of the tempo

range. This implies that the accuracy of the remembered positions was the limiting
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results, at around 800ms/9 bits. This suggests that it is the accuracy of the memory that
is the limiting factor, rather than speed of recall or manipulation.

factor for the slower speeds, rather than the speed of recall or manipulation. For

example, the 2 sound sequence was achieved to an accuracy of about 9 bits given

760ms. About the same accuracy was achieved for all MT between this and 2.5s

(9.5 bits). Therefore it was the memory itself that, on average, contained 9 bits;

only with movement speeds below 760ms would this show any deterioration. Whilst

the sliders curve shows a similar phenomenon for the 1 sound sequence, the curves

for lengths 2 and 3 tend to decrease more steadily as tempo increases. This leads

to the conclusion that the loss of information was related to the latency of recall,

as opposed to the accuracy of the memories themselves, or the speed of physical

manipulation.
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Figure 8.12: Performance improvements with practice, averaged across all guided trials
for each of the 4 sets. Upper plot shows detailed differences between first and last set.
The lower bar chart shows that, in absolute terms, the two interfaces improved by roughly
the same amount: about 2 bits/s. The sliders improved more in relative terms.

Fig. 8.12 shows how performance improved with practice, with throughput av-

eraged for all trials for each of the four sets. In absolute terms, the two interfaces

improved by roughly the same amount: about 2 bits/s. The sliders improved more

in relative terms however, from 4 to 6 bits/s. For the memorised sequences (Fig.

8.13), progress was very similar: improvements of 2 bit/s for both interfaces. How-

ever, closer analysis of the upper plot indicates that the sliders tended to show larger

improvements at slower tempos—in fact, almost catching up with the Leap for the

2500ms trials—but this 5 bit improvement did not translate to the faster results.

Again, this implies that it wasn’t simply that slider positions are intrinsically harder

to encode in memory (given enough exposure, almost anything can be memorised),
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Figure 8.13: Performance improvements with practice, averaged across all memorised
trials. The upper plot shows detailed differences between the first and last set. The upper
green curve (triangle markers) reveals that the sliders improved most at slow tempos, but
this improvement in accuracy did not translate to a similar increase at fast tempos. The
Leap improved more evenly across the tempo range.

it was also that recall took longer, due to how the information was presented and

encoded. These results support the hypothesis that using hand pose information

significantly decreases the time taken for the participants to access memorised pa-

rameters.

If participants had already completed a session with one interface, then presum-

ably this would improve their performance with the other interface in the second

session, due to familiarity with the format of the task. Surprisingly, this was an

asymmetrical effect. Figure 8.14 shows carry over effects due to interface order. Ex-

perience with the sliders helped the subsequent Leap session by 1bits/s (for guided
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trials), however experience with the leap did not help with the next day’s guided

slider performance. Obviously this effect is small when compared to the overall

difference between interfaces (5bit/s), so controlling for this effect is not essential.

Unguided sequences improved by around 0.5bits/s for the second session regardless

of interface order.

Slider TP (1st session) Slider TP (2nd session) Leap TP, (1st session) Leap TP (2nd session)

T
h

ro
u

g
h

p
u

t 
(b

it
s
/s

e
c
)

0

2

4

6

8

10

12
Guided
Memorised

Figure 8.14: Effects of session ordering, in terms of average TP. Participants who used
the Leap first showed no advantage over those who used the sliders first in terms of their
slider performance (first 2 blue bars), but those who used the sliders first showed a slight
advantage in the Leap task (blue bars 3 & 4).

It was expected that the reduced cognitive load when using the hand tracker

would result in users being better able to correct mistakes when repeating the same

sequence. In other words, they would be able to reflect upon their results and

improve them the next time round. In fact both interfaces showed similar improve-

ments for the second repetition of a guided sequence, and slight worsening when

repeating a memorised sequence (Fig. 8.15).

Finally, we look at the effect of preset positioning on performance. A number of

users remarked that some locations were harder to physically reach than others, and

some were harder or easier to remember. The effects of this can be seen in Fig. 8.16,

which shows the average absolute distance to target for each preset type, for guided

and memorised trials. Kick drums, which tended to be located in the rear left corner
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Figure 8.16: Different drum sound categories had somewhat different average accuracy
levels and different recall accuracies, due to their location in the hand pose space. Accuracy
is given as absolute Euclidean distance (lower is better).

of the space (see Fig. 8.2), tended to be close to the left and rear walls: how the hand

abutted these walls could be recalled fairly accurately. This leads to the difference

between guided and memorised accuracy being small (3.5CC distance increase when

guides removed). The cowbell, in contrast, tended to be at the front right, with no

features behind it to act as a reference, therefore recall suffered (6.3CC worse when

guides removed). The lowest absolute guided accuracy was for the cymbal, this

tended to be right at the front of the space with a large clockwise yaw (a physically

awkward manouvre), and also near the edge of the tracking volume and pitched

toward the line of sight of the tracker (yielding unreliable hand pose estimation).
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Figure 8.17: Averaged trajectory curves, colour indicates tempo (blue slowest, red
fastest). There seems to be two approximately linear regions. The first (region 1), corre-
sponds to fast ballistic motion toward the approximate target. This seems to be adequate
for accuracies of up to around 8 bits. The second linear region only appears for movement
times slower than 1 second and accuracies beyond 10 bits.

Hence this region’s accuracy suffered irrespective of the presence of a visible guide.

8.5.3 Trajectory Analysis

In this section we use the trajectory data to investigate the physical movements in

more detail. As in Expt. 2, the trajectory data was thresholded and converted to

ISSR. All the different trajectories for a given tempo level were then resampled and

averaged for each time point. Unfortunately, the early trajectories for the sliders

are often not present, due to the fingers not contacting the screen; nevertheless,
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the curves were surprisingly similar to the Leap trajectories. Results for the guided

trials for the Leap are shown in Figure 8.17. Note that the shapes of these curves

result from and average of many trajectories, so some features may be have more of a

statistical origin rather than being features present in every trajectory. Lines are not

straight, so a regression is not applicable, however there do seem to be two zones

that are approximately linear. The first is a rapid increase, achieving a gradient

(throughput) of about 25b/s. The second, towards the end of the slowest tempo

level’s curves, is slower with a gradient of about 3b/s. These plots seem to reveal

two different phases, the first being fast ballistic movement, the second using slower

iterative corrections. Faster tempos yield different trajectories: the acceleration

is sharper, the gradients of the curves increase, and the final corrective phase is

eliminated entirely. This shows that movements were being adjusted according to

the allowed time. Note that the end points of the curves—the ISSR at the end of

the movements—give exactly the data points for the plots in the previous section

(e.g. the end points of the lines in Fig. 8.17 give the shape of the Leap’s plot in

Fig. 8.7).

Figure 8.18 shows the trajectories for the memorised targets (all trials of sequence

lengths 2 and 3 were included). Here, we see the very similar final accuracies for the

slower trials noted in the previous section, around 9 bits. Subjects respond to this

limitation by stretching out the trajectory curve along the time axis, presumably to

minimise the force needed to carry out the movement. In theory, one could use the

fastest curves to start the movement and then begin corrections earlier, but since

there is not sufficient knowledge of the target, this would be inefficient. It appears

that even at the start of the movement there is already an estimate of the accuracy

of the memory, and the movement is scaled in time accordingly. This scaling is seen

down to approximately 900ms. At this point, there is no longer enough time to reach

that accuracy level. The solid red line is the curve for the fastest guided trajectory,
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Figure 8.18: Averaged trajectory curves for memorised sequences (lengths 2 and 3
averaged). Participants appear to stretch the movement curve in time. This suggests a
prediction of a realistically achievable accuracy is taken into account during the movement
preparation stage, and effort is minimised accordingly.

showing that the fastest guided and memorised trajectories are virtually identical

(at least when averaged), with less than 1 bit difference, only diverging right at

the end of the curve. This is interesting as it would imply that either the time

for recalling the memorised target and processing the visual information is exactly

the same; or, more likely, that using proprioceptive target memory was faster, and

therefore subjects were not using much detailed visual information at all7.

A number of users mentioned that they found rotation harder to match than

position. To see this effect, average ISSR trajectories for each 3D quantity separately

are plotted in Fig. 8.19. Rotation achieves just 60% of the information accuracy

7A third explanation is that physical limitations are dominant here, and cognitive differences are
not important: this would mean the 150ms time axis intercept discussed in the previous section
should not be interpreted as cognitive latency: rather it is an upper limit for the frequency of
arm movements. However the 400ms intercept for the sliders is surely not related to this same
limitation, and as noted these values agree well with the motor program preparation time based
on the number of features.
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Figure 8.19: 3D search space reduction trajectories for position (solid lines) and rotation
(dotted lines). Rotation is consistently about 60% less accurate than position.

of position. This ratio seems largely independent of movement speed. This effect

could have been due to the difficulty of aligning the visual blocks, but presumably

visual feedback becomes less important as the 8 positions are learned. Alternatively

there may be a tendency to prioritise position over rotation, certainly hand position

is a more essential quantity for common tasks. It maybe simply that the movements

were smaller to control rotation, and subject to more noise. Another factor could

be a number of extremely poor results due to tracking loss: where the location was

correct but the orientation of the hand would be flipped. Another interesting feature

of this plot is that the linear corrective phase seems to be entered slightly earlier for

rotation.

If the hypothesised switch between fast ballistic movement and slower correc-

tive behaviour exists, then we would also predict that the coordination between the

different dimensions decreases during this phase: it is harder to make deliberate cor-

rections in 6 dimensions simultaneously. To affirm this, the trajectories were split

into 6 time windows, and the average correlation between all pairs of dimensions
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Figure 8.20: Average correlation between all pairs of dimensions for Leap trials. Tra-
jectories were split into 6 time windows, and correlation between dimensions calculated
within each window. The time axis indicates window start time. Colour indicates tempo
level (blue slowest, red fastest). As expected, correlation (diagonality) tends to be high
during the early ballistic phase of the movement, and then reduces in the corrective phase.
The faster the tempo level, the more coordination.

calculated within each window. These correlations were then averaged across all

trials of a given tempo. Thus, a correlation of 1 would indicate perfect synchroni-

sation of progress in all dimensions, i.e. a perfectly straight 6D diagonal line. Fig.

8.20 shows that coordination does indeed vary as expected, from around 0.8 for the

beginning of movements (this peak consistently occurring around 400ms) to around

0.65 for the end of slower movements. Furthermore the faster the movements, the

higher the coordination.

8.5.4 Schmidt or Fitts?

The plots of ISSR against MT presented in the previous section are clearly not

straight. This could be due to saturation effects, reaction times at fast speeds and
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Figure 8.21: Plot of the linear relationship between effective target width and movement
velocity (for all guided trial results). Faster tempo trials are towards the upper right. This
confirms that tempo based movements are better modelled by the “Schmidt paradigm”
than Fitts’ law.

accuracy limitations at slow speeds. Or it could be a statistical artefact of averaging

of many curves with two linear regions: these regions transitioning at different times

according to some distribution. More likely, however, is that movements conducted

in a fixed time interval require a different model, due to a different movement control

strategy i.e. open loop control results in the linear relationship as discussed in Section

2.4.1.

This relationship is formulated as

We = K1 +K2
D

MT
, (8.1)

where We is the effective target width, calculated as the standard deviation of
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the finishing position (in more than one dimension, this can be calculated as the

square root of the mean squared Euclidean distance to the target), D is the initial

distance to target, MT is the movement time, and K1 and K2 are constants. In

other words, accuracy is proportional to movement velocity. Plotting We against

D/MT should therefore give straight lines. Figure 8.21 shows that this model is

indeed well supported by the data. For the sliders it seems particularly surprising

that this rule would hold.

One would also expect, given the seemingly two stage process observed in the

trajectories, that the slower trials nearer the origin would deviate from the straight

line (curving upwards), but this seems not to be the case. Values for the regression

constants were K1 = 20.9CC, K2 = 1.82× 105s−1 for the Leap, and K1 = 23.1CC,

K2 = 3.91× 105s−1 for the sliders. It is interesting to note that the K1 intercept is

almost identical: this value might be interpreted as the final accuracy for an infinitely

slow trial. The gradient K2 expresses how the accuracy varies with absolute velocity:

the Leap’s inaccuracy increases at half the rate of the Sliders.

ISSR now depends on d2. This is somewhat unfortunate as ISSR now depends

on the absolute results of the trials, rather than being a relative, scale-free quantity.

This dependence also means that we cannot switch back from this linear relationship

to extrapolate what throughput curves would look like outside this time range, or

with different constants.

8.5.5 Subjective Experiences and Questionnaire Responses

The slider task was immediately perceived by participants as far harder, both phys-

ically and cognitively, than the Leap. Many users expressed a certain amount of

trepidation as to what they were expected to perform. This contrasts with the pre-

vious experiment where the participants initially seemed more comfortable with the
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Figure 8.22: Averaged responses for estimates of workload. Standard errors are shown
as red whiskers. The only aspect rated higher for the Leap was physical demand.

sliders, despite comparable measured performance with the Leap.

Other advantages and disadvantages of the two control types, not immediately

apparent from the data, were noted during this experiment. Many people noted that

some slider positions were much harder than others, particularly those with large

variations from the centre line, and those that involved a high-low-high shape for the

index, middle and ring fingers. One female participant felt that the sliders were too

large for her hands. There was also an issue that some hand positions could obscure

the position of the guide bars. Therefore a portion of the sliders’ performance deficit

should be attributed to their unsuitability for simultaneous manipulation. The Leap

also suffered from some issues, including arm fatigue, and occasional, but serious,

loss of tracking at the extremes of the tracked region.

For assessing subjective experiences of workload, the standardised NASA TLX

questionnaire was used [Hart and Staveland, 1988], all questions being asked for both

interface conditions. The one alteration was to separate the “temporal demand” into

two questions, one relating to the slowest tempo and one to the fastest. This was to
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see if the subjective results matched the quantitative result that the Leap showed

an increased relative performance advantage for fast tempos. Each aspect was rated

from 1 to 10, and are treated as continuous variables. Mean scores for the sliders

are reported as MS, and for the Leap as ML.

Figure 8.22 shows a bar plot of the average response to the TLX questions. As

expected, the Leap was rated as lower demand across almost all aspects, resulting

in average workload score of 7.6 for the sliders and 5.2 for the Leap (t(11) = 3.3,

p < 0.01). The one exception was for physical demand (MS = 6.5, ML = 7.8),

not surprising as it is difficult to hold the arm in the air for long periods of time.

Interestingly, the biggest difference was for how happy the participants felt with

their own performance (MS = 3.0,ML = 7.1)8.

The other large differences were for mental demand (MS = 9.1, ML = 6.2), and

temporal demand at the fast tempo (MS = 9.9, ML = 6.1). Temporal demand for

the slowest tempo (MS = 3.7,ML = 2.5) gave a smaller difference than the fastest

tempo, agreeing well with the throughput results.

The leap was rated as being fairly frustrating (ML = 5) despite better perfor-

mance than the sliders (MS = 7.6). This is probably mainly due to issues with

the errors in rotation tracking mentioned above. An intermittent catastrophic er-

ror can often be more frustrating than a predictable performance deficit, particu-

larly for musical interaction. “Effort” was still rated reasonably high for the Leap

(MS = 8.8,ML = 6.2).

To what extent were people aware of the sound aspect of the task? In theory, one

could mute the drum sounds and perform perfectly well along with just a metronome

click, so it was necessary to ask the participants to report their level of attention to

the audio. Ability to engage with the sounds should also be an indicator of spare

8Note that this feature is inverted for the plot and the overall average, i.e. happiness is sub-
tracted from 10 and becomes a ‘dissatisfaction’ rating
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cognitive capacity. Users were asked “How often did you notice the sounds you were

making with the Sliders/Leap?” and rated this from 1-10. As expected, the sounds

were noticed far more when using the Leap (ML = 6.8, MS = 3.2). Another event

not deducible from from the data was if participants forgot the order of the sounds

entirely (the secondary task). To ascertain this, the question asked was: “With

the Sliders/Leap, what proportion of the time do you think you had forgotten the

2/3 sound sequence of sounds entirely?”. The Sliders were estimated as causing

forgotten sequences 71% of the time, contrasting with 35% for the Leap.

An important aspect of this training task which was not tested was how well the

better short term memory results would translate to long-term memory. Participants

were asked “If you tried to remember the settings of your sounds now, which interface

would be easier to visualise?”. Responses were rated on a scale of 1 (definitely the

Leap), to 10 (definitely the sliders). The ViBEAMP visualisation was strongly

favoured (M = 2.1). A similar scale was used for the question “Which interface felt

more rhythmical/flowing?”. Again users responded strongly in favour of the Leap

(M = 1.8) with all but two respondents selecting the extremal value.

Further questions featured text responses, to attempt to find out how people

reacted to the task on a higher, reflective level. Users were asked what strategies

they developed to improve their performance. Many strategies were reported for the

sliders, but less were reported for the Leap, probably because there was less need

for them. With the sliders, users immediately discovered that setting each control

one by one was not a viable strategy, and some kind of simultaneous operation was

necessary. Most strategies involved learning the shapes that the bar heights formed:

a good example of attempting to chunk separate quantities into a holistic unit.

Many users reported grouping the positions into one shape per hand, each hand

being responsible for 3 sliders. When the tempo became too fast some said they

would simply ignore some of the sliders. Several users tried to identify the controls
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that moved the most from the central neutral position, and only concentrate on

those. One user, a pianist, and the best performer on the sliders by some margin,

sometimes rotated the hand to approach the sliders from the top of the screen in

order to set the high-low-high groups, and sometimes used groupings of 2 and 4

sliders per hand, instead of 3 and 3.

With the Leap the strategies tended to be less about chunking, and more about

finding analogies for the gestures. For instance, “the change from the neutral posi-

tion to the tom position was like a plane taking off and banking to the left. Such

patterns were easy to remember”, and “I also found trying to imagine ‘hitting’ the

gesture helpful with my timing as it made more of a dance—as opposed to move my

hand into position as soon as possible and holding it until the beat.”, this comment

would suggest that trajectory stretching results in section 8.5.3 could be explained

by this rhythmic interaction strategy. One user found that it helped to interact with

the hand tracker standing up (it was less fatiguing if the hand was lower relative to

the shoulder). Another made use of their “phonological loop” to repeat the names

of the drum sounds to themselves in order to remember the sequence.

Participants were also asked “Did you notice any differences in your strategies

between the slowest and fastest tempos?”. Ideally we would like to find a subjective

correlate of the increasing bandwidth for the Leap at higher tempos, whether there

was any further chunking going on for the whole sequence, or whether people could

feel their proprioceptive memory coming into play. One response seems to indicate

that a short-term proprioceptive memory might play a part when gesturing rapidly

with the Leap: “when the tempo was slow, I paid more attention to what I saw.

when the tempo was faster, I paid more attention to where the previous position

of my body was.”. Other users remarked on the fact that they were starting to

connect the discrete targets into continuous gestures: “I was more able to remember

the sounds as a pattern which I then started to remember how to ‘play’. At some of

333



the faster points I started to keep my hand moving so that it travelled through the

measurement point at the right time.”, and another participant: “Faster tempos had

a more fluid movement, and it was then that I started to think about how to play

the musical pattern rather than where to put my hand.”. This respondent noted the

more direct link between body movement and rhythm: “With the leap, at higher

tempos it felt more like playing a ’traditional’ drum controller, where the movement

was directly related to the rhythm. This was not the case with the sliders”. One

participant noted that using the Leap at slower tempos left enough spare cognitive

capacity to be able to plan a more effective strategy for the task: “I was more

creative with the tasks in the slower Leap sessions (i.e. increased use of ‘ping pong

technique’), which may have led to a better score in the faster tempos” (note the use

of another movement analogy). This provides support for spare cognitive capacity

enabling reflective divergence. One participant identified the transition to slower

corrective adjustments during longer movement times: “At the slowest tempo there

was more time for small adjustments, whereas faster tempos where thought of as

one continuous movement.”. Most subjects remarked they ceased to consider what

individual controls were doing to the sound when carrying out the matching task,

though one user claimed they could specifically correct for pitch when repeating

sequences using the Leap.

Another aspect that was hard to ascertain was which interface was better for

finding sounds in the exploratory session. Opinion was more mixed here. Partici-

pants were slightly in favour of the leap (M = 5.8), but three users strongly favoured

the sliders. A text response question revealed that it was previous knowledge of how

to construct certain drum sounds that the users felt made the sliders preferable for

this task. For instance, “Some of the sounds like kick drum and hi-hats I have

produced many times on conventional/software synths. It was quite easy to make

those using sliders. For exploration however I found leap more interesting since the
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space is not explored yet. The problems arise with leap once small changes need to

be made. For me it will take more time to adjust to 6 degrees of freedom using the

hand.”. One participant remarked that the predictable parameters (pitch, decay

etc.) were better controlled by a slider, but the unpredictable controls (FM noise)

seemed easier to explore with hand poses. Another difficulty noted with the FM

feedback component was that small adjustments sometimes had a very large effect

on the sound. In situations like this it was impossible to reach a stable sound with

the Leap, or find a good sound again once the hand had drifted away from it. This

problem particularly applied to metallic sounds, like the cowbell, which were often

sought on the narrow borderline between pitched and chaotic oscillation. It should

be noted that some participants failed to realise that certain dimensions existed

(particularly yaw) when exploring the space. Perhaps hand poses are not good for

exploratory search, as they tend to produce somewhat stereotyped behaviour.

A final question was if the participants themselves felt that the task was a fair

comparison between the interfaces. Answers were on a 1-10 scale from strongly agree

to strongly disagree. Opinion was quite ambiguous here (M = 5.8), and 4 responses

were strongly negative. This is probably because the task was heavily weighted

towards performance, and inappropriate for other stages of music making. The final

question read “Do you think this type of task could be a helpful way of practising

and improving musical performance with a hand tracker?”. Answers ranged from 1

(Strongly disagree) to 10 (Strongly agree). An average of 7.5 indicates that users

generally perceived the task as musically relevant.

A final text box was provided for any other comments, one user remarked: “The

sliders provided a pretty hectic and unpleasant experience whereas the Leap was

fun and engaging to use. I wanted to play more after the experiment whereas after

the sliders I NEVER wanted to use sliders for anything ever again.”.
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8.6 Conclusion

By designing a musical task based around fast, automatic motor control, the true

strengths of multidimensional controllers are revealed. The distinction between

slow and fast thinking drawn in the EARS model has proved useful in motivating

this experimental design. By demanding the interaction be fast, and providing a

number of parameters in a way the sensorimotor system can understand, we have

utilised a number of autonomous brain systems to carry out a search space reduction

problem much faster than standard interface paradigms allow. So, this experiment

has demonstrated that the “cognitive pipelining” design principle can work well for

musical interfaces. It provided qualitative measurement of the resulting speed up,

and both the data and the survey responses fitted well with the hypotheses.

The study also provided evidence that it is the linear, Schmidt model that gov-

erns the speed-accuracy tradeoff for rhythmic, timely musical interactions. This is

in contrast to Experiment 2, which seemed to support the logarithmic relationship

of Fitts’ law. So it seems that, depending on whether the goal constraint is time or

accuracy, the brain proceeds using a different strategy: i.e. fires a different motor

program. If the task is time constrained, and an appropriate learned motor program

is available, an open loop production will be fired. If, on the other hand, the subject

is faced with an accuracy goal constraint, or no previously practiced motor program

is available, then a closed loop production is fired, and sensory feedback is used to

guide the system to its target. The analysis of the trajectories seemed to show that,

if the time constraint is long enough, it is possible to start open loop and finish

closed loop.

Judging by the effectiveness of Fitts’ law in describing many rapid one and two

dimensional tasks, it may be that closed loop interaction is usually optimal in low-

dimensional situations. Figures as low as 200ms have been claimed as being the
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threshold for switching between the two strategies [Meyer et al., 1982]. On the

other hand, figures as high as 600ms have been quoted when there is a time rather

than accuracy constraint. For this 6-DOF study, the transition between the two ap-

proaches occurs at around 1 second, so it could be that increasing the dimensionality

of the task lengthens this threshold. This would make sense if closed loop interac-

tion is less effective at optimising many dimensions simultaneously: the higher the

dimensionality, the longer the feedback loop, and the greater the benefit gained from

eliminating it. The decrease of the coordination between dimensions over the du-

ration of the slower trials, where users switched from ballistic to corrective motion,

seems to further support that iterative corrections focus on fewer dimensions.

The current version of the Leap Motion proves a useful tool for investigating this

form of interaction. However, it is far from the perfect hand tracking solution: the

chief problems being occlusion of its line of sight making hand pose unpredictable,

and a decrease in reliability at the limits of the interaction space. This could be

alleviated by using multiple devices set up orthogonally, and the data integrated

according to each stream’s confidence rating (currently impossible without using

multiple computers). It would open up many further gestures if the two hands

could reliably make contact with themselves and each other. Future devices will no

doubt show improved tracking performance [Rautaray and Agrawal, 2015].

Other problems may be unavoidable with free-space gestures. The first problem

is disengaging with the device. It is hard to remove your hand from the interaction

volume without that movement being interpreted as a gesture itself. There is cur-

rently no way of switching between coupled and decoupled control. There may be

ways to deal with this, for instance by using a foot-switch, or perhaps closing the

hand. Another design issue related to disengagement is how to provide the option

of locking parameters that you do not wish to change. With 6-DOF interaction it

is rather difficult to swap to a fine-tuning mode in lower dimensionality, as you are
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constantly engaged with all 6 parameters. The major advantage of the sliders in the

exploratory stage is how easy it is to focus on a subset of the parameters and ignore

the rest. Their stability when making very small adjustments is also essential. Per-

haps future versions of ViBEAMP could implement a zoom function, and switches

available to the other hand to mute and solo different parameters. The second ma-

jor problem is fatigue, this was the only aspect rated worse than the sliders in the

questionnaire. All participants experienced discomfort from an hour of interaction,

despite taking breaks during the preview sequence and between runs. Hand pose

interaction probably compares unfavourably with keyboards or physical controllers

in this regard, but perhaps no worse than supported instruments such as violin and

flute. Standing up seemed to alleviate this problem slightly. Twisting the hand

caused issues for both exploration and performance, therefore it is recommended

that yaw should be avoided, or at least assigned to a less important parameter.

It is interesting to note that if the experiment was conducted without very fast

tempos, and with no working memory task, hardly any difference between the de-

vices would have been observed. Fig. 8.11 shows that at slow tempos (2.5 seconds per

match) and single sound sequences, the sliders achieve 13 bits of accuracy and the

Leap 14 bits. In contrast, at around 1 second matching time and a 3 sound sequence

to memorise, the sliders are reduced to 1 bit and the Leap maintains 9 bits. There-

fore it is only when introducing cognitive demand and temporal urgency—precisely

the conditions pertaining to musical performance—that dramatic discrepancies are

seen. This explains why DMI research might reach conclusions at odds to other

HCI user studies: in many HCI studies the user is never forced out of the “com-

fort zone” where they can rely on visual feedback, and hence operate within the

Fitts paradigm. Nevertheless, these results are also expected to apply to hand-pose

matching for other, non-musical applications, in particular fields where time based

interaction is crucial: such as animation or computer games.
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In conclusion, this experiment illustrates that it is possible to conduct research

that both solves some of the problems in musical interaction design, as well as

testing and confirming deeper hypotheses about the underlying cognitive principles

involved.

8.6.1 Future Directions, Limitations of The Study

Presumably, if participants were asked to repeat the exploratory stage after their

performance training sessions, they would be able to find appropriate drum sounds

much faster. In a longer experiment one could imagine revisiting the first task, to

detect any change in exploratory strategies with the presence of tacit experience.

Another similar open question is whether practice at the metronome based per-

formance task would speed up an unconstrained search for an arbitrary sound in

the space, as in Experiment 2. In theory it should help, enabling a fast starting

movement toward the approximate sound location, but after this the search would

probably proceed at a similar speed as before. For completeness, it would be good

to compare six-dimensional sound search results with those from Experiment 2, and

also to perform 1, 2 and 3 dimensional matches along to a metronome.

Due to the possibility of using 6 fingers to set the sliders simultaneously, it is

claimed that the performance differences to the Leap are principally cognitive, rather

than physical in nature. However, as noted, some slider settings were rather awk-

ward, and necessitated further strategies to overcome, such as reallocating fingers

to different sliders etc. As well as the physical awkwardness, recall and selection

of these alternative strategies may have further slowed the sliders down. This is a

limitation of the experiment, in that we cannot be absolutely sure what proportion

of the sliders’ poor performance was due to this particular physical problem.

It may have been a mistake to show an animated hand during the preview stage,
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as participants may have unconsciously been imitating that movement, rather than

generating their own strategy. Whilst this would be an interesting result (and

encouraging in terms of basing our instrument design on the power of imitation),

we cannot say for sure, but seeing as the results agreed with prior Schmidt paradigm

experiments, presumably the movement was still natural. It would be interesting

to carry out the experiment with no animation, or perhaps a number of different

animation curves, to see if any imitation effect can be seen.

Another limitation of this experiment was that many design features were not

be tested in isolation, for instance it is not clear how much the association of the

visual texture with the presets aided recall, or how much performance would suffer

if all visual feedback was taken away for the unguided matches.

A final concern is that, due to the Schmidt paradigm of a linear relation between

We and D
MT

it is not clear that ISSR is, statistically speaking, the best approach

to analyse the results. Whilst the peak throughput is an interesting effect, and this

information transfer is perfectly translatable into usable data, the resulting depen-

dence of ISSR with absolute distance is concerning, as one is effectively averaging

over different experimental conditions.

For future research, with higher degrees of freedom, it is recommended not to

make comparisons with the ‘current standard’ (sliders or knobs), as it seems fairly

certain they will not perform as well, and will simply take up the participants

time with an overly frustrating task. Rather, two different high-DOF controller

designs should be used to explicitly test hypotheses, and refine the design of mul-

tidimensional control systems. For instance, it is not clear if there is a particular

advantage to using hand pose, or whether other high-DOF tactile physical systems

would show similar performance. Other adjustable experimental conditions could

be the provision/non-provision of visual, haptic and auditory feedback, and imple-
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menting the system in Virtual Reality (VR)9. A ViBEAMP system, ideally, would

be rendered in a stereoscopic VR environment, meaning that the user’s real hand

would be perceived as exactly coinciding with their virtual hand. It is not clear

how much extra performance would really be gained in VR, but it is likely that

depth alignment would improve [Boritz and Booth, 1998]. It may become possible

to construct more informative reference points for the middle of the space, and the

ability to move the head around the space may alleviate some problems caused by

occlusion in some cases. With the current implementation, users have to perform a

body-space to screen-space coordinate transformation10, in VR the coordinate sys-

tem would be perfectly body-centric. Full hand tracking, and rendering accurate

hand models could make accurately performing more than 20 parameters possible.

One wonders how well this method of learning hand poses could be applied to such

tasks as learning the Glove-talk system [Fels and Hinton, 1993], where hand gestures

were mapped to 10 parameters of a parallel formant speech synthesizer. For the ex-

pert user (who was a pianist), around 100 hours were required to speak intelligibly,

could this be sped up using virtual hand emulation?

Compositions have traditionally been stored and recalled using music notation.

The ViBEAMP technique has the potential to store musical gestures as 3D record-

ings of those gestures themselves, which could be replayed in virtual reality in the

body-space of the user. This is a visual notation that is as tightly related to the

motor actions as one could hope for. Whilst it may take many months to learn

how to associate dots on a stave to a finger actions on an instrument, even a novice

can match their hand to a virtual hand without much effort. Given a particular

mapping, one could imagine experts recording their skilled actions for beginners to

9The Oculus Rift VR headset was tested for this system, but proved to be bulky and unreliable,
and could have caused motion sickness. The main experimental results were obtainable without
this extra complexity.

10In fact, this transformation seems to be cognitively undemanding: mapping mouse movement
to an on-screen cursor involves a similar transformation, and is performed effortlessly.
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imitate and learn from.

Another logical extension to this investigation is testing the ability to follow more

complex, continuous gestures. Instead of sequences of discrete hand poses, subjects

could be shown an animated hand movement, and have to imitate this gesture

from start to finish. Again, the guided and non-guided conditions could be tested.

The performance evaluation would have to be adjusted so that the distance of the

subject’s hand to the animated hand was constantly being assessed. A continuous

information-theoretic measure of throughput would need to be used, similar to that

developed in [Accot and Zhai, 1999].

What about attempting to create meaningful improvisations within the full

degrees-of-freedom hand pose space? For two hands the number of dimensions

is approximately 40 (potentially realising Pressing’s “Imaginary Superinstrument”

[Pressing, 1990]). With such high dimensionality, the effects of an arbitrary spatial

variation in gesture would be impossible to predict, and effectively random, how-

ever, as we have seen, even in low dimensions timbre is still quite unpredictable.

Ultimately, exploratory random variations may be valuable: as long as they can be

stored, recalled and incorporated into a repertoire. So hand tracking might cater

well to both the skilled and exploratory modes. The challenge is the alternation

between the skilled and algorithmic modes, which boils down to the ability to select

subsets of the parameters to be frozen, or manipulated separately. This is one design

challenge facing any further work on multidimensional interaction. For accurate ad-

justments, the lack of stability for an unsupported arm is likely to be a problem for

hand trackers.

It could be argued that for this experiment, only 8 sounds were being used,

therefore the actual information content of a target selection was only 3 bits. Whilst

this is a fair objection, and in a way we have “cheated” both by providing preset

positions and visual targets, there is actually no limit to the number of potential
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guide positions, and, given practice, no theoretical limit to the number of items that

can be stored in procedural or associative memory. Furthermore, the other regions of

the parameter space are instantly available for exploration, therefore improvisatory

flexibility is there if desired. Since exploration is the principle reason why one would

want a large parameter space, it seems justified to include the entire volume in the

measure of effectiveness. Memorising large numbers of different hand poses is a

challenge, but in fact the guides can be used during performance whenever needed.

The major limitation is probably be the distinguishability of very similar hand

poses. Possibly guides could be semi-transparent, only becoming more visible as the

euclidean distance becomes small, in this way only the approximate position would

be need to be memorised, and more precise alignment could be visually guided.

Hand tracking technology will develop, but it will presumably only become more

accurate and more reliable, rather than being reconfigured entirely. This gives

practised free space gestures more longevity, potentially solving the problem of skill

obsolescence that dogs existing controllers. If there is no physical device, then

the musician’s device manipulation skills will not become obsolete. The mappings

themselves may still be brittle, in that whenever a new instrument is mapped with

the system the preset space must be created and learned anew; however the skill

of hand pose matching should be transferable to new synthesisers, and even other

computing tasks.

This kind of system may finally realise the dream of making a direct physical

connection to truly complex, yet precisely specified, musical output a reality. Unfor-

tunately, the dream of single handedly consciously controlling every aspect of that

output in real time is almost certainly an impossible one, due to the apparently

serial nature of conscious cognition.
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CHAPTER 9

Discussion

In this Chapter, we summarise and tie together the results of the three experiments.

In Section 9.2 we discuss some design recommendations that emerge from this inves-

tigation. We then discuss where this research could lead in the future, and speculate

further on the relationship between throughput, Flow and creativity.

9.1 Summary of Experimental Methodology and

Results

The three experiments provide strong evidence that the way musical parameters are

presented to an artist does indeed affect the cognitive strategies used to locate target

states. If the creative process is considered as nothing more than a sophisticated

parameter-space search, this entails that how the interface represents the parameters

will indeed have significant effects on the creative process. The brain’s internal
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predictive model of the parameter space is used to generate gestures that will adjust

the artefact into a desired state. Thus, the geometry of the mapping between

conceptual space, gestural space and the synthesised output has an impact on not

just how easy or quick it is to achieve the desired results, but also how parameters

are processed mentally, and the forms of the paths through solution space. These

search paths can be analysed in terms of search space reduction and information

flow, and this analysis reveals differently shaped throughput plots for the different

interaction modes.

9.1.1 Evidence for Distinct Modes in Creative Interaction

The EARS model makes claims for there being four main ‘modes of thought’ behind

creative interactions. By dividing creative thought along a divergent-convergent axis

and an implicit-explicit axis, it provides an argument about what underlying cogni-

tive principles these modes emerge from, and predictions of how they translate into

interactive behaviour. The three experiments fall short of providing comprehensive

evidence for all of Chapter 5’s theory, but they do support the claim that there

are indeed interaction modes that fundamentally differ from the analytic, accuracy-

oriented mode. The experiments reveal in more detail what these alternative modes

might be, and make significant progress towards quantitatively investigating the

parameter space traversal strategies associated with each mode.

The first experiment revealed that the exploratory mode is very different from

targeted search. Exploration was hypothesised not to rely on any prediction of

the effect of one’s actions, therefore parameters designed to be separable and pre-

dictable are less appropriate, and indeed may be harmful due to their reduction

of explorability1. Experiment 1 confirmed this by showing that an unpredictable,

1Explorability being loosely defined as the inverse of the amount of effort required to access the
entire parameter space.
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low dimensional mapping was preferred for exploration over larger numbers of pre-

dictable, one dimensional controls.

Experiment 2 revealed that despite their appearance of being predictable and

separable, typical synthesis parameters are far harder to predict than one might

suppose. Finding a target sound by setting three of these parameters was a challenge

even for experienced musicians. Increased numbers of dimensions increases the time

to find desired sounds to such an extent that some amount of exploratory interaction

becomes necessary. Therefore exploratory interaction is both a creative strategy that

encourages novelty, and also a response to a large and unpredictable search space.

Experiment 2 also revealed that the hypothesis underlying Fitts’ law — that

the human nervous system processes information at a constant rate — still seems

to be applicable in target finding situations that are very different to one or two

dimensional pointing tasks. For sound design tasks, auditioning of target and current

sounds is needed for feedback on progress. The target search is far slower and the

search trajectories are far less direct than for pointing, nevertheless averaged plots

of bit-accuracy versus time were still approximately linear.

The third experiment revealed that skilled, rhythmic interaction is also fun-

damentally different from accuracy based target finding movements. Rather than

obeying Fitts’ law, timely movements obey Schmitt’s law — a linear relation be-

tween absolute accuracy and movement velocity. This means that when analysed

in terms of information input, throughput peaks at a certain tempo, and this peak

throughput is considerably higher than the values for slow, accuracy based move-

ments. This experiment showed that it is possible to train people to rapidly select

targets in high-dimensional control spaces.

Unfortunately there was no experiment to compare all the creative modes for

various numbers of dimensions. If this was done, then the throughput plots could

be overlaid and more definitive answers obtained concerning which mode is more
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ISSR

Skilled (temporal target)

Fitts diagonal 
(accuracy target)

Analytic, separate controls 
(accuracy target)

Exploratory

Time

Figure 9.1: Sketch of the information flow signatures of various interaction modes from
all three experiments. Gradient gives throughput. Skilled, rhythmic interaction makes
rapid initial progress, but levels off at low accuracy (green). Fitts-style movements demon-
strate constant information progress (black). If controls are separated, city block navi-
gation means the first movements make slow progress, but the final ones may be more
effective and reach high accuracy (blue). Random exploratory interaction makes little
progress until the target is stumbled upon, whereupon a large ISSR spike is seen (red).
The precise scaling and crossover points of these plots will depend on dimensionality, and
probably the specifics of the experimental setup.

effective when, and how this effectiveness scales with dimensionality. Nevertheless

we can sketch some speculative estimates. Figure 9.1 shows a rough summary of

the shapes of throughput versus time plots2 for a sound search in 3 dimensions.

The curves suggest that different interaction modes have different information pro-

cessing ‘signatures’. For rhythmic open-loop interaction the curve is sub-linear (see

Section 8.5.1). For accuracy based Fitts-style interaction the curve is linear for

2Note that in experiment 2, time was the dependent variable and was on the y axis, whereas
in experiment 3 time was the independent variable so was on the x axis. Therefore experiment 2’s
curves (separable, analytic navigation) are flipped.

347



multi-dimensional controllers, but introducing separate controls for separate dimen-

sions introduces kinks due to city-block paths and control swap times. Hence the

curve becomes super-linear (see Section 7.4.3). Finally, for exploratory search it

is likely that no progress is made for a considerable amount of time, but then the

sudden discovery of a suitable target sound results in a large information spike. An

interesting topic of further research is whether one could detect the presence of these

different modes in a more extended data record of creative interaction, for instance

across the creation of an entire piece of music.

It is too strong a claim to make that any of these curves really represent an in-

formational signature distinguishing fast-implicit and slow-explicit brain processes,

but this possibility is certainly worth investigating further.

One objection to the EARS theory in relation to experimental evidence is that

it would be extremely hard to show that the four proposed modes are exhaustive.

They may be neither necessary nor sufficient to form a complete model of creative

thought or interaction. It is hard to guarantee that there is no remaining “secret

sauce” to creativity that we have not considered. Even assuming the four modes

are sufficient, one might ask what additional process is it that decides which mode

to use in which situation. This line of questioning easily leads to infinite regress,

however. One possible avenue to investigate the sufficiency of the model would be

to try to implement these computational processes in software, and let the system

try to produce its own music. However this would require implementing a means

for the software to evaluate the results of its actions.

9.1.2 Implicit and Explicit Thought Processes

One of the divisions in the EARS model is the difference between explicit and

implicit thinking. One of our principal goals was to show that encouraging the
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use of unconscious, embodied processing can result in measurable speed-ups in the

control of digital information. Experiment 3 showed that by utilising a cognitive

process thought to be implicit (i.e. the ability to align hand poses) one can design

a way to perform parameter adjustments that shows increased speed and lower

working memory use. The ability to memorise and perform longer sequences of

sound matches using the ViBEAMP technique showed that hand tracking technology

can potentially yield interactions that are less intrusive on explicit thought processes.

This was reflected in both quantitative measures of throughput and qualitative user

feedback.

Comparing these results to Experiment 2, it seems clear that merely providing

the potential for adjusting multiple parameters simultaneously will not necessarily

result in users doing so. Initially, the searches with the Leap in Experiment 2

were conducted in a city-block fashion. It was only by redesigning the task, and

representing the target as a chunked unit (a position/orientation) that this tendency

could be bypassed. The major caveat here is that the ability to keep track of and

individually adjust single parameters was then lost. It appears difficult to reconcile

fast performance-style interaction and detailed sound design in a single interaction

style. Either one is using chunked multidimensional processes, or one is explicitly

focussing on a single parameter, but not both.

Future work could involve questioning the participant as to what they were

consciously aware of during the sound search. Whilst self-report can be unreliable,

this may be one way to find out what the explicit system was occupied with, and

hence infer what other aspects of the task were being carried out unconsciously.

A more interesting dual task could be used, where the second task could be a

more creative one, such as a Remote Associates Test (RAT) [Mednick, 1962]. In

this way interference of interface use on more creative thought might be tested.
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9.1.3 Quantifying Creative Interface Effectiveness

This thesis has attempted to establish a methodology for evaluating musical inter-

faces quantitatively and objectively. The main quantities of interest, throughput,

explorability and working memory load are summarised below. Throughput, as

measured by the rate of search space reduction, could be thought of as a measure

of the artist’s ability to shape their artistic work by a certain amount in a certain

time. Whilst this quantity is probably not a direct substitute for the quality of

“expressiveness”, it should be clear that it is a good correlate, and certainly a pre-

requisite, for expressive and fluent interaction. It may be excessively reductionist

to rate musical devices by a single number, but if a single number is required then

surely throughput is a leading candidate.

The proposed ISSR method of measuring the amount of information flow through

a device solves some of the stumbling blocks of using Fitts’ law for synthesiser

interfaces: the unnecessary overhead of attempting to establish movement laws for

increasing numbers of dimensions, and the difficulty of establishing a “target size”

in a timbre space. ISSR should be applicable to many other input device evaluation

scenarios.

Throughput is only valid as a measure of how easily a pre-existing target can

be obtained using a device. However, this form of interaction may in fact be a

minority case for creative pursuits. Exploratory scenarios without predefined goals

are equally important. Whilst speed of manipulation is important here too, mea-

suring progress towards a target is impossible. Therefore evaluating ‘explorability’

seems essential, but to do this objectively is rather challenging. Explorability was

measured in Experiment 1 as being the number of interesting or useful sounds dis-

covered in a certain time using a given interface, however the notion of ‘useful sound’

is somewhat subjective and may vary across participants, and indeed may vary for
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a given participant across time.

Another important quantity evaluated was working memory (WM) load. This

must be tested alongside throughput, as an interface that provides high throughput

at the expense of saturating attentional bandwidth will not count as expressive.

With a demanding interface, the artist may have no spare cognitive capacity with

which to form intentions to express. In Experiment 3, this was measured as the

fall-off in performance when trying to remember sequences of different lengths. For

a low WM demand interface, longer sequences should be easier to remember, and

hence be performed with higher accuracy. For experimental data analysed using

ISSR, this accuracy deficit can also be given in bits. Comparing this deficit for

different interfaces gives us the amount of information that was lost from memory

as a result of the interface-related cognitive overhead.

This methodology may be extended to investigate other important quantities not

specifically looked at in this thesis, such as learnability and retainability of instru-

ment skill. For learnability, one can track how quickly throughput increases with

practice. For skill retainability, one would perform repeated experiments, separated

by a number of weeks, and investigate how well the practised gestures from the

first session were retained for the next. Any drop in performance could again be

measured in bits (similarly to the working memory test), giving figures for how well

skill can be maintained over longer time periods.

9.2 Design Recommendations

In this section we look at the implications that the EARS theory and these experi-

mental results have on the design of musical interfaces, and make some recommen-

dations for designing them.
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For multidimensional skill acquisition, use associative chunks, not pre-

dictive dimensions

Access to individual parameters is only required by the algorithmic mode. Neither

the exploratory nor the skilled modes should require the user to adjust one thing at

a time. Therefore this interaction style should surely be much less prevalent than

it is at the moment. This is not a new claim, but Experiment 3 revealed that by

deliberately designing an interaction that used ‘chunked’ information that obscured

the individual parameter values, throughput could be increased significantly.

None of the experimental work specifically tested people’s abilities to predict the

effects of travelling diagonally through arbitrary parameter spaces, but Experiment

2 revealed how hard this was. It seems that associative processing is far faster and

easier than predictive multidimensional processing. Experiment 3 showed that it is

quite easy to learn specific points in the parameter space via discrete hand shapes

that are associated with particular sound and visual textures. Therefore we can

make a recommendation that a musician’s repertoire should be built up from these

chunked locations in the space, not from knowledge of individual directions in the

space.

This is not such a radical proposal as it may seem. For example, beginner

guitarists learn chords as visual chunks. Predicting how to move their fingers indi-

vidually so as to change each of up to 6 notes to fit with the next chord would be far

too difficult. Instead, they simply recall the shape of the chord as an arrangement of

dots on a grid. This shape provides the visuospatial scaffolding by means of which a

single hand shape chunk can be established in memory. Whilst practising using the

visual aid, procedural memory is established, and eventually the visual notation is

no longer necessary. Experiment 3 indicates that hand tracking and virtual reality

technology could provide a powerful tool to establish a closer connection between
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visuospatial notation and body movements.

Consider the brain’s time-scale hierarchy: the speed of feedback paths

For musical interactions, the ability to work with multiple time-scales is essential.

The presence of a number of time-scale systems in the brain should be considered

when attempting to provide an interface that works efficiently: there is no use

providing an interface that requires the top level cognitive systems to deal with

round-trip events on time-scales shorter than around 500ms. Likewise, one cannot

expect intuitive lower-level movement control processes to know about or predict

the effect of operations that extend over longer time-scales, or that feature explicit

thought processes such as branching logic or means-ends analysis. If operations are

consistent and state-free, they can be performed automatically, but if the user has

to consciously make a decision between multiple scenarios held in working memory,

then this takes both time and attentional resources.

One concrete recommendation is to avoid ‘modes’ in which the same physical

controls have different effects depending on some mode which is set elsewhere. This

will be the cause of constant error as the implicit system will most likely fail to

consider complex modal dependencies. For example, one may automatically reach

and change a control and only afterwards will the explicit system realise that the

control was not mapped to the correct parameter in the current mode.

Informative feedback is a staple of HCI guidelines, but it is also important to

consider how informative feedback might negatively affect instrumental skill acqui-

sition. Given the brain being a ‘cognitive miser’, it will tend to settle for least-effort

interaction styles. Experiment 2 showed that if ‘slow and easy’ feedback is avail-

able, users may rely on this excessively, and not be training their internal models to

operate the device without feedback. This is one aspect of the trade-off between the

‘barrier to entry’ and the ‘virtuosity ceiling’. More consideration should be applied
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to the training stage for electronic music input devices, not just telling users what

the device does, but also helping people to train themselves to use it optimally.

Again, cognitive science can inform this research.

A few simple tests can establish if skilled interaction style has been achieved.

These tests involve removing various means of feedback. Can the device be used to

achieve a specific result:

1. With the eyes shut?

2. With the sound off?

3. Without the device present?

The latter case will test how strong the user’s mental model of the parameter

space is. If the artist can imagine their way to the solution without any feedback

at all, this will make interaction more efficient when the device really is present.

Avoid forcing the user to constantly customise and alter mappings

The space of mappings between control and parameter spaces is magnitudes larger

than the two spaces themselves. Therefore the construction of a mapping will be far

more demanding than using an existing mapping. Therefore the typical interfaces

that are used for one-to-one mapping (requiring slow analytical thought) can be

critiqued using the above model. It seems that many designers over-estimate the

predictive abilities of the user — in this case their ability to predict the instrumental

capabilities of the mappings they are constructing. The user is almost always forced

to specify exactly which control maps to what, despite the unpredictability of the

results. Is it for the artist to worry about the intractable problem of what the ‘best’

mapping is? Yes, some mappings will be better than others, but not by such a large

amount that practice times will be reduced hugely.
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Given the rather unpredictable nature of the resulting instrument, there is a

strong argument that construction of control mappings should fall into the ex-

ploratory interaction mode, not the algorithmic one. Here the approach of Van Nort

and Wanderley [2007] seems to be promising: providing meta-controls for the map-

pings themselves, which can be explored and saved in the same manner as presets.

Machine learning techniques may also significantly speed up the mapping process

[Fiebrink et al., 2009]. However, given the importance of the skilled interaction

quadrant, building the mapping between intention and gesture in the brain of the

artist is at least as important as any mapping between gesture and sound. No

matter how compelling the mapping, the information required to reliably reproduce

a repertoire of complex gestures must be built up in the artist’s memory. Again, this

would imply that training is an important unsolved problem in NIME research. It

may be that greater benefits are to be found in changing the way the space is learned

and visualised (see Experiment 3), not in the specific dimensional arrangement of

the space itself.

There is also the obvious point that if the user is able to constantly change the

mapping, this will interfere with their acquired skills.

9.2.1 Interfaces for the Reflective Mode

How to design for the reflective mode? As argued in Chapter 5, cognitively pipelining

the interface such that it can stay out of working memory is an essential prereq-

uisite for reflective thought. Beyond this, how could an interface actually provide

the means to augment reflective thought? The reflective mode needs some way

to handle increasing layers of abstraction. Today’s DAWs have a rather inflexible

ceiling in terms of abstraction hierarchy [Duignan, 2008]. It is difficult to notice a

pattern in one’s own compositional practice and turn that into a script or macro
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that implements that pattern in a more efficient way.

One way to achieve this is to provide scripting languages that operate on top of

existing sequencers. Good candidates for reflective interfaces are musical program-

ming languages such as Max/MSP or Supercollider. Here one can define one’s own

abstractions and transformations, but at the cost of considerable cognitive demand

and technical skill.

There is potential for software to provide meta-views of one’s creative history.

Sonic Zoom showed that users found a visible overview of their path through pa-

rameter space useful. A way to meaningfully extract patterns from an interaction

history, or a way to find patterns in a large corpus of DAW projects could provide

an artist with a higher level view of their own creative process and hence a way to

make their creative process more flexible or efficient.

Machine learning techniques may provide a means to reflective interaction by

providing a way to automatically encode existing musical structures in a simpler

form. For instance, consider a piece of music whose structure consists of many com-

plex automation curves for timbre parameters. If an approximate lower-dimensional

subspace of these parameter adjustments could be found (for instance using Princi-

ple Component Analysis), then a multidimensional interface could be automatically

generated that would enable more direct, more flexible, and less demanding impro-

visational control of that track’s structure.

9.2.2 Implementing the EARS cycle

A full 4-quadrant supporting interface has not been developed for this work. Rather,

the approach has been to directly test the interplay between the exploratory and the

algorithmic mode (Experiment 1), and the skilled and analytic mode (Experiments 2

and 3). This was in order to more carefully test some of the predictions of the model
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with regard to mappings and controller types. But eventually, the recommendation

would be to provide an integrated system that enables fast switching between all four

modes. This is easier said than done, considering the radical differences in mapping

geometries, and the inter-quadrant interference and trade-off effects mentioned in

Section 5.5.4.

The incubation-illumination cycle is already somewhat mirrored in creative tech-

nological interaction, by virtue of random explorations producing sudden ‘Aha!’ mo-

ments of discovery. However, to date this cycle has not been specifically designed

for. Sonic Zoom provided one example of how an exploratory and an analytic in-

terface could be coupled and presented together such that these modes could be

alternated quickly, and user feedback suggested that this ability to transition was

seen as valuable. However, given the four EARS modes, there are many other tran-

sitions that may need to occur. For example, switching between instrumental play

(skilled) to computer-based editing (analytic) is currently awkward.

How could all four modes be provided without merely increasing the complexity

of the system? How, specifically, are these twelve possible transitions to be carried

out (Fig. 9.2)? Enumeration of all of these transitions is left for future work. But a

hypothetical 4-quadrant workflow might proceed as follows: The artist should delib-

erately set aside time to reflect, plan and imagine an approach before engaging with

any interface (reflective); then they may attempt to design a number of dimensions

that define an interesting space to explore (reflective→ algorithmic). Next the artist

proceeds to explore the new space (algorithmic → exploratory), discovering many

useless regions, but some useful ones. Next, some way to reflect upon, abstract

and condense these interesting regions into a smaller space is required (exploratory

→ reflective). Next comes a process of practice within this new smaller space to

ensure expertise (reflective → skilled). Then, using these skills a performance can

be recorded, and then perhaps edited in fine detail (skilled→ algorithmic). At each
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Figure 9.2: There are twelve possible transitions between EARS modes, currently many
of these are difficult to achieve. For example, the transitions between detailed editing
and skilled performance (EA and AE) are rather difficult with current DAW/controller
set-ups.

stage an interface is needed that will suit that cognitive mode, but also at each

stage the existing musical data should be made available to the new interface in as

painless a way as possible.

9.3 Future Directions

This section discusses some of the many directions this research could lead in the

future. These range from pursuing deeper questions about creative cognition, to

designing more complete and practically usable musical interfaces. There is also

the question of where this investigation leaves the debate over Fitts’ law based
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evaluations and the quest for higher throughput human-computer interfaces.

9.3.1 The Future of Fitts: Beyond 100b/s Interaction

Some participants in experiment 3 showed peak throughput values of around 22b/s.

One would expect most users to be able to attain this with practice. Compare this

to the commonly reported values of around 5b/s with a mouse, and the apparently

“remarkable” value of 6.2b/s obtained with touch screens [MacKenzie, 2015]. A four-

fold speed increase over traditional computer interfaces is therefore something quite

dramatic3. It is furthermore not unreasonable to suppose that two fully tracked

hands, with 20 DOF each, can be fairly well lined up with virtual guides, these

guides now being fully rendered hand models. Given haptic feedback to improve

accuracy and stability, throughput values may well be able to exceed 100b/s, which

would be a truly remarkable rate of search space reduction4. These estimates should

make us take hand-tracking very seriously as a future interaction method.

Given that the standard Fitts’ law methodology would not reveal these high

throughput values, where does this leave the debate over which formula and method-

ology to use? Does this mean all the 1D and 2D evaluations are invalid? I would

argue that the 2D evaluations do in fact underestimate TP values. In [MacKenzie,

2015] the 2D tasks give a lower TP value (6.39bps) than the 1D task (7.52). Consid-

ering that the usable information received by the UI is almost certainly higher in the

2D case due to the larger potential number of selection options, this seems suspect.

If these results were re-evaluated using ISSR, the 2D task would likely give a higher

throughput, because the area of the target is much smaller relative to the area of po-

3To put this in a one-dimensional context, this rate of search space reduction would be the
equivalent of locating the correct key once every second on a piano keyboard 70km long. This
raises the possibility of more effectively controlling a 1D quantity, such as pitch, with a multi-
dimensional controller.

4The equivalent of selecting a note every second from a keyboard the width of the visible
universe
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tential targets. Nevertheless, it may be unwise to change the 1D and 2D standard,

as there is a great deal of previous work that would need to be fairly compared.

However, no amount of experimentation and line fitting will tell us how throughput

should scale with dimensionality, because the multiplicative constant is essentially

arbitrary for these plots. Only theoretical considerations can reveal this, and these

firmly point to information gain being proportional to dimensionality. Hence the

need for the dimensional multiplier in the ISSR equation (Eq. 5.12). Therefore I

would recommend that researchers working with high-DOF controllers use the ISSR

metric (or the entropy of the distribution of search paths) for evaluation purposes.

Further work could apply these high throughput opportunities to other, more

everyday HCI scenarios. Even just the corners of the 20D hypercube of hand poses

constitute over a million different hand shapes, and these could provide a practically

unlimited repertoire of gestural shortcuts for instant access to common computing

operations. If augmented reality becomes widespread, learning and recalling these

hand poses could be significantly aided by virtual body emulation.

Another interesting direction for future research, that this thesis has only touched

on, is closing the gap between state of-the-art models of embodied cognition and

well-established movement laws currently used in the HCI field. Can the latter be

derived from the former? Can empirically discovered movement laws such as Fitts’

and Schmidt’s law [Fitts, 1954; Schmidt et al., 1979] be explained by theories of

hierarchical, predictive motor control [Friston, 2010; Wolpert and Flanagan, 2001]?

Can we explain why the two different movement laws emerge in the two different

situations of accuracy-targeted and time-targeted aimed movements? Our hypoth-

esis here is that the difference between the two laws is due to use of, or decoupling

from, corrective feedback, but this would need to be researched more thoroughly.

360



9.3.2 Throughput Optimality:

A Recipe for Inspiration and Flow?

Whilst flow is a widely recognised phenomenon, and is well documented by Cśıkszentmı́hályi

and others, Flow theory could be criticised for not being a theory at all, more of an

observation [Dietrich, 2004b]. With the exception of Dietrich, few have attempted

to propose underlying cognitive mechanisms that generate the Flow state. The

eight dimensions of Flow as yet have no more fundamental characterisation in terms

of information processing that might explain and connect them. In this section

we speculate whether the throughput peak found in Experiment 3 might be one

instance of a more fundamental phenomenon of open-loop versus closed-loop infor-

mation processing, and whether this phenomenon, when extrapolated to higher-level

thought processes, may underlie the experience of Flow and artistic inspiration.

The different shaped entropy reduction curve of Experiment 3 revealed a non-

linear relationship between the information output of the nervous system and time.

One explanation of this could be that movements intended to realise a target in

a pre-specified time (e.g. rhythmic interaction) occur open-loop, because temporal

targets do not allow the luxury of time spent processing sensory feedback. Open-

loop movements mean that the information needed to specify the movement is pre-

programmed, and released as a single burst, rather than being accumulated over the

duration of the movement by means of error correction.

One of the tenets of Embodied Cognition is that higher level cognitive processes

utilise the same mechanisms as movement control processes (see Section 2.2.6). If

this is true, then we could ask: is there a correlate of this open-loop throughput

peak for higher-level creative thought as well as low-level motor control? Assuming

this mode of thought exists, it would display the following two characteristics:

1. It does not involve error correction on the basis of feedback.
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2. It would result in a higher rate of information production than ‘normal’ closed

loop cognition.

The lack of error-correcting feedback could then have a number of effects:

1. The predictive probabilistic model being used to generate action becomes

fuzzier and more widely distributed, producing more divergent ideas. These

ideas may be more surprising, and have a higher novel information content

when compared to closed-loop responses to normal everyday situations.

2. The decoupling of prediction and corrective feedback may generate strange

subjective effects, such as the merging of action and awareness. The distinc-

tion between one’s own volitional actions and those occurring due to outside

influences depends on error-correcting feedback. In a ‘decoupled’ state this dis-

tinction may dissolve. In turn the distinction between deliberately searched

for sounds and those sounds found by accident may blur in the artist’s mind.

These effects begin to sound very much like the characteristics of Flow, or artistic

inspiration. This may also explain what it is about music that is so conducive to

these types of experience. By enforcing time constraints, we force ourselves to go

into an open-loop mode, i.e. we decouple ourselves from correcting ourselves on the

basis of slower sensory feedback, or critical thought. The faster and less consciously

analysed the feedback becomes, the more it allows our ‘inner critic’ to switch off

and allow things to unfold on the basis of learned skills, or spontaneous ideation5.

In addition, allowing ourselves “artistic freedom” might enable risk-free decoupling

from error correction. So music seems to positively encourage open-loop behaviour,

and may thus produce states where our minds seem to be functioning more efficiently

5It should be noted that this state requires skills to be built up beforehand, via a more critical
process. To generate genuinely H-creative [Boden, 1992] artefacts there would need to be consider-
able amount of prior time and effort spent in other non-flow activities: reflecting and questioning
and updating internal models on the basis of errors and feedback.

362



than normal: it may feel as though information is being processed/produced at a

greater rate, but with less effort. Thus “Flow” may actually be linked to the “flow”

of information. As for the question of why Flow is so intrinsically rewarding, we

can appeal to a Schmidhuber-type argument [Schmidhuber, 2010] and surmise that

rapidly reducing entropy triggers reward mechanisms.

So an interesting research programme could be to try to link Flow more firmly

to information theory and predictive brain models. Experiments could be done

to measure the correlation between throughput, rate of idea production, and the

subjective feeling of Flow (as measured by the experience sampling questionnaire

[Nash and Blackwell, 2011]). This would entail an artist using an interface for several

hours, rating how inspired they were at each point, and looking for corresponding

regions of rapid entropy decrease as measured via the ISSR metric. It could turn out

that throughput is more than just a useful methodology for evaluating interfaces; it

may be fundamental to the peak creative experience itself. Carrying out these types

of experiments with brain imaging techniques would also be fascinating. If brain

images were obtained, the above theory of Flow could be tested against Dietrich’s

hypo-frontality theory.

One objection to this throughput-based approach, and a potential weakness

in this thesis, is that the link between throughput and the artistic quality of the

creative artefact has not yet been established. Indeed, it may be possible that rapid

progress towards the completion of an artefact may be completely irrelevant to the

value of that artefact, as it would be judged by the artist themselves or other domain

experts. Much further work could be done here, for instance by getting people to

rate the results of sound design sessions with different interfaces for novelty and

value. Would the results of a session using the Hilbert curve mapping result in

higher novelty or value ratings than that with the Leap Motion or the sliders? One

could also imagine imposing different time constraints on the creative process and
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judging whether fast sessions produced more creative output than slow ones.

9.4 Final Thoughts:

Towards a Multidimensional Future?

Almost all user interfaces for creative software provide parameters such that features

are edited in a separate, serial fashion, or at most on a two-dimensional plane using

a mouse. These interfaces are used to create music, animation, industrial design,

architecture and computer games. The artefacts created with these tools define a

huge proportion of 21st century culture. If this interaction paradigm really does

change the way in which people are creative, this seemingly innocent and logical

arrangement may already have had significant consequences for the form and quality

of artistic innovations. Will new multidimensional interaction devices encourage

different modes of being creative? Will we see a return to more embodied and

intuitive forms of expression in the coming decades?

Transferring to the use of high-dimensional controllers is a huge step for the

computer industry to take. It may be that contemporary input devices are too

firmly locked in, or that users are unwilling to invest time and effort to develop

highly skilled actions. If a transformation is to occur, it may well be driven by

virtual reality, in particular, computer games. VR Game environments necessitate

richer, faster and more natural interactions with virtual worlds. However, I believe

the potential of new input devices is greater than just mimicking the world that

we already inhabit. There is also potential to take control of more abstract data in

a far more effective and rewarding way. There is a great deal of brain processing

power lying idle in our motor cortex when we are sitting at our desks. What will be

the key to utilising this motor skill to enable heightened levels of control of digital
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artefacts? The key will be the successful mapping of complex gestures to manipulate

more abstract parameter spaces. Thus the “mapping problem” of NIME research,

where gesture must be mapped to the abstract realm of sound synthesis parameters,

has a lot to contribute to the future of computer use, and the way humans will

augment their own cognition and creativity in years to come. Music is one of the

most intimate and spectacular real-time interactions that humans can partake in.

It is exciting to think that this mapping problem, which began as some musicians’

dissatisfaction with computer technology and has now developed into a small but

vibrant research field, may eventually inform a completely new, deeper and more

intimate relationship between humanity and information.

Technology affects cognition, shapes it, and provides a space in which it operates.

This thesis has only shown this in a few limited task domains, but if cognitive

principles generalise — and research into embodied cognition would persuade us

that they do — then interface technology may shape our very attitude towards

cultural artefacts, and our relationship with the world of information we inhabit.

Therefore as musicians, designers, technologists, and members of human society, we

need to ask ourselves: do we want a one-dimensional culture?
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APPENDIX A

Studio Technology and the Creative Process: A Survey of

Electronic Musicians

A.1 Introduction

Whereas a writer’s words will probably not be affected to a great extent by the spe-

cific word-processing software they are using, or even whether they use a typewriter

or a pen, the sonic material of electronic music is deeply wedded to the mechanisms

of its production. Electronic musicians are therefore uniquely positioned to assess

how technology impacts their creative process. This survey was designed to assess

musician’s own experiences of using technology, specifically targeting the themes of

divergence/convergence and implicit/explicit thinking presented in Chapter 5. This

survey, whilst not conclusive enough to form part of the main body of this thesis,

shows that the EARS model can be a useful and simplifying framework: in that it

can generate revealing questions, and provide a structured analysis of the artists’
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responses. The questions are presented in sections relating to the following themes:

• Motivating the research topic (Section A.2).

• Constraints and complexity (Section 3.6).

• Exploratory interaction and serendipitous discovery (Section A.4).

• Mental load and interference from demanding interfaces (Section A.5).

• Skilled interaction and intuitive decision making (Section A.6).

• Reflective and evaluative processes (Section A.7).

A.1.1 Questionnaire Format

Most questions were presented as a sliding 11 point scale (0-10) between two ex-

tremes of opinion, with 5 representing the neutral response. One problem with this

format is that the middle response of 5 can possibly be interpreted as “definitely

equal weighting between the two extremes”, “I don’t know”, “I don’t care” or even

“I don’t understand the question”. Participants were told not to select any answer

if they were very uncertain of their opinion, however questions with a large number

of neutral responses may still indicate a problem.

Whilst Likert responses are technically considered ordinal, we assume here that

11 points are enough to assume an interval scale, and that means and standard

deviations are meaningful1. Again, these results are more motivation than evidence,

therefore no specific hypotheses are tested and statistical significance is not claimed

or reported.

The survey was presented online, via Google Forms2. The questions were not

presented in the order below, rather they were grouped around the topics “work-

1This is a controversial practice however [Jamieson, 2004]
2https://www.google.co.uk/forms/about/
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flow”, “sound design” and “live interaction”. This was for two reasons, firstly to

not bias responses by imposing the EARS model’s conceptual categorisations on

the respondents. Secondly, to widely space questions that were re-phrasings of one

another, or complementary in some way. The number relating to the actual posi-

tioning of the question will be given at the start of the heading, and in the figure

caption.

Means and standard deviations will be reported as (M = 3.4, SD = 2.1). Modes

will be reported as (mode = 8, N(8) = 12) where 12 respondents selected response

8. Numbers of responses with a particular value will be reported as, for example,

(N(5) = 10) in the case that 10 people selected a response of 5. The labelling of

histogram axes always refers to number of respondents who selected that option,

except when marked as a percentage.

At the end of each section, participants were invited to comment further on the

questions. Some selections from these text responses are quoted alongside the most

relevant question.

A.1.2 Respondent Information

The respondents were generally quite mature (M = 33 years, SD = 5.5), with a

large number of years experience with both electronic production (M = 15 years,

SD = 6.6), and traditional instruments (M = 9.8 years, SD = 11), although tended

to be self taught in this regard (M = 2.3 years of formal musical training, SD = 3.7).

The majority described themselves as “semi-professional” musicians, with a large

number having officially released records (M = 8.2 releases, SD = 8.2). Therefore,

in general we can expect a high level of proficiency with these tools, and a high

degree of awareness and critical thinking when it comes to reflecting on creative

practices (e.g. question 19 and 40). The different types of music technology that the
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Figure A.1: Relative frequency of musical genres reported by respondents.

Figure A.2: Proportion of respondents using various types of music technology. Respon-
dents could select more than one option. Equipment reported as ‘other’ included custom
speakers, contact microphones, circuit bent electronics, C++ DSP code, and paint pots.

respondents reported working with are shown in Fig. A.2.

A wide range of working styles and genres were reported A.1. However, due to

the author’s strong ties to this community, and the use of social networking sites to

recruit the sample of respondents, there is a strong bias toward underground, exper-

imental dance music. Other stylistic groups may reveal different results, therefore
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these results may not be generalisable to all electronic music practitioners.

A.2 Motivating the Thesis

This section motivates the topic of research. The questions aim to support the

following assumptions:

1. Timbre is an essential component in electronic music, for both low-level sound

objects and long term dynamic structure.

2. Speed, liveness and throughput are vital for effective musical interaction, both

for performance and for studio work.

3. The design of the interface is of the utmost importance for electronic music

producers.

27. How important to you is shaping the timbre of the sounds you use?
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Figure A.3: Q27: Importance of timbre.

To counter the potential objection that this thesis overly focuses on timbre de-

sign, as opposed to melody, harmony or rhythm, this extremely strong response

(M = 8.8, SD = 1.4) reveals that timbre design is an absolutely essential aspect of
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the creative process for electronic musicians. Hence, manipulation of large numbers

of timbre parameters is one of the most important things an interface must enable

them to accomplish.

36. How important is changing timbre for the structure of your tracks

(e.g. do you ”tweak” or automate parameters to generate tension/development

over larger time scales)?

Very positive responses (M = 7.7, SD = 2.4) serve to emphasise that timbre design

is not just surface ornamentation or production “fairy dust”, but an integral part

of the structure and dynamics of electronic music. Thus, manipulation of timbre is

vital not just for instrumentation, but also improvisation and performance.
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Figure A.4: Q36: Structural importance of timbre.

28. If you imagine a sound, can you then realise it faithfully using your

technology?

Here, the hypothesis was that musicians may find it rather difficult to construct

imagined timbres. However the majority of the responses were 7 and 8. So, subjec-

tively, respondents feel able to accurately realise what is in their heads. Evidence
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presented in Experiment 2 might contradict this assertion, however.

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

Mean = 6.5, SD = 2

Median = 7

No, it never approaches anything like I imagine Always

Figure A.5: Q28: Ease of realisation.

30. What proportion of the sounds you use are presets or samples, and

how much are custom-made by adjusting parameters?

Again, the response motivates the investigation into timbre design. It may be imag-

ined that the large libraries of samples and pre-programmed presets that come

bundled with many commercial software and hardware systems are sufficient for

musicians to create music with. This response reveals a strong tendency toward

customisation3, and that sound design is an integral part of electronic music mak-

ing.

31. Do you need to design (or select) the sounds in detail before working

on the structure of the track, or sketch out rough high-level ideas and

improve the details later?

The pre-digital recording studio process leaned toward late stage timbre design,

with the song written first, the instrumentation and signal processing applied later.

3If we invert the scale we could estimate the proportion of customised elements as being 77%
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Figure A.6: Q30: Timbre customisation extent.

At what stage do modern producers create the details of timbre? Is it during the

early “blank slate” stage, or later on, when the track has already taken shape? The

expectation here was that there would be a tendency to start with sound design:

due to the nature of production software/hardware, it seems one needs to instantiate

one’s own instrumentation before doing anything else. Many had a strong tendency

toward early stage sound design (mode = 2, N(2) = 10), but other opinion was fairly

mixed. A large number of neutral responses probably indicates what later questions

reveal: that the value of timbre is highly context-sensitive, therefore sound design

can be necessary at any point.

34. Do sounds inspire tracks, or vice versa?

This question was related to question 32 and 35, but with altered emphasis to find

out how important sounds are for generating further ideas, producing feelings of

inspiration, and forming the basis for entire pieces of music. By far the majority

answered neutral (mode = 5, N = 15), indicating both, neither, or a confusing

question. However those who did not answer neutrally were disposed toward sounds

inspiring tracks (M = 3.4, SD = 2.1). This again highlights exploratory timbre
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Figure A.7: Q31: Early/late stage sound design.

design being an important component of early stage creativity.
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Figure A.8: Q34:

35. Do you separate sound design from composition?

Here the tendency was towards creating sounds “on the fly” (mode = 8, N =

12). This may be because the appropriateness of timbre depends so much on the

surrounding musical elements, and each sound object has to be optimised to fit in

with the current context.
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Figure A.9: Q35: Separating sound design from composition.

63. I really do perform fully ”live” with my technology

The majority of respondents confessed that they do not feel as though they are

genuinely performing live4 (M = 3.7, SD = 3.1).
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Figure A.10: Q63: I perform fully “live” with technology.

4A note indicated that if the respondent did not play in front of an audience they should not
respond to these questions about performance.
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60. If you perform live, do you want to perform more components of the

music than you currently feel able to?

Another strong positive response (M = 7.1,SD = 3). This motivates investigations

into how to enable greater feeling of control over more musical parameters.
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Figure A.11: Q60: Desire for more live control over musical parameters.

51. Does better technology make for better music?

“Better” may be a complex notion, nevertheless it was hypothesised that people

would say that the quality of the music was not dependent on technology. This

question produced many ambiguous responses, but ones that slightly tended toward

the negative.

65. Do you feel that you can make better music with a better user inter-

face?

This question produced a very strong positive response (Mode = 8,10, N(8,10) =

13). This contrasts markedly with the previous question (despite the fact that

the interface is technology!). This discrepancy should persuade us that improving

musical interaction is potentially of more benefit for practising electronic musicians
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than any other research regarding synthesis algorithms, DSP, audio engineering, or

any software “inside the box”.
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Figure A.12: Q51: Better technology leads to better music.
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Figure A.13: Q65: Better interfaces lead to better music.

59. Is the speed at which you can turn your ideas into sound important?

This question is important, as it motivates the investigation of throughput in the

theory chapter, and experiments 2 and 3. It is hypothesised that musicians find

speed extremely important, even when not in time pressured live situations, for
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reasons of Flow, liveness, and maintaining ideas in working memory. There was

general agreement with this statement (M = 6.6, SD = 2.6).
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No, it doesn't matter how long it takes It's crucial to get ideas down as fast as possible

Figure A.14: Q59: Is the speed at which you can turn your ideas into sound important?

A.3 Constraints and Complexity

These questions related to the idea that constraints can sometimes encourage cre-

ativity. However externally imposed constraints, or complex interdependencies may

increase cognitive load.

41. Constraints encourage creativity

Participants overwhelmingly agreed with this statement, however in the text com-

ments, many pointed out the subtlety of the relationship between creativity and

constraints. One respondent noted that it is easy to get lost in the exploratory

mode, and that constraints encourage meta-level divergence by ‘breaking’ the rules:

“Yes and No. Restraints can force you to push past boundaries—I was

much more technically experimental when using limited equipment. Now

that technology is limitless it’s easy to get lost in it. You have lots of
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Figure A.15: Q41: Constraints.

options but you’re not forced to ‘break’ your system and do something

truly radical.

For this reason, I deliberately don’t learn some things, and use old soft-

ware and techniques, to try and put more emphasis on doing something

weird from these restrictions.”

Similarly:

“The more options available, the more avenues you can explore. How-

ever, once a track has started, limitations are required in order to provide

boundaries to construct within, as you’re forced to push against those

restrictions in order to generate novelty.”

“I think that having unlimited options is almost always bad, as it’s the

act of constrained problem-solving which forces unusual and interesting

solutions to problems. Having access to every option allows each musical

problem to be solved in the most obvious (hence musically uninteresting)

way.”

380



Other responses point out that restricted parameter spaces make decisions quicker

and less effortful:

“When you have too many options, most of the time this ends over-

whelming you and making you spend too much time deciding on which

option to use.”

“If I have an idea for a sound but no facility to create it, I will be

frustrated. Having everything I might need ready to go can be liberating.

But also, if I sit down and have to create something with no real plan,

the breadth of choice can be daunting and I might end up f**king about

and never deciding on anything for ages. With fewer options I find what

I feel is best far quicker.”

This respondent provided a neat summary of several of the considerations in the

chapter 5:

“Times when lots of options good:

• Already have a clear idea in mind and know how to use all param-

eters to achieve it.

• Experimenting wildly with unfamiliar parameters - unfamiliarity

aids my creativity greatly as you are forced to listen more than if

you know what each control does.

Fewer options good because:

• Less things to manipulate to get where you need / want to go, so

less distraction.

• Less room for perfectionism.
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• Forces creativity in problem solving, say, when finishing a track or

finding a new sound to fit.

• Encouraged to keep things simple. Simple ideas usually good from

listener perspective.”

47. Technological limitations restrict my ability to be creative.

Again, there was a strong tendency to disagree. Again it seems that constraints

(this time technological ones) do not restrict creativity.
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Figure A.16: Q47: Tech limits inhibit creativity.

32. How much does the value of a sound depend on its musical context?

A wide range of opinions, but a tendency toward context dependence.

Q18. Which is harder, generating ideas/sounds or fitting them together

to make a track?

Another question related to constraints, this generated a majority of responses in

favour of it being harder to fit ideas together. Generating and evaluating a single
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Figure A.17: Q32: Context sensitivity of timbre.
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Figure A.18: Q18: Which is harder, generating concepts or fitting them together?

component on its own is not difficult, but thinking about interrelationships, and

evaluating over longer time-scales is seen to be more of a challenge.
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Figure A.19: Q33: What proportion of the ideas or sounds you use do you discover by
accident? 0 = 0%, 10 = 100%.

A.4 Exploratory Interaction

33. What proportion of the ideas or sounds you use do you discover by

accident?

This question relates to exploratory behaviour. The mean percentage of material

estimated as generated via technological aberrations was 63%, SD = 22%.

48. Estimate what proportion of your material comes from interacting

with technology, and what proportion is generated entirely in your own

mind.

This question was intended to roughly assess the amount of information generated as

part of the interactive loop, compared to that coming from top-down artistic goals.

This could be considered as an alternative wording of question 34. It produced

many neutral responses, but still the average tended toward a technological origin

of ideas.

In the text comments, a creator of their own technology claimed:

“The scale doesn’t really make sense here, my technology is handmade,
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Figure A.20: Q48: Proportion of material generated top-down. 0 = 0%, 10 = 100%.

so in a way it all comes from my mind”

Another respondent noted the fact that ideas in the mind will be shaped by past

engagements with technologies and other musical experience:

“Ideas generated in my mind but from past interactions with technology,

imagined interactions with technology or from what I hear or observe

with other performers/recordings.”

Another points out that the proportion of the material that is genuinely novel

may be quite small:

“I’d probably go so far as to say that almost NO artists do stuff from

their own mind 99% of the time. It’s all got to originate somewhere.”

58. Do you have an overall idea of what you will make from the start?

Or does the track emerge during interaction with technology?

The hypothesis here was that electronic music tends to be an emergent process, and

this seemed to be the general opinion.
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Figure A.21: Q58: Is the track preconceived or does it emerge during interaction?
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Figure A.22: Q61: Proportion of curiosity driven interaction.

61. How much of the time would you say that curiosity and exploration

drive your interaction?

This was phrased as an estimate of time spent exploring. This turned out to average

75%. Due to the fact that this proportion is very similar to the proportion of ideas

that were deemed serendipitous in question 33, it seems that the high accidental

discovery rate is not something that is forced on the user by lack of competence or

ineffective input devices, rather it is a deliberate strategy. This again indicates that

exploratory interaction is vital for interface designers to consider.
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Figure A.23: Q13: How much of the time do you focus on reaching an end product, and
how much are you absorbed in the process?

13. How much of the time do you focus on reaching an end product, and

how much are you absorbed in the process?

Here the hypothesis was that respondents would answer very much in favour of “ab-

sorption”, and this was the case. There are multiple explanations of this tendency

however. The positive ones would be:

1. Musicians enter a state of flow, where they become one with the task.

2. The creative process is intrinsically interactive, and emergent (supported by

question 58). Pre-planning one’s goal is unnecessarily restrictive.

A more cynical assessment would be that attempting to reaching a pre-planned

end product is far more demanding than exploratory interaction, or perhaps that

the complexity of interaction occupies so much of the working goal-hierarchy that

carrying out long term plans becomes impossible.
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Figure A.24: Q37: Good ideas occur suddenly.

37. Do good ideas seem to occur suddenly? Or do they build up gradu-

ally?

An interesting issue is whether constant engagement with technology changes the

sudden ‘aha!’ moment into a more gradual process, or if the serendipitous nature

of the interaction produces sudden step changes. Most answers were neutral, but

many erred on the side of suddenness.

This comment sums up the situation quite well:

“Good ideas appear suddenly, but do continue to grow. So both answers

are valid again in that respect. A track’s theme however can sometimes

take time to emerge. That counts as an idea too. So it depends whether

you are talking about individual sounds / parts (which tend to appear

quite suddenly) or overall compositional balance or throughline, which

is sometime sudden, or sometimes very gradual. Usually for the overall

structure / composition, there is a ‘click’ point, where things suddenly

make sense, but there has been a gradual curve to get there.”.

Another user points out that both fast and slow progress can yield good final
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products:

“Some of the best tunes I’ve done have happened in moments and have

been very simple in structure and composition. Similarly, there have

been tunes I’ve worked on for ages that have finally come good. I consider

these to be different ways of working.”

.

A.5 Mental Load

These questions were intended to investigate which aspects of the creative process

induce the most mental load, and in turn how that cognitive load impacts on various

other aspects of the creative process.

12. Which stages of making a track would you say were hard mental

work?

Figure A.25: This question aimed to ascertain which stages of the creative process
were associated with high cognitive load. The responses suggest that the mental load
increases as the amount of completed material increases. Interestingly, performance and
improvisation are rated as the least demanding.
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This question aimed to find out which stage of the creative process musicians

found hardest in terms of mental load, and by inference, the one that which placed

most demands on working memory.

Here, the most popular answer was “The finishing touches” (26 votes). In fact,

the responses seemed to indicate a steady increase in difficulty from early stage

exploration to final stage honing. Structuring the track was the second highest

voted (19 votes). There may be a number of reasons for this: increasing numbers of

constraints, increasing amounts of comparative judgements, longer evaluation times

scales and more complex units to manipulate would all lead to more mental load.

Surprisingly, fast interactions such as improvisation and performing the track live

were not selected as hard work by many (6 and 7 votes respectively). This might

suggest the fact that skilled interactions are less cognitively demanding, despite

being more demanding in terms of time constraints.

“Starting from a blank state” received only 8 votes. This indicates that the terror

sometimes associated with a “blank canvas” does not apply in electronic music.

One respondent notes the difficulty of high-level evaluation:

“[The] most challenging thing is questioning myself ‘is this good enough’?”

If a piece of music technology is complex, fiddly or demanding, how much

does it interfere with the following tasks?

This was a series of questions designed to assess the impact of interface design on

various aspects of music-making. The three responses were “Not at all”, “Some-

what” and “A lot”. In general, interference was rated as medium or high for all

tasks apart from “Deciding if something is good or not”. Another lower interference

task was “Exploring and discovering sounds”. These two responses seem to rather

contradict the “narrowed attention” hypothesis of inhibited evaluative abilities. It
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Figure A.26: If a piece of music technology is complex, fiddly or demanding, how much
does it interfere with the tasks listed on the left? Results are shown as a stacked bar chart
[Robbins and Heiberger, 2011], with middle responses centred.

is however possible that narrowed attention does inhibit other abilities, but the user

would never realise, and would therefore be unable to report the fact. In other

words, studying narrowed attention requires gathering experimental, not anecdotal,

evidence.

Most interference was shown with “improvising/jamming”, which is not surpris-

ing given its real-time nature. This is interesting to contrast with the results in

question 12, which show that improvising is not rated as particularly demanding in

itself.

The high interference reported for “Staying focused on a musical goal” fits with

the hypothesis that the top levels of the artist’s goal hierarchy are most sensitive to

disruption by cognitive load.

Two respondents objected to this question: “Complexity vs interference seems

like a non-question to me. For me, when something is demanding, it will always

interfere with your results, unless the result us purely the exploration of it. I have
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Figure A.27: Q49: Better tracks are easier.

trouble understanding how anyone would feel otherwise.”. And another respondent:

“This is a leading question so it answers itself. If a piece of tech[nology] is too fiddly

or demanding then of course it will interfere with completing any task.”.

49. Are your best tracks harder work or easier to make than your poorest

ones?

Perhaps relating to the idea that a state of Flow feels effortless, and that the feeling

of mental load may well be associated with less creative cognitive states, musicians

felt that their better tracks actually felt easier to make. An alternative explanation

is that sheer chance occurrence of multiple serendipitous events may contribute to

the best tracks.

66. Being able to perfect every detail of the music is important to me

In general, respondents agreed with this statement (mode = 7). This relates to the

desire for sonic precision and fine detail that is particularly prevalent in electronic

music. Indeed, unlimited control may be the chief attraction of software production

tools. This result should make us wary of any trade-offs between algorithmic and

392



0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12 Mean = 6.4, SD = 2.4

Median = 7

Strongly disagree Strongly agree

Figure A.28: Q66: Perfection of details.

other EARS modes: if providing for the other three modes comes at the cost of not

being able to analytically specify individual aspects of the sound, the design will

not find favour in this particular community.

One comment expressed dissatisfaction with this perfectionist approach:

“The process of finalising a track is totally different thing from creating

it. This is at least how I’ve always seen it in the past. But I’m beginning

to feel as though the last 5% of quality/whatever that I spend 95% of

my time trying to achieve is not worth the effort...”

67. How often do you think you lose ideas that are too hard to make

happen?

Here, the hypothesis was that a large amount of human creativity can be lost in the

transition from mind to machine, due to the complexity of realisation. Whilst there

was a wide range of opinion, overall there was an average estimate of around 55% of

ideas being lost. This does not seem to agree with the answers for question 29, where

most people felt they could realise a sound faithfully. Perhaps this response relates

to higher level, more aesthetic ideas rather than the sound design stage? Either way,
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this lossiness seems quite an alarming waste of creative potential. Would doubling

the input channel throughput alleviate the issue?

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12 Mean = 5.5, SD = 2.9

Median = 6

Never Always

Figure A.29: Q67: Amount of lost ideas due to complexity (0 = 0%, 10 = 100%).

68. Which tasks most interfere with having a good perspective on what

you are making?

“Perspective” is a high-level evaluative judgement that artists often refer to as being

important, but easily lost. To avoid ambiguity, it was defined in this question as

being “knowing what you want to achieve and how well you are progressing towards

that goal”. It may be related to working memory load, and the depth of the goal

stack. Here people could select multiple answers.

Highest rated for interference was “detailed editing” (43%), closely followed by

“exploring/experimenting” (41%). Exploration comes in surprisingly high, given its

earlier rating as low demand. This may be due to the tendency to get distracted

by novel ideas which do not contribute to the music as a whole. “Structuring the

track” scores highly (39%)5. Other perspective interference suggestions included

the inevitable crashes and technical problems, “final production/mixing”, and even

5Presumably maintaining perspective would be most useful precisely at this stage.
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collaboration.

Lowest rated for interference “Improvising/Jamming” (7%). Perhaps a surpris-

ing result considering that improvisation is a temporally demanding real-time activ-

ity. Could something about in-the-moment live interaction be particularly conducive

to successful evaluation? Perhaps it is the fact that improvising gives the musician

a direct insight into how a listener would be experiencing the music in real-time: as

an unfolding narrative.

Figure A.30: Q68: Which of these tasks most interfere with having a good perspective
on what you are making?

A.6 Skill and Automaticity

55. I have deliberate practice sessions, where I aim to get better at phys-

ically controlling a particular device.

It was hypothesised that the ability to edit all aspects of a piece would inhibit

the necessity and the motivation to practice motor skills. By far the majority

of respondents (61%) do practice occasionally but not systematically. 23% never

practised. 14% practised every few weeks and only 2% claimed to practice more than

once a week. Unfortunately there was no question relating to whether musicians

felt they would actually benefit from more motor skill based interaction.
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Figure A.31: Q55: Deliberate practise sessions.

15. I wish I could break out of my habits more often.
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Figure A.32: Q15: Habits.

This question was intended to find out if musicians struggle to overcome their

automatic responses to certain situations, and respondents almost all agreed with

this statement. It is clear that skill can be a double edged sword. This observation

motivates the “exploratory interface” presented in Chapter 5, which is intended to

interfere with the artist’s automatic, predictive cognitive mechanisms.

This respondent noted that it may be habits relating to the high-level goals that

may be the most restricting6:

“I think the biggest bar to my creativity isn’t so much the technology,

6Low level exploratory interfaces such as Sonic Zoom (Chapter 5) would not address this prob-
lem. Perhaps there is room for developing a higher level, reflective divergence support software
systems?
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but more my preconceived ideas about the kind of tune I’m trying to

write. I get stuck in certain expectations of what my own sound is, and

sometimes end up effectively doing a pastiche of my own sound.”

16. I find traditional instruments enable me to express a feeling better

than computer-based instruments

People without experience of traditional instruments were told to skip this question.

The hypothesis was that traditional instruments would be preferred, as being bet-

ter for immediate expression of complex affective states. Opinion here was widely

distributed, with a spike at the middle response, but with a tendency to disagree.

So, in fact, this community feels able to express feelings very well with digital tools,

and presumably find that having a wider sonic palette offsets any disadvantage in

immediacy. One commented: “I find using traditional instruments strongly lim-

its the potential for more obscure ideas and tracks”. So, for many musicians, the

exploratory benefit of having a bigger sonic space takes precedent over the skilled

aspects of interaction.
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Figure A.33: Q16: Traditional instruments more expressive.

On the other hand, this respondent highlighted the desirability of the stable,
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predefined control mappings that hardware offers:

“If by ‘traditional instruments’ you count hardware synths not connected

to a computer or sequencer, then I would say these do allow for better

expression than VST instruments. Even with midi controllers applied to

VSTs you have to make the conscious effort to assign knobs to a premed-

itated subset of parameters, rather than being permanently restricted to

whatever parameters the hardware synth presents you with (limitation

is a good thing).”

46. How many of the creative decisions you make would you say are

“intuitive”?

Here musicians clearly favour instinctive responses over careful deliberation. Intu-

itive thinking was deemed to determine around 70% of decisions. There is some

ambiguity whether this is a choice or a necessity: is it because musicians want to

use their gut feeling? Or are they forced to because explicit evaluation is too slow,

or too difficult whilst engaged with complex technology?

One participant commented on the intuitive aspects in more depth, even claiming

that the process may be outside conscious access, such that one cannot explicitly

recall how the track was made. They also draw a distinction between the initial

idea and the emergent content, and note the distortion of the passage of time that

is one of the dimensions of Flow:

“Actually, the (creative) workflow never requires brainwork, especially

not hard (compared to my full time job as a creative director). In this

case you may ask: ‘then what makes it creative, if there’s no or there

is a mild conceptual level in it?’. Well, the answer is every track have

some kind of a starting point [initial idea]. I think most of the magic
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happens there OR if you carried away with the furore/flow you currently

creating - you may never being able to subsequently explain or describe

what happened in the past few hours. How you did this, or that...

...this is purely magical if you never experienced anything like this.

Whenever you notice that it is already 3 am, and you spent more than 8

hours in the making (without noticing how’s time passed), you finished

the track, and you cannot remember every detail, how you made your

sounds, etc... But if you listen it from the beginning, there’s some minor

mistakes, etc, but overall it is an absolute madness [good] in both tech-

nical and musical aspects. And you did that, but you cannot remember,

it’s not a conscious process!

In the other case, you may have a melody, or a sample keeps running in

your head, an inspirational track you heard, or you are in a special mood

that you think you could share with the rest of the world - the starting

point could be anything. The challenge is how you can adapt this “brain”

thing from scratch into a musical form. You need to “research, develop

and build up” the rest of the track - within [that] context.”

A.7 Reflection and Evaluation

19. Do you try to analyse your work-flow and make it more efficient?

The majority answered in the positive. This shows not only that “efficiency” is very

important for musicians, but that they also take active steps to reflect on their own

practice and improve it.
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Figure A.34: Q46: Decisions intuitive.
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Figure A.35: Q19: Reflection on efficiency.

40. Do you improve your creative process by consciously analysing how

you created your best tracks?

Another inquiry into reflective practice. The initial hypothesis was that because it

is difficult to remember such a complex and absorbing interaction, reflection on the

process would be infrequent. In fact, a large number of musicians did carry out this

type of meta-analysis (Mode = 7,8 N(7, 8) = 10).
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Figure A.36: Q40: Reflective practice.

38. Which is more important for producing good music, technical skill or

musical taste?

Can one approach creativity solely on the basis of evaluation and selection? Or does

one need technical skill and execution to produce valuable works? Interestingly,

results here seem to be in favour of musical taste, perhaps related to the close ties

between electronic music and DJ culture. This emphasises that the sophistication

of the value system one uses for judging output may be at least as important, if not

more, than the ability to generate the output effectively. This implies BVSR-type

creativity models may be viable [Simonton, 2012].

44. Do you evaluate music by comparing to other music, or just go with

how it makes you feel?

The slight tendency here was to go with intuition over comparative judgements.

Many text comments indicated that it tends to be that early stage creativity is

more based on intuitive, implicit judgements, late stage mixing and mastering is

more analytic and comparative:

“The comparative part is mostly by how well the music is mixed/mastered.”
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Figure A.37: Q38: Skill or taste.

“Again, different at different parts of process. A weakness I have per-

sonally is “mixdown-insecurity”—I tend to compare to other tracks at

this stage. Earlier in the process it’s almost entirely feeling.”

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12 Mean = 5.7, SD = 2.7

Median = 6.5

Comparitively Via feeling

Figure A.38: Q44: Comparative / intuitive evaluation.
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45. Is your judgement of the quality of a track when listening in different

contexts quite consistent, or different each time?

Like question 32, this relates to how context-sensitive the evaluation process is, and

again the answers were that judgements varied considerably based on the situation

(Mode = 8, N(8) = 15). The fitness function would appear to be a highly flexible

thing.
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Figure A.39: Q45: Evaluation of a whole track is context-sensitive.

42. The more I think about my creative decisions, the more confident I

am in them.

This question produced one of the widest distributions of all. The intent was to find

out if deliberation, and analytical thinking was seen to decrease confidence in the

value of the output. The hypothesis being that in such a complex underspecified

problem such as musical creativity, over-analysis would be seen as harmful, and

hence there would be disagreement with this statement, however the response was

ambiguous. This response should be contrasted with the response to question 45

and 46, which indicated that decisions are more often made intuitively. Looked at

together, this would indicate that more analytic evaluation would, in theory, lead

403



to better end results, but in practise is too demanding. One user speculates that

fatigue may be an issue here:

“Over-thinking leads to fatigue, which changes the way you perceive.

The more I consider decisions I’ve made the more I’m likely to bugger

about and backtrack. The solution can either be to whip through ev-

erything like a lunatic, not looking sideways or backwards (flow?) or

to delay decision making until an idea has been meticulously explored.

The delay approach often leads to more confusion as you hold different

contingencies and comparisons in mind. Beginning to think more and

more that the first good idea wins, and move on. There is probably a

happy medium, but how to enforce such an approach?”

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12 Mean = 5.1, SD = 2.8

Median = 5

Strongly disagree Strongly agree

Figure A.40: Q42: Analysis increases confidence.

A.8 Conclusions

Based on the responses in Section A.2, it appears that real-time control of timbre

is a key problem in electronic music production. If higher throughput, lower cogni-
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tive load interaction methods could be achieved, it would assist with sound design,

structuring, live performance and quite possibly general levels of creativity.

Exploratory, curiosity-driven, emergent and serendipitous discoveries seem to

constitute the bulk of the creative process, an estimated two thirds of interac-

tion being of this type. Implicit decision-making also was rated as being an es-

sential ingredient, again with two thirds of decisions being considered intuitive.

Late stage creativity, such as long term structure, editing fine detail, and the fi-

nal mix-down/mastering process are considered more demanding, comparative and

analytical.

Subjects report significant levels of interference with many creative tasks if

interface-induced cognitive load is high. Evaluation, however, was rated as being

less interfered with, whilst rated as being more important than technical ability.

There is widespread recognition that self-imposed constraints are a good thing,

and more options and features do not necessarily lead to better results: indeed

may cause confusion and hamper progress. Comments indicate that there seems

to be an instinctive understanding that constraints encourage a switch to reflective

meta-exploration.

Some interesting differences between the questions related to mental load emerged.

Small edits were not rated as particularly hard work (Q.12). But yet they were rated

highly in terms of losing perspective (Q.68). Perhaps loss of perspective is not purely

a question of mental load. Narrowed attention may play a part, unfortunately this

survey was not precise enough to tease apart these constructs. The main challenge

with assessing the “mental load” responses is establishing whether the work load is

intrinsic to the task itself, or an artefact of the current state of interface design. For

instance, “structuring a track” may be expected to be difficult, given the complex-

ity and interdependence of the units being manipulated, the strong constraint that

good existing components should not be damaged in any way, and the long feedback
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time required to evaluate the results of an alteration. On the other hand, very few

DAW systems provide simple visualisation or easy manipulation of song structure,

so perhaps the interface may be partially to blame.

Despite the fact that over 60 questions were presented to 45 respondents, many

further questions remain, and in retrospect some quite useful information was not

obtained. Some questions were intended to be provocative, but this may have back-

fired by encouraging people to sit on the fence. The optional text responses often

justified this ambiguity in more detail, a great many starting with “Yes and no...”.

This strongly indicates that creativity is often a blending of opposing tendencies:

almost any technique can be subverted or inverted and still constitute a valid tool in

the artist’s creative arsenal. Many questions with large spikes for the neutral value

may have reflected the discomfort described by this participant:

“The problem for me in a lot of the scenarios outlined by these ques-

tions is that at a specific moment I would favour a particular end of

the spectrum whilst in another moment the exact opposite would be

desirable.”

Some questions may have been misinterpreted and would have benefited from

less ambiguous wording. Even the various very clear responses could have multiple

explanations, which would require a follow up survey to investigate fully.

Another difficulty with this kind of survey is that we only receive the subjective

opinions of the respondents, and of course they may be biased or mistaken. If, as

suggested, their reflective capacity is compromised in situations of high workload,

then this will inhibit their ability to objectively self-report in precisely those situ-

ations we are most interested in. This survey was not conducted in as rigorous a

fashion as would be required for reporting as scientific results, and therefore should

more be considered as background motivation for this research programme, rather

406



than providing concrete evidence for any of the theories advanced in Chapter 5.

Despite these reservations, the responses bear out a number of predictions from

the theoretical part of this thesis, and serve to further motivate the experimental

work.
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APPENDIX B

Participant instruction texts

B.1 Introductory text for Sonic Zoom

The following test appeared on the iTunes App Store as an introduction to the

SOnic Zoom application used for Experiment 1 (Chapter 6).

Sonic Zoom is a PhD research project from Queen Mary University. The

app aims to look at how people interact with music synthesisers: how

they adjust parameters and explore the vast range of sounds on offer.

There are two interfaces presented. The first is fairly standard: ten

sliders that control each parameter. The second is more novel: a two-

dimensional surface that can be scrolled and zoomed similar to a map.

Every sound that can be made with the synth is located somewhere on

this surface. If you find a sound you like, you can zoom in on it to explore

smaller variations. You can save a sound and this will drop a marker
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on the surface. These markers are easy to revisit and can be smoothly

interpolated between. Your path through the sound space is visible, so

you can retrace your steps.

The first 15 minutes is a timed experiment. Users will then be asked to

complete a quick questionnaire. After this you are free to use the app,

and a few extra features will be unlocked as a reward.

The following introductory text was shown to all participants in the Sonic Zoom

experiment on starting the app.

Welcome to “Sonic Zoom”. This is a Queen Mary University PhD re-

search project aimed at finding out how people explore sound synthesis

parameters.

In this app there are just 10 parameters for a somewhat basic FM/subtractive

synthesizer. However, even with only 10 parameters the amount of differ-

ent sounds to explore is vast: in fact there are just over a billion trillion

distinct settings! We aim to look at what paths people take in this huge

space, what points they like and dislike, and use the data to create synths

that are easier to navigate, and hopefully encourage creativity.

There are two interfaces presented here. The first is one you will probably

be used to if you are an electronic musician: 10 sliders for each of the

parameters. The second is somewhat new: every one of the billion trillion

points has been mapped to a 2D surface. But basically, the further you

travel along this 2D surface, the more different the sound will become.

When you click “save preset” you will drop a pin onto the surface, and

you can revisit this point at anytime by scrolling to it. Think of it like

a “Google Maps” for synth sounds...
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You can use a pinch gesture to zoom in and out of the surface. In

this way, you can explore the ”neighbourhood” of a particular sound.

Zooming in will enable you to explore smaller localities of the sound

space. Zooming out will give you a bigger perspective, but of course the

transitions will become more sudden and random as you move bigger

distances.

What we are asking you, the participant, to do is use the Zoomer, the

sliders and a combination of both for 5 minutes each, and save any sounds

that you like. The interfaces will swap automatically. Also check out

the “randomise” and “lock” buttons. After this a short questionnaire

will appear that will help us assess the interface further. After that,

please feel free to use it some more: the more data we get the better.

As a bonus some extra features will be unlocked when you complete the

questionnaire: MIDI out and smooth interpolation mode.

Please note: Your actions will be logged, and sent to a secure server here

at Queen Mary University. However no personal data (name, email etc.)

will be collected, associated with this ID or stored in the database. It

is highly recommended that you are connected to WiFi internet whilst

using this App, otherwise the log data will take up space on your device.

To consent to this please press “Agree” below. To decline just exit the

app.
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Caramiaux, B., Tahiroğlu, K., Fiebrink, R., and Tanaka, A., editors (2014). Proceed-

ings of the International Conference on New Interfaces for Musical Expression.

Goldsmiths, University of London, UK.

Card, S. K., Moran, T. P., Newell, A., et al. (1983). The psychology of human-

computer interaction. Erlbaum Hillsdale, NJ.

Cardoso, A., Veale, T., and Wiggins, G. A. (2009). Converging on the divergent:

The history (and future) of the international joint workshops in computational

creativity. AI Magazine, 30(3):15.

418



Cascone, K. (2002). Laptop music-counterfeiting aura in the age of infinite repro-

duction. Parachute, pages 52–59.

Cha, Y. and Myung, R. (2010). Extended Fitts’ law in three-dimensional pointing

tasks. In Proceedings of the Human Factors and Ergonomics Society Annual

Meeting, volume 54, pages 972–976. SAGE Publications.

Chalmers, D. J. (1995). Facing up to the problem of consciousness. Journal of

Consciousness Studies, 2(3):200–219.

Chemero, A. (2011). Radical embodied cognitive science. MIT press.

Chennu, S., Finoia, P., Kamau, E., Allanson, J., Williams, G. B., Monti, M. M.,

Noreika, V., Arnatkeviciute, A., Canales-Johnson, A., Olivares, F., et al. (2014).

Spectral signatures of reorganised brain networks in disorders of consciousness.

PLoS Computational Biology, 10(10):e1003887.

Cherry, E. and Latulipe, C. (2014). Quantifying the creativity support of digital

tools through the creativity support index. ACM Transactions on Computer-

Human Interaction (TOCHI), 21(4):21.

Choi, I. (2000). A manifold interface for kinesthetic notation in high-dimensional

systems. In Wanderley, M. and Battier, M., editors, Trends In Gestural Control

Of Music. Ircam - Centre Pompidou.

Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future

of cognitive science. Behavioral and Brain Sciences, 36(03):181–204.

Clark, A. and Chalmers, D. (1998). The extended mind. Analysis, pages 7–19.

Cockburn, A. and Brewster, S. (2005). Multimodal feedback for the acquisition of

small targets. Ergonomics, 48(9):1129–1150.

419



Cockburn, A. and McKenzie, B. (2002). Evaluating the effectiveness of spatial

memory in 2d and 3d physical and virtual environments. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, CHI ’02, pages

203–210, New York, NY, USA. ACM.

Collins, N. (2008). The analysis of generative music programs. Organised Sound,

13(03):237–248.

Collins, N., McLean, A., Rohrhuber, J., and Ward, A. (2003). Live coding in laptop

performance. Organised Sound, 8(03):321–330.

Colton, S., Wiggins, G. A., et al. (2012). Computational creativity: The final

frontier? In Proceedings of the European Conference on Artificial Intelligence,

pages 21–26.

Conner, B. D., Snibbe, S. S., Herndon, K. P., Robbins, D. C., Zeleznik, R. C., and

Van Dam, A. (1992). Three-dimensional widgets. In Proceedings of the 1992

Symposium on Interactive 3D Graphics, pages 183–188. ACM.

Cook, P. (2001). Principles for designing computer music controllers. In Proceedings

of the conference on New Interfaces for Musical Expression, pages 1–4. National

University of Singapore.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C., et al. (2001). Introduction

to algorithms, volume 2. MIT press Cambridge.

Cruz-Neira, C., Leigh, J., Papka, M., Barnes, C., Cohen, S. M., Das, S., Engelmann,

R., Hudson, R., Roy, T., Siegel, L., et al. (1993). Scientists in wonderland: A

report on visualization applications in the CAVE virtual reality environment.

In Proceedings of the IEEE 1993 Symposium on Research Frontiers in Virtual

Reality., pages 59–66. IEEE.

420
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