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Abstract

It is not a secret that communications between client sides and server sides in web

applications can leak user confidential data through side-channel attacks. The lower-

lever traffic features, such as packet sizes, packet lengths, timings, etc., are public to

attackers. Attackers can infer a user’s web activities including web browsing histories

and user sensitive information by analysing web traffic generated during communications,

even when the traffic is encrypted.

There has been an increasing public concern about the disclosure of user privacy

through side-channel attacks in web applications. A large amount of work has been

proposed to analyse and evaluate this kind of security threat in the real world.

This dissertation addresses side-channel vulnerabilities from different perspectives.

First, a new approach based on verification and quantitative information flow is proposed

to perform a fully automated analysis of side-channel leakages in web applications. Core

to this aim is the generation of test cases without developers’ manual work. Techniques

are implemented into a tool, called SideAuto, which targets at the Apache Struts web

applications.

Then the focus is turned to real-world web applications. A black-box methodology

of automatically analysing side-channel vulnerabilities in real-world web applications is

proposed. This research demonstrates that communications which are not explicitly

involving user sensitive information can leak user secrets, even more seriously than a

traffic explicitly transmitting user information.

Moreover, this thesis also examines side-channel leakages of user identities from

Google accounts. The research demonstrates that user identities can be revealed, even

when communicating with external websites included in Alexa Top 150 websites, which

have no relation to Google accounts.
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Chapter 1

Introduction

Communications between the clients and the servers lead to security threats of user

privacy. An attacker is capable of stealing user confidential information by eavesdropping

network side channels, such as packet sizes, packet lengths, and timing information.

These side channels are public to attackers, and they may vary depending on user sensitive

information. For example, different user inputs in a search engine can generate unique

traffic sequences which reveal user sensitive inputs [39].

There has been a large amount of work on analysing side-channel vulnerabilities in

web applications, which demonstrates that network traffic, even though it is encrypted,

can reveal a large amount of confidential information, e.g. [40, 76, 111]. This kind of

attack is also called as traffic-analysis attack.

1.1 Overview

In this thesis, we aim to provide an automated analysis for detecting side-channel vulner-

abilities in web applications for developers, mainly via packet sizes and packet directions.

We use white-box and black-box approaches to analyse web applications based on Struts

[16] framework and real-world applications respectively.

In white-box approach, we analyse vulnerabilities in Struts-based web applications.

Static analysis and symbolic execution [72] are performed to automatically generate test

cases. Test cases are executed and their web traffic is collected. By analysing the web

traffic, the leaks of user sensitive information can be evaluated using quantitative infor-

mation flow.

However, the current white-box approach can only be used to analyse Struts web

applications, and the source code of the web applications is required.

To analyse real-world web applications, we extend our analysis using a black-box

approach. The approach is motivated by [37], which uses a crawler to detect side-channel

vulnerabilities. We develop an automated detection system containing an automated test

case generation for real-world web applications. After executing the test cases generated,
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guessing probabilities [82] are used to evaluate the leakages based on the observations of

web traffic.

During the experiments on the Google website, we discover unexpectedly that Google

user identities may be leaked largely from user accounts. To future explore, our final

work particularly analyse the leakage of user identities from Google accounts, through

the communications with third-party websites included in Alexa Top 150 websites [1].

This widens the communications under examination, which are not only within a single

website, but also between different websites.

Notice that side-channel vulnerabilities in web applications have been commonly ex-

amined through communications explicitly transmitting user sensitive information. Little

work has particularly studied communications inexplicitly transmitting sensitive infor-

mation. In our research, therefore, we also examine communications which appear to

transmit no user sensitive information, i.e. without explicit interactions with user sensi-

tive information.

Overall, the main purpose of this thesis is to analyse side-channel vulnerabilities in

web applications from a perspective of a developer. We aim to provide references and

suggestions about the vulnerabilities in a web application for a developer, rather than

giving an accurate evaluation of the leakage. According to the references, the developer

can further explore and make countermeasures on the specific vulnerabilities.

1.2 Contributions

In summary, the primary contributions of this thesis are as follows:

1. This thesis proposes a system towards automated test case generation in analysing

side-channel vulnerabilities in Struts web applications. It exploits techniques based

on verification and static analysis to fulfil the automation of test case generation. It is

the first research referring automated test case generation to the side-channel analysis

in web applications. In this sense it is the first tool towards a completed automated

side-channel analysis in web applications.

2. This thesis demonstrates that user sensitive information can be leaked from communi-

cations which appear to be irrelevant with the sensitive information. Moreover, it also

discovers that user secrets can be inferred from communications with “third-party”

websites which bear completely no relation to sensitive information.

3. This thesis shows that user identities, even Google users, are vulnerable through traffic

analysis. It also examines that whether cookies and logged user accounts are the

factors causing web traffic varying depending on user identities.

1.3 Thesis Outline

This thesis gives a comprehensive analysis of side-channel vulnerabilities against user

privacy in web applications. The outline of this thesis is described as follows.
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Chapter 2 introduces the background and the primary techniques used throughout

this thesis. In summary, static analysis and symbolic execution are performed on the

source code of web applications; black-box analysis is used for analysing real-world web

applications; hidden Markov models motivate our analysis of packet data and quantitative

information flow and probability of guessing are used to measure leaks. Furthermore,

this chapter introduces a basic fingerprinting model and a threat scenario. They are the

essentials of the models and the threat scenarios proposed in this thesis.

Chapter 3 proposes an automated system which advances on the automated test case

generation for Struts-based web applications. This complements previous tools towards

a fully automated system.

Chapter 4 extends side-channel analysis to real-world web applications using a black-

box approach. It demonstrates that user privacy can be sneaked through communications

which appear to have no relation to sensitive information. Moreover, an approach, mo-

tivated by the hidden Markov model, is proposed to construct a traffic pattern best

matched to the web traffic observed in a communication. Then the information leakage

is evaluated by the probability of guessing a secret correctly in one try [82].

Chapter 5 proposes a novel threat scenario in terms of leakage of use identities. User

identities examined are leaked from 50 Google accounts to communications with third-

party websites included in Alexa Top 150 websites. Moreover, four testing scenarios are

developed to explore if cookies and logged user accounts can be the leaking sources of

user identities.

Then Chapter 6 presents a review of previous work related to this research, including

side-channel vulnerabilities, fingerprinting users, leakage of user locations, automated test

case generation, hidden Markov models, security threats of web cookies and quantitative

information flow.

Finally, Chapter 7 concludes this thesis and suggests the future work.
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Chapter 2

Preliminaries

This chapter introduces the background and the primary techniques used throughout

this thesis.

2.1 Quantitative Information Flow

In the context of protecting confidential information, quantitative information flow (QIF)

provides a powerful approach to analyse leakages of sensitive information in secure infor-

mation flow. It is used to quantify how much confidential information is leaked.

2.1.1 Information Flow and Non-interference

Information flow shows the transfer of information from a variable x to a variable y in

a given program. Denning et al. [50] present a secure flow of information based on a

lattice structure through a program. They partition variables into security labels, where

the confidential variables are given the “high” security label H and the public variables

are taken the “low” security label L. “Low” security variables are publicly observable.

Figure 2.1(a) shows the fundamental model of information flow. A program takes

confidential input H, public input L and produces output O. It can be seen that con-

fidential information H potentially flows to the observation O. Figure 2.1(b) shows an

attacker model where an attacker aims to get the confidential information H from the

public input L and the observation O.

Figure 2.1: Information flow in (a) and Attacker model in (b)

A system P is deemed to be vulnerable if there is information flow from confidential
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informationH to observable output O. The following code gives an example of a password

authentication program.

if (H==L)
O= true;
else
O=false;

Figure 2.2: A password authentication program

H is the password, i.e. the confidential information, and L is the user input. O is

the observable output telling if the user inputs the correct password. H == L indicates

the input is accepted. In this case, there is still information flow from H to L even the

password input is incorrect, i.e. H 6= L. More precisely, with this prompting, an attacker

can finally get the correct password if he is able to perform enough attempts.

To guarantee no such information-flow leaks in a system, Goguen and Meseguer [60]

introduce a security policy in a general automaton framework: non-interference. The

formal expression of non-interference is defined as:

Definition 1 (Non-interference) Given a program P , characterised by a function f ,

taking public inputs L, secret inputs H and producing outputs O, the program P is non-

interference guaranteed, i.e. with no information-flow leaks, if and only if: for all input

values: l1, l2 ∈ L and h1, h2 ∈ H:

∀ l1 = l2 ∧ f(l1, h1)→ o1 ∧ f(l2, h2)→ o2 ⇒ o1 = o2,

where f(l1, h1)→ o1 denotes program P takes inputs of l1 and h1 and generates a result

of o1.

This means a program P is non-interference guaranteed if the public output does not

depend on any secret inputs.

2.1.2 Partition and Equivalence Relation

First, define partition and equivalence relation, which will be used in the measurement

of interference in next section 2.1.3.

Given a set, a partition X of a set S is a family of subsets of S, in such a way that

every element s ∈ S is contained in one and only one block of X. A block of the partition

X is a set in X.

A partition is defined in a mathematical way as follows.

Definition 2 (Partition) A partition of a set S is a family of sets X if and only if all

the following conditions hold:

1. ∅ 6∈ X
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2.
⋃

A∈X A = S

3. if A, B ∈ X and A 6= B then A ∩B = ∅.

Definition 3 (Equivalence Relation) A relation R on a set S is said to be an equiv-

alence relation if and only if it is reflexive, symmetric and transitive. That is, for all x,

y and z in S:

1. x ∼ x (Reflexive)

2. if x ∼ y then y ∼ x (Symmetric)

3. if x ∼ y and y ∼ z then x ∼ z (Transitive).

Two elements x and y which are equivalent given an equivalence relation R are de-

noted by either “x ∼ y” or “x ∼R y”. The equivalence class of x on equivalence relation

R of a set S can be denoted as [x] := {x′ ∈ S|x ∼R x′}.

2.1.3 Information Theoretical Measurements

Non-interference, i.e. the absence of interference, provides a strict security policy for

determining a program to be well behaved. From the example depicted in Figure 2.2,

it suggests that it is hard to hold the non-interference policy. As a matter of fact, the

presence of interference considered as information being leaked generally happens when

the interference reaches a threshold.

Thus instead of asking “does a program leak information”, one prefers to ask “how

much information does the program leak”. This kind of question transfers the assessment

of information-flow leaks in programs from qualitative to quantitative analysis. It may

also need to compare two programs: “which program P or P ′ leaks more confidential in-

formation”. Information theoretical measurements provide solutions for these questions,

including information theory and probability theory.

Discrete Probability Theory

Discrete probability theory is introduced in this section. It is the mathematical founda-

tion of reasoning about probabilities of events, which solves questions like “how likely is it

that an event happens”. Probability theory also provides the foundation of information

theory. Details of probability theory are provided in standard textbooks, such as [55].

Definition 4 (Probability Distribution) Given a discrete random variable X : Ω→
N , the probability distribution of X is a list of probabilities p(x) associated each of its

possible value x ∈ N . It is denoted by a function: p : N → [0, 1] such that∑
x∈N

p(x) = 1,

where the probability p(x) or p(X = x) is to measure the likelihood that X takes the value

x.
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A probability distribution is also known as a probability mass function for the discrete

random variable.

Definition 5 (Discrete Random Variable) A discrete random variable is a function

X : Ω→ N(N ⊆ R) from the set of possible outcomes Ω to a set N with unique numerical

values. In this thesis, a discrete random variable is abbreviated as the random variable.

Definition 6 (Joint Probability Distribution) The joint probability distribution of

two random variables X and Y is defined as

p(X = x, Y = y) = p(x, y) = p(y|x)p(x) = p(x|y)p(y)

such that ∑
x∈X

∑
y∈Y

p(X = x, Y = y) = 1

p(x|y) is the conditional probability of x given the knowledge of Y = y.

Joint probability measures the likelihood of X = x and Y = y occurred together.

Definition 7 (Conditional Probability) Given two random variables X and Y , the

conditional probability of an event X = x given the knowledge of another event Y = y is

defined as:

p(X = x|Y = y) = p(x|y) =
p(x, y)

p(y)

Information Theory

Information theory provides an answer for questions like “how much information is leaked

in the program P” [47]. One of the main concepts of information theory is entropy, also

called as Shannon entropy [108]. It quantifies the amount of information uncertainty in

a random variable.

Definition 8 (Shannon Entropy) Given a random variable X : Ω → N with the

probability distribution P = (p(xi))xi∈N , Shannon entropy is defined as:

H(X) = −
∑
xi∈N

p(xi) log p(xi),

The logarithm is to the base 2. Shannon entropy measures the amount of information,

or the uncertainty that the random variable contains.

The entropy is bounded by H(X) ≥ 0, where an extreme case H(X) = 0 holds when

an event x occurs with a probability p(x) = 1. No uncertainty of the variable exists since

there is only one event with a probability of 1.

On the other hand, the entropy is maximal when the probabilities of events are

uniformly distributed, i.e. every event is likely to happen evenly. In this case, H(X) =

log |N |, where |N | is the cardinality of the space of the events.
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Proposition 1 Given a random variable X : Ω → N with the probability distribution

P = (p(xi))xi∈N , the boundary of the Shannon entropy of X is:

0 ≤ H(X) ≤ log |N |,

where |N | is the cardinality of the set X.

Definition 9 (Joint Entropy) Given two random variables X and Y , the joint Shan-

non entropy of X and Y is defined as:

H(X,Y ) = −
∑

x∈NX

∑
y∈NY

p(X = x, Y = y) log p(X = x, Y = y),

where p(X = x, Y = y) is the joint probability of X and Y .

The joint entropy measures how much uncertainty there is when two random variables

(X, Y ) are happening at the same time, i.e. joint.

Definition 10 (Conditional Entropy) Given two random variables X and Y , the

conditional entropy of X given the knowledge of variable Y is defined as follows:

H(X|Y ) =
∑
y∈NY

p(y)H(X|Y = y)

The conditional entropy H(X|Y ) refers to the average uncertainty of X conditional

on the value of Y , averaged over all possible values of Y . It is different from the one

H(X|Y = y), which is the entropy of X conditioning on a particular value y that Y

takes.

The conditional entropy of X given the knowledge of Y can also be defined in terms

of the chain rule as:

H(X|Y ) = H(X,Y )−H(Y )
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The chain rule can be proved as follows:

H(X|Y ) =
∑
y∈NY

p(y)H(X|Y = y)

=
∑
y∈NY

p(y)[−
∑

x∈NX

p(x|y) log p(x|y)]

= −
∑

x∈NX

∑
y∈NY

p(x, y) log p(x|y)

= −
∑

x∈NX

∑
y∈NY

p(x, y) log
p(x, y)

p(y)

= −
∑

x∈NX

∑
y∈NY

p(x, y) log p(x, y) +
∑

x∈NX

∑
y∈NY

p(x, y) log p(y)

= H(X,Y ) +
∑
y∈NY

p(y) log p(y)

= H(X,Y )−H(Y )

The higher correlation between X and Y , the low uncertainty H(X|Y ) contains. If

X is a function of Y , i.e. the value of X is completely dependent on Y , then H(X|Y ) = 0

as there is no uncertainty of X when giving the knowledge of Y . The other extreme case

is that if X and Y are independent then knowing the value of Y does not change the

uncertainty of X, which indicates H(X|Y ) = H(X).

Definition 11 (Mutual Information) Given two random variables X and Y , the mu-

tual information of X and Y is defined as:

I(X;Y ) =
∑

x∈NX

∑
y∈NY

p(x, y) log(
p(x, y)

p(x)p(y)
)

Mutual information is a measure of how much information that random variables X and

Y share. It can be rewritten in terms of conditional entropy as:

I(X;Y ) =
∑
x

∑
y

p(x, y) log(
p(x, y)

p(x)p(y)
)

= −
∑
x

∑
y

p(x, y) log p(x) +
∑
x

∑
y

p(x, y) log p(x|y)

= H(X)−H(X|Y )

Similarly, it turns out that mutual information can also be

I(X;Y ) = I(Y ;X) = H(Y )−H(Y |X)

Entropy gives an average value of information leakage, but Smith [109] proposes a

different concept, the concept of vulnerability which is a worst-case measurement, the

probability that a secret can be guessed correctly.
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Definition 12 (Vulnerability) Given a random variable X : Ω → N with the proba-

bility distribution P = (p(xi))xi∈N , the vulnerability of X, denoted by V (X), is defined

by

V (X) = max
xi∈N

P (X = xi)

The vulnerability V (X) is the worst-case probability of the value of X being guessed

correctly in one try.

Definition 13 (Min Entropy) Given a random variable X, the min entropy of X,

denoted by H∞(X), is given by

H∞(X) = log
1

V (X)

where V (X) is the vulnerability of X.

The min entropy, it turns out, converts the probability to an entropy measure.

Notice that if X is uniformly distributed among n values, V (X) = 1
n and H∞(X) =

log n. Thus the equality of Shannon entropy and min entropy holds on uniform distribu-

tion.

To measure the conditional entropy of X given the knowledge of Y of min entropy

H∞(X|Y ), first consider the conditional vulnerability about the probability of guessing

X correctly in one try given Y .

Definition 14 (Conditional Vulnerability) Given random variables X and Y , the

conditional vulnerability of X given the knowledge of Y is

V (X|Y ) =
∑
y∈NY

P (Y = y)V (X|Y = y)

where

V (X|Y = y) = max
x∈NX

P (X = x|Y = y)

Definition 15 (Conditional Min Entropy) Given two random variables X and Y ,

the conditional min entropy of X given Y is defined by

H∞(X|Y ) = log
1

V (X|Y )

Expected Probability of Guessing

Probabilities can also be used to ask questions like “how likely a secret can be guessed

correctly in n tries”. The average probability of guessing a secret correctly in n tries is

defined in [82], related to Smith’s conditional vulnerability [109].

Definition 16 (Expected Probability of Guessing) Given a random variable X :

Ω → N and the probability distribution P = (p(xi))xi∈N , where the probabilities are
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ordered decreasingly i.e. p(xi) ≥ p(xi+1), the probabilities of guessing the secret in n tries

is defined as

gn,P (X) =
∑

1≤i≤m
p(xi)

where m = min(|X|, n).

Given a partition Y of a set X and a distribution P on X the probability of guessing

the secret in n tries is

Gn,P (Y ) =
∑
Yi∈Y

gn,P (Yi)

This definition can also be regarded, in terms of the probabilities in each block of the

partition Y , as

Gn,P (Y ) =
∑
Yi∈Y

gn,P (Yi) =
∑
Yi∈Y

p(Yi)
∑

1≤j≤m,xj∈Yi

p(xj)

p(Yi)

where m = min(|Yi|, n). When n = 1, the definition becomes

G1,P (Y ) =
∑
Yi∈Y

p(Yi)
p(xi)

p(Yi)

where p(xi) is the highest probability in a block Yi, and so G1,P (Y ), abbreviated by

G(Y ), is related to the conditional vulnerability. The expected probability of guessing

G(Y ) is also regarded as guessing probability in this thesis.

2.1.4 Measuring Leakage

In the context of quantitative information flow, information leaked in terms of entropy

is quantified by

information leaked = initial uncertainty − remaining uncertainty

Initial uncertainty specifies the original entropy of confidential information before obser-

vations. And remaining uncertainty means the amount of information the secret remains

after observations.

Given a random variable X, the entropy H(X) measures the initial uncertainty of

the secret in X. The remaining uncertainty of X after observing the output O is, by

definition, the conditional entropy H(X|O). Accordingly, information leaked of X given

the observation O can be calculated by

∆H(X) = H(X)−H(X|O) = I(X;O)

Mutual information, i.e. the information shared between X and O, turns out to be the

information leaked.
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In terms of min entropy, information leaked can be measured by

∆H∞(X) = H∞(X)−H∞(X|O) = I∞(X;O)

where I∞(X;O) is the information share between X and O on min entropy.

Either Shannon entropy H(X) or min entropy H∞(X) can be used to measure infor-

mation leaked. Consider

F = {H, H∞}

which denotes that either one measure is chosen between H and H∞ to calculate the

information uncertainty. As a result, the information leaked of X can be expressed by

∆F (X) = F (X)− F (X|O)

In the case of non-interference, the confidential variable X is independent on the obser-

vation O, which means F (X|O) = F (X). Therefore there is no information leaked in

non-interference as ∆F (X) = 0.

2.2 Side-Channel Leakages

In the context of secure information flow, if the question is about how much information

a program could leak from its high inputs to the low inputs, then in the context of side-

channel leakage, the question becomes like how much information about the secret can

be leaked from side channels in the information systems.

In cryptography, a side-channel attack is based on the information gained from phys-

ical implementations of a cryptosystem. For example, timing information, power con-

sumption, electromagnetic leaks or even sound can provide extra sources of encrypted

information, which can break the cryptosystem.

2.2.1 Side-Channel Attacks in Web Applications

With the rise of web 2.0 applications, there has been an increasingly concern about

side-channel attacks in web applications. Users can benefit from the interaction and

the collaboration with each other in web 2.0, however, a subset of internal information

flows of applications are inevitably exposed in the network, which increase the risks of

revealing user privacy. Primary side-channel attacks in web applications include timing

attacks and traffic-analysis attacks.

In timing attacks, Felten and Schneider [56] first propose a cache-based timing attack.

Using the response time of accessing to a web page, it can determine whether a web

page has been visited beforehand. In general, web browsers use caching to save copies

of recently-accessed files to reduce perceived access time when future accesses to those

files stored locally occur. Exploiting this feature of caching, an attacker is capable of

measuring the required access time to determine whether a file has been accessed recently

if the required time is obviously lesser than the normal time required to access a file.
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Moreover, side-channel attacks have also been performed by analysing web traffic. In

the following, some particular examples are taken to give an overview of this security

threat.

Side-channel analysis of network traffic is also deemed as traffic analysis throughout

this thesis. Confidential information of web users can be revealed even in encrypted

channels through the low-level features of web traffic, such as packet sizes, packet lengths,

packet directions etc. This concern was first proposed by Wagner and Schneier [119] in

1996. Two years later an actual side-channel attack through web traffic was demonstrated

by Cheng et al. [40].

We take two examples to give an idea of traffic analysis against browsing histories

and user sensitive inputs in a text box.

Figure 2.3 gives an example of fingerprinting web pages in a website. A user can

follow one of the execution paths from the homepage, each to a unique web page.

Figure 2.3: A side-channel attack against web pages

A sequence like “→ 174 ← 283” is a traffic sequence generated during a communi-

cation. Symbols “→” and “←” represent the packet directions, indicating request and

response traffic respectively, whereas the numerical values specify the packet sizes. As

shown in Figure 2.3, traffic patterns for each communication are distinguishable from each

another. Thus an attacker can easily identify the web page a user accesses by matching

the observed traffic sequence to one of the traffic patterns, each of which associates with

a communication with one web page.

Image another case in this example. With the countermeasures like padding, the

traffic sequences can be indistinguishable among different requests of web pages. In this

case, the attacker can also infer the requested web page if the following requests generate

distinguishable web traffic.

Figure 2.4 shows a scenario of inputting a search keyword in a search engine. In this

example, each character input triggers a generation of web traffic, which can be observed

by an eavesdropper.

To infer the first letter of a search word, an attacker matches observed traffic to a

set of at most 26 possibilities (when the unique traffic is generated by each letter from
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Figure 2.4: A side-channel attack against user search input

letter a to z). From the second letter, the observed traffic is matched to a smaller space

of possibilities, because the number of letters, which can form a meaningful word by

following previous letter, reduce drastically.

The above examples give an overview of side-channel attacks using web traffic. In

summary, the public features of web traffic, such as packet sizes and directions, can leak

user privacy in encrypted communications, when the web traffic varies dependently on

user confidential information.

2.3 Struts Framework

Struts is a framework of Java web applications. It combines JavaServer Pages (JSPs),

xml configuration files and Java servlets files to build a web application. Struts have two

versions, i.e. Struts 1 and Struts 2, which are developed on top of a design of Model-

View-Controller (MVC) [17]. Figure 2.5 gives an overview of the Struts 1 framework in

MVC model, which is similar to the Struts 2.

Figure 2.5: Structure of Struts 1 in MVC [19]

In the MVC model, a client sends a request to a web server. The Action servlet,

which runs as a controller within the web server, receives the request and invokes a

model, which is used to maintain data and can be invoked through a form bean in Struts

1. Then the servlet invokes the corresponding action to process the request depending on

the data returned from the model, and communicates with the corresponding JSP page

(as the viewer), which then will be rendered back to the client.

Figure 2.6 illustrates the communicating process in Struts 1, with respect to web files.

A file web.xml is the deployment descriptor file in each web application to initialise
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Figure 2.6: Working flow of Struts 1 web application

the Struts framework. It specifies the starting page of a web application, and how the

framework should behave. A Struts configuration file, named as struts-configure.xml

in Struts 1 or struts.xml in Struts 2, specifies the Action and ActionForm1 classes.

In Struts 1, each user action from the client side is related to an Action class and an

ActionForm class. When a browser submits a request to the server, usually through a

HTML form, the Action servlet associates the user action to its Action and ActionForm

classes, which actually determine the flow of page transitions.

In Struts 1, user inputs in a user action are retrieved by the related ActionForm class.

Then the Action class determines the returned branch based on the retrieved values, by

returning an ActionForward string to the servlet. The ActionForward string tells the

servlet that which JSP page should be connected. So then the servlet invokes the JSP

page to respond the client. More details about Struts can be referenced in [16].

2.4 Program Analysis

Program analysis offers techniques for automatically analysing behaviours arising at a

run-time when executing a computer program, in terms of a property such as safety,

correctness, robustness, and liveness [89].

Program analysis can be divided into static program analysis or dynamic program

analysis, depending on whether it is performed without executing the program or during

the runtime. The analysis can also be performed in a combination of the two techniques.

2.4.1 Static Program Analysis

Static program analysis or static code analysis is a process that is performed without

actually executing programs. In most cases the analysis is performed on the source code

of programs; whereas sometimes it is performed on the object code, usually a machine

code language, i.e. binaries. In general, static analysis examines all possible execution

paths and variable values, in which source code and object code is analysed for quality,

safety, and security.

1ActionForm classes exist only in Struts 1. In Struts 2 they are integrated into the Action
classes.
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Data Flow Analysis

Data flow analysis is a technique of static analysis, which attempts to gather information

about the possible set of values used at each node in a program [89].

It is customary to think of a program as a control flow graph (CFG): the nodes are the

elementary blocks and the edges describe how control might pass from one elementary

block to another one.

A simple approach to perform data flow analysis is to set up an equation system of

a set of data flow equations about inputs and outputs for each elementary block of the

CFG and repeatedly calculate the outputs from the inputs at each node until the whole

system stabilizes, i.e. when it reaches a fixpoint.

Basic principle. The basic principle of an equation system of a CFG is:

∀ elementary block eb ∈ CFG :

exiteb = transeb(entryeb)

entryeb = joinp∈predeb(exitp)

where exiteb and entryeb is the output and input equations of elementary block eb. The

transfer function transeb is the mapping from the inputs to the outputs in block eb. It

executes operations on the entry state entryeb and yields the exit state exiteb. The join

operation join combines the exit states of the predecessors of block eb, yielding the entry

state of eb.

Control Flow Analysis

Control flow analysis is a static code analysis for determining the control flow of a pro-

gram. It determines the receiver(s) of function calls in a program. More specifically, it

determines which functions have been invoked in another function. For many imperative

programming languages, the control flow of a program is directly available, e.g. the sim-

ple WHILE language. However, it is not a case for more advanced imperative, high-order

and object-oriented languages. It is difficult to immediately point to the information

what parameters a function will be called with.

For example, in a programming language with higher-order functions, the target of a

function call may not be explicit: in the isolated expression (λ (f) (f x)), it is unclear to

which procedure f may refer. To determine the possible targets, a control flow analysis

must consider where this expression could be invoked, and what argument it may receive.

Therefore, control flow analysis is required, providing that: for each function appli-

cation, which functions may be applied [89].

Readers interested in more details and examples of control flow analysis can be re-

ferred to the textbook [89].

2.4.2 Dynamic Program Analysis

In contrast to static program analysis without executing a program, dynamic program

analysis examines a program during runtime.
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While dynamic analysis cannot prove that a program satisfies a particular property, it

can detect violations of properties as well as provide useful information to programmers

about the behaviours of their programs [26].

Dynamic program analysis typically involves instrumenting a program to examine or

record certain aspects of its run-time state. This instrumentation can be tuned to collect

precisely the information needed to address a particular problem.

Dynamic program analysis is dependent on the inputs. It relates program inputs and

outputs to program behaviour [99]. To be effective in dynamic analysis, sufficient inputs

should be executed.

It can also detect dependencies which are not detected in static analysis. For exam-

ple, dynamic analysis ensures that the program being tested is compatible with other

programs.

2.4.3 White-Box and Black-Box Testing

Program testing methods are traditionally divided into white-box and black-box testing.

They are divided from a point of view that a test engineer takes when designing test

cases.

White-box testing examines internal structures or workings of a program at the level

of the source code. A tester must have explicit knowledge of internal workings of the

items being tested, to know what kinds of test cases should be created [71]. The tester

creates test cases which are considered important.

Though both white-box testing and static analysis are based on the source code of a

program, they are different things.

Static analysis uses techniques such as data flow and control flow analysis to minimise

errors in the source code by executing every path of the source code. It does analyse the

source code independently on test cases.

Relatively, white-box testing looks for problems in a different way: by examining

programs dependently on test cases. Static analysis techniques such as control flow and

data flow analysis can be used in the building phase of white-box testing, which analyses

the source code and help testers build test cases more precisely. Though white-box

testing can also uncover defects in the source code, it typically aims to examine outputs

of particular test cases.

Unlike white-box testing, specific knowledge of the source code or internal structures

is not required in black-box testing [94]. Black-box testing examines the functionality of

a program. The tester is aware of what the program is supposed to do, i.e. knows the

inputs and what the expected outcomes should be. However, the tester has no knowledge

of how the program reaches the outputs.

Test cases are mainly derived from external descriptions of the program, including

specifications, requirements and design parameters. The tester selects both valid and

invalid inputs and determines the correct outputs.
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2.4.4 Taint Analysis

Taint analysis is a technique to track information flow of tainted information from sources

to sinks. It aims to examine that any variable which can be modified by an outside user

poses a potential security risk.

It runs a program and observes which computations are affected by predefined taint

sources such as user input [107]. It is designed to increase security by preventing malicious

users from executing dangerous commands.

Taint analysis starts with a black list of tainted sources, which are the variables

potentially influenced by outside user inputs. Other variables unlisted in the black list

are considered as untainted. A taint policy is configured to determine how taint flows

while a program executes, what sorts of operations introduce new taint variables, and

how to perform checks on tainted values of sinks. For example, if a tainted variable is

used in an assignment which sets a second variable, the second variable is also tainted.

Taint analysis attempts to identify the tainted variables with user controllable inputs

and tracks flows of them to possible vulnerable functions or commands which are known

as sinks. And a tainted variable is sanitized when it is completely dependent on an

untainted variable. If a tainted variable gets passed to a sink without being sanitized,

a warning of the program with a potential dangerous tainted variable is given and the

dangerous command is flagged as a vulnerability. Take the following as an example.

Figure 2.7: Propagation of a tainted variable a

Figure 2.7 depicts the propagation of a tainted variable a. Variable a is tainted as

displayed at line (1). Variable b is tainted when it is assigned by the tainted variable a at

line (2). Assume that value c is untainted and it sets variable b at line (4). Thus variable

b is sanitized in the end.

2.5 Symbolic Execution and Symbolic PathFinder

Symbolic execution (SE) is a program analysis technique to determine what inputs

lead to the execution of each part of a program [72]. Instead of using concrete inputs

to execute programs, symbolic execution analyses programs with unspecific inputs, by

using symbolic values as inputs.

Symbolic execution builds a path constraint pc, also called as a path condition, for

each conditional path. When the execution encounters a conditional statement, e.g. an

if statement on a path condition c, it flows to one of two paths: either (1) branch

then when it is true for condition c or (2) branch else when it is false. Thus the path
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constraint in terms of the then branch updates to pc1 = pc∧c, while for the else branch

pc2 = pc ∧ ¬c, where pc is the path constraint of the path before arriving at the if

statement.

Symbolic execution finds path constraints for each feasible execution path and then

finally generate specific test inputs by solving the path constraints.

2.6 Hidden Markov Model

Real-world programs generally produce observable outputs which can be characterized

as signals. A fundamental interest is to characterise such signals and to learn the signal

source which generates the signals. A signal model is built to characterise properties of

signals.

Hidden Markov Model (HMM) is such a signal model first published in a series

of classic papers by Baum et al. [27, 28, 29, 30] in the late 1960s and early 1970s. It is a

statistical Markov model in which the system modelled is assumed to be a Markov process

with unobserved (hidden) states. From 1980s, HMM has been widespread understood

and largely used in the field of speech processing, and nowadays, it has been applied in a

large scale of areas, such as bioinformatics [54], and signature recognition [38]. Details of

HMMs are introduced in the work by Rabiner [97]. The following refers to the notations

described in [97] to denote a HMM.

Formally, a hidden Markov model can be denoted as follows:

T = length of an observation sequence

N = number of states in the model

ST = {ST1, ST2, ..., STN} is individual states, and state at time t denoted by qt

M = number of distinct observation symbols per state

V = {v1, v2, ..., vM} is individual symbols of observations

C = {cij} is the state transition probability distribution, where

cij = P (qt+1 = STj |qt = STi), 1 ≤ i, j ≤ N

is the probability of transiting from STi at time t to STj at time t+ 1.

B = {bj(k)} is the observation probability distribution in state STj , where

bj(k) = P (vk|qt = STj), 1 ≤ j ≤ N 1 ≤ k ≤M

is the probability of observing vk under state STj at time t.

Π = {πi} is the initial state distribution where

πi = P (q1 = STi), 1 ≤ i ≤ N
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For convenience, the above HMM can be denoted by a set of parameters

λ = {Π, C, B}

Traditionally, HMM is used for solving three classic problems in the following:

Given an observation sequence: O = O1O2 · · · OT , and a model: λ = {Π, C, B}

• Question 1: how to efficiently compute P (O|λ), i.e. the probability of the observation

sequence, given the model?

• Question 2: how to adjust the model parameters λ = {Π, C, B} to maximize P (O|λ)?

• Question 3: how to generate a corresponding state sequence Q = q1 q2 · · · qT , which is

the optimal to best explain the observations (i.e., the signal source)?

Forward-Backward algorithm [28], and Veterbi algorithm [58, 118] generally provide

answers for these questions. Thorough explanations of the answers can be found in [97].

In Chapter 4, we use an analysis motivated by HMMs. We construct a traffic pattern

from the packet data observed and use these notations to model our data. The details

will be shown in Chapter 4.

2.7 Fingerprinting Model and Threat Scenario

2.7.1 Fingerprinting Model

This section describes a basic fingerprinting model of traffic analysis in web applications,

which is essentially established by previous work, e.g. [24].

Formally the fingerprinting model is given by a transition system

TS = (G,O,A, f, S).

A web application is modelled as a directed graph G = (r,N,E), where N is the set

of nodes and r ∈ N is the root node; each node n ∈ N represents a web page in the web

application.

An edge from one node to the next node is a transition between web pages e = u
a−→

v ∈ E or e = (u, a, v), where u, v ∈ N . An edge e indicates that node v can be reached

from node u by performing user action a. Node u is regarded as a parent node, and

node v is the child of node u. Child node v is also deemed as a forwarding node and

the corresponding web page as a forwarding page. An execution path is a sequence of

transitions.

A user action a ∈ A is defined as a sequence of pairs, one of (element, value), where

element is a component, e.g. a list box, on a web page and value is the specific value

chosen in this component. For example, an action of logging into a user account consists

of three pairs: one for the user name, one for the password and the other for the submit

button with a value of null.

In this thesis, the terms component and widget are used interchangeably.
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Assume that transitions from child nodes to parent nodes are only triggered through

components such as links on web pages. This means that, in this research, the only way

going back to previous pages in an execution path is using widgets on the web pages,

rather than using the “go back previous page” buttons on the client browsers.

O is a set of observations about web traffic observed in communications. Each obser-

vation is a sequence of directional packet sizes describing request and response packets in

communications. For example, a pair (→ 528,← 620) indicates a transition happening

with a 528-byte packet sent from the browser and a 620-byte packet sent back from the

server. In this thesis, packets sent from a client side are regarded as request packets

while those from a server side are the response packets. Comparing observations between

different execution paths, if they are distinguishable then the secret may be leaked.

A function f : E∗ → O∗ maps sequences of edges to the corresponding observations

of network traffic, i.e. the execution paths to their observations.

Set S is a set of sensitive information for a secret. An item s ∈ S is a value for the

secret. It is denoted by a pair (element, value), where element is the component the

secret is located and value is the specific input for the secret.

This fingerprinting model is the foundation of future models developed throughout

this thesis.

2.7.2 Threat Scenario

Consider a common threat scenario used in traffic analysis in web applications. It is

essentially the same threat scenario considered by other authors, see e.g. [39, 37].

A user first performs a sequence of user actions, i.e. an execution path. An passive

attacker eavesdrops on the network, to extract packet sizes and packet directions of the

web traffic for a communication. The attacker aims to uncover sensitive user information,

e.g. web activities, from the observed traffic features.

Our work in Chapters 3, 4 and 5 analyses side-channel leakages in web applications

from a perspective of a developer, instead of from an attacker’s perspective. More specif-

ically, it focuses on detecting side-channel vulnerabilities in web applications, to provide

references and suggestions about the vulnerabilities in web applications to developers,

rather than analysing an attacker’s capability of compromising user privacy in a web

application.

Further threat scenarios proposed in the following chapters are based on this general

scenario.
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Chapter 3

Side-Channel Vulnerabilities in Java

Web Applications

3.1 Motivation and Overview

Our earliest work in this thesis proposes an automated system of analysing side-channel

vulnerabilities in Struts-based web applications [16].

3.1.1 Motivation

In a previous work [39], Chen et al. show a surprising finding concerning side-channel

leakage of sensitive information in high-profile, top-of-the-line web applications: an eaves-

dropper who eavesdrops the packet sizes and directions can infer user medications, annual

family incomes, investment choices and user query words, even when the traffic is en-

crypted.

Afterwards, Sidebuster [125] is proposed, which is the first tool for detecting and quan-

tifying side-channel leakage of sensitive information in web applications. It performs taint

analysis on the source code to identify web components which involve sensitive informa-

tion. The developer manually specifies execution paths containing those components.

Execution paths then will be tested to evaluate leakage.

Moreover, Chapman and Evans [37] propose an automated black-box detection of

side-channel vulnerabilities in web applications. Their approach does not need to access

to the source code. However, similar to Sidebuster, it needs manual configuration of test

cases of execution paths.

Motivated by such an inconvenience of manual generation of test cases in pioneer

work, this work aims to achieve a completed automation of analysing side-channel vul-

nerabilities in web applications, i.e., containing an automated test case generation. Mo-

tivated by the approach proposed in [113], we propose a novel approach to automatically

generate test cases for Struts-based web applications. The automated system aims to

assist developers in detecting side-channel vulnerabilities. The main part of this chapter

is published on [66].
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Contributions. This chapter introduces a suite of new techniques to quantify side-

channel leakage in web applications. More specifically:

1. Advance towards fully automated test case generation in the context of side-channel

analysis of web applications.

2. Novel approach of automated generation of test cases in Struts-based web application.

Static analysis and symbolic execution [72] are used to achieve automated test case

generation.

3. Configurability to handle different probability distributions of user secret values, in-

cluding uniform distribution on test cases, uniform distribution on user action and in

terms of PageRank [34].

4. Implementations and evaluations on a variety of Struts-based web applications, which

work well.

3.1.2 Overview

Figure 3.1: Overview of the automated system–SideAuto

Figure 3.1 gives an overview of the automated system. Given a Java web application

built on Struts framework, the system analyses the structure by performing static analysis

and determines path constraints by performing symbolic execution. Combining the path

constraints with the structure, feasible test cases of execution paths can be derived. Each

test case is then executed and we use Jpcap [10] to capture the web traffic. By building an

equivalence relation on the collected traffic sequences, side-channel leaks are quantified

using quantitative information flow.

Techniques are implemented into a tool called SideAuto, which is capable of analysing

both Struts 1 and 2 web applications [16]. In this chapter, a web application upon Struts

1 framework is taken as an example to clarify how SideAuto works.

3.1.3 Model

Based on the fingerprinting model described in section 2.7, this chapter updates the

transition system, defined by: TS = (G,O,A, f, S, l).

A new denotation l is defined. It symbolises a loop bound. This chapter considers

loops when a web page can be accessed more than once in an execution path. Hence a
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loop bound l is defined to limit the number of times a web page is allowed to be repeatedly

visited in an execution path.

Other letters in this transition system TS are same as the one defined in section 2.7.

3.1.4 Threat Scenarios

In this chapter, we consider two threat scenarios: a passive attacker wants to (1) identify

the sequence of user actions or to (2) infer the information related to a user input in a

widget which accepts arbitrary values, e.g. the text box.

Now we precise the threat scenarios:

Scenario 1: Identifying user action sequence

To address this kind of threat, the values of user actions are restricted to be a predefined

set of constants, e.g. a choice in a menu widget.

In this scenario, more specifically, the secret is a sequence of user actions, i.e. an

execution path. SideAuto generates test cases for each execution path and determines

an execution path through web traffic.

Scenario 2: Identifying information about user inputs

This scenario considers instead arbitrary values in user actions, e.g. strings in text boxes.

This scenario widens the secrets examined, including the information which relates to

user inputs, but not the values themselves. For example, though an attacker cannot get

a password of a user account, the disclosure of the password length can also be useful.

As it will narrow down the set of passwords, leading to a higher probability of guessing

the password correctly.

In this scenario, the developer needs to define specific values in testing. Though it

is hardly to cover all the possible user inputs for components, such as text boxes, the

developer can specify all the potential user inputs he wants to examine. More details

about the completeness of test cases will be discussed later.

Now let us see how SideAuto constructs the structure graph of a web application.

3.2 Construction of a Web Application’s Structure

The structure graph of a web application is determined by the web pages and the flow

of web pages which depends on user inputs. Parsing the deployment descriptor file–

web.xml, SideAuto starts the analysis from the starting page. Compiling each JSP page

invoked to individual Java classes, the structure graph can be constructed by analysing

the Java classes.

3.2.1 An Example

First consider an example about a university identity system as shown in Figure 3.2.

An execution path starts from a user input selected on page index.jsp, either student

or professor. Observing the web traffic generated, an eavesdropper can be able to identify

the user’s selection if the web traffic between the two selections is different.
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Figure 3.2: An example of a university identity system

This example will be used to clarify how SideAuto works in the following sections of

this chapter.

3.2.2 Compiling JSP Pages to Java classes

As we cannot find a tool which can analyse JSP files directly, we first compile a JSP file

to a Java class and then analyse the Java class to obtain the structure of the JSP page.

Jasper [8], built in SideAuto, is the JSP engine of Tomcat [2] to perform the com-

piling of JSP pages.

Figure 3.3: Main body of index.jsp in the university identity system

In a JSP page, web components are expressed using tag elements, such as<html.form>.

Components such as buttons, text boxes, check boxes etc. are nested in a form compo-

nent on a JSP page. Figure 3.3 shows a form element on page index.jsp in the university

identity system in Figure 3.2.

When compiling a JSP page, each component is compiled to an individual method

in the Java class. We call these methods as component methods. Figure 3.4 shows the

methods generated for the form in Figure 3.3.

In Figure 3.4, method 1 is named as a jspService() method, which exists in every

Java class generated from a JSP page. Method 2 is a component method for the form
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Figure 3.4: Component methods generated for the form in Figure 3.3

element <html.form> and method 3 for the select component <html.select>. Meth-

ods 4 and 5 are for components <html.option> nested in the select component. And

methods 6 and 7 are for <html.submit/ > and <html.reset/ > respectively.

In a Java class, each component method is directly or indirectly invoked by the

jspService() method. Figures 3.5 and 3.6 display the invoking relations between these

methods in Figure 3.4.

Figure 3.5 shows the invoked methods in methods 1 and 2 respectively. Method 1

invokes method 2, and method 2 invokes methods 3, 6, and 7.

Moreover, method 2 invokes a non-component method setAction("/selecting")

representing the attribute ation="/selecting" in the form <html.form> shown in

Figure 3.3. This kind of method is deemed as an attribute method or an attribute function.

In Figure 3.6, method 3 for component <html.select> invokes methods 4 and 5,

each of which represents a <html.option> component. This means two components

<html.option> are nested in component<html.select>. Function setProperty("list")

is invoked for attribute property="list" of element <html.select>, as shown in Fig-

ure 3.3.

Therefore, component methods are directly or indirectly invoked by the jspService()

method. By analysing the jspService() method in a Java class, SideAuto can access

all the components in a JSP page and construct the structure of the page.

After compiling each JSP page to Java classes, data flow analysis is used to get the

structure of a JSP page.
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Figure 3.5: Methods 1 and 2

3.2.3 Constructing the Structure of a JSP Page

SideAuto performs data flow analysis on the Java classes. Soot [115], a Java bytecode

optimization tool, provides techniques for transforming a Java class into a class of Jimple

code [116]. Jimple code is a 3-address intermediate representation designed to simplify

the analysis of Java code. It provides formal statements including: (1) AssignStmt for

assignment statements; (2) InvokeStmt for statements which invoke methods; (3) IfStmt

for conditional statements; (4) ReturnStmt for statements of returning values and (5)

IdentityStmt for statements which declare parameters. These five categories of statements

are the main statements occurred in a Java class generated from a JSP page.

For example, part (a) in Figure 3.7 shows a Java class which contains two methods:

main() and simple(). Part (b) displays the Jimple code of these two methods. Lines

6, 16 and 17 are the IdentityStmt statements which specify parameters of the methods.

Lines 7, 8, 18, 19 and 20 show the AssignStmt statements, and lines 9 and 10 are the

InvokeStmt statements which specify the methods invoked.
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Figure 3.6: Methods 3 and 4

From the jspService() method in the Jimple class for the starting page, SideAuto

parses each statement one by one. Each InvokeStmt statement for a component method

contains a tag phrase, which specifies the type of the component. For example, a tag

phrase “html.FormTag” indicates that the method is for a <html.form> element. Ex-

tracting the tag phrases from each InvokeStmt statement, SideAuto can obtain web

components on a JSP page.

A component which holds nested components is defined as a parent component, such

as a select component <html.select> with nested elements <html.option>. Methods

for the nested components are invoked by those for parent components. By analysing the

InvokeStmt statements in a Jimple class, the nesting relation between web components

can be retrieved. When a method for component b is invoked by a method for component

a, component b is considered as a child of component a. SideAuto then performs analysis

on the component method for component b. The analysis recurs until all the methods in

a Jimple class are examined.

Taint analysis. In the Jimple code, a new variable can be declared to express an invoked

component. Hence taint analysis is performed for examining statements to track the

flow of invoked components. The taint propagation rule is that for IdentityStmt or

AssignStmt statements, if the right-hand side of a statement is tainted, then the variable
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Figure 3.7: A Java class and the related Jimple code

on the left-hand side will be tainted. And if a variable has been tainted but then is given

to an untainted value, the variable is sanitised as untainted. Therefore, taint analysis

guarantees the completeness of checking all component methods and attribute methods.

Figure 3.8 shows the structure graph built for page index.jsp in Figure 3.3.

After analysing the structure of a single page, control flow analysis is used to retrieve

the structure of a web application.
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Figure 3.8: Structure graph built for page index.jsp in Figure 3.3

3.2.4 Constructing the Structure of a Web Application

SideAuto simulates the role of Action servlet to identify the forwarding pages derived from

this page. In Struts 1, when a browser submits a user action using a form in a format like

<html:form action = "..."> or a link like <html:link action = "...">, Action

servlet associates the user action to an action defined in the Struts configuration file. To

easily specify the action defined in the Struts configuration file, a term Action is used

to indicate it. In an Action, the Action class used for analysing user actions and the

ActionForward strings with related forwarding pages are specified.

Figure 3.9: The user action on page index.jsp and its related Action
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Figure 3.9 shows the related Action for the user action with attribute action="/selecting"

in page index.jsp in Figure 3.3. To read easily, page index.jsp in Figure 3.3 is displayed

in the upper part of Figure 3.9, and the lower part displays the Action.

The match between a user action and the related Action is established through the

match between the attribute of the user action, i.e. action="/selecting", and the

attribute in the Action, i.e. path="/selecting", as shown in Figure 3.9.

From the Action in Figure 3.9, the attribute type at line 2 specifies the Action class

used to analyse the user inputs. And attribute name at line 3 refers to the corresponding

ActionForm class, which is defined at lines 7-9. The ActionForm class is used to access

the user values. Attribute input="/index.jsp" at line 3 indicates that this Action is

invoked by a user action from page index.jsp.

Tags <forward> at lines 4-5 specify the forwarding pages, where attribute name of a

tag represents the ActionForward string and attribute path indicates the forwarding page.

In the user action, one of two forwarding pages is forwarded, either page student.jsp, or

page professor.jsp.

Therefore, by analysing an Action, SideAuto obtains the forwarding pages of a given

JSP page. When a forwarding page obtained has not been analysed before, SideAuto

recurs to analyse the page, starting from compiling it to a Java class. The process

continues until all the forwarding pages have been examined.

Figure 3.10: The final structure graph of the university identity system

Figure 3.10 presents the final structure graph of the university identity system dis-

played in Figure 3.2. The first <jsp> element denotes the starting page of the web

application. Tag <java> at line 8 specifies the Action class for the user action displayed

at line 3.

Moreover, the forwarding pages from this user action are specified, using the<forward>
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tags displayed at lines 9 and 37 respectively.

After generating the structure graph of a web application, next SideAuto obtains

path constraints of each branch.

3.3 Getting Path Constraints

To get path constraints, SideAuto performs symbolic execution [72] on the methods in

Action classes using the Symbolic PathFinder (SPF) [93]. It is a tool for performing

symbolic execution and constraint solving at the bytecode level. Essentially, the SPF is

built on top of the Java PathFinder (JPF) [9] model checking tool-set for Java programs.

We use SPF to achieve an automatic generation of test cases.

The Action class specifies branches using ActionForward strings, conditioning on

different user inputs. Hence we consider ActionForward strings as branches and user

inputs represent branch conditions. To use the SPF for extracting ActionForward strings

and branch conditions from Action classes, we develop a built-in rewriting mechanism.

It rewrites Action classes so that they can be understood by the SPF.

3.3.1 Rewriting Mechanism

Each Action class in Struts 1 has an execution method named execute(), which manages

the user values with a method declaration like:

and that defined in Struts 2 looks like:

SideAuto rewrites all the Action classes in a web application. Each rewritten class

is named by adding a prefix “re” to the original class name. For example, class A.java

is rewritten with the name reA.java. The execution method execute() in every Action

class is renamed as execution(). Method execution() is built with parameter(s) which

represent(s) the user inputs.

Figure 3.11(a) illustrates an Action class MyAction.java, which is related to the Action

with attribute path= "/selecting" in Figure 3.9. And Figure 3.11(b) presents the

rewritten class reMyAction.java.

In Figure 3.11(a), line 20 creates an object of the corresponding ActionForm class.

In an ActionForm class, getter & setter methods provide the capability of accessing user

inputs. Then the Action class uses the returned user inputs to determine which branch

should respond.
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Figure 3.11: An Action class and its rewritten class

In Struts, each component comes with an attribute property. The name of a getter

method involves the value of attribute property for a component. This suggests which
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component its user input is returned. For example, method getList() at line 22 in

Figure 3.11(a) is a getter method for the user input in the component whose attribute

value of property is list, i.e. <html:select property = “list”>.

In this chapter, we identify a component using its attribute value of property. For

example, the select component <html:select property = “list”> is called as component

list.

During the rewriting, SideAuto uses Soot to convert an Action class to a class of

Jimple code. Analysing the Jimple code statically, SideAuto extracts the getter meth-

ods in method execute(), and then transforms them into the parameters of method

execution() in the rewritten class.

Consider the rewritten class reMyAction.java in Figure 3.11(b). The code in the

class is meaningless. The rewritten class cannot be run as it is only used to let the SPF

understand the code.

Method execution at line 12 contains a parameter: String getlist. This param-

eter refers to the user input returned from getter method getList(), as suggested from

lines 5, 9 and 13. The parameter name is given to be consistent with the getter method,

e.g. the name getlist is obtained from method getList().

At the time of developing SideAuto, the SPF can only handle a numerical returned

value in an examined method. Method execute() in an Action class returns Action-

Forward strings. Instead, SideAuto builds method execution() returning integers. A

method returnTransfer() is constructed in the rewritten class, containing an array re-

turnV[] which collects all the ActionForward strings in the Action. Then by mapping a

returned integer i to the value of returnV[i], SideAuto obtains the ActionForward string

returned.

The class examined by the SPF should be a startup class, i.e. a class containing

the main method. Therefore, SideAuto creates the main method in each rewritten class,

which invokes method execution() with random parameter values.

3.3.2 Performing Symbolic Execution

Configuration of SPF

When using the SPF, the following parameters should be configured:

• target : the class that is analysed.

• symbolic.method : the method examined and its symbolic parameters, which are denoted

using a symbol sym. If there are more than one parameter in an examined method,

# is used to separate them. For example, “sym#sym” indicates that there are two

parameters in the method.

• listener : the class which prints out the information in terms of branches and path

constraints in a symbolic run.

By specifying the target, the symbolic.method, and the listener used, SPF can print

out the branches with path conditions in a report.
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Considering a Java class shown on the left-hand side in Figure 3.12. With the follow-

ing the SPF configuration:

target= AClass

symbolic.method= AClass.foo(sym)

listener = gov.nasa.jpf.symbc.sequences.SymbolicSequenceListener

the running result of the symbolic execution on this method is shown on the right-hand

side in Figure 3.12. The listener used: gov.nasa.jpf.symbc.sequences.SymbolicSequenceListener

is predefined in the SPF.

Figure 3.12: Running result of the SPF for method foo() in AClass.java

This running report suggests that there are two branches in this method. One is

[foo(A)], conditioning on a user value A, and the other is [foo()], whose condition is

any value excluding value A.

However, this running result does not display the ActionForward strings returned for

each branch. The path constraint, e.g. value A is specified, however, the report does not

specify which parameter the path constraint is related to. More precisely, merely from

a branch, e.g. [foo(A)], we cannot obtain which parameter that condition A is related

to.

Hence we develop a new listener–MyListener using a class MyListener.java, which

outputs data in terms of branch conditions (user inputs), branches (ActionForward

strings) and parameters (components).

MyListener

SideAuto rewrites getter methods as parameters of method execution(). These param-

eters are recorded using an array. SideAuto also creates array returnV[] to store Action-

Forward strings. When performing symbolic execution, MyListener.java takes the array

of parameters and array returnV[] as parameters. Associating the integers returned from

each branch to the ActionForward strings stored in array returnV[], MyListener prints

out the branches in terms of parameters, path constraints and returned ActionForward

strings.

In SideAuto, SPF takes a rewritten Action class as the target, method execution()

with the symbolic parameters as the symbolic.method, and MyListener as the listener.
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Figure 3.13 shows the output of a symbolic execution for method execution() in class

reMyAction.java in Figure 3.11(b). Line 1 shows the examined class, i.e. the target, and

line 2 shows the parameter. Method sequences are the branches generated with path

constraints and ActionForward strings returned. From the report, an ActionForward

string professor is returned when a user selects value professor in the list component.

Otherwise, the ActionForward string student is returned when the input value is student.

Figure 3.13: The SPF running result for reMyAction.java in Figure 3.11(b)

Notice that the initial output at line 4 in Figure 3.13 was

[execution()] → “professor”

which is similar to the one of [foo()] displayed Figure 3.12. This branch without path

constraint is originated from the code of "return 1" present at line 17 in reMyAction.java

in Figure 3.11(b). It does not provide a specific condition of the branch. The code of

"return 1" in reMyAction.java comes from statement else at line 26 in MyAction.java

in Figure 3.11(a), which is opposite to the branch with condition of value student at lines

22-25.

Originally, the listener outputs a branch with the path condition when the condition

is specified in the code. For the branches, e.g. for else branch, the path conditions are

not printed out.

To improve, SideAuto completes all the branches with path conditions.

Completing a Branch

When there are branches generated by the SPF without path conditions, SideAuto scans

those components taken as parameters from the structure graph, to get all the possible

values of them. It checks whether all combinations of these values are used as branch

conditions in the symbolic execution. If not, SideAuto complements the branches without

path constraints by adding the unused values as path conditions to them. There are two

cases when completing the branches.

1. When the values of a parameter are a predefined set of constants, the unfinished

branches will be complemented with unused constants.

For example, assume a component takes a set of constant values {v1, v2, v3 }, and

the branches generated by the SPF are [method1()] → string2 and [method1(v1)]

→ string1. Then the branches will be complemented as [method1(v3)] → string2,

[method1(v2)] → string2 and [method1(v1)] → string1.

2. When the values of a parameter are arbitrary, e.g. a text box, the tester either defines

a set of specific values or allows SideAuto to generate a set of random values. Then
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the unfinished branches can be complemented.

Given the SPF running reports with completed branches for each Action class and

the structure graph generated, SideAuto can generate test cases of execution paths.

3.4 Test Case Generation

3.4.1 Configuration for Test Case Generation

Testers must configure the following options to generate test cases:

1. Loop depth (l): the maximum number of times a web page is allowed to repeatedly

appear in a path. The default value is l = 0.

For example, consider there are three transitions (A, a1, B), (A, a2, C) and (B, a3, A)

in a web application and l = 1. Four execution paths will be generated starting from

page A, expressed by a simplified format which only displays the web pages in each

transition: (1) A→ B; (2) A→ C; (3) A→ B → A→ B and (4) A→ B → A→ C.

2. Option All/One: the degree of the completeness of test case generation.

If execution paths go through identical web pages, i.e., the transitions between dif-

ferent execution paths only vary from user inputs, a tester can choose option One to

generate one test case to represent all the execution paths with the identical web pages

transferred. This aims to reduce the space of test cases when there are a huge number

of execution paths in a web application. The first values or default values in each

component are used to generate the test case in option One. By default, SideAuto

uses option All.

To illustrate the differences between option All/One consider Figure 3.14. In option

All, seven test cases are generated, one for each possible combination of values by. Choos-

ing option One instead will result in two test cases: (1) A → B → D and (2) A → C.

More details of the test cases generated under option All/One are displayed in Table 3.1.

In this table, an execution path, such as A−a−B−e−D, indicates that page A forwards

to page B through user action a and then to page D through user action e.

Figure 3.14: An example of execution paths

A test case in option One like 1. A− a−B − e−D is regarded as a compressed test

case, which reflects the web pages transferred among omitted execution paths. And a
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test case like 2. A− d− C is deemed as a non-compressed test case.

When calculating the leakage, although omitted execution paths in option One are

represented by one test case, they are still considered as individuals, instead of as a whole.

Hence it is regarded that there are no leaks from the omitted execution paths.

Table 3.1: Test Cases generated from the graph in Figure 3.14 under Option All/One

Option Test Cases

All

1. A− a−B − e−D
2. A− a−B − f −D
3. A− b−B − e−D
4. A− b−B − f −D
5. A− c−B − e−D
6. A− c−B − f −D
7. A− d− C

One
1. A− a−B − e−D
2. A− d− C

3. Terminal nodes: by default terminal nodes are the web pages without any user actions

can be performed on. Particular nodes can be specified as terminal nodes, to flexibly

generate test cases according to the threat scenario examined, or to stop the test case

generation earlier.

4. Component values: for a component without predefined constants like a text box,

specific values used for testing should be defined. Values are specified following a

format:

webpageName :< widgetType : attributeName = attributeV alue >: value1; value2...

A tester can also define a Regular Expression [112] to generate random values. SideAuto

contains a generator to generate arbitrary strings according to the regular expression

specified. And if the tester does not specify the number of random values generated,

by default one random string will be generated for each component.

5. Probabilities of user actions: by default all user actions in one component are equally

likely, i.e. the uniform distribution on user actions. The tester can specify different

probabilities of user actions. Details will be explained in section 3.5.

3.4.2 Generation of Test Cases

Given a structure graph and the branches of each Action class, SideAuto performs depth-

first search to connect branches based on the structure graph.

Each execution path starts from the starting page (root node). When parsing to

a tag <jsp pageName="..."> in the structure graph, SideAuto searches for all the

possible user actions coming from this page, through nested components including forms

<html:form action="...">, links with attribute action <html:link action="...">

and links directing to a new page <html:link page="...">.
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With an action, each nested element <forward name=”...”> contains a forwarding

page. The attribute value of name represents an ActionForward string in this action.

From the related Action class of this action, branches with branch conditions and Ac-

tionForward strings can be obtained from the SPF running report. By replacing the

ActionForward strings with the forwarding pages, single transitions from a web page can

be built.

SideAuto repeats this process when a forwarding page is arrived, starting from the

related <jsp> tag. A completed execution path is built when a terminal node is accessed

or a web page accessed is restricted by the loop limit. SideAuto stops the generation

until all the test cases of execution paths are obtained.

Take an example of a test case generated for the university identity system:

WebContent/index.jsp:<html.Select property=”list”>(professor)→WebContent/professor.jsp:

<html.Select property = ”pro”>(senior)→ WebContent/welcome.jsp

This test case composes of two transitions. One is transferred from page index.jsp

to page professor.jsp by selecting value professor in component list. And then the sec-

ond transition is triggered from page professor.jsp to page welcome.jsp through a user

selection of value senior in component pro.

Transitions can also take user actions with joint user inputs. For example an authen-

tication includes user inputs for the username and the password, which jointly decide

a transition. SideAuto is capable of generating transitions triggered by multiple user

inputs.

3.4.3 Test Cases Coverage

When generating test cases, a loop bound can be used to limit the number of times a

page is allowed to be accessed. And for some components, such as text boxes, specific

values are required to be defined.

With these configurations, test cases are restricted to be generated. A full coverage

of test cases cannot be fulfilled. However, the configurations can eliminate the generation

of test cases unrelated to the secret and assist developers in examining particular test

cases.

For example, a developer only wants to examine that if some particular sensitive

values typed in a text box are leaked. Since the developer does not care about the

leakage of other values typed in the text box, it is unnecessary to test all the possible

values. So the developer can only specify and test the sensitive values that he wants to

examine.

On the other hand, if the developer knows that a group of values will generate the

same web traffic, he can merely test one value to get the traffic pattern for all the values

in this group. In this case, the specification of values can improve the efficiency of testing.

Hence, although our system cannot guarantee a full coverage of test cases in a web

application, it will generate all the test cases related to the secrets examined, based on

the developer’s configuration. It is the same case for test cases generated in Chapters 4
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and 5.

3.5 Probability Distribution

We consider test cases with different probability distributions. In the real world, user

actions do not always follow the uniform distribution. Hence, with different probability

distribution, one of the analysed results may closer to the leakage in the real world.

Moreover, the analysed results with multiple probability distributions can provide a more

in-depth evaluation of the leakage. Details are shown in the following.

3.5.1 Predefined Probability Distributions

SideAuto predefines three probability distributions:

• Up: uniform distribution on execution paths, i.e. each test case with a same probabil-

ity;

• Ua: uniform distribution on user actions in a component;

• Pr: a distribution according to the PageRank [34]

Consider the execution paths from the graph in Figure 3.14. Under option All, there

are seven test cases generated in total. With the uniform distribution on test cases, i.e.

in Up, the probability of each test case is 0.143 (= 1/7). On the other hand, with the

uniform distribution on user actions for each component, the probabilities of user actions

with values a, b, c, and d in listbox1 are all 0.25, and the probabilities of actions e and f

in listbox2 are 0.5. As a result, the probabilities of each test case via path A→ B → D

is 0.125, while the test case of A→ C is 0.25.

In option One with distribution Up, the probability of test case 1 becomes 0.857 since

it is the sum of all the compressed paths, and the probability with distribution Ua is 0.75.

Details are summarised in Table 3.2.

Table 3.2: Probability Distributions of test cases in Figure 3.14 in Up and Ua

Option Test Cases Up Ua

All

1. A− a−B − e−D 0.143 0.125
2. A− a−B − f −D 0.143 0.125
3. A− b−B − e−D 0.143 0.125
4. A− b−B − f −D 0.143 0.125
5. A− c−B − e−D 0.143 0.125
6. A− c−B − f −D 0.143 0.125
7. A− d− C 0.143 0.25

One
1. A− a−B − e−D 0.857 0.75
2. A− d− C 0.143 0.25

PageRank [34] is a link analysis algorithm to measure the importance of each web

page in a web application. When using the probability distribution based on PageRank,

the probabilities of test cases are closer to the real-world case since it considers a user

either following an anticipative action or jumping to a random page.
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However, some issues exist when using PageRank. For example, PageRank results

from the convergence of page transitions to a fix number. But in this work test cases

generated are restricted by a loop bound. Moreover, test cases generated only follow the

anticipated user actions, while PageRank takes account of the unexpected user actions.

Nevertheless, the main point here is to showcase the configuration for different prob-

ability distributions in SideAuto.

3.5.2 Configuring particular probability distributions

Moreover, a developer can configure an exclusive probability distribution of user actions

using (1) exact values or (2) probability levels.

Still take the execution paths from the graph in Figure 3.14 as an example.

Assume that the probability of user action (listbox1, a) is 0.4, and the other three

actions (listbox1, b), (listbox1, c) and (listbox1, d) on Page A are 0.2 each. User actions

e and f on Page B are not configured particularly, so by default the uniform distribution

is applied, each one with a probability of 0.5. Therefore in option All the probabilities

of test cases 1, 2 and 7 in Table 3.1 are 0.2 each and the remaining are 0.1 each.

On the other hand, the probabilities can be defined by using probability levels such

as (HI,ME,LO). By default, the proportions of probability levels HI, ME and LO

are established as 0.75, 0.5 and 0.25 respectively, and each user action is given a level of

ME. But a developer can configure the number of probability levels and specify different

proportions for them. Then the normalisation of probabilities is implemented to get the

exact value for each user action.

Consider the execution paths from the graph in Figure 3.14. The probabilities of user

actions (listbox1, a) and (listbox1, b) are configured as levels HI and LO respectively, and

the other user actions in listbox1 stay with the default level of ME. After normalisation,

the probabilities of user actions in component listbox1 in terms of each level become HI:

0.375, ME:0.25 and LO: 0.125.

3.6 Quantifying Leakage

After generating the test cases, SideAuto executes them to collect web traffic. This

section introduces test case execution and show how to analyse web traffic collected for

evaluating leakage.

HtmlUnit [7] is used to execute test cases. It automatically accesses to web pages

and performs user actions using a simulated web browser. Jpcap [10], a tool for real-time

network traffic capture and analysis, is used in collecting packets.

3.6.1 Collecting Web Traffic

Given a test case, the user actions in each transition are extracted and executed in order.

Consider the following test case:

WebContent/index.jsp: <html.Select property=”list”> (professor)→WebContent/professor.jsp:

<html.Select property=”pro”> (senior) → WebContent/welcome.jsp
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In the beginning, the client accesses to the homepage index.jsp, and selects value

professor in component list. SideAuto checks the forwarding page to guarantee that it

is forwarded to page professor.jsp. Then value senior is selected in component pro

on page professor.jsp. Finally, SideAuto checks if the path is terminated at page

welcome.jsp.

If a user action contains multiple user inputs, they are typed in each component

one by one. When all the inputs in a user action are completed, the form is submitted

automatically by SideAuto if neither a submit button is specified nor the JavaScript

is used to automate the submission. During the testing, Jpcap records network traffic

generated for each test case. Each test case is executed once and a sequence of web traffic

is collected.

SideAuto contains a filter mechanism to improve the accuracy of traffic analysis.

When capturing the traffic, the filter filters out the packets which are not from the target

application by comparing the port numbers of packets with that of the communication

in the web application. Moreover, duplicate packets are removed, which are identified

through packet sequence numbers.

In this chapter, we assume that during a short time period, the factors which make

the observations for a test case varying are invariant. For example, the network condi-

tions during a short time period are fixed, and also the contents of web pages invariant.

Therefore, it is feasible to assume that the outputs for test cases over short time periods

are invariant. So in this chapter we test each test case once and collect a sequence of

web traffic for each test case to analyse the leakage.

3.6.2 Quantifying Leakage

After collecting the web traffic for a test case, SideAuto extracts the sizes and directions

of each packet to form an observation, i.e., a sequence directional packet sizes.

With a set of directional packet sizes for a set of test cases, then SideAuto quantifies

the leakage of user privacy. Entropy metrics in terms of Shannon entropy and min entropy

are used to calculate the amount of confidential information leaked.

An equivalence relation is built upon the observations for each test case, which is

same as an equivalence relation built on secret values.

Given a set of test cases T for a web application G and a set of corresponding obser-

vations O where f : T → O, an equivalence relation ∼G is constructed as

∀ ti, tj ∈ T, ti ∼G tj if and only if f(ti) = f(tj)

This indicates that two sequences of user actions are indistinguishable if and only if

their observations of web traffic are identical.

As defined in Chapter 2, information leakage can be quantified using mutual infor-

mation:

∆F (S) = F (S)− F (S|O)

where F (S) and F (S|O) are the measures of entropy and conditional entropy using either
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Shannon entropy F = H or min entropy F = H∞.

Therefore, given a set of test cases T and an equivalence relation X on test casesT ,

the leakage of a user secret can be quantified by:

∆F (T ) = F (T )− F (T |X)

where F (T ) and F (T |X) are calculated using either Shannon entropy F = H or min

entropy F = H∞ defined in section 2.1.3.

Shannon Entropy

Given a set of test cases T with distribution Up, i.e. the uniform distribution on test cases,

the original uncertainty of a secret before observations can be calculated by Shannon

entropy, as defined in Definition 8:

H(T ) = log(|T |), (3.1)

where |T | is the number of test cases in set T .

Given an equivalence relation X on set T after observations with distribution Up,

conditional Shannon entropy defined in Definition 10 can be deduced as:

H(T |X) =
∑
Xi∈X

p(Xi)H(T |Xi)

=
∑
Xi∈X

|Xi|
|T |

log |Xi|
(3.2)

where Xi ∈ X is an equivalence class and |Xi| is the cardinality of class Xi, i.e. the

number of test cases equivalent in this class.

Equation 3.2 shows that the uncertainty of the secret after observations is related to

the numbers of test cases equivalent in each equivalence class, with distribution Up. This

equation is applicable to the cases in either option All or One, as the omitted execution

paths in option One compressed by a single test case are also considered as individual

secret values.

Therefore, the information leakage with distribution Up is calculated by:

I(T ) = H(T )−H(T |X)

= log |T | −
∑
Xi∈X

|Xi|
|T |

log |Xi|
(3.3)

Min Entropy

In terms of min entropy, the original uncertainty before observations with distribution

Up defined in Definition 13 is:

H∞(T ) = log |T | (3.4)

same as using Shannon entropy.

Given an equivalence relation X, the conditional min entropy after observations with
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distribution Up, defined in Definition 15, is:

H∞(T |X) = − log
N

|T |
, (3.5)

where N = |X|, which depends on the number of classes in equivalence relation X.

Proof.

H∞(T |X) = − log
∑
Xi∈X

p(Xi) max
tj∈Xi

p(tj |Xi)

= − log
∑
Xi∈X

|Xi|
|T |
∗ 1

|Xi|

= − log
∑
Xi∈X

1

|T |
= − log

N

|T |

Therefore the information leakage with distribution Up can be measured using min

entropy:

I∞(T ) = H∞(T )−H∞(T |X) = log(|T |) + log
N

|T |
= log(N) (3.6)

3.7 Experiments

We evaluate SideAuto over five web applications built upon the Struts framework. They

are deployed to Google App Engine (GAE) [6]. The detailed descriptions of the five web

applications are shown in Table 3.3. The second column shows the number of JSP files

in each web application. The third column displays the number of Java Servlet classes,

i.e. the Action and ActionForm classes. The value in a bracket is the number of lines of

code (Loc) for the Servlet classes in a web application.

3.7.1 Experiment Specification and Performance

Table 3.4 gives an overview of the configurations for every web application.

Application 1 is an open-source real-world web application–Struts Cookbook [15],

which contains the web components mostly used in the Struts framework. We want to

examine whether the path sequence, i.e. the user actions in each transition, is leaked

via traffic analysis. This application was used to evaluate all the functions of SideAuto.

For the terminal nodes, in addition to default terminal nodes, parent nodes whose child

nodes are all default terminal nodes were also considered as terminal nodes. And a regular

expression was used to configure arbitrary values. Tests 1-4 examined application 1 with

different configurations.

Application 2 is a simulated online banking system [12], tested in both threat sce-

narios described in section 3.1.4. In scenario 1, the secret is the sequence of user actions

concerning either successful access or failed access of the system. A pair of correct user

ID and password was used for the successful authentication, and a pair with wrong in-

formation was used for a failed authentication.
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Table 3.3: Descriptions of Web Applications

App Number of
JSP pages

Number of
Java Servlet
classes (Loc)

Description

1. Struts
Cookbook

39 22 (1893) An open-source large real-world web ap-
plication [15], containing the most used
widgets and functions in Struts web ap-
plications.

2. Online
Banking
System

9 6 (822) A simple online banking system with func-
tions of user login, password modification,
money transfer, balance checker and ac-
count logout [12]. The user ID is with a
fixed length, while the password length is
ranging from 8 to 20.

3. Tax
Claim
System

1 1 (485) A tax web application [18] similar to the
one used in [125]. It is built on Struts
2 framework. A user selects her/his an-
nual gross income, and then the applica-
tion checks whether the user is eligible for
a tax credit.

4. Uni-
versity
Identity
System

5 8 (235) The web application [20] for the one shown
in Figure 3.2.

5. Nation
Information
Checker

5 2 (175) A web application provides a checker
about the information including capital,
geographical, of a nation [11].

And in scenario 2, the secret is the password length which is between 8 and 20

for a user account. We specified 13 pairs of correct ID/password, each with a unique

password length. Tests 5 and 6 examined scenario 1 when communicating via HTTPS

and HTTP respectively. Similarly, Tests 7 and 8 examined scenario 2 via HTTPS and

HTTP respectively.

Application 3 is built as a tax claim system [18]. According to a user’s annual income,

the system will judge if the user satisfies to claim taxes. Here we test if the web traffic

of a user execution path will leak the user’s annual income.

Application 4 is the university identity system [20] displayed in Figure 3.2. By

analysing the web traffic, we examine the leakage of user actions of a user path in this

web application.

Application 5 provides a checker for the information of 124 countries, with regard to

capitals, geographies, populations and areas [11]. The default location is the country the

user’s IP address belongs to. A user checks one item out of the capital, the geography,

the population and the area for the country he wants to examine. We test whether the

user actions, particularly the item the user selects, one of capital, geography, population

and area, is leaked in this web application.
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Table 3.4: Testing Specification and Performance

App Test No. of loop All/One
No. of

test cases
Performance (time)

Analysing(min) Quantifying(min)

1

1 0 All 864 7.8 221.0
2 0 One 84 7.8 4.0
3 1 All 1746 7.8 365.6
4 1 One 186 7.8 8.6

2

5
0 All

5 1.1 0.6
6 5 1.1 0.6
7

0 All
13 1.1 0.6

8 13 1.1 0.6

3 9 0 All 30 0.3 1.8

4 10 0 All 6 0.5 0.73

5
11 0

One
4 0.3 0.4

12 1 20 0.3 1.75
13 2 84 0.3 10.45

Table 3.4 also shows the performance time, which is partitioned into the analysis

time and the quantification time. The analysis time includes the time of constructing

a web application’s structure and generating test cases. It was performed on Windows

XP system with Intel Core i5-2500K CPU @ 3.30GHz and 3.41 GB of RAM. And the

quantification time includes the time of executing test cases and quantifying leakage,

which were conducted on Windows XP system with Intel Core i3-2310M CPU @ 2.10GHz

and 3.41 GB of RAM.

This tool is far from being optimized and ran on a fairly slow architecture. As

shown, the analysing time is less than 10 minutes even when generating a large number

of test cases in a large web application, e.g. nearly two-thousand test cases generated

in application 1 when l = 1. However, the quantification time in this case lasted for

several hours. In terms of other smaller web applications, the performance generally can

be completed in 10 minutes.

3.7.2 Experiment Results

Table 3.5 shows the leaks in each web application in terms of Shannon entropy, and Table

3.6 in terms of min entropy. Values in each cell include the leaks with distributions Up,

Ua and Pr respectively, separated by a symbol“;”. When a cell contains only a single

figure, it means entropies under all distributions are identical. In column “Leakage(%)”,

the values include the uncertainty leaked in entropy and in percentage respectively, where

the value inside a “()” is the leakage in percentage.

Application 1

Tests 1-4 display the experimental results for application 1. Now we analyse the results

in Table 3.5 in terms of Shannon entropy.

With distribution Up, around 80% of uncertainty is leaked in option All, either l = 0

or l = 1, while around 30% is leaked in option One. As seen in Table 3.4, nearly 90%
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Table 3.5: Testing results in terms of Shannon entropy

App Test
Shannon Entropy (Up; Ua; Pr)

Original After observation Leakage (%)

1

1 9.75; 6.77; 3.56 1.82; 0.58; 0.14 7.93(81.3); 6.19(91.4); 3.42(96.0)
2 9.75; 6.77; 3.56 7.18; 1.08; 0.16 2.57(26.4); 5.69(84.0); 3.40(95.6)
3 10.77; 7.44; 3.89 2.14; 0.87; 0.06 8.63(80.1); 6.57(88.3); 3.83(98.5)
4 10.77; 7.44; 3.89 7.11; 1.12; 0.70 3.66(33.9); 6.32(84.9); 3.19(81.9)

2

5
2.32; 2.00; 1.65

1.8; 1.0; 0.75 0.52(22.4); 1.00(50.0); 0.90(54.8)
6 0.0 2.32(100); 2.00(100); 1.65(100)
7

3.70 0.0 3.70(100.0)
8

3 9 4.91 1.13 3.78(77.0)

4 10 2.58; 2.46; 2.34 0.33; 0.50; 0.46 2.25(87.2); 1.96(79.7); 1.88(80.5)

5
11 8.95 6.95 2.00(22.3)
12 17.91; 14.43; 14.43 13.89; 10.43; 10.43 4.02(22.4); 4.00(27.7); 4.00(27.7)
13 26.87; 19.49; 19.49 20.85; 13.91; 13.91 6.02(22.4); 5.58(28.6); 5.58(28.6)

Table 3.6: Testing results in terms of min entropy

App Test
Min Entropy (Up; Ua; Pr)

Original After observation Leakage (%)

1

1 9.75; 4.46; 1.14 1.34; 0.30; 0.09 8.41(86.2); 4.16(93.4); 1.05(92.2)
2 9.75; 4.46; 1.14 3.56; 0.39; 0.09 6.19(63.5); 4.07(91.1); 1.05(92.2)
3 10.77; 4.46; 0.96 1.61; 0.36; 0.07 9.16(85.0); 4.10(93.2); 0.89(92.6)
4 10.77; 4.46; 0.96 3.51; 0.41; 0.15 7.24(67.4); 4.05(90.8); 0.81(84.0)

2

5 2.32; 1.00; 0.56 1.32; 0.68; 0.43 1.00(43.1); 0.32(32.0); 0.13(23.2)
6 2.32; 1.00; 0.56 0.0 2.32(100); 1.00(100); 0.56(100)
7

3.70 0.0 3.70(100.0)
8

3 9 4.91 0.91 4.00(81.5)

4 10 2.58; 2.00; 2.13 0.26; 0.42; 0.37 2.32(89.9); 1.58(79.2); 1.76(82.4)

5
11 8.95 6.95 2.00(22.3)
12 17.91; 9.95; 9.95 13.59; 7.94; 7.94 4.32(24.1); 2.01(20.2); 2.01(20.2)
13 26.87; 10.53; 10.53 20.48; 8.53; 8.53 6.39(23.8); 2.00(19.0); 2.00(19.0)

of test cases generated in option All are compressed in option One. This implies that

the compressed test cases taking large numbers of omitted execution paths occupy large

“volumes” of single equivalence classes.

With distribution Ua or Pr, around 80%–90% of uncertainty is leaked, regardless of

option All or One. This suggests that the compressed test cases have low probabilities

in distributions Ua and Pr.

The low probabilities under distribution Ua imply that the components in transitions

of the omitted execution paths have multiple user inputs, which cause the low probabil-

ities of individual user actions in distribution Ua.

Notice how min-entropy leakage with distribution Up manifests the number of equiv-

alence classes, as shown in Equation 3.6. Table 3.6 suggests that when l = 0, there are
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around 340 equivalence classes in option All in Test 1 and around 73 classes in option

One in Test 2. This indicates that nearly 80% of equivalence classes in option All classify

merely omitted execution paths in option One. When the loop l = 1, there are around

572 and 151 equivalence classes in options All and One respectively, as deduced by the

results in Tests 3 and 4 respectively.

Application 2

In application 2, there are five execution paths generated in scenario 1. One test case

is when a user fails to log into the system, and the other four consider successful login.

After successfully logging, the user selects an option out of the four functions including

the transfer, the password modification, the balance checking and the logout.

Test 5 examined the leakage of user actions in a path when the web traffic was

encrypted, i.e. under HTTPS, while Test 6 examined under HTTP. The reason of testing

under different protocols is to examine the effect of modern encryption in traffic analysis.

Tests 7 and 8 examined the password length via HTTPS and HTTP respectively.

There are 13 execution paths generated, each for a user account with a unique password

length. We discover that observations about different password lengths are completely

distinguishable, even when the communications are encrypted via HTTPS in Test 7.

Therefore, comparing the results between communications via HTTPS and HTTP, it

can be seen that traffic encryption via HTTPS in Test 5 is effective in protecting part of

user actions, compared with the full leakage of user actions via HTTP in Test 6. However,

for the information such as password length, it is fully leaked through traffic analysis,

even when the communications are encrypted.

Applications 3 and 4

Application 3 is a tax claiming system, where a user claims her/his annual gross income

typed in a list box. This application was built on Struts 2 framework, and it was designed

in a similar way as the tax system tested in [125]. There are 30 different options available

to be chosen in a list box, each with a gap of 5000, ranging from “Below 10,000”, “10,000-

15,000”, ..., “145,000-150,000” to “150,000+”.

This web application is used for comparing SideAuto with Sidebuster proposed in

[125]. In SideAuto, 77% of uncertainty about the user income is leaked in terms of

Shannon entropy. And the value is very close to that of 73.5% in Sidebuster.

Application 4 is the university identity system whose structure is displayed in Figure

3.2. It can be seen that this web applications takes six execution paths in total.

As suggested by the min-entropy leakages in Test 10 in Table 3.6, with distribution

Up, the uncertainty leaked is 2.32, which indicates that there are five equivalence classes

generated based on six execution paths. By examining web traffic of each test case, it

is discovered that all the user actions are leaked, excluding those in listbox2 on page

professor.jsp, i.e. options senior and junior cannot be identified.

Application 5

After the user checks one item, out of capital, geography, population and area for a

country, on the result page there is a link of returning back to the homepage, which
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forms a loop. We tested this application with loop bounds of l = 0, 1, 2 and the leaks are

shown in Tests 11, 12, 13 respectively in Tables 3.5 and 3.6.

When l = 0, there are 496 (= 4 ∗ 124) execution paths in total, each about an item

selected out of the four options for a country. When l = 1, i.e. the homepage is accessed

twice, there are 246512 (= 4962+496) execution path. And the size soars up to 122270448

(= 4963+4962+496) when l = 2. To avoid path explosion when the loop bound increases,

we consider that the country information is not leaked. In this case, execution paths for

different countries chosen are omitted and the scenarios are considered in option One.

Hence the numbers of test cases in terms of different user selections on the capital, the

geography, the population and the area are 4, 20 (= 42 + 4), and 84 (= 43 + 42 + 4) when

l = 0, 1, 2 respectively.

As shown in Table 3.6, the leaks in terms of min entropy with distribution Up suggest

the number of equivalence classes. It can be deduced that the numbers of equivalence

classes are 4, 16 and 84 when l = 0, 1, 2 respectively, which are same as the numbers of

test cases. This implies that an attacker can get the item a user selects out of the capital,

the geography, the population and the area through traffic analysis.

From the results in Tests 11, 12, 13 in Tables 3.5 and 3.6, it can be seen that test

cases are uniformly distributed in both distributions Ua and Pr.

3.8 Discussion

SideAuto is regarded as the first tool towards a fully automated analysis of side-channel

leakages in Struts-based web applications. Compared with other automated tools of

analysing side-channel leakage in web applications, SideAuto mainly advances on the

automated test case generation. Therefore, for a large web application, it can save a lot

of time to configure test cases.

Moreover, SideAuto quantifies leaks with different probability distributions in terms of

both Shannon entropy and min entropy. These provide a more comprehensive evaluation

of leakage in communications, and assist developers in gaining more knowledge about

the leakage.

However, the design of SideAuto is still preliminary. SideAuto is only capable of

analysing Struts-based web applications, and we evaluate mainly on simulated web ap-

plications. It will be a big issue in the real world when the source code of web applications

is unachievable or when the web applications are not Struts-based.

The leaks in our experiments indicate that large amount of information is leaked in

web applications. However, in this chapter, we do not provide a mechanism to evaluate

the precise of the analysed results. In other words, the experimental results present the

leakage of user sensitive information, however, the work lacks the experimental validation

of the results produced by the analyses. Without the validation, one may ask the ques-

tions like “how to prove that the web application really leaks user sensitive information

as much as the result presented”. Hence the future work can focus on the validation of

the experimental results.
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Even though this chapter did not provide the validation, the aim is still fulfilled.

The purpose of this work is to provide references for developers to discover the possible

security threats via traffic analysis, so that they can proceed more thorough analyses to

further explore leakages.

On the other hand, one may also ask “do the real-world web applications can leak

such large amount of information when the countermeasures, e.g. padding, are applied”.

With countermeasures, the leakage of user privacy may be lower. However, as mentioned

that the aim of our analyses is to guide the developers to give thorough analyses on the

possible security threats.

To explore further the leakage of user privacy in the real world, therefore, we extend

our analysis to real-world web applications, as described in the following chapters.
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Chapter 4

Side-Channel Vulnerabilities in Real-World

Web Applications

4.1 Motivation and Overview

4.1.1 Motivation

The work in this chapter is motivated by the development of SideAuto described in

Chapter 3, but here we extend the analysis of Struts-based web applications to more

general real-world web applications. Unlike SideAuto which performs white-box analysis

on the source code of web applications, this chapter analyses side-channel vulnerabilities

through a black-box approach which can be applied to real-world web applications.

In [37], Chapman and Evans build a black-box crawling system on top of Crawljax

[3], an open-source tool designed to crawl and test web applications. The system aims to

detect side-channel vulnerabilities in web applications. To use the system, a developer

specifies which elements are to be interacted with. In other words, test cases of execution

paths should be specified manually. In this chapter, we propose an advanced detection

system containing automated test case generation.

Furthermore, transitions which appear to have no relation to user sensitive informa-

tion are examined to analyse possible leakage. Large numbers of studies of side-channel

leakages in web applications have already analysed communications explicitly interacting

with sensitive information.

For example, Figure 4.1 outlines a scenario showing how user search inputs in an

online shopping center can be revealed. In step 1, the communication explicitly transmits

a search keyword typed in a search bar to the server. The web traffic generated is

indistinguishable from user inputs, so an eavesdropper gains no knowledge of user search

keyword from traffic analysis.

Now consider the communication illustrated in step 2 in Figure 4.1. A transition,

some-transition away following the transition in step 1, is triggered when a user visits

a web page regarding “Today’s deals” on the shopping site. Explicitly, this transition

may transmit no information about the user’s search keyword. However, as indicated in
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Figure 4.1: Communications explicitly and implicitly transmitting sensitive information

step 2, web traffic in this transition varies depending on search keywords, reflected in the

content of “Recommendations”, which can actually reveal user search inputs.

Therefore, this work pays attention to communications which implicitly interact with

sensitive information.

Backes et al. [24] present a path-aware analysis, where a following transition can

assist previous transition in detecting sensitive information. Consider, e.g. a scenario

where an attacker observes traffic produced by typing a word in English. Assume that

the first typed character is known to be either t or b, and the second character is h.

From the second action h, an attacker can deduce that the first action is most likely t,

i.e. the sensitive information of user character typed is disclosed. Compare this with

the communications in Figure 4.1, where, similarly, sensitive information typed in step

1 can be further revealed by a following transition in step 2. However, in the scenario of

[24], the second transition of action h explicitly involves sensitive information, while the

transition in step 2 in Figure 4.1 implicitly transmits the confidential data.

Therefore, this chapter focuses on side-channel vulnerabilities particularly from com-

munications not intuitively transmitting sensitive information.

4.1.2 Overview

This chapter proposes a black-box analysis to examine communications concerning both

explicit and implicit interaction with sensitive information in real-world web applications.

It is shown that sensitive information can really be revealed from communications ap-

pearing to have no relation to confidential information. In the test scenarios these leaks

can be, sometimes, even more serious than leaks using similar analyses for transitions

explicitly involving sensitive information.

Moreover, it is discovered that user fingerprints can also be constructed by traffic

analysis, where the identities of users can be revealed.

Furthermore, we use a novel methodology of traffic analysis, motivated by hidden

Markov model [27, 28, 29, 30], to construct a most likely sequence, which is a “hidden”

traffic pattern best associated with a set of observations of a transition.

With the traffic patterns built, packet data are further analysed using a distance

based upon Damerau-Levenshtein distance [88] with super transpositions and shifts to

construct a probability distribution on observations. Then the guessing probability [82],
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based on Smith’s vulnerability [109], is used to evaluate leakages.

Contributions. In summary, the primary contributions in this chapter include:

1. This chapter demonstrates, via a traffic analysis, that transitions not involving intu-

itive sensitive information can cause information disclosure, even more seriously than

those directly propagating sensitive information.

2. This chapter proposes an automatic crawling system which automatically generates

test cases and analyses real-world web applications.

3. This chapter introduces a novel methodology, motivated by the hidden Markov model,

and uses a distance optimised based upon the Damerau-Levenshtein distance for traf-

fic analysis. Then the leakage is evaluated by an average worst-case probability of

guessing a secret.

The goal of the analysis described in this chapter is to showcase the presence of leak-

age from communications unexpected to leak user privacy. And the black-box approach

proposed provides a framework to assist developers in automatically pinpointing vulnera-

ble transitions in a site and devising efficient countermeasures. Though countermeasures

are not concerned in this research, we believe that the results produced by the analysis

could be used to mitigate potential leaks.

Next we introduce a fingerprinting model and a threat scenario used in this chapter.

4.2 Fingerprinting Model and Threat Scenario

4.2.1 Fingerprinting Model

To better clarify, this section proposes an extensive fingerprinting model upon that de-

fined in section 2.7.

Formally the transition system is remodelled as TS = (G,O,A, f, g,MLS, S, Sec).

Recall that G = (N,E) denotes a web application. We now partition user actions as

A = Ah ∪Al, where Ah are the user actions containing sensitive data and Al those with

no sensitive data.

Transitions of interest in this chapter are partitioned into direct and indirect tran-

sitions. They are defined according to the type of user actions which trigger them. A

direct transition, expressed as n1
a∈Ah−−−→ n2 ∈ E, is triggered by a user action con-

taining sensitive data. An example of a direct transition is the one originated by an

authentication on a login page.

An indirect transition is triggered by a user action with no sensitive data input,

which can be represented by: n1
a∈Al−−−→ n2 ∈ E. An indirect transition, for example, is

performed by clicking on a (non sensitive) link on a page.

We consider paths with more than one transition, but only “one use” of a secret.

This means that the path contains only one direct transition in terms of a secret. More

complex scenarios concerning one secret been involved several times, giving rise to more

than one direct transition of a secret in a sequence, is left for further investigation.
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However, there can be more than one indirect transition in an execution path, as any

transition executed after the direct transition is regard as an indirect transition. In this

chapter, the scenarios considered involve either one indirect transition or a sequence of

indirect transitions in terms of one secret value. In the reminder of this chapter, without

specific mention, an “indirect transition” refers to the indirect transition(s) in terms of

a secret value, which follow(s) the direct transition in a scenario. Therefore, in some

scenarios an indirect transition e contains more than one indirect transition.

In contrast, an execution path containing both direct and indirect transitions is re-

garded as a combined path.

This chapter examines communications from both direct and indirect transitions in-

dividually. It also analyses web traffic from combined paths, to get knowledge of leakage

in a web application more comprehensively.

Set Sec is a set of secrets examined in web application G. And set S is a set of

secret values, which is associated to a secret sec ∈ Sec. Consider the following example,

sensitive information of username and password for a user account is a value of the secret,

i.e. the user identity. An eavesdropper tries to identify a user who is authenticated, out of

a database of users, instead of determining the specific values of username and password.

The attacker succeeds in obtaining a user’s identity, even though he gains no knowledge

about the user name and the password of the user account.

In the basic fingerprinting model defined in section 2.7, function f : E → O maps

each transition e ∈ E to an observation o ∈ O. In this chapter, multiple observations are

collected for a transition. Hence we define function f : E → P (O), which considers that

a transition e ∈ E is associated with a set of observations Oe ∈ P (O).

Assume each transition associates to a “hidden” traffic pattern which is followed by

most observations for this transition. Given a set of observations Oe for a transition e,

we define a most likely sequence mlse, which is the traffic pattern best matching the

observations in set Oe.

Then a function g : P (O) → MLS maps each observation set Oe ∈ P (O) to a most

likely sequence mlse ∈ MLS. The terms “most likely sequence” and “traffic pattern”

are used interchangeably throughout this thesis.

4.2.2 Threat Scenario

To clarify consider a following scenario.

A user first performs a user action containing sensitive information on a website. This

transition is considered as a direct transition. Then indirect transitions on this website

following the direct transition are performed. The execution path contains both direct

and indirect transitions is a combined path.

A passive attacker eavesdrops on this web traffic. The traffic sequence deriving from

the user’s sequence of actions is split into sequences of web traffic for each individual

action. Web traffic for each transition is analysed and the aim is to detect which transition

leaks sensitive information.
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4.3 Test Case Generation

This section describes the black-box crawling system used for automatically generating

test cases of execution paths. It is an advance towards the automated generation of test

cases, which complements the crawling system proposed by Chapman and Evans [37].

The crawling system we propose builds upon a web driver–Selenium [14], which

is exploited to crawl web components and which simulates a real-world user using the

Firefox web browser.

First, mandatory parameters, introduced in the following, are required to be specified

in a configuration file. These parameters lead the system to build execution paths with

regard to sensitive information.

4.3.1 Specifications

Mandatory Parameters

In a configuration file, the following parameters are mandatory to be configured:

1. URL of the starting page. The system starts analysis from a specific starting node r

in a web application G.

2. Sensitive information. For a secret sec ∈ Sec, sensitive information is configured in

a format consisting of the attribute value of attribute ID for a component (or using

attribute name if attribute ID does not exist), component type (e.g. select means

a list box and text means a text box), and possible component values. Components,

e.g. a text box, require the specific values, while not those with a predefined set of

constants, e.g. a list box.

The attribute ID/name is also used to symbolise the examined secret sec, which will

be used during test case generation.

3. Maximum length of an execution path. This parameter limits the number of transi-

tions in an execution path. In a real-world web application, an execution path can

contain hundreds of transitions. To avoid the explosion of a test case, we apply a

limitation on the number of transitions in an execution path.

4. Number of repeated times. Test cases are executed repeatedly, and a set of observa-

tions are collected for each test case. In this chapter, we set the number of repeated

times as 5.

In addition to these mandatory parameters described above, two optional parameters

can also be configured.

Optional Parameters

1. Extra user actions

An extra user action is a supplement for an examined transition in an execution path.

It is performed on the last page in an execution path. The transition triggered is
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appended to the end of the execution path and it is not restricted by the maximum

length of a path.

When a developer wants to examine a particular indirect transition from a terminal

node, which cannot be accessed by simply using a component on the web page, an

extra user action is configured using a URL with regard to the web page. The URL

is typed into the URL bar directly when the web page is accessed at the same time it

is the last page of an execution path.

2. Connecting user actions

On the other hand, a connecting user action can be used to mitigate high overheads.

It is performed by interacting with component(s) on a web page.

The crawling system accesses web components until all the secrets defined are checked.

It may examine all the executable components to reach a “must-via” transition for a

secret. This process can generate many redundant execution paths and produce high

overheads when testing a large web application.

If this kind of “must-via” transition is known before crawling, it can be specified using

a connecting user action, to reduce the costs and improve efficiency.

However, the configuration of connecting user actions lowers the automation of exe-

cution path generation. Hence there is a trade-off between efficiency and automation

of test case generation.

Extra user actions and connecting user actions are regarded as particular user actions

in this chapter. The main differences between them are: (1) a transition trigged by a

connecting user action is restricted by the maximum length of an execution path, while

not for an extra user action; and (2) a transition triggered by an extra user action is an

indirect transition, while it is uncertain for a transition triggered by a connecting user

action.

4.3.2 Generation of Execution Paths

Algorithm 1 shows the pseudo code of the algorithm to generate test cases as follows.

The procedure transition takes a current page u, a current path path and the path

length len as parameters. It is invoked to crawl web components and generate transitions

from page u.

When page u is a terminal node or the execution path path reaches to the length limit

ML on page u (at line 2), extra user actions on page u will be executed for completing

execution paths, as indicated at lines 3-4. Then the execution path will be saved if it

involves at least one secret value, as expressed at lines 5-6.

Otherwise, if page u contains a secret sec ∈ Sec required to be examined, sec is

removed from set Sec to avoid repeated testing of sec on further pages, as shown at lines

9-10. Then each user action a ∈ SA, either a ∈ AS containing sensitive information s ∈ S
for secret sec or a particular user action a ∈ PA, is performed by invoking a function

performing, as shown at line 12.
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Algorithm 1 Execution Path Generation

Require:
Sec: the set of secrets on a given application G
u: the web page visited currently, initialised by the starting node r
S: the set of sensitive information in terms of a secret sec ∈ Sec on page u
A = PA ∪ AS ∪ Al: the set of all executable user actions on page u. It collects

particular user actions PA, i.e. extra and connecting user actions, user actions
As containing sensitive information s ∈ S, and the remaining user actions Al.

SA = PA ∪AS ⊆ A
ML: the maximum length of an execution path
path: the generated execution path up to the present page u, initialised by node r
len: the number of transitions in execution path path, initialised by len = 0

1: procedure transition(u, path, len)
2: if u is a terminal node || len+ 1 > ML then
3: for extra user action a ∈ PA do
4: performing(a, u, path, len)

5: if path containing a secret value s then
6: Save path

7: else
8: len← len+ 1
9: if ∃ sec in Sec then

10: Remove sec from Sec
11: for a ∈ SA do
12: performing(a, u, path, len)

13: if Sec = ∅ then
14: a← the first priority a ∈ Al

15: performing(a, u, path, len)
16: else
17: for a ∈ Al do
18: performing(a, u, path, len)
19: if Sec = ∅ then
20: break

21: procedure performing(a, u, path, len)
22: v ← Performing a on u
23: if a ∈ AS with a secret value s ∈ S then
24: path← (path+ a+ s→ v)
25: else
26: path← (path+ a→ v)

27: transition(v, path, len)
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Function performing is defined at lines 21-27. Performing a user action a on page u,

the function generates a transition which forwards to a new web page v (at line 22). The

execution path path will be updated by appending the new generated transition, displayed

at either line 24 or line 26. When user action a ∈ AS contains a secret value s, the sensitive

information s will be inserted after user action a in the transition produced (at line 24).

So the secret value examined in the transition is recorded. Finally, function transition

is invoked at line 27 to recur the process of crawling and generating transitions for

forwarding page v.

After performing all the user action a ∈ SA on page u, if all the secrets have been

accessed already, i.e. Sec = ∅ (line 13), a priority policy of performing a user action is

taken to complete the generation of execution paths (see lines 14-15). The first priority

is to submit the first encountered HTML form with the first options (or default values)

in each component. Otherwise, the first encountered link is clicked.

On the other hand, if there has been at least one secret untested yet, i.e. Sec 6= ∅
(line 16), a brute-force search is conducted. It attempts to access the untested secrets by

performing remaining user actions a ∈ Al on page u (see lines 17-18). This guarantees

that each untested secret can be accessed in case one has to be accessed through a user

action a ∈ Al.

During the brute-force search, when all the secrets have been accessed, i.e. Sec = ∅
(line 19), it is unnecessary to keep performing remaining user actions. Algorithm 1 stops

crawling page u by executing the break command at line 20.

From Algorithm 1, it is shown that a connecting user action is efficient when there

are a large space of performable user actions Al on a web page, which can avoid huge

overheads produced during brute-force search. This algorithm only generates execution

paths which are related to the secrets the developers want to examine.

We now show how the algorithm works in two examples in Figure 4.2.

P1, ..., P7 denote the web pages. A user action with a suffix s, e.g. a11s, means the

user action contains the sensitive information.

(a) (b)

Figure 4.2: Examples of test cases generation
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In Figure 4.2a, a11s, a12s and a13s are the user actions on page P1, which contain

sensitive information for a secret. a21, a22s and a23s are the user actions on page P2,

where a22s and a23s contain sensitive information for another secret.

Using Algorithm 1, two execution paths are generated by performing user action a11s,

where

1. P1
a11s−−→ P2

a22s−−→ P5
a51−−→ P7 and 2. P1

a11s−−→ P2
a23s−−→ P5

a51−−→ P7

At this point, both the secrets on Pages P1 and P2 have been accessed, so Sec = ∅.
Then an execution path is generated by performing user action a12s. Since Sec = ∅, the

first occurred user action a21 on page P2 is performed, according to the priority policy.

Therefore, the other two execution paths generated from the graph in Figure 4.2a

are:

3. P1
a12s−−→ P2

a21−−→ P4 and 4. P1
a13s−−→ P3

a31−−→ P6

However, when analysing leakage of the secret on page P1, execution paths would be

more reasonable and comparable if path 3 follows

3. P1
a13s−−→ P2

a22s−−→ P5
a51−−→ P7

In this case test cases 1, 2 and 3 only vary depending on the secret values in user actions

a11s, a12s and a13s.

Accordingly, we attempt to generate execution paths with minimum distances, i.e.

only vary depending on secret values if possible. We develop a consistency system to

achieve this goal.

4.3.3 Consistency System

The consistency system is designed to instruct execution paths for a same secret to follow

the indirect transitions in as similar a way as possible. Indirect transitions, which are

first generated on each web page for one secret, are recorded. To mention them easily,

these recorded paths are named as testing paths.

Take the graph in Figure 4.2a as an example. In terms of the secret on Page P1,

a testing path P2
a22s−−→ P5

a51−−→ P7 is generated when performing a11s, which is the

indirect transition of path 1. In path 2. P1
a11s−−→ P2

a23s−−→ P5
a51−−→ P7, indirect transition

P2
a23s−−→ P5

a51−−→ P7 is not recorded as a testing path, as there has already been a testing

path starting from page B which is related to the secret on Page P1. Therefore, execution

path 3 by performing a12s will follow testing path “P2
a22s−−→ P5

a51−−→ P7”, when arriving

on page P2.

Therefore, when SA = ∅, the priority policy becomes:

1. Following a related testing path;

2. Performing the first occurred form action with the first options or default values on

each component;
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3. Clicking the first occurred link.

When generating execution path 4 by performing a13s, the testing path derived from

execution path 1 is not applicable, as this execution path does not go through P2.

Now consider the web application in Figure 4.2b. When performing a11s, path

P1
a11s−−→ P2

a21−−→ P4 is accessed as there has been one secret untested yet, denoted

by a31s on page P3. The system attempts to crawl all the possible user actions until the

untested secret is located. But this path will be abandoned as it does not contain any

secret value, since a11s has been accessed in execution paths generated previously.

When performing a12s, the execution path will follow the testing path from page

P2. The existence of the testing path from page P2 suggests that a brute-force search

has already been performed on page P2 previously. Hence a brute-force search on page

P2 will not performed this time. Therefore the use of consistency system also avoids

unnecessary repeated brute-force search on one same page.

4.3.4 Test Case Construction

When generating execution paths, recall that a user action containing sensitive informa-

tion is marked by the sensitive information s (line 24 in Algorithm 1). The mark aims to

(1) aggregate test cases for a same secret, each for a secret value; and to (2) distinguish

the direct transition from the indirect transition in an execution path.

For an execution path containing more than one secret, test cases in terms of each

secret will be extracted from the whole execution path, based on the direct transitions

of each secret.

For example, consider an execution path generated for the graph in Figure 4.2a:

P1
a11s−−→ P2

a22s−−→ P5
a51−−→ P7. Then the test case in terms of the secret on page P1 will

be: P1
a11s−−→ P2

a22s−−→ P5
a51−−→ P7, i.e. the whole execution path. And the test case for

the secret on page P2 is: P2
a22s−−→ P5

a51−−→ P7, starting from the direct transition for the

secret on page P2.

Then test cases with regard to a same secret can be aggregated into one set.

4.4 Data Analysis

4.4.1 Web Traffic Generation

Given a set of test cases, each related to a secret value, we use a web driver–Selenium [14]

to simulate user actions in every test case with the Firefox web browser. The configuration

file specifies the number of times that the test cases are repeated. In every run, cookies

and caches have been cleared before a new test starts. And a set of observations for each

test case are collected using Jpcap [10].

Given a set of observations, request packets in each observation can be extracted

according to the packet directions, to form a sequence of request packets to be analysed.

Currently we do not analyse response packets. Hence each observation means a sequence

of request packets.
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This work analyses vulnerabilities from direct and indirect transitions separately.

Hence we need to obtain the web traffic for individual direct and indirect transitions.

Split of Web Traffic

Figure 4.3 shows the process of obtaining web traffic for each individual transition. Given

a set of test cases T for a secret on a page P1, each test case Tk is a combined path

containing both direct and indirect transitions. Each test case is repeatedly executed m

times, so a set of observations Ok for test case Tk can be obtained. Then each observation

for a combined path is split into two sequences of web traffic for direct and indirect

transitions respectively.

Figure 4.3: Generating observations

When collecting web traffic for a test case with more than one transition, the following

transition will not be triggered until the current one is completed, up to a time-out of,

e.g., 20 seconds in this work. And a mark is appended at the end of the web traffic

recorded for a direct transition, to separate the web traffic between direct and indirect

transitions in a whole traffic sequence.

In real-world attacks, it is feasible for an attacker to split web traffic. For example,

there is a typically large time interval between the packets generated between two tran-

sitions, relative to the time interval of the packets generated in one transition. Hence

by observing the timing of packet generation, an attacker is able to separate web traffic

between transitions. Moreover, stable and unique request traffic is generally produced at

the beginning of a transition, which can also be used for determining the start point of

web traffic from a transition.

It follows that it is reasonable to assume that a real-world attacker is able to separate

web traffic in terms of individual direct and indirect transitions.

Overview of Data Analysis

After getting the observation sets for each direct/indirect transition for a secret, we start

to analyse the packet data for calculating leakage.

First let us see the overall process of data analysis. Figure 4.4 gives an overview of

the process. Given a set of individual direct/indirect transitions E for a secret and the

related observation sets Ok for each transition Ek, we use an approach motivated by the

hidden Markov model (HMM) to generate the most likely sequences mlsk, i.e. the traffic

patterns for the observations in each observation set. Collecting the generated most likely

sequences into a set, the leakage of the secret is evaluated using guessing probability [82].
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Figure 4.4: Process of analysing data

Now we explain how to normalise a most likely sequence. First define the packet

characteristics.

4.4.2 Packet Specification

Given a set of observations Oe, we define the following notations:

• Oe: a set of observations for a transition e;

• oei : the ith observation where oei ∈ Oe; In a given set Oe, oei can also be abbreviated

as oi ∈ Oe;

• oeik : the packet at position k in oei . Similarly, it can be abbreviated as oik ∈ oi. It

is presented by a pair (value, k), where value is the packet size and k is the position

the packet is located in this observation. The use of packet location is to deal with a

packet-disorder issue introduced later.

Packet Disorder

In the real world, an issue of network packet out of order often occurs. When a reliable

in-order delivery of packets is required, for instance when using Transmission Control

Protocol (TCP), a transmitter resends the packets which are not received properly. This

may cause packets disordered, e.g. a retransmitted packet is observed after a packet

where it should be observed before the packet in a proper order.

This research analyses TCP packets, where sequence numbers of packets can be ex-

tracted to recover a correct order. However, to provide an extensive mechanism which can

analyse traffic even when the sequence numbers of packets are not available, this work

proposes a stronger analyser with defining a shift operation with displacement range,

which, to a great extent, mitigates possible errors caused by disordered packets.

Definition 17 (Shift with Displacement Range d) Given a packet located at posi-

tion k in an observation −→q , it can be shifted up to d-position forward or backward away

from the current position k. This aims to recover the original position where the packet

is actually located in a proper order. After shifting the sequence becomes sequence
−→
q′ .

Displacement range is used to simulate the degree of packet disorder caused by a

packet transmission error. If there is a packet retransmitted and observed in an incorrect
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Figure 4.5: Shift of a packet

order, it can be moved back to its correct position if the disorder happens within the

displacement range.

So an appropriate setting of the displacement range is important for the precision of a

most likely sequence. If the value is too small, it will miss the disordered packets outside

the displacement range. But when the value is too large, there may be an incorrect

judgement for those which have already been located at correct position. Thus the value

can be decided according to, e.g. sliding window size. In this work, the displacement

range is set to d = 2.

For example, Figure 4.5 shows an example of a shift operation. With displacement

range d = 2, packet C at position 3 in sequence −→q can be shifted to position k′ = 1 or

k′ = 5.

The shift of the packet at position k causes the packets at positions [k′, k−1] (k′ < k)

or [k + 1, k′] (k′ > k) in sequence −→q to be also moved to new positions of [k′ + 1, k] or

[k, k′−1] in sequence
−→
q′ . After n times of shift, it must ensure that all the packets shifted

to new positions are within displacement range from the original positions in sequence
−→q .

Indistinguishable Packets

In an ideal situation, observations for a transition are identical in a small time period. But

in fact, external factors, such as performing time and session IDs, may result in a slight

fluctuation of packet sizes between multiple observations. Therefore, indistinguishable

packets are proposed for reducing the probable impacts on packet sizes among different

observations from external factors.

Definition 18 (Indistinguishable Packets) Packets from different observations are

considered as indistinguishable, if their locations are within displacement range and their

sizes a, b satisfy:

|a− b| ≤ tp ·max(a, b),

where tp ∈ [0, 0.5] is defined as a threshold of indistinguishable packets.

Moreover, two traffic sequences are determined to be indistinguishable , if every

pair of the packets located at a same position between sequences are indistinguishable.

By default, the threshold of indistinguishable packets is set by tp = 0.1.

Next we describe how to construct the most likely sequence mlse for transition e, i.e.

g(Oe) = mlse.
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4.4.3 Modelling Packet Data

In a hidden Markov model (HMM), states are not observable while outputs depending on

the states are observable. Similarly, we consider the observations in a set are the outputs,

and the traffic pattern generated from the observations can be deemed as a sequence of

hidden states. Hence we use the notations defined in a HMM to model the packet data

in an observation set.

Given an observation set Oe of a transition e, a position-dependent model can be

denoted as follows:

• K = number of positions, i.e. the maximum length among the numbers of packets in

observations

• Nk = number of states at position k

• STk = {stk1 , ..., stkNk
} ∈ ST = a set of possible hidden states at position k

Each state stki ∈ STk is unique and originated from the size of a packet observed

at position k in an observation. This set may contain states related to the potential

disordered packets, which are not observed but within displacement range from position

k. The final confirmed state at position k is denoted by stk.

• Mk = number of outputs at position k

• OPk = {opk1 , opk2 , ..., opkMk
} ∈ OP = a set of output at position k

It collects packets that can be observed at position k in each observation oei ∈ Oe,

expressed by packet sizes. Similar to the states in a state set, outputs in this set may

also include those probably disordered but within displacement range from position k.

• IP = {ip1, ..., ipN1} = initial state distribution at position 1

ipi denotes the initial probability of state st1i .

• Ck = {ck(stki , st(k+1)j )} ∈ C = transition probabilities between states at position k

It is a Nk ×Nk+1 matrix, and ck(stki , st(k+1)j ) denotes the probability of transferring

from state stki ∈ STk at position k to state st(k+1)j ∈ STk+1 at position k+1.

• Bk = {bk(opkt |stki)} ∈ B = output probabilities at position k

It is a Nk ×Mk matrix, and bk(opkt |stki) denotes the probability of observing output

opkt ∈ OPk in state stki ∈ STk.

Similar to a HMM, this model can be characterised by a set of parameters µ =

{IP,C,B}. A most likely sequence can be regarded as a sequence of most likely states

in a format as

mlse = (st1, st2, ...)

Figure 4.6 shows the construction of a most likely sequence. The maximum length

of observations, i.e. the maximum number of packets among observations is K. Output

sets and state sets are obtained based on the packets at each position. And output
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probabilities and transition probabilities are calculated to get the hidden states at each

position.

Details of how to consider disordered outputs within displacement range and how to

obtain the most likely states at each position are described in the following section.

Figure 4.6: Constructing a most likely sequence by a HMM

4.4.4 Most Likely Sequence

In general, the generation of a most likely sequence can be related to a classic Question 3

in HMM, as described in section 2.6. It concerns how to generate a corresponding state

sequence which best explains observations.

For the traditional solution in HMM, the Baum-Welch algorithm [30] is performed

until the resulting probabilities converge satisfactorily, which maximises µ = {IP,C,B}.
Then the Viterbi algorithm [58] is performed to get a sequence of most likely states which

has the maximum probability.

However, we do not use this approach to generate a most likely sequence. Our model

is position-dependent, i.e. the states and outputs at each position can be different, and

also disordered packets are considered. If the approach of HMMs is used to calculate the

most likely sequence in our work, a large number of combinations of states need to be

considered and then a huge overhead can be generated.

Instead of optimising µ = {IP,C,B}, this work only aims to get the most likely se-

quence. Hence it is unnecessary to use the approach in HMMs to optimise µ = {IP,C,B}
and then derive the sequence of most likely states.

Accordingly, we develop an analysis motivated by HMM, to simplify the analysis. Our

proposed approach is called as the “confirm and run” approach, to produce a sequence

of most likely states.
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Specification for Generating a Most likely Sequence

To generate a most likely sequence, given a set of observations Oe, it is required to (1)

determine the length of a most likely sequence, i.e. the number of hidden states; and to

(2) identify indistinguishable packets in a set.

1. Calculating the length of the most likely sequence LENe.

First define a notion of indistinguishable lengths.

Definition 19 (Indistinguishable lengths) Given a set of lengths of observations

L(Oe), i.e. the numbers of request packets in each observation, two observations are

of indistinguishable lengths if the distance between their lengths is not larger than 10

percent of the longer length. It can be expressed by:

|L(oei)− L(oej )| ≤ 0.1×max(L(oei), L(oej ))

If at least 50% of observations have the same length l, the length of the most likely

sequence is LENe = l. Otherwise, if there at least 50% of observation lengths are

mutually indistinguishable, the length with the highest probability among the indis-

tinguishable lengths is to be LENe. If more than one indistinguishable length has the

same highest probability, the one nearest to the average length will be LENe.

Otherwise, when less than 50% of observation lengths are mutually indistinguishable,

the average of the indistinguishable lengths which account for the largest proportion of

observations will be LENe. On the other hand, if all the lengths are distinguishable,

the shortest length will be the length LENe.

2. Re-organising the state and output sets ST and OP .

We define indistinguishable packets in a set.

When building a most likely sequence, indistinguishable packets are considered as the

same packet. Each item in a state/output set symbolises a packet size. Indistinguish-

able sizes in a set will be integrated into one single size. By comparing each two

items in a set, those indistinguishable are partitioned into a group. Then a represen-

tative of each group is identified, which is the size closest to the average size of the

indistinguishable sizes in the group.

For example, given a set of outputs: {190, 195, 200, 100} and a threshold of indis-

tinguishable packets Tp = 0.1, sizes 190, 195 and 200 are indistinguishable, and the

representative of this group is 195. The set after reorganising becomes {195, 100}.

Next we describe how to construct the most likely sequence using the confirm and

run approach.

Confirm and Run

In this approach, the states at each position are confirmed consecutively, starting from

the first until the final in the most likely sequence.
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Given a set of observations Oe, the process of building a most likely sequence is

outlined as follows:

1. First, build the output/state set at position 1. Each output/state is derived from a

unique size of a packet oi1 in an observation oi ∈ Oe at position 1.

The first state st1 is determined with the highest probability of outputs indistinguish-

able from that state.

2. After confirming a state stk at position k, if an output opki at position k is distinguish-

able from stk, the packet of the output in the observation is either a redundant packet

or to be disordered if it is located within displacement range from position k. This

packet is regarded as an unconfirmed packet. It will be confirmed when it is identified

to be disordered, i.e. indistinguishable from a state at a position within displacement

range from position k. An example will be used to further explained this.

3. From position 2, disordered packets will be considered. Possible states stkj ∈ STk at

position k are originated from either the packets observed at position k in observations

or from the unconfirmed packets at previous positions within displacement range.

For each possible state stki , we calculate the possible highest probability of outputs

indistinguishable from state stki .

When an output observed at position k is distinguishable from stki , first we exam-

ine if there unconfirmed packets within displacement range in the observation are

indistinguishable from stki . If not, subsequent packets within displacement range in

this observation will be checked, to find a packet indistinguishable from stki , which is

probably disordered from position k.

A set OP ′ki is used to collect these packets within displacement range identified to be

indistinguishable from stki , when the outputs observed at position k are distinguish-

able from stki .

Hence the possible highest output probability of observing outputs indistinguishable

from state stki is defined by:

bk(stki) =
|{j|opkj = stki}|+ |OP ′ki |

|Oe|+ |OP ′ki |
, (4.1)

where |{j|opkj = stki}| is the number of outputs at position k indistinguishable from

state stki . And |OP ′ki | is the number of packets within displacement range from

position k indistinguishable from stki .

Figure 4.7 draws the process of identifying the state at position k. When calculating

output probability bk(stki), an output omk
is distinguishable from state stki . Packet

omk−1
is unconfirmed and it is within displacement range from position k. It will

be first checked to see if it is indistinguishable from stki . If not, then the following

packets within displacement range, e.g. omk+1
, will be examined. The packets within

displacement range under examination are put inside the green squares. The packet
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Figure 4.7: Confirming the state stk at position k

inside a square with solid lines means it will certainly be checked, while that inside a

square with dotted lines means it is probably checked.

4. Then we calculate a transition probability from the confirmed previous state stk−1 to

a possible state stki , i.e. ck(stk−1, stki). The probability is decided by the number

of indistinguishable outputs including those observed at position k and the those

unconfirmed in previous positions within displacement range from position k.

We use a set OP ′′k which collects all the outputs of the unconfirmed packets within

displacement range from position k, regardless they are distinguishable or indistin-

guishable from the states.

Hence a transition probability is defined by:

ck(stk−1, stki) =
|{j|opkj = stki}|+ |{j|op′′kj = stki}|

|Oe|+ |OP ′′k |
, (4.2)

where |{j|op′′kj = stki}| is the number of outputs for the unconfirmed packets indistin-

guishable from state stki .

As shown in Figure 4.7, when calculating the transition probability ck(stk−1, stki),

we only examine the unconfirmed packets with displacement range, which are now

depicted in blue squares.

5. Then a state stki ∈ STk out of all the possible states, which has the highest product

bk(stki)× ck(stk−1, stki), will be the state stk at position k.

6. The process of steps 2-5 is repeated until the last state in the most likely sequence is
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confirmed. Finally, the most likely sequence generated is:

mlse = (st1, st2, ..., stLENe).

Next we take an example to illustrate the process of generating a most likely sequence.

4.4.5 An Example: Generating a Most Likely Sequence

Given a set of observations Oe with displacement range d = 2:

Oe = {o1 = (200, 1)(101, 2)(50, 3)(80, 4)(120, 5)

o2 = (200, 1)(100, 2)(50, 3)(120, 4)(200, 5), (80, 6)

o2 = (100, 1)(200, 2)(80, 3)(120, 4)(50, 5)}

the length of the most likely sequence is determined as LENe = 5.

At position 1, the state set and the output sets are ST1 = OP1 = {200, 100}. 200 is

derived from the packets (200, 1) in observations o1 and o2, and 100 is from the packet

(100, 1) in observation o3. The initial probabilities are calculated by ip1(st11 = 200) = 2
3

and ip2(st12 = 100) = 1
3 . Hence st1 = 200, and packet (100, 1) in observation o3 is

unconfirmed.

At position 2, ST2 = OP2 = {100, 200}, as packet (101, 2) in observation o1 is re-

garded as same as packet (100, 2).

The possible highest output probability for state st21 is b2(st21 = 100) = 2+1
3+1 = 3

4 ,

where there are two outputs observed at position 2 in observations o1 and o2 respectively

and one unconfirmed packet (100, 1) in observation o3 are indistinguishable from st21 .

And b2(st22 = 200) = 1
3 , as there are not potential disordered packets, within dis-

placement range in observations o1 and o2 indistinguishable from st22 .

For the transition probabilities, c2(st1, st21) = c2(200 → 100) = 3
4 as unconfirmed

packet (100, 1) from observation oe3 is indistinguishable from state st21 . And c2(st1, st22) =

c2(200 → 200) = 1
4 . Hence the final state at position 2 is st2 = 100. And the actual

positions of packets (100, 1) and (200, 2) in observation o3 are shifted.

Similarly, the final state at position 3 can be obtained as st3 = 50. And the packet

(80, 3) in observation o3 is unconfirmed.

At position 4, the possible states are {st41 = 80, st42 = 120}. When st41 = 80,

the packets (120, 4) observed in observations o2 and o3 respectively are distinguishable

from the state. Then the packets within displacement range in these two observations

are checked, and it is found that packet (80, 6) in observation o2 and packet (80, 3)

in observation o3 are indistinguishable from st41 . Hence the possible highest output

probability for state st41 is: b4(st41 = 80) = 1+2
3+2 = 3

5 .

Similarly, it can be obtained that b4(st42 = 120) = 3
4 as packet (120, 5) within dis-

placement range in observation o1 is considered.

For transition probabilities, c4(st3, st41) = c4(st3, st42) = 0.5, as unconfirmed packet

(80,3) in o3 is indistinguishable from state st41 = 80. As a result, st4 = 120.
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At position 5, although there are not any packets observed with an output of 80,

unconfirmed packets (80, 4) and (80, 3) in observations o1 and o3 respectively are lo-

cated within displacement range from position 5. Thus, 80 is considered as a possible

state/output, and it is finally obtained that st5 = 80.

According, the most likely sequence of transition e is

mlse = (200, 100, 50, 120, 80)

After generating the most likely sequences for each set of observations, we now eval-

uate leakage of the secret using the guessing probability [109, 82]

4.5 Quantification of Leaks

Figure 4.8 gives an overview of the quantification of leakage. Given a set of transitions E

and the observation sets, the most likely sequences for each transition e can be generated,

as described in section 4.4.4.

Figure 4.8: Quantifying leakage

For every observation set Oe, we calculate the distance between each observation oi ∈
Oe and most likely sequence mlse, optimised from the Damerau-Levenshtein Distance

[88]. According to the distance generated, similarity between each observation and the

most likely sequence can be calculated. Then we calculate the probability of observations

in Oe which follow the most likely sequence mlse, i.e. p(mlse). A probability distribution

PD in terms of observations for transitions in set E following the generated most likely

sequences is built, and then the leakage is calculated using guessing probability [109, 82].

4.5.1 Probability of a Most Likely Sequence of a Transition

First, we evaluate the distances between each observation oi ∈ Oe and the most likely

sequence mlse.

Distance between Two Sequences

We define a distance based upon the Damerau-Levenshtein Distance [88] to calculate the

distance between two sequences. It evaluates the minimum number of operations of shift,
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insertion, deletion, substitution, and transposition of packets, to transform a sequence to

be indistinguishable from another sequence.

Definition 20 (Distance between two sequences) A traffic sequence −→a can be ob-

tained from traffic sequence
−→
b through at least n operations of shift, insertion, deletion,

substitution of packets, and transposing two packets within displacement range. The dis-

tance between sequences −→a and
−→
b is defined as

dis(
−→
b ,−→a ) = min(n, |−→a |), (4.3)

where |−→a | is the number of packets in sequence −→a .

In this definition, indistinguishable packets are the same packet, for example

dis(QPP ′, QP ′P ) = 0 iff P and P ′ are indistinguishable.

In a traditional Damerau-Levenshtein distance, a sequence is transformed into another

sequence through insertion, deletion, substitution of packets and transposition between

two adjacent packets. Here we extend the transposition to packets not adjacent. The

packets can be transposed as long as they are within displacement range. So a traditional

Damerau-Levenshtein distance can be deemed with displacement range d = 1.

Figure 4.9 shows the examples of the distance between two sequences. When dis-

placement range d = 3, the distance dis(
−→
b ,−→a ) = 3. And when d = 2, the distance

dis(
−→
b ,−→a ) = 4.

Figure 4.9: Examples of distances between two sequences

We regard the process of calculating the distance between two sequences as a Damerau-

Levenshtein process, and sequence −→a is indistinguishable from sequence
−→
b after the

process.

Similarity between Two Sequences

Now we define a similarity to measure the similarity between the two sequences.
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Definition 21 (Similarity) Given an observation oi ∈ Oe and a most likely sequence

mlse, similarity between oi and mlse is defined by

sim(oi,mlse) = 1− dis(oi,mlse)

|mlse|
, (4.4)

where |mlse| is the number of packets in sequence mlse, and dis(oi,mlse) is the distance

using Equation 4.3.

Expression
dis(oi,mlse)

|mlse|
transforms the distance into the percentage of packets mis-

matched between the two sequences, such that 0 ≤ sim(oi,mlse) ≤ 1. The similarity

examines the degree of an observation oi following the most likely sequence mlse.

With similarity sim(oi,mlse), we can determine if observation oi follows most likely

sequence mlse by defining a threshold of similarity–Tm (0 < Tm ≤ 1).

Given the threshold of similarity Tm, observation oi is considered conforming to most

likely sequence mlse if and only if sim(oi,mlse) ≥ Tm.

Probability of a Most Likely Sequence

For a transition e, we calculate the probability of an observation following the most likely

sequence depending on the similarities.

Definition 22 (Probability of a most likely sequence) Given a set of observations

Oe for a transition e and the most likely sequence mlse, the probability of most likely

sequence mlse is defined as:

p(mlse) =
M

|Oe|
(4.5)

where M is the number of observations in Oe following mlse, i.e. the observation oi

satisfies sim(oi,mlse) ≥ Tm.

This probability p(mlse) represents the probability of an observation from transition

e following traffic pattern mlse.

Now we define a threshold of most likely sequences–Tt (0.5 < Tt ≤ 1), which

assesses if a most likely sequence is sufficiently close to the observations. In other words,

to determine if the produced most likely sequence can really be the traffic pattern of

observations for the transition.

If p(mlse) ≥ Tt, most likely sequence mlse is confirmed to be the traffic pattern

of transition e. Otherwise, transition e is regarded as generating random web traffic

which does not follow any traffic patterns. Due to the “one → one” mapping between a

transition and a traffic pattern, mlse is still regarded as the traffic pattern for transition

e. However, the probability of mlse is reviewed to

p(mlse) = 0 (4.6)

When p(mlse) 6= 1, it is suggested that there are observations for transition e which do

not conforming to the most likely sequence mlse. In other words, uncertain observations



4.5. Quantification of Leaks 84

may also be generated from transition e. Therefore, we define the probability of uncertain

observations which do not follow mlse.

Definition 23 (Uncertainty) The uncertainty of observations for a transition e, i.e.

the probability of generating random web traffic, is defined as:

puncer(mlse) = 1− p(mlse) (4.7)

After producing the probabilities of each most likely sequence for each transition,

next we normalise them to build a probability distribution in terms of the most likely

sequences.

4.5.2 Probability Distribution in terms of a set of Traffic Patterns

Given a set of most likely sequences derived from the observation sets for a secret, and

the probabilities of each most likely sequence, we build a probability distribution. The

probability distribution represents the probabilities of observations for a set of transitions.

Given a set of most likely sequences MLS related to a set of transitions E, with the

uniform distribution on set E, the probability distribution in terms of the most likely

sequences MLS is denoted by PD = P ′ ∪ PU ′, of which

P ′ = { p′(mlse) =
1

|E|
∗ p(mlse) : ∀ mlse ∈MLS } (4.8)

and

PU ′ = {pu′(mlse) =
1

|E|
∗ puncer(mlse) =

1

|E|
∗ (1− p(mlse)) : ∀ mlse ∈MLS } (4.9)

where 1
|E| is probability of transition e ∈ E, as the uniform distribution on set E is

considered.

Set P ′ collects the probabilities of observations following most likely sequences while

PU ′ collects the uncertainties of observations which do not follow traffic patterns, such

that ∑
p′(mlse)∈P ′

p′(mlse) +
∑

pu′(mlse)∈PU ′

pu′(mlse) = 1

In this probability distribution, probability p(mlse) now is equivalent to the condi-

tional probability of an observation following the most likely sequence mlse ∈ MLS,

given the knowledge that it is from transition e.

And probability p′(mlse) is regarded as the joint probability of an observation origi-

nated from transition e ∈ E and following the most likely sequence mlse ∈ MLS. And

pu′(mlse) is the joint probability of an observation coming from transition e but not

following traffic pattern mlse.

In this research, we consider that an observation for a transition ei will not follow the

most likely sequence for another transition ej , where ei 6= ej .
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4.5.3 Pseudo-Partition

Now we define a Pseudo-Partition, which is used to classify the most likely sequences.

Definition 24 (Pseudo-Partition) A Pseudo-Partition of a set S is a set of subsets

of S whose union is S.

Given a set of transitions E and a set of most likely sequences MLS, where g :

f(E)→MLS, we build a pseudo-partition X of set MLS.

For a most likely sequence mlse ∈ MLS whose p(mlse) = 0, it is classified in a set

Xrandom ∈ X named as the random class.

For a most likely sequence mlse with p(mlse) 6= 0, it is added to a regular class

Xi ∈ X, if and only if

∀ mlsk ∈ Xi, dis(mlse,mlsk) = 0

That is to say, every two sequences in class Xi are mutually indistinguishable. Most

likely sequence mlse in the regular class symbolises the observations following mlse.

Moreover, if 0 < p(mlse) < 1, in addition to a regular class Xi, mlse will also be added

to set Xrandom. Now mlse in the random class symbolises the uncertain observations

which come from transition e but do not follow mlse.

As can be seen, a pseudo-partition X is not a partition or equivalence relation where

a most likely sequence can only be classified into one single class. However in the pseudo-

partition, a most likely sequence can be classified into both a regular class and a random

class, to represent regular observations following the most likely sequence and the random

observations respectively.

In this sense, not only observations which follow traffic patterns, but also those in-

consistent to traffic patterns are examined. This leads to a wider analysis range of

observations.

For a pseudo-partition on most likely sequences, if we consider the most likely se-

quences as observations, the pseudo-partition can be actually regarded as a partition on

the observations. In this sense, one observation is classified into one and only one block,

either the random class or a regular class. And the observations in a regular class follow

the indistinguishable most likely sequences.

Next, we show how the leakage of a secret can be evaluated based on a pseudo-

partition.

4.5.4 Guessing Probability

As defined in Definition 16 in section 2.1.3, a guessing probability is an average worst-

case probability of guessing a secret correctly in one try. The definition is proposed in

[82], based on Smith’s vulnerability [109].

In this work, we use the guessing probability to measure side-channel leakage, based

upon a pseudo-partition.

Definition 25 (Guessing Probability) Given a pseudo-partition X on a set of most

likely sequences MLS regarding a secret sec, and a probability distribution for set MLS
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PD = P ′ ∪ PU ′, the guessing probability of guessing the secret sec in one try is defined

by

Gue(sec|X) =
∑
Xi∈X

gue(Xi), (4.10)

where

gue(Xi) =


maxmlse∈Xi

p′(mlse) if Xi 6= Xrandom, i.e. Xi is a regular class

maxmlse∈Xi
pu′(mlse) if Xi = Xrandom, i.e. Xi is a random class

(4.11)

where maxmlse∈Xi
p′(mlse) ∈ P ′ is the maximum probability of a most likely sequence in

a regular class Xi, and maxmlse∈Xi
pu′(mlse) ∈ PU ′ is the maximum uncertainty in the

random class.

In this definition, we consider that random web traffic can also infer the user secret.

Imagine that a traffic sequence not matching to any most likely sequences is observed.

It is more likely that this traffic comes from a transition with a higher uncertainty of

observations.

Example 1 (Leaks from random web traffic) Given a set of three most likely se-

quences mls1, mls2 and mls3 for a set with three transitions e1, e2 and e3 respectively,

the conditional probabilities of the most likely sequences, i.e. the probabilities before

normalisation, are p(mls1) = 1, p(mls2) = 0.9, and p(mls3) = 0.8. Consider the uniform

distribution on the set of transitions. If an observation not following any most likely

sequences is observed, it is more likely that this traffic comes from transition e3, as it has

the highest probability of generating random web traffic.

4.6 Experiments

We implement the methodologies proposed to conduct analyses on four real-world web

applications, whose testing scenarios are shown in Table 4.1. Leakages in each web

application were evaluated from both individual direct and indirect transitions.

Table 4.2 shows the results of guessing probabilities in each testing scenario. The

number in column “Test” refers to the testing scenario shown in column “Test” in Table

4.1. Columns “Before” and “After” display the guessing probabilities of secrets before

and after observing web traffic respectively.

Previous work has mainly analysed side-channel leakages from either individual di-

rect transitions or combined paths. Hence we also evaluate leaks from combined paths.

Column “Combined Path” in Table 4.2 shows the leaks through web traffic of combined

paths.

In the experiments, each test case was executed five times repeatedly. The analysis

was conducted with threshold of indistinguishable packets Tp = 0.1, displacement range

d = 2, threshold of similarity Tm = 0.7 and threshold of most likely sequences Tt = 0.6.
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Table 4.1: Testing Scenarios of Web Applications

Website Test Testing Scenario

Google

1 Direct: Logging into a user account successfully
2 Direct: Logging into a user account failed
3 Indirect: Accessing to the homepage with a user account logged
4 Indirect: Accessing to the homepage with a account logged out

Facebook

5 Direct: Logging into a user account successfully
6 Direct: Logging into a user account failed
7 Indirect: Clicking a button of “Find Friends”
8 Indirect: Clicking a button of “Logout”

Amazon

9 Direct: Inputting a search keyword with an anonymous user
10 Indirect: Visiting the homepage, following Test 9
11 Direct: Inputting a search keyword with an account logged
12 Indirect: Visiting the homepage, following Test 11
13 Direct: Inputting a search keyword with another account logged
14 Indirect: Visiting the homepage, following Test 13

NHS

15 Direct: Selecting a symptom
16 Indirect transition(s), following Test 15
17 Direct: Inputting a postcode
18 Indirect: transitions following Test 17
19 Direct: Inputting a birth year
20 Indirect: transitions following Test 19

In this section, a probability mentioned in a term like “the probability of an obser-

vation following the traffic pattern” refers to the conditional probability before normali-

sation, i.e. p(mlse), instead of probability p′(mlse).

Figures 4.10, 4.11, 4.13 and 4.14 plot the most likely sequences generated for each

web application. In a sub-figure, each line represents a most likely sequence mlse whose

probability p(mlse) 6= 0. X-axis shows the position of a most likely sequence while Y-axis

represents the sizes at each position.

4.6.1 Google

Overview

The secret examined on Google website is the user identity, originated from the authen-

tications of the five Google user accounts. A direct transition concerns an authentication

of a user, by submitting the sensitive information of user name and password. There are

two branches from an authentication, one of successful login and the other of failed login.

Both scenarios were analysed in Tests 1 and 2 respectively, as shown in Table 4.1.

As the experiments were performed using five user accounts, the priori chance of

guessing a user identity is 0.2. To clarify, the five user accounts are mentioned as account

1, account 2, ..., and account 5 respectively in this section.

Indirect transitions after successfully authenticating were tested under two scenarios.

Test 3 is for a scenario where Google homepage is accessed straightly, with a user account

kept logged. And Test 4 is for the second scenario, where the homepage is accessed after
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Table 4.2: Results in terms of guessing probabilities in each web application

Website
Sensitive data

(Secret) Before Test After
Combined

Path

Google

User name & password
(User identity

out of 5 users)
0.2

1 0.32

0.2;0.2
2 0.4
3 0.96
4 0.96

Facebook

User name & password
(User identity

out of 5 users)
0.2

5 0.56

0.76
6 0.28
7 0.58
8 0.4

Amazon

Searching input
(User’s interest

out of 50)
0.02

9 0.45
0.30

10 0.15
11 0.06

0.02
12 0.056
13 0.02

0.02
14 0.032

NHS

Symptom (User’s

symptom out of 11)
0.091

15 0.11
0.60

16 0.54
Postcode (User’s

postcode out of 42)
0.024

17 0.11
0.28

18 0.122
Birth year (User’s

birth year out of 29)
0.034

19 0.034
0.068

20 0.068

a user account is logged off.

On the other hand, there are not indirect transitions examined after failed authenti-

cations.

In the first round of testing on Google websites, leakages of user identities from

indirect transitions in Tests 3 and 4 are unexpectedly high. To guarantee accuracy of the

results, a second testing round was performed after a few weeks. Surprisingly, the results

from the second round are similar to those in the first round, even the traffic patterns

generated are similar among the two rounds.

The most likely sequences displayed in Figure 4.10 come from the first testing round.

On the whole, the results show that user identities from Google accounts are leaked

largely from indirect transitions, while few are leaked from direct transitions.

Direct Transitions: Authenticating User Accounts

A direct transition is an authentication with a pair of user name and password typed in

on page https://accounts.google.com/.

Figure 4.10 presents the most likely sequences constructed under each scenario in

Google website. Figures 4.10a and 4.10b are for the scenarios of successful login in Test

1 and failed login in Test 2 respectively.

As shown in Figure 4.10a, only one most likely sequence in terms of account 4 is

plotted, which suggests that the direct transitions regarding other accounts generate

random web traffic. The guessing probability in Test 1, as shown in Table 4.2, is derived
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(a) Direct transition of successful login in Test 1 (b) Direct transition of fail login in Test 2

(c) Indirect transition of an account logged in Test 3

(d) Indirect transition of an account logged out in Test 4

Figure 4.10: Most likely sequences in Google website
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from 0.2 ∗ (0.6 + 1) = 0.32 using Equation 4.10. Value 0.6 is the probability of the most

likely sequence for account 4, and value 1 is the maximum uncertainty of observations in

the random class.

However, we suppose that it is a coincidence where observations for account 4 follow-

ing the traffic pattern. It is because that observations for other accounts are random and

there is no ground that observations for account 4 are special from others. Moreover, the

probability of the most likely sequence for account 4 is relatively small, with a value of

0.6, which also suggests that it may be a coincidence.

Therefore, we consider that direct transitions examined in Test 1 leak no user iden-

tities, even though the guessing probability after observations is higher than the prior

chance.

In Test 2 concerning failed authentications, from the most likely sequences in Figure

4.10b, observations in terms of accounts 1-4 are consistent with the indistinguishable

most likely sequences, while those for account 5 are random.

Similar to Test 1, we suppose that it is a coincidence where the observations for

account 5 were randomly generated in this testing round.

Accordingly, it is suggested that there is no user identity leaked from direct transi-

tions, no matter a user is authenticated successfully in Test 1 or failed in Test 2.

Indirect Transitions: Visiting Homepage

Web users often access to web pages while their Google accounts are logged in. The

communications of accessing to web pages in no relation to user accounts do not invoke

direct interactions with user accounts. However, it is probable that the information

related to user accounts can be implicitly transmitted through, e.g. cookies.

Therefore, Test 3 examined the indirect transitions accessing to https://www.google.com

with user accounts kept logged in. And Test 4 examined the indirect transitions after

user accounts were logged out.

1. When keeping a user account logged in Test 3

Figure 4.10c depicts six most likely sequences out of five accounts, where both se-

quences 5 and 6 are for account 5, one with an old password before changing, while the

other with a new password.

It can be seen that most likely sequences for each account are unique from one another.

On the contrary, most likely sequences 5 and 6 are indistinguishable from each other, as

they are related to a same account before and after password changing. It can be inferred,

therefore, that observations in this scenario are dependent on user accounts, regardless

whether the password of an account is changed or not.

As shown in Table 4.2, the guessing probability in Test 3 goes up to a value of 0.96,

which nearly reaches to a full leak.

Therefore we conclude that observations from the indirect transitions in this scenario

cause the user’s identity to be easily inferred via traffic analysis.

2. When logging out a user account in Test 4

The result obtained in Test 3 is surprising and encouraged us to investigate more
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about the indirect transitions. People may be curious to know what happens when a user

account is logged out. Can user identities still be leaked from the indirect transitions

after the user accounts are logged out?

Test 4 tested the indirect transitions in as similar a way as Test 3, but after logging

out user accounts.

Figure 4.10d presents that the most likely sequences for each account are unique. The

guessing probability is 0.96, displayed in Table 4.2, which suggests that user identities

are substantially leaked through indirect transitions, even though the user accounts are

logged out.

Therefore, suggested from the high leakages in Tests 3 and 4, it is supposed that

some element carrying information related to user accounts is transmitted to the indirect

transitions. The element exists even after user accounts are logged out. This kind of

element can be, e.g. cookies. This assumption, in fact, inspired our future work regarding

the effect of cookies on observations, as described in Chapter 5.

Combined Paths

Combined paths were examined in two scenarios. The first scenario is composed of Tests

1 and 3, where a user first successfully logged into a user account and then visited the

homepage. The second scenario combines Tests 1 and 4, in which the homepage was

accessed after logging out the user account.

As shown in column “Combined Path” in Table 4.2, guessing probabilities are both

0.2 in two scenarios, separated by a symbol “;”. It is suggested that user identities are

not leak through web traffic from combined paths.

Conclusion

From the results in Google website, leaks of user identities from indirect transitions are

more serious than those from direct transitions.

Web traffic from indirect transitions has strong capability of revealing user identities,

which, however, is weakened heavily by combining with web traffic from direct transi-

tions. It is because that the web traffic from a direct transition is largely random, which

constitutes a great proportion of packet lengths in an observation from a combined path.

The experiments suggest a side-channel vulnerability in terms of user identities on

Google accounts. Further investigation of the leakage of user identities from Google

accounts is conducted, as described in Chapter 5.

4.6.2 Facebook

Similar to the experiments in Google website, five user accounts were used to evaluate the

leakage of user identities in Facebook website. Direct transitions in terms of successful

login and failed login were examined in Tests 5 and 6 respectively. Indirect transitions

were triggered after successful authentications, by (1) clicking a button of “Find Friends”,

examined in Test 7; and then by (2) clicking a button of “Logout” in Test 8, following

the indirect transition executed in Test 7.

Figure 4.11 presents the most likely sequences generated in Tests 5-8 in Facebook.
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(a) Direct transitions of logging successfully in Test 5 (b) Direct transitions of logging failed in Test 6

(c) Indirect transitions by “Find Friends” in Test 7 (d) Indirect transitions by “Logout” in Test 8

Figure 4.11: Most likely sequences in Facebook website

Direct Transitions

A direct transition started from https://www.facebook.com/ by authenticating a user.

Test 5 examined the direct transitions in terms of successful login of user accounts,

where the most likely sequences are displayed in Figure 4.11a. The most likely sequences

for accounts 3-5 are indistinguishable from one another, but distinguishable from that

for account 2. On the other hand, the direct transitions related to account 1 generate

random web traffic, suggested by the absence of the most likely sequence for account 1 in

Figure 4.11a. The guessing probability shown in Table 4.2 is around 0.6 in this scenario,

which has an obvious increment compared with the prior guessing probability.

Test 6 is for the direct transitions of failed authentications. Figure 4.11b indicates

that the web traffic for each direct transition is generally consistent, which follows the

indistinguishable traffic patterns. The guessing probability with a value of 0.28 suggests

that sometimes web traffic generated during communications is unstable.

As a result, we consider that web traffic for the direct transitions in Test 1 reveals

some user identities, while no user identities are leaked in Test 2.
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Indirect Transitions

After logging into a Facebook account, there is a button of “Find Friends” on the web

page. Test 7 examined the indirect transitions triggered by clicking this button. And

a succeeding indirect transition following Test 7, triggered by a “Logout” button, was

examined individually in Test 8.

Figure 4.11c plots the most likely sequences in Test 7. Like the traffic patterns

generated in Test 5 in Figure 4.11a, most likely sequences for accounts 3, 4 and 5 in

Test 7 are indistinguishable from one another, but distinguishable from that for account

2. Moreover, the observations for account 1 are also random in Test 7. Therefore we

suppose that some factors, which depend on user information but not unique from each

user, may decide the most likely sequences.

As an example of a possible factor, take the group numbers in user accounts. Assume

that web traffic for user accounts with group numbers between 1 and 10 follows the indis-

tinguishable traffic patterns. For the user accounts of more than 10 groups, observations

follow a traffic pattern which is distinguishable from those regarding the group numbers

between 1 and 10. On the other hand, web traffic for user accounts with no groups is

randomly generated. Therefore in this example, group number is a factor which leads to

the variation of web traffic between users.

Figure 4.11d plots the most likely sequences in Test 8. Excluding the unique traffic

pattern for account 4, other accounts share a common most likely sequence. Comparing

the traffic pattern for account 4 with that for other accounts, the first two packets in

the traffic pattern for account 4 are redundant. It is possible that the first two packets

are generated from noise. Or some particular features in account 4 cause the web traffic

distinguishable from that for other accounts.

Combined Paths

We examined the combined paths composed of transitions in Test 5, Tests 7 and 8, where

a user first logged into the user account, then she/he clicked the button of “Find Friends”

and finally logged out the account using the “Logout” button.

As shown in Table 4.2, the guessing probability from combined paths is 0.76, which

leak most user identities than individual transitions. By connecting the observations in

different testing scenarios, the observations combined become distinguishable from users

which may not be identified from individual observations.

From the results in Facebook website, some user identities can be leaked from ei-

ther the direct or indirect transitions. Therefore, it is important to analyse transitions

individually, so that a developer can get more details about which transition leak user

privacy.

4.6.3 Amazon

For Amazon website, the secret examined is user search inputs. Before the testing, 50

random search keywords were specified as secret values.

Figure 4.12 illustrates the testing process. By requesting a search keyword, a direct
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Figure 4.12: Testing process in Amazon

transition P1 → P2 was performed from the homepage https://www.amazon.co.uk to

a page of search results. A further search was conducted by clicking the first item, i.e.

P2→ P3. Then the indirect transition we examined is P3→ P4, by clicking the Amazon

logo on the page of the first item, which returned to the homepage.

Testing Scenarios

We executed test cases under different scenarios as follows:

• Scenario 1. Without logging into a user account

Test cases were executed with an anonymous user, i.e. without logged into a user

account. Test 9 examined the direct transitions in this scenario, and Test 10 examined

the indirect transitions.

• Scenario 2. Logging into a user account

In this scenario, a user account was first logged in. After a successful authentication,

a direct transition was performed.

Tests 11 and 12 examined the direct and indirect transitions in this scenario respec-

tively.

• Scenario 3. Logging into a different user account

Similar to scenario 2, a different user account was used in this scenario. And the direct

and indirect transitions were presented in Tests 13 and 14 respectively.

This scenario was used to double check that the leakage of user search inputs is really

related to the login of a user account.

Scenario 1 was designed to investigate a general case about the leakage of user search

inputs. Scenario 2 analysed particularly whether a logged user has an influence on the

leakage of search inputs. And scenario 3 confirmed that the leakage is really affected

when a user was authenticated.

Direct and Indirect Transitions

Displayed in Table 4.2, the result in Test 9 shows that the probability of correctly guessing

the search keyword, via the direct transition, is nearly 50% when a user did not signed
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into an account. While the guessing probability is lower from the indirect transition, as

shown in Test 10.

On the contrary, when a user account was logged in, the guessing probabilities are less

than 0.1 from both direct and indirect transitions, as displayed in Tests 11-12. Similarly,

when another account was logged in Tests 13-14, the guessing probabilities are also close

to the prior probability before observing.

It is surprising to discover that a large amount of sensitive information is leaked with

an anonymous user, while the leakage is mitigated when a user is authenticated. By

examining the web traffic when a user was authenticated, the observations are largely

random, which cause user inputs indistinguishable.

For the reason, we suppose that Amazon may provide different protection schemas

on user search inputs. A stronger countermeasure is applied against traffic analysis when

a user logs into her account.

Another possibility can be that random web traffic is generated because of a logged

user account. More specifically, when a user account is logged in, some information about

the user is also transmitted to the communications. However, the information generates

random web traffic, which leads to the incapability of identifying user search inputs from

web traffic.

Combined Paths

For the combined paths, the guessing probability shown in Table 4.2 is 0.3 when a user

is anonymous, lower than the result from the direct transitions. While there is no leak

from combined paths when a user is authenticated.

Figure 4.13 plots the most likely sequences generated in Tests 9 and 10 when a user

was anonymous. On the other hand, when a user was authenticated, observations are

largely random. Hence the most likely sequences generated in Scenarios 2 and 3 are not

presented.

(a) Direct transitions with an anonymous user in
Test 9

(b) Indirect transition with an anonymous user in
Test 10

Figure 4.13: Most likely sequences in Amazon website
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4.6.4 NHS Direct Symptom Checker

On NHS website, a patient uses a symptom checker1 to get an online diagnosis advice

based on a health symptom input. Sensitive information involved in an execution path

includes the user’s health symptom, the postcode of living address and the birth year.

Leakages of the health symptom, the postcode and the birth year were analysed respec-

tively in the experiments.

After performing several connecting user actions, a web page was accessed to select a

health symptom out of a list of options. After submitting the data, consecutive transitions

required more user sensitive information, including the postcode of living address and

the birth year. Finally, the test case ended with a web page containing a final diagnosis

advice.

Unlike the previous three web applications analysed, each with one secret examined,

this website contains three secrets under test. We extracted the direct transitions and

the indirect transitions in terms of the health symptom, the postcode, and the birth year

respectively. And the consistency system is useful in this website, which provides an

optimum consistency between indirect transitions.

Tests 15 and 16 examined the secret of user health symptom from direct and indirect

transitions respectively. Likewise, tests 17-18 analysed the leaks in terms of postcodes

and Tests 19-20 in terms of the birth years. Details are shown in Table 4.1. Figure 4.14

displays the most likely sequences generated in Tests 15-20.

Leakage of Health Symptoms

Test 15 examined the leakage of health symptoms from direct transitions, and Test 16

for indirect transitions.

As plotted in Figure 4.14a, in Test 15 all most likely sequences are indistinguishable

from one another. Therefore, a user’s health symptom is hardly disclosed from the

direct transitions. On the contrary, for the indirect transitions tested in Test 16, Figure

4.14b shows that the most likely sequences are distinguishable. The details of guessing

probabilities can be seen in Table 4.2.

The guessing probability from combined paths is similar to that from indirect tran-

sitions, as shown in Table 4.2. Since the traffic patterns for each direct transition are

indistinguishable and the web traffic for each indirect transition follows a traffic pattern,

it is possible that for the secret values whose most likely sequences for the indirect tran-

sitions are classified in a same class, the most likely sequences for the combined paths

are also in a same class.

Leakage of Postcodes

Figures 4.14c and 4.14d show the most likely sequences for the direct transitions and

indirect transitions for the postcode respectively.

There are more traffic patterns plotted from direct transitions than from indirect

1https://www.nhsdirect.nhs.uk/CheckSymptoms/SATs/InitialAssessment.aspx#progress
The experiments on this symptom checker were performed in early 2014, before this checker was
closed in mid 2014 and replaced by a new NHS symptom checker.
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(a) Direct transitions for symptoms in Test 15 (b) Indirect transitions for symptoms in Test 16

(c) Direct transitions for postcodes in Test 17 (d) Indirect transitions for postcodes in Test 18

(e) Direct transitions for birth years in Test 19 (f) Indirect transitions for birth years in Test 20

Figure 4.14: Most likely sequences on NHS website

transitions. However, Table 4.2 shows that the indirect transitions leak more user post-

codes than the direct transitions, with the guessing probabilities of 0.11 and 0.122 from

direct and indirect transitions respectively. Therefore, we can suggest that there are more

traffic patterns for direct transitions indistinguishable.

With regard to the combined paths, the guessing probability is more than double that

for direct or indirect transitions. For the reason, it can be supposed that the observations
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following indistinguishable traffic patterns in one testing scenario may be combined with

those distinguishable in another scenario, which result in a larger distinction between

observations for the combined paths.

Furthermore, it is possible that random web traffic generated in a scenario is con-

nected with the regular web traffic. The random traffic comprises a small proportion

of packets in a combined observation, which has few impact on the combined traffic of

following a traffic pattern. Therefore the combined observations leak more information

than individual transitions.

Leakage of Birth Years

In terms of the scenario of user birth years, 29 values ranging from 1930 to 2013 were

generated randomly.

As shown in Figures 4.14e and 4.14f, all the direct transition in Test 19 have indis-

tinguishable traffic patterns, so do the indirect transitions in Test 20 except sequence

4.

Table 4.2 shows that the guessing probability for the direct transitions is equal to the

prior chance of 0.034. Accordingly, it can be taken for granted that the direct transitions

produce constant web traffic completely following the traffic pattern.

For the indirect transitions in Test 20, the fourth indirect transition generates random

web traffic which does not follow the common traffic pattern. This exception can be a

coincidence which is caused by, e.g., noise.

Therefore, although the guessing probabilities for the indirect transitions and the

combined paths double the prior chance, we consider that there are no leaks from them.

For the reason, it is likely that (1) the server does not request the information of user

birth year; or (2) the information is transmitted to communications, however, due to the

same format of the birth years with four digits like 19XX or 20XX, the observations are

not affected by the user inputs.

As a result, the secret about the birth year is the only one among the four websites

which is not leaked by traffic analysis.

4.6.5 Discussion of the Experiments

Experiments on these four real-world websites indicate that user confidential information

can be leaked, via traffic analysis, not only from direct transitions, but also from indirect

transitions which implicitly communicate with sensitive information. In some cases,

indirect transitions leak the largest amount of user confidential information, compared

with either direct transitions or combined paths.

Moreover, from the results in the experiments, it is important to perform analysis on

individual transitions. It provides more knowledge about which specific transitions are

the possible side-channel vulnerabilities to leak user privacy.

The result in terms of the leakage of user birth year in NHS website seems appealing to

provide a promising countermeasure against traffic analysis. If it is the case that different

user inputs with a same format cause web traffic indistinguishable, then a new idea of
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constructing sensitive information with a same format can be a possible countermeasure.

Investigation and implementation of this countermeasure are left for the future work.

Although this thesis does not implement countermeasures against traffic analysis, the

analysis of vulnerabilities in individual transitions provides an extensive instruction for

developers to apply effective countermeasures.

4.7 Discussion

This chapter introduces a black-box automated system for analysing side-channel vulner-

abilities in real-world web applications. This system aims to identify which transitions

leak user secrets, including those implicitly related to sensitive information.

Previous work has rarely concentrated on side-channel leakages from individual indi-

rect transitions systematically. In this sense, this chapter advances towards an extensive

analysis of side-channel vulnerabilities in real-world web applications.

Instead of providing an empirical study of side-channel leakages in real-world web

applications, this work demonstrates a security threat that user secrets can be revealed

from transitions which implicitly transmit sensitive information. The leaks, far worse

than previously thought, can be even larger than those from transitions with explicit

relation to sensitive information.

Therefore, it is relevant to conduct comprehensive examination on each individual

transition. This is what we have done in this chapter.

On the other hand, there are some limitations in this chapter. For example, the test

cases analysed in the experiments are limited to the sampling secrets we designed. And

we do not make any theoretical or experimental analyses to validate the correctness of

the most likely sequence derived by our approach. In the experiments, similar to Chapter

3, though our aim of the analyses is not to estimate the specific leakages by sampling, we

lack the experimental validation which verify that the results produced by the analyses

are correct.

Moreover, the experiments are conducted using one machine located at a single lo-

cation. Questions like “do the experimental results vary from testing machines and (or)

testing locations”, “is it possible that the variation of web traffic between secret values

is cased by, e.g. noise or unstable network conditions, which actually does not leak user

secrets”, etc. can be asked.

Hence, it is urgent for calling a more comprehensive analysis of side-channel vulnera-

bilities in web applications. Our next work described in the following chapter showcases

a more extensive side-channel analysis of vulnerabilities in web applications.
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Chapter 5

Side-Channel Leakages of User Identities

5.1 Motivation and Overview

In Chapter 4, we disclose that user identities, presented by Google accounts, can be

revealed from indirect transitions via traffic analysis. Motivated by this discovery, this

chapter explores the leakage of user identities in real-world web application.

Nowadays, it is important to protect user identities. Given a space of users in a

company network, e.g., a web attacker wants to identify the president among the online

users, in order to track the president’s web activities. However, it is impractical to sneak

user identities through, e.g. IP addresses, since the user may go on a business trip or uses

several mobile devices to handle work. Moreover, the user can use anonymous services

to cloak his actual IP address. Hence this chapter proposes a novel threat scenario of

revealing user identities, through the logged user accounts on a website like Google.

To the best of our knowledge, previous work has mainly mounted side-channel attacks

within individual websites, where the leakage happens through communications within

a same server. Take the experiments on Facebook website described in Chapter 4 as

an example, where the transitions examined are between the web pages in Facebook, at

which an examined secret is located, regardless of direct or indirect transitions.

Instead, this chapter works on communications with third-party websites outside the

server of which the confidential information is located.

The leakage of user identities examined is from 50 Google user accounts to websites

included in the Alexa [1] Top 150 websites 1.

To answer the question asked in Chapter 4 about whether the leakages of a secret

examined at different locations are consistent, this chapter analyses the leakage from

five locations. The experiments aim to check if the leakages from different locations

are consistent and to guarantee that the leakages evaluated are as precise as possible.

Moreover, we develop four testing scenarios for investigating the leaking sources, more

specifically, whether cookies and logged user accounts are the factors causing web traffic

1Alexa Top websites are updated by one-month Alexa traffic over the past month. The data
used in this chapter was retrieved in October 2014.
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to leak user identities. Although cookies is a well-known source of tracking users in web

applications, there is little work studying on the effect of cookies in traffic analysis in

web applications. The work of this chapter has been published on [65].

Contributions. The main contributions in this chapter are presented as follows:

1. It proposes a side-channel threat of fingerprinting users, which demonstrates that

even Google users are vulnerable in traffic analysis. It shows that user identities

from Google accounts can be leaked through communications between Google and

third-party websites.

2. It introduces a “one → many” relation between each transition and multiple traffic

patterns.

3. It analyses the effect of cookies and logged user accounts in side-channel leakages of

user identities.

5.2 Threat Scenario

We propose a threat scenario of revealing user identities from Google user accounts.

A user first logs into a Google account, where the transition is regarded as a direct

transition. Then the user accesses to a new website which is either a Google or non-Google

website by typing a URL address of the website into a URL bar. This communication is

regarded as an indirect transition.

Assume an attacker can be a Google service provider or a database administrator who

profiles the traffic patterns of web traffic for each user account, given a space of Google

users. We also assume that the attacker has prior knowledge concerning which website

a victim is visiting. Details of how an eavesdropper fingerprints websites can be seen in

many literature, see e.g. [35, 62].

The attacker aims to identify a user’s identity, i.e. which user out of the space of

Google users carries out the communication, by eavesdropping a traffic sequence and

matching it to a traffic pattern for a user.

Consider a non-Google website as a third-party website or an external website, relative

to a Google website which is regarded as an internal website.

Experiments in this threat scenario are implemented in a “close-world” environment

from a perspective of a developer. Instead of obtaining an accurate leakage of user

identities, this chapter aims to demonstrate a possible threat of leaking user identities

through communications with third-party websites.

5.3 Experimental Specification

This section describes the specifications of experiments. First, we assume each user

account corresponds to a unique user, and the secret examined is a user identity rep-

resented by a user account, instead of the user name and the password of the account.

Each direct/indirect transition examined is for a user account.
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5.3.1 Testing Process

Our experiments used 50 Google accounts as targets. Alexa Top 150 websites excluding

Google websites were examined, where each is an external website.

Test Case Execution

In general, each test case consists of a direct transition and an indirect transition for an

external website. A direct transition was an authentication of logging into a user account

on Google’s authentication page https://accounts.google.com/ServiceLogin. Then

an indirect transition was performed by accessing to an external website from the logged

account page. This kind of indirect transition is regarded as a communication from

internal to external websites.

There is a special testing scenario where a test case contains a single transition in

no relation to user accounts, without the direct transition of authenticating. Details are

described in section 5.3.2 in terms of testing scenarios.

Each test case was run ten times, to build a set of ten observations in terms of each

user account. Caches and cookies were cleared every time before a new test started. A

round-robin test was performed on each user account for all the 150 websites.

Selenium [14] was exploited to execute the testing, and Jpcap [10] was used to record

the web traffic.

If the user identity is leaked through indirect transitions with a website, the website

is considered as leaking user identities or fingerprinting users. The terms of “fingerprint

users” and “leak user identities” are used interchangeably.

Since there are 150 websites and 50 user accounts, 7500 test cases are required to be

executed in a testing round. Moreover, if each test case is executed ten times,there are

75000 tests in total when testing on all the websites one round. Hence a large amount of

time will be spent when executing one round for all the websites.

Moreover, with a preliminary analysis of some collected web traffic, we discover that

not every website leaks a large amount of user identities.

Therefore, to save time for performing in-depth analysis on websites which likely

leak large amounts of user identities, a coarse cleansing operation was first conducted to

roughly refine the websites by eliminating those which may leak few user identities.

Cleansing Operation

To make results more convincing, in the beginning all 7500 test cases were tested using

two laptops located in a same network. A test case was executed where a user account

was first authenticated and then an external website was accessed to. It took around two

months to complete the cleansing operation.

Analysing and quantifying the leaks using the methodologies described in sections

5.4 and 5.5, if the leakages for a website at both laptops are similar and the guessing

probabilities are relatively high, the website probably leaks user identities stably at a

network. Thus the website will be selected to be tested in depth in next stage.

As a result, 25 websites were obtained, each of which is likely to leak large amount

of the secret.
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The two laptops were configured, one of Windows XP system with Intel Core i3-

2310M CPU @ 2.10GHz and 3.41 GB of RAM, and the other of Windows 7 system with

Intel Core i5-3230M CPU @ 2.60GHz and 3.88 GB of RAM.

Next, we show how to perform the in-depth analysis.

In-depth Testing Process

In addition to the 25 external websites, two internal websites www.google.com.br and

www.google.it were connected as the indirect transitions after the authentication. These

transitions are considered as from internal to internal websites. They were performed in

order to compare with those from internal to external websites.

The 50 user accounts on the 27 websites were examined in the PlanetLab testbed [13],

from five virtual machines located at the Technical University of Berlin (Berlin, Ger-

many), the University of Cambridge (Cambridge, UK ), Imperial College (London, UK ),

the University of Neuchatel (Neuchatel, Switzerland) and the University of Stuttgart

(Stuttgart, Germany) respectively.

We tested them at multiple locations to (1) guarantee that the leakages related to

a website from different networks are consistent, in order to mitigate the error from a

single testing site as far as possible; and to (2) investigate whether the leakage depends

on locations, which may reveal user locations.

The Firefox web browser was installed in the five machines with versions ranging

from 3.6.24 to 3.6.28 under the Fedora 14 operating system. It is the browser used by

Selenium for executing the testing.

Four testing scenarios were developed for investigating leaking sources which cause

web traffic to reveal user identities. They are described as follows.

5.3.2 Testing Scenarios

In the real world, a user often visits an external website with her Google account logged

in. It is possible that the external web server requests information related to the logged

user account. The data may be insignificant to user sensitive information, however, it

may contain some unique data which leads to distinguishable web traffic between different

users.

Moreover, cookies which store user login information may be sent to the network

during communications with an external website.

Concerning that logged user accounts and cookies may bring information of user

identities into communications, we design four testing scenarios to analyse the effects of

these factors on the leakage of user identities.

• Scenario 1. General

This is a general scenario same as the one used in the cleansing process. Commu-

nications start from a direct transition of authenticating a user account, and then

immediately access to a different website, either an internal or external website.

• Scenario 2. Delete cookies
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In this scenario, the cookie is cleared every time after authenticating, just before trig-

gering a following indirect transition. Since logging into a Google account simply sets

a cookie, an action of deleting cookie makes completely no information related to the

user account exist.

Comparing with the result in scenario 1, this scenario can be used to analyse that

whether the leakage is affected greatly by removing cookies. If the guessing probabili-

ties are relatively high in scenario 1 but are relatively low in scenario 2, it is probable

that the web traffic is affected largely by the cookies. However, simply from the statis-

tics in scenarios 1 and 2, we are still unable to get a clear picture of which factor,

out of cookies and logged user accounts, decides the web traffic. Hence, scenario 3 is

developed.

• Scenario 3. Log out user accounts

In scenario 3, the user account is logged out before communicating with a new website,

but the cookie is retained. This is a way attempting to clean user trails as much as

possible, but only keeping cookies as a source of user identities. It aims to see if there

is an influence on web traffic when a user account is logged out.

By comparing the results between scenarios 1, 2 and 3, a clearer picture regarding the

influential factors on the leakages can be suggested, in terms of which factor, logged

user accounts or cookies, accounts for a larger effect on the leakage.

• Scenario 4. Log out user accounts + Delete cookies

In addition to logged user accounts and cookies, other external unknown-sourced fac-

tors can lead to a variation of web traffic. It can be mistakenly regarded that the

variation is originated from cookies or logged user accounts.

Therefore, how influential these unknown factors are in the variation of web traffic is

estimated in this scenario, to mitigate the error caused by external unknown factors.

This scenario attempts to clear all the user trails generated during communications.

Instead of logging out user accounts and cleansing all trails, there is an alternative in

a more straight way, i.e. not logging into the user accounts, which stays away from the

user identities.

This scenario should give rise to a same effect as cleansing the cookies in scenario 2,

because there is not any information related to users retained. Therefore, the aim

of this scenario is to provide a reference for the result in scenario 2, which confirms

the accuracy of results in these scenarios. Moreover, it can also be used to check if

exceptions exist when the results from scenarios 2 and 4 are different.

In scenario 4, each test case contains a single transition, starting from Google’s authen-

tication page and forwards to an examined website straightly. A test case in terms of

a website was performed 500 times and every ten traces of web traffic were aggregated

into one group, to construct a space with as same the number as the user accounts

analysed in other scenarios. Analysing the observations between each group, the data



5.4. Data Analysis 105

obtained represents the variation of leaks generated by the unknown factors. Test cases

in this scenario are considered as indirect transitions.

The unknown factors evaluated in scenario 4 are regarded as external factors which

have no relation to user identities. Relatively, logged user accounts and cookies are

deemed as internal factors as they are related to user identities.

For a website, each testing round executed the test cases on 50 user accounts in four

scenarios. The testing on 27 websites, consisting of the 25 external and the two internal

websites, were performed at five locations simultaneously. One round of testing on all

the 27 websites lasted over a two-week period. Multiple testing rounds were performed

during a period from February to July 2015.

5.4 Data Analysis

During the testing, the raw data collected is the web traffic for a combined path containing

both direct and indirect transitions. Request packets were extracted for analysis and

a whole traffic sequence was split into multiple sequences of web traffic, each for an

individual transition.

Given a set of observations Oe for a transition e, the traffic pattern mlse from Oe

can be constructed using the approach motivated by HMMs, same as that described in

section 4.4.3 in Chapter 4.

For evaluating leakages, there are a few difference between the calculation used in

this chapter and that used in Chapter 4.

Figure 5.1 gives an overview of the quantification of leakage. Given the most likely

sequences generated from observation sets, we define a confidence–conf(Oe,mlse)–for

each most likely sequence mlse. Combined with the probability of most likely sequence–

p(mlse), defined in Chapter 4, a probability distribution pd on the set of most likely

sequencesMLS is built to quantify the leakage. The details are described in the following.

Figure 5.1: Quantification of leakage

5.4.1 Confidence of Most Likely Sequence

First we define a new notion of confidence of most likely sequence. It is abbreviated as

confidence.
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Definition 26 (Confidence) Given a set of observations Oe and the most likely se-

quence mlse for transition e, the confidence of most likely sequence is defined as

conf(Oe,mlse) = 1−min((
ad+ dm

|mlse|
), 1) ∈ [0, 1], (5.1)

where ad and dm are the average distance and the dissimilarity between mlse and ob-

servations in Oe respectively, which are defined later. |mlse| is the number of packets in

sequence mlse.

In this equation, mlse is regarded as the reference sequence. conf(Oe,mlse) can be

abbreviated as confe.

Confidence is used to assess the overall similarity between a most likely sequence and

the observations.

Definition 27 (Average Distance) The average distance–ad–between a traffic pattern

mlse and a set of observations Oe is defined as

ad =

∑
oi∈Oe

dis(oi,mlse)

|Oe|
, (5.2)

where dis(oi,mlse) is the distance between mlse and observation oi, defined in Definition

20, and |Oe| is the cardinality of set Oe.

After calculating the distances, each observation oi ∈ Oe is indistinguishable from

traffic pattern mlse.

Nevertheless, there may still be dissimilarity between indistinguishable packets be-

tween observation oi and sequence mlse, when their packet sizes are not identical. Hence

dissimilarity is taken into consideration, in terms of the standard deviation [32] of indis-

tinguishable packets.

Definition 28 (Dissimilarity) Given a set of observations Oe after Damerau-Levenshtein

process and a traffic pattern mlse, dissimilarity is defined by:

dm =
∑

mlsek∈mlse

sdk
mlsek

, (5.3)

where

sdk =

√∑
oi∈Oe

(oik −mlsek)2

|Oe|
(5.4)

is the standard deviation of indistinguishable packets at position k, and mlsek and oik
represent the packet sizes at position k in sequences mlse and oi respectively.

Then by substituting Equations 5.2 and 5.3 into Equation 5.1, confidence in terms

of the similarity between most likely sequence mlse and observations of set Oe can be

obtained.
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5.4.2 Confirmation of a Most Likely Sequence

After generating a most likely sequence mlse for transition e, we determine if sequence

mlse is actually the traffic pattern of observations for transition e.

Here we improve the similarity between an observation oi ∈ Oe and traffic pattern

mlse, defined in Definition 21, based upon the confidence, where

sim(oi,mlse) = conf({oi},mlse) (5.5)

Recall the definitions in section 4.5.1. If sim(oi,mlse) ≥ Tm, observation oi is con-

sidered following mlse. Then p(mlse) = M
|Oe| , the probability of observations following

mlse, is used to determine if mlse can actually be the traffic pattern, i.e. p(mlse) ≥ Tt,
where Tt is the threshold of most likely sequence.

In this chapter, we define the threshold of confidence–Tc to assess if a generated most

likely sequence is qualified to be a traffic pattern.

Determination of the most likely sequence

Given a transition e, a set of observations Oe and the most likely sequence mlse, if

conf(Oe,mlse) ≥ Tc, and p(mlse) ≥ Tt

where p(mlse) and Tt are defined in section 4.5.1, mlse is confirmed to be the most likely

sequence for transition e.

Otherwise, transition e is considered generating random web traffic not conforming

to any traffic patterns. We instead propose a null traffic pattern, so that in this case

mlse = null and conf(Oe,mlse) = 1

Accordingly, it can be concluded that Tc ≤ conf(Oe,mlse) ≤ 1.

Discussion of Confidence

The confidence assesses the most likely sequencemlse from an overall angle in terms of the

similarity between mlse and the observations. In other words, it considers observations

as a whole and weights an overall performance about the observations following most

likely sequence.

Relatively, the probability p(mls), from a perspective of individual observations, eval-

uates the similarities between mlse and each observation, instead of considering the ob-

servations as a whole.

In summary, the confidence provides a stricter guarantee of confirming the most likely

sequence, not only a sufficient number of observations following mlse, but also a higher

similarity among observations themselves, which ensures a lower fluctuation between

observations. In this sense, the use of confidence improves the precise of traffic patterns.

A most likely sequence confirmed is regarded as a fingerprint of a user in a commu-

nication. After determining the most likely sequence for a transition, we build a relation

of a “one → many” mapping between a transition and multiple traffic patterns.
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5.4.3 “One → Many” Mapping for a Transition

Previous chapters consider a ”one → one” mapping where each transition associates to

either one observation in Chapter 3 or one traffic pattern in Chapter 4. Instead, this

chapter builds a “one → many” mapping, where a transition can associate to more than

one traffic pattern.

1. When conf(Oe,mlse) 6= 1

The probability of observations from transition e conforming to most likely sequence

mlse is denoted by:

Pr(mlse|e) =
M

|Oe|
, (5.6)

where M is the number of observations in set Oe which follow traffic pattern mlse, and

|Oe| is the cardinality of set Oe. In this case Pr(mlse|e) is same as p(mlse) defined in

Chapter 4.

However, random observations not following mlse can also be generated. They are

considered following no traffic patterns. Hence we consider that they follow the null

pattern, and the probability of observations following pattern null is defined as:

Pr(null|e) = 1− Pr(mlse|e) (5.7)

As a whole, when conf(Oe,mlse) 6= 1, an observation for transition e follows one of

two most likely sequences, i.e. either mlse or null. We denote the most likely sequences

for transition e as mlsej , where j = 1 or j = 2. And the probability of an observation

for transition e following pattern mlsej is denoted by:

Pr(mlsej |e) =


Pr(mlse|e), if j = 1, mlse1 = mlse 6= null

1− Pr(mlse|e), if j = 2, mlse2 = null

(5.8)

2. When conf(Oe,mlse) = 1

Most likely sequence mlse can be either pattern null or a non-null pattern. In this

case, all the observations follow most likely sequence mlse.

Hence the probability of observations for transition e following pattern mlse is:

Pr(mlse1 |e) = Pr(mlse|e) = 1 (5.9)

Example 2 Given a set of observations Oe for transition e:

Oe = {(200, 1)(100, 2)(50, 3)(80, 4)(120, 5);

(200, 1)(100, 2)(50, 3)(120, 4)(200, 5), (80, 6), (100, 7);

(200, 1)(100, 2)(50, 3)(120, 4)(80, 5)}

most likely sequence mlse = (200, 100, 50, 120, 80) is confirmed with thresholds of con-
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fidence, of similarity, and of most likely sequences Tc = Tm = Tt = 0.6 respectively.

Observations o1 and o3 follow mlse as sim(o1,mlse) = 0.8 > Tm and sim(o3,mlse) =

1 > Tm. In contrast, observation o2 is mismatched because sim(o2,mlse) = 0.4.

Hence the probability of an observation for transition e following pattern mlse is

Pr(mlse1 |e) = Pr(mlse|e) = 2
3 , and those mismatching is Pr(mlse2 |e) = Pr(null|e) =

1
3 .

By bringing in a null pattern, random web traffic for a transition e is also associated

to a traffic pattern. Though we propose a weak traffic pattern–null to represent the

irregular web traffic, it is still an advance towards using multiple traffic patterns in

traffic analysis. This model can improve the accuracy when evaluating leakage of user

privacy, as a larger space of observations including random web traffic generated during

communications are considered.

5.5 Quantification of Leaks

With a set of most likely sequences and their probabilities, this section describes how to

quantify the leakage of the related secret.

5.5.1 Probability Distribution on Traffic Patterns

First we build a probability distribution on the set of most likely sequences, in terms of

the probabilities of observations for a set of transitions.

Definition 29 (Probability Distribution for a set of Transitions) Given a set of

transitions E, a set of observation sets P (O) where f : E → P (O), a set of most likely

sequences MLS where g : P (O)→MLS, and a random variable Y : MLS → N(N ⊆ R),

the probability distribution pd : Y → [0, 1] on set MLS is defined by:

pd(Y (mlsi)) = µ(e)Pr(mlsi|e), (5.10)

such that ∑
mlsi∈MLS

pd(Y (mlsi)) = 1

where µ(e) denotes the probability of a transition e ∈ E and mlsi ∈MLS is a most likely

sequence for transition e.

To abbreviate, the probability distribution pd : Y → [0, 1] on set MLS is expressed

by pd : MLS → [0, 1] and a probability pd(Y (mlsi)) is abbreviated by pd(mlsi). In this

chapter, we suppose a uniform distribution on set E, such that µ(e) = 1
|E| .

Example 3 (Probability distribution in terms of a set of transitions) Given a set

E consisting of two transitions e1 and e2 and a set of most likely sequences MLS,

assume the probabilities of observations for transition e1 are Pr(mlse11 |e1) = 2
3 , and

Pr(mlse12 |e1) = 1
3 , and the probabilities for transition e2 are Pr(mlse21 |e2) = 3

5 and
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Pr(mlse22 |e2) = 2
5 . With a uniform distribution on set E, the probability distribution

on most likely sequences is: pd(mlse11 ) = 1
2∗

2
3 = 1

3 , pd(mlse12 ) = 1
2∗

1
3 = 1

6 , pd(mlse21 ) =
1
2 ∗

3
5 = 3

10 , and pd(mlse22 ) = 1
2 ∗

2
5 = 1

5 .

5.5.2 Quantifying Leakages

With the most likely sequences and their probabilities, now we build an equivalence

relation to measure the leakage of user identities.

Given a set of transitions E, a set of most likely sequences MLS for set E, and their

probabilities Pr(mlse|e), where mlse ∈ MLS is a most likely sequence for transition

e ∈ E, an equivalence relation X on set MLS can be built as:

∀mlsi, mlsj ∈MLS, mlsi ∼ mlsj

if and only if the similarity between them satisfies:

sim(mlsj ,mlsi) ≥ max(Pr(mlsi|ek), P r(mlsj |et)),

where mlsi is a traffic pattern for transition ek and mlsj for transition et, and Pr(mlsi|ek)

is the probability of an observation for transition ek following mlsi, as defined in either

Equation 5.8 or 5.9.

The sequence with a shorter length is regarded as the reference sequence, mentioned

in Equation 5.1, i.e. |mlsi| ≤ |mlsj |. This makes the similarity smaller, which provides

a “stricter” matching between two most likely sequences.

In an equivalence relation, there may be an equivalence class classifying null pat-

terns, as even the irregular web traffic can leak user privacy. Given an observation not

following any traffic patterns, e.g., it is more likely that this observation is originated

from a transition which holds the highest probability of generating irregular web traffic

among all the transitions.

Similar to Chapter 4, the guessing probability [82, 109] is used to evaluate the prob-

ability of successfully guessing user identity in one try, based on the equivalence relation

on most likely sequences.

Definition 30 (Guessing probability) Given an equivalence relation X on a set of

most likely sequences MLS in terms of a secret sec and a probability distribution pd :

MLS → [0, 1], the guessing probability for secret sec is defined by

Gue(sec|X) =
∑
Xi∈X

gue(Xi), (5.11)

where

gue(Xi) = max
mlsk∈Xi

pd(mlsk) (5.12)

is the vulnerability of equivalence class Xi, i.e. the worst-case probability the secret can

be guessed in one try.
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Example 4 (Guessing probability) Given a set E containing five transitions in terms

of a secret sec and a set of their most likely sequences MLS, the probabilities for the

most likely sequences are:

Pr(mlse11 |e1) = 0.9 and Pr(mlse12 |e1) = 0.1;

Pr(mlse21 |e2) = 1;

Pr(mlse31 |e3) = 0.9 and Pr(mlse32 |e3) = 0.1;

Pr(mlse41 |e4) = 0.8 and Pr(mlse42 |e4) = 0.2; and

Pr(mlse51 |e5) = 0.7 and Pr(mlse52 |e5) = 0.3.

Among them mlse12 = mlse32 = mlse42 = mlse52 = null.

Given an equivalence relation X on set MLS, suppose that mlse11 ,mlse21 and mlse41
are classified in class X1, mlse31 and mlse51 in class X2, and the null patterns are

classified in the third class X3.

With a uniform distribution on transitions E, the guessing probability in terms of

secret sec is given, based on the equivalence relation X as:

Gue(sec|X) = g(X1) + g(X2) + g(X3) = 1/5 ∗ (1 + 0.9 + 0.3) = 0.44

Assume that an observation for transition ei will not follow any traffic pattern for

transition ej , where ei 6= ej ∈ E. Hence this research does not consider a false positive

rate caused by an observation for transition ei mistakenly matched to a traffic pattern

for transition ej . The false positive rate can be evaluated in the future work.

5.6 Experimental Results

This section presents the experimental results of the in-depth analysis related to the 27

websites.

Given 50 Google accounts, in original the priori chance of guessing a user before

observing web traffic is 0.02. The analysis used the following configurations: threshold

of indistinguishable packets Tp = 0.1, displacement range d = 2, and thresholds of

confidence, of similarity and of most likely sequences Tc = Tm = Tt = 0.7.

5.6.1 Direct Transitions

Between testing scenarios 1, 2 or 3, the direct transitions in test cases are only dependent

on user accounts, regardless of the websites the indirect transitions communicate with.

By analysing the web traffic of direct transitions in different scenarios and in differ-

ent testing rounds, in general, the guessing probabilities of user identities from direct

transitions are all less than or around 0.1 at each of the five locations.

In the following sections, therefore, our focus is turned to the analysis of indirect

transitions. Without particular explanation, the guessing probabilities mentioned are for

indirect transitions.
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Figure 5.2: Distributions of websites in each testing scenario

5.6.2 Overview of the Website Distribution

Figure 5.2 gives an overview of the distribution of websites in each testing scenario in

terms of the average guessing probabilities among five locations. X-axis displays the

range of guessing probabilities, and y-axis indicates the number of websites. Each bar

displays the number of websites, out of the 27, holding the guessing probabilities in a

specific interval in a testing scenario. The statistics are based on the average values of

two testing rounds.

Guessing probabilities are given into three intervals: “0.02-0.079”, “0.08-0.16” and

“0.161+”. A website with a guessing probability in interval “0.02-0.079” is considered

revealing few user identities. While those within “0.161+” probably leak large amounts

of user identities, at least from the appearance which is eightfold increase in comparison

to the prior guessing probability. However, the accurate leakage should be evaluated

entirely among four scenarios.

As shown in Figure 5.2, most websites in scenario 1 are distributed in a range of

guessing probabilities not less than 0.08, when the user accounts are logged in during the

indirect transitions.

On the contrast, most websites in scenario 4 have a guessing probability between 0.02

and 0.079. In fact, user identities are not leaked since there is no information related to

user identities in scenario 4. In an ideal environment, the web traffic collected for a test

case should be consistent, and the ideal guessing probability should be 0.02, identical to

the priori chance.
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However, as shown in Figure 5.2, a multitude of guessing probabilities in scenario 4

are larger than 0.02, which can be supposed that there are some external elements in

no relation to user identities leading to the varying web traffic. And the varying web

traffic can be mistakenly considered being caused by the internal factors related to user

identities.

Therefore, the guessing probability in one scenario is not sufficient to precisely evalu-

ate the leakage of user identities. We regard a guessing probability obtained in scenario

4 as the reference level to estimate the variation of web traffic affected by external

factors. By eliminating the influence from the external factors, leakage of user identities

can be measured more precisely.

We believed that the guessing probabilities in scenarios 2 and 4 should be similar.

However, from the distribution of websites, it can be seen that there are websites whose

guessing probabilities in these two scenarios are not similar. Hence we guess that the

difference is caused by, e.g., either noise or other factor, which makes the web traffic in

the two scenarios inconsistent. More details are analysed later.

5.6.3 Leaking User Identities

We assume that the web traffic for an indirect transition examined in a testing scenario

can fingerprint the user when it is consistent regardless of the testing locations, testing

machines, testing time, etc. In other words, similar guessing probabilities will be obtained

among different testing rounds and different locations.

This chapter considers, therefore, that indirect transitions for a website leak user

identities if

(1) the guessing probabilities generated at different locations are consistent. The five

variation trends of the guessing probabilities in four scenarios, each generated from

a location, generally follow a consistent variation pattern; and

(2) the highest gap between two guessing probabilities among any two scenarios should

be large enough.

Condition (1) considers the websites with consistent leakage, regardless of the external

factors such as locations.

For condition (2), currently we only examine the leakage when the largest gap between

guessing probabilities is originated from scenarios 1 and 4, i.e. the highest is from scenario

1 and the lowest from scenario 4. Leakages in other cases are left for future investigation.

Analysing Variation Trends of Guessing Probabilities

To ensure the variation trends of guessing probabilities from different locations are con-

sistent, we execute test cases for each website at least two rounds at each location, except

the testing sites in Berlin and Neuchatel. This is because that the two testing sites are

unavailable after a round of testing for all the websites.

Next we describe the process of determining which websites for which the indirect

transitions generate consistent variation trends of guessing probabilities among locations.
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Figure 5.3: Process of testing for each website

Figure 5.3 illustrates the process.

1. First two testing rounds

In the beginning, test cases for each website were executed two rounds at each location,

excluding the testing sites in Berlin and Neuchatel, where only one testing round was

performed.

After two rounds of testing, for each website, eight variation trends of guessing proba-

bilities in four scenarios were generated, five from the five locations in the first round

and the other three from the second round.

If more than half of the variation trends, i.e. at least five trends are generally consistent

with each other, the average variation trend of the average guessing probabilities

among the consistent variation trends is regarded as a variation pattern of guessing

probabilities for the website.

If both of the two variation trends generated in a location are consistent with the

variation pattern, the location is considered as a consistent location. For the only

one variation trend generated in Berlin or Neuchatel, if it follows the variation pattern,

then the location is also regarded as the consistent location.

On the other hand, for a location from which at least one variation trend is inconsistent

with the variation pattern, test cases in terms of the website will be executed in the

next testing round at the location.

If all the five locations are regarded as consistent locations, i.e. all the eight variation

trends are consistent, this website is considered generating consistent variation trends

between locations, and the testing for this website is stopped.

On the contrary, when at most half of the variation trends, i.e. four variation trends

are consistent, it is supposed that the variation trends of guessing probabilities are

unstable. Then the leakage of the user identity with regard to this website will not be

analysed.

2. More testing rounds

From the third testing round, as mentioned, test cases are only executed in the loca-

tions which are not considered as consistent locations. At the end of a testing round,
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for each location, if all the variation trends generated in the location, including those

generated from previous testing rounds, are inconsistent with the variation pattern,

this location is regarded as an inconsistent location.

On the contrary, if more than half of the variation trends generated from a testing site

are consistent with the variation pattern, the location is now regarded as a consistent

location. Otherwise, test cases for the website will be tested in the next round at this

location.

The testing at a location is repeated until (1) the location is deemed as the consistent

location, i.e. more than half of the variation trends generated in this location are

consistent with the variation pattern, or (2) the testing for the website is stopped.

3. Stopping testing

At the end of each testing round, except the first two round, if at least three locations

are accepted as consistent locations, the website is regarded as generating consistent

guessing probabilities. Then the testing on the website is stopped.

In contrast, if at least three locations are considered as inconsistent locations, the

guessing probabilities for this website are inconsistent. Then the testing for the website

is stopped and the leakage of the user identity from the indirect transitions with this

website is not analysed.

Moreover, the testing for the website is stopped when the maximum number of testing

rounds is reached. In this research, test cases for a website were tested at most five

rounds. This choice of loop bounds is decided from the experiments, as the variation

trends tend to be consistent when the looping time arrives to five.

After examining the 27 websites, we obtained top six websites for which the guessing

probabilities are consistent among locations, and the maximum gaps between guessing

probabilities are large enough. Next section we analyse the variation trends for the six

websites.

5.6.4 Leaking Patterns of Websites

Although test cases were only tested one round in Berlin and Neutchatel, the two locations

are considered as consistent locations for most of the six websites. This can be deemed

as another sign which indirectly manifests the high consistency of guessing probabilities

between locations, as the variation trends at these two locations are consistent to the

variation pattern in one try.

Variation Patterns of Guessing Probabilities

Table 5.1 shows the guessing probabilities from the five locations for each of the six

websites. Statistics displayed in one cell include the guessing probabilities in the four

scenarios, separated by “,”. Each value is the average of the guessing probabilities from

the consistent variation trends in one scenario.
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Table 5.1: Six websites in terms of guessing probabilities at each location

livedoor.com ebay.de bankofamerica.com

Berlin 0.24, 0.1, 0.22, 0.1 0.22, 0.14, 0.22, 0.26 0.5, 0.38, 0.28, 0.36

Cambridge 0.38, 0.1, 0.26, 0.08 0.2, 0.02, 0.2, 0.04 0.58, 0.163, 0.18, 0.24

Imperial 0.34, 0.16, 0.28, 0.18 0.32, 0.18, 0.26, 0.16 0.6, 0.26, 0.26, 0.28

Neuchatel 0.34, 0.12, 0.16, 0.18 0.26, 0.04, 0.26, 0.04 0.54, 0.34, 0.34, 0.36

Stuttgart 0.38, 0.12, 0.38, 0.1 0.22, 0.07, 0.186, 0.02 0.02, 0.02, 0.02, 0.02

dailymail.co.uk google.com.br google.it

Berlin 0.32, 0.06, 0.02, 0.08 0.36, 0.2, 0.24, 0.12 0.42, 0.2, 0.1, 0.08

Cambridge 0.2, 0.06, 0.02, 0.036 0.34, 0.1, 0.04, 0.06 0.38, 0.1, 0.02, 0.04

Imperial 0.2, 0.06, 0.06, 0.06 0.26, 0.14, 0.06, 0.14 0.48, 0.36, 0.02, 0.04

Neuchatel 0.2, 0.02, 0.02, 0.04 0.46, 0.32, 0.14, 0.08 0.4, 0.2, 0.04, 0.02

Stuttgart 0.3, 0.12, 0.06, 0.14 0.22, 0.12, 0.04, 0.06 0.18, 0.1, 0.04, 0.04

From Table 5.1, it is non-intuitive to observe the variation trends of guessing proba-

bilities in four scenarios. Hence Figure 5.4 displays the guessing probabilities shown in

Table 5.1 in a more intuitive way.

In Figure 5.4, a line plotted in a sub-figure straightly manifests the variation trend

of guessing probabilities at one location. As can be seen, the guessing probabilities are

generally highest in scenario 1 whereas lowest in scenario 4.

There may be a few vibrations between consistent variation trends. For example,

in Figure 5.4 (4) in terms of website dailymail.co.uk, the guessing probabilities in

London and Neuchatel are essentially identical under scenarios 2, 3 and 4, while in

Berlin and Stuttgart, the statistics in scenario 3 are lower than those in scenarios 2

and 4. Nevertheless, relative to the gaps with guessing probabilities in scenario 1, the

differences between the guessing probabilities in scenarios 2, 3 and 4 are fairly small.

Thus it can still be considered that the variation trends are consistent among the five

locations.

From the variation trends displayed in Figure 5.4, we produce three templates mainly

followed by the variation trends for the six websites. As the websites are considered

revealing user identities, a template is also deemed as a leaking pattern of user iden-

tities.

For a website whose variation trends of guessing probabilities from indirect transitions

follow a leaking pattern, the indirect transitions are considered as the vulnerabilities of

leaking user identities.

Next we analyse the three leaking patterns.

1. G(1) ' G(3) > G(2) ' G(4)

In this leaking pattern, guessing probabilities in scenarios 1 and 3 are close to each

other, and so are those in scenarios 2 and 4. However, the figures in scenarios 1 and 3

are much larger than those in scenarios 2 and 4. Symbol “'” is used to express that two

guessing probabilities are with similar values.

Compared with scenario 1, guessing probabilities in scenario 2 fall down sharply when
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Figure 5.4: Websites with consistent variation trends of guessing probabilities

the cookies were cleared, to a same level as the values in scenario 4. This verifies what we

expected as indirect transitions in both scenarios 2 and 4 should involve no information

related to user accounts. On the contrary, the guessing probabilities stay at a high level

as long as the cookies were retained, even when the user accounts were logged out in

scenario 3.

This suggests, therefore, that cookies cause the web traffic for indirect transitions

depending on users, for a website whose the variation trends of guessing probabilities

follow this leaking pattern.

For websites livedoor.com and ebay.de displayed in Figures 5.4(1) and 5.4(2), their

variation trends generally follow this leaking pattern, excluding that in Neuchatel for
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livedoor.com and that in Berlin for ebay.de.

Consider the exceptional trend in Neuchatel plotted in Figure 5.4(1). The guessing

probability in scenario 3 is much lower than what we expected from the leaking pattern.

On the other hand, in Figure 5.4(2), the guessing probability in Berlin in scenario 4 is

much higher than the value expected to be in scenario 4.

Due to the unavailability of the testing sites in Berlin and Neuchatel from the second

testing round, test cases were only examined one round at the two locations. Neverthe-

less, the guessing probabilities still largely follow the leaking pattern in most scenarios in

one-time testing. This instead convince that the guessing probabilities from indirect tran-

sitions communicating with websites livedoor.com and ebay.de are consistent among

the five locations.

When calculating the average guessing probabilities in each scenario, exceptional

variation trends are not taken into account. As a result, the average guessing probabilities

for website livedoor.com are 0.325, 0.12, 0.285, 0.115 in each scenario respectively, based

on the statistics excluding those in Neuchatel. And the average guessing probabilities for

website ebay.de are 0.25, 0.078, 0.23, 0.065 in each scenario respectively, from the data

excluding those in Berlin.

In summary, this leaking pattern implies that cookies can be a leaking source of user

identities which affects the web traffic in communications with external websites.

2. G(1) > G(2) ' G(3) ' G(4)

For websites in Figures 5.4(3) and 5.4(4), their variation trends generally follow this

leaking pattern.

In this leaking pattern, guessing probabilities in scenario 1 are much higher than

those in other scenarios, which are similar from each other.

Unlike in leaking pattern 1, where guessing probabilities maintain on a high level as

long as the cookies are retained, in this leaking pattern the high-level guessing probabil-

ities only come from scenario 1 when both cookies and logged user accounts were kept.

This indicates that without logged user accounts, user identities are not revealed even

when the cookies exist. It suggests that some information related to the logged user

accounts may be propagated to the indirect transitions, but not via cookies.

Now consider the variation trends depicted in Figure 5.4(3) for bankofamerica.com.

The one in Stuttgart is exceptional, where the guessing probabilities in all scenarios are

0.02, identical to the prior chance.

Examining the web traffic generated in Stuttgart, unexpectedly, it is completely iden-

tical between different user accounts, each containing simply one request packet with a

same size.

Thus a question like “was the unusual web traffic caused by poor network condi-

tions in Stuttgart when the testing was performed” may be asked. To avoid, as far as

possible, the influence caused by poor network conditions, communications with website

bankofamerica.com were repeatedly performed several more rounds in Stuttgart during

a large time period. However, identical guessing probabilities were always obtained in
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every testing round. Hence the user identity is not leaked through the indirect transitions

when testing in Stuttgart.

For the reason, it is supposed that web traffic generated at this testing site may be

intercepted or affected by some unknown factors, e.g. the government may obscure the

web traffic in communications between Google website and bankofamerica.com.

For website dailymail.co.uk shown in Figure 5.4(4), as previously mentioned, al-

though there is a fluctuation between variation trends at different locations, however,

they are still regarded as consistent with this leaking pattern.

In summary, this leaking pattern suggests that logged user accounts may be a fac-

tor which leaks user identities in communications with external websites, however, the

information is not transmitted through cookies.

3. G(1) > G(2) > G(3) ' G(4)

This leaking pattern is summarised from the variation trends for internal websites

google.com.br and google.it in Figures 5.4(5) and 5.4(6) respectively.

The guessing probabilities gradually decline over the first three scenarios and then

level off in scenario 4, close to the value in scenario 3.

Compared with the guessing probabilities for the external websites shown in Figure

5.4(1-4), in this case when communicating with internal websites, guessing probabilities

in scenario 2 are higher than those in scenario 4, which do not conform to the expectation

where the guessing probabilities in scenarios 2 and 4 are similar.

Therefore, a suspicion is proposed when communications happened between Google

internal websites. Google wanted to get the information about user accounts in com-

munications. Assume that during the direct transition when a user logged into her user

account, a temporary session, containing the information related to the user account and

the IP address of the user, was stored in the server.

When an indirect transition was performed in scenario 3, Google detected that the

cookie is available. Hence it did not request any information related to the user account

as the cookie has existed and it would be used in future communications. As regards in

scenario 4, no information related to the user account can be requested, therefore the

guessing probabilities in scenarios 3 and 4 are close.

However, when the cookie was deleted in scenario 2, Google attempted to get the

information about the user account from a different channel.

It can request for the temporary session from the direct transition saved in the server,

through the match between the user’s IP address in the indirect transition and that stored

in the temporary session. This process can lead to the web traffic for indirect transitions

varying depending on users.

It is supposed, therefore, that even when the cookies are deleted, communications

between Google internal websites can still implicitly transmit the information related to

user accounts. This may cause a side-channel leakage of user identities.

Now consider the variation trends for website google.com.br in Figure 5.4(5). Some

inconsistencies exist between the variation trends in different locations. For example,
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in Berlin, the guessing probability in scenario 3 is higher than that in scenario 2. And

in London the data in scenario 4 is higher than that in scenario 3. Nevertheless, the

variation trends still generally follow this leaking pattern.

For the variation trends illustrated in Figure 5.4(6), they are much more consistent

with this leaking pattern, though the largest gap between the guessing probabilities in

London is fairly high, compared with those in other locations. On the other hand, the

maximum gap in Stuttgart is a little bit smaller.

As for the reason that the guessing probabilities for google.it are more stable than

those for google.com.br, we suppose that the communications with google.it hap-

pened within the Europe, while the communications with google.com.br were the global

transmission to Brazil, which may cause the web traffic with a higher unsteady.

Therefore, it can be supposed that user identities are leaked through communications

with internal websites, even when the cookies are deleted.

Summary

As shown in Figure 5.4, the guessing probabilities are mostly consistent between locations

within different testing rounds. This implies that the indirect transitions communicating

with external websites can really leak user identities via traffic analysis.

Furthermore, examinations under the four testing scenarios demonstrate that cookies,

cleared in scenario 2, and logged user accounts, logged out in scenario 3, can really be

the leaking sources providing web traffic capability of fingerprinting users.

As shown in Figure 5.4, the average increment of guessing probabilities, i.e. the

maximum gap between scenarios 1 and 4, is around 0.25 when communicating with an

external website. And it is around 0.3 when connecting to an internal website.

Comparing with direct transitions. Excluding website bankofamerica.com, the guessing

probabilities on the low level for other websites in Figure 5.4, e.g. those in scenarios 2 and

4 in Figure 5.4(1), to a great extent, are around or less than 0.1. As mentioned previously,

the guessing probabilities from direct transitions are generally less than or around 0.1,

which are similar to the guessing probabilities on the low level from indirect transitions.

This can also suggest that few amounts of user identities from direct transitions are

leaked.

Moreover, we also analysed the vulnerabilities from communications without consis-

tent variation trends.

5.6.5 Leaking User Locations

When analysing the web traffic which leaks no user identities, it is by accident discov-

ered that there is a website whose observations completely rely on the locations. More

specifically, the observations from one location always terminate with the same packet

sequence, which is unique from those in other locations.

In the communications with website craigslist.org, one of the 25 external websites,

the web traffic for indirect transitions is constant and indistinguishable from users, so

that no user identities are leaked. However, the observations generated from Berlin
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end with a packet with size 412 in any scenarios, and the observations in Cambridge,

London, Neuchatel, and Stuttgart always terminate with packet sizes 421, 415, 408 and

418 respectively.

To confirm, several more rounds of testing on this website were conducted during a

large period of time. As a result, the observations always end with the same packet sizes,

which are unique from locations.

This discovery is exciting, but at the same time questions like “will the observations

still leak user locations when the number of testing locations increase largely”, “is the

location really the factor leading to the uniqueness of ending packet sizes in observations”,

etc. can be asked and wait for further investigation.

We suppose that there are some elements unique from testing locations which were

transmitted in communications and affected the ending packet sizes of web traffic. This

kind of element can be, e.g. network prefixes, which are unique from user locations.

However, the experiments were carried out at different machines with unique MAC ad-

dresses. It is also possible that the uniqueness of ending packet sizes is caused by the

transmission of MAC addresses. If so, then the information actually leaked is the user

identity, instead of the user location. And the user identity is leaked through the MAC

address, instead of the Google account.

Inspired by this finding, we examined the web traffic for the six websites in Figure

5.4, in terms of the leakage of user identities. However, the observations are independent

on the five testing locations.

Therefore, our experiments so far suggest that web traffic can compromise user privacy

of either user identities or user locations, yet it is incapable of revealing both of them

simultaneously.

Moreover, this thesis also discusses the cases in terms of websites leaking no user

privacy.

5.6.6 Leaking No Information

Figure 5.5 presents two websites in terms of the variation trends of guessing probabilities

among five locations, as two typical examples of leaking no information. The data plotted

was generated in the first testing round.

Case 1

In Figure 5.5(1) for website imgur.com, the variation trends are inconsistent between

locations. Likewise, the variation trends are also inconsistent in the second testing round,

which are not plotted here. Moreover, the web traffic cannot identify user locations.

Therefore, the web traffic with the guessing probabilities shown in Figure 5.5(1) can

leak neither user identities nor user locations.

However, it is uncertain that what kind of information causes the inconsistent guessing

probabilities. Is it because of noise, or a combination of multiple user secrets transmitted

to the network? And the combination of multiple user secrets causes random observations

which can actually leak, e.g., both user identities and locations? These questions can
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Figure 5.5: Websites without leakage

be asked and be examined in the future work, to explore the link between the irregular

variation trends of guessing probabilities and the user privacy.

Case 2

Another typical case of leaking no information is when the maximum gap between the

guessing probabilities is very small, regardless whether the variation trends are consistent

or not.

Figure 5.5(2), in terms of website twitter.com, illustrates an extreme example of

this case, where the guessing probabilities in each scenario are all 0.02 at each location

in all the testing rounds. Moreover, we discover that the web traffic generated is totally

identical in any situations, which is completely in no relation to user accounts or user

locations.

Therefore, website twitter.com provides a perfect example of leaking no user in-

formation through the web traffic for indirect transitions. It presents the practicability

of web traffic completely indistinguishable from user information, which makes a traffic

analysis incapable of compromising user privacy.

Certainly, we can simply suppose that twitter.com did not request any informa-

tion related to the users from Google website. However, it is still possible that during

communications between Google and Twitter, the information related to user identities

was transmitted. However, a state of the art mitigation against traffic analysis may be

applied on either the web traffic or the user information, which caused the observations

identical.

Hence the questions like “why does Twitter leak no user information”, “does it find

a solution to mitigate side-channel leakages”, etc. are still attractive, which can be

investigated in the future work.

On the other hand, through the communications within Twitter website, it is possible

that user privacy can be leaked. For example, unique characteristics can be constructed

from the posted messages, which are transmitted and which cause the web traffic depend-

ing on users during the communications within a social networking website. This kind of

topic has been studied in the context of user privacy in social networking websites, e.g.
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[121]. However, it is not the topic this thesis examines.

5.7 Discussion

This chapter starts an in-depth analysis of the side-channel leakage of user identities. It

demonstrates a potential leaking threat which reveals user identities from Google accounts

to external websites in the real world. Moreover, user location is also identifiable by traffic

analysis in our experiments.

This chapter also analyses the effects of cookies and logged Google accounts on the

web traffic varying depending on user identities. It is not a surprise to see that cookies

leak user privacy, as it has been a well-known mean of web tracking. However, to our

best knowledge, this research is the first study on cookies in side-channel leakages of user

identities via traffic analysis.

On the other hand, one may come up with an argument like “is the increment of

guessing probability of around 0.3 large enough to indicate that the user identity is

leaked”. Moreover, questions like “is the sample space too small compared with millions

of Google accounts”, “does the guessing probability reduce rapidly when the sample space

expands” etc. are still open.

Opposite to the previous work which quantifies leakages by simulating real attacks,

the experimental results in this chapter are obtained simply using the trained data. We

lack the experimental validation of the leakages obtained by the analyses. In the future

work, real-world attacks need to be mounted to measure the accuracy of guesses and

compare with the vulnerability produced by the analyses.

Furthermore, when assessing whether a maximum gap between the guessing probabil-

ities is large enough, we do not establish a threshold of the existence of leakage. Instead

we subjectively determine whether the gap is large enough to indicate the leakage of user

identities.

Even though these limitations exist, the purpose of this research is achieved. The

purpose of our research is not to quantify the precise leakages in real-world web applica-

tions. Instead a primary aim of this chapter is to illustrate a new traffic-analysis threat

concerning leaking user identities. The security threat is based upon user accounts on

a website like Google, where a user identity can be leaked from communications with

external websites.

Moreover, this chapter gives a null pattern for observations which do not follow the

non-null patterns. Although the null pattern is weak to present traffic features, it is a

beginning in the multiple mapping between transitions and observations, which is more

common in real-world communications. In this sense it is an advance towards a more

precise evaluation of traffic-analysis vulnerabilities in real-world web applications.

On the whole, this chapter demonstrates a new security threat in side-channel attacks

in web applications. Instead of closing a case, this research, as believed, opens a new

case towards the in-depth investigation of side-channel vulnerabilities in communications

with external websites.
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Chapter 6

Related Work

In this chapter, we review previous work including the following contexts:

6.1 Side-Channel Vulnerabilities

6.1.1 Overview

There is a long standing and large literature on side-channel vulnerabilities. It can date

back on WWII, where Bell Labs uncovered by accident that the encryption machine

emitted a spike each time the machine stepped. And these spikes could unbelievably

divulge the plain text of a message being enciphered by the machine. The early history

of how this phenomenon was discovered is introduced in [59].

From then on, side-channel vulnerabilities on encrypted communications have been

examined in various domains, including encrypted Voice over IP (VoIP) conversations

[123, 122], multimedia data streaming [105], keyboard acoustic emanations [23, 126] and

cryptographic systems [73, 61].

For example, in encrypted VoIP conversations, techniques such as variable bit rate

(VBR) are used to encode audio for saving bandwidth. Wright et al. [123] demonstrate

that the lengths of encrypted compressed VoIP packets can be exploited to identify the

language spoken in an encrypted conversation. Moreover, phrases spoken within an

encrypted call can also be revealed by encrypted compressed packet lengths [122].

Keyboard acoustic emanations provide a possibility of revealing typed characters

on keyboard-like input devices, differentiating the sounds emanated by different keys

[23, 126]. Apart from acoustic emanations, keystrokes can also be revealed by timing

attacks. Song et al. [110] infer key sequences through the time differences between each

two keys pressed, as an individual IP packet is sent to the remote machine immediately

after every key is pressed.

Timing attacks have also been exploited on cryptographic implementations. For

example, [73] demonstrates how to obtain secret keys by measuring the amount of time

required for operating cryptographic computations in, e.g. Diffie-Hellman [51], RSA
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[101], and DSS [57] systems.

Especially, cache based side-channel attacks have been mounted on cryptographic

implementations, e.g. [31, 21]. They break cryptosystems through exploring cache states

of cache access mechanisms. For example, in time-driven cache attacks the total time

needed of performing certain computations can be obtained to infer the number of cache

hits and misses during encryptions [31].

Another important category of side-channel vulnerabilities is traffic analysis in web

applications, which have arisen increasing public concerns over the past two decades. An

adversary’s intention is to infer web users’ online activities, such as the websites they

have visited.

6.1.2 Side-Channel Leakages in Web Applications

In 1996, Wagner and Schneier [119] first supposed the leakage of visited web pages via

traffic analysis in a personal communication. More specifically, they propose that the

examination of ciphertext lengths may reveal the URL of a website from the GET requests

under a SSL encrypted transport.

Leaking User Browsing History

The first actual experiment was implemented in 1998 by Cheng and Avnur [40]. They

discover that a user’s browsing pages can be revealed by observing the highly unique

HTML file sizes from the encrypted traffic.

From then on, a large amount of work has studied the attacks, via traffic features,

against user privacy, such as user browsing pages [40, 111], browsing websites [35, 49, 62,

64, 76] and sensitive inputs [39, 37, 125].

The general approach of traffic analysis is first to train the web traffic. By extracting

packet features, e.g. packet sizes, directions and sequence numbers, traffic patterns of

communications can be built in terms of each secret value. Then given a traffic sequence

observed in a communication, a user’s secret can be inferred or at least the space of

possible values can be narrowed down by comparing the observation with the traffic

patterns.

In addition, timing attacks have also been mounted to compromise user privacy, e.g.

[33, 56]. Felten and Schneider [56] first propose a cache-based timing attack against the

response time of accessing a static web page, to determine if the web page has been

visited before. [33] exposes user privacy information, e.g. the validity of a user name at

a site, by measuring the response time a website takes to assemble dynamic web pages.

Ling et al. [77] propose an attack of inferring the website a user visited based on the

network delay. The attacker can differentiate websites by measuring the sample means

and the sample variances of the round-trip time (RTT) between a victim user and the

websites.

Side-channel attacks in web applications have been implemented through encrypted

communications by using, e.g. SSL/TLS [40, 111, 39, 64]. They have also been mounted

with anonymity networks, e.g. anonymized NetFlows data [46], onion routing [91, 120],
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and proxies [64, 111, 49, 76]. Anonymity networks claim to provide anonymous surfing,

but previous work demonstrates that they are still fail to defeat traffic analysis against,

e.g. websites [64, 35] and a client’s identity [70, 84].

Leaking User Sensitive Inputs and Detecting Tools

In 2010, the work by Chen et al. [39] turned focus of side-channel attacks from inferring

web pages/sites visited to obtaining the user sensitive data on a website. They investigate

real-world websites and find out that user health conditions, financial statuses, search

inputs, etc. can be largely leaked through traffic analysis, based on the packet sizes and

directions.

Then the first automated tool–Sidebuster, for detecting and quantifying side-channel

leakages of user sensitive information, is proposed by Zhang et al. [125]. Sidebuster

implements taint analysis on the source code of Struts-based web applications. It aims

to obtain web widgets containing sensitive data. Then a tester manually configures

execution paths containing those tainted widgets. By testing the execution paths and

analysing the web traffic collected, they can identify the execution paths through the

distinguishable web traffic.

Instead of depending on the source code, Chapman and Evans [37] propose a black-

box analysis for detecting side-channel vulnerabilities in real-world web applications.

However, their approach still takes a large amount of manual work in configuring test

cases.

Motivated by the drawback of manual generation of test cases, we propose SideAuto

[66]. It is a tool which aims to resolve the manual generation of test cases. Static analysis

and symbolic execution are exploited to construct the structure of a web application and

then build the test cases automatically. Therefore, SideAuto complements and extends

Sidebuster towards a complete side-channel analysis.

Countermeasures

Mitigation systems for timing side channels have been proposed, e.g. [33, 87, 106]. Bortz

et al. [33] conclude that fixing total response time for thwarting timing attacks is insuffi-

cient. Chunked encoding may leak information through inter-chunk timings even though

the total response time is constant. Therefore they propose a countermeasure which fixes

the inter-chunk timings.

A large scale of countermeasures have also been proposed for preventing traffic anal-

ysis, using e.g. padding [111, 124, 78], dummy [79], etc. Panchenko et al. [91] provide a

Camouglage countermeasure, which obfuscates web traffic by randomly loading several

web pages with the actual requested page simultaneously. Wright et al. [124] optimally

morph one class of web traffic to look like another class of traffic.

HTTPOS [79], a client-side system, applies a suite of traffic transformation techniques

on a browser to obfuscate encrypted web traffic. The defences are carried out through

modifying four fundamental traffic features including packet sizes, timing of packets, web

object sizes, and flow sizes.

In 2012, however, Dyer et al. [52] demonstrated that nine known countermeasures,
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including the popular padding-based countermeasures, are still vulnerable to prevent web

site/page fingerprinting.

Formalise Traffic Analysis

In theory, some work has provided formal frameworks in terms of side-channel attacks.

For example, Backes et al. [24] introduce a framework for the derivation of formal guaran-

tees against side-channel traffic. They model the countermeasures which are constructed

by the composition of basic techniques, such as padding, dummy, and split. And their

model can be extended to consider advanced features like caching and timing behaviours.

Moreover, they propose a framework of path-aware countermeasures, which require that

the induced partitions have a property which ensures behavioural equivalence of states.

6.2 Fingerprinting Users

The ubiquity of 802.11 wireless networks can disclose user identities by transmitting the

unique MAC addresses. Techniques, e.g. pseudonyms [68] have been proposed to mask

MAC addresses. However, [92] demonstrates that implicit identifiers of 802.11 traffic,

e.g. network destinations, broadcast packet sizes, etc. can be used to track users even

when the unique identifiers of MAC addresses have been removed. Moreover, Verde et

al. [117] propose an approach of fingerprinting users hidden behind NAT by exploiting

the NetFlows in an wireless network.

In anonymity networks which particularly hiding identities of endpoints, practical

traffic analysis have been proposed for compromising user identities, e.g. [36, 84]. In

[36], an attacker exploits traffic fluctuations from characterising bandwidth variations

to compromise the anonymity of Tor users. [84] mounts a side-channel attack by using

throughput information to identify the guard relay of a Tor user and to determine whether

two connections belonging to a same user. Though it is not really about identifying user

identities, the attack serves as a stepping stone for completely de-anonymising users.

Additionally, there has been an increasing public concern about the disclosure of

online user identities with the widespread usage of social media [121, 80]. Wondracek et al.

[121] introduce a de-anonymising attack triggered by an evil website a user visits, which

examines the group memberships of a user on social networking sites, i.e. the groups in

a social network to which the user belongs. The information of group memberships is

obtained by mounting a web browser history stealing attack. Then the attacker uses the

group memberships to identify users.

Traffic analysis has also been used to recognise users in social networks. Pironti et al.

[95] report a specific side-channel attack based on the packet sizes of the profile pictures

downloaded when users log into their accounts on a social networking site. This attack

is under an assumption that each user has a profile picture configured.

Device fingerprinting has also been concerned in terms of breaking user anonymity.

For example, [53] shows that trackers can recognise users without the needs of cookies,

through fingerprinting the properties of browsers and their plug-ins. In [90], Nikiforakis et

al. show how popular commercial browser-fingerprinting approaches work on the Internet
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and how fragile the browser ecosystem is to defend against the device fingerprinting in

terms of user identities.

In this thesis, however, a novel traffic-analysis scenario of fingerprinting users is pro-

posed. It is, as believed, a more common scenario of inferring user identities. User

identities, based upon user accounts on a website like Google, can be recognised via

traffic analysis in communications with third-party websites.

6.3 Leakage of User Locations

Location-based services (LBS) are a general class of services which use location informa-

tion to provide useful information for users. LBS are accessible with mobile devices to

locate a user or an object’s position, e.g. a GPS service and to find the nearest Chinese

restaurant using a smartphone.

While the number of LBS and the advanced techniques have mushroomed, the abuse

of location information can cause monetary losses or even endanger human lives [83]. For

example, [5] reports a case where a GPS device is used in stalking a victim’s location.

This leads to a numerous amount of work on detecting location-aware vulnerabilities in

wireless sensor networks, e.g. [83], and providing LBS without leaking user locations,

e.g. [85].

A traditional way for web servers to identify a user location is to use the IP address

[96]. With the wide-spread use of anonymous networks, however, users can hide their

real IP addresses to web servers.

Recently, Jia et al. [67] demonstrate a new timing attack against user locations with-

out direct access to GPS or IP addresses. Their approach is based on the browser caches

from location-oriented websites. A location-oriented website, e.g. Google, redirects a

user to the website in the location the user lives in. A malicious website a user visits

can detect the user’s location by measuring the loading time of web objects located at

different locations. If the difference between the time of loading an object twice in a

location using the victim’s browser is less than a threshold, it indicates that the user has

visited this site in the specific location previously.

On the other hand, this thesis demonstrates a likelihood of revealing user locations

via traffic analysis based on packet sizes and directions. It discovers that different packet

features can be generated when a website is accessed from different locations. Although

we do not particularly examine the vulnerabilities for user locations, this discovery directs

a new channel of leaking user locations through traffic analysis.

6.4 Path Generation

It is not a new topic in terms of automated generation of execution paths in the context

of testing web applications. Techniques including UML e.g. [100], static analysis e.g.

[113] and dynamic testing e.g. [22, 100] can be used to generate test cases.

For example, Rica and Tonella [100] propose an analysis based on the UML models

of web applications. It downloads the web pages of a target website by sending requests
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using the user inputs provided by the testers. Then the UML model of the website can

be built to generate test cases.

Artzi et al. [22] present a technique based on dynamic test generation, using com-

bined concrete, symbolic execution and constraint solving. Symbolic execution is first

performed to generate path constraints. Then the recorded path constraints are used to

create new inputs that exercise different further control flow. This process is automati-

cally and iteratively performed.

In 2011, Tkachuk and Rajan [113] proposed an automated driver generation for

analysing JSP-based web applications. Their approach constructs a Page Transition

Graph (PTG) for a web application, by encoding the application’s pages, events, event-

handlers and user data to the PTG. Then a PTG-based driver is implemented using Java

PathFinder to produce test sequences based on the PTG.

Inspired by [113], we propose SideAuto which achieves an automated analysis of side-

channel vulnerabilities containing test case generation for web applications. SideAuto

uses a novel static analysis and symbolic execution to generate test cases. It is the

first tool towards the fully automated side-channel analysis in Struts web applications,

which integrates the test case generation into the detection of side-channel vulnerabilities.

Furthermore, we also propose a black-box approach of generating test cases for real-world

web applications.

6.5 Hidden Markov Models

Hidden Markov Model (HMM) was first published in a series of classic papers by Baum

and his colleges [27, 28, 29, 30] in the late 1960s and early 1970s, to model a system with

unobserved states in mathematical structure.

One of the earliest practical work based on the HMM was [25], which models a

continuous speech-recognition system in the mid of 1970s. From 1980s, HMMs have

been widespread understood and largely used in speech processing [69, 75, 98]. [97] is an

excellent tutorial covering the basic techniques of HMM with regard to speech recognition

developed during the period of 1980s.

Nowadays, HMMs have been successfully applied to various fields including bioinfor-

matics [54], signature recognition [38], computer and network security [41], etc.

In network communication channels, HMMs have been used in modelling at the packet

level. For example, [104] exploits the HMM to infer network states by modelling the

packet flow in terms of packet loss and packet delay. Dainotti et al. [48] design a HMM

for modelling Internet traffic sources from SMTP, HTTP, a network game and an instant

messaging application, based on the inter-packet time and packet sizes.

In the context of side-channel attacks in web applications, HMMs have been used to

model the transfer between user web activities, e.g. visited web sites/pages [40, 35, 49].

Danezis [49] uses a HMM to model the most plausible path of accessed web pages on a

site, which provides the best explanation of the observed sequence of resource sizes. In

the model, hidden states are the resources on a site and the outputs are the sizes of traffic
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data. In [35], a HMM is used to model the link structure for a website and the probable

paths that a user will follow when visiting the website. Then the packet traces observed

each time the user transitions from one page to another can be classified. The attacker

can then compute the probability that an observed trace of packets was generated, to

infer which website a user was visiting.

In our research, an approach motivated by the HMM is used to model a set of obser-

vations, to construct a traffic pattern from the observation set.

6.6 Threats of Cookies

Cookies are used to remember user inputs, user preferences, user browsing behaviours,

etc. they offer powerful personalisations for improving user experience on the Internet.

However, there have been security issues arisen from cookies. For example, in the re-

cent years, cookies are abused for marketing purposes of tracking users without user

permission, e.g. see [114].

On the other hand, to the best of our knowledge, there has been a little study on

cookies in traffic analysis for web applications. Rizzo and Duong [102] demonstrate a

side-channel vulnerability related to cookies. They propose CRIME, a side-channel attack

through compression lengths of cookies, to unveil the information stored in cookies.

This thesis, from a different angle, demonstrates that cookies can be a factor which

affects traffic patterns and results in side-channel vulnerabilities.

6.7 Quantitative Information Flow

Quantitative information flow (QIF) is first proposed by Denning [103], which determines

how much information flows from high level to low level. It measures the amount of

information flow caused by interference between variables using information theoretic

quantities.

Smith [109] considers a new foundation based on the concept of vulnerability, which

applies Renyi’s min-entropy rather than Shannon entropy to measure uncertainty.

Clark et al. [42, 43, 44, 45] develop a system of syntax-directed analysis rules to give

the analysis of information flow in a simple deterministic while language. However, the

bounds for loops are over pessimistic, if any leakage is possibly leaked in a loop then all

the security information are leaked via the loop according to their rules. Then Malacaria

[81] gives a more precise quantitative analysis of loop constructs by using the partition

property of entropy. Heusser and Malacaria [63] analyse leakages in real-work software

of the LINUX kernel. They combine model checking with QIF to quantify the leakage.

In side-channel attacks, QIF has been exploited in cryptographic implementations,

e.g. [74], and web applications, e.g. [24, 125]. Kopf and Basin [74] provide a model

of adaptive side-channel attacks against cryptographic algorithms. QIF is then used to

measure leakages in cryptographic systems.

In 2010, Mu [86] gave an overview of the quantitative information flow in information

security.
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For quantifying side-channel leakages in web applications, Sidebuster [125] measures

leakages in Struts web applications, based on Shannon entropy and conditional entropy.

Backes et al. [24] provide a framework of formal guarantees against traffic analysis in

web applications. And they measure the leakages using QIF.

In our research, SideAuto uses Shannon entropy and min entropy to evaluate leakages

in Struts web applications. And then in the study on real-world web applications in

Chapters 4 and 5, the guessing probability is exploited to measure the leaks.
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Chapter 7

Conclusion and Future work

7.1 Conclusion

7.1.1 Overview

This research conducts an extensive study of analysing side-channel vulnerabilities in

web applications through traffic analysis. Test case generation is brought in to advance

on a fully automated side-channel analysis in web applications. This research aims to

assist developers in detecting side-channel vulnerabilities in their web applications.

We examine side-channel vulnerabilities of user privacy include user web activities

and user identities. It also coarsely involves user locations. A wider range of communica-

tions are analysed, including those implicitly transmitting sensitive formation and those

interacting with external websites.

Moreover, the leaking factors which cause side-channel vulnerabilities through traffic

analysis are also analysed. We discover that cookies and logged user accounts can be the

sources which lead to varying web traffic depending on user identities.

More specifically, we summarise the thesis from the practical and the theoretical sides

as follows.

7.1.2 From the Practical Side

On the practical side, this thesis proposes the implementations for analysing Struts-based

Java applications and real-world web applications.

Our earliest work proposes a framework for automating the analysis of side-channel

vulnerabilities in Struts-based web applications. A main advance of this work is the

automated generation of test cases for web applications. We use a novel approach to

achieve the automation of test case generation, by combining static analysis with symbolic

execution. Test cases are generated in terms of examined secrets and then the leakages

are evaluated.

The techniques are implemented into a tool–SideAuto. SideAuto is then evaluated

over six real-world or simulated web applications. Our study shows that the system works
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well and effectively on these web applications with acceptable overheads. The details are

present in Chapter 3.

Next our focus is turned to real-world web applications, which are not limited to the

Struts framework.

A black-box analysis is proposed to detect which transitions are vulnerable to leak

user privacy. An automated algorithm is developed to generate test cases automatically.

Individual transitions are examined, including those explicitly and implicitly involving

sensitive information. The analysis is applied to four real-world web applications.

The experimental results show that transitions which appear to have no relation to

user sensitive information can, actually, reveal more user secrets than those in explicit

relation to user sensitive information. Moreover, the experiments on Google website

demonstrate that the user identities can be largely leaked from Google accounts, through

transitions implicitly interacting with sensitive information. The details are described in

Chapter 4.

Inspired by the surprising result of large leaks of user identities from Google accounts,

we then conduct an in-depth study of the leakage of user identities on Google user

accounts.

We examine the leaks of user identities from fifty Google user accounts through com-

munications with Alexa Top 150 websites. Experimental results show that user identities

can be revealed through communications between Google website and external websites.

Moreover, it is shown that user locations may also be leaked through traffic analysis.

Furthermore, four testing scenarios are designed to explore the leaking sources. We

discover that cookies and logged user accounts can be the factors which cause web traffic

to leak user identities. More details are presented in Chapter 5.

7.1.3 From the Theoretical Side

On the theoretical side, we evaluate leakages using quantitative information flow. Shan-

non entropy, min entropy and conditional entropy are used to quantify leaks in terms of

the uncertainty of user privacy in Struts-based web applications in Chapter 3. And the

guessing probability is also used to evaluate the probability of correctly guessing a secret

in one try in Chapters 4 and 5.

When constructing a most likely sequence, we develop an approach motivated by

hidden Markov models to find the solution which best explains the web traffic collected.

Then the distance between an observation and the traffic pattern is measured based on

an optimised Damerau-Levenshtein distance with super transpositions and shifts. We

then calculate the probabilities of observations from transitions to build a probability

distribution in terms of the most likely sequences.

Moreover, we propose an advanced fingerprinting model of “one → many” mapping

where a single transition associates to at least one traffic patterns. Compared with a

“one→ one” mapping, this mapping is closer to the real-world cases, as a transition may

generate varying web traffic. Hence the “one→ many” mapping considers a bigger range

of web traffic analysed. It opens a new research direction in analysing web traffic.
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Above all, this thesis provides an extensive automated analysis of traffic-analysis

vulnerabilities in web applications from new perspectives. Therefore it is believed that

this research opens new cases in analysing side-channel vulnerabilities in real-world web

applications, which make future work more exciting.

7.1.4 Limitations

In this research, we evaluate traffic-analysis vulnerabilities in web applications. However,

we do not perform experimental validations to justify the correctness of the results ob-

tained by the analyses. In Chapters 4 and 5, for example, we do not validate that the

most likely sequences derived are correct. More specifically, we generated the most likely

sequences using a novel method. However, we do not validate that these most likely

sequences are same as those generated using a standard approach. This means that we

lack the guarantee that the most likely sequences generated are correct.

On the other hand, for the leakages evaluated in the experiments, we also lack val-

idations of the results produced by the analyses presented. More precisely, we do not

validate that the accuracy of the leakages obtained. We do not perform real attacks on

the web applications, to justify that the leakages of user privacy are really as much as

the data produced by the analyses.

Without validations, one may ask questions such as “how can you say that the re-

sults of the analyses are accurate”, “how can you say that the web applications really

leak user privacy”, etc. Although this research aims to discover possible side-channel

vulnerabilities, instead of estimating precise leakages, the errors of results may lead the

developers to a wrong way, where some important vulnerabilities are missed but some

insignificant vulnerabilities are investigated. Therefore, future work needs to overcome

these limitations.

7.2 Future Work

As mentioned, an immediate work can be to validate the results of the analyses produced,

both the most likely sequences and the leakages. For the most likely sequences, the hidden

Markov model can be really used to produce the traffic patterns. By comparing the traffic

patterns derived by the hidden Markov model with those generated using our approach,

we can validate the correctness of the most likely sequences produced.

For the experimental results of leakages, real-world attacks in web applications can

be mounted to calculate the accuracy of guesses based on observations of web traffic.

Comparing the accuracy of guesses with the leakages obtained by the analysis, the ex-

perimental results can be validated.

Some more future directions derived from this research are suggested in the following.

One is to further investigate the leaks of user locations in traffic-analysis attacks. It

can determine if a user location is actually leaked via the observations of web traffic, and

then check what sources lead to the varying web traffic.

In terms of communications with third-party websites, this research analysed leak-
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ages when the maximum distance of guessing probabilities coming from scenarios 1 and

4. However, it is possible that the user privacy can be revealed from communications

when the maximum gap comes from other two scenarios. Hence one future work can

be extended to analyse leakages from communications with the maximum distances of

guessing probabilities from any two scenarios.

Furthermore, the future work can build a “one → many” mapping with multiple

specific traffic patterns for each transition, instead of using a weak null pattern which is

used in our work. With the multiple specific traffic patterns, a larger space of observations

likely to be occurred in a communication are taken into consideration. This will improve

the accuracy in traffic mapping, which can reduce the false positive rate of mistakenly

matching an observation and traffic patterns.
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