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Abstract		
	

The	heterotrimeric	G	protein	subunit,	Gαi2,	is	involved	in	signal	transduction	from	

muscarinic	acetylcholine	and	other	receptor	systems	in	cardiomyocytes.	Gαi2	

expression	is	elevated	in	human	heart	failure,	though	whether	this	is	beneficial	or	

maladaptive	remains	unknown.	Better	understanding	could	guide	therapeutics	

development.		Previous	work	with	Gαi2	knockout	mice	suggested	a	pro-arrhythmic	

phenotype.	We	hypothesised	that	increased	Gαi2	expression	is	anti-arrhythmic	in	the	

ventricles.		To	investigate	this,	an	in	vivo	murine	model	of	myocardial	infarction	was	

used	to	approximate	the	human	pathophysiology,	with	wild-type	(WT)	mice	compared	

to	those	with	cardiospecific	Gαi2	knockout.		Subsequently,	an	ex	vivo	model	of	cardiac	

tissue	slices	was	used	to	evaluate	normal	electrophysiological	properties	of	murine	

ventricular	tissue,	alterations	with	β-adrenoceptor	and	muscarinic	agonists	and	

temperature,	and	comparison	of	these	properties	in	WT	mice	and	those	with	Gαi2	

globally	deleted.	

With	the	myocardial	infarction	model,	there	were	no	significant	cardiac	phenotypic	

differences	between	cardiospecific	knockouts	and	WTs.		The	cardiac	slice	model,	which	

utilised	a	micro-electrode	array,	showed	stable	activation	and	repolarisation	

properties	in	WT	slices.		Comparison	of	WTs	to	Gαi2	global	knockouts	in	the	presence	of	

carbachol	found	no	significant	differences	between	groups	in	terms	of	repolarisation	or	

conduction	properties.		In	WT	slices,	isoprenaline	was	associated	with	a	small	increase	

in	effective	refractory	period,	but	did	not	alter	conduction	properties.		There	was	a	

highly	significant	negative	linear	relationship	between	temperature	and	both	

activation,	and	repolarisation.			

Murine	models	were	used	to	investigate	the	electrophysiological	effects	of	autonomic	

signalling	pathways,	and	in	particular,	the	protein	Gαi2.		No	observable	

electrophysiological	differences	between	WT	and	Gαi2	knockout	mice	were	

demonstrated.		β-adrenergic	agonism	produced	small	changes	in	repolarisation	only.			

Effects	of	temperature	on	activation	and	refractoriness	suggest	modulation	of	sodium	

and	potassium	currents,	in	keeping	with	published	work.		These	findings	contribute	to	

our	understanding	of	autonomic	modulation	of	murine	cardiac	electrophysiology.	
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discussion	chapter.		The	thesis	is	presented	in	this	way	rather	than	using	the	more	

traditional	approach	of	combining	results	and	discussion	in	a	single	chapter,	so	as	to	
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1.	 INTRODUCTION	
	

	

	

1.1	 Background	–	the	clinical	problems	

	

1.1.1	 Ventricular	arrhythmias	

	

Ventricular	arrhythmias	(VAs)	are	often	life-threatening	abnormalities	in	cardiac	

rhythm,	occurring	when	the	rate	and	rhythm	of	the	heart	are	driven	by	tissue	in	one	of	

the	heart’s	two	larger	chambers,	the	ventricles.		This	contrasts	with	normal	‘sinus’	

rhythm,	where	the	heart’s	natural	pacemaker	in	the	right	atrium	produces	electrical	

impulses	which	are	conducted	through	the	heart’s	specialized	conducting	system,	

leading	to	coordinated	contraction	of	the	atria,	followed	by	the	ventricles.			

The	causes	of	ventricular	arrhythmias	are	many	and	varied,	and	include	‘structural’	

heart	disease,	related	to	the	heart	muscle	or	valves;	‘ion	channel	disorders’,	related	to	

the	cardiac	action	potential	and	its	propagation;	and	other	less	common	causes	such	as	

drugs,	and	idiopathic	disorders1,2.		Sudden	cardiac	death	(SCD),	of	which	ventricular	

arrhythmias	are	a	leading	cause,	is	estimated	to	account	for	between	180,000	to	

450,000	deaths	per	year	in	the	United	States	and	in	Europe,	equivalent	to	an	annual	

population	incidence	of	1-2	per	10001,3,4.		In	the	UK,	there	are	an	estimated	50-70,000	

SCDs	annually5.		However,	this	incidence	varies	depending	on	a	number	of	factors	such	

as	definition,	geographic	area,	age	and	sex.		For	example,	SCD	is	most	commonly	

defined	as	death	within	an	hour	of	symptom	onset,	although	24	hours	has	also	been	

used,	resulting	in	an	increased	incidence3.			

More	specifically,	sudden	arrhythmic	death	syndrome	(SADS),	is	defined	as	sudden	

death	in	a	person	with	no	known	cardiac	disease,	where	they	were	seen	alive	within	12	

hours	of	death,	with	negative	toxicological	screen	and	no	cause	found	by	a	cardiac	

pathologist6.		In	England	and	Wales,	the	incidence	is	estimated	at	0.24	per	100,000	

population	in	the	1-34	age	group7,	and	0.16	per	100,000	in	those	aged	4-64,	equivalent	

to	over	500	cases	per	year6.		It	is	important	to	appreciate	however,	some	of	the	

inherent	difficulties	in	making	these	estimates,	particularly	for	SCD:	although	accurate	

death	certification	and	inclusion/exclusion	of	cardiac	causes	is	taken	for	granted,	the	

reality	is	that	diagnostic	errors,	coding	inaccuracies,	and	unreliable	post	mortem	

examinations	make	accurate	analyses	difficult8.	
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1.1.2	 Heart	failure	

	

Heart	failure	is	a	well-recognised	and	common	substrate	for	VAs.		This	umbrella	term	

encompasses	many	disease	processes	and	has	been	defined	as	“an	abnormality	of	

cardiac	structure	or	function	leading	to	failure	of	the	heart	to	deliver	oxygen	at	a	rate	

commensurate	with	the	requirements	of	the	metabolising	tissues,	despite	normal	

filling	pressures	(or	only	at	the	expense	of	increased	filling	pressures)9.		Changes	

subsequently	develop	at	systemic,	organ,	and	cellular	levels,	some	of	which	are	initially	

adaptive,	but	many	of	which	become	maladaptive	as	the	disease	progresses.			

Ischaemic	heart	disease	is	the	commonest	cause	of	heart	failure	in	the	UK	and	other	

developed	countries,	accounting	for	approximately	70%	of	cases9.		In	this	setting,	left	

ventricular	(LV)	impairment	develops	largely	due	to	myocyte	necrosis,	following	

interruption	of	the	heart’s	blood	supply	during	myocardial	infarction.		An	arrhythmic	

substrate	may	then	develop,	in	large	part	due	to	areas	of	viable	myocardium	

interspersed	with	fibrotic	scar	tissue;	this	provides	the	basis	necessary	to	support	re-

entrant	tachycardias	within	the	ventricles	(see	Section	1.5).		However,	other	processes,	

including	changes	in	gene	expression,	ion	channel	function,	signalling	cascades,	

neurohormonal	adaptation,	and	drugs,	all	contribute	to	the	milieu	favourable	to	

arrhythmogenesis.	

	

With	the	recognition	that	heart	failure	greatly	increases	the	risk	of	life-threatening	VAs,	

a	number	of	treatments	have	been	developed	for	both	treatment	and	prevention.		

Implantable	cardioverter-defibrillators	(ICDs)	have	been	shown	to	reduce	mortality	in	

patients	with	LV	impairment	at	risk	of	VAs10,11,	and	superiority	over	amiodarone	

therapy	has	been	established10,12,13.		Catheter-delivered	radiofrequency	ablation	has	

been	assessed	in	two	randomised	trials	in	patients	receiving	ICDs	following	myocardial	

infarction14,15;	both	showed	lower	rates	of	appropriate	defibrillator	therapy	in	the	

ablation	group.		A	meta-analysis	reported	lower	rates	of	VT	recurrence	with	adjunctive	

catheter	ablation,	but	no	effect	on	mortality16.		A	further	randomised	trial	is	underway	

to	assess	this	treatment	strategy17.		

With	the	exception	of	beta-blockers	and	possibly	amiodarone18,19,	most	anti-

arrhythmic	drugs	have	been	associated	with	a	lack	of	efficacy,	and	in	some	cases,	

increased	mortality,	due	to	either	pro-arrhythmogenicity	or	heart	failure20–23.	

Therefore	there	exists	a	need	to	develop	new	options	for	pharmacotherapy	in	this	

common	condition.			
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1.2	 Cardiac	Electrophysiology	

	

1.2.1	 Normal	cardiac	structure	

	

Macroscopically,	the	normal	heart	comprises	right	and	left	atria,	and	corresponding	

right	and	left	ventricles.		The	right	atrium	connects	to	the	right	ventricle	via	the	

tricuspid	valve,	and	the	right	ventricle	ejects	blood	through	the	pulmonic	valve	into	the	

pulmonary	artery	which	delivers	blood	to	the	lungs	for	oxygenation.		This	blood	then	

returns	to	the	left	atrium	via	the	pulmonary	veins,	whereupon	it	passes	through	the	

mitral	valve	into	the	left	ventricle.		It	is	ejected	through	the	aortic	valve	into	the	aorta,	

the	main	conduit	of	the	systemic	circulation	before	finally	returning	via	the	systemic	

veins	to	the	right	atrium,	as	established	by	Harvey	in	1628	24.	

This	sequential	return	of	blood,	filling	of	chambers,	followed	by	ejection,	is	governed	by	

the	heart’s	cyclical	electrical	activity	in	coordination	with	cellular	contractile	processes,	

a	phenomenon	known	as	excitation-contraction	coupling.		This	in	turn	is	ultimately	

driven	by	a	pacemaker,	which	in	normal	hearts	is	the	sinus	node.		Located	principally	

at	the	junction	of	the	superior	caval	vein	and	right	atrium,	it	extends	inferiorly	to	

varying	degrees25	(see	Figure	1).		As	the	group	of	cells	with	the	highest	frequency	of	

spontaneous	discharge,	this	pacemaker	determines	the	frequency	of	atrial	and	

ventricular	contraction.		However,	for	physiological	functioning,	the	impulses	of	the	

sinus	node	must	spread	through	the	working	myocardium	of	the	atria,	and	then	into	

the	ventricles.		In	order	for	contraction	of	the	chambers	to	occur	in	a	synchronised	way,	

sufficient	to	both	generate	high	pressures	and	overcome	those	of	the	arterial	systems,	

the	time	from	original	impulse	generation	to	activation	of	the	whole	of	the	large	muscle	

mass	of	the	ventricles	is	necessarily	brief.		This	requires	an	impulse	conduction	system,	

analogous	to	wiring,	to	facilitate	the	rapid	dispersion	of	the	electrical	impulse	to	all	

regions	of	the	heart	(Figure	1).		The	key	components	of	this	are	the	atrioventricular	

(AV)	node,	penetrating	bundle	of	His,	common	AV	bundle,	branching	bundle,	right	and	

left	bundle	branches,	and	Purkinje	fibres26.		Impulses	arriving	at	the	AV	node	in	the	

atria	proceed	sequentially	through	these,	exiting	through	the	Purkinje	fibre	network	

which	provides	multiple	points	of	ventricular	cardiomyocyte	activation.		Although	

other	muscular	tissue	connections	exist	within	the	heart	such	as	Bachmann’s	bundle,	

the	conduction	system	is	differentiated	by	its	fibrous	sheath	insulation,	ion	channel	

expression,	and	action	potential	morphologies.		Despite	the	functional	resemblance	to	

neurones	in	the	ability	of	the	His-Purkinje	system	to	rapidly	transmit	impulses,	the	
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cells	comprising	the	system	are	derived	principally	from	cardiomyocytes	rather	than	

neural	crest	tissue,	although	are	innervated	by	ganglia	originating	from	the	latter27.	

	

	
Figure	1		Cardiac	conduction	system.		RA:	right	atrium,	Ao:	aorta,	RV:	right	ventricle,	LV:	left	ventricle.	
	

	

Microscopically,	the	heart	is	comprised	of	a	variety	of	cell	types.		A	classification	based	

on	cell	differentiation	and	functional	properties	could	divide	the	cell	types	into	atrial	

and	ventricular	working	myocardium	(cardiomyocytes),	sinus	and	atrioventricular	

nodal	tissue,	His-Purkinje	tissue,	fibroblasts	and	myofibroblasts,	smooth	muscle,	

endothelial,	and	epicardial	cells28.			

Of	these,	fibroblasts	are	most	numerous,	accounting	for	over	50%	of	the	total	number	

of	cells.		These	spindle-like	cells	are	components	of	the	supportive	extracellular	matrix,	

and	produce	different	types	of	collagen	to	cardiomyocytes,	as	well	as	fibronectin	and	

matrix	metalloproteinases29.		Interestingly,	this	collagen	undergoes	continual	turnover.		

Expression	of	ion	channels,	and	fibroblast-cardiomyocyte	interactions	through	current-

conducting	‘gap	junction’	protein	complexes	for	example,	suggest	that	fibroblasts	are	

not	simply	inert,	supportive	cells,	and	there	is	interest	in	their	potential	roles	in	

arrhythmogenesis30,31.		

Cardiomyocytes	account	for	only	around	a	third	of	the	total	number	of	cells	within	the	

heart,	yet	constitute	approximately	75%	of	its	volume.		Human	atrial	and	ventricular	

myocytes	are	long,	narrow	and	cylindrical	in	shape,	with	approximate	dimensions	of	
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10-20	μM	diameter,	and	60-140	μM	length32,33.		Cardiomyocytes	are	composed	largely	

of	contractile	proteins	bundled	together	as	myofibrils,	and	mitochondria,	required	due	

to	the	cells’	high	energy	demands.		This	composition	gives	cardiomyocytes	their	

contractile	function,	a	feature	not	seen	in	other	cardiac	cells.		Cardiomyocytes	are	

connected	to	each	other	via	intercalated	discs.		These	provide	both	a	structural	

continuum	between	cells	via	desmosomal	proteins	and	adherens	junctions,	and	an	

electrical	continuum	through	protein	channels	known	as	gap	junctions,	as	well	as	ion	

channels	(Figure	2).		Desmosomes	and	adherens	junctions	are	classically	regarded	as	

proteins	involved	in	mechanical	cellular	continuity,	providing	structural	linkage	and	

integrity.		Gap	junctions	–	low	resistance	intercellular	channels	–	are	formed	by	

proteins	known	as	connexins,	and	are	understood	to	facilitate	the	rapid	passage	of	

currents	between	neighbouring	cells.		The	voltage-gated	sodium	channel	complex,	

comprising	α	and	β	subunits,	is	also	found	at	the	intercalated	disc,	where	it	plays	an	

important	role	in	impulse	conductance34.	However,	there	may	be	species	differences	in	

the	extent	to	which	the	main	α	subunit,	Nav1.5	localises	here35.			

Whilst	these	functional	categorisations	largely	hold	true,	there	is	some	overlap,	and	co-

regulation,	as	might	be	expected	given	the	proteins’	physical	proximity.				Desmosomal	

proteins	modulate	the	voltage-gated	sodium	channel	complex,	and	therefore	its	current	

INa	for	example,	as	well	as	the	function	of	connexin43	(Cx43)34.	

The	cardiac	conduction	system	may	be	thought	to	comprise	the	sinus	and	AV	nodes,	

and	the	His-Purkinje	system.		These	cell	groups	share	some	properties	such	as	poorly-

developed	sarcomeres	and	sarcoplasmic	reticulum,	with	a	relative	paucity	of	

mitochondria27.		However,	there	are	distinctions	too:	the	nodal	areas	both	exhibit	

spontaneous	depolarisation	immediately	after	attaining	their	hyperpolarised	

membrane	voltage,	a	property	governed	by	expression	of	certain	ion	channels	as	

discussed	later.		This	gives	rise	to	their	natural	pacemaker	activity.		The	upstroke	of	

their	action	potentials	is	largely	dependent	on	L-type	calcium	channel	opening	and	the	

resultant	inward	current	ICaL,	which	has	a	lower	gradient	than	cardiomyocytes;	hence	

nodal	cells	are	considered	to	be	‘slowly	conducting’.		In	contrast,	cells	of	the	His-

Purkinje	system	show	a	different	pattern	of	intercellular	gap	junction	protein	

expression,	and	are	depolarised	by	the	fast	inward	sodium	current	INa.		These	

properties	result	in	their	ability	to	conduct	impulses	much	more	quickly,	and	they	are	

therefore	referred	to	as	‘rapidly	conducting’	tissues36.			
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Figure	2		The	intercalated	disc.		Dsc2:	desmocollin-2,	Dsg2:	desmoglein-2,	Pkg:	plakoglobin,	Pkp2:	
plakophilin-2,	Dsp:	desmoplakin.		Modified	from	Awad	et	al37.	
	

	

	

1.2.2	 An	overview	of	ion	channels,	currents	and	action	potentials	

	

Cardiac	physiology	relies	on	an	elaborate,	cyclical	system	of	cellular	ionic	fluxes	

generating	impulses,	which	are	conducted	through	the	myocardium,	resulting	in	

cardiomyocyte	contraction	and	relaxation.		The	interplay	between	these	electrical	and	

mechanical	processes	is	termed	‘excitation-contraction	coupling’.		Fluxes	of	three	ions	–	

Na+,	K+,	and	Ca2+	-	and	to	a	lesser	extent	Cl-,	across	the	specialized	cardiomyocyte	

membrane	known	as	the	sarcolemma,	regulate	both	the	concentration	and	

compartmentalization	of	intracellular	Ca2+,	the	key	link	in	the	processes.		Movements	of	

ions	into	and	out	of	the	cell	are	governed	by	flow	down	concentration	gradients	

through	channels,	and	active	movement	by	pumps	and	exchangers.		The	latter	ensure	

that	in	the	resting	(diastolic)	state,	intracellular	Na+	concentration	([Na+]i)	is	low,	

intracellular	K+	([K+]i)	is	high,	and	that	intracellular	Ca2+	([Ca2+]i)	is	sequestered	in	the	

sarcoplasmic	reticulum.			
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Ion	channels	

	

Ion	channels	have	two	main	properties:	selective	permeability	and	gating38.		The	

former	refers	to	the	ionic	selectivity	of	most	channels,	determined	by	amino	acid	

residues.		The	HCN	(hyperpolarisation-activated	cyclic	nucleotide-gated)	channel	is	an	

exception,	allowing	passage	of	both	Na+	and	K+	ions.		Structurally,	two	of	the	channels	

generating	the	largest	currents,	Nav1.5	and	the	L-type	Ca2+	channel	(LTCC),	Cav1.2,	are	

similar,	despite	allowing	passage	of	different	ions.	There	are	several	K+	channels,	and	a	

main	structural	difference	between	them	and	Na+/	Ca2+	channels	relates	to	the	

accessory	β-subunits	which	modify	some	K+	channel	activity	and	have	been	implicated	

in	some	forms	of	Long	QT	Syndrome	(LQTS).			

Channel	gating	refers	the	regulated	opening	and	closure	of	a	channel,	and	its	

consequent	ability	to	pass	ions.		This	property	is	most	commonly	dependent	on	

membrane	voltage,	but	ligands	or	mechanical	stimuli	are	alternative	mechanisms.		The	

work	of	Hodgkin	and	Huxley	in	the	early	1950s	modelled	the	conductance	of	the	Na+	

and	K+	channels	of	the	giant	squid	axon39,	and	provided	a	framework	with	which	to	

understand	this	property.		Gating	is	believed	to	result	from	reversible	conformational	

changes	of	the	channel	apparatus	that	regulate	passage	of	ions40.		In	the	simplest	

model,	channels	may	be	described	as	being	in	one	of	three	‘states’:	open,	closed,	or	

inactivated.		Inactivation	underlies	the	property	of	refractoriness	in	cardiomyocytes	

(see	below).		Recovery	from	this	state	and	re-acquisition	of	the	ability	to	open	is	

dependent	on	both	time	and	hyperpolarisation38.		Gating	is	incompletely	understood;	

many	of	the	models	have	been	derived	from	single	ion	channel	analysis,	and	more	

recently,	work	on	crystal	structures	and	molecular	interactions.		Mathematical	

approaches	such	as	Markov	models	have	also	been	used	to	estimate	the	number	of	

states	and	their	transitions.		The	three	state	model	above	is	probably	too	simplistic,	and	

an	alternative	is	shown	in	Figure	3,	illustrating	the	possibility	of	more	than	one	‘closed’	

state.	
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Figure	3		Ion	channel	states	implicated	in	gating.		C1:	initial	closed	state,	CN:	closed	state	before	the	O	
state,	O:	open	state,	I:	inactivated	state.		From	Grant38.	
	

	

Action	potentials	in	different	regions	of	the	heart	

	

Figure	4	illustrates	the	action	potentials	of	atrial,	ventricular	and	sinus	nodal	tissues,	

with	their	most	important	currents.		Cardiac	action	potentials	are	divided	into	phases	

according	to	the	ionic	shifts	into	and	out	of	the	cell.		These	correspond	to	the	following	

events:	

	

• Phase	0:	rapid	depolarisation		

• Phase	1:	transient	repolarisation		

• Phase	2:	Ca2+	inflow	and	K+	outflow		

• Phase	3:	terminal,	rapid	repolarisation	

• Phase	4:	resting	potential,	during	which	there	may	be	gradual	depolarisation.			

	

As	can	be	seen,	although	there	are	some	differences	in	the	dominant	ionic	currents,	

atrial	and	ventricular	myocytes	essentially	follow	the	pattern	of	Na+	influx-mediated	

depolarisation,	following	by	plateau	phase	maintained	by	the	balance	of	inward	Ca2+	

flow	and	outward	K+	flow.		Finally,	outward	K+	flow	leads	to	repolarisation	of	the	cell.			

In	sinus	nodal	cells,	the	action	potential	frequency	is	determined	by	a	combination	of	

the	‘pacemaker	current’,	If,	and	the	‘intracellular	Ca2+	clock’36.		The	HCN	channel	

produces	the	slowly-depolarising	If	current	during	diastole.		This	net	inward	current	

leads	to	activation	of	T-type	Ca2+	channels	which	produce	Ca2+	sparks	–	brief	releases	

from	the	sarcoplasmic	reticulum.		Elevated	intracellular	Ca2+	concentrations	activate	

the	Na+/	Ca2+	exchanger,	leading	to	a	net	influx	of	Na+	which	depolarizes	the	cell	

sufficiently	to	activate	LTCCs	(Cav1.2).		Rapid	Ca2+	influx	ensues	leading	to	
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depolarisation	of	the	cell	and	initiation	of	the	action	potential.		Depolarisation	activates	

the	K+	channels	which	repolarise	the	cell,	and	the	process	begins	again41.	

	

	

	
Figure	4		Cardiac	action	potentials	from	different	regions	of	the	heart,	with	the	currents	that	
generate	them.	Coloured	lines	indicate	the	phase	of	the	action	potential	that	the	current	participates	in.		
Inward	currents	are	in	red,	outward	currents	in	blue.		Currents	-	INa:	inward	Na+,	ICaT:	T-type	Ca2+,	ICaL:	L-
type	Ca2+,	Ito,f:	fast	transient	outward,	Ito,s:	slow	transient	outward,	IKur:	ultra-rapid	K+	delayed	rectifier,	IKs:	
slow	K+	delayed	rectifier,	IKr:	rapid	K+	delayed	rectifier,	IK1:	inward	rectifier,	IKATP:	ADP-activated	K+	
channel,	IKACh:	muscarinic-gated	K+	channel,	If:	‘funny’	current,	INCX:	Na+/Ca2+	exchange	current.	
	

	

There	are	differences	in	cardiac	action	potentials	between	species,	including	between	

mammals,	which	are	important	to	bear	in	mind	when	using	animal	models	of	

arrhythmias.		This	is	illustrated	in	Figure	5,	which	contrasts	human	and	murine	

electrocardiograms	(ECGs)	and	ventricular	action	potentials.		A	noticeable	difference	

exists	between	the	two	in	the	repolarisation	phase:	the	major	outward	currents	in	

humans	are	IKr	and	IKs,	whereas	in	the	mouse	are	Ito,	IK,slow1,	IK,slow2	and	ISS42,43.		The	

majority	of	repolarisation	takes	place	within	a	proportionately	much	shorter	

timeframe	in	the	mouse,	although	full	repolarisation	continues	for	longer	as	a	slower	

decline	in	transmembrane	potential.		These	differences	are	necessary	given	the	nine-	to	

ten-fold	higher	heart	rate	in	the	mouse,	with	consequent	shorter	coupling	interval.		As	
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can	be	seen	from	the	representative	ECG	complexes	at	the	top	of	Figure	5,	the	initial	T	

wave	peak	in	the	mouse	occurs	soon	after	the	QRS	complex,	but	this	is	followed	by	a	

prolonged	dip	below	the	isoelectric	line.		The	origin	of	the	T	wave	in	both	species	is	

incompletely	understood,	and	the	subject	of	much	debate44,45.	

Although	depolarisation	appears	similar	for	humans	and	mice,	and	is	indeed	mediated	

by	a	fast	inward	sodium	current,	there	may	in	fact	be	differences	here	too.		Several	Nav	

protein	isoforms	have	been	shown	to	be	expressed	in	murine	hearts,	whereas	Nav1.5	is	

by	far	the	most	abundantly	expressed	in	humans	(see	below).		β1-4	subunits	co-localise	

with	these	other	α-subunits	in	the	mouse,	suggesting	some	redundancy.		Together	with	

possible	differential	localisation	of	these	protein	subunits	in	the	cell,	these	findings	

raise	the	potential	for	differences	in	activation	and	conduction35,46.			

	

	
Figure	5		Comparison	of	human	and	murine	ECGs	and	ventricular	action	potentials	(APs),	with	the	
key	currents	that	generate	these.		Currents	-	INa:	inward	Na+,	ICaL:	L-type	Ca2+,	Ito:	transient	outward,	IKs:	
slow	K+	delayed	rectifier,	IKr:	rapid	K+	delayed	rectifier,	IK,slow1	and	IK,slow2:	K+	delayed	rectifier,	ISS:	steady	
state.		Modified	from	Davis	et	al47.	

	

Thus,	despite	similar	overall	sequences	of	depolarisation	and	repolarisation	in	humans	

and	mice,	and	some	overlap	in	transmembrane	currents,	particularly	INa	and	ICaL,	

repolarisation	differs	substantially	between	the	two	species.		We	must	therefore	be	
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cautious	in	interpreting	alterations	in	repolarisation	in	humans	and	extrapolating	them	

to	the	mouse,	and	vice	versa.	

	

	

1.2.3	 Excitability	of	cardiomyocytes	

	

As	described	above,	cardiomyocytes	relay	from	cell	to	cell	the	stimulatory	action	

potentials	necessary	to	initiate	contraction.		This	relay	of	activation	between	millions	of	

cells	occurs	rapidly,	as	it	must	if	the	contractile	forces	of	each	cell	are	to	be	

synchronised,	so	as	to	work	collectively	in	ejecting	blood	forcefully	from	the	cardiac	

chambers.		The	corollary	of	this	is	that	a	period	of	inexcitability	or	refractoriness	of	

cardiomyocytes	is	required,	both	to	prevent	uncoordinated	contractions	and	ensure	

propagation	in	one	direction,	and	to	prevent	contractions	occurring	too	frequently.		

This	period	also	serves	as	a	time	for	the	redistribution	of	ions	necessary	prior	to	the	

next	cycle,	and	in	mechanical	terms,	permits	relaxation.		As	such,	cardiomyocyte	

excitability	may	be	considered	to	comprise	two	parts:	activation,	and	refractoriness.		

Whilst	these	fundamental	properties	are	largely	governed	by	different	proteins,	there	

is	also	some	overlap.		These	will	now	be	considered	in	turn	in	relation	to	ventricular	

myocytes.	

	

	

Activation	

	

Cardiomyocytes	are	considered	to	be	‘at	rest’	during	phase	4	of	the	action	potential.		

Their	resting	membrane	potential	(RMP)	remains	steady	at	around	-80	mV.		This	value,	

known	as	the	equilibrium	potential	(Em),	is	determined	by	the	balance	of	chemical	and	

electrical	gradients	generated	by	different	concentrations	of	ions	intra-	and	

extracellularly.		Its	magnitude	is	similar	to	the	equilibrium	potential	of	K+,	due	to	this	

being	the	ion	with	the	highest	intracellular	concentration,	and	reflects	the	fact	that	the	

IK1	current	is	its	major	determinant.		Em	can	be	calculated	for	single	ions	with	the	

Nernst	equation,	or	for	multiple	ions	with	the	Goldman-Hodgkin-Katz	equation48.		

Maintaining	Em	at	such	a	low	value	on	the	one	hand	is	believed	to	be	one	of	the	inherent	

protective	measures	against	spontaneous	depolarisation	of	cardiomyocytes	outside	the	

sinus	node,	whilst	on	the	other,	it	ensures	sodium	channel	availability	in	a	non-

inactivated	state.	
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When	an	action	potential	(or	more	generally,	a	stimulatory	impulse)	is	relayed	from	

one	cardiomyocyte	to	another,	provided	the	cell	receiving	the	impulse	is	not	refractory,	

it	will	depolarise	from	its	RMP.		In	order	for	a	large	amplitude	rapid	inward	current	to	

result,	the	excitatory	stimulus	must	be	of	sufficient	magnitude	to	depolarise	the	

membrane	beyond	a	threshold	level	of	-55	to	-65	mV	36,42.		As	shown	in	Figures	4	and	5,	

the	main	current	responsible	for	this	rapid	depolarisation	in	cardiomyocytes	is	the	

inward	sodium	current,	INa.		This	sets	off	the	sequence	of	opening	and	closure	of	

different	ion	channels	that	together	produce	the	action	potential.	

	

The	voltage-gated	sodium	channel,	through	which	passes	INa,	is	in	fact	a	multi-protein	

complex	with	two	core	components,	the	α-	and	β-subunits49.		There	are	10	α-subunit	

genes	in	humans,	and	these	are	expressed	in	different	tissues.		A	key	characteristic	of	

sodium	channels	is	their	sensitivity	to	tetrodotoxin	(TTX).		Nav1.5	is	the	principal,	

though	not	exclusive	cardiac	isoform.		Indeed,	12-27%	of	sodium	current	is	due	to	

other	isoforms	such	as	Nav1.2	and	Nav1.135.		There	are	some	differences	in	localisation	

of	the	different	isoforms,	e.g.	intercalated	disc	vs.	cardiomyocyte	cell	membrane,	and	

these	appear	to	differ	between	species.		The	β-subunits	that	are	expressed	in	the	heart	

(SCN1B-4B)	have	all	been	reported	to	associate	with	Nav1.5.		Although	experimental	

data	are	somewhat	conflicting,	the	importance	of	these	subunits	in	modulation	of	the	α-

subunit	is	borne	out	by	the	fact	that	mutations	in	these	genes	lead	to	serious	

arrhythmic	phenotypes,	such	as	Brugada	syndrome,	atrial	fibrillation	(AF)	and	cardiac	

conduction	disease46.		β-subunits	are	believed	to	modulate	both	channel	function,	and	

expression.	

The	α-subunit	has	the	ability	to	conduct	Na+	independently,	and	incorporates	voltage-

sensing	and	pore-forming	modules.		The	three-dimensional	(3D)	shape	of	the	channel	

is	dependent	somewhat	on	electrostatic	forces	related	to	the	membrane	potential.		At	a	

RMP	of	-80	mV,	this	results	in	a	conformation	with	a	closed	pore.		Upon	depolarisation,	

changes	in	electrostatic	forces	permit	channel	segment	movement	and	pore	opening.		

These	geometric	fluxes	permit	Na+	ion	flows	that	depolarise	the	membrane	from	-80	

mV	to	+30	mV	within	around	1	ms.		An	important	feature	differentiating	sodium	

channels	from	potassium	or	calcium	channels	is	that	inactivation	commences	almost	

immediately	after	opening,	and	the	majority	of	the	channels	are	wholly	inactivated	

within	a	few	milliseconds.		However,	a	‘late’	inward	current	may	result	from	

persistence	of	an	open	state	or	re-opening	of	some	channels	during	phase	2	of	the	

action	potential42,49.			
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Various	putative	modulators	of	sodium	channel	function	have	been	investigated.		

Those	for	which	there	is	most	evidence	of	modulation	include	protein	kinase	A	(PKA)	

phosphorylation,	GαS	(PKA-independent),	and	temperature.		However,	other	factors	

possible	factors	include	protein	kinase	C	(PKC),	glycosylation,	calcium/	calmodulin,	

Ca2+/calmodulin-dependent	protein	kinase	II	(CamKII),	tyrosine	phosphorylation,	and	

pH46,48.			

	

	

Refractoriness	

	

Activation,	or	phase	0,	is	followed	by	a	brief	slight	repolarisation	(phase	1),	and	then	by	

a	plateau	(phase	2)	during	which	an	inward	predominantly	calcium	current,	ICaL,	is	

balanced	by	potassium	efflux.		This	outflow	occurs	almost	wholly	through	the	voltage-

gated	delayed	rectifier	potassium	channels	IKr	(rapid-activating)	and	IKs	(slowly-

activing),	and	during	phase	3	these	currents	outweigh	ICaL	and	repolarise	the	cell	

completely	to	its	resting	membrane	potential.		Another	class	of	potassium	channel,	the	

inward	rectifiers	(Kir)	are	also	involved	in	repolarisation.		One	of	these,	the	G-protein	

regulated	inwardly-rectifying	potassium	channel	(GIRK),	through	which	passes	the	

IKACh	current,	is	thought	to	contribute	little	if	anything	to	repolarisation	in	the	ventricle.		

Kir2.1	which	produces	the	IK1	current	however,	is	important,	and	as	already	mentioned,	

largely	determines	the	phase	4	RMP42,50.	

However,	Kir2.1/IK1	is	not	limited	to	these	roles;	various	lines	of	evidence	support	the	

idea	that	it	also	has	a	reciprocating	regulatory	relationship	with	Nav1.5/INa50.		For	

example,	Nav1.5	expression	and	density	appear	to	be	dependent	in	part	on	Kir2.1.		As	

components	of	a	common	macromolecular	complex,	this	dependency	could	be	

expected.		In	addition,	by	setting	the	RMP	sodium	channel	availability	and	therefore	

cell	excitability	are	influenced.			

	

Repolarisation	can	be	quantified	in	several	ways:	perhaps	the	most	logical	and	easily	

understood	is	to	measure	the	action	potential	duration	(APD)	from	its	onset	to	when	

repolarisation	has	brought	Em	to	where	it	has	returned	90%	from	its	peak	value51	(see	

Figure	6),	an	interval	known	as	APD90.		The	related	but	distinct	property	of	

refractoriness,	can	be	described	in	terms	of	refractory	periods.		These	time	intervals	

are	measured	from	the	onset	of	the	action	potential	to	a	predefined	level	of	

refractoriness,	which	is	determined	by	the	ability	of	a	stimulus	to	elicit	a	response	from	

the	cell	or	tissue.		The	absolute	refractory	period	(ARP)	is	the	period	when	no	stimulus,	
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no	matter	how	strong,	can	elicit	another	depolarisation.		This	extends	from	phase	0	to	

the	beginning	of	phase	336.		After	this,	in	the	mid	and	terminal	portions	of	phase	3	

typically,	is	the	relative	refractory	period	(RRP).	This	describes	the	time	during	which	a	

cell	or	tissue	is	able	to	generate	a	complete	action	potential,	but	only	with	a	stimulus	

larger	than	is	required	during	phase	4	(i.e.	diastolic	threshold).	In	addition,	the	action	

potential	elicited	has	a	slower	upstroke,	lower	amplitude,	and	is	propagated	more	

slowly	than	normal	(see	Figure	6).		

In	clinical	electrophysiology,	or	with	in	vivo	experiments,	a	further	measure	is	used:	the	

effective	refractory	period	(ERP).		This	is	defined	as	the	longest	stimulus	coupling	

interval	that	fails	to	capture	the	tissue	or	to	be	conducted	through	it52.		This	therefore	

potentially	encompasses	both	repolarisation	and	conduction,	at	the	tissue	rather	than	

cellular	level.		It	exists	somewhere	near	the	boundary	of	the	ARP	and	RRP.	

	

	
Figure	6		Relation	of	refractory	periods	to	the	action	potential.		Note:	APD90	and	RRP	do	not	
necessarily	coincide.		Absolute:	absolute	refractory	period,	ERP:	effective	refractory	period,	RRP:	relative	
refractory	period,	PRR:	post-repolarisation	refractoriness,	APD90:	action	potential	duration	at	90%	
repolarisation.	

	

Two	human	studies	have	found	ventricular	ERP	(VERP)	to	be	consistently	shorter	than	

APD90	in	the	drug-free	state,	though	their	results	differ	slightly	in	the	VERP/APD90	ratio	

in	relation	to	cycle	length.	It	is	also	worth	noting	that	both	studies	involved	patients	

with	heart	disease	undergoing	investigation	for	ventricular	tachycardia	(VT)53,54.			

Nevertheless,	the	demonstration	of	a	positive	correlation	between	both	parameters	
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and	steady	state	paced	cycle	length	is	in	keeping	with	the	relationship	noted	in	atria	

and	the	His-Purkinje	system	in	a	heterogeneous	cohort,	including	those	without	heart	

disease55.		This	physiological	adaptation	of	APD	to	heart	rate	is	the	means	by	which	the	

heart	ensures	cardiomyocyte	refractoriness	can	vary;	this	ensures	the	cells	are	no	

longer	refractory	as	the	coupling	interval	between	successive	beats	shortens,	as	occurs	

with	exercise	for	example.		This	adaptive	response	is	mediated	by	several	processes,	

though	the	IKs	current	is	thought	to	be	a	major	determinant56.			

An	allied	theme	is	that	of	restitution,	which	describes	the	alteration	of	APD	that	occurs	

following	an	abrupt	change	in	the	preceding	diastolic	interval57.		The	slope	of	this	

relationship	may	be	important	in	arrhythmogenesis58.			

Finally,	the	above	discussion	pertains	to	physiological	repolarisation	and	

refractoriness.		The	efficacy,	and	harmful	effects,	of	antiarrhythmic	drugs	often	depend	

upon	alteration	of	these	properties.		When	refractoriness	of	a	cell	or	tissue	is	extended	

beyond	full	repolarisation,	it	is	termed	‘post-repolarisation	refractoriness’,	a	situation	

that	may	be	induced	with	drugs59.	

	

To	summarise	what	has	been	described	above:	upon	receiving	a	propagated	impulse,	

opening	of	sodium	channels	occurs	very	rapidly,	initiating	the	action	potential.	The	

majority	of	these	channels	are	then	inactivated	quickly,	i.e.	within	a	matter	of	

milliseconds,	preventing	physiological	re-activation	of	the	cardiomyocyte	which	

becomes	refractory.		In	order	to	relieve	this	inactivated	state,	the	membrane	potential	

must	be	repolarised,	and	this	is	dependent	on	termination	of	calcium	inflow,	and	

potassium	channels’	outward	currents.		As	such,	although	contributing	to	different	

parts	of	the	action	potential,	sodium	and	potassium	fluxes	are	inextricably	linked.	

	

	

1.2.4	 Impulse	propagation	in	the	ventricles	

	

The	preceding	discussion	has	focused	on	the	action	potential	–	the	summative	change	

in	transmembrane	voltage	of	a	cardiomyocyte	over	time.		Action	potentials	in	the	sinus	

nodal	cells	are	initiative,	whereas	in	health,	those	in	ventricular	cardiomyocytes	are	

regenerative	and	involved	in	relay	of	the	impulse	rather	than	its	initiation.		As	

described	previously,	this	change	in	membrane	potential	of	a	cell	is	passed	on	through	

low	resistance	channels	at	the	intercalated	disc	known	as	gap	junctions.		This	section	

will	focus	on	the	intercellular	transmission	that	occurs	within	the	ventricles.	
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Voltage	decays	with	increasing	distance	from	a	current	source	when	conduction	is	

passive,	as	predicted	by	cable	theory48.		In	physiology,	this	passive	spread	is	known	as	

electrotonus.		Thus,	if	a	depolarising	impulse	occurs	(e.g.	the	impulse	leaving	a	Purkinje	

fibre,	or	an	external	stimulus),	and	is	of	sufficient	magnitude	to	raise	Em	above	

threshold,	sodium	channel	activation	will	occur	leading	to	a	fast	inward	current,	and	an	

action	potential.	Some	of	this	current	will	pass	into	an	adjoining	cell	via	gap	junctions,	

where	again,	provided	it	is	of	sufficient	magnitude,	the	same	will	occur.		However,	due	

to	the	decay	of	voltage	over	distance,	the	impulse	will	not	be	sufficient	to	depolarise	

cells	further	away.		In	order	for	relay	to	occur	therefore,	when	the	impulse	passes	from	

one	cell	to	its	immediate	neighbours	through	gap	junctions,	those	neighbouring	cells	

must	initiate	action	potentials	of	their	own	so	as	to	regenerate	the	voltage	required	to	

depolarise	their	neighbours	without	attenuation	(see	Figure	7).			

	Figure	7		Activation	of	cardiomyocytes	and	impulse	propagation.		Cardiomyocytes	(red	outline)	have	
sodium	channels	in	the	sarcolemma	and	gap	junctions	at	the	intercalated	disc.		An	action	potential	is	
initiated	by	rapid	Na+	influx	(1)	which	depolarises	the	cell	membrane.		Some	of	this	charge	passes	through	
gap	junctions	to	a	neighbouring	cell	(2),	and	if	this	charge	is	of	sufficient	magnitude,	it	will	regenerate	an	
action	potential	through	the	same	process	of	sodium	influx.		Only	a	tiny	portion	of	the	charge	from	the	
original	cell	on	the	left	would	pass	through	to	the	cell	on	the	right	(3)	without	the	regenerative	action	
potential	in	the	middle	cell.		This	would	induce	only	a	small	Na+	influx	(4),	insufficient	to	elevate	the	cell	
membrane	potential	(Em)	above	threshold	(Th),	so	that	a	full	action	potential	would	not	regenerate	(5).		In	
the	lower	panel,	solid	lines	represent	action	potentials	that	have	just	occurred.		Dashed	lines	show	the	
action	potentials	that	would	be	elicited	following	Na+	influx	in	the	left	hand	cell	only.		Arrows	indicate	the	
normal	pattern	of	Na+	influx,	transfer	of	charge,	and	induction	of	Na+	influx	in	the	neighbouring	cell.	
	

	

At	a	molecular	level,	it	can	be	seen	from	the	description	above	that	there	are	two	key	

determinants	of	propagation,	i.e.	whether	the	impulse	conducts	at	all,	and	its	speed.		

These	are	sodium	channel	conductance,	and	gap	junction	conductance35,36,48,60.		Both	of	
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these	in	turn	depend	on	the	number	of	channels	at	the	sarcolemma	or	intercalated	disc	

respectively,	their	unitary	conductance,	and	their	state,	or	availability	to	open61.		The	

importance	of	sodium	channels	in	propagation	is	reflected	in	the	fact	that	conduction	

velocity	is	directly	related	to	the	rate	of	rise	(i.e.	dV/dt	of	phase	0)	and	the	amplitude	of	

the	action	potential	(i.e.	difference	in	voltage	between	RMP	and	full	depolarisation).		

Gap	junctions	are	discussed	further	below.	

At	a	multi-cellular	or	tissue	level,	it	is	useful	to	scale	up	the	way	in	which	propagation	is	

considered,	although	the	underlying	determinants	remain	the	same.		Thus,	the	

concepts	of	source	and	sink,	and	safety	factor	are	useful	at	this	level,	and	tissue	

geometry	or	architecture	become	more	important.		Early	modelling	considered	

impulse	propagation	to	occur	along	a	one-dimensional	(1D)	array	of	cardiomyocytes.		

This	was	a	physiological	extrapolation	of	the	principles	of	cable	theory,	which	had	been	

developed	to	understand	electrical	transmission	along	telegraph	cables.		Using	this	

approach,	the	concept	of	liminal	length	was	developed,	which	describes	the	minimal	

length	of	a	cellular	array	that	must	be	activated	if	propagation	is	to	occur48,60.		The	idea	

of	a	critical	mass	of	cells	required	to	excite	cells	downstream	remains	useful,	but	the	

inadequacies	of	a	1D	model	of	cardiac	tissue	are	immediately	apparent.	A		

generalisation	applicable	to	3D	tissue	structures	utilises	the	concept	of	‘source’	and	

‘sink’.		The	former	describes	the	cell	or	cells	which	have	been	depolarised,	and	are	able	

to	transfer	current	to	neighbouring	cells	so	that	they	can	be	depolarised.		The	latter	

describes	the	neighbouring,	hyperpolarised	cells,	which	‘accept’	current	from	the	

source62.		Taking	this	further,	‘safety	factor’	is	defined	as	the	ratio	of	the	current		

generated	by	the	source	to	that	consumed	during	excitation	of	the	sink.		A	safety	factor	

of	more	than	one	ensures	impulse	propagation,	whereas	conduction	failure	will	occur	if	

less	than	one.		In	addition	to	sodium	channel	and	gap	junction	conductance,	tissue	

architecture	is	relevant	here.		If	cardiomyocyte	density	is	reduced,	by	fibroblasts	in	

scarred	tissue	for	example,	the	source:sink	ratio	will	fall,	resulting	in	reduced	

conduction	velocity	or	failure	of	propagation.			

	

	

Gap	junctions	

	

These	intercellular	connection	channels	have	already	been	mentioned.		Their	existence	

was	predicted	a	priori	based	on	theoretical	assumptions	regarding	current	

transmission	and	voltage	decay63.				Structurally	they	can	be	broken	down	as	follows:	

six	connexin	proteins	oligomerise	to	form	a	hemichannel	known	as	a	connexon,	which	
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resides	in	the	cell	membrane.		When	two	connexons	in	adjoining	cells	appose	each	

other,	they	form	a	gap	junction64.		There	are	21	human	connexin	genes,	and	they	are	

expressed	in	most	tissues,	albeit	with	tissue	specificity	of	proteins.		When	connexons	

are	composed	of	different	connexins	they	are	known	as	heteromeric,	and	heterotypic	

gap	junctions	are	those	where	the	connexons	are	different61.		Connexins	43,	40	and	45	

are	expressed	in	the	heart,	although	connexin43	(Cx43)	is	predominant,	and	in	the	

ventricles	is	essentially	the	only	isoform	expressed65.		In	the	atria,	Cx40	and	Cx43	are	

expressed,	while	Cx40	is	the	major	isoform	in	the	ventricular	conduction	system.		Cx45	

is	primarily	expressed	in	the	sinus	and	AV	nodes66.		They	are	permeable	not	only	to	

ions	(particularly	K+),	but	also	to	second	messengers	such	as	cyclic	adenosine	

monophosphate	(cAMP),	and	possibly	small	interfering	RNAs	(siRNAs).			

Expression,	trafficking	and	turnover	affect	the	number	of	connexins	and	hence	gap	

junctions	present	at	the	intercalated	disc.		But	in	a	similar	way	to	membrane-bound	ion	

channels,	gap	junctions	exhibit	several	conductance	states.		This	property	of	gating	

appears	to	be	more	dependent	on	transjunctional	than	transmembrane	voltage,	though	

both	may	have	a	role.		The	other	two	key	regulators	are	pH	and	intracellular	calcium	

concentration	([Ca2+]i)61,67.			

	

There	is	some	debate	as	to	the	relationship	between	gap	junction	conductance	and	

conduction	velocity	through	the	myocardium.		Modelling	has	suggested	that	cell-to-cell	

electrical	uncoupling,	i.e.	via	reduction	in	gap	junction	conductance,	will	lead	to	

reductions	in	conduction	velocity,	but	that	propagation	will	persist	at	very	low	

velocities	until	near	complete	uncoupling	has	occurred68.		Based	on	theoretical	and	

experimental	data,	others	have	suggested	a	positive,	non-linear	relationship	between	

the	number	of	gap	junctions	at	the	intercalated	disc	and	conduction	velocity67.		A	view	

that	has	gained	widespread	acceptance	is	that	near	complete	loss	of	Cx43	expression	

must	occur	before	conduction	velocity	declines.		This	came	from	studies	in	Cx43	

knockout	mice,	which	found	that	conduction	velocity	was	unaltered	in	heterozygotes	

with	Cx43	expression	at	50%	of	normal	levels,	whereas	it	diminished	when	reduced	by	

more	than	95%	69,70.		However,	this	notion	has	been	challenged	recently	by	Dhillon	et	

al,	who	suggest	there	is	in	fact	a	continuous,	linear	relationship	between	conduction	

velocity	and	gap	junction	conductance71.			
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Estimates	of	conduction	velocity	

	

Measurement	of	conduction	velocity	through	the	myocardium	is	more	difficult	than	

might	at	first	be	assumed.		It	is	complicated	by	a	number	of	factors:	first	and	foremost,	

these	include	the	need	to	define	the	activation	of	small,	localised	clusters	of	

cardiomyocytes	throughout	the	tissue.	It	must	be	possible	to	spatially	locate	these	

clusters	with	accuracy,	as	well	as	to	temporally	define	their	activation	precisely.		

Finally,	an	estimate	of	the	path	of	impulse	propagation	is	required.		With	regard	to	

defining	activation,	the	intracellular	techniques	that	offer	precision	with	in	vitro	work	

are	not	feasible	in	vivo,	and	extracellular	analogues	utilising	surrogate	markers	must	be	

used.		For	the	latter,	it	is	possible	to	conceptualise	a	path	of	propagation	in	a	two-

dimensional	(2D)	piece	of	tissue,	although	even	here	the	word	path	is	probably	

inappropriate.		In	the	intact	heart,	which	is	not	only	a	3D	structure	at	the	chamber	

level,	but	also	within	the	myocardial	walls,	impulses	neither	emanate	from	a	single	

point	source,	nor	do	they	proceed	linearly.		The	spread	of	excitation	is	akin	to	a	

wavefront,	which	must	adjust	to	the	contours	and	limits	of	the	myocardium	and	to	

other	interacting	wavefronts.			

Coupled	with	these	factors	are	the	intrinsic	differences	in	speed	of	conduction	between	

subpopulations	of	cells	within	the	heart,	e.g.	atrial	versus	ventricular	myocytes,	or	

Purkinje	fibres	versus	AV	nodal	cells.		Also,	the	inherent	property	whereby	conduction	

is	faster	along	the	longitudinal	axis	of	cardiomyocytes	rather	than	their	transverse	axis.		

This	directional	dependence	is	known	as	anisotropy,	and	is	related	to	cellular	

structure,	connectivity	and	gap	junction	localisation60,72.		Cardiomyocytes	are	

cylindrical	rods	and	have	a	length:width	ratio	of	over	five.		It	is	generally	assumed	that	

most	propagation	delay	occurs	at	gap	junctions	rather	than	within	the	cardiomyocyte.		

Ventricular	myocytes	are	typically	connected	to	around	10	other	myocytes,	whereas	

this	number	is	smaller	in	the	atria.		Finally,	there	is	some	evidence	that	gap	junctions	

are	clustered	more	at	the	cell	ends	than	along	their	length60,61.		Together	these	factors	

indicate	a	preference	for	passage	of	current	in	the	longitudinal	as	opposed	to	the	

transverse	direction	throughout	the	tissue.		They	also	explain	differences	in	the	

anisotropy	ratio	of	the	atria	compared	to	the	ventricles	for	example	(i.e.	longitudinal	to	

transverse	conduction	velocity	ratio).			

A	couple	of	other	factors	deserving	mention	are	the	health	of	the	tissue,	and	the	

stimulation	parameters,	where	an	external	stimulus	is	used.		Scarred	or	damaged	

tissue,	either	in	vivo	following	myocardial	infarction	for	example,	or	ex	vivo	following	

traumatic	tissue	harvest,	will	display	abnormal	conduction	properties.		And	tissue	can	
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be	stimulated	in	various	ways	and	to	various	levels,	but	briefly,	the	size	of	the	

electrode,	whether	a	point	source	or	linear	electrode	is	used,	and	the	amplitude	of	the	

stimulus,	are	all	relevant	to	subsequent	measurements	on	impulse	propagation.	

Experimental	estimates	vary,	but	in	ventricular	tissue	have	been	found	to	be	in	the	

region	of		50	cm	s-1,	whilst	in	the	His-Purkinje	system	approximately	2	m/s60,73	(see	

also	Chapter	8).			

	

	

Murine	cardiac	conduction	

	

Anatomically,	the	main	components	of	the	conduction	system	are	similar	in	mice	to	

humans27,74,75.		Mice	also	show	a	similar	expression	pattern	of	connexins,	but	in	

addition	express	murine	connexin30.2	(mCx30.2)	primarily	in	the	sinus	and	AV	nodes.		

The	human	orthologue,	Cx31.9,	does	not	appear	to	be	so	important73.		That	these	

connexins	are	important	in	the	mouse	heart	is	illustrated	by	the	phenotypes	of	

knockouts.		Cx43-/-	mice	for	example,	survive	to	term,	but	die	shortly	after	from	right	

ventricular	outflow	obstruction,	suggesting	this	protein	also	has	a	developmental	

role76.		Conduction	velocities	obtained	with	murine	hearts	or	tissue	are	similar	to	those	

reported	in	humans69,74.			

	

	

	

1.3	 Cell	signalling	

	

The	study	of	intracellular	signalling	relates	to	the	cascades	linking	a	stimulus	or	

initiator,	to	a	relay	or	effector,	and	the	subsequent	cellular	response.		A	large	number	of	

these	pathways	exist,	serving	diverse	physiological	processes.		Broadly	they	can	be	

divided	into	those	pathways	responding	to	stimuli	arriving	at	the	cell	membrane,	and	

those	arising	within	the	cell77.		Neurotransmitters,	hormones	and	growth	factors	

interact	with	cell	membrane	receptors,	resulting	in	activation	of	the	latter,	and	

initiation	of	signalling	pathways.		In	this	way,	the	behaviour	of	cells	or	tissues	of	one	

organ	can	be	modified	by	other	organs.			

Some	of	the	features	that	make	this	branch	of	physiology	particularly	complex	are:	

cross-talk	between	pathways,	multiple	isoforms	of	receptors	or	enzymes	due	to	slight	

differences	in	sequence	homology,	and	redundancy,	in	part	resulting	from	this,	but	also	

from	pathway	interactions.		Indeed,	the	fact	that	separate	pathways	can	converge	on	an	
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effector,	or	that	a	receptor	or	downstream	signalling	molecule	can	exert	disparate	

(even	paradoxical)	effects	(e.g.	β2-adrenoceptor	(β2AR),	M2-Acetylcholine	(M2-mACh)	

receptor78),	as	well	as	the	presence	of	autoregulatory	feedback,	makes	attempts	to	

understand	these	systems	especially	challenging.		To	add	to	this,	the	structural	

similarities	of	receptors/enzymes	of	the	same	class	often	make	quantification	and	

functional	assays	difficult.		Despite	these	difficulties	however,	huge	amounts	of	

progress	have	been	made	in	this	field	over	the	last	few	decades,	and	development	of	

novel	therapeutics	is	reliant	on	the	insights	gleaned.	

	

Although	many	messenger	molecules	exist,	one	of	particular	importance,	both	

generally,	and	in	relation	to	subsequent	discussion	here,	is	cyclic	adenosine	

monophosphate	(cAMP).		This	prototypical	‘second	messenger’	was	identified	by	Earl	

Sutherland	and	colleagues	in	the	late	1950s79.		It	serves	to	regulate	cellular	responses	

in	tissues	as	varied	as	brain,	the	adrenal	glands,	skeletal	and	cardiac	muscle,	lung,	

kidney	and	liver77.		It	is	generated	by	the	enzyme	adenylyl	cylase	(AC)	through	a	

sequence	of	interactions	that	begin	with	a	hormone	or	neurotransmitter	typically.			

	

	
Figure	8		G	protein	and	cAMP	signalling	in	the	heart.		Modified	from	Lee	et	al80.		Adren/NA:	
(nor)adrenaline,	Gs:	stimulatory	G	protein,	Gi:	inhibitory	G	protein,	AC:	adenylyl	cyclase,	LTCC:	L-type	Ca2+	
channel,	cAMP:	cyclic	adenosine	monophosphate,	PKA:	protein	kinase	A,	PLB:	phospholamban,	SERCA2a:	
sarco/endoplasmic	reticulum	calcium	ATPase,	RyR:	ryanodine	receptor.	
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Upon	binding	to	a	special	class	of	cell	membrane-bound	receptor	known	as	G-protein	

coupled	receptors	(GPCRs,	see	below),	heterotrimeric	G-proteins	are	activated	which	in	

turn	regulate	AC	(see	Figure	8).		It	is	worth	noting	that	AC	is	not	in	fact	one	molecule,	

but	a	family	of	isoforms,	the	majority	of	which	are	membrane-bound.		

As	can	be	seen	in	Figure	8,	cAMP	exerts	most	of	its	effects	through	protein	kinase	A	

(PKA),	though	other	targets	include	the	exchange	proteins	activated	by	cAMP	(EPACs).		

Its	action	is	terminated	through	either	hydrolysis	by	phosphodiesterases,	or	efflux	

from	the	cell80.	

	

	

1.3.1	 G-protein	coupled	receptors	(GPCRs)	

	

GPCRs	constitute	the	largest	superfamily	of	cell	membrane	receptors,	numbering	

approximately	80078,81,	the	other	two	types	being	ion	channel-linked,	and	enzyme-

linked	receptors.		Within	this	superfamily,	there	are	five	subfamilies:	glutamate,	

rhodopsin,	adhesion,	frizzled/taste2,	and	secretin82.		They	respond	to	stimuli	as	diverse	

as	hormones,	neurotransmitters,	light,	tastes	and	amino	acids,	and	collectively	

represent	major	targets	for	drug	action.			

Structurally	GPCRs	are	all	similar,	sharing	a	seven	transmembrane	domain	structure.		

More	precisely,	there	are	seven	alpha-helical	domains,	three	interhelical	loops	either	

side	of	the	membrane,	an	extracellular	N-terminus	and	an	intracellular	C-terminus81.		

The	second	and	third	intracellular	loops	and	the	C-terminal	tail	are	important	for	

interaction	with	their	intracellular	messengers,	the	heterotrimeric	G	proteins	(termed	

‘G	proteins’	from	hereon	in).			

In	terms	of	activation,	agonist	binding	induces	a	conformational	change	in	cytoplasmic	

domains	allowing	interaction	with	G-proteins.		However,	these	receptors	do	not	

necessarily	require	an	agonist;	some	show	constitutive	activity.		Once	activated,	the	

receptor	functions	as	a	guanine	exchange	factor	(GEF),	exchanging	guanosine	

diphosphate	(GDP)	for	triphosphate	(GTP)	on	the	G	protein	α	subunit,	thereby	

activating	the	G	protein.		It	is	noteworthy	that	different	agonists	bound	to	the	same	

receptor	can	stimulate	distinct	signalling	pathways,	a	phenomenon	termed	‘ligand-

directed	signalling’.			

With	regard	to	how	GPCRs	and	G	proteins	come	to	be	in	the	proximity	required	for	

interaction,	there	are	two	models:	‘collision-coupling’	holds	that	G	proteins	can	only	

interact	with	activated	receptors,	whereas	‘pre-coupling’	describes	a	model	where	the	

G	protein	is	able	to	interact	with	a	receptor	prior	to	agonist	binding81.		Receptors	show	
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preference	for	specific	G	protein	isoforms;	however,	this	does	not	preclude	interaction	

with	more	than	one	G	protein	(see	Section	1.8).			

Deactivation	is	brought	about	by	receptor	phosphorylation	by	protein	kinase	A	(PKA)	

or	C	(PKC),	or	by	GPCR	kinases	(GRKs),	which	results	in	uncoupling	from	G	proteins83.		

GRK	phosphorylation	leads	to	binding	of	arrestins,	resulting	in	internalisation77,78.		The	

GPCR	may	then	either	be	dephosphorylated	and	returned	to	the	membrane,	or	

trafficked	to	lysosomes	for	degradation.	

Within	the	cardiovascular	system,	important	examples	of	GPCRs	include	the	α1-	and	β-

adrenoceptors,	the	A2A-adenosine,	M2-muscarinic	(mACh),	angiotensin	II	AT1,	and	

endothelin-1	ETA	receptors.	

	

	

1.3.2	 Heterotrimeric	G	proteins	

	

These	extrinsic	membrane	proteins	are	molecular	mediators	in	the	pathway	from	

stimulus	to	cellular	response.		They	comprise	alpha,	beta	and	gamma	subunits,	which	

in	the	inactive	state	combine	to	form	a	trimer.		In	the	active	state,	the	beta	and	gamma	

subunits	separate	as	a	dimer	from	the	alpha	subunit,	and	both	these	components	have	

roles	in	signalling.		There	are	21	known	alpha,	6	beta,	and	12	gamma	subunits81,	and	

these	exist	in	various	combinations,	both	in	terms	of	the	beta-gamma	dimer,	and	its	

association	with	an	alpha	subunit.		Not	all	possible	combinations	have	been	shown	to	

occur	however.			

	

Heterotrimers	are	divided	into	four	classes	based	on	the	alpha	subunit	sequence:	Gs,	

Gi,	Gq	and	G12.		Those	in	the	Gi	class	(sometimes	written	Gi/o)	are	known	as	

‘inhibitory’	G	proteins,	due	to	their	effect	on	adenylyl	cyclase,	and	include	Gi1,	Gi2,	Gi3,	

Go1	and	Go2.		Activity	of	all	these	isoforms	is	inhibited	by	pertussis	toxin,	and	they	are	

sometimes	referred	to	as	‘pertussis	toxin	sensitive’	G	proteins.			

Sites	of	contact	with	GPCRs	are	unsurprisingly	important	in	determining	coupling	

specificity	to	the	receptors.		Important	sites	on	the	G	protein	are	thought	to	be	the	C	

terminal	helix	and	certain	adjacent	loops	of	the	Gα	subunit,	as	well	as	the	C-terminal	of	

the	Gγ	subunit83.		In	the	inactive	trimeric	state,	the	α	subunit	is	bound	to	GDP.		As	

already	described,	GPCRs	facilitate	exchange	of	this	for	GTP,	thereby	activating	the	G	

protein,	inducing	a	conformational	change	and	leading	to	separation	of	the	α	subunit	

from	the	βγ	dimer77.			
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Both	the	α	and	βγ	components	can	function	as	signal	transducers,	acting	on	a	variety	of	

downstream	targets	(see	also	below).		Interestingly,	despite	separation	on	activation,	it	

has	been	shown	that	with	neuronal	GIRK	channels	the	α	subunit	is	required	to	act	as	a	

kind	of	chaperone	or	co-factor	in	determining	receptor	specificity	for	the	channel84.			

G	protein	signalling	may	continue	until	GTP	is	hydrolysed	to	GDP,	allowing	the	

heterotrimer	to	reform,	thus	completing	the	G	protein	cycle	(see	Figure	9).					

	

	
Figure	9		The	G	protein	cycle,	modified	from	Milligan	et	al85.		GPCR:	G	protein	coupled	receptor,	GTP:	
guanosine	triphosphate,	GDP:	guanosine	diphosphate,	GTPase:	GTP	hydrolase,	RGS:	regulator	of	G	protein	
signalling.	
	

	

This	hydrolysis	may	result	from	intrinsic	hydrolase	activity	of	the	α	subunit,	or	be	

catalysed	by	regulators	of	G	protein	signalling	(RGS).			

In	the	cardiovascular	system,	Gi	proteins	have	been	shown	to	transduce	signals	from	

the	M2	mACh	receptor	to	G	protein-regulated	inwardly	rectifying	K+	(GIRK)	channels,	

and	it	has	been	shown	that	the	βγ	dimer	is	key	here86,87,	although	the	α	subunit	has	a	

co-factor	role	similar	to	that	described	above.		α	subunits	from	each	of	the	four	classes	

are	expressed	within	the	cardiovascular	system	as	a	whole,	i.e.	heart	and	vasculature,	

but	in	the	human	heart	it	is	members	of	the	Gi	and	Gs	classes	which	are	most	important	

(see	below	and	Section	1.8).	
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1.3.3	 Regulators	of	G	protein	signalling		

	

The	rate	of	GTP	hydrolysis	by	the	G	protein	α	subunit	can	be	accelerated	by	a	group	of	

proteins	known	as	regulators	of	G	protein	signalling	(RGS),	of	which	there	are	about	20	

members88.		Within	the	heart	and	vascular	system,	a	number	of	these	have	been	shown	

to	be	expressed:	RGS2,	3,	4,	5,	6,	9	11,	19	and	p115RhoGEF.		Of	these,	RGS2	seems	to	be	

important	in	regulating	vascular	tone.		Levels	of	RGS2,	3	and	4	have	been	shown	to	be	

altered	in	cardiac	hypertrophy	and	heart	failure,	possibly	implicating	them	in	the	

pathophysiology,	although	results	have	not	all	been	consistent78.	

	

	

1.3.4	 G	alpha	i2	

	

This	is	the	predominant	cardiac	Gi	isoform,	at	least	in	the	mouse89,	and	is	of	particular	

interest	in	cardiac	physiology,	due	to	its	participation	in	the	signalling	pathways	linking	

M2-mACh	receptors	to	GIRK	channels,	and	possibly	β-adrenoceptors	(βARs)	to	the	L-

type	calcium	channel	(LTCC),	Cav1.290–96	(see	Figure	10).		Cardiac	GIRK	channels,	

heterotetramers	of	Kir3.1	and	3.4	proteins,	are	expressed	in	the	atria	and	conduction	

system	tissue,	whereas	LTCCs	are	expressed	throughout	the	heart,	and	of	importance	

in	arrhythmias	originating	in	both	atria	and	ventricles97.		

By	the	late	1980s,	it	was	known	that	G	proteins	mediated	the	link	between	βARs	and	

cAMP	production	by	adenylyl	cyclase.		It	had	also	been	shown	that	β1ARs	are	

downregulated	in	heart	failure	(see	Section	1.8.2),	yet	this	did	not	appear	to	account	for	

all	the	observed	reduction	in	cAMP	seen.		As	such,	it	was	hypothesised	that	alterations	

in	G	protein	expression	may	explain	some	of	the	differences	in	cAMP	levels,	and	

therefore	contractile	function	in	failing	hearts98.			

In	1988,	two	groups	reported	increased	expression	of	Gi	proteins	in	myocardial	tissue	

from	patients	with	heart	failure98,99.		In	1990,	Böhm	et	al	noted	increased	expression	of	

Gi	α	subunits	in	dilated,	but	not	ischaemic	cardiomyopathy100,	and	in	1992,	

Eschenhagen	et	al	showed	increased	messenger	RNA	(mRNA)	expression	of	Gαi2	in	

patients	with	both	dilated	and	ischaemic	cardiomyopathy,	whereas	Gαs	and	Gαi3	levels	

were	unaltered	compared	to	controls101;	findings	that	were	recapitulated	in	rats102.			

The	reasons	for	altered	expression	of	Gαi2	were	unclear:	was	it	related	to	

compensatory	hypercontractility	in	viable	segments	of	the	heart,	or	was	it	somehow	

related	to	the	neurohumoural	response	to	LV	impairment	and	its	consequent	elevation	
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Figure	10		The	signalling	pathways	in	the	heart	for	which	there	is	most	evidence	of	Gαi2’s	
involvement.		The	diagram	is	structured	hierarchically,	such	that	receptors	are	in	rectangles	at	the	top,	
signalling	enzymes	downstream	of	Gαi2	are	in	rounded	rectangles/diamonds	below	it,	and	ion	channels	are	
in	pentagons	at	the	bottom.		AR:	adrenoceptor,	mACh:	muscarinic	acetylcholine	receptor,	PKA:	protein	
kinase	A,	AC:	adenylyl	cyclase,	PI3K:	phosphoinositide	3-kinase,	MAPK:	mitogen-activated	protein	kinase,	
ERK:	extracellular	signal-related	kinase,	Akt/PKB:	protein	kinase	B,	LTCC:	L-type	calcium	channel,	GIRK:	G	
protein	regulated	inwardly-rectifying	potassium	channel.	
	

	

of	LV	diastolic	and	pulmonary	venous	pressures?		If	the	latter,	was	it	through	a	direct	

hormonal	effect	on	the	myocardium,	or	a	signalling	cascade	initiated	by	elevated	

pressures,	and	resulting	in	upregulation	of	Gαi2	production?		The	possible	effects	were	

equally	unclear:	was	this	change	a	beneficial,	adaptive	response	of	the	heart,	or	was	it	

maladaptive?	

	

Various	lines	of	evidence	support	the	possibility	of	an	antiarrhythmic	role	for	Gαi2.		

Lerman	et	al	found	a	somatic	mutation	in	the	GNAI2	gene	(which	encodes	the	Gαi2	

protein)	in	a	patient	with	ventricular	tachycardia	originating	in	the	right	ventricular	

outflow	tract.		The	mutation	was	localised	to	the	arrhythmogenic	focus,	led	to	increases	

in	cellular	cAMP,	and	rendered	the	arrhythmia	resistant	to	adenosine-mediated	

suppression103.		Na+/Ca2+	exchange	currents,	believed	to	be	a	contributor	to	early	and	

delayed	afterdepolarisations	(EADs	and	DADs,	as	described	in	Section	1.5),	may	be	

stimulated	by	βAR	activation.		Zhang	et	al	showed	that	adenosine	can	antagonise	this	
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effect	via	inhibitory	G	proteins104.		In	a	similar	vein,	Grimm	et	al	used	pertussis	toxin	to	

inactivate	Gαi	subunits	and	observed	the	effects	on	right	atrial	and	papillary	muscle	

tissue	from	rats,	stimulated	with	the	non-selective	βAR	agonist	isoprenaline.		This	

resulted	in	increased	arrhythmogenic	effects	of	βAR	stimulation105.		Utilising	a	cross	of	

two	transgenic	mouse	lines,	Foerster	et	al	investigated	the	effects	of	human	β2AR	

overexpression	in	mice	deficient	in	Gαi296.		Their	results	suggested	that	Gαi2	exerts	a	

protective	role	in	this	setting	in	terms	of	wall	hypertrophy	and	cardiac	failure.		

Interestingly,	analysis	of	Ca2+	currents	from	the	LTCC	following	pertussis	toxin	

administration	raised	the	possibility	that	Gαi3	rather	than	Gαi2	is	one	of	the	key	

regulators	of	this	channel	in	contrast	to	the	findings	of	Zuberi	et	al94.		However,	the	

situation	is	complicated	further	by	the	fact	that	although	both	Gαi2	and	Gαi3	may	couple	

to	the	β2AR,	Gαi2	coupled	to	the	mACh	receptor	is	able	to	negatively	regulate	the	

LTCC106,107.	

	

Previous	work	using	mice	with	globally-deleted	Gαi2	showed	that	compared	to	controls,	

they	exhibited	a	faster	resting	heart	rate,	and	autonomic	tone	assessment	using	heart	

rate	variability	(HRV)	suggested	parasympathetic	withdrawal108.	Subsequently,	they	

were	shown	to	experience	more	spontaneous	ventricular	ectopy	(premature	beats	

originating	in	the	ventricles),	manifest	action	potential	prolongation,	were	more	prone	

to	inducible	ventricular	arrhythmias,	and	had	increased	expression	of	LTCCs,	with	

increased	Ca2+	currents	using	patch-clamp94.		Taken	together	with	previous	

studies92,96,106,	these	results	therefore	indicate	there	is	some	divergence	of	opinion	as	to	

whether	Gαi2	signalling	enhances,	restricts	or	has	no	effect	on	βAR-induced	LTCC	

activity.	

	

	

	

1.4	 The	autonomic	nervous	system	control	of	ventricular	function	

	

The	autonomic	nervous	system	(ANS)	comprises	the	sympathetic	nervous	system	

(SNS)	and	parasympathetic	nervous	system	(PNS).		Traditionally,	these	two	limbs	have	

been	considered	both	anatomically	and	physiologically	distinct,	exerting	opposing	

effects	on	the	heart	and	other	organs.		Whereas	the	SNS	is	associated	with	excitability	

and	a	heightened	sense	of	arousal,	the	PNS	is	associated	with	relaxation	and	calmness.		

Both	branches	convey	afferent	and	efferent	fibres,	and	it	is	likely	that	both	are	

implicated	in	propensity	to,	and	triggering	of	arrhythmias	in	different	disease	states	of	
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the	heart.		There	is	increasing	recognition	however	of	a	degree	of	anatomical	co-

localisation	even	in	the	vagus	nerve,	and	of	functional	integration109,110.			

The	ANS	supply	of	the	heart	can	be	divided	anatomically	into	extrinsic	and	intrinsic	

components.		The	former	refers	to	neurons	connecting	the	brain	or	spinal	cord	to	the	

heart,	located	outside	the	pericardial	sac.		For	the	SNS	this	consists	of	the	neurons	

connecting	the	cervical	and	thoracic	spinal	cord	to	their	localised	autonomic	ganglia	–	

the	superior	cervical,	cervicothoracic	(stellate),	and	thoracic	ganglia	–	and	the	

postganglionic	fibres	whose	cell	bodies	originate	in	these.		Of	these,	the	stellate	ganglia	

are	most	important	for	the	heart111.		In	addition,	the	SNS	is	usually	considered	to	

include	circulating	catecholamines	released	from	the	adrenal	medulla.		The	PNS	on	the	

other	hand,	has	origins	in	the	nucleus	ambiguus	of	the	medulla	oblongata.		Its	

preganglionic	fibres	travel	predominantly	in	the	right	and	left	branches	of	the	vagus	

nerve,	which	subdivide	near	the	heart112,113.		

The	intrinsic	cardiac	nervous	system	is	comprised	of	autonomic	nerve	fibres	within	the	

pericardial	sac	and	sympathetic	and	parasympathetic	divisions	are	anatomically	and	

physiologically	less	distinct.		Fibres	from	the	extrinsic	SNS	and	PNS	converge	at	

numerous	ganglia	on	the	epicardial	surface	of	the	heart,	most	of	which	are	organised	

into	ganglionated	plexi	(GPs).		These	GPs	appear	to	be	situated	in	defined	regions	of	the	

	

	 	
Figure	11		Anatomical	and	functional	relationships	of	the	autonomic	nervous	system.		CNS:	central	
nervous	system.		After	Armour119.	
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atria	and	ventricles,	and	are	concentrated	in	fat	pads	on	the	epicardium114.		They	are	

interconnected,	and	their	function	appears	to	be	to	integrate	the	signals	from	each	limb	

of	the	ANS	and	other	GPs,	before	communicating	the	output	to	different	regions	of	the	

heart	such	as	the	sinus	and	AV	nodes115	(see	Figure	11).	

The	orthodoxy	that	there	is	little	or	no	parasympathetic	innervation	in	the	ventricles	is	

increasingly	challenged116,117.		In	fact,	it	is	surprising	that	this	view	has	held	sway	for	so	

long	given	results	from	over	150	years	ago	indicating	the	ability	of	vagal	input	to	

modify	arrhythmogenicity118	(see	below).			

The	discussion	above	has	focused	on	subcortical	neurons;	there	is	however	interest	in	

the	modulation	exerted	by	higher	centres	within	the	brain	on	these	pathways,	and	the	

role	of	such	modulation	in	arrhythmogenesis120,121.		That	these	are	important	is	

exemplified	most	convincingly	by	ECG	changes	that	occur	following	intracranial	events	

such	as	subarachnoid	haemorrhage,	and	the	reported	association	of	sudden	death	with	

mental	stress121.	

	

	

1.4.1	 Receptors	and	signal	transduction	

	

At	a	molecular	level,	the	SNS	communicates	with	cardiomyocytes	via	adrenergic	

receptors/adrenoceptors	(ARs),	whilst	the	PNS	communicates	primarily	via	muscarinic	

acetylcholine	(ACh)	receptors	(mAChRs).		α-adrenoceptors	can	be	subdivided	into	α1	

and	α2,	of	which	the	latter	is	barely	expressed,	if	at	all,	in	the	human	heart.		α1-ARs	

comprise	three	subtypes:	α1A,	α1B,	and	α1D,	all	of	which	are	expressed	in	the	heart,	

though	it	is	α1A	and	α1B	which	predominate	in	the	working	myocardium122,123.		Most	

species	show	fairly	similar	levels	of	expression	of	α1-ARs,	except	for	rats	which	show	

markedly	higher	levels,	and	a	relative	abundance	of	the	α1B	subtype	-	an	important	

consideration	in	dose-response	experiments	and	heart	failure	models122.		Cell	

membrane-bound	α1-ARs	signal	through	the	pertussis	toxin	(PTX)	insensitive	Gq	class	

of	G	proteins,	which	in	turn	activate	the	phospholipase	C	(PLC)	β1	–	inositol	

trisphosphate	(IP3)	–	PKC	pathway,	amongst	others.		There	is	also	some	evidence	for	

nuclear	localisation	of	these	receptors123.		α1-AR	stimulation	exerts	inotropic	effects,	

though	these	appear	to	be	less	marked	than	with	βAR	stimulation.		Perhaps	neglected	

somewhat	due	to	their	relative	lack	of	expression,	there	is	nevertheless	interest	in	the	

role	of	α1-ARs	in	myocardial	adaptation,	for	example	in	heart	failure,	and	in	

cardioprotection123.	
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Beta-adrenoceptors	(βARs)	are	situated	in	the	sarcolemma	and	constitute	

approximately	90%	of	the	total	ARs	in	the	heart.		There	are	three	subtypes	-	β1-3	-	

although	in	mammalian	hearts,	β1	and	β2	are	by	far	the	most	abundant,	and	of	greatest	

importance124.			

In	normal	human	hearts,	the	ratio	of	β1:	β2	ARs	is	approximately	75:25	in	the	ventricle,	

with	a	slightly	lower	proportion	of	β1ARs	in	the	atria122.		With	regard	to	signal	

transduction,	β1ARs	signal	exclusively	through	the	stimulatory	G-protein,	Gs,	whereas	

β2ARs	are	able	to	signal	through	both	Gs	and	Gi,	the	inhibitory	counterpart125,126	(see	

Figure	8	in	Section	1.3).		Of	the	Gi	isoforms,	there	is	evidence	to	support	Gαi2’s	coupling	

to	the	β2AR,	though	Gαi3	may	also	be	an	important	mediator,	particularly	with	regard	

to	regulation	of	the	LTCC94,96.			

Murine	knockout	models	suggest	that	of	β1	and	β2,	the	former	is	the	predominant	

driver	of	heart	rate	and	contractility,	although	human	studies	suggest	that	β2	does	

have	modest	inotropic	effects127.		Differences	are	somewhat	difficult	to	tease	out	due	to	

the	shared	Gs	signalling	pathway.		At	a	molecular	level,	the	βAR/Gs	–	AC	-	cAMP	–	PKA	

signalling	cascade	increases	phosphorylation	of	LTCCs,	phospholamban,	troponins	and	

the	ryanodine	receptor	(RyR),	actions	which	enhance	inotropy	and	lusitropy77,124,127.		In	

humans,	the	two	main	repolarising	potassium	currents,	IKr	and	IKs,	are	also	regulated	

through	this	cascade,	as	is	the	pacemaker	current,	If,	which	is	in	fact	directly	sensitive	

to	cAMP38.		As	noted	earlier,	IKr	and	IKs	are	not	present	in	the	mouse,	and	the	main	

repolarising	currents	in	this	species,	and	their	modulation	by	βAR	agonism,	are	less	

well-studied.	

	

Efferent	parasympathetic	neural	activity	from	the	vagus	nerves	releases	ACh.		Of	the	

five	mAChR	subtypes,	the	predominant	one	in	mammalian	hearts	is	the	M2	receptor.		

Unlike	the	M1,	M3	and	M5	receptors,	which	typically	couple	to	Gq/PLC,	the	M2	receptor	

preferentially	interacts	with	Gi122.			The	main	effects	of	ACh	signalling	differ	slightly	

between	atria	and	ventricles.		In	both	sets	of	chambers,	Gi	activation	leads	to	AC	

inhibition,	reducing	cAMP	and	downstream	PKA	signalling	effects.		Consequent	

reduction	of	LTCC	currents,	amongst	other	things,	results	in	reduced	inotropy.		In	the	

atria,	additional	electrophysiological	effects	occur	as	a	result	of	lower	levels	of	cAMP	

and	GIRK	channel	activation	(see	also	Section	1.3).		The	former	through	direct	effects	

on	If	in	the	sinus	node,	reduces	heart	rate,	whereas	the	latter	induces	K+	outflow,	with	

resultant	hyperpolarisation	and	APD	abbreviation38,128	(see	Figure	12).		In	contrast	

with	the	atria	where	the	PNS	can	directly	lead	to	reduced	chronotropy	and	inotropy,	
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the	ventricles	appear	to	require	pre-existing	sympathetic	activity	in	order	for	the	PNS	

to	elicit	the	same	effects122,129.			

These	differences	between	chambers	including	the	restriction	of	GIRK	expression	

largely	to	the	atria,	coupled	with	the	evidence	supporting	the	anti-arrhythmic	effects	of	

PNS	signalling	in	the	ventricles118,130,131,	suggest	the	possibility	of	other	intrinsic	ANS	

neurotransmitters	and	anti-arrhythmic	mediators111.		Experiments	suggest	that	nitric	

oxide	(NO)	may	be	one	such	mediator,	effecting	changes	in	the	ventricular	fibrillation	

(VF)	threshold	and	APD	restitution	slope.		Additionally,	it	appears	that	this	may	

operate	independently	of	vagal	nerve	ACh	signalling117.			

	

	
Figure	12		Key	signalling	pathways	and	ion	channels	modulated	by	mACh	receptor	agonism.			ACh	–	
acetylcholine;	mAChR	–	mACh	receptor;	AC:	adenylyl	cyclase;	cAMP	–	cyclic	adenosine	monophosphate;	
PKA	–	protein	kinase	A;	HCN	–	hyperpolarisation-activated	cyclic	nucleotide	gated	channel;	LTCC	–	L-type	
calcium	channel;	GIRK	–	G	protein	regulated	inwardly	rectifying	potassium	channel.	
	

	

1.4.2	 Assessment	of	the	ANS:	methods	of	measurement	

	

In	humans,	cardiac	sympathetic	and	parasympathetic	activity	can	only	be	studied	

indirectly	at	present.		Several	measurement	techniques	and	indices	have	been	

developed	to	this	end132.		They	are	all	based	on	analysis	of	variations	in	the	beat	to	beat	
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interval	of	the	heart.		Of	these,	probably	the	two	best-studied	are	heart	rate	variability	

(HRV)	and	baroreflex	sensitivity	(BRS).			

HRV	is	the	term	used	to	describe	the	quantification	of	the	normal	oscillation	in	the	beat	

to	beat	interval	of	the	heart	(the	R-R	interval	from	the	ECG).		During	normal	sinus	

rhythm,	heart	rate	is	governed	by	the	spontaneous	discharge	of	the	sinus	node.		The	

sinus	node	however,	is	under	the	influence	of	the	SNS	and	PNS,	and	these	opposing	

influences	lead	to	fluctuations	in	its	rate	of	discharge.		HRV	analysis	utilises	the	ECG	to	

quantify	this	variability	and	is	a	non-invasive	means	of	making	inferences	about	the	

relative	contributions	of	the	sympathetic	and	parasympathetic	arms	of	the	autonomic	

nervous	inputs	to	the	heart.				The	technique	developed	from	research	into	foetal	

distress	in	the	1960s	133.		Its	applicability	to	cardiac	disease	was	obvious,	and	in	the	

1980s	and	‘90s,	much	work	was	performed	utilising	the	technique.		Time	domain	

measures	are	the	simplest,	and	in	general	are	indices	reflecting	variation	in	R-R	

interval,	such	as	standard	deviation.		Frequency	domain	measures	can	be	performed	

using	shorter	recordings,	but	are	more	complex:	they	require	conversion	of	the	R-R	

interval	data	into	a	power	spectral	density	via	a	transform.		This	power	spectrum	is	

then	divided	into	three	frequency	bands:	very	low	frequency	(VLF),	low	frequency	(LF),	

and	high	frequency	(HF).		It	has	been	determined	that	the	HF	component	is	governed	to	

a	large	extent	by	the	heart’s	parasympathetic	input,	whereas	the	LF	component	reflects	

both	sympathetic	and	parasympathetic	inputs.		The	origin	of	the	VLF	component	is	

uncertain134.			

BRS	refers	to	the	adjustment	of	heart	rate	that	occurs	in	response	to	changes	in	blood	

pressure	(BP),	and	is	a	reflection	of	the	feedback	and	co-regulation	of	both	limbs	of	the	

ANS,	though	is	predominantly	regarded	as	an	index	of	vagal	efferent	activity135,136.		

Measurement	commonly	involves	administration	of	a	bolus	of	an	α-AR	agonist	to	

increase	BP.		Aortic	and	carotid	baroreceptors	convey	afferent	information	via	cranial	

nerves	nine	and	ten	to	the	medulla,	resulting	in	the	arterial	baroreflex,	whereby	

increased	parasympathetic	output	results	in	a	reduction	in	heart	rate137.		BP	and	heart	

rate	are	measured	simultaneously,	and	the	change	in	each	parameter	is	plotted.		The	

slope	of	the	line	is	determined,	i.e.	change	in	R-R	interval	(ms)	per	change	in	unit	blood	

pressure	(mmHg).		This	technique	was	shown	to	have	prognostic	value	in	the	ATRAMI	

trial138.			
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1.4.3	 The	ANS	in	the	pathophysiology	of	arrhythmias	

	

There	is	abundant,	albeit	largely	circumstantial	evidence	that	the	ANS	is	implicated	in	

the	pathophysiology	of	a	range	of	arrhythmias	and	inherited	arrhythmia	syndromes.		

From	experiments	performed	over	100	years	ago	demonstrating	the	protection	

afforded	by	vagal	stimulation	against	VF,	to	studies	showing	the	prognostic	value	of	

HRV	and	BRS,	and	the	efficacy	of	reduction	in	SNS	activity,	either	through	

pharmacological	blockade	or	neural	ablation.			

Reduced	HRV	has	been	shown	to	be	a	poor	prognostic	marker	in	heart	failure.			In	the	

UK-Heart	study,	reduced	SDNN	(standard	deviation	of	N-N	intervals)	was	found	to	be	a	

significant	predictor	of	all-cause	mortality	in	patients	with	chronic	heart	failure,	and	

the	strongest	predictor	of	death	due	to	progressive	heart	failure139.		However,	not	all	

studies	have	shown	utility	in	risk	stratification132,140.		And	it	is	interesting	to	note	that	

HRV	has	not	been	shown	to	be	directly	linked	to	arrhythmic	death	(though	see	below).	

Eckberg	et	al	showed	reduced	parasympathetic	activity	in	patients	with	heart	failure	

compared	to	normal	subjects.		Elevation	of	heart	rate	following	PNS	blockade	with	

atropine	was	less	marked	in	patients,	and	BRS	was	reduced135.		In	the	ATRAMI	trial	

involving	1284	post-MI	patients	BRS	was	shown	to	have	prognostic	value	independent	

of	HRV	and	left	ventricular	(LV)	ejection	fraction	(EF)138.		Though	these	do	not	provide	

direct	evidence	of	a	role	in	arrhythmogenesis,	arrhythmias	are	the	commonest	cause	of	

death	in	patients	with	heart	failure,	and	account	for	much	of	the	morbidity	associated	

with	this	condition.			

More	direct	evidence	comes	from	both	animal	and	human	studies.		In	a	canine	study	

involving	simultaneous	recordings	of	left	stellate	ganglion	activity	and	ambulatory	

ECGs	in	dogs	surviving	myocardial	infarction	(MI),	Zhou	et	al	showed	that	increased	

stellate	activity	tended	to	precede	onset	of	ventricular	arrhythmias141.		Consistent	with	

these	findings,	Schwartz	et	al	found	that	left	cardiac	sympathetic	denervation	was	

effective	in	reducing	sudden	death	amongst	survivors	of	myocardial	infarction	

complicated	by	ventricular	arrhythmias142.		A	randomised	trial	of	bilateral	cardiac	

sympathetic	denervation	in	patients	with	ICDs	who	experience	VAs	is	planned143.			

In	Brugada	Syndrome,	it	is	possibly	the	PNS	that	appears	to	have	more	of	a	role	in	

arrhythmia	induction,	or	perhaps	a	relative	lack	of	sympathetic	activity.		An	analysis	of	

the	temporal	distributions	of	VF	in	patients	with	this	syndrome	found	a	higher	

incidence	between	midnight	and	06:00144.		And	Miyazaki	et	al	were	able	to	exacerbate	

the	ST	elevation	seen	on	the	ECG	with	muscarinic	agonists,	whereas	isoprenaline	

reduced	this145;	the	latter	is	suggested	as	a	possible	therapy	in	such	patients	who	
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experience	recurrent	VAs	in	rapid	succession	(‘electrical	storm’)146.			In	the	LQTS,	there	

is	a	correlation	between	genotype	and	triggers	for	cardiac	events,	with	LQT1	genotype	

associated	with	exercise	in	particular,	and	LQT3	with	sleep	or	rest147.		Beta-blockers	

form	the	mainstay	of	management	in	this	condition.			

Finally,	although	designed	with	heart	failure	rather	than	arrhythmias	in	mind,	vagal	

nerve	stimulation	is	currently	under	investigation.		Results	of	the	NECTAR-HF	trial	

failed	to	show	any	benefit	in	the	primary	or	secondary	endpoint	measures148;	a	further	

trial,	INOVATE-HF	is	underway149.	

	

	

	

1.5	 Arrhythmia	mechanisms	

	

Understanding	of	the	mechanisms	underlying	arrhythmias	continues	to	evolve.		

Traditionally,	at	a	cellular	and	tissue	level	these	have	been	divided	into	disorders	of	

impulse	formation,	disorders	of	conduction/propagation,	or	a	combination	of	

both32.		With	regards	to	tachyarrhythmias,	the	three	most	common	mechanisms	are	

triggered	activity,	abnormal	automaticity,	and	re-entry.		The	first	two	can	be	

considered	disorders	of	impulse	formation,	whereas	re-entry	is	a	disorder	of	

conduction/propagation.		Without	further	explanation,	it	could	be	understood	that	

each	of	these	three	mechanisms	is	equally	capable	of	both	initiating	and	sustaining	an	

arrhythmia.		However,	this	is	unlikely:	triggered	activity	is,	as	the	name	suggests,	more	

often	an	arrhythmic	trigger	than	a	sustaining	mechanism.		Re-entry	in	its	various	

forms,	is	the	most	common	sustaining	mechanism,	but	requires	a	trigger	or	at	least	a	

change	in	the	myocardial	substrate	to	allow	its	initiation.			

	

	

1.5.1	 Triggered	activity	

	

Triggered	activity	may	take	the	form	of	either	EADs	or	DADs	(Figure	13).		EADs	usually	

occur	with	delayed	repolarisation,	which	can	cause	‘repolarisation	instability’,	

rendering	cells	more	susceptible	to	premature	depolarisation150.		The	postulated	

mechanisms	relate	either	to	arrest	of	repolarisation	due	to	diminished	outward	K+	

currents,	or	abnormal	Ca2+	influx,	either	through	L-type	calcium	channels	or	the	

Na+/Ca2+	exchange	pump150,151.		They	are	most	well-described	as	triggers	for	torsade	de	

pointes,	in	the	setting	of	LQTS.	
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DADs	occur	during	phase	4,	following	completion	of	repolarisation.	They	result	from	

release	of	Ca2+	from	the	sarcoplasmic	reticulum,	which	raises	intracellular	Ca2+	

concentration	([Ca2+]i).		The	Na+/Ca2+	exchanger	extrudes	this,	with	resultant	import	of	

Na+	which	causes	premature	depolarisation150,152.		They	may	occur	with	digitalis,	in	the	

context	of	arrhythmias	associated	with	myocardial	infarction,	or	some	right	ventricular	

outflow	tract	tachycardias.			

	
Figure	13		Afterdepolarisations.		A:	Early	afterdepolarisations	(EADs)	occur	during	phase	2	or	3	of	the	
action	potential	(shown	in	blue).		B:	Delayed	afterdepolarisations	(DADs)	occur	following	completion	of	
repolarisation,	in	phase	4.		If	of	sufficient	magnitude	to	depolarise	the	cell	to	the	activation	threshold	(*),	a	
premature	action	potential	is	initiated	(shown	in	blue).	
	

	

1.5.2	 Disorders	of	automaticity	

	

Disorders	of	automaticity	are	divided	into	those	of	enhanced	normal,	and	abnormal	

automaticity.		The	former	occurs	in	cells	with	intrinsic	pacemaker	function,	such	as	the	

sinus	node	or	subsidiary	regions	in	the	atria	or	AV	node.		Alterations	in	the	maximum	

diastolic	potential,	threshold	potential,	or	phase	4	depolarisation	slope	underlie	

changes	in	the	frequency	of	action	potential	generation,	and	the	resultant	arrhythmia.	

Inappropriate	sinus	tachycardia	is	an	example	of	enhanced	normal	automaticity.				
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In	tissue	without	intrinsic	pacemaker	capacity,	abnormal	automaticity	may	result	if	

cells	become	partially	depolarised	from	their	normal	phase	4	transmembrane	

voltage.		In	such	pathological	states,	this	can	enable	these	cells	to	spontaneously	

depolarise	repetitively36.		This	may	occur	in	atrial	tachycardia	or	accelerated	

idioventricular	rhythm	for	example.			

	

	

1.5.3	 Re-entry	

	

Re-entry	refers	to	a	circus	movement	of	wavefront	propagation.		First	demonstrated	in	

jellyfish	by	Mayer	in	1908,	it	was	subsequently	shown	to	be	possible	in	cardiac	tissue	

by	Mines	in	191360,153.		In	the	classical	model	of	a	wavefront	progressing	around	an	

anatomical	barrier	in	a	fixed	ring-like	path,	there	are	several	prerequisites	for	re-entry	

to	occur:		

• areas	of	block	or	altered	refractoriness	defining	the	re-entry	path		

• unidirectional	conduction	block	(set	up	by	source-sink	mismatch,	for	example	–	

see	Section	1.2.4)	

• wave	travel	in	a	single	direction		

• termination	if	the	pathway	is	cut	or	blocked		

• region(s)	of	slow	conduction.			

	

An	important	concept	in	this	setting	is	that	of	wavelength.		This	is	defined	as	the	

product	of	conduction	velocity	and	ERP,	and	as	such,	it	represents	the	length	(in	reality,	

volume)	of	tissue	that	is	refractory	to	new	impulses.		For	re-entry	to	occur,	wavelength	

must	be	shorter	than	the	length	of	the	re-entrant	circuit	(path	length).		The	difference	

between	these	is	known	as	the	‘excitable	gap’	–	the	zone	of	non-refractory	tissue	

between	the	wavefront	and	wavetail	(Figure	14).		In	theory	therefore,	prolonging	

wavelength	should	be	antiarrhythmic,	if	it	can	be	made	to	exceed	path	length;	however,	

this	implies	either	increasing	conduction	velocity	or	ERP,	both	of	which	in	the	right	

circumstances	may	also	be	pro-arrhythmic.	

Anatomical	re-entry	operates	in	a	range	of	arrhythmias,	although	the	scale	of	the	re-

entrant	circuit	varies.		Typical	cavo-tricuspid	isthmus-dependent	flutter	and	scar-

related	monomorphic	VT	are	good	examples.		The	former	is	probably	the	closest	to	a	

classical	re-entrant	circuit,	though	even	this	is	thought	to	require	functional	block	

along	the	crista	terminalis.		In	contrast	to	anatomical	block	at	sites	of	unexcitable	non-

cardiomyocyte	tissue	such	as	a	valve	annulus,	this	functional	block	occurs	in	regions	of	
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cardiomyoctyes	where	altered	refractoriness,	induced	by	tachycardia	for	example,	

leads	to	temporary	unexcitability.		

	
Figure	14		Types	of	re-entry.		A:	Classical	anatomical	re-entry.		The	wavelength	is	the	product	of	
conduction	velocity	and	refractory	period	(shown	in	red).		The	excitable	gap	is	the	section	of	the	circuit	
which	is	unexcited,	ahead	of	the	wavefront.		B:	Leading	circle	re-entry.		The	wavefront	impinges	on	the	
wavetail	such	that	there	is	no	excitable	gap.		In	addition,	centripetal	invasion	creates	a	central	region	of	
functional	refractoriness.		C:	Rotor	re-entry.		The	wavefront	and	wavetail	meet	at	a	phase	singularity,	
which	rotates	around	an	unexcited	core.		The	wavelength	(distance	between	the	wavefront	and	tail)	varies	
according	to	distance	from	the	phase	singularity.		Modified	from	Pandit	and	Jalife154.	
	

	

Functional	re-entry:	the	Leading	Circle	model	and	rotors	

	

In	1977,	Allessie	et	al	proposed	a	new	model	of	re-entry	in	which	a	typical	circular	

activation	wavefront	would	occur,	without	the	requirement	for	the	central	anatomical	

obstacle	(e.g.	blood	pool).		In	this	model,	which	they	termed	the	‘leading	circle’	concept,	

the	circuit	is	formed	by	the	smallest	possible	circle	permitted	by	the	

electrophysiological	properties	of	the	tissue155.		A	central	area	of	functional	block	is	

produced	by	centripetal	invasion	from	the	leading	circle.		The	length	of	the	circuit	can	

vary,	dependent	on	the	electrophysiological	properties	of	the	tissue,	and	in	contrast	to	

the	classical	anatomical	re-entry	model,	there	is	no	excitable	gap:	the	wavefront	is	

constantly	impinging	on	the	wavetail	(Figure	14).			

Developments	in	understanding	of	fibrillation	came	from	work	on	multiple	wavelets	

and	rotors154,156,157.		These	alternatives	to	the	uniform,	cyclical	nature	of	anatomical	re-

entry	offered	a	means	of	accounting	for	the	absolute	irregularity	observed	with	

fibrillation.			
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A	rotor	is	a	form	of	functional	re-entrant	activity	in	which	a	curved	wavefront	and	

wavetail	meet	at	a	point	known	as	the	phase	singularity.		When	stationary,	this	point	

rotates	around	a	small	circle	or	core	(Figure	14).	The	curvature	properties	of	the	

wavefront	at	the	singularity	prevent	invasion	of	the	core,	such	that	it	remains	

unexcited,	in	contrast	to	what	occurs	in	leading	circle	re-entry.		One	consequence	of	

this	is	that	the	rotor	can	meander,	in	which	case	more	complex	core	geometries	will	

result.		The	rotor	is	therefore	the	‘driver’,	while	spiral	waves	are	the	2-dimensional	

propagating	wavefronts,	emanating	from	the	phase	singularity.		In	3-dimensions,	the	

term	‘scroll	wave’	is	used,	and	the	core	is	considered	a	filament.			

A	further	important	characteristic	of	rotors	and	spiral	waves	is	that	the	wavelength	

varies	with	distance	from	the	core	(see	Figure	14).		And	spin	frequency	rather	than	

wavelength	may	be	a	more	appropriate	index	of	arrhythmogenicity	and	measure	of	the	

effect	of	therapies.		Phase	mapping	and	dominant	frequency	mapping	are	two	

techniques	that	have	been	employed	to	analyse	such	properties	of	rotors.			

Rotors	and	spiral	waves	are	initiated	by	events	that	lead	to	wavebreak.		This	may	occur	

with	collision	of	impulses,	encounter	with	an	obstacle	with	sharp	edges,	or	result	from	

heterogeneity	in	tissue	characteristics.		The	curvature	of	the	wavefront	is	one	of	the	

key	properties	in	determining	rotor	initiation.		Termination	typically	occurs	upon	

collision	of	a	phase	singularity	with	a	boundary154.	

	

	

1.5.4	 Mechanisms	of	ventricular	fibrillation			

	

While	scar-related	monomorphic	VT	is	usually	due	to	anatomical	re-entry,	

maintenance	of	polymorphic	VT	and	VF	necessitate	alternate	mechanistic	explanations	

due	to	their	irregularity.			Three	main	mechanisms	have	been	put	forward158:	

- mother	rotor	re-entry	

- wandering	wavelet	re-entry	

- Purkinje	fibre	activity	

	

With	the	first,	a	stable,	high	frequency	re-entrant	circuit	drives	the	arrhythmia.		The	

edges	of	the	generated	spiral	waves	fractionate,	producing	short-lived	daughter	

wavefronts.		Wandering	wavelet	re-entry	consists	of	multiple	short-lived	wavefronts	

which	meander,	collide,	fractionate,	and	annihilate.		Following	a	triggering	event,	this	

behaviour	facilitates	maintenance	of	the	fibrillation,	supported	by	the	presence	of	

abnormal	myocardial	substrates,	e.g.	regional	tissue	heterogeneities.		Finally,	based	on	
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differences	in	endocardial-epicardial	activation	rates	during	VF,	and	Purkinje	fibre	

anatomy	in	different	species,	studies	have	investigated	the	role	of	the	Purkinje	system	

in	maintaining	VF,	particularly	once	the	arrhythmia	has	been	present	for	two	to	three	

minutes.			The	cellular	events	underlying	this	are	believed	to	include	elevation	of	

calcium	levels	with	triggered	activity	in	Purkinje	fibres158.	

	

	

	

1.6	 Measurement	of	cardiac	electrical	activity	

	

At	a	single	cellular	and	tissue	level	there	are	three	key	measurable	electrophysiological	

parameters:	activation,	repolarisation,	and	refractoriness.		A	fourth	parameter,	impulse	

propagation,	is	important	at	a	multicellular	or	tissue	level.		As	the	foregoing	discussion	

has	illustrated,	each	of	these	properties	is	determined	by	the	interplay	of	a	multitude	of	

ionic	fluxes.		However,	these	four	properties	are	the	common	denominators,	and	

disturbances	in	them	underpin	arrhythmogenesis.		Repolarisation	and	refractoriness	

are	considered	two	entities,	as	although	closely	linked,	their	relationship	is	not	fixed.		

Given	that	research	is	performed	on	substrates	ranging	from	single	cardiomyocytes	to	

the	whole	heart,	these	terms	form	a	core	vocabulary	applicable	to	all.	

Ideally,	the	spatial	location	as	well	as	the	transmembrane	voltage	over	time	(i.e.	action	

potential)	for	every	cardiomyocyte	in	the	heart	would	be	known.		If	this	were	possible,	

each	cell’s	activation	and	repolarisation	could	be	measured,	and	the	wavefronts	of	

depolarisation	and	repolarisation	could	be	calculated.		For	many	reasons,	this	ideal	is	

not	possible.		Nevertheless,	the	study	of	electrophysiology	and	pathophysiology	

requires	measurement	of	the	four	fundamental	parameters.		At	a	tissue	level,	this	

necessitates	use	of	extracellular	proxies	which	reflect	the	key	changes	occurring	

intracellularly.				

			

Measurement	of	these	surrogates	requires	recording	and	analysis	of	signals.		Although	

analogue	components	form	part	of	the	signal	recording	equipment,	these	are	almost	

always	converted	to	digital	signals	which	offer	advantages	in	terms	of	filtering,	storage	

and	reproducibility.		In	terms	of	the	fidelity	of	the	digital	signal	to	its	original	

counterpart,	there	are	two	parameters:	sampling	frequency	and	quantisation.		The	

former	refers	to	the	number	of	times	per	second	a	signal	is	recorded,	and	the	latter	to	

the	number	of	gradations	of	the	output	scale159.		Filters	are	also	important	here	as	a	

means	of	reducing	signal	noise	and	enabling	the	key	components	to	clearly	seen.			
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A	variety	of	techniques	are	available	to	measure	at	least	one	of	the	four	parameters,	

and	there	are	pros	and	cons	associated	with	each.		Intracellular	voltage	measurements	

using	the	patch-clamp	technique	record	transmembrane	action	potentials	(TAPs).		

Recordings	made	using	electrodes	which	make	extracellular	contact	with	

cardiomyocytes	include	unipolar	(UEGs)	and	bipolar	electrograms	(BEGs)	and	

monophasic	action	potentials	(MAPs).		The	activation-recovery	interval	(ARI)	is	a	

parameter	derived	from	UEG	signals.		Refractory	periods	such	as	the	effective	

refractory	period	(ERP)	may	be	determined	either	intra-	or	extracellularly	with	any	of	

these	techniques.		Finally,	the	ECG	measures	global	cardiac	electrical	activity	at	the	

body	surface	(see	Figure	15).			

	

	
	
Figure	15		Cardiac	bioelectric	signals.		1:	Patch-clamp	of	a	cardiomyocyte	with	resulting	TAP.		2:	
Unipolar	extracellular	tissue	recording	with	UEG.		3:	Bipolar	tissue	recording	with	BEG.		4:	Lead	I	
electrocardiography	with	ECG.		Dashed	vertical	line	(a):	phase	0	of	TAP.		This	coincides	with	dV/dtmin	in	
the	UEG,	shown	by	the	first	red	dot,	and	the	peak	value	in	the	BEG.		(b)	indicates	dV/dtmin	of	the	TAP	
during	phase	3,	which	coincides	with	dV/dtmax	of	the	upstroke	of	the	T	wave	in	the	UEG,	illustrated	by	the	
red	dot.		The	time	between	red	dots	is	equal	to	ARI.		By	coincidence	in	this	figure,	(b)	occurs	at	similar	
points	on	the	T	wave	of	the	UEG	and	ECG.		(c)	full	repolarisation	of	the	TAP.		(d)	end	of	the	T	wave	on	the	
body	surface	ECG.			
	



	 56	

1.6.1	 Unipolar	and	bipolar	signals	

	

The	recording	of	bioelectric	signals	requires	two	electrodes	–	one	connected	to	the	

anode,	and	another	to	the	cathode	terminal	of	the	recording	device.		When	only	one	of	

these	electrodes	is	in	contact	with	the	tissue	of	interest,	the	signal	generated	will	be	

‘unipolar’.		In	such	instances,	this	‘exploring’	or	‘different’	electrode	is	usually	

connected	to	the	anode,	with	the	cathodal	electrode	either	situated	in	a	remote,	

electrically	inactive	part	of	the	body,	or	to	the	Wilson’s	central	terminal,	a	‘reference’	or	

‘indifferent’	electrode	derived	from	the	average	potential	of	the	right	arm,	left	arm	and	

left	leg	ECG	electrodes160.			

An	alternative	arrangement	occurs	when	both	electrodes	(anodal	and	cathodal,	

equivalent	to	exploring	and	reference)	are	situated	in	close	proximity	(usually	a	few	

millimetres)	and	are	both	in	contact	with	the	tissue	of	interest.		This	is	known	as	a	

bipolar	configuration,	and	the	signal	from	one	electrode	is	subtracted	from	that	of	the	

other	to	produce	the	BEG.		Unipolar	signals	offer	advantages	in	that	they	give	an	

indication	of	the	direction	of	wavefront	propagation,	and	repolarisation	is	registered.		

Their	main	disadvantage	is	susceptibility	to	noise	and	far-field	signals.		Bipolar	signals	

on	the	other	hand	are	unable	to	reliably	indicate	direction	of	propagation,	but	have	

negligible	far-field	effect	or	noise.			

	

	

1.6.2	 Monophasic	action	potentials	(MAPs)	

	

MAPs	are	a	special	type	of	signal	that	may	be	recorded	in	either	unipolar	or	bipolar	

configuration.		Their	name	derives	from	the	fact	that	the	electrogram	(EGM)	recorded	

shows	a	deflection	in	one	direction	only,	coupled	with	the	similarity	of	this	signal	to	an	

action	potential	morphology,	which	is	believed	to	have	an	electrophysiological	basis	

rather	than	being	coincidental.		MAPs	were	among	the	first	bioelectric	signals	to	be	

recorded.		As	far	back	as	1882,	Burdon-Sanderson	and	Page	used	this	technique	to	

record	the	cardiac	electrical	activity	in	the	frog161,	though	it	was	not	used	in	humans	

until	the	1960s162,163.		For	a	number	of	years,	it	was	believed	that	in	order	to	record	a	

MAP,	an	area	of	tissue	injury	was	required,	though	the	demonstration	that	MAPs	could	

be	recorded	using	the	‘contact’	electrode	method	suggested	local	cellular	

depolarisation	induced	by	catheter	pressure,	rather	than	injury	was	necessary164.			

Over	the	years	several	techniques	have	been	used,	including	suction	electrodes,	the	

contact	electrode	method	(Franz	catheter),	and	KCl	electrodes,	and	the	technique	
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enjoyed	a	resurgence	of	interest	in	the	1980s	and	1990s	after	the	development	of	the	

Franz	catheter,	which	permitted	safer	recordings	in	humans.		Interestingly,	the	issue	of	

which	electrode	records	the	MAP	signal	has	never	quite	reached	consensus165,166;	the	

predominant	view	however	is	that	it	is	the	depolarising	electrode164,167.		The	main	

strength	of	MAPs	is	their	ability	to	approximate	local	APDs,	and	in	particular,	

repolarisation	time.			

	

	

1.6.3	 Transmembrane	action	potentials	(TAPs)	and	their	relation	to	extracellular	

measurements	

	

The	currents	underlying	and	generation	of	action	potentials	have	already	been	

discussed	(see	Section	1.2.2).		These	changes	in	potential	across	the	cellular	membrane	

are	measured	by	piercing	the	cell	membrane	with	an	extremely	fine-tipped	glass	

pipette,	in	a	technique	known	as	sharp	microelectrode	recording,	to	yield	TAPs.		The	

first	descriptions	of	such	recordings	are	from	1949,	by	Ling	and	Gerard	using	frog	

sartorius	muscle	fibres,	and	Coraboeuf	and	Weidmann	with	cardiac	tissue168–170.		

Measurement	of	TAPs	was	a	prerequisite	for	ascertaining	what	different	components	

of	MAP	EGMs,	UEGs	and	BEGs	represented.		Correlational	studies	with	MAPs	showed	

that	the	rapid	upstroke	of	the	signal	corresponded	to	phase	0	of	the	action	potential171.		

And	with	UEGs,	cellular	activation	was	shown	to	most	closely	correlate	with	the	fastest	

portion	of	the	initial	downstroke,	dV/dtmin172,173.		The	theoretical	basis	of	this	is	that	

this	short	period	of	time	is	when	rapid	sodium	influx	into	the	cells	occurs,	suddenly	

leaving	the	extracellular	space	around	them	relatively	negatively	charged.		As	phase	0	

occurs	within	1	ms,	for	the	cluster	of	cells	underlying	an	extracellular	electrode,	their	

collective	depolarisation	will	occur	within	a	few	milliseconds.		Despite	the	general	

acceptance,	there	are	only	a	few	direct	comparisons	between	activation	time	measured	

by	transmembrane	action	potentials	and	extracellular	EGMs.	

There	has	been	less	agreement	concerning	the	timing	of	repolarisation	for	several	

reasons.		Firstly,	phase	3	of	the	action	potential	occurs	less	rapidly	than	phase	0,	and	

consequently	it	is	common	to	refer	to	the	time	at	which	a	certain	level	of	repolarisaton	

has	occurred,	e.g.	APD90,	for	90%	repolarisation,	as	this	may	differ	from	APD50	by	

several	milliseconds.		Secondly,	due	to	the	non-synonymity	of	the	terms	repolarisation	

and	refractoriness,	an	index	of	repolarisation	must	be	chosen	which	is	both	

reproducible,	and	which	has	a	physiological	basis.		Thirdly,	the	polarity	of	the	

repolarisation	(T)	wave	in	a	UEG	may	be	positive	or	negative;	it	must	be	decided	if	one	
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rule	can	be	applied	to	both,	or	if	there	are	separate	ways	to	define	the	repolarisation	

time	for	each.		Finally,	although	it	is	acknowledged	that	the	T	wave	in	both	UEGs	and	

ECGs	is	related	to	repolarisation,	exactly	how	it	is	generated	remains	unanswered.	

One	of	the	first	and	best	known	indices	of	repolarisation	derived	from	UEGs	is	that	

described	by	Wyatt	et	al	in	1980174,175.		These	investigators	compared	TAP	duration	

with	the	time	interval	from	the	initial	dV/dtmin	to	dV/dtmax	of	the	UEG	T	wave,	and	

found	it	to	be	highly	correlated.		Defining	repolarisation	in	this	way	has	become	known	

as	the	‘Wyatt’	method	with	dV/dtmax	referred	to	as	Tup;	an	alternative	utilising		dV/dtmin	

of	the	downslope	of	positive	T	waves	(Tdown)	has	been	termed	the	‘alternative’	

method176–178.	Although	not	named	as	such	until	Millar	et	al’s	publication	in	1985179,	

Wyatt	et	al’s	work	in	fact	provided	the	first	description	of	an	activation-recovery	

interval	(ARI)	measurement.		Further	evidence	of	correlation	was	found	by	Haws	and	

Lux180,	and	Coronel	et	al	provided	support	for	the	use	of	Tup	regardless	of	whether	the	T	

wave	is	positive	or	negative167.		The	physiological	significance	of	Tup	is	supported	by	in	

vivo	work	showing	a	high	correlation	between	ARI	measured	with	this	method,	and	

ERP179.			

	

	

1.6.4	 Electrocardiography	

	

The	electrocardiograph,	which	records	ECGs	was	invented	by	Einthoven	in	the	early	

1900s.		Despite	its	relative	simplicity	compared	to	many	modern	diagnostic	

technologies	used	in	medicine,	it	remains	the	most	important	non-invasive	test	in	

cardiology.		The	principles	underlying	electrocardiography	are:		

	

• that	the	whole	heart’s	electrical	activity	can	be	measured	and	recorded	

graphically,	with	a	degree	of	spatial	specificity	

• that	because	of	the	3D	structure	of	the	heart,	it	is	useful	to	‘look’	at	the	heart	

(i.e.	measure	its	activity)	from	different	spatial	locations	

• that	the	depolarisation	and	repolarisation	of	cardiomyocytes	from	each	

chamber	of	the	heart	create	specific	deflections	on	the	ECG	

• that	these	deflections	are	commonly	altered	in	disease	states	of	the	heart.	

	

In	humans,	it	is	usual	to	record	a	12-lead	ECG;	that	is,	to	record	the	heart’s	electrical	

signals	in	orthogonal	planes	from	12	positions	on	the	body.		The	key	deflections	and	

intervals	are	as	follows:	the	P	wave	represents	combined	left	and	right	atrial	
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depolarisation.		The	PR	interval	is	the	time	taken	from	the	start	of	atrial	depolarisation	

to	initial	depolarisation	within	the	ventricle,	and	therefore	reflects	conduction	through	

the	atria,	the	atrioventricular	(AV)	node,	and	down	the	His-Purkinje	system.		The	QRS	

complex	arises	due	to	depolarisation	of	the	right	and	left	ventricles;	this	is	followed	by	

the	T	wave,	representing	ventricular	repolarisation.		Finally,	the	QT	interval	is	the	time	

from	the	onset	of	the	QRS	complex	to	the	end	of	the	T	wave,	reflecting	depolarisation	

and	repolarisation	of	the	ventricles	(see	Figure	21).		This	interval	varies	with	heart	

rate,	so	that	a	correction	must	be	made	to	reflect	this.		Various	formulae	are	available,	

but	Bazett’s	correction	is	most	commonly	used	(QTc	=	QT/ (𝑅 − 𝑅)	).			

In	relation	to	the	preceding	discussion	on	extracellular	signals,	two	points	are	worth	

bearing	in	mind:	firstly,	the	standard	ECG	records	cardiac	activity	at	the	body	surface,	

and	although	individual	ECG	leads	may	reflect	changes	in	their	vicinity	to	a	degree,	ECG	

signals	largely	represent	summated	global	activity,	and	do	not	offer	anywhere	near	the	

spatial	resolution	of	EGMs	or	MAPs.		In	the	same	vein,	this	combined	output	of	all	the	

cellular	processes	will	therefore	mask	heterogeneities	discernible	at	the	cellular	or	

tissue	level	with	TAPs	or	EGMs.		Secondly,	although	the	QRS	complex	and	T	wave	will	

have	physiological	correlates	on	a	global	scale,	the	fact	they	represent	summated	

activity	means	there	will	be	no	precise	relation	to	local	ventricular	action	potentials	

within	a	section	of	myocardium181.	

	

	

	

1.7	 Gene	knockout	technology	

	

Gene	manipulation	technology	has	come	a	long	way	over	the	last	three	to	four	decades.		

In	the	early	1980s,	microinjection	of	exogenous	DNA	allowed	alteration	of	gene	

expression	to	produce	‘transgenic’	animals.		One	limitation	of	this	approach	was	the	

often	random	incorporation	of	the	DNA	construct	into	the	genome,	with	unregulated	

expression.		With	the	development	of	embryonic	stem	cell	(ESC)	technology,	it	became	

possible	to	‘knock	out’	specific	genes	using	homologous	recombination.		Introduction	of	

ESCs	carrying	the	mutant	gene	into	animal	embryos	permitted	generation	of	lines	of	

‘knockout’	mice	with	specific,	known	gene	mutations182,183.		Although	this	latter	

approach	is	still	in	use,	two	main	drawbacks	exist:	the	embryonic	lethality	conferred	by	

certain	gene	deletions,	and	effects	outside	the	organ	or	interest.			
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The	introduction	of	the	cre-loxP	system	of	gene	recombination	in	the	1980s	has	

enabled	a	more	sophisticated	approach,	permitting	both	spatial	(i.e.	tissue)	and	

temporal	specific	knockout	of	genes	of	interest184–187.			

The	elegant	technology	of	the	cre-loxP	system	(Figure	16)	has	several	prerequisites	in	

order	to	function	properly:	

• Insertion	of	34	base	pair	‘loxP’	sequences	within/around	the	gene	of	interest	to	

target	this	section	of	DNA	for	deletion	

• Confirmation	that	excision	of	the	sequence	between	the	loxP	sites	will	render	

any	transcribed/translated	product	(from	the	remaining	exons)	non-functional	

• Identification	of	a	tissue-specific	gene/protein,	the	promoter	of	which	can	be	

used	to	drive	expression	of	the	cre	recombinase	enzyme	(‘Cre’)	

	

The	principles	of	how	this	system	can	be	utilised	to	produce	cardiac-specific	knockouts	

are	discussed	below.		Although	only	one	gene’s	transcription	apparatus	(i.e.	promoter)	

is	employed,	some	knowledge	of	how	the	relevant	protein	relates	to	others	at	a	cellular	

level	is	beneficial,	and	are	therefore	briefly	discussed.		

	

	
Figure	16		Cre-mediated	excision	of	loxP-flanked	DNA.		1:	The	allele	within	the	genome.		2:	Cre	
recombinase	locates	loxP	sites	flanking	functionally-important	exon.		3:	This	section	of	DNA	is	excised	by	
Cre,	leaving	remaining	exons	to	rejoin	(4).		The	transcribed	DNA	will	therefore	only	include	exons	1	and	3.	
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1.7.1	 Cardiomyocyte	structure-function	relationships	

	

A	cluster	of	myocytes	together	form	a	myofibre,	held	together	by	surrounding	

connective	tissue	which	comprises	the	extracellular	matrix.		At	a	subcellular	level,	each	

myocyte	contains	bundles	of	contractile	proteins	known	as	myofibrils.		These	are	

divided	along	their	length	into	sarcomeres,	the	most	basic	contractile	unit.		A	number	

of	proteins	make	up	these	myofibrils;	together	they	interact	in	a	coordinated	fashion	to	

produce	contraction-relaxation	cycles	whereby	filaments	form	cross-bridges	and	slide	

over	one	another.		Subsequently,	the	cross-bridges	are	broken	and	they	return	to	their	

resting	state.		This	process	is	governed	by	availability	of	Ca2+	ions,	the	presence	of	

which	is	closely	regulated	by	ion	channels	and	pumps,	and	storage	and	release	from	the	

sarcoplasmic	reticulum32.	

	

	

1.7.2	 Myosin	heavy	chain	(MHC)	expression	

	

Myosin	is	an	ATP-binding	protein	that	forms	the	thick	filaments	of	sarcomeres.		It	is	

composed	of	two	heavy	chains	and	four	light	chains.		The	genes	encoding	cardiac	MHCs	

are	located	in	on	chromosome	14	in	humans	and	chromosome	11	in	mice.		These	

chromosomal	loci	are	distinct	from	their	skeletal	muscle	counterparts.		MHCs	exist	in	

two	isoforms,	α	and	β,	which	combine	to	form	αα,	αβ,	or	ββ	dimers.		In	the	human	

ventricle,	these	are	referred	to	as	V1,	V2	or	V3	respectively,	and	they	differ	in	their	

ATPase	activity,	the	reaction	which	induces	myofilament	sliding188–190.			

	

Under	physiological	conditions	in	human	ventricles,	it	is	predominantly	the	β	isoform	

that	is	expressed	during	both	foetal	life	and	postnatally,	whereas	in	the	atria	it	is	the	α	

isoform.			

In	murine	atria,	α-MHC	is	expressed	during	foetal	life	and	after	birth,	and	of	note,	it	is	

also	expressed	in	the	pulmonary	vasculature.		In	the	ventricles	however,	β-MHC	is	the	

predominant	isoform	during	foetal	development,	but	a	switch	occurs	in	the	first	few	

days	following	birth,	leading	to	a	rapid	rise	in	α-MHC	expression	matched	by	a	similarly	

abrupt	decline	in	β-MHC,	such	that	the	former	accounts	for	nearly	all	ventricular	MHC	

expression	by	7	days	after	birth188,190,191.			
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1.7.3	 Regulation	of	expression	of	α-MHC	in	the	mouse	

	

Expression	of	α-MHC	occurs	transiently	in	the	mouse	ventricle	between	days	7.5	and	

10	following	fertilisation.		From	day	10	until	birth,	transcription	is	reduced	after	which	

it	increases	rapidly,	essentially	replacing	β-MHC189.		This	expression	profile	is	driven	by	

myogenic	programmes	which	differ	for	cardiac	and	skeletal	muscle.					

With	regard	to	the	DNA,	the	region	upstream	of	the	transcription	start	site	shows	

conservation	between	species	suggesting	likely	similarities	in	the	factors	governing	

transcriptional	control.		It	also	differs	sufficiently	from	that	of	β-MHC	to	allow	temporal	

and	spatial	specificity	of	expression	of	the	isoforms.		Two	DNA	sequences	of	particular	

importance	have	been	identified:	the	thyroid	hormone	response	element	(TRE)	and	an	

A/T-rich	region	known	as	A/T2.		These	serve	as	contact	points	with	thyroid	hormone	

receptors	(TRs)	and	myocyte	enhancer	factor-2	(MEF-2)	proteins	respectively,	which	

act	as	transcription	factors190.			Prenatally,	MEF-2	binding	may	be	involved	in	

regulation	during	late	foetal	life,	but	postnatally,	the	transcriptional	switch	in	

expression	from	β-	to	α-	isoforms	in	the	ventricle	is	largely	mediated	by	thyroid	

hormones,	reinforcing	the	importance	of	the	TRE.		Finally,	the	GATA	family	of	DNA	

binding	proteins	may	also	have	a	role	as	transcription	factors,	and	changes	in	

chromatin	structure	could	be	implicated.	

	

	

1.7.4	 Cardiomyocyte-specific	knockout	using	the	α-MHC	gene	promoter		

	 	

A	number	of	extra-cardiac	effects	of	global	Gαi2	knockout	have	been	described,	which	

have	the	potential	to	reduce	survival	and	influence	results192–196.		These	reflect	the	fact	

that	Gαi2	also	participates	in	signalling	pathways	outside	the	heart,	and	indeed,	this	fact	

has	been	utilised	both	to	understand	physiology,	and	to	create	models	of	disease.		

These	issues	can	be	circumvented	through	use	of	a	cardio-specific	knockout	model	

which	makes	use	of	the	Cre-loxP	system	of	DNA	recombination184,197.		As	described	

above,	this	requires	appropriately	sited	loxP	sites	to	be	inserted	within	the	GNAI2	gene.		

These	serve	as	recognition	sequences	for	Cre,	expression	of	which	is	under	the	control	

of	the	α-MHC	gene	promoter,	which	is	cardio-specific.		Cre	recombinase	is	therefore	

only	produced	in	cardiomyocytes	where	it	excises	sections	of	the	GNAI2	gene,	

rendering	the	protein	product,	Gαi2,	non-functional.		Evidence	for	the	cardiac	tissue-

specificity	of	Cre-mediated	recombination	when	under	control	of	the	α-MHC	promoter	

is	well-established187,198.		Furthermore,	it	has	been	shown	that	this	construct	does	not	
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lead	to	recombination	in	the	sinoatrial	node199,	and	by	inference,	possibly	not	the	

conducting	system	tissue	either,	due	to		similarities	in	these	cell	types.		Expression	of	

Cre	within	the	heart	is	therefore	likely	limited	to	cardiomyocytes.	

	

The	degree	of	knockout	achieved	with	this	system	has	been	studied	by	several	groups.		

Using	a	tamoxifen-inducible	α-MHC	promoter-driven	Cre,	levels	of	cardiac	myosin	

binding	protein	C	were	reduced	to	50%	after	two	weeks	of	tamoxifen,	and	to	<10%	

after	eight	weeks’	treatment200.		Interestingly,	with	DNA	polymerase	chain	reaction	

(PCR)	analysis,	a	faint	‘flox’	(flanked	by	loxP)	allele	band	(i.e.	amplicon	incorporating	

loxP	sites)	was	still	seen	after	Cre-mediated	excision.		This	likely	resulted	from	non-

myocyte	cells.		Andersson	et	al	showed	that	with	a	tamoxifen-inducible	Cre	under	

control	of	the	α-MHC	promoter,	mRNA	levels	of	a	cardiac	protein	(SERCA2)	rapidly	fell	

with	tamoxifen	treatment	to	<4%	of	that	seen	in	controls	after	four	days.		SERCA2	

protein	levels	were	reduced	to	20%	by	one	week,	and	were	undetectable	after	four	

weeks’	treatment201.		Of	note,	expression	of	this	protein	in	non-cardiac	tissues	(lung	

and	kidney)	was	negligible	in	controls	as	well	as	knockouts.		Cardiac	fibroblasts	would	

therefore	not	be	expected	to	have	‘contaminated’	the	sample,	and	mRNA/protein	

knockdown	would	be	expected	to	be	almost	complete.		Sohal	et	al	demonstrated	>80%	

recombination	following	treatment	with	tamoxifen186,	and	Kedzierski	et	al	

demonstrated	78%	knockdown	of	ETA	mRNA	in	ETAflox/flox	mice	(both	alleles	

incorporating	loxP	sites),	in	which	Cre	was	driven	by	the	α-MHC	promoter202.	

	

	

	

1.8	 Animal	models	of	heart	failure	

	

A	number	of	small	animal	models	of	heart	failure	have	been	developed203,	the	aim	

being	to	simulate	those	changes	that	occur	in	humans	at	systemic,	organ	and	cellular	

level,	so	that	these	processes	can	be	elucidated	further,	and	the	effects	of	other	changes	

such	as	genetic	manipulation	or	drugs,	can	be	studied	in	a	controlled	manner.		Each	

model	has	its	merits,	and	at	the	outset	of	the	project,	it	was	considered	useful	to	

establish	two	models	–	one	surgical	and	one	pharmacological.		In	addition	to	their	

different	complexities,	this	would	also	offer	the	opportunity	to	look	at	the	effects	of	

different	challenges	on	the	cardiovascular	system.		Most	importantly,	setting	up	two	

models	simultaneously	would	act	as	an	insurance	policy,	should	it	prove	difficult	to	

establish	one	of	them.	
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It	is	worth	making	a	distinction	between	LV	systolic	dysfunction	and	‘heart	failure’.		

Although	in	terms	of	pathophysiology	there	is	overlap,	there	are	also	some	differences,	

as	LV	impairment,	particularly	when	mild,	is	unlikely	to	induce	the	neurohumoural	

response	that	characterises	heart	failure.		A	recent	scientific	statement	on	animal	

models	of	heart	failure	recommends	the	following	should	be	assessed	to	ensure	the	

model	is	representative	of	the	syndrome:	measures	of	LV	chamber	size	and	wall	

thickness,	functional	reserve,	echocardiographic	indices	(LVEF	or	fractional	area	

change	(FAC)),	and	gravimetric	data	demonstrating	chamber	hypertrophy	and/or	

elevation	of	filling	pressures203.			

The	uncertainty	regarding	the	driver(s)	behind	Gαi2	elevation,	and	the	overlap	between	

LV	systolic	dysfunction	and	heart	failure,	have	meant	that	while	I	have	generally	used	

the	term	LV	impairment	in	this	thesis,	‘heart	failure’	has	also	been	used	at	times,	

acknowledging	the	assumptions	and	possible	inaccuracies	inherent	in	this	wording.			

	

	

1.8.1	 Myocardial	infarction	

	

The	model	of	MI-induced	heart	failure	has	been	performed	extensively	in	both	small	

and	large	animals.		The	main	advantage	of	this	model	is	that	it	offers	clear	parallels	

with	both	the	pathophysiological	process	involved	in	the	most	common	form	of	heart	

failure	in	humans,	and	the	cardiac	structural	changes	observed.		Thus,	in	contrast	to	

other	heart	failure	models,	where	the	‘insult’	is	more	evenly	distributed	throughout	the	

ventricle,	the	myocardial	infarction	model	leads	to	regional	necrosis,	scar,	and	

contractile	dysfunction.		The	main	disadvantages	of	this	model	are	the	technical	

expertise	required,	and	the	fact	that	the	most	common	process	of	inducing	MI,	even	in	

larger	animals,	namely	coronary	ligation,	is	clearly	different	to	the	endoluminal	

rupturing	of	an	atherosclerotic	plaque	with	subsequent	thrombosis	that	occurs	in	

humans.	

With	regards	to	the	suitability	of	mice	for	this	model,	again	there	are	pros	and	cons.		

Mice	are	cheap,	breed	easily,	are	the	mammal	with	the	most	easily-manipulated	

genome,	and	the	model	is	well-established	in	this	animal.		However,	their	

cardiorespiratory	anatomy	and	physiology	differ	from	that	of	humans	in	several	

important	ways:	

	

• heart	rate	is	8-9	times	faster	than	that	of	humans	
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• oxygen	consumption	is	markedly	lower	–	minute	volume	(inspired	tidal	volume	

x	respiratory	rate)	is	30-40	mL/min	in	the	mouse,	compared	to	15-30	L/min	in	

humans	

• coronary	anatomy	(see	below)	

	

Perhaps	more	importantly,	mice	also	show	a	propensity	to	cardiac	rupture	following	

MI,	which	may	reflect	differences	in	wound	healing	and	scar	tissue	formation204.	

In	view	of	their	size,	large	animals	offer	some	advantages	in	this	regard203,205.		The	

coronary	circulation	of	pigs	is	similar	to	that	of	humans,	and	whilst	the	occurrence	of	

ventricular	arrhythmias	in	porcine	models	is	problematic	in	terms	of	survival206,	it	

resembles	that	which	can	occur	in	humans	without	urgent	revascularisation	and	beta	

blocker	therapy.		One	important	disadvantage	of	the	use	of	dogs	is	the	presence	of	a	

collateral	coronary	circulation.		This	can	limit	infarct	size	and	make	reproducibility	

difficult203.	

	

Differences	in	the	coronary	circulation	between	mice	and	humans	essentially	relate	to	

the	fact	that	in	mice,	the	course	of	the	main	branch	of	the	left	coronary	artery	is	more	

oblique	than	in	humans,	and	that	there	are	differences	in	blood	supply	to	the	septum.		

In	humans	the	right	coronary	artery	supplies	the	basal-mid	inferior	septum	in	about	

two	thirds207,	with	the	left	coronary	artery	supplying	the	anterior	septum.		In	mice,	the	

whole	septum	is	more	commonly	supplied	by	a	branch	of	the	right	coronary	artery,	or	a	

separate	septal	artery	originating	from	the	right	sinus	of	Valsalva208–210.		The	relevance	

of	these	findings	is	that	ligation	of	the	left	coronary	artery	is	likely	to	spare	the	

interventricular	septum	from	infarction.	

	

Two	surgical	techniques	used	to	induce	myocardial	infarction	have	been	described211–

214.		The	classical	technique	using	coronary	ligation,	involves	passing	a	suture	through	

the	ventricular	myocardium	to	encircle	the	main	branch	of	the	left	coronary	artery,	just	

distal	to	the	left	atrium.		Recently,	Gao	et	al	have	described	a	novel	method	of	coronary	

ligation	involving	exteriorisation	of	the	heart,	without	the	requirement	for	

intubation213.		Cryoinjury-induced	infarction	is	an	alternative	method	that	has	been	

shown	to	produce	comparable	left	ventricular	(LV)	impairment	to	that	achieved	with	

ligation;	infarct	size	was	also	shown	to	be	reproducible214.			

Mortality	rates	vary	by	research	group,	and	depend	amongst	other	things,	on	factors	

such	as	time	post-surgery,	technique,	strain,	and	gender	of	mice204,211–218.		Peri-

procedural	mortality	rates	are	reported	to	be	in	the	range	3.5-15.9%,	and	up	to	52%	by	
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28	days211–214.		Commonly	reported	causes	of	death	include	myocardial	rupture,	acute	

heart	failure,	arrhythmia,	and	pneumothorax.		Myocardial	rupture	appears	to	be	

particularly	common,	and	there	are	data	to	suggest	mouse	strain	and	sex	may	be	

important	in	the	risk	of	developing	this204,217–219.		Mechanistically,	these	differences	

have	been	associated	with	for	example,	a	higher	blood	pressure	and	stronger	

inflammatory	response	in	129Sv	mice219.	

	

	

1.8.2	 Supraphysiological	beta-adrenoceptor	agonism	(isoprenaline)	

	

As	already	described,	in	the	normal	heart	the	ratio	of	β1:	β2	ARs	is	approximately	

75:25	in	the	ventricle122.		In	heart	failure	however,	chronically	elevated	levels	of	

catecholamines	result	in	a	fall	in	β1ARs,	while	β2AR	density	remains	largely	

unaltered124.		Despite	this,	Gs	activity	is	paradoxically	unaltered,	whereas	that	of	its	

inhibitory	counterpart	Gi,	is	increased124.		This	upregulation	of	Gi	signalling	is	possibly	

brought	about	by	a	switch	in	β2AR	signalling	from	Gs	to	Gi,	driven	by	PKA	

phosphorylation	of	the	receptor220.			

	

In	ischaemic	heart	disease,	heart	failure	consequent	on	left	ventricular	impairment	

results	largely	from	ischaemia-induced	necrosis,	although	apoptosis	and	autophagy	are	

also	contributory	in	this	and	other	forms	of	the	syndrome221.		In	untreated	LV	failure,	

catecholamine	excess	develops	regardless	of	underlying	aetiology.		However,	it	is	

uncommon	for	catecholamines	alone	to	induce	LV	impairment	and/or	heart	failure	in	

humans:	the	cardiomyopathy	related	to	phaeochromocytoma,	and	probably	Takotsubo	

cardiomyopathy	are	examples	infrequently	encountered.		Therefore,	whilst	it	is	

accepted	they	contribute	to	the	syndrome	at	systemic	and	organ	level,	the	degree	to	

which	these	hormones	participate	in	the	pathophysiology	of	cardiomyocyte	death	is	

debatable.		As	such,	whilst	animal	models	utilizing	βAR	agonists	(usually	the	non-

selective	agonist	isoprenaline/isoproterenol)	as	the	sole	mechanism	of	inducing	LV	

impairment/heart	failure	may	shed	light	on	certain	disease	pathways,	the	relevance	to	

human	pathophysiology	must	be	questioned,	particularly	given	that	the	drug	levels	

used	are	chosen	to	induce	hypertrophy/heart	failure,	rather	than	to	reflect	levels	of	

agonism	seen	in	the	syndrome.		Having	said	that,	the	importance	of	βAR	signalling	in	

heart	failure	is	undisputed,	and	βAR-blocking	drugs	are	a	mainstay	of	therapy.	
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Accepting	that	excessive	βAR	stimulation	can	lead	to	cardiomyocyte	death,	the	

mechanisms	are	still	being	elucidated.		Nakayama	et	al	showed	in	a	murine	model	of	

LTCC	overexpression,	that	βAR	stimulation	can	augment	cellular	Ca2+	overload	and	

myocyte	necrosis,	rather	than	apoptosis222.		Zhang	et	al	found	that	βAR	signalling	can	

lead	to	cytosolic	and	sarcoplasmic	reticulum	(SR)	Ca2+	overload,	which	in	turn	may	

result	in	cell	death;	this	process	was	blocked	by	PKA	inhibition223.	It	remains	unclear	

whether	apoptotic	signals	originate	solely	through	the	β1	signalling	pathway;	studies	

investigating	β2	signalling	through	PI3K	have	shown	conflicting	results	with	regard	to	

cell	survival/apoptosis224,225	(see	Figure	17).	

	

	

	
Figure	17		Important	β1-	and	β2-adrenoceptor	signalling	pathways.		AR:	adrenoceptor,	AC:	adenylyl	
cyclase,	Gs:	stimulatory	G	protein,	Gi:	inhibitory	G	protein,	cAMP:	cyclic	adenosine	monophosphate,	PKA:	
protein	kinase	A,	CaMKII:	Ca2+/calmodulin-dependent	protein	kinase,	PI3K:	phosphoinositide	3-kinase,	
Akt:	protein	kinase	B.		Modified	from	Zheng	et	al127.	
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1.9	 Microelectrode	array	studies	

	

1.9.1	 Background	

	

There	are	many	similarities	between	neurological	and	cardiac	electrophysiology,	both	

in	terms	of	underlying	mechanisms	and	measurement	techniques.		To	measure	brain	

activity	at	the	body	surface,	neuroscientists	record	electroencephalograms	(EEGs),	

whilst	the	cardiac	equivalent	is	the	ECG.		To	measure	local	extracellular	electrical	

activity	of	tissue,	neuroscientists	record	local	field	potentials	(LFPs)	with	

microelectrode	arrays	(MEAs),	whereas	cardiac	electrophysiologists	record	EGMs	or	

MAPs.		Despite	the	differing	terminology,	the	hardware	setup	and	in	particular	the	

electrode	localisation	for	recording	LFPs	and	EGMs	seem	remarkably	similar,	though	

the	signals	obtained	differ,	as	discussed	below.	

	

MEAs	have	been	used	extensively	in	neuronal	experiments	since	at	least	the	1990s226.		

Their	obvious	attraction	is	the	ability	to	simultaneously	monitor	multiple	tissue	

bioelectric	signals	at	potentially	very	high	spatial	resolution.		Having	said	that,	when	

neuroscientists	have	used	them	in	vivo,	two	important	findings	have	emerged.		Firstly,	

the	‘local’	field	potentials	(FPs)	are	not	necessarily	as	local	as	may	be	expected227,	and	

secondly,	at	least	in	vivo,	currents	from	a	host	of	processes	combine	to	produce	the	FP.		

The	predominant	contributor	is	synaptic	activity	due	to	the	relatively	slow	event	rate	

which	facilitates	overlap.		Although	fast	action	potentials	mediated	by	Na+	flux	produce	

spikes	which	contribute	to	FPs,	their	brevity	and	lack	of	synchrony	limit	the	magnitude	

of	this	contribution.		Others	include	calcium	spikes,	Ih	and	IT	currents,	spike	

afterhyperpolarisations,	gap	junction	and	neuro-glia	interactions,	and	ephaptic	

effects228.			

	

The	MEA	suggests	itself	as	suitable	for	the	study	of	cardiomyocyte	clusters	and	cardiac	

tissue	given	their	multicellular	composition	and	electrical	activity.		A	couple	of	the	

important	differences	between	the	heart	and	brain	in	relation	to	such	work	in	vivo	

include	the	mechanical	activity	of	the	heart,	and	its	vascularity.		Though	not	

insurmountable,	ex	vivo	techniques	offer	potential	advantages.		Several	models	are	

available,	including	the	isolated	perfused	heart,	perfused	ventricular	wedge	

preparation,	papillary	muscles,	Purkinje	fibres	and	single	cardiomyocytes.		The	isolated	

perfused	heart	suffers	from	the	same	mechanical	issues	as	in	vivo,	and	ensuring	stable	

recordings	in	the	commonly	used	rodent	heart	is	particularly	challenging.		Ventricular	
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wedge	preparations	maintain	3D	architecture,	complicating	measurements	of	

conduction	velocity,	and	maintaining	perfusion	and	oxygenation	of	small	animal	heart	

sections	is	challenging.		Purkinje	fibres	and	papillary	muscle	techniques	are	time-

consuming	and	technically	difficult,	and	single	cardiomyocytes	must	be	separated	

enzymatically	and	lack	the	intercellular	connections	that	reflect	the	tissue	

environment.			

	

	

1.9.2	 Cardiac	tissue	slices	

	

Cardiac	slices	offer	an	alternative	means	of	tissue	study.		First	used	in	1991	to	study	

neonatal	rat	hearts	with	patch-clamp	recordings229,	this	technique	was	subsequently	

used	in	2005	to	study	murine	embryonic	hearts230.			The	first	study	of	adult	murine	

heart	slices	was	reported	in	2006231,	and	adult	human	slices	in	2011232.		Proposed	

advantages	include	the	possibility	of	using	several	or	even	numerous	tissue	sections	

from	the	same	heart,	relative	ease	of	perfusion/oxygenation,	and	importantly,	

maintenance	of	intact	tissue	structure.		The	thinness	of	the	slices	(200-300	μM)	also	

means	that	propagation	can	be	studied	in	a	pseudo-2D	manner.		The	main	

disadvantages	are	the	requirement	for	dedicated	equipment	such	as	a	vibratome	and	

MEA	recording	hardware,	and	the	need	to	acquire	competence	in	the	Langendorff	

technique	of	retrograde	cardiac	perfusion.	

	

Maintenance	of	tissue	viability	is	paramount	if	good	quality	signals	are	to	be	recorded	

with	the	MEA.		The	heart	undergoes	a	good	deal	of	physical	trauma	and	is	exposed	to	

metabolically	stressful	environments.		The	former	is	only	minimally	modifiable,	so	

efforts	are	concentrated	on	the	latter.		The	heart	is	first	removed	en	masse	from	the	

body,	and	extraneous	tissue	is	removed	prior	to	retrograde	perfusion.		This	is	done	in	

ice-cold	liquid	or	on	ice.		Retrograde	perfusion	using	the	‘Langendorff	technique’	is	

then	initiated.		This	was	first	described	by	Langendorff	in	1895	and	is	a	means	of	

perfusing	the	ventricles	when	the	heart	is	removed	from	the	body	and	has	lost	the	

pulmonary	circuit	through	which	antegrade	blood	flow	normally	occurs233.		The	aorta	

is	cannulated	and	perfusate	pushes	the	aortic	valve	closed	allowing	it	to	flow	down	the	

coronary	arteries234.			

The	perfusate	must	supply	oxygen	and	a	substrate	in	order	to	permit	continued	

metabolism.		Although	whole	blood	perfusion	is	possible,	more	commonly	crystalline	

solutions	are	used.		The	ionic	constitution	should	be	similar	to	that	of	blood,	so	that	it	is	
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isotonic	with	the	interstitial	fluid.	Also,	the	pH	should	be	physiological,	achieved	with	

carbon	dioxide	(95%	O2	and	5%	CO2)	and	buffered	by	bicarbonate	or	inorganic	

phosphate.		The	two	solutions	most	frequently	used	are	Krebs-Henseleit	buffer,	and	

Tyrode’s	solution.		These	are	broadly	similar,	and	often	modified	e.g.	with	regard	to	K+,	

Ca2+	or	glucose	concentration.		Glucose	is	preferred	to	the	heart’s	normal	energy	

substrate	of	free	fatty	acids	due	to	availability	and	the	relative	ease	of	maintaining	the	

former	in	solution234.	

To	minimise	metabolic	stress	and	its	consequent	effects	on	viability	and	physiology,	

cold	media	are	used	to	reduce	metabolic	rate,	and	high	potassium,	low	calcium	

solutions	are	used	to	achieve	cardioplegia.		A	reversible	excitation-contraction	

uncoupling	agent	is	used	to	aid	mechanical	arrest	and	further	reduce	metabolic	

demands.		2,3-butanedione	monoxime	(BDM)	and	blebbistatin	are	both	suitable	for	this	

purpose,	though	BDM	has	been	used	more	frequently	in	published	MEA	

studies231,232,235,236.	

After	cardioplegia	has	been	induced,	the	ventricles	are	separated	from	the	atria	and	

glued	to	a	platform,	after	which	the	vibratome	cuts	sequential	slices.		These	are	

transferred	to	carbogenated	(95%	O2,	5%	CO2)	solutions	prior	to	study,	which	allow	a	

graded	return	to	electromechanical	association	with	more	physiological	ion	

concentrations	and	absence	of	BDM	or	blebbistatin.	

	

	

1.9.3	 Field	potentials	vs.	electrograms	

	

To	return	to	the	discussion	concerning	the	signals	recorded	from	cardiac	slices,	it	can	

be	seen	that	heart’s	coordinated	electrophysiology,	in	conjunction	with	its	relative	

paucity	of	synaptic	activity	mean	the	signals	obtained	will	more	closely	reflect	the	

action	potentials	of	localised	clusters	of	cardiomyocytes	in	the	vicinity	of	the	exploring	

electrode	than	may	be	the	case	with	neuronal	tissue,	particularly	in	vivo.		With	the	MEA	

as	used	in	neurological	investigations,	the	high	spatial	density	of	the	exploring	

electrodes,	together	with	the	use	of	a	remote	reference	electrode227	suggest	the	signals	

obtained	(LFPs)	to	be	somewhat	analogous	to	the	unipolar	EGMs	used	in	cardiac	

electrophysiology.		Thus,	although	the	term	‘field	potential’	has	been	frequently	used	in	

relation	to	cardiac	electrophysiology	studied	with	the	MEA,	it	would	appear	these	FPs	

are	not	substantially	different	to	UEGs.		This	is	supported	by	the	morphology	of	

reported	FPs	which	bear	resemblance	to	UEGs231,235–238.		To	an	extent,	this	is	a	semantic	

issue,	though	the	transference	of	terms	from	other	disciplines	without	explanation	of	



	 71	

their	similarities	and	differences	can	lead	to	confusion.		As	such,	the	signals	recorded	

with	the	MEA	in	my	study	will	be	termed	UEGs	in	this	thesis,	although	when	referring	

to	published	studies,	FPs	will	be	used.	

	

	

	

1.10	 Summary	

	

Life-threatening	ventricular	arrhythmias	may	arise	in	a	large	variety	of	settings,	but	

scar	within,	and	disruption	of	the	normal	myocardial	architecture	of	the	ventricles,	is	

the	most	common	predisposing	condition.		Similarly,	the	replacement	fibrosis	that	

constitutes	scar	can	result	from	a	range	of	insults,	but	myocardial	infarction	is	the	most	

common	in	developed	countries	such	as	the	United	Kingdom.		The	resultant	changes	in	

myocardial	architecture	produce	conditions	favourable	to	re-entrant	circuits	in	

particular.		If	sufficient	scarring	is	present,	ventricular	function	becomes	impaired,	with	

elevation	of	diastolic	pressure	and	transmission	of	this	to	the	pulmonary	circulation;	if	

severe,	right	heart	impairment	ensues	and	systemic	venous	pressures	also	become	

elevated.		This	chain	of	events	often	results	in	the	signs	and	symptoms	of	‘heart	failure’.		

This	is	perpetuated	further	by	maladaptive	neurohumoural	responses	in	the	body,	

which	result	in	increased	sympathetic,	and	reduced	parasympathetic	activity.			In	

addition	to	elevation	of	heart	rate	and	sodium	and	water	retention	in	the	kidneys,	this	

autonomic	imbalance	alters	cardiac	tissue	electrophysiology	in	ways	favourable	to	

arrhythmogenesis.		Despite	great	advances	in	our	understanding	of	the	changes	that	

occur	in	heart	failure,	cardiac	electrophysiology	at	the	cellular	and	tissue	level,	the	

autonomic	nervous	system,	and	mechanisms	of	arrhythmia,	the	therapies	available	to	

prevent	the	occurrence	of	ventricular	arrhythmias	are	suboptimal.		Better	

understanding	of	receptor	signalling	cascades	in	the	heart,	their	effects	on	ion	

channels,	and	the	changes	that	occur	to	these	in	the	setting	of	cardiac	scarring	and	

heart	failure,	could	help	guide	development	of	novel	anti-arrhythmic	agents.	

The	signalling	protein	Gαi2	has	been	shown	to	be	elevated	in	patients	with	heart	failure.		

Gαi2	is	involved	in	signal	transduction	from	the	mAChR	and	the	β2AR,	regulating	the	

GIRK	channel	and	the	LTCC.		Given	the	increased	risk	of	ventricular	arrhythmias	in	this	

syndrome,	it	is	possible	that	this	protein	modulates	arrhythmogenicity.		This	is	

supported	by	experimental	evidence,	including	from	mice	with	global	deletion	of	Gαi2,	

who	were	shown	to	have	a	pro-arrhythmic	phenotype.			However,	there	has	been	little	
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if	any	other	in	vivo	work	reporting	electrophysiological	phenotypic	effects	of	

alterations	of	Gαi2.			

In	order	to	develop	the	work	previously	undertaken	in	the	group	with	Gαi2	knockout	

(KO)	mice,	and	more	generally	to	investigate	the	electrophysiological	effects	of	

autonomic	modulation	in	the	murine	heart,	I	utilised	in	vivo	and	ex	vivo	models.		The	

former	involved	phenotyping	mice	before	and	after	coronary	ligation-induced	MI,	with	

its	resultant	impairment	of	LV	function.		By	creating	a	cohort	of	wild-type	(WT)	and	

Gαi2	KO	mice	with	regions	of	scar,	and	sympathovagal	imbalance,	I	was	able	to	model	

the	pathophysiology	of	human	ischaemic	heart	disease	and	heart	failure,	and	probe	

phenotypic	differences	due	to	Gαi2	at	an	organ	and	whole	body	level.		The	ex	vivo	

ventricular	tissue	model	utilised	an	MEA	system	to	investigate	key	electrophysiological	

parameters	in	WT	and	Gαi2	KO	mice,	as	well	as	their	alteration	with	pharmacological	

agonists	of	βARs	and	mAChRs,	and	temperature.			

Together,	these	two	sets	of	experiments	took	advantage	of	genetically-manipulated	

mice	to	probe	the	possible	electrophysiological	effects	of	a	signalling	protein	Gαi2,	and	

investigate	the	effects	of	parasympathetic	and	sympathetic	agonism	on	

electrophysiological	parameters.		There	has	been	little	published	previously	on	the	

phenotypic	effects	of	alterations	of	Gαi2,	and	the	combination	of	two	approaches	to	

investigate	this,	and	the	autonomic	control	of	heart	function,	provides	a	distinct	

contribution	to	the	field	of	study.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	 73	

HYPOTHESES	
	

	

1. Gαi2	is	anti-arrhythmic	in	the	ventricles	where	it	mediates	parasympathetic	
signalling	effects	on	the	key	electrophysiological	parameters	of	activation,	
repolarisation,	and	conduction	velocity.	

2. Beta-adrenoceptor	agonism	and	changes	in	temperature	exert	effects	on	
activation,	repolarisation	and	conduction	velocity.	

	
	
	

	

	

AIMS	
	

	

1. To	establish	a	pharmacological	and	a	surgical	murine	model	of	heart	failure,	

with	which	to	probe	hypothesis	1.	

2. To	test	hypothesis	1	by	assessing	the	phenotypic	effects	of	cardiac-specific	

knockout	of	Gαi2	in	mice	at	baseline,	and	following	induction	of	heart	failure.	

3. To	test	hypothesis	1	by	assessing	the	electrophysiological	effects	of	Gαi2	

knockout	in	ventricular	tissue	from	mice	with	global	deletion	of	the	GNAI2	

gene.			

4. To	test	hypothesis	2	by	assessing	the	electrophysiological	effects	of	beta-

adrenoceptor	agonism	and	changes	in	temperature	in	ventricular	tissue	from	

wild-type	mice.	
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2.	 METHODS	
	

	

	

2.1	 Statement	on	use	of	laboratory	animals	

	

Mice	were	maintained	at	the	Biological	Services	Units	at	Charterhouse	Square	and	

Whitechapel	sites	of	Queen	Mary	University	of	London.		Animal	maintenance	and	

experiments	conformed	to	UK	Home	Office	guidelines	relating	to	animal	welfare	(PPL	

70/7665;	PIL	70/24330	/	I8A749EFA).		Mice	were	housed	in	individually	ventilated	

cages	in	temperature-controlled	rooms	(21-23°C)	with	12	hour	light/dark	cycles.		They	

had	access	to	standard	rodent	chow	and	water	at	all	times.			

Following	general	anaesthesia,	mice	were	observed	until	moving	before	being	replaced	

in	their	cage.		They	received	opiate	analgesia	prior	to	recovery,	were	reviewed	at	4-6	

hours	post-operatively,	and	again	the	following	day.		If	necessary,	a	further	dose	of	

opiate	analgesia	was	administered	at	this	stage.		Post-operatively	mice	were	housed	

alone.	

	

	

	

2.2	 Cardio-specific	Gαi2	knockout	mice	

	

2.2.1	 Generation	of	cardio-specific	Gαi2	knockout	mice	

	

Mice	with	cardiomyocyte-specific	knockout	of	the	GNAI2	gene	encoding	the	Gαi2	

protein	(used	interchangeably	hereafter)	were	generated	through	use	of	the	Cre-loxP	

system	of	DNA	recombination184,197	as	described	in	Section	1.7.		Homozygous	

‘conditional-ready’	mice	on	a	129Sv	background,	with	loxP	sites	flanking	exons	2	and	4	

of	the	GNAI2	gene,	were	provided	as	a	gift	by	Dr	Lutz	Birnbaumer	(Figure	18).		Sections	

of	a	gene	with	loxP	sites	at	each	end	are	termed	‘flanked	by	loxP’	or	‘floxed’,	and	the	

allele	is	written	as	‘Flx’.		Mice	homozygous	for	the	floxed	GNAI2	gene	are	designated	

Gαi2	Flx/Flx;	those	with	two	wild-type	(WT)	alleles	are	designated	Gαi2	WT/WT;	and	those	

with	one	copy	of	each	allele,	Gαi2	Flx/WT.			

After	initial	breeding	of	Gαi2	Flx/Flx	mice	and	confirmation	of	Gαi2	gene	status	(i.e.	Flx	or	

WT),	homozygous	female	offspring	were	crossed	with	a	male	mouse	on	a	C57B6/J	
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background	expressing	Cre	under	control	of	the	α-MHC	gene	promoter	(Figure	19).		

This	Cre+	mouse	was	provided	as	a	gift	by	Prof	Michael	Schneider.		Further	breeding	of	

offspring	was	carried	out	until	an	extra-cardiac	tissue	genotype	of	Gαi2	Flx/Flx	Cre+	was	

obtained	from	ear	DNA	(see	below).			This	would	produce	a	cardiac	tissue-specific	

knockout	of	Gαi2	due	to	Cre-mediated	DNA	excision	as	was	previously	demonstrated	in	

the	research	group.			

	

	
	
Figure	18		Mus	musculus	GNAI2	gene	indicating	exons	(numbered	blue	blocks),	inserted	LoxP	sites	
and	PCR	primer	binding	sites.		Retrieved	through	BLAT	and	modified	from	Ustyugova	et	al239	
	

	

	

	

	
Figure	19		Generation	of	knockout	mice.		Black	body	colour	indicates	presence	of	a	Flx	allele	within	the	
GNAI2	gene,	whereas	red	body	colour	indicates	homozygosity	for	the	WT	GNAI2	allele.		Red	tail	indicates	
presence	of	Cre	recombinase,	whereas	black	tail	indicates	its	absence.	
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2.2.2	 Assessment	of	genetic	status	

	

Tissue	was	obtained	from	mice	aged	2-4	weeks	by	‘ear-notching’	to	enable	assessment	

of	GNAI2	status	(Flx/Flx,	Flx/WT,	or	WT/WT),	and	Cre	status	(expressed	or	absent).		

The	tissue	was	collected	in	a	1.5ml	eppendorf	tube,	and	digested	to	release	DNA	

suitable	for	PCR	as	follows:	

	

i. 150	μl	of	tail	lysis	buffer	per	sample	(2	M	Tris	HCl,	1M	(NH4)2SO4,	0.5	M	

MgCl2,	Triton	X-100,	distilled	H20)	with	1%	β-Mercaptoethanol	was	added	

to	each	sample	

ii. The	samples	were	heated	at	100	°C	for	10	minutes	

iii. Samples	were	cooled	for	10	minutes	

iv. 5	μl	of	Proteinase	K	(20	mg/ml,	Sigma-Aldrich,	UK)	was	added	to	each	

sample	for	digestion	over	12-16	hours,	or	7	μl	for	digestion	over	4-5	hours	

at	55	°C	

v. Samples	were	heated	at	100	°C	for	10	minutes	

vi. Samples	were	left	to	cool	for	10	minutes,	then	centrifuged	at	14,000	rpm	

for	3	minutes	

vii. The	supernatant	was	collected	in	new	0.5	ml	eppendorf	tubes,	and	stored	at	

-20	°C		

	

For	PCR	of	ear	tissue	DNA,	the	following	DNA	primers	(Invitrogen	Life	Technologies)	

were	used:	

	

Gαi2	Forward:	5’-GGA	GCC	TGG	ACT	TTG	CTT	CTG	ACC-3’	

Gαi2	Reverse:	5’-GGC	TAT	GAT	CCC	AAA	ACT	CCC	CG-3’	

	

αMHC	Cre	Forward:	5’-CCA	ATT	TAC	TGA	CCG	TAC	ACC-3’	

αMHC	Cre	Reverse:	5’-GTT	TCA	CTA	TCC	AGG	TTA	CGG-3’	

	

	

PCR1		

The	reaction	mix	and	PCR	programme	for	GNAI2	genotype	of	each	digested	DNA	

sample	was	as	follows:	
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• 10	μl		HotStarTaq	Mastermix	(Qiagen)	(DNA	polymerase,	PCR	buffer,	and	

deoxynucleotides)	

• 9	μl	distilled	water	

• 10	μl	primer	mixture	(5μM	forward,	5μM	reverse)	

• 1	μl	DNA	

	

1. Heat	lid	to	110	°C	

2. 94	°C	for	15	minutes	

3. 35	cycles	

a. 94	°C	for	30	seconds	

b. 60	°C	for	30	seconds	

c. 72	°C	for	1	minute	

4. 72	°C	for	10	minutes	

5. Store	at	8	°C	

	

	

PCR	2		

The	reaction	mix	and	PCR	programme	for	α-MHC	Cre	genotype	of	each	digested	DNA	

sample	was	as	follows:	

	

• 12.5	μl	HotStarTaq	Mastermix	(Qiagen)	

• 4.5	μl	distilled	water	

• 2.5	μl	forward	primer	(10μM)	

• 2.5	μl	reverse	primer	(10μM)	

• 310	μl	DNA	

	

1. Heat	lid	to	110	°C	

2. 95	°C	for	15	minutes	

3. 35	cycles	

a. 94	°C	for	1	minute	

b. 60	°C	for	1	minute	

c. 72	°C	for	1	minute	

4. 72	°C	for	5	minutes	

5. Store	at	8	°C	
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TAE	buffer	(50X)	was	made	up	with	242	g	Tris	Base	(MW	121.1),	57.1	ml	Glacial	Acetic	

Acid,	and	100	ml	0.5	M	EDTA,	dissolved	in	distilled	deionised	water	to	make	1	litre.		

From	this,	1X	TAE	buffer	was	made	by	adding	20	ml	of	50X	TAE	buffer	to	980	ml	

distilled	deionised	H20.			

To	visualise	the	amplicons	of	the	PCR,	and	enable	separation	of	products	of	different	

length,	a	1%	agarose	gel	was	prepared	as	follows:	

	

1. 1	g	of	UltraPure™	Agarose	(Invitrogen)	was	dissolved	in	100	ml	of	1x	TAE	

buffer		

2. This	was	heated	for	2	minutes	in	a	microwave	to	fully	dissolve	

3. After	leaving	to	cool	for	a	few	minutes,	7.5	μl	of	Midori	Green	Advanced	DNA	

stain	(Nippon	Genetics	Europe)	was	added	and	mixed	into	the	solution	

4. The	1%	agarose	solution	was	poured	into	a	15	or	20	lane	gel	tray	and	left	to	set	

for	45	minutes	

	

Prior	to	loading	the	gel	with	samples,	5	μl	of	6X	DNA	loading	dye	(New	England	

Biolabs)	was	added	to	and	mixed	with	each	DNA	PCR	sample.		20	μl	of	each	

PCR/loading	dye	product	was	added	to	each	lane.		A	100	base	pair	(bp)	DNA	ladder	

(New	England	Biolabs)	was	run	in	the	first	lane	of	the	gel,	which	was	imaged	with	

ultraviolet	light	transillumination	(Alpha	Innotech),	exposure	time	150	ms.		Illustrative	

examples	of	PCR	products	are	shown	in	Figure	42.	

	

	

2.2.3	 Confirmation	of	knockout	status	of	Gαi2	Flx/Flx	Cre+	mice:	analysis	of	mRNA	

expression	and	Sanger	sequencing	

	

‘Knockout’	of	a	gene	can	be	demonstrated	in	different	ways.		At	the	DNA	level,	PCR	

performed	with	primers	either	side	of	the	region	of	interest	can	be	used	to	produce	

amplicons	of	different	sizes	dependent	on	the	status	of	the	gene,	i.e.	WT	allele,	‘floxed’	

allele,	or	excised.		This	can	be	taken	a	step	further	by	analysis	of	the	amplicon	

sequence,	using	Sanger	sequencing,	so	as	to	produce	a	DNA	base-by-base	readout.		The	

sequence	can	then	be	analysed	using	genome	library	tools,	so	as	to	visualise	alignment	

with	the	gene	of	interest	and	look	for	unmatched	regions	suggesting	excision.	

	

As	DNA	is	transcribed	to	mRNA,	further	confirmatory	evidence	can	be	obtained	by	

analysis	of	the	relative	amounts	of	mRNA	in	tissues	from	genetic	knockouts	and	
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controls,	to	confirm	knockouts	have	the	expected	marked	reduction.		Finally,	protein	

expression	can	be	measured	using	the	technique	of	western	blot.		This	requires	

antibodies	specific	for	the	protein	of	interest.		In	the	case	of	Gαi2,	the	specificity	of	the	

antibodies	available	is	not	sufficient	to	differentiate	from	other	Gαi	isoforms;	hence	the	

use	of	mRNA	analysis	and	Sanger	sequencing.	

	

	

RNA	extraction	

	

In	order	to	show	tissue-specific	knockout	of	the	GNAI2	gene	product,	Gαi2,	in	mice	

genotyped	as	Gαi2	Flx/Flx	Cre+	(termed	cKOs	hereafter),	hearts,	livers	and	tails	were	

harvested	from	four	cKO	mice	and	four	mice	of	wild-type	GNAI2	gene	status	(three	Gαi2	
WT/WT	Cre-,	and	one	Gαi2	WT/WT	Cre+).		Mice	were	culled	by	cervical	dislocation,	organs	

excised	and	stored	in	RNAlater	(Sigma-Aldrich,	UK)	prior	to	storage	at	-80	°C	pending	

RNA	extraction.			

This	was	performed	using	RNEasy	Fibrous	Tissue	mini	kit	(Qiagen)	according	to	the	

following	product	instructions	(all	reagents	supplied	within	the	kit):	

	

1. Buffers	and	reagents	prepared	as	per	protocol	

2. Approximately	30	mg	of	tissue	was	removed	from	storage	in	RNAlater	

3. The	tissue	was	frozen	with	liquid	nitrogen,	and	disruption	was	performed	with	

a	mortar	and	pestle.		Homogenisation	was	performed	with	a	needle	and	syringe	

in	300	μl	of	Buffer	RLT	

4. 590	μl	of	RNAse-free	water	was	added	to	the	lysate.		Then	10	μl	of	proteinase	K	

solution	was	added	and	mixed	

5. The	mixture	was	incubated	at	55	°C	for	10	minutes	

6. It	was	then	centrifuged	for	3	minutes	at	12,500	rpm	

7. The	supernatant	was	pipetted	into	a	new	microcentrifuge	tube	

8. 450	μl	of	ethanol	(96-100%)	was	added	to	the	cleared	lysate	and	mixed	by	

pipetting	

9. 700	μl	of	the	sample	was	transferred	to	an	RNeasy	Mini	spin	column	placed	in	a	

2	ml	collection	tube.		This	was	centrifuged	for	15	s	at	10,000	rpm.	The	flow-

through	was	discarded	

10. Step	9	was	repeated	with	the	remainder	of	the	sample	

11. 350	μl	of	Buffer	RW1	was	added	to	the	RNeasy	spin	column.		This	was	

centrifuged	for	15	s	at	10,000	rpm.		The	flow-through	was	discarded	
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12. 10	μl	of	DNase	I	stock	solution	was	added	to	70	μl	of	Buffer	RDD	and	gently	

mixed	

13. The	DNase	I	incubation	mix	was	added	directly	to	the	RNeasy	spin	column	

membrane,	and	placed	on	the	bench	top	for	15	minutes	

14. 350	μl	of	Buffer	RW1	was	added	to	the	RNeasy	spin	column.		This	was	

centrifuged	for	15	s	at	10,000	rpm.		The	flow-through	was	discarded	

15. 500	μl	of	Buffer	RPE	was	added	to	the	RNeasy	spin	column.		This	was	

centrifuged	for	15	s	at	10,000	rpm.		The	flow	through	was	discarded	

16. 500	μl	of	Buffer	RPE	was	added	to	the	RNeasy	spin	column.		This	was	

centrifuged	for	2	minutes	at	10,000	rpm.		The	flow	through	was	discarded	

17. The	spin	column	was	placed	in	a	new	1.5	ml	collection	tube.		30-50	μl	of	RNase-

free	water	was	added	directly	to	the	spin	column	membrane.		This	was	

centrifuged	for	1	minute	at	10,000	rpm	to	elute	the	RNA	

18. Step	17	was	repeated	with	another	30-50	μl	of	RNase-free	water	

	

	

Extracted	RNA	was	kept	on	ice	and	transferred	to	the	Genome	Centre,	William	Harvey	

Research	Institute,	QMUL,	for	analysis	with	real-time	PCR.		As	extracted	total	RNA	

contains	several	types	(mRNA,	transfer	RNA,	and	ribosomal	RNA),	with	mRNA	being	

the	one	of	interest,	prior	to	RT-qPCR	it	was	necessary	to	perform	a	reverse	

transcription	reaction	with	High	Capacity	RNA	to	cDNA	(Applied	Biosystems).		This	

uses	only	the	mRNA	to	produce	complementary	DNA	(cDNA),	and	is	therefore	a	

reflection	of	the	quantity	of	mRNA	for	each	gene.			

	

	

Real-time	quantitative	PCR	(RT-qPCR)	

	

mRNA	analysis	has	previously	been	performed	in	our	group	on	Gαi2	Flx/Flx	Cre+	mice	

with	Cre	expression	under	control	of	the	α-MHC	promoter	(unpublished	results).		The	

primer	sequences	used	(Forward:	TGGAGAGTCAGGGAAGAGCA,	Reverse:	

TAGACCACGGCACGGTACT)	were	provided	to	Dr	Charles	Mein	at	the	Genome	Centre.		

The	sequences	were	entered	into	a	BLAT	(BLAST-Like	Alignment	Tool)	search	which	

retrieved	the	murine	GNAI2	gene	sequence.		The	forward	primer	is	located	in	exon	2,	

and	the	reverse	primer	in	exon	3.		It	was	decided	to	use	a	TaqMan®	Assay	(Invitrogen)	

to	assess	expression.		The	previously	used	primer	sequences	were	not	available,	so	
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new	primers	in	near-identical	locations	were	used	(Forward:	

CAGGGAAGAGCACCATCGT,	Reverse:	GCCGGCACTCCTCTTCTG)	(see	Figure	20).	

	

	

	
	
Figure	20		Results	from	UCSC	BLAT	search240	using	original	and	new	(labelled	‘AIQJCAC’)	mRNA	
primer	sequences.		These	are	situated	over	exons	2	and	3	of	GNAI2	gene	(short	purple	bars).		Diagram	
illustrates	near	identical	location	of	original	and	new	primer	sequences.	
	

	

Glyceraldehyde	3-phosphate	dehydrogenase	(GAPDH)	was	used	as	the	‘housekeeping’	

(reference)	gene.		Threshold	cycle	(Ct)	was	determined	for	each	assay	as	well	as	for	no	

template	controls	(NTCs).			

Relative	expression	of	the	gene	of	interest	can	be	determined	using	the	‘Comparative	Ct	

Method’,	described	by	Livak	and	Schmittgen241,242.		Using	this	method,	Ct	values	were	

determined	for	the	gene	of	interest	(GNAI2)	and	the	housekeeping	gene	(GAPDH)	in	the	

tissue	of	interest	(cardiac	ventricles),	for	both	knockout	and	control	mice.		A	delta	Ct	

value	(ΔCt)	was	obtained	by	subtracting	the	Ct	for	ventricular	GAPDH	in	controls,	from	

the	Ct	for	ventricular	Gαi2	in	controls.		This	‘control’	ΔCt	was	then	subtracted	from	the	

corresponding	value	for	knockouts,	to	obtain	ΔΔCt.		As	each	increment	of	one	in	Ct	

represents	a	halving	of	mRNA	expression	(or	conversely,	each	decrement	represents	a	

doubling),	the	relative	expression	of	the	gene	of	interest	between	controls	and	

knockouts	can	be	calculated	using	equation	1:	

	

	 Relative	expression	=	2!!!!!	 	 	 Equation	1	 	

	

	

Sanger	sequencing	

	

DNA	sequences	from	four	mice	with	the	following	genotypes	were	obtained	by	Sanger	

sequencing	performed	by	the	Genome	Centre	at	the	William	Harvey	Research	Institute:			

• Gαi2	Flx/Flx	Cre+		(2	mice)	

• Gαi2	WT/WT	Cre-		(1	mouse)	

• Gαi2	Flx/Flx	Cre-			(1	mouse)	
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The	two	cKO	mice	used	were	two	of	the	same	ones	used	in	the	real-time	quantitative	

PCR	(RT-qPCR)	experiment	described	above;	the	Gαi2	WT/WT	Cre-	and	Gαi2	Flx/Flx	Cre-	

mice	were	not	used	previously.	

DNA	extracted	from	the	mice’s	hearts	was	provided	to	the	Genome	Centre,	where	it	

was	amplified	by	PCR	using	a	second	forward	primer	(‘F2’)	designed	to	produce	the	

following	PCR	amplicons:	

	

WT	allele:	2.1	kb	

Flx	allele:	2.2	kb	

Allele	following	Cre-mediated	excision:	0.4kb	

	

The	F2	primer	sequence	was	5’-GTGGTAAGCCTGTGTTTGTGAGAG-3’.		The	PCR	

programme	was	the	same	as	described	above	for	GNAI2	genotyping	(PCR	1),	except	for	

stage	3c	which	was	held	at	72	°C	for	two	minutes	rather	than	one.	

Sequences	were	downloaded	from	a	server	using	the	program	CoreFtp	(Core	FTP),	and	

visualised	with	BioEdit	(Ibis	Biosciences).		Each	sequence	was	then	entered	into	the	

University	of	California	Santa	Cruz	(UCSC)	BLAST-like	alignment	tool240,	to	confirm	

alignment	within	the	mouse	GNAI2	gene,	and	to	look	for	deleted	regions.	

	

	

	

2.3	 Global	Gαi2	knockout	mice	

	

2.3.1	 Generation	of	global	Gαi2	knockout	mice	

	

Global	gene	deletion	is	an	alternative	means	to	ensure	the	relevant	protein	is	not	

produced	anywhere	in	the	body.		As	described	in	Section	1.7,	this	is	achieved	by	

injecting	ESCs	with	the	modified	non-functional	version	of	the	gene	into	blastocysts	

which	are	implanted	into	pseudopregnant	females.		Provided	DNA	recombination	

occurs,	breeding	of	the	offspring	generates	mice	with	the	knockout	version	of	the	gene	

at	either	one	or	both	alleles.		Status	can	be	designated	in	a	similar	manner	to	that	for	

cardio-specific	knockout:	two	wild-type	alleles	-	Gαi2	+/+;	two	knocked	out	alleles	-	Gαi2	-

/-	;	heterozygote	-	Gαi2	+/-.			

Heterozygote	mice	were	provided	by	Dr	Lutz	Birnbaumer.		The	KO	allele	was	created	

by	disruption	of	the	GNAI2	gene	within	exon	3,	a	key	region	involved	in	binding	and	

hydrolysis	of	GTP.		Insertion	of	an	oligonucleotide	‘cassette’	induced	a	frameshift	
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resulting	in	a	truncated,	non-functional	protein.		This	was	confirmed	structurally194,	

and	its	functional	effects	have	been	demonstrated243.	

Mice	with	global	GNAI2	gene	deletion	(Gαi2	-/-)	were	generated	by	breeding	

heterozygote	males	and	females.		These	are	termed	gKOs	hereafter.			

	

	

2.3.2	 Assessment	of	genetic	status	

	

Tissue	was	obtained	from	mice	aged	2-4	weeks	by	ear-notching,	and	digested	as	for	

cardio-specific	knockout	mice.	

For	PCR	of	ear	tissue	DNA,	the	following	DNA	primers	(Invitrogen	Life	Technologies)	

were	used:	

	

WT	forward:	5’-	GAT	CAT	CCA	TGA	AGA	TGG	CTA	CTC	AGA	AG	-	3’	

WT	reverse:	5’-	CCC	CTC	TCA	CTC	TTG	ATT	TCC	TAC	TGA	CAC	-	3’		

	

KO	forward:	5’-	CAG	GAT	CAT	CCA	TGA	AGA	TGG	CTA	C	-	3’	

KO	reverse:	5’-	GCA	CTC	AAA	CCG	AGG	ACT	TAC	AGA	AC	-	3’	

	

The	reaction	mix	and	PCR	programme	for	GNAI2	genotype	of	each	sample	was	as	

follows:	

	

PCR	3		

For	WT	allele	

• 6.1	μl	HotStarTaq	Mastermix	(Qiagen)	(DNA	polymerase,	PCR	buffer,	and	

deoxynucleotides)	

• 21.8	μl	distilled	water	

• 3.0	μl	primer	mixture	(5	μM	forward,	5	μM	reverse)	

• 1.0	μl	MgCl2	

• 1.0	μl	DNA	

	

For	KO	allele	

• As	for	WT	allele	but	without	MgCl2	and	with	22.8	μl	water	

	

1. Heat	lid	to	110	°C	

2. 94	°C	for	5	minutes	
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3. 35	cycles	

a. 94	°C	for	1	minute	

b. 60	°C	for	1	minute	

c. 72	°C	for	2	minutes	

4. 72	°C	for	10	minutes	

5. Store	at	8	°C	

	

PCR	products	were	run	on	a	1%	agarose	gel	as	for	cardio-specific	knockout	genotyping.			

	

	

	

2.4	 Phenotypic	assessment	of	cardiovascular	function	in	mice	

	

2.4.1	 Assessment	of	left	ventricular	contractile	function	

	

Various	modalities	are	available	for	use	in	assessing	murine	cardiac	contractile	

function.		These	include	echocardiography	(echo),	magnetic	resonance	imaging	(MRI),	

ventricular	catheterization	with	pressure-dimension/volume	loops,	radiolabelled	

microspheres,	and	thermodilution	techniques244,245.			

Cardiac	catheterisation	for	example,	on	the	one	hand	offers	the	means	of	directly	

obtaining	indices	of	left	ventricular	function,	which	in	themselves	are	perhaps	less	

operator-dependent	than	echo.		However,	the	technique	is	highly	invasive,	making	it	a	

terminal	procedure.		The	values	obtained	are	pre-load	dependent,	and	are	pressures,	

and	therefore	only	surrogates	of	ventricular	function245.		And	the	accuracy	and	

relevance	of	a	model	in	which	a	catheter	of	not	dissimilar	diameter	to	the	aortic	valve	

through	which	it	traverses,	and	the	left	ventricular	cavity,	in	which	it	sits,	has	to	be	

questioned.		In	the	human	these	issues	are	of	far	less	importance	given	the	relative	size	

of	the	catheter	to	these	structures.			

Magnetic	resonance	imaging	assessment	of	cardiac	function	in	mice	is	a	technology	in	

evolution,	and	has	recently	been	compared	with	echocardiographic	assessment246.		

This	study	found	better	interobserver	reproducibility	with	echo	than	MRI,	and	

moderate	agreement	in	measurements	between	the	modalities.		Radiolabelled	

microsphere	and	dilution	techniques	allow	assessment	of	cardiac	output,	blood	and	

plasma	volume,	but	not	ejection	fraction	(EF)247.	
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Echocardiography	

	

Use	of	echo	was	previously	restricted	by	technical	limitations	such	as	frame	rate	

relative	to	heart	rate,	and	appropriate	transducer	frequency	for	the	small	tissue	depth	

of	the	murine	thorax244.		However,	current	generations	of	hardware	have	overcome	

these	difficulties.		Echocardiography	offers	several	advantages	over	other	techniques:	

first	and	foremost,	it	enables	real-time,	direct	visualization	of	left	ventricular	

contractility;	secondly,	as	it	is	non-invasive,	repeated	assessments	can	be	performed	at	

different	time	points	on	the	same	animal;	thirdly,	although	as	with	any	technique	there	

is	a	learning	curve,	the	fundamentals	are	easier	to	grasp	than	magnetic	resonance	

imaging,	for	example.	

Possible	disadvantages	of	the	technique	include	the	use	of	anaesthesia	to	immobilise	

the	animal	with	resultant	effects	on	contractility,	and	the	variability	in	quality	of	

images	obtained,	in	particular	of	endocardial	definition.		This	in	turn	affects	reliability	

of	measurements.			

	

With	regard	to	anaesthesia’s	effects	on	contractile	function,	investigators	have	used	

various	anaesthetic/sedative	agents	and	studied	the	effects	on	murine	cardiac	function,	

as	well	as	assessing	the	importance	of	heart	rate	under	anaesthesia.		The	increase	in	

contractility	seen	with	faster	heart	rates	is	known	as	the	Bowditch	effect	or	‘treppe’	

phenomenon248,	and	was	documented	as	long	ago	as	1871	in	humans.		The	effect	has	

also	been	demonstrated	in	vivo	in	mice	undergoing	echo245	and	in	Langendorff-

perfused	murine	hearts191,	although	other	investigators	have	shown	a	negative	force-

frequency	relationship	in	rodents,	particularly	at	low	stimulation	frequencies,	

suggesting	a	more	complex	relationship	in	these	mammals249,250.	

In	their	study	using	C57BL/6	mice,	Gentry-Smetana	et	al	investigated	the	effects	of	

different	concentrations	of	isoflurane	and	sevoflurane	on	echocardiographic	

parameters	of	contractile	function251.		They	found	that	with	isoflurane,	there	was	a	

trend	in	reduction	of	fractional	shortening	(FS)	with	increasing	concentrations,	

although	this	did	not	become	significant	until	an	isoflurane	concentration	of	4%.		EF	

became	significantly	reduced	at	3%,	but	was	still	approximately	65%	at	this	

concentration.	These	findings	suggest	that	a	reduction	in	heart	rate	alone	is	not	the	sole	

cause	for	the	reduction	in	contractile	function	observed	in	other	studies,	and	that	

anaesthetic	agents	may	exert	direct	effects	in	a	concentration-dependent	manner.			

Evaluation	in	conscious,	non-anaesthetised	mice	have	been	performed	but	are	much	

more	technically	challenging.			Janssen	et	al	compared	cardiovascular	parameters	
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including	heart	rate	and	cardiac	output	in	conscious	and	anaesthetised	mice252.		The	

anaesthetic	agents	used	were	isoflurane	at	1%	and	2%,	ketamine-xylazine	alone,	and	in	

combination	with	isoflurane,	and	pentobarbital	sodium.		Whilst	all	anaesthetic	regimes	

induced	significant	reduction	in	both	heart	rate	and	cardiac	index,	the	differences	

observed	were	least	for	isoflurane	1%.		The	largest	reductions	in	both	cardiac	index	

and	heart	rate	were	seen	with	both	ketamine-xylazine	regimes.	

	

In	summary,	it	is	difficult	to	tease	out	whether	the	reduction	in	contractile	function	

seen	with	anaesthetic	agents	is	due	to	their	direct	effects,	or	is	a	consequence	somehow	

of	the	concomitant	negative	chronotropy;	possibly	both	mechanisms	operate.		Some	

conclusions	can	be	drawn	however:	if	anaesthesia	is	to	be	used	for	echocardiographic	

assessment	of	murine	ventricular	function,	isoflurane	appears	to	be	the	most	suitable	

agent,	as	it	is	easily	titratable,	and	appears	to	have	the	least	effect	on	both	heart	rate	

and	contractile	function	at	low	concentrations.		In	addition,	to	ensure	reproducible	

measurements,	and	to	obtain	good	approximations	of	ventricular	function	in	the	

conscious	mouse,	the	heart	rate	during	anaesthesia	should	be	at	least	400bpm.	

	

Various	echo	measures	of	LV	contractility	are	possible.		The	simplest	is	FS,	which	also	

has	the	advantage	of	being	a	non-derived	parameter	without	assumptions.		This	

involves	performing	1D	chamber	size	measurements	in	systole	and	diastole.		From	this,	

it	is	possible	to	calculate	an	EF,	based	on	assumptions	of	uniform	contractility	of	all	LV	

walls.		Whilst	reasonable	in	baseline	studies	(prior	to	intervention),	such	

measurements	are	clearly	likely	to	be	inaccurate	in	a	myocardial	infarction	model	

where	regional	wall	motion	abnormalities	(RWMAs)	result	from	infarction.		Fractional	

area	change	(FAC)	is	a	means	of	incorporating	these	RWMAs	into	the	assessment	and	is	

recommended	for	use	in	models	of	myocardial	infarction203,211.		The	endocardium	is	

traced	at	end	systole	and	end	diastole	(EndoAreaS/D),	and	used	to	derive	the	

percentage	FAC,	according	to	the	formula:	

	

Fractional	area	change	(%)	=	(EndoAreaD	–	EndoAreaS)	*	100	/	(EndoAreaD)	

	

Typically,	the	endocardium	is	traced	at	the	mid-ventricular	level,	although	additional	

measurements	at	the	apical	level	can	be	incorporated.	
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2.4.2	 Electrocardiography	

	

As	discussed	previously,	12-lead	ECGs	are	commonly	recorded	in	humans	to	enable	

some	assessment	of	regional	myocardial	electrophysiology.		Nevertheless,	a	single	lead	

ECG	can	provide	information	on	heart	rate	and	rhythm,	and	allow	measurement	of	

intervals	provided	it	is	of	sufficient	quality.					

Murine	heart	rates	are	typically	550-650bpm	–	approximately	eight	to	ten	times	faster	

than	that	of	humans.		The	shorter	intervals	on	murine	ECGs	result	from	smaller	cardiac	

chamber	sizes	and	muscle	masses,	and	hence	shorter	times	required	for	impulses	to	

propagate	throughout	the	myocardium	and	for	cells	to	repolarize.		For	example,	a	

typical	corrected	QT	interval	(QTc)	in	humans	is	420ms,	whereas	in	mice	it	is	

approximately	45-50	ms,	after	correction	with	an	alternate	formula253.		From	Figure	21	

it	can	also	be	seen	that	the	morphology	of	the	murine	T	wave	differs	substantially	from	

that	of	the	human,	as	already	described.			

	

	
Figure	21		Comparison	of	human	and	murine	ECGs	with	intervals.		A:	human	ECG	with	P	and	T	waves,	
QRS	complex,	R-R	and	QT	intervals	marked.		B:	Murine	ECG	on	same	time	scale	as	for	human.		C:	Focus	on	
two	murine	ECG	complexes	to	illustrate	difference	in	T	wave	morphology	compared	to	that	of	humans..		
QTs:	QT	interval	at	intersection	of	T	downstroke	with	isoelectric	line;	QTc:	QT	interval	at	return	of	
negative	limb	of	T	wave	to	isoelectric	line.	
	

There	are	currently	two	available	systems	for	recording	ECGs	in	conscious	mice:	

implanted	telemetry	probes,	and	recording	platforms.		The	former	are	small	devices	

that	require	surgical	implantation,	either	subcutaneously	or	intra-abdominally.		They	
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record	a	single	lead	ECG	and	transmit	to	a	receiver,	typically	situated	under	the	cage.		

Advantages	include	the	ability	to	record	the	ECG	in	the	mouse’s	usual	environment,	at	

any	time	of	the	day	or	night,	thereby	avoiding	problems	of	the	stress	of	an	unusual	

environment,	and	possibly	short,	unrepresentative	recordings.		Disadvantages	include	

surgical	implantation,	with	a	recovery	period	of	1-2	weeks,	the	unknown	effects	of	a	

foreign	body	on	heart	rate,	and	expense.		These	factors	also	discourage	large	sample	

sizes.	

The	ECGenie	is	a	system	designed	to	allow	ECG	recording	from	conscious	mice,	without	

the	need	for	surgery254.		It	consists	of	a	recording	platform	with	electrodes	on	which	

the	mouse	is	placed	(Figure	22).		The	ECG	is	recorded	through	the	animal’s	paws	when	

in	contact	with	the	electrodes.		Another	advantage	is	the	ability	to	record	ECGs	from	

mice	in	a	comparatively	short	space	of	time,	and	to	perform	repeat	recordings.			

	

	
Figure	22		ECGenie.		A:	platform	with	mouse	on	recording	pad.		B:	representative	ECG	recorded	in	
LabChart	with	R	wave	markers.	
	

	

A	number	of	parameters,	measurable	from	the	ECG,	have	been	found	to	be	of	

prognostic	use	in	humans.		These	include	the	durations	of	the	QRS	complex	and	

corrected	QT	intervals,	as	well	as	presence	of	premature	ventricular	complexes	(PVCs)	

and	non-sustained	ventricular	tachycardia	(NSVT)132,140.		The	PR	interval	is	useful	in	

providing	a	measure	of	conduction	time	and	AV	nodal	function.			

	

	

2.4.3	 Heart	rate	variability	(HRV)	

	

The	principles	underlying	this	technique,	which	quantifies	the	normal	oscillation	in	the	

beat	to	beat	interval	of	the	heart	(the	R-R	interval	from	the	ECG),	were	described	in	
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Section	1.4.2.		Time	and	frequency	domain	measures	can	be	used;	with	the	latter,	the	HF	

component	of	the	power	spectrum	is	largely	dependent	on	parasympathetic	inputs.	

Extrapolating	these	findings,	HRV	has	been	used	as	a	means	of	assessing	autonomic	

balance	in	mice.		As	already	discussed,	murine	heart	rates	are	much	faster	than	

humans’,	and	adjusted	HRV	indices	are	therefore	used255,256.			

	

	

2.4.4	 Electrophysiological	study	(EPS)	

	

This	technique	involves	transvascular	placement	of	a	catheter	in	the	heart,	to	enable	

recording	of	intracardiac	EGMs	and	pacing	of	either	the	right	atrium	or	ventricle.		

Response	to	pacing	enables	physiological	assessment	of	the	sinoatrial	and	AV	nodes,	

and	propensity	to	arrhythmia	can	also	be	assessed.		In	the	ventricle,	this	is	done	with	

programmed	ventricular	stimulation,	which	has	been	used	since	the	early	1970s	257.		

Several	indications	have	been	described,	including	risk	stratification	following	MI	to	

guide	decisions	on	ICD	therapy.		However,	it	is	has	fallen	out	of	favour	in	recent	years	

due	to	concerns	regarding	its	specificity	and	predictive	powers.		The	principle	

underlying	the	technique	is	that	in	hearts	prone	to	development	of	ventricular	

arrhythmias,	these	can	be	induced	by	artificially	stimulating	the	heart,	and	that	this	

technique	can	help	predict	those	in	whom	this	is	most	likely	to	occur	spontaneously.		

	
Figure	23		Programmed	ventricular	stimulation	with	non-sustained	VT	(NSVT)	in	a	mouse.		Thin	
arrows	indicate	last	beat	of	pacing	at	fixed	interval	and	extrastimulus.		Wide	arrow	indicates	NSVT.	
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Different	protocols	exist,	and	pharmacological	adjuncts	such	as	isoprenaline	may	be	

used,	although	what	the	latter	mimics	is	open	to	debate.		The	technique	can	be	

modified	for	investigation	in	mice,	with	introduction	of	the	catheter	through	the	right	

internal	jugular	vein,	and	hence	serves	as	another	tool	for	assessing	arrhythmic	

potential	(see	Figure	23).	

	

	

	

2.5	 Echocardiography	

	

2.5.1	 Equipment	

	

All	studies	were	performed	using	a	Visualsonics	Vevo	770	Imaging	System.		A	30	MHz	

ultrasound	probe	was	used,	at	a	sampling	rate	of	100	frames	per	second.		Studies	were	

performed	in	a	dedicated	room.	

	

	

2.5.2	 Protocol	

	

Mice	were	anaesthetised	initially	with	a	2%	isoflurane/oxygen	mixture	in	an	

anaesthetic	chamber.		They	were	transferred	to	a	heated	table	incorporating	rectal	

body	temperature	feedback	and	heart	rate	monitoring,	which	was	linked	to	the	echo	

machine.		Anaesthesia	was	continued	at	this	stage	via	a	nose	mask	with	1.5%	isoflurane	

in	oxygen	and	a	scavenging	system.			

Chest	hair	was	removed	using	Veet	hair	removal	cream.		The	following	

echocardiographic	measurements	were	obtained	from	parasternal	short	axis	

recordings	at	the	mid-ventricular	level:	end-diastolic	and	systolic	endocardial	areas;	

anterior	and	inferior	LV	wall	thickness	from	2D	images;	wall	thickness,	internal	

dimensions	in	diastole	and	systole	from	M-mode	recordings.		Two	sets	of	each	

measurement	were	made	per	mouse	(see	Figures	24	and	25).		All	measurements	were	

taken	with	heart	rate	over	400	beats	per	minute	(bpm),	and	body	temperature	35-

37°C.			

In	addition,	the	following	calculations/derived	measurements	were	noted:	fractional	

shortening	(FS)	and	EF	from	M-mode	measurements;	fractional	area	change	(FAC)	for	

2D	endocardial	measurements.		The	following	formulae	were	used	to	calculate	these:		
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1. Fractional	shortening	(%):	 100	*	((LVIDd	–	LVIDs)	/	LVIDd	

2. Ejection	fraction	(%):	 	 100	*	(LVvolD	–	LVvolS)/LVvolD	

3. LVvolD	(μL):	 	 	 ((7.0	/	(2.4	+	LVIDd))	*	LVIDd3	

4. LVvolS	(μL):	 	 	 ((7.0	/	(2.4	+	LVIDs))	*	LVIDs3	

5. Fractional	area	change	(%):	 (EndoAreaD	–	EndoAreaS)	*	100	/	(EndoAreaD)	

	

	

	

	
Figure	24		Illustration	of	echocardiographic	measurements	made	on	left	ventricle.		M-mode	(left)	
and	2D	measurements	(right).		RV:	right	ventricle,	IVSd:	interventricular	septum	in	diastole,	LVIDd/s:	left	
ventricular	internal	dimension	in	diastole/systole,	PWd:	posterior	wall	in	diastole.	
	

	

	
Figure	25		Illustrative	example	of	M-mode	echocardiographic	recording.		Measurements	made	as	
illustrated	in	Figure	24.	As	can	be	seen,	the	anterior	wall	is	barely	contracting,	although	there	is	impaired	
but	visible	contraction	of	the	posterior	wall.		The	FAC	post-MI	for	this	mouse	was	41%.			
	

M-mode 2D 
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2.6	 Isoprenaline	(isoproterenol)	model	of	heart	failure	

	

Two	dose-ranging	studies	were	performed,	using	different	methods	of	administration:	

subcutaneous	pellets	designed	to	release	over	21	days,	and	daily	subcutaneous	

injections.		Prior	to	the	first	study,	the	literature	was	reviewed	for	previous	similar	

experiments.				No	studies	utilising	pellets	were	found;	three	studies	using	mini-

osmotic	pump	delivery	or	injections	were	identified	and	used	to	guide	dosing225,258,259.		

Based	on	doses	of	15,	30,	45	and	60	mg/kg/day	for	21	days	for	mice	of	25-30	g,	and	

considering	the	pellet	doses	available	from	the	supplier	(Innovative	Research	of	

America),	pellet	doses	of	7.5	mg,	15	mg,	25	mg	and	35	mg	were	chosen.		These	were	

supposed	to	elute	over	21	days,	thereby	administering	the	target	doses.					

In	the	first	part	of	the	dose-ranging	study	using	subcutaneous	pellets,	11	WT	mice	of	

C57BL/6	strain	under	6	months	old	were	weighed,	and	underwent	baseline	

echocardiogram.		Under	isoflurane	anaesthesia,	skin	overlying	the	upper	back	was	

cleaned	with	chlorhexidine	gluconate	0.5%		(Ecolab	Ltd,	UK)	and	a	small	incision	made.		

The	isoprenaline	pellet	was	inserted	under	the	skin,	and	the	wound	closed	with	Mersilk	

5.0	(Ethicon	LLC,	USA).		One	mouse	died	two	days	post-implant;	all	others	underwent	

repeat	echo	at	day	6-12,	day	14-18	and	day	22.			

Evaluation	of	the	results	revealed	that	none	of	the	mice	developed	LV	impairment	

(reduced	FS	or	EF)	(this	fact	is	mentioned	here	to	explain	the	rationale	for	proceeding	

as	described).		This	second	part	of	the	study	was	initiated	using	higher	doses	of	50	mg,	

67.5	mg	and	75	mg	in	four	mice.		These	underwent	echocardiogram	at	baseline	and	14	

days.		However,	none	of	these	mice	developed	LV	impairment	by	14	days	and	were	

therefore	culled.		Some	mice	from	both	groups	developed	sores	over	the	implant	site.			

It	was	decided	to	try	another	route	of	administration	in	case	the	lack	of	effect	was	

related	to	delivery	from	the	pellets,	and	in	view	of	the	skin	sores	and	costs	of	pellets	

and	mini-osmotic	pumps.					

The	protocol	was	based	on	a	study	published	by	Horiuchi-Hirose	et	al260.		(-)-	

isoproterenol	hydrochloride	(Sigma-Aldrich)	was	reconstituted	by	dissolving	1.8	mg	

isoproterenol	in	3	mL	0.9%	saline.		Five	mice	of	129Sv	background	underwent	baseline	

echocardiogram,	and	then	received	daily	injections	–	three	at	0.1	mL/10	g,	and	two	at	

0.15	mL/10	g	bodyweight	(equivalent	to	6	mg/kg/day	or	9	mg/kg/day,	respectively).		

This	daily	dose	was	considerably	lower	than	that	used	with	the	pellets,	but	was	

adopted	as	the	authors	of	the	study	had	had	success	in	inducing	LV	impairment	with	
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this	approach,	and	because	it	was	assumed	absorption	is	likely	superior	with	injections	

compared	to	pellets.			

For	the	first	15	days,	the	injections	were	performed	after	anaesthetising	the	mice	with	

isoflurane.		However,	the	mice	were	bradycardic	at	the	time	of	echocardiographic	

studies,	and	as	this	was	thought	possibly	related	to	the	repeated	exposure	to	isoflurane,	

injections	for	the	remaining	days	were	performed	without	anaesthesia.		Echo	was	

performed	at	8,	15	and	22	days	to	measure	FS,	EF	and	cavity	size	(LVIDd).			

	

	

	

2.7	 Model	of	myocardial	infarction-induced	heart	failure	

	

All	procedures	were	performed	in	the	Biological	Services	Unit	at	the	Charterhouse	

Square	campus	of	Queen	Mary	University	of	London	by	myself.			

Coronary	ligation	is	the	most	common	means	of	inducing	myocardial	infarction	in	

rodents,	and	initially	this	technique	was	used.		Poor	survival	led	to	exploration	of	

modifications	of	the	technique,	including	cauterisation	and	cryoinjury,	as	described	

below.		All	four	mice	which	underwent	cryoinjury	died	during	the	procedure,	and	of	the	

four	mice	which	underwent	cauterisation,	two	died	intraoperatively,	with	the	two	

survivors	showing	evidence	of	only	small	areas	of	myocardial	infarction	on	echo	and	

histology.		Further	help	with	the	coronary	ligation	model	was	therefore	sought,	leading	

to	slight	modifications	of	the	technique	with	improved	results.		These	issues	are	

described	here	for	the	sake	of	brevity,	so	that	the	Results	and	Discussion	can	focus	on	

the	main	study,	performed	using	coronary	ligation.	

Two	sets	of	results	are	reported	in	Chapters	3	and	5:	a	preliminary	histology	

correlational	study	(described	in	Section	3.5),	and	the	main	study	comparing	control	

mice	to	cKOs	(reported	in	Section	5.3).		For	this,	18	controls	(genotype	Gαi2	WT/WT	Cre-,	

Gαi2	WT/WT	Cre+,	Gαi2	Flx/WT	Cre-,	or	Gαi2	Flx/Flx	Cre-)	and	16	cKOs	(i.e.	genotype	Gαi2	Flx/Flx	

Cre+)	were	studied.		Mice	were	aged	10-15	weeks	old	at	time	of	coronary	ligation	

surgery.	

	

	

2.7.1	 Coronary	ligation	

	

Operative	technique	was	similar	to	that	described	by	Tarnavski	and	Borst211,212.		The	

mouse	undergoing	coronary	ligation	was	anaesthetised	in	a	chamber	with	2%	
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isoflurane,	prior	to	being	transferred	to	the	operating	field,	consisting	of	a	sterile	drape	

placed	over	a	heating	mat.		Inhalational	anaesthesia	(2%	isoflurane	in	1L/min	oxygen)	

was	continued	here	via	a	nose	cone	delivery/scavenging	system.		The	mouse’s	paws	

were	taped	to	the	drape,	with	the	left	lower	limb	pulled	across	the	body	to	the	right	

side.	Hair	on	the	anterior	thorax	and	neck	was	removed	with	a	clipper,	and	these	areas	

were	cleaned	with	chlorhexidine	gluconate	0.5%.		The	skin	overlying	the	left	lower	

thorax	was	cut,	and	stretched	to	expose	the	underlying	muscles.		The	skin	overlying	the	

central	neck	was	cut,	and	the	muscles	were	dissected	to	expose	the	trachea.		Elastic	

stay	hooks	(Harvard	Apparatus,	UK)	were	used	to	retract	the	paratracheal	muscles	and	

maintain	visibility	of	the	trachea.		At	this	stage,	the	isoflurane	concentration	was	

increased	temporarily	to	4%	for	approximately	a	minute,	to	ensure	deep	anaesthesia	

during	intubation.		The	nose	cone	delivery	system	was	removed,	and	the	head	

retracted	using	a	piece	of	plastic	thread	around	the	upper	teeth.		A	metal	cannula	

attached	to	the	ventilator	(Minivent	Type	845,	Harvard	Apparatus	UK)	was	then	

inserted	into	the	trachea,	after	which	inhalational	anaesthesia	was	resumed	(2.5%	

isoflurane	in	1L/min	oxygen),	with	stroke	volume	of	175	μL	and	respiratory	rate	of	

180/min.			

ECG	electrodes	(Needle	electrodes,	ADInstruments)	were	inserted	into	the	muscles	of	

each	limb	and	connected	via	a	signal	amplifier	(Bioamp,	ADInstruments)	and	data	

acquisition	device	(Powerlab	4/35,	ADInstruments)	to	a	computer	running	LabChart	

(ADInstruments,	UK),	so	as	to	record	a	single	lead	ECG	in	real	time.	

The	muscles	of	the	left	anterior	thorax	were	dissected	to	expose	the	lower	ribcage,	and	

an	incision	was	made	in	either	the	3rd	or	4th	intercostal	muscle	using	a	combination	of	

diathermy	and	blunt	dissection.		The	left	lung	was	deflated	partially	to	allow	

visualisation	of	the	heart,	by	temporarily	switching	off	the	ventilator	and	applying	

pressure	to	the	lung.		A	retractor	was	used	to	open	the	intercostal	incision	further.		The	

pericardium	was	incised,	and	the	heart	manipulated	into	view	by	pressure	on	the	right	

thorax.				A	Prolene	8.0	suture	(Ethicon	LLC,	USA)	was	passed	1-2	mm	distal	to	the	tip	of	

the	left	atrium	to	encircle	the	left	main	coronary	artery,	and	was	tied	twice.		Coronary	

ligation	was	confirmed	by	noting	ensuing	pallor	of	the	left	ventricle,	and	by	observing	

ST	elevation	on	the	ECG,	after	which	the	suture	was	cut.			

The	intercostal	incision	was	closed	using	Mersilk	5.0	(Ethicon	LLC,	USA)	with	

interrupted	sutures.		The	left	lung	was	re-expanded	concomitantly	by	transient	

occlusion	of	the	ventilator	outflow	to	increase	positive	end-expiratory	pressure.		At	this	

stage,	3	μg	buprenorphine	(Reckitt	Benckiser	Healthcare	UK)	was	administered	

intramuscularly.		The	skin	incisions	over	the	left	thorax	and	neck	were	subsequently	
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closed	with	Mersilk	5.0	using	continuous	sutures.		Inhalational	anaesthesia	was	

discontinued,	needle	electrodes	were	removed,	and	tape	was	removed	from	the	

mouse’s	paws.		Once	the	animal	made	purposeful	movements,	the	endotracheal	tube	

was	removed.		The	mouse	was	placed	in	a	cage	on	a	heating	mat,	with	post-operative	

observation	and	review	as	already	described.			

	

	

2.7.2	 Cauterisation	

	

The	technique	used	was	similar	to	that	of	coronary	ligation	up	to	the	stage	of	passing	

the	ligature.		At	this	stage,	a	small-tipped	soldering	iron	was	used	to	cauterise	a	small	

area	1-2mm	distal	to	the	tip	of	the	left	atrium.		Several	applications	of	2-4	seconds	were	

used.	The	remainder	of	the	procedure	was	the	same	as	for	coronary	ligation.	

	

	

2.7.3	 Cryoinjury	

	

The	technique	used	was	similar	to	that	of	the	two	techniques	above.		The	small-tipped	

soldering	iron	which	had	been	left	in	dry	ice	was	applied	to	the	anterolateral	border	of	

the	heart	at	the	stage	of	passing	the	ligature.		At	this	stage,	all	mice	studied	became	

bradycardic	before	asystole	ensued.			

	

	

2.7.4	 Post	mortems	

	

All	mice	in	the	myocardial	infarction	study	that	died	following	coronary	ligation	

underwent	post	mortem	examination	within	24	hours	of	death.		This	included	

laparotomy	and	thoracotomy	to	examine	the	liver	and	chest	viscera.		The	liver’s	colour	

was	noted,	as	was	the	presence	of	blood	in	the	chest	cavity,	deemed	indicative	of	

myocardial	rupture	in	association	with	a	pale	liver.		Location	of	the	myocardial	ligature	

was	noted,	and	the	left	ventricular	wall	was	examined	for	tears	and/or	thinning.			
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2.7.5	 Histological	assessment	of	infarct	size:	preliminary	correlational	study		

	

As	part	of	a	coronary	ligation	pilot	study	involving	10	mice,	to	establish	feasibility	of	

the	model,	and	satisfactoriness	of	echo	in	assessing	extent	of	left	ventricular	scar	and	

infarct	size,	the	hearts	from	the	10	mice	underwent	histological	analysis	(for	results	see	

Section	3.5).			

Following	echocardiographic	assessment	one	week	after	coronary	ligation,	mice	were	

culled	by	C02	inhalation	and	cervical	dislocation.		Hearts	were	removed	and	placed	into	

10%	neutral	buffered	formaldehyde.		They	were	then	prepared	in	paraffin,	and	cut	into	

basal,	mid-ventricular,	and	apical	segments	3-4	μM	wide.		Sections	of	these	were	

stained	with	Masson’s	trichome,	which	stains	muscle	red/pink,	and	collagen	

green/blue.	

Photographs	of	the	sections	were	taken	using	a	digital	camera	(BZ-8000,	Keyence	Corp,	

Japan).		For	each	section,	the	endocardial	and	epicardial	lengths	of	the	infarcted	section	

of	the	left	ventricle	were	measured,	where	collagen	was	present	in	≥	50%	of	the	wall	

thickness,	using	AnalyzingDigitalImages	software	(Museum	of	Science,	Boston,	MA),	

and	the	mean	calculated;	the	same	calculation	was	performed	for	the	endo-	and	

epicardial	circumferences	of	the	left	ventricle.		The	percentage	infarct	size	was	

calculated	as	mean	infarct	length	divided	by	mean	total	LV	circumference,	as	has	been	

previously	described261,262.		This	was	chosen	in	preference	to	area	measurements	

which	tend	to	underestimate	infarct	size	once	scar	tissue	has	replaced	cardiomyocytes,	

leading	to	thinning	of	the	ventricular	wall.	

Other	methods	of	infarct	size	assessment	have	been	described211,263,	and	the	method	to	

some	extent	depends	on	the	timing	of	organ	harvesting	in	relation	to	the	infarct.		Left	

ventricular	wall	thinning,	and	replacement	of	necrotic	tissue	with	collagen,	occurs	in	

the	first	few	days	post	infarction,	and	is	well-established	at	one	week.		Masson’s	

trichome	was	chosen	as	it	has	been	used	extensively	in	this	setting,	and	clearly	

delineates	infarcted	from	healthy	tissue264.	

	

	

	

2.8	 ECGenie	protocol	

	

Recording	was	carried	out	in	a	quiet	room	in	the	animal	facility.		One	mouse	was	placed	

on	the	recording	pad	of	the	platform,	with	a	second	mouse	on	the	side	platform.		They	

were	left	to	acclimatise	for	15	minutes	before	recording	started.		Continuous	recording	
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through	LabChart	was	performed	for	5-10	minutes	typically,	to	ensure	capture	of	

sufficient	length	of	ECG	trace	which	would	allow	analysis	of	PQRST	morphology	and	

intervals,	and	HRV	analysis.		Sampling	and	filter	settings	were	as	follows:	2	kHz	

sampling,	bandpass	3-100	Hz,	with	50	Hz	and	‘Mains’	filters.		Due	to	only	intermittent	

contact	of	the	mouse’s	paws	with	the	recording	electrodes,	sections	of	analysable	ECG	

lasted	anywhere	from	5	seconds	to	over	5	minutes.		Mice	were	conscious	at	all	times.			

	

	

2.8.1	 ECG	analysis	

	

For	analysis	of	ECG	parameters	(heart	rate,	PR	and	QT	intervals,	QRS	duration),	and	

presence	of	PVCs	or	VT,	three	epochs	were	recorded	to	enable	averaging	and	to	ensure	

the	impact	of	transient	physiological/environmental	fluctuations	was	minimised.		The	

‘cleanest’	sections	of	ECG	(i.e.	those	with	lowest	noise	and	artefact	levels)	were	chosen.		

Typically,	two	10	second	epochs	and	one	20-25	second	epoch	were	used,	the	latter	also	

serving	as	the	section	for	HRV	analysis.			

All	recorded	sections	of	‘clean’	ECG	were	reviewed	prior	to	analysis.		The	LabChart	

software	allows	for	semi-automated	ECG	analysis,	including	R	wave	marking.		Each	

section	was	reviewed	by	myself,	with	manual	adjustments	to	R	wave	markers	made	if	

necessary.		Similarly,	the	signal	averaging	tool	used	to	generate	an	ensemble	PQRST	

complex	from	which	intervals	were	measured,	was	also	reviewed	and	manually	

adjusted	to	ensure	accurate	measurements.		Two	QT	interval	measurements	were	

made	on	baseline	recordings	(see	Figure	21):	for	the	first,	duration	from	the	onset	of	

the	QRS	to	the	intersection	of	the	first	slope	of	the	T	wave	with	the	isoelectric	line	was	

recorded	(QTs);	for	the	second,	the	duration	from	the	QRS	onset	to	the	intersection	of	

the	more	protracted,	lower	amplitude	section	of	the	T	wave	with	the	isoelectric	line	

was	recorded,	and	corrected	with	the	formula	published	by	Mitchell	et	al253	(QTc).	

	

	

2.8.2	 Heart	rate	variability	analysis	

	

For	HRV	analysis,	the	same	procedure	of	review	and	manual	adjustment	of	R	wave	

markers	was	performed	as	described	above.		All	beats	were	regarded	as	sinus	beats,	as	

observation	of	numerous	recordings	revealed	that	some	mice	have	marked	variability	

in	beat	to	beat	interval	which	is	usually	sinus	rhythm	(i.e.	sinus	arrhythmia),	and	

because	the	quality	of	the	trace	often	did	not	permit	P	waves	to	be	accurately	
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identified.		Markedly	premature	beats	of	ventricular	origin	were	exceptionally	rare,	

and	therefore	not	considered	to	have	any	significant	impact	on	results.		Analysis	

settings	were	as	follows:	Histogram	bin	size:	10	ms;	FFT	(fast	Fourier	transform)	size:	

the	lowest	exponent	of	2	greater	than	the	recorded	number	of	beats,	typically	512;	

Window:	Welch;	Overlap:	½;	Max	frequency	5	Hz,	Frequency	bands:	0.4	<	LF	<	1.5	<	HF	

<	4	Hz.		There	is	some	debate	about	the	precise	limits	of	frequency	bands,	as	there	is	in	

humans.		In	fact,	murine	HRV	frequency	bands	are	largely	derived	from	extrapolation	

of	those	in	humans.		The	values	chosen	were	those	from	a	previous	study	from	our	

group108.		The	following	average	indices	were	recorded:		

	

• mean	N-N	interval	(equivalent	to	R-R	interval)	

• median	N-N	interval	

	

The	following	time	domain	indices	were	recorded:		

	

• N-N	range		

• standard	deviation	of	N-N	(SDNN)		

• standard	deviation	of	delta	N-N	(SD	delta	NN)	

• root	mean	square	of	successive	differences	(RMSSD)	

	

The	following	frequency	domain	indices	were	recorded:		

	

• total	power	(Tpower)		

• very	low	frequency	(VLF,	<	0.4Hz)		

• low	frequency	(LF,	0.4-1.5Hz)		

• high	frequency	(HF,	1.5-4Hz)	

• low	frequency	normalised	units	(LFnu)	

• high	frequency	normalised	units	(HFnu)		

• LF/HF	ratio	

	

The	low	and	high	frequency	normalised	units	were	derived	from	the	formula		

	

(LF	or	HF)	/	(TPower	–	VLF)	*100.	
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2.9	 Electrophysiological	studies	

	

Mice	were	anaesthetised	with	isoflurane:	2%	at	induction,	followed	by	1.5-2%	

maintenance	anaesthesia	via	a	face	mask.		The	neck	was	dissected	to	expose	the	right	

internal	jugular	vein	(RIJ).		The	cranial	end	of	the	vein	was	tied	off	with	silk	suture,	and	

a	suture	passed	around	the	caudal	end	(nearest	the	heart).		A	small	incision	was	made	

in	the	vein,	and	a	1.1F	octapolar	miniature	electrophysiology	catheter	(Millar	

Instruments)	was	passed	through	this	to	the	heart.		The	catheter	was	connected	to	a	

signal	amplifier	(Bioamp,	ADInstruments)	and	data	acquisition	device	(Powerlab	4/35,	

ADInstruments),and	intracardiac	EGMs	were	recorded	using	LabChart.		The	catheter	

was	manipulated	until	ventricular	and	atrial	EGMs	were	seen.			

Pacing	protocols	consisted	of	AV	node	Wenckebach	point,	ventricular	effective	

refractory	period	(VERP),	and	ventricular	tachycardia	stimulation	(“VT	stim”).		These	

protocols	are	detailed	below.	
	

	

2.9.1	 Wenckebach	point	

	

In	normal	hearts,	if	the	sinus	nodal/atrial	rate	is	fast	enough,	impulses	fail	to	continue	

to	conduct	in	a	1:1	fashion	through	the	AV	node	to	the	ventricles.		This	occurs	due	to	

the	decremental	properties	of	the	AV	node.		The	point	at	which	this	begins	to	occur	is	

known	as	the	Wenckebach	cycle	length,	and	describes	a	situation	where	there	is	

progressive	delay	in	conduction	of	impulses,	eventually	leading	to	a	non-conducted	

impulse,	after	which	conduction	resumes	and	the	cycle	repeats.		The	Wenckebach	

point/cycle	length	therefore	provides	a	means	of	assessing	AV	nodal	function.			

Pacing	of	the	right	atrium	was	commenced	at	500	bpm	(120ms	cycle	length).		If	

conduction	to	the	ventricle	occurred	in	a	1:1	fashion,	the	cycle	length	was	reduced	by	

10ms.		This	process	was	repeated	until	either	1:1	conduction	failed,	or	the	AV	interval	

prolonged	to	greater	than	the	paced	cycle	length,	rendering	interpretation	of	the	AV	

relationship	difficult.		The	cycle	length	at	which	this	occurred	was	noted	as	the	

Wenckebach	point.	
	

	

2.9.2	 Ventricular	effective	refractory	period	(VERP)		
	

This	provides	a	measure	of	excitability	of	the	ventricular	tissue.		Its	relevance	to	

arrhythmogenesis	is	related	to	the	role	of	EADs	and	DADs	in	triggering	tachycardia.		
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Although	not	uniformly	applicable,	a	shorter	effective	refractory	period	can	render	

tissue	more	amenable	to	excitation	by	EADs/DADs,	as	wavelength	(the	product	of	

conduction	velocity	and	refractory	period)	is	reduced,	a	condition	favourable	to	re-

entry.		

To	ascertain	VERP,	the	ventricle	was	paced	at	600	bpm	(100ms	cycle	length)	for	20	

beats.		A	paced	beat	of	shorter	cycle	length	(S2)	was	introduced	at	the	end	of	this	drive	

train,	starting	at	a	cycle	length	of	90ms.		If	the	S2	captured	the	ventricle,	the	S2	cycle	

length	was	reduced	by	10	ms.		The	process	was	repeated	until	S2	failed	to	capture	the	

ventricle.		The	S2	with	the	highest	cycle	length	that	failed	to	capture	was	noted	as	the	

VERP.			
	

	

2.9.3	 Ventricular	tachycardia	stimulation	(“VT	stim”)	
	

This	technique	is	an	extension	of	VERP	measurement,	and	is	designed	to	mimic	what	

may	happen	in	patients	when	a	succession	of	ventricular	premature	beats	occur.		In	

diseased	hearts,	this	may	trigger	VT.			

The	protocol	used	was	a	slight	modification	of	that	previously	described94.		The	

ventricle	was	paced	at	600	bpm	(100	ms	cycle	length)	for	20	beats.		An	additional	beat	

(S2)	was	introduced	at	the	end	of	this	drive	train	10	ms	above	the	VERP	cycle	length.		If	

no	VT	was	induced,	a	further	additional	beat	was	introduced	starting	at	90	ms	(S3),	and	

the	S3	cycle	length	reduced	by	10	ms	until	non-capture.		Again,	if	no	VT	was	induced,	

S2	was	held	10	ms	above	VERP,	S3	was	held	at	the	shortest	cycle	length	that	achieved	

capture,	and	a	further	beat,	S4,	was	introduced	starting	at	90	ms	and	reducing	by	10	ms	

until	non-capture.		Intrinsic	cardiac	rhythm	immediately	following	this	programmed	

electrical	stimulation	was	monitored:	if	at	any	stage	during	the	process	4	or	more	

intrinsic	beats	of	different	morphology	to	that	of	sinus	rhythm	at	a	rate>600bpm	was	

achieved,	this	was	noted	as	ventricular	tachycardia	(VT).		Between	4	and	30	beats	were	

classified	as	NSVT;	over	30	beats	were	classed	as	sustained	VT.			

	

	

	

2.10	 Microelectrode	array	(MEA)	studies			 	
		

Mice	studied	included	those	of	WT	GNAI2	status	(Gαi2	+/+	littermates	of	gKOs,	and	Gαi2	
WT/WT	Cre-	or	Gαi2	Flx/WT	Cre-	littermates	of	cKOs).		All	mice	were	on	a	129Sv	

background.	



	 101	

Experimentation	with	various	aspects	of	the	technique	for	analysing	tissue	with	the	

MEA	was	performed	prior	to	commencing	the	studies.		This	process	of	optimisation	is	

described	below,	prior	to	the	methodology	used	in	the	MEA	studies.		Figure	26	

illustrates	the	experimental	setup.		Detailed	description	of	the	steps	is	provided	

throughout	Section	2.10,	but	in	summary,	experiments	consisted	of	retrieval	of	the	

heart,	perfusion	on	a	Langendorff	apparatus,	slicing,	preservation	of	slices,	stimulation	

and	recording	of	electrical	signals.			

	

	
Figure	26		MEA	system	setup.		After	retrieval	of	the	heart	and	retrograde	aortic	perfusion,	the	heart	is	
sliced	with	a	vibratome	(1).		When	the	slice	is	ready	for	use,	it	is	transferred	to	the	MEA	(2)	which	is	placed	
on	the	recording	platform	(3a).		Modified	Krebs	is	perfused	through	a	cannula	(b),	the	temperature	of	the	
perfusate	is	regulated	(c).		Signals	are	recorded	and	visualised	on	a	computer	(4).	
	

	

	

2.10.1	 Development	and	optimisation	of	technique	

	

The	technique	of	murine	cardiac	slice	evaluation	with	the	MEA	had	been	used	within	

our	group,	so	some	first	hand	observation	was	possible.		However,	two	key	aspects	of	

the	methodology	were	not	accessible,	as	they	required	specialist	software	and	

understanding	of	MATLAB	programming.		They	therefore	suggested	themselves	as	

amenable	to	simplification,	and	possible	improvement.			
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Stimulation:	electrode	configuration	

	

The	first	was	the	means	of	stimulation	of	the	slice,	which	had	been	achieved	using	a	

non-commercial	external	stimulator,	with	a	stimulation	program	written	in	MATLAB	

(MathWorks,	USA).		This	also	involved	uncertainty	as	to	where	exactly	on	the	slice	

stimulation	was	occurring.		A	method	of	stimulation	through	the	MEA	was	discovered,	

with	the	advantages	that	the	precise	location	of	stimulation	would	be	known,	as	well	as	

the	ability	to	easily	customise	stimulation	protocols.		The	60PedotMEA200/30iR-Au-gr	

MEA	(hereafter	termed	‘MEA’;	Multi	Channel	Systems	MCS	GmbH,	Germany)	was	

chosen	due	to	its	lower	electrode	impedance,	and	hence	ability	to	tolerate	higher	

voltages.		Its	base	is	made	from	glass,	and	there	are	60	electrodes	made	from	carbon	

nanotube	–	poly	3,4-ethylene-dioxythiophene	(PEDOT-CNT),	with	contact	pads	made	

from	titanium-gold.		Each	electrode’s	diameter	is	30	μM,	with	interelectrode	distance	of	

200	μM.			

Due	to	familiarity	with	voltage	stimulation,	this	was	initially	employed	in	a	unipolar	

manner,	i.e.	from	one	electrode.		However,	it	was	not	possible	to	achieve	capture	within	

the	recommended	voltage	limits,	so	bipolar	current	stimulation	using	adjacent	

electrodes	was	attempted.		Initially	this	seemed	to	be	more	successful,	although	after	

experimentation,	it	was	realised	that	whilst	a	bipolar	configuration	was	specified,	both	

electrodes	did	not	always	participate.		Producing	bipolar	stimulation	protocols	was	

also	more	complex,	and	became	particularly	problematic	when	needing	to	restart	a	

protocol	after	premature	discontinuation,	e.g.	due	to	non-capture.		As	a	result,	unipolar	

current	stimulation	was	used	due	to	its	consistency	and	relative	ease	of	use.		Capture	of	

the	whole	slice	at	high	currents	was	the	major	downside	of	this,	and	once	appreciated	

care	was	taken	to	ensure	this	was	not	occurring,	achieved	in	part	by	limiting	maximum	

stimulation	current	to	100	μA.	

	

	

Signal	recording	and	calculation	of	conduction	velocity	

	

The	second	aspect	was	analysis	of	recorded	signals	and	calculation	of	conduction	

velocity.		The	recording	and	file	conversion	were	similar	to	that	described	below	for	my	

experiments.		However,	analysis	and	computation	was	performed	using	a	custom-made	

MATLAB	script.		Given	the	time	constraints,	as	well	as	the	possibility	that	although	

mathematically	more	complex,	this	did	not	necessarily	offer	more	accurate	
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representation	of	the	tissue	characteristics,	an	alternative	method	was	developed	using	

a	limited	number	of	signals	with	the	program	LabChart.	

	

	

Heart	slicing	

	

An	important	modification	was	made	to	the	way	the	excised	heart	was	prepared	for	

slicing.		The	dogma	had	been	that	it	was	necessary	to	structurally	support	the	

ventricles	on	the	vibratome	stage	by	embedding	them	in	low	melting	point	agarose.		

This	required	immersion	of	either	the	whole	heart	or	just	the	ventricles	within	warm,	

liquid	agarose,	such	that	it	would	envelop	the	heart	and	fill	its	cavities.		After	a	number	

of	trials,	several	problems	emerged.		Firstly,	the	additional	steps	involved	in	preparing	

the	agarose	such	that	it	would	be	at	just	the	right	temperature	to	remain	in	liquid	form,	

yet	not	too	hot	that	it	would	thermally	injure	the	heart,	were	difficult	to	coordinate	

with	the	heart	retrieval	and	Langendorff	perfusion.		Secondly,	when	agarose	encases	

the	epicardial	surface	and	fills	the	ventricular	cavities,	there	is	no	means	by	which	the	

oxygenated	buffer	can	perfuse	the	tissue.		Thirdly,	for	reasons	that	were	unclear,	the	

block	of	agarose	frequently	fell	apart	when	cutting	began,	or	became	unstuck	from	the	

vibratome	stage,	necessitating	abortion	of	the	experiment.			

An	alternative	means	of	supporting	the	heart	against	cutting	was	tried	and	found	to	be	

effective.		This	consisted	of	gluing	the	ventricles	directly	to	the	removable	metal	stage,	

and	gluing	a	small	piece	of	polystyrene	directly	behind.		This	provided	a	buttress	to	

support	the	heart	against	the	cutting	blade,	helping	to	prevent	folding	or	collapse	of	the	

ventricles.		Despite	its	efficacy,	one	problem	that	emerged	was	that	the	glue	used	to	

stick	the	polystyrene	occasionally	adhered	to	the	epicardial	surface	causing	tissue	

damage	and	preventing	smooth	slicing.		Therefore	an	even	simpler	method	without	the	

polystyrene	block	was	tried;	provided	the	ventricles	were	stuck	to	the	stage	properly,	

this	worked	well,	and	was	therefore	adopted	for	the	experiments	described	in	the	

Chapter	7.	

	

	

Stimulation	frequency	

	

A	resting	mouse	heart	rate	is	typically	500-600	bpm,	equivalent	to	a	cycle	length	of	

100-120	ms.		Despite	this,	most	published	studies	report	stimulation	at	cycle	lengths	of	

500-1000	Hz.		Clearly	it	is	desirable	to	try	to	test	the	tissue	in	a	way	that	resembles	in	



	 104	

vivo	conditions	as	closely	as	possible.		On	the	other	hand,	the	tissue	undergoes	a	good	

deal	of	physical	and	metabolic	stress	as	discussed	in	Section	1.9,	which	reduces	its	

tolerance	of	‘normal’	heart	rates.		At	the	outset,	stimulation	cycle	lengths	of	150	ms	and	

250	ms	were	trialled.		Although	a	number	of	successful	experiments	were	carried	out	

with	the	former,	capture	was	less	consistent,	and	the	slices	were	prone	to	complete	

loss	of	capture	before	completion	of	the	protocol,	presumably	due	to	tissue	

deterioration.		Therefore	250	ms	was	chosen	as	a	compromise.			

	

	

Signal	analysis	

	

A	final	point	in	relation	to	signal	appearances	and	analysis	was	that	signals	were	rarely	

ideal,	and	often	varied	substantially	over	the	course	of	an	experiment.		Familiarisation	

with	signal	appearances,	what	is	acceptable,	and	which	part	of	the	signal	is	likely	to	

represent	local	activation	were	learnt	through	observing	and	analysing	a	large	number	

of	experiments.		Far-field	components	were	recognised	through	their	lower	amplitude,	

lower	frequencies,	and	coincidence	with	sharper	signals	elsewhere	on	the	MEA.	

	

		

2.10.2	 Buffer	solutions	

	

The	following	modified	Krebs-Henseleit	buffer	(hereafter	termed	‘Krebs’)	master	

solution	was	made	up	prior	to	slice	preparation	on	the	day	of	procedure	(molecular	

concentration):	

NaCl	6.896	g	(118	mM),	KCl	0.283	g	(3.8	mM),	MgSO4-7H20	0.293	g	(1.19	mM),	NaHCO3	

2.1	g	(25	mM),	KH2PO4	0.162	g	(1.19	mM),	D-glucose	0.9	g	(5	mM),	sodium	pyruvate	

0.220	g	(2	mM)	were	dissolved	in	1	L	of	distilled	water.			

	

This	‘Calcium-free	Krebs’	solution	was	used	to	produce	the	following	modified	Krebs	

solutions:	

1. Normal	Krebs	(Ca2+	1.4	mM,	K+	5	mM)		 	 	 	 	 	

2. Perfusion-Slicing	Krebs	(Ca2+	0.6	mM,	K+	15	mM,	BDM	(10	mM,	Sigma-Aldrich):	

4	°C	

3. Resting	Krebs	(same	as	Perfusion-Slicing	Krebs):	21	°C	 	 	 	

4. Preparation	Krebs	(Ca2+	1.4	mM,	K+	5	mM,	BDM	10	mM):	21	°C	 	

5. Bathing	Krebs	(Ca2+	1.4	mM,	K+	5	mM):	37	°C	 	 	 	
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To	produce	these	from	Calcium-free	Krebs:	

	

300	mL	of	Calcium-free	Krebs	was	poured	into	a	bottle	and	the	following	added	to	

make	Perfusion-Slicing	Krebs:	

	

i. 0.18	ml	1	M	CaCl2	to	get	0.6	mM	

ii. 0.224	g	KCl	to	get	15	mM	final	concentration	

iii. 300	mg	BDM	

	

50	ml	of	this	was	poured	into	a	Falcon	tube	for	use	as	Resting	Krebs,	and	kept	at	room	

temperature.		After	bubbling	with	carbogen,	some	of	remainder	was	used	to	make	ice	

cubes	(Perfusion-Slicing	Krebs)	

	

The	remaining	700	ml	of	Calcium-free	Krebs		was	used	to	make	up	Normal,	Preparation	

and	Bathing	Krebs.		0.98	ml	of	CaCl2	(1	M)	was	added	to	this	volume.		Two	volumes	of	

50	ml	were	poured	into	Falcon	tubes	and	chilled	after	bubbling	for	15	mins	(Normal	

Krebs).			A	further	50	ml	was	poured	into	a	Falcon	tube,	to	which	50	mg	of	BDM	was	

added	(Preparation	Krebs).			The	remaining	350	ml	was	left	at	room	temperature	

(Bathing	Krebs).			

The	pH	and	oxygen	content	of	Normal	Krebs	were	measured	to	verify	that	as	expected,	

they	were	within	the	physiological	range.	The	results	of	three	sets	of	measurements	are	

shown	in	Section	7.2.	

	

	

2.10.3	 Cardiac	slice	preparation	

	

Mice	injected	with	200	μl	of	heparin	(5000	IU/ml,	Leo	Pharma,	UK)	intra-abdominally.		

After	five	minutes,	they	were	culled	by	cervical	dislocation	with	use	of	isoflurane	

anaesthesia	only	in	difficult	cases.		Hearts	were	immediately	removed	after	

thoracotomy	and	placed	in	ice-cold	Normal	Krebs	to	remove	surface	blood	and	fill	

cavities	with	fluid.		The	heart	was	placed	on	ice	covered	by	absorbent	paper,	and	

extraneous	lung,	adipose	and	thymus	tissue	was	removed.		It	was	then	transferred	to	a	

petri	dish	filled	with	Normal	Krebs	placed	under	a	microscope,	and	the	aorta	was	

pulled	over	a	metal	aortic	cannula,	secured	by	tying	a	thread	around	the	aorta.			

The	cannula	and	attached	heart	were	transferred	to	a	perfusion	(Langendorff)	system	

with	bubble	trap	primed	with	ice-cold	Normal	Krebs.		The	heart	was	perfused	at	a	rate	
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of	2-3	ml/min	for	60-90	s,	after	which	the	perfusate	was	changed	to	Perfusion-Slicing	

Krebs.		This	was	continued	until	contractions	terminated.	

The	heart	was	removed	from	the	Langendorff	system	and	transected	at	the	level	of	the	

atrioventricular	grooves	to	separate	the	atria	and	ventricles.		The	ventricular	base	was	

glued	to	a	cylindrical	metal	‘coin’,	and	this	was	placed	in	a	chamber	on	the	vibratome	

(Vibrating	Microtome	7000-smz2,	Campden	Instruments	Ltd,	UK).		The	chamber	was	

filled	with	Perfusion-Slicing	Krebs	at	4	°C,	and	the	previously	frozen	ice	cubes	were	

used	to	maintain	a	low	temperature.		After	removal	of	the	apex,	three	slices	of	

thickness	250	μM	were	cut	with	slicing	settings	–	frequency	50	Hz,	amplitude	1.00	mm,	

z-deflection	<	2	μM,	and	advance	rate	0.02	mm/s.		After	each	slice	was	cut,	it	was	

transferred	to	a	Falcon	tube	containing	carbogenated	Resting	Krebs	at	room	

temperature.		Slices	were	kept	in	Resting	Krebs	for	30	minutes,	after	which	they	were	

transferred	to	carbogenated	Preparation	Krebs	also	at	room	temperature.			

Prior	to	transferring	each	slice	for	recording,	the	MEA	setup	was	primed	by	flushing	

the	system	with	distilled	water,	followed	by	Normal	Krebs	to	ensure	the	inflow	tubing	

and	the	MEA	were	both	filled	with	this.		Temperature	of	the	perfusate	was	maintained	

at	37	°C	with	a	two	channel	temperature	controller	and	heatable	perfusion	cannula	

with	temperature	sensor	(TC02	and	PH01,	Multi	Channel	Systems).		A	slice	was	

subsequently	placed	in	the	Krebs-filled	MEA,	and	a	small	home-made	circular	mesh	

‘slice	holder’	was	used	to	maintain	slice	contact	with	the	electrodes	while	allowing	

simultaneous	contact	with	the	perfusate	(Figure	27).		This	was	returned	to	the		

	
	

Figure	27		MEA	with	ventricular	tissue	slice	(left).		Illustration	of	electrode	diameter	and	interelectrode	
distance	(right).	
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headstage	(MEA2100-HS,	Multi	Channel	Systems)	and	perfusion	with	Normal	Krebs	

started	with	a	pump	(Mini-Peristaltic	Pump	II,	Harvard	Apparatus	UK).		The	slice	and	

slice	holder	were	manipulated	so	that	as	many	of	the	MEA	electrodes	as	possible	were	

covered	by	homogeneous,	unfolded	tissue.	

	

	

2.10.4	 Stimulation	

	

Unipolar	stimulation	of	the	slice	was	commenced	straight	away	using	MC_Rack	version	

4.5.11	(Multi	Channel	Systems).		An	electrode	at	the	periphery	of	the	MEA	was	selected,	

and	the	following	initial	settings	were	used:	a	biphasic	pulse	of	-40	μA	for	1	ms	and	40	

μA	for	1	ms	at	a	cycle	length	(CL)	of	1000	ms.		If	no	capture	was	achieved,	stimulation	

via	a	different	peripheral	electrode	was	tried.		This	was	repeated	until	capture	was	

achieved;	if	necessary,	non-peripheral	electrodes	were	utilised.		If	no	capture	was	

achieved	after	15	minutes,	the	slice	was	discarded.		If	stable	capture	was	achieved,	the	

stimulation	CL	was	reduced	to	500	ms	after	20-25	minutes	and	threshold	was	

determined.		Output	current	was	set	at	twice	diastolic	threshold	in	all	experiments.		

After	30-40	minutes,	the	CL	was	reduced	to	250	ms;	often	at	this	stage,	it	was	

necessary	to	change	the	stimulating	electrode	due	to	either	lack	of	consistent	capture,	

or	EGMs	of	inadequate	quality	to	permit	measurement	of	activation	time	(a	sharp	

downstroke	separate	from	the	pacing	stimulus).		Care	was	also	taken	to	avoid	

stimulating	such	that	wide	capture	appeared	to	occur,	as	indicated	by	simultaneous	

activation	across	the	MEA.		If	the	stimulating	electrode	was	changed,	the	threshold	was	

re-determined	and	output	adjusted	accordingly.		The	electrode	was	not	changed	once	

the	experiment	proper	had	begun,	i.e.	commencement	of	measurements.			

Preconditions	for	continuing	the	experiment	past	this	point	were:		

- Consistent	capture	

- A	discernible	downward	deflection	within	5	ms	of	the	stimulus	artefact	on	an	

electrode	within	400	μM	of	the	stimulating	electrode,	to	allow	measurement	of	

local	activation	time	(‘reference	electrode’	signal)	

- Increase	in	activation	time	with	increasing	distance	from	the	stimulus	

- At	least	two	good	quality	EGMs	≥	600	μM	from	the	reference	electrode	

	

	

	

	



	 108	

2.10.5	 Stimulation	protocols	

	

Once	consistent	capture	at	a	CL	of	250	ms	had	been	achieved,	two	stimulation	

protocols	were	employed	in	all	experiments.		The	first,	to	determine	ERP,	utilised	

scripts	written	with	MC_Stimulus	II	version	3.4.4	(Multi	Channel	Systems)	by	Dr	David	

Montaigne.		Four	versions	of	the	same	script	were	written,	differing	only	by	the	current	

output	specified	to	allow	stimulation	at	twice	diastolic	threshold	(at	40,	60,	80	and	100	

μA).		Biphasic	current	pulses	as	described	above	were	utilised.		S2	decremented	by	10	

ms	between	140	ms	and	70	ms,	whilst	between	62	ms	and	20	ms,	there	were	2	ms	

decrements	after	each	10	stimulus	drive	train	of	S1.		This	was	to	allow	precision	over	

the	expected	range	of	ERP,	whilst	not	prolonging	the	experiment	unnecessarily.		An	

outline	is	shown	below:	

	

- Initial	run-in	of	30	stimuli	at	250	ms	(S1)	

- Premature	beat	(S2)	at	140	ms	

- 10	x	S1	at	250	ms	

- 1	x	S2	at	130	ms	

- 10	x	S1	at	250	ms	

- 1	x	S2	at	120	ms	

- …	

- 10	x	S1	at	250	ms	

- 1	x	S2	at	70	ms	

- 10	x	S1	at	250	ms	

- 1	x	S2	at	62	ms	

- 10	x	S1	at	250	ms	

- 1	x	S2	at	60	ms	

- …	

- 10	x	S1	at	250	ms	

- 1	x	S2	at	20	ms	

	

By	setting	up	a	long-term	display,	and	a	trigger	from	the	stimulus,	two	data	displays	

could	be	set	up	to	allow	real-time	visualisation	of	capture	adjacent	to	the	stimulating	

electrode	and	at	a	distal	electrode.		In	this	way,	ERP	was	ascertained	on	the	fly,	and	was	

determined	twice	for	each	time	point/drug	concentration/temperature.	
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To	measure	activation	times	and	conduction	velocity,	stimulation	was	performed	at	CL	

of	250	ms	for	8-10	s	(32-40	stimuli)	to	achieve	a	steady	state	and	ensure	consistent	

capture.		On	occasion	this	had	to	be	repeated,	for	example	if	there	was	frequent	

spontaneous	activity	which	interfered	with	capture.		Sampling	frequency	was	10	kHz.		

This	whole	epoch	was	recorded	using	the	MC_Rack	software	as	a	.mcd	format	file.		This	

was	subsequently	converted	to	an	ASCII	.txt	file	using	MC_DataTool	version	2.6.13	

(Multi	Channel	Systems)	for	the	relevant	MEA	electrodes/channels,	to	permit	reading	

and	analysis	in	LabChart.			

Each	slice	was	used	to	obtain	one	set	of	ERP	and	conduction	velocity	measurements,	at	

each	cycle	length	where	appropriate,	i.e.	one	ERP	and	one	conduction	velocity	protocol	

was	performed	per	slice,	stimulating	via	the	same	electrode	throughout.	

	

	

2.10.6	 Analysis	of	activation	times	and	calculation	of	conduction	velocity	

	

The	heterogeneity	of	signals	across	the	MEA	meant	that	the	same	electrode	data	had	to	

be	used	throughout	the	experiment	to	avoid	erroneous	changes	being	reported.		For	

example,	if	the	activation	times	at	electrodes	12,	31	and	61	(e12,	e31,	e61)	were	2.3,	

4.1,		and	1.7	ms	at	baseline,	the	mean	is	2.7	ms.		But	if	the	signal	in	e31	was	lost	for	

some	reason	halfway	through	the	protocol,	assuming	activation	times	otherwise	

remained	unchanged,	data	would	only	be	available	for	e12	and	e61,	the	mean	of	which	

would	now	be	2.0	ms.		Given	that	typically	only	a	few	electrodes	distal	(>	600	μM	)	to	

the	reference	electrode	(the	one	within	400	μM	of	the	stimulating	electrode	used	to	

define	earliest	capture;	see	Figure	28)	would	show	good	quality	signals	at	baseline,	and	

the	expectation	was	that	not	all	of	these	would	persist	through	the	protocol,	it	was	

decided	to	require	a	minimum	of	two	distal	electrodes	with	good	quality	signals,	in	

addition	to	the	reference	electrode	close	to	the	stimulus.			

The	method	of	analysis	described	below	assumed	linear	impulse	propagation	across	

the	MEA	from	the	reference	electrode	to	distal	electrodes	at	which	activation	times	

were	measured	(see	Chapter	8	for	debate	regarding	the	validity	of	this	assumption).		

This	is	illustrated	in	Figure	28.			

The	ASCII	.txt	file	was	opened	in	LabChart	and	a	new	channel	created	to	display	the	

first	temporal	derivative	of	the	MEA	electrode	data	being	analysed.		In	this	way,	

activation	time	in	milliseconds	could	be	measured	from	the	commencement	of	the		

stimulus	artefact	to	the	maximum	negative	value	on	the	derivative	channel	(Figure	29).				

By	displaying	the	original	channel	data	concurrently,	the	value	measured	could	be	
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Figure	28		Method	of	calculation	of	conduction	velocity.		A:	MEA	with	EGMs	at	each	electrode.		A	stimulus	is	
applied	at	the	centre	bottom	(red	open	rectangle).		The	local	activation	time	is	marked	on	an	adjacent	
electrode	with	a	red	dot.		Propagation	is	assumed	to	be	linear	shown	by	the	arrow,	and	activation	times	on	
two	distal	electrodes	are	marked.		B:	The	three	EGMs	in	(A)	have	been	enlarged	to	show	how	activation	
time	(AT)	is	measured.	(1:	electrode	adjacent	to	stimulus;	2	&	3:	distal	electrodes).	
	

	

	
Figure	29		Calculation	of	activation	time	(AT).		Channel	1	is	the	unipolar	signal	from	one	of	the	MEA	
electrodes,	indicating	stimulus	artefact	and	sharp	negative	deflection	associated	with	activation	of	the	
overlying	cardiomyocytes,	i.e.	phase	0	of	action	potential.		Channel	2	shows	the	first	temporal	derivative	of	
Channel	1,	indicating	the	maximum	negative	derivative.		The	shaded	area	represents	the	time	from	
stimulus	artefact	to	this	point	(indicated	in	the	red	circle	-	‘	Time’).	
	

	



	 111	

checked	to	corroborate	it	occurred	at	the	time	of	maximum	negative	downstroke,	or	in	

difficult	cases,	that	it	was	plausible.		The	process	was	repeated	for	the	distal	electrode	

channels	to	determine	their	activation	times.		Measurements	were	entered	into	a	

spreadsheet,	and	the	time	difference	between	activation	time	at	the	reference	electrode	

and	each	distal	electrode	was	calculated.		The	distance	between	these	electrodes	was	

also	calculated,	and	conduction	velocity	derived	from	these	values.		Values	<	10	cm/s	

or	>	150	cm/s	were	excluded	from	analysis.		Mean	conduction	velocity	was	determined	

for	each	pair	of	distal	electrodes	at	each	time	point/drug	concentration/temperature.			

	

	

2.10.7	 Control	experiments	

	

A	series	of	experiments	were	performed	to	assess	the	stability	of	ERP	and	conduction	

velocity	over	time,	in	the	absence	of	any	drug	or	other	challenge.		These	were	called	

‘control	experiments’.		ERP	and	conduction	velocity	were	measured	at	baseline	and	

every	7	minutes	for	35	minutes,	as	described	above.			

	

	

2.10.8	 Drug	challenge	

	

The	effects	of	several	drugs	on	ERP,	local	activation	time	and	conduction	velocity	were	

determined	for	WT	mice;	carbachol	experiments	involved	both	WTs	and	gKO	mice.				

Drugs	were	reconstituted	from	powder	form	to	produce	stock	solutions	of	1	mM	

concentration.		During	the	study,	baseline	measurements	were	taken,	after	which	

increasing	concentrations	of	the	drugs	were	assessed	on	the	same	slice.		This	was	

achieved	by	adding	the	requisite	amount	of	drug	stock	solution	to	the	Normal	Krebs	

perfusate	according	to	the	formula	

	

N1.V1	=	N2.V2	 	 	 	 	 Equation	2	

	

Where	N1	=	concentration	of	stock	solution,	V1	=	volume	of	stock	solution,	N2	=	desired	

concentration,	and	V2	=	desired	volume.		After	measurements	were	made	at	this	

concentration,	a	further	volume	of	stock	solution	was	added	to	achieve	the	new	desired	

concentration.		The	new	concentration	of	drug	in	Normal	Krebs	was	perfused	for	three	

minutes	before	commencing	measurements,	to	allow	equilibration	of	the	MEA	chamber	

fluid	and	drug	action.		This	time	was	a	trade-off	between	the	time	required	to	
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adequately	reflect	the	drug	concentration’s	effects,	and	the	desire	to	complete	the	

experimental	protocol	with	a	full	dataset	before	tissue	deterioration.	

	

For	the	muscarinic	agonist	carbachol	(Alfa	Aesar,	UK)	and	the	non-selective	βAR		

agonist	isoprenaline,	ERP	was	assessed	at	the	following	concentrations:	10-9	M,	10-8	M,	

3	x	10-8	M,	10-7	M,	10-6	M	(concentrations	written	in	exponent	form	to	facilitate	

interpretation	of	graphs	in	Chapter	7).		Conduction	velocity	was	assessed	at	the	three	

concentrations	shown	in	bold.		Following	10-6	M	carbachol,	the	muscarinic	antagonist	

10-6	M	atropine	(Sigma-Aldrich)	was	perfused	from	a	separate	50	mL	volume	of	Normal	

Krebs	(i.e.	drug-naïve),	whereas	after	10-6	M	isoprenaline,	the	non-specific	βAR	

antagonist	propranolol	hydrochloride	(Santa	Cruz	Biotechnology,	Dallas	USA)	was	

perfused	at	a	concentration	of	10-6	M	(also	from	separate	50	mL	Normal	Krebs).	

Mexiletine	hydrochloride	(Sigma-Aldrich)	was	studied	at	10-5	M	and	10-4	M,	with	ERP	

and	conduction	velocity	measured	at	both	concentrations.			

	

	

2.10.9	 Thermal	challenge	

	

Baseline	measurements	of	ERP	and	conduction	velocity	were	made	at	37	°C	in	the	same	

way	as	described	above.			The	temperature	of	the	perfusate	in	the	inflow,	and	in	the	

MEA	chamber	was	reduced	to	34	°C	using	the	TCX-Control	version	1.3.4	(Multi	Channel	

Systems).		After	five	minutes	of	perfusion	measurements	were	made.		The	temperature	

was	then	increased	to	40	°C,	with	measurements	made	again	after	5	minutes.		Finally,	

temperature	was	reduced	to	37	°C	before	final	measurements.			

	

	

	

2.11	 Statistical	Analysis	

	

All	statistical	analysis	was	performed	with	StataIC	12	(StataCorp	LP,	USA).		For	

comparisons	of	paired	and	unpaired	observations,	assumptions	were	checked	as	

follows:	i.	equality	of	variance	in	groups	was	checked	with	Levene’s	test;		ii.	normality	

of	the	outcome	variable	was	assessed	with	a	standardised	normal	probability	plot,	and	

if	the	appearance	was	equivocal,	a	skewness	and	kurtosis	test	was	used	to	assess	more	

objectively.		If	the	groups	had	equal	variances	and	were	deemed	to	be	normally	

distributed,	a	t-test	(paired	or	unpaired)	was	used.		If	variances	were	unequal,	but	the	
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outcome	variables	were	considered	normal,	a	t-test	with	unequal	variances	was	used.		

If	both	assumptions	were	invalid,	the	appropriate	non-parametric	test	was	used,	

dependent	on	whether	the	data	were	paired	(Wilcoxon	signed-rank)	or	unpaired	

(Wilcoxon	Ranksum/Mann-Whitney	U).			

Correlational	analyses	report	Pearson’s	product	moment	coefficient	(r)	unless	

otherwise	stated.		Comparison	of	number	of	observations	between	groups	was	

performed	with	Fisher’s	Exact	test	unless	otherwise	stated.			

	

	

MEA	studies	

	

Multilevel	mixed	effects	models	were	employed	to	analyse	repeated	measures	data	

after	recommendation	by	a	statistician	due	to	their	advantages	over	repeated	measures	

analysis	of	variance	(RM-ANOVA).		These	include	fewer	assumptions,	or	requirement	

for	less	strict	adherence	to	them;	the	ability	to	build	in	increasing	hierarchical	

complexity	with	‘levels’	of	data	corresponding	to	groupings;	and	the	ability	to	analyse	

incomplete	datasets.		With	regard	to	the	assumptions,	the	lack	of	comprehensible	

instructions	on	how	to	test	data	for	compound	symmetry	and	sphericity,	and	more	

importantly,	what	to	do	if	your	data	do	not	meet	these	assumptions,	made	multilevel	

mixed	effects	models	attractive.		Further	considerations	were	that	the	random	effects	

component	provides	a	means	of	varying	the	slope	(lines	of	best	fit)	for	each	individual	

sample’s	data.			

Below	is	an	overview	of	the	steps	involved	in	using	multilevel	models	to	analyse	ERP,	

activation	time	and	conduction	velocity	data,	using	variable	drug	concentrations	as	an	

exemplar:	

i. Input	variables	and	re-shape	to	long	format	

ii. Random	intercept	model	with	concentration	as	a	continuous	variable;	store	

estimates	

iii. Random	slopes	model	with	concentration	as	a	continuous	variable;	store	

estimates	

iv. Likelihood	ratio	test	to	compare	models	

v. If	p<0.05,	use	random	slopes	model;	if	not,	restore	random	intercept	

estimates	

vi. Check	assumptions	of	normality	of	residuals	and	homoscedasticity	

vii. Plot	original	data	and	fitted	lines	for	each	sample	to	visually	check	model	
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viii. Generate	margins	and	plot	with	original	data	mean	values	to	visually	check	

model	

ix. Check	for	differences	between	maximum	concentration	and	baseline	values	

x. If	two	groups,	compare	them	at	each	concentration	

xi. Re-model	with	concentration	as	a	discrete	variable	

xii. Re-check	assumptions	

xiii. If	two	groups,	compare	them	at	each	concentration	

xiv. Compare	each	concentration	to	baseline	

	

Several	of	the	datasets	were	also	analysed	with	RM-ANOVA,	and	the	results	were	

similar.	

Statistical	significance	for	was	assumed	if	p<0.05	in	all	circumstances.	
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3.	 RESULTS	-	ESTABLISHMENT	OF	A	HEART	FAILURE	
MODEL	
	
	

	

3.1	 Introduction	

	

Attempts	were	made	to	establish	two	models	of	heart	failure:	one	pharmacological,	and	

one	surgical.		The	aims	were	to	permit	investigation	of	the	pathophysiological	changes	

in	cell	signalling	occurring	in	the	context	of	different	myocardial	insults,	and	to	provide	

some	insurance	should	one	of	the	approaches	fail	to	induce	LV	impairment/heart	

failure.	

The	supraphysiological	beta-adrenoceptor	agonism	model	utilised	isoprenaline	in	WT	

mice.		Effects	on	LV	contractility	were	assessed	using	echo:	LVIDd,	FS	and	EF	were	

measured	for	all	animals.		As	described	in	the	Chapter	2,	the	initial	plan	was	to	use	

pellets	which	would	elute	the	drug	over	three	weeks.	After	preliminary	study	of	ten	

mice	(pellets	–	standard	dose),	there	was	no	demonstrable	effect,	and	a	further	four	

mice	were	studied	at	higher	doses	(pellets	–	high	dose).		After	these	too	did	not	show	

an	effect,	the	drug	delivery	system	was	changed	to	subcutaneous	injections.		The	

results	of	the	three	parts	of	the	isoprenaline	dose-ranging	studies	are	reported	here	

(Sections	3.2	to	3.4).			

These	were	dose-ranging	studies	designed	to	test	the	efficacy	of	isoprenaline	for	

inducing	LV	impairment,	and	to	establish	the	best	dose(s)	to	use	to	obtain	this	effect.		

As	such,	and	in	view	of	the	small	numbers	of	mice	receiving	similar	doses	in	each	part	

of	this	study,	summary	statistics	are	presented	rather	than	the	results	of	formal	

statistical	tests.		Together	with	the	graphs,	the	former	enable	more	meaningful	

interpretation	than	attempting	to	apply	tests	to	underpowered	data.	

The	coronary	ligation	model	of	myocardial	infarction-induced	heart	failure	was	

developed	concurrently.		Prior	to	performing	the	study	involving	cKOs	and	controls	

(Chapter	5)	which	required	serial	echo	measurements,	a	preliminary	correlational	

study	of	echocardiographic	assessment	of	LV	contractility	and	histological	scar	was	

performed	in	WT	mice	to	establish	echo	as	a	reliable	means	of	assessing	MI-induced	

scar	and	contractility.		The	results	are	reported	in	Section	3.5.	
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3.2	 First	isoprenaline	dose-ranging	study:	pellets	(standard	dose)	

	

The	first	dose-ranging	study	involved	mice	receiving	subcutaneous	pellets	at	doses	

similar	to	those	reported	in	the	literature	to	induce	LV	hypertrophy	and/or	heart	

failure.		Ten	mice	were	studied;	those	receiving	similar	doses	have	been	grouped	to	

enable	averaging	and	clearer	graphical	representation	(Figures	30	to	32).		The	pellets	

included	fixed	quantities	of	isoprenaline	(7.5	mg,	15	mg,	25	mg	and	35	mg).		Although	

advertised	as	designed	to	elute	over	21	days,	the	lack	of	observable	effect	calls	this	rate	

into	question,	and	the	following	four	dose	groups	have	therefore	been	chosen	based	on	

isoprenaline	dose	per	gram	of	mouse	body	weight:	0.25-0.35	mg/g,	0.5-0.6	mg/g,	0.85-

1.05	mg/g,	and	1.15-1.35	mg/g.	

	

	

3.2.1	 Left	ventricular	dimensions	

	

As	Figure	30	shows,	there	was	a	very	slight	increase	in	LVIDd	over	the	course	of	the	

study.	

	

	

	
Figure	30		Left	ventricular	internal	dimension	in	diastole	(LVIDd)	over	time	in	standard	dose	part	
of	isoprenaline	pellet	study	for	the	four	dose	groups	(n=10).	
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3.2.2	 Fractional	shortening	

	

Figure	31	shows	the	data	for	FS.		The	lowest	dose	group	exhibited	an	increase	between	

baseline	and	7	days,	before	returning	to	baseline	value.		The	second	highest	dose	group	

showed	a	fall	between	7-12	and	14-18	days,	after	which	FS	stabilised.		Overall,	there	

was	no	clear	trend.	

	

	
Figure	31		Fractional	shortening	(FS)	over	time	in	standard	dose	part	of	isoprenaline	pellet	study	
for	the	four	dose	groups	(n=10).	
	

	

	

3.2.3	 Ejection	fraction	

	

EF	measurements	are	derived	from	those	of	FS,	and	as	a	result,	will	exhibit	the	same	

trends,	as	shown	in	Figure	32.		They	are	also	presented	due	to	their	volumetric	rather	

than	linear	basis,	and	because	EF	is	a	more	intuitive	parameter,	that	is	widely	

understood.		

The	slight	changes	noted	in	FS	for	two	of	the	groups	also	occurred	in	EF,	but	as	before,	

there	was	no	trend.	
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Figure	32		Ejection	fraction	(EF)	over	time	in	standard	dose	part	of	isoprenaline	pellet	study	for	the	
four	dose	groups	(n=10).	
	

	

The	data	in	the	graphs	above	are	summarised	in	Table	1,	which	presents	the	

percentage	change	from	baseline	for	each	parameter	according	to	dose	group.		For	

LVIDd,	the	percentage	change	is	relative,	i.e.	the	starting	value	is	taken	as	100%,	

whereas	for	FS	and	EF	which	are	already	measured	as	percentages,	the	change	from	

baseline	is	recorded	as	absolute:	if	the	baseline	value	is	55%,	and	at	7-12	days	it	is	

70%,	this	is	equal	to	+15%.	

	

	 	 0.25-0.35	mg/g	
	

0.5-0.6	mg/g	 0.85-1.05	mg/g	 1.15-1.35	mg/g	

	 	 (n=3)	 (n=3)	 (n=2)	 (n=2)	

	 	 %	change	from	baseline	

	 	 	 	 	 	
LVIDd	 7-12	days	 -4	 -6	 -1	 +3	

14-18	days	 +7	 +2	 +22	 +7	

	 22	days	 +7	 -1	 +17	 +11	

FS	 7-12	days	 +15	 +2	 +3	 +1	
14-18	days	 -2	 +4	 -14	 -2	

	 22	days	 -3	 -2	 -11	 -5	

EF	 7-12	days	 +14	 +1	 +2	 0	
14-18	days	 -3	 +2	 -16	 -3	

	 22	days	 -4	 -2	 -11	 -6	

	
Table	1		Change	of	echocardiographic	indices	over	time	in	standard	dose	isoprenaline	pellet	study.		
Percentage	change	for	LVIDd	is	relative,	whereas	for	FS	and	EF	it	is	absolute.	
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3.3	 First	isoprenaline	dose-ranging	study:	pellets	(high	dose)	

	

Higher	doses	of	the	pellets	were	used	in	four	mice.		The	corresponding	drug	doses	per	

gram	of	bodyweight	were	2.4	mg/g,	3.6	mg/g,	4.0	mg/g	and	4.1	mg/g.		Measurements	

were	made	at	only	two	time	points	for	this	small	study:	baseline	and	14	days.	

	

	

3.3.1	 Left	ventricular	dimensions	

	

As	shown	in	Figure	33,	there	was	no	change	in	LVIDd	between	baseline	and	14	days	for	

the	cohort.	

	

	
Figure	33		Left	ventricular	internal	dimension	in	diastole	(LVIDd)	over	time	in	high	dose	part	of	
isoprenaline	pellet	study	for	the	four	mice	studied	(n=4).	
	

	

	

3.3.2	 Fractional	shortening	

	

There	was	no	trend	seen	here	either	(Figure	34).	
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Figure	34		Fractional	shortening	(FS)	over	time	in	high	dose	part	of	isoprenaline	pellet	study	for	the	
four	mice	studied	(n=4).	
	

	

	

3.3.3	 Ejection	fraction	

	

As	before,	EF	mirrors	FS	(Figure	35).		

	

	
Figure	35		Ejection	fraction	(EF)	over	time	in	high	dose	part	of	isoprenaline	pellet	study	for	the	four	
mice	studied	(n=4).	
	
	
	
As	for	the	standard	dose	experiments,	the	data	in	the	graphs	above	are	summarised	in	
Table	2,	which	presents	the	percentage	change	from	baseline	for	each	parameter	
according	to	dose	group.			
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	 	 2.4	mg/g	
	

3.6	mg/g	 4.0	mg/g	 4.1	mg/g	

	 	 (n=1)	 (n=1)	 (n=1)	 (n=1)	

	 	 %	change	from	baseline	

	 	 	 	 	 	
LVIDd	 14	days	 -3	 -15	 +5	 -9	

FS	 14	days	 +6	 +8	 -23	 +22	

EF	 14	days	 +5	 +5	 -15	 +13	

	
Table	2		Change	of	echocardiographic	indices	over	time	in	high	dose	isoprenaline	pellet	study.		
Percentage	change	for	LVIDd	is	relative,	whereas	for	FS	and	EF	it	is	absolute.	
	

	

	

3.4	 Second	isoprenaline	dose-ranging	study:	injections	
	

For	this	mini-study,	daily	injections	of	isoprenaline	were	administered	to	five	mice	at	

two	doses:	three	mice	received	6	mg/kg/day,	and	two	received	9	mg/kg/day,	all	for	21	

days.		In	contrast	to	the	pellets	where	the	total	dose	was	known,	but	not	rate	of	elution,	

the	same	isoprenaline	dose	was	administered	daily	with	these	injections;	hence	the	

dose	is	stated	in	mg/kg/day.		The	results	are	summarised	in	Figures	36	to	38.			

	

	

3.4.1	 Left	ventricular	dimensions	

	

Results	for	each	mouse	are	plotted	in	Figure	36	to	convey	similarities	in	the	responses.			

Of	the	five	mice,	measurements	were	not	possible	at	15	days	for	one	receiving	the	

lower	dose,	and	one	the	higher	dose,	due	to	bradycardia	and	awakening	from	

anaesthesia.			

Table	3	summarises	the	percentage	change	from	baseline	of	the	lower	and	higher	dose	

groups	at	each	time	point	for	each	parameter.		As	can	be	seen,	there	was	a	small	

increase	in	LVIDd	at	each	time	point	for	both	dose	groups.	
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	 	 6	mg/kg/day	 9	mg/kg/day	
	 	 (n=3)	 (n=2)	

	 	 %	change	from	baseline	

	 	 	 	
LVIDd	 8	days	 +12	 +9	

	 15	days	 +24	 +14	

	 22	days	 +18	 +14	

FS	 8	days	 -21	 -15	
	 15	days	 -18	 -14	

	 22	days	 -11	 -8	

EF	 8	days	 -26	 -18	
	 15	days	 -22	 -15	

	 22	days	 -14	 -9	

	
Table	3		Change	of	echocardiographic	indices	over	time	in	isoprenaline	injection	study.		Percentage	
change	for	LVIDd	is	relative,	whereas	for	FS	and	EF	it	is	absolute.	
	

	

	

	
Figure	36		Left	ventricular	internal	dimension	in	diastole	(LVIDd)	over	time	for	individual	mice	in	
isoprenaline	injection	study	(n=5).	
	

	

3.4.2	 Fractional	shortening	

	

This	decreased	for	both	dose	groups	by	8	days,	remaining	lower	than	baseline	at	15	

days	before	attaining	an	intermediate	level	by	the	end	of	the	study.			
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Figure	37		Fractional	shortening	(FS)	over	time	for	individual	mice	in	isoprenaline	injection	study	
(n=5).	
	

	

	

3.4.3	 Ejection	fraction	

	

The	changes	seen	in	FS	were	mirrored	by	EF,	i.e.	there	was	a	reduction	during	the	

middle	of	the	study	before	a	partial	recovery.	

	

	
Figure	38		Ejection	fraction	(EF)	over	time	for	individual	mice	in	isoprenaline	injection	study	(n=5).	
	

	

An	illustrative	example	of	echocardiographic	measurements	is	shown	in	Figure	39.			
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Figure	39		M-mode	echocardiography	of	mouse	at	day	22	of	isoprenaline	study.		Top	right	of	image	
shows	short	axis	view;	lower	part	of	image	shows	M-mode	with	cavity	and	wall	thickness	measurements.		
EF	was	measured	at	56%.	
	

	

	

3.5	 Preliminary	coronary	ligation	study:	correlation	of	histology	with	

echocardiographic	findings	

	

Table	4	shows	the	percentage	scar	on	histological	examination	and	fractional	area	

change	(FAC)	on	echocardiogram	for	each	of	the	ten	mice	studied.	

	

Three	examples	of	heart	sections	stained	with	Masson’s	trichome	are	shown	in	Figure	

40	to	illustrate	no	scar,	moderate,	and	severe	scarring.			

The	data	from	Table	4	are	displayed	graphically	in	Figure	41	with	a	linear	regression	

line.		As	expected,	this	shows	a	negative	correlation	between	histological	scar	and	FAC	

(r=	-0.82).		Based	on	these	results,	FAC	was	deemed	a	valid	non-invasive	method	of	

assessing	left	ventricular	contractility,	given	that	regions	with	severe	scarring	do	not	

contract.	
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Mouse	 Histological	scar,	%	 FAC,	%	

1	 3	 40	

2	 11	 59	

3	 38	 13	

4	 17	 39	

5	 5	 59	

6	 6	 55	

7	 50	 30	

8	 3	 53	

9	 32	 32	

10	 36	 22	

	
Table	4		Scar	measured	histologically,	and	contractility	measured	by	echo	with	fractional	area	
change	(FAC),	for	the	10	mice	in	the	preliminary	coronary	ligation	study.	
	

	

	

	
Figure	40		Masson’s	trichome	stain	of	three	short	axis	sections	of	heart.		Collagen/fibrous	tissue	
stains	green.		A:	no	scar,	B:	moderate	scar,	C:	severe	scar.	
	

	

	

Figure	41		Scar	on	histological	analysis	and	fractional	area	change	on	echo	for	10	mice.	

A B C 
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4.	 DISCUSSION	–	ESTABLISHMENT	OF	A	HEART	

FAILURE	MODEL	
	

	

	

4.1	 Isoprenaline	dose-ranging	studies	
	

4.1.1	 Isoprenaline	model	–	results	
	

In	both	the	standard	and	high	dose	parts	of	the	pellet	study,	there	was	no	clear	change	

in	LVIDd,	FS	or	EF	at	any	of	the	doses.		The	suggestion	of	a	small	increase	in	LVIDd	with	

standard	doses	was	not	seen	with	the	high	doses,	making	chance	or	measurement	

error	a	more	likely	explanation.		In	the	standard	dose	part,	the	mean	FS	and	EF	or	the	

three	mice	receiving	the	lowest	doses	increased	at	day	7-12	compared	to	baseline.		

However,	these	parameters	then	fell	again	by	day	14-18.		A	possible	explanation	is	that	

the	pellets	eluted	the	drug	more	quickly	than	expected:	in	the	short	term,	

sympathomimetics	usually	cause	an	increase	in	contractility,	at	least	in	low	to	

moderate	doses.		Tachyphylaxis	may	then	have	ensued,	with	a	resultant	plateau	of	

effect.		Against	this	possibility	is	the	fact	that	it	only	occurred	at	the	lowest	doses.	

With	isoprenaline	injections,	LVIDd	rose	progressively	for	both	dose	groups	from	

baseline	to	day	15	at	which	point	it	plateaued.		Also	in	both	groups,	there	was	a	fall	in	

FS	and	EF	between	baseline	and	day	8,	maintained	at	day	15	before	rising	slightly.		

Thus	it	seems,	an	effect	was	observed.		However,	the	lowest	EFs	measured	were	55%	

for	the	6	mg/kg/day	group,	and	60%	for	the	9	mg/kg/day	group,	i.e.	still	within	what	is	

probably	the	normal	range.		And	importantly,	these	lowest	EFs	occurred	at	day	8,	with	

partial	recovery	over	the	next	two	weeks.			

So,	although	a	modest	effect	was	seen	with	isoprenaline	injections,	isoprenaline	did	not	

induce	LV	impairment	in	any	mice.		The	reasons	for	this	are	not	clear.		Given	the	range	

of	doses	used	with	the	pellet	formulation,	it	would	seem	dosage	is	unlikely	to	underlie	

the	lack	of	effect	observed.		More	probable	is	that	the	pellet	formulation	did	not	

dissolve	at	any	appropriate	rate,	or	that	the	isoprenaline	became	inactivated	or	failed	

to	be	absorbed.		Oxidisation	is	known	to	occur	with	isoprenaline	in	solution,	and	for	the	

injection	experiments,	care	was	taken	to	prepare	and	use	the	solution	within	an	hour	to	

avoid	this.			

Despite	the	isoprenaline	model’s	familiarity	to	investigators,	there	is	surprisingly	little	

standardisation	in	the	literature	with	regard	to	the	dose	required	to	induce	LV	
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impairment/heart	failure,	and	how	to	assess	it.		The	reported	means	of	drug	delivery	

are	daily	injections,	and	mini	osmotic	pumps.		While	Kaur	et	al	performed	

intraperitoneal	injections	of	30	mg/kg/day	for	seven	days265,	Horiuchi-Hirose	et	al	

used	6-9	mg/kg/day	subcutaneous	injections260,	and	Faulx	et	al	used	100	

mg/kg/day258.		Neither	Kaur	et	al	nor	Faulx	et	al	measured	contractility	with	echo;	

heart:body	weight	ratio	was	measured	instead	as	an	index	of	hypertrophy.		Oudit	et	al	

did	not	perform	baseline	echo	measurements	in	drug-naïve	animals,	and	only	reported	

fractional	shortening225,	and	Matkovich	et	al	reported	‘Vcfc’	–	velocity	of	

circumferential	shortening	normalised	to	heart	rate	–	rather	than	FS,	EF	or	FAC259.		

There	was	no	specific	mention	of	maintaining	body	temperature	35-37°C,	or	heart	rate	

over	a	particular	value	in	the	studies	that	used	echo	to	quantify	LV	dysfunction.	
	

	

4.1.2	 Isoprenaline	model	–	methodology	
	

With	regards	to	the	strengths	of	the	studies,	reasonable	numbers	of	mice	were	used:	a	

total	of	fourteen	received	pellets,	and	five	received	daily	injections.		A	range	of	doses	

were	studied	based	on	previously	published	results,	and	alternate	methods	of	drug	

delivery	were	tried.		Repeated	measurements	were	made	over	two	to	three	weeks	to	

look	for	chronic	effects	rather	than	those	of	an	acute	insult,	and	to	ensure	stability	of	

measurements.		The	consistency	of	the	results	attests	to	the	studies	being	conducted	

properly	and	in	the	same	manner	for	each	mouse.	

There	were	two	possible	weaknesses:	firstly	the	use	of	FS	and	EF	rather	than	FAC.		As	

discussed	in	Section	2.4,	FS	is	measured	along	a	1D	line	through	the	heart,	whereas	FAC	

uses	the	circumference	of	the	endocardium	and	may	therefore	be	less	prone	to	error.		

Having	said	this,	isoprenaline	would	be	expected	to	induce	a	global	insult	rather	than	

the	regional	scarring	seen	following	myocardial	infarction,	and	contraction	along	one	

dimension	may	in	fact	be	representative	of	the	whole	LV’s	contractility.		Secondly,	it	is	

possible	that	trends	seen	in	the	injection	group	may	have	become	clearer	with	a	larger	

number	of	animals.	

	

	

4.1.3	 Suitability	of	supraphysiological	βAR	agonism	as	a	model	of	heart	failure	

	

Heart	failure	as	a	syndrome	is	characterised	at	a	system	level	by	excessive	

neurohumoural	sympathetic	activity	–	increased	circulating	catecholamines,	and	
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increased	activity	from	sympathetic	nerves	–	in	addition	to	dysfunction	of	the	renin-

angiotensin-aldosterone	axis266,267.		These	changes	are	implicated	in	the	

pathophysiology,	but	are	in	the	main,	responsive	rather	than	the	primary	cause	of	the	

syndrome.		A	further	important	point	is	that	the	upregulation	of	the	SNS	is	a	chronic	

process,	occurring	over	weeks,	months	or	even	years.		Animal	models	which	aim	to	

recapitulate	the	sympathetic	excess	as	the	sole	means	of	myocardial	insult	are	

therefore	failing	to	incorporate	the	far	more	common	initial	drivers	of	the	

pathophysiology,	such	as	ischaemia,	valve	disease,	or	the	protein	malfunction	that	

occurs	in	dilated	cardiomyopathy.		A	possible	exception	to	this	is	the	use	of	βAR	

agonists	in	a	small	animal	model	of	Takotsubo	cardiomyopathy.		In	this	condition,	

acute	catecholamine	surges	are	believed	to	play	a	major	part	in	the	pathophysiology,	

resulting	in	mid-apical	LV	akinesis	or	severe	hypocontractility,	which	is	usually	

reversible.		A	study	by	Paur	et	al	in	rats	found	high-dose	adrenaline	boluses	could	

produce	a	phenotype	in	rats	similar	to	that	seen	in	humans,	and	the	effects	were	

attributed	to	ligand-directed	trafficking,	or	biased	agonism	–	adrenaline’s	

concentration-dependent	change	from	Gs	to	Gi	signalling268.		However,	this	model	has	

recently	been	challenged,	with	fair	questions	raised	regarding	its	validity269.	

Finally,	it	is	not	known	whether	the	SNS	hyperactivity	seen	in	human	heart	failure	

preferentially	stimulates	β1ARs	or	β2ARs:	both	β1-selective,	and	non-selective	β-

blocker	drugs	are	effective	in	heart	failure.		And	α-AR	effects	are	also	likely	to	play	a	

part,	given	that	circulating	catecholamines	will	act	on	the	vasculature.		Isoprenaline	is	a	

non-selective	βAR	agonist	however,	with	no	α-AR	activity.	

Notwithstanding	the	above,	the	importance	of	the	SNS	in	heart	failure	is	undisputed,	

and	murine	knockout	models	of	βARs	and	G	protein	α	subunits	are	beginning	to	shed	

light	on	the	issues	of	the	differing	responses	from	β1-	and	β2AR	stimulation,	and	the	

signalling	cascades	they	and	other	GPCRs	initiate.		It	is	unfortunate	that	the	model	has	

not	been	more	completely	described,	and	more	fully	validated.	

	

	

	

4.2	 Correlation	of	histological	and	echocardiographic	findings	

	

Echocardiography	in	humans	is	the	most	common	non-invasive	means	of	assessing	the	

heart’s	contractile	function,	and	it	is	considered	reliable	in	this	regard.		Its	main	

weakness	is	the	dependency	of	image	quality	on	body	habitus:	poor	endocardial	

definition	limits	accuracy	of	measurements	of	EF.		However,	given	the	relative	sizes	of	
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the	chest	wall	and	ultrasound	probe	in	humans,	different	‘windows’	of	the	heart	can	be	

tried	so	as	to	optimise	image	quality	and	measurement	accuracy.			

The	large	size	of	the	probe	in	relation	to	the	murine	chest	limits	the	possible	views,	and	

chest	wall	scar	tissue	can	also	interfere	with	image	quality.		For	these	reasons,	it	was	

deemed	important	to	ascertain	that	the	echo	measure,	FAC,	was	related	to	the	extent	of	

scar	induced	by	coronary	ligation,	and	in	particular,	that	moderate	and	severe	

impairment	could	be	distinguished	from	normal	function.		To	my	knowledge,	this	

comparison	had	not	been	done	before.	

The	strengths	of	this	study	were	that	it	compared	histological	scar	to	FAC,	a	parameter	

that	reflects	all	regions	of	the	LV	wall,	rather	than	the	1D	parameter	FS.		This	is	

essential	following	MI	where	the	scarring	is	regional.		Also,	that	three	histological	

sections	per	heart	were	assessed	to	ensure	representation	of	the	base,	mid-LV	and	

apex	in	the	measurement,	and	reduce	the	chance	of	unrepresentative	sections	

influencing	the	results.	

A	reasonable	number	of	mice	were	studied,	though	larger	numbers	would	have	further	

increased	confidence	in	the	results.		This	study	was	not	taken	further	as	even	ten	mice	

involved	a	considerable	amount	of	work,	and	this	was	a	sub-study	rather	than	a	

contribution	to	investigation	of	the	main	hypotheses.	

	

	

	

4.3	 Conclusion	

	

The	human	syndrome	in	which	Gαi2	is	elevated,	and	of	possible	pathophysiological	

relevance,	is	that	of	heart	failure.		One	of	the	main	goals	of	this	project	was	therefore	to	

take	forward	the	previous	work	performed	using	Gαi2	knockout	mice	with	structurally	

normal	hearts,	by	examining	the	electrophysiological	phenotypic	effects	of	LV	

impairment/heart	failure	in	these	mice.		At	the	outset	of	this	work,	it	was	deemed	

useful	to	set	up	two	models	of	heart	failure	to	probe	the	hyopothesis	that	Gαi2	is	anti-

arrhythmic	in	the	ventricles.		The	coronary	ligation-induced	MI	model	would	reflect	the	

regional	scarring	seen	in	the	most	common	cause	of	human	heart	failure,	and	

importantly,	it	could	be	expected	that	the	arrhythmic	substrates	seen	within	human	

ischaemic	cardiomyopathy	would	also	be	seen	in	the	mouse.		It	was	hoped	that	the	

pharmacological	model	using	isoprenaline	would	not	merely	provide	a	technically	

easier	backup,	but	also	that	given	the	sympathetic	nervous	system’s	overactivity	in	the	

syndrome,	it	would	enable	probing	of	Gαi2’s	role	in	the	β-AR	signalling	cascades.		The	
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lack	of	induction	of	overt	LV	impairment/heart	failure	with	the	latter	was	surprising,	

but	served	as	a	reminder	of	the	need	to	use	models	as	close	as	possible	to	the	human	

pathophysiology.		This	is	a	major	strength	of	the	coronary	ligation	model.		In	addition,	

echo	was	found	to	be	a	reliable	means	of	non-invasively	assessing	the	extent	of	

myocardial	damage	following	MI.			
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5.	 RESULTS	–	EFFECTS	OF	Gαi2	KNOCKOUT	IN	A	

MYOCARDIAL	INFARCTION	MODEL	OF	HEART	FAILURE	
	

	

	

5.1	 Introduction	

	

The	phenotypic	effects	of	cardiac-specific	knockout	of	Gαi2	were	studied	in	vivo	in	cKOs	

and	littermate	controls.		LV	contractility	and	electrophysiological	parameters	were	

assessed	at	baseline,	and	following	coronary	ligation-induced	MI.		Prior	to	reporting	

these	results,	the	approaches	used	to	assess	cardiac-specific	Gαi2	knockout	are	

described.	

	

	

	

5.2	 Assessment	of	GNAI2	gene	knockout	status	

	

The	GNAI2	gene	status	and	mRNA	expression	of	cKOs	was	interrogated	in	three	ways,	

as	discussed	below.		At	times,	the	full	GNAI2/Cre	genetic	status	(Gαi2	Flx/Flx	Cre+)	is	used,	

in	addition	to	or	in	place	of	the	abbreviated	form	(cKO)	to	facilitate	readability	and	help	

avoid	ambiguity.		‘Control’	mice	refer	to	those	without	Cre	deletion	of	the	gene,	i.e.	Gαi2	
WT/WT	Cre-,	Gαi2	WT/WT	Cre+,	or	Gαi2	Flx/Flx	Cre-.			

	

	

5.2.1	 DNA	genotyping		

	

Illustrative	examples	of	expected	amplicon	bands	for	GNAI2	and	Cre	PCR	products	on	

gel	electrophoresis	are	shown	in	Figure	42.		The	WT	GNAI2	amplicon	is	approximately	

400bp,	and	the	Flx/Flx	amplicon	approximately	500bp.		The	Cre	amplicon	is	990bp.	



	 132	

	
Figure	42		Gel	electrophoreses	showing	illustrative	examples	of	GNAI2	PCR	products	(left)	and	Cre	product	
(right).	
	

	

Figure	43	shows	the	PCR	products	following	gel	electrophoresis	of	genomic	DNA	

isolated	from	ear-notched	tissue	for	the	four	cKO	mice	(genotype	Gαi2	Flx/Flx	Cre+)	used	
in	the	RT-qPCR	experiments	with	total	RNA,	described	below.		As	can	be	seen,	the	

bands	are	clear	and	the	results	unequivocal.		The	control	mice	had	genotypes	Gαi2	WT/WT	

Cre-	(3)	and	Gαi2	WT/WT	Cre+	(1)	(gel	electrophoresis	results	not	shown).	

	

	

	
Figure	43		DNA	genotyping	results	for	four	cKO	mice	(A,B,C,D)	used	in	subsequent	RT-qPCR.		First	
lane	in	each	is	a	100bp	DNA	ladder	(New	England	Biolabs).		Lanes	marked	with	white	box	(e.g.	“1RF”)	are	
the	mouse’s	result;	unmarked	lanes	are	for	illustrative	purposes	only.		Results	for	Gαi2	and	Cre	PCRs	are	
shown.	
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5.2.2	 Sanger	sequencing	of	cardiac	tissue	DNA	to	assess	GNAI2	gene	status	

	

I	next	isolated	genomic	DNA	from	the	heart	and	used	Sanger	sequencing	to	determine	if	

Cre-mediated	deletion	of	the	relevant	genomic	regions	had	occurred	in	mice	with	

genotypes	(number)	Gαi2	Flx/Flx	Cre+	(2),	Gαi2	WT/WT	Cre-	(1)	and	Gαi2	Flx/Flx	Cre-	(1).		The	

results	are	illustrated	graphically	in	Figure	44,	following	analysis	with	the	UCSC	BLAT.		

For	each	sequence,	the	region	of	the	GNAI2	gene	containing	exons	2-4	(purple	blocks)	

is	magnified	for	clarity.		As	can	be	seen,	DNA	from	mice	with	genotype	Gαi2	Flx/Flx	Cre+	

(cKOs)	aligns	within	introns	1	and	4,	with	a	large	intervening	segment	that	does	not	

match.		This	non-matching	section	includes	exons	2-4,	compatible	with	excision.		In	C	

(Gαi2	Flx/Flx	Cre-),	there	is	a	small	section	of	homology	at	the	primer	binding	site	(black),	

followed	by	a	section	of	unmatched	DNA	reading	5’	to	3’	(right	to	left	in	the	figure)	

which	corresponds	to	the	loxP	site.		Further	3’	there	is	near	complete	homology	as	

indicated	by	the	black	sections.		Finally,	in	D	(Gαi2	WT/WT	Cre-,	i.e.	two	WT	GNAI2	alleles),	

there	is	near	complete	homology	indicated	by	the	almost	continuous	black	blocks.		The	

short	discontinuities	are	likely	reading	errors,	or	possibly	intronic	mutations.	

	

	
Figure	44		Results	from	Sanger	sequencing	showing	alignment	with	the	Mus	musculus	GNAI2	gene,	
retrieved	with	UCSC	BLAT	searches.		Genotypes	as	follows	-	A:	Gαi2	Flx/Flx	Cre+,	B:	Gαi2	Flx/Flx	Cre+,	C:	Gαi2	
Flx/Flx	Cre-,	D:	Gαi2	WT/WT	Cre-.		Sanger	sequences	are	shown	at	top	of	each	strip	–	black	sections	represent	
regions	of	homology	with	GNAI2	reference	sequence,	while	ladder	regions	indicate	unmatched	zones.		
Purple	blocks	represent	exons	2-4.	
	

	

Figure	45	compares	the	sequences	of	A	and	B	from	Figure	44.		There	is	near	complete	

homology,	indicated	by	the	consensus	sequence.			



	 134	

	
Figure	45		Comparison	of	Sanger	sequences	from	two	cKO	mice.		Sequences	from	mice	with	genotype	
Gαi2	Flx/Flx	Cre+	(A	and	B	in	Figure	44),	labelled	KO1	and	KO2	here,	with	consensus	sequence	in	the	third	
row.	
	

	

5.2.3	 RT-qPCR	results:	mRNA	expression	in	mice	of	different	GNAI2	gene	status		

	

Yield	of	extracted	total	RNA	was	assessed	prior	to	performing	reverse	transcription	to	

cDNA,	and	RT-qPCR:	sufficient	quantities	were	present	for	hearts	and	livers,	but	not	for	

tails,	which	were	therefore	discarded.		Figure	46	shows	the	threshold	cycle	(Ct)	values	

obtained	for	the	hearts	and	livers	of	four	control	mice	and	four	cKO	mice.		As	can	be	

seen,	the	expected	marked	increase	in	Ct	for	the	hearts	of	cKO	mice	was	not	observed.		

Table	5	shows	the	mean	ΔCt	values	for	each	organ	by	genotype.			

	

	

	
Figure	46		First	RT-qPCR	results.		For	hearts	and	livers	of	control	(Con)	and	Gαi2	Flx/Flx	Cre+	genotype	
(cKO)	mice.		NTC:	No	Template	Controls.	
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	 cKOs	 Controls		

	 Heart	

Gαi2	-	GAPDH	

Liver	

Gαi2	-	GAPDH	

Heart	

Gαi2	-	GAPDH	

Liver	

Gαi2	-	GAPDH	

	 	 	 	 	

Mean	ΔCt	 4.34	 4.07	 3.56	 3.41	

	
Table	5		Mean	ΔCt	values	in	first	RT-qPCR.		Results	for	cKOs	and	controls	by	organ.	
	

	

Relative	expression	using	the	‘comparative	Ct	method’	for	first	RT-qPCR:	

	

Heart	 	 	 	 	 	 Liver	

ΔΔCt		 =		 0.78	 	 	 	 ΔΔCt		 =	 0.66		

2-ΔΔCt	 =		 0.58	 	 	 	 2-ΔΔCt		 =		 0.63	

	

Therefore,	Gαi2	expression	in	the	hearts	of	cKOs	was	58%	of	that	in	controls,	while	in	

the	liver	it	was	63%.			

To	check	the	results	were	not	due	to	error	given	the	apparent	incomplete	cardiac	

knockout	of	Gαi2,	the	RT-qPCR	experiment	was	repeated	with	five	more	cKOs	and	five	

more	controls.		The	Ct	values	are	shown	in	Figure	47,	and	the	mean	ΔCt	values	for	each	

group	of	mice	and	each	organ	are	shown	in	Table	6.			

	

	

	
Figure	47		Second	RT-qPCR	results.		For	hearts	and	livers	of	control	(Con)	and	Gαi2	Flx/Flx	Cre+	
genotype	(cKO)	mice.		NTC:	No	Template	Controls.	
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	 cKOs		 Controls		

	 Heart	

Gαi2	-	GAPDH	

Liver	

Gαi2	-	GAPDH	

Heart	

Gαi2	-	GAPDH	

Liver	

Gαi2	-	GAPDH	

	 	 	 	 	

Mean	ΔCt	 6.67	 5.13	 5.73	 5.99	
	

Table	6		Mean	ΔCt	values	in	second	RT-qPCR.	For	cKOs	and	controls	by	organ.	
	

	

Relative	expression	using	the	‘comparative	Ct	method’	for	second	RT-qPCR:	

	

Heart	 	 	 	 	 	 Liver	

ΔΔCt		 =		 0.94	 	 	 	 ΔΔCt		 =	 -0.86		

2-ΔΔCt	 =		 0.52	 	 	 	 2-ΔΔCt		 =		 1.82	

	

Gαi2	expression	in	the	hearts	of	cKOs	in	this	experiment	was	52%	of	that	in	controls,	

while	in	the	liver	it	was	182%.		So	again,	Gαi2		expression	was	not	fully	knocked	out,	

although	the	level	of	knockdown	is	consistent	with	that	seen	in	the	first	RT-qPCR.		But	

inexplicably,	Gαi2	expression	in	the	liver	was	increased.		Combining	the	two	sets	of	

results	yields	the	following	overall	relative	expression	values:	

	

Combined	RT-qPCR	results:	relative	expression	using	the	‘comparative	Ct	method’:	

	

Heart	 	 	 	 	 	 Liver	

ΔΔCt		 =		 0.87	 	 	 	 ΔΔCt		 =	 -0.18	 		

2-ΔΔCt	 =		 0.55	 	 	 	 2-ΔΔCt		 =		 0.88	

	

So	overall	Gαi2	expression	in	the	hearts	of	cKOs	was	55%	of	that	in	controls,	and	in	the	

liver	was	88%.	

	

	

	

5.3	 Myocardial	infarction	model	of	heart	failure	

	

The	number	of	mice	surviving	to	each	stage	of	the	study	protocol	is	illustrated	in	Figure	

48,	with	the	thick	arrows	indicating	survival.			
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Only	one	of	34	(3%)	mice	that	underwent	coronary	ligation	died	peri-procedurally,	i.e.	

within	24	hours	of	operation.		This	death	occurred	intraoperatively	following	closure	of	

the	chest.		Post	mortem	revealed	the	right	atrium	to	be	tethered	to	the	chest	wall,	and	

the	endotracheal	tube	to	be	blocked	with	blood.		All	other	deaths	occurred	within	seven	

days	of	operation,	and	prior	to	follow-up	echocardiography.		In	eight	of	these	mice,	post	

mortem	revealed	blood	in	the	chest	cavity	and	a	pale	liver,	compatible	with	cardiac	

rupture.			

	

	

Figure	48		Flow	of	mice	through	stages	of	study	protocol.		Thick	black	arrows	indicate	survival,	and	
lighter	grey	arrows	indicate	death.		‘Knockouts’	here	refers	to	cKOs.	
	

	

Indeed,	in	some	there	appeared	to	be	a	hole	or	tear	near	the	apex.		No	obvious	cause	

was	apparent	in	the	remainder,	and	the	ligature	was	intact	in	all.			

Survival	during	the	electrophysiological	study	was	87%.		Three	deaths	occurred	during	

attempted	insertion	of	the	catheter,	possibly	due	to	vascular	tears,	pneumothorax,	or	

cardiac	damage.	

Baseline	ECG,	echocardiographic	and	HRV	measurements	are	shown	in	Table	7.		

Figures	are	average	values:	for	parameters	assessed	as	normal,	mean	is	reported;	if	

not,	median	is	reported.		The	statistical	test	performed	was	either	unpaired	t-test	or	

Wilcoxon	Ranksum/Mann-Whitney	U.		A	representative	example	of	an	ECG	recorded	

using	the	ECGenie	is	shown	in	Figure	49.	
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		 Controls	(n=18)		 cKOs	(n=16)		 p-value	

		 		 (SD	or	IQR)	 (SD	or	IQR)	 		

ECG	 HR,	bpm	 675		(71)	 671		(88)	 0.877	

	

PR,	ms	 31.8		(2.0)	 31.8		(2.3)	 0.977	

	

QRS,	ms	 10.4		(0.7)	 10.1		(0.8)	 0.382	

	

QTs,	ms	 17.0		(1.4)	 17.5		(1.3)	 0.288	

	

QTc,	ms	 39.8		(5.9)	 40.9		(4.9)	 0.581	

	

		

	 	 	Echo	 LVIDd,	mm	 4,0		(0.3)	 3.9		(0.5)	 0.508	

	

LVIDs,	mm	 2.8		(0.4)	 2.6		(0.5)	 0.296	

	

FS,	%	 31.2		(28.0-35.0)	 33.4		(27.5-39.5)	 0.220	

	

EF,	%	 58.5		(56.0-65.0)	 62.4		(54.0-71.5)	 0.201	

	

EndoD,	mm2	 10		(1.6)	 9.8		(1.3)	 0.663	

	

EndoS,	mm2	 4.5		(1.0)	 4.1		(1.1)	 0.233	

	

FAC,	%	 55		(5.5)	 59		(7.5)	 0.136	

	

		

	 	 	HRV	 HR,	bpm	 677		(75)	 670		(86)	 0.796	

	

SDNN,	ms	 3.70		(2.64-11.10)	 9.11		(2.96-18.84)	 0.138	

	

RMSSD	 2.97		(1.38-6.97)	 9.01		(2.16-21.66)	 0.049	

	

Tpower,	ms2	 12.26	(5.28-115.45)	 79.97		(6.81-351.19)	 0.121	

	

VLF,	ms2	 6.34		(3.65-35.23)	 35.75		(3.77-70.56)	 0.317	

	

LF,	ms2	 3.45		(0.81-45.61)	 16.99		(1.69-144.74)	 0.147	

	

LFnu	 54.98		(15.24)	 42.07		(11.61)	 0.010	

	

HF,	ms2	 1.47		(0.63-11.39)	 13.30		(1.44-121.74)	 0.053	

	

HFnu	 31.61	(9.52)	 39.84		(11.41)	 0.029	

	

LF/HF	 2.05		(1.05-2.57)	 1.05		(0.76-1.47)	 0.020	

	
Table	7	Baseline	ECG,	echocardiographic	and	HRV	measurements.		cKO:	cardiospecific	knockout.	HR:	
heart	rate,	PR/QRS/QTs/QTc:	intervals	as	described	in	text,	LVIDd/s:	left	ventricular	internal	dimension	in	
diastole/systole,	FS:	fractional	shortening,	EF:	ejection	fraction,	EndoD/S:	endocardial	area	in	
diastole/systole,	FAC:	fractional	area	change,	NN:	time	between	successive	R	waves,	SDNN:	standard	
deviation	of	R-R	(N-N)	intervals,	RMSSD:	root	mean	square	of	successive	differences,	Tpower:	total	power,	
VLF:	very	low	frequency,	LF:	low	frequency,	LFnu:	LF	in	normalised	units,	HF:	high	frequency,	HFnu:	high	
frequency	in	normalised	units,	LF/HF:	ratio	of	LF	to	HF.		SD:	standard	deviation,	IQR:	interquartile	range.	
	

	

There	were	significant	differences	(with	α	=	0.05)	between	controls	and	cKOs	for	

several	HRV	parameters,	both	in	the	time	and	frequency	domains.		cKOs	had	higher	

RMSSD	and	HF	normalised	unit	values,	whilst	they	had	a	lower	value	for	LF	normalised	

unit	and	LF/HF	ratio.		In	addition,	cKOs	had	a	markedly	higher	HF	component,	though	

this	did	not	quite	reach	significance	(13.3	ms2	vs	1.47	ms2,	p=0.053).	
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Figure	49		ECG	recorded	using	the	ECGenie	in	LabChart.		Green	dots	mark	R	waves.	
	

	

ECGs	were	recorded	during	the	coronary	ligation	procedure.		Elevation	of	the	ST	

segment	was	one	of	the	markers	used	to	indicate	successful	placement	of	the	ligature,	

and	induction	of	MI	(Figure	50).		Some	of	the	cardiac	arrhythmias	encountered	are	

shown	in	Figure	51.	

	

	
Figure	50		Intra-operative	ECGs.		Demonstrating	normal	appearance	pre-coronary	ligation	(A),	and	
worsening	degrees	of	ST	elevation	immediately	following	ligation	(B	to	D).	
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Figure	51		Cardiac	rhythm	abnormalities	encountered	during	the	coronary	ligation	procedure.		
Bradycardia	of	unknown	origin	(A)	and	2:1	heart	block	(B)	portended	a	poor	prognosis.		Premature	
ventricular	beats	(C)	were	rarely	seen,	as	was	NSVT	(D).	
	

	

In	Table	8,	average	ECG,	echo	and	HRV	parameters	recorded	one	week	post	surgery	are	

reported.		QTc	was	longer	for	cKOs	(p=0.058),	although	this	possible	difference	must	

be	interpreted	with	caution,	given	the	difficulty	in	measurement	of	the	QT	interval	in	

mice,	particularly	following	myocardial	infarction	(see	Figure	52).			
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Table	8		ECG,	echocardiographic	and	HRV	parameters	one	week	after	surgery.		cKO:	cardiospecific	
knockout.	HR:	heart	rate,	PR/QRS/QTs/QTc:	intervals	as	described	in	text,	LVIDd/s:	left	ventricular	
internal	dimension	in	diastole/systole,	FS:	fractional	shortening,	EF:	ejection	fraction,	EndoD/S:	
endocardial	area	in	diastole/systole,	FAC:	fractional	area	change,	NN:	time	between	successive	R	waves,	
SDNN:	standard	deviation	of	R-R	(N-N)	intervals,	RMSSD:	root	mean	square	of	successive	differences,	
Tpower:	total	power,	VLF:	very	low	frequency,	LF:	low	frequency,	LFnu:	LF	in	normalised	units,	HF:	high	
frequency,	HFnu:	high	frequency	in	normalised	units,	LF/HF:	ratio	of	LF	to	HF.		SD:	standard	deviation,	
IQR:	interquartile	range.	
	

	

	

	

	

	

	

	

		 Controls	(n=12)		 cKOs	(n=11)		 p-value	

		 		 (SD	or	IQR)	 (SD	or	IQR)	 		

ECG	 HR,	bpm	 712		(50)	 727		(68)	 0.560	

	

PR,	ms	 31		(2)	 30		(2)	 0.283	

	

QRS,	ms	 12	(11-13)	 13		(12-14)	 0.092	

	

QTc,	ms	 48		(8)	 54		(6)	 0.058	

	

		

	 	 	Echo	 EndoD,	mm2	 12.4		(4.6)	 13.0		(2.8)	 0.711	

	

EndoS,	mm2	 7.9		(4.8)	 9.3		(3.0)	 0.437	

	

FAC,	%	 41		(17)	 30		(11)	 0.093	

	

		

	 	 	HRV	 HR,	bpm	 724		(43)	 729		(76)	 0.824	

	

SDNN,	ms	 3.45		(2.20-4.33)	 2.81	(1.83-5.82)	 0.623	

	

RMSSD	 2.20		(1.87-2.77)	 1.97		(1.46-4.70)	 0.623	

	

Tpower,	ms2	 10.8		(4.49-19.43)	 7.41		(3.60-40.52)	 0.667	

	

VLF,	ms2	 5.05		(1.12-12.91)	 2.73		(1.92-9.15)	 0.806	

	

LF,	ms2	 2.11		(0.91-4.49)	 1.88		(0.60-19.89)	 0.951	

	

LFnu	 54.97		(24.15)	 53.22		(16.34)	 0.842	

	

HF,	ms2	 1.16		(0.65-1.92)	 0.90		(0.51-9.16)	 0.951	

	

HFnu	 25.6		(10.9)	 29.1		(11.1)	 0.456	

	

LF/HF	 2.73		(1.75)	 2.23		(1.34)	 0.450	
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Figure	52		Examples	of	signal	averaged	ECG	complexes	from	recordings	using	the	ECGenie.		A:	a	
baseline	recording,	with	the	following	marked	by	vertical	lines	–	P	wave	start,	QRS	start,	QRS	end,	T	wave	
end.		B:	a	post-MI	recording	to	illustrate	the	difference	in	T	wave	morphology	due	to	persistent	ST	
elevation	and	lack	of	dip	below	baseilne	seen	in	A.		C:	a	post-MI	recording	to	show	lack	of	clear	T	wave.	
	

	

Examples	of	FAC	measurement	and	LVIDd/LVIDs	measurement	in	a	mouse	with	severe	

LV	impairment	following	MI	are	shown	in	Figures	53	and	54.	

	
Figure	53		FAC	measurements	in	a	mouse	with	severe	LV	impairment	following	coronary	ligation-
induced	MI.		The	endocardium	is	traced	in	diastole	(A)	and	systole	(B)	to	derive	the	endocardial	area	from	
which	FAC	can	be	calculated.	
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Figure	54		M-mode	measurements	of		LV	dimensions	from	which	FS	is	calculated.		Wall	thickness	
measures	are	also	shown.	
	

	

Figure	55	depicts	the	mean	heart	rate	before	and	after	surgery.		Both	groups	showed	

an	increase	from	baseline,	although	this	was	only	significant	for	the	cKO	group	

(p=0.002).	Mean	QRS	and	QTc	also	showed	significant	increases	for	both	groups	

compared	to	baseline	(for	QRS	p=0.006	for	controls;	p=	0.004	for	cKOs;	for	QTc	

p=0.015	for	controls	and	p<0.001	for	cKOs).			

	

	
Figure	55		Mean	heart	rate	(+/-	SEM)	for	cKOs	and	Controls.		At	baseline,	and	at	one	and	three	weeks	
following	coronary	ligation-induced	MI	in	cKOs	and	controls.	
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In	Figure	56	the	decrease	in	LV	contractility	following	MI	is	shown.		This	was	of	course	

expected,	and	is	statistically	significant	for	both	groups	(p=0.028	for	controls,	and	

p<0.0001	for	cKOs).		Of	possible	interest	is	the	larger	reduction	in	FAC	for	cKOs	than	

controls	(-29%	vs	-14%),	suggesting	a	greater	infarct	size	in	cKOs.		

	

	
Figure	56		Mean	fractional	area	change		(+/-	SEM)	for	cKOs	and	Controls.		At	baseline,	and	at	one	
week	following	coronary	ligation-induced	MI	in	cKOs	and	controls.	
	

	

Heart	rate	variability	indices	at	21	days	post	surgery	are	shown	in	Table	9.		By	this	

stage,	there	were	no	significant	differences	between	groups.		Compared	to	baseline,	

heart	rate	increased	for	both	groups,	but	this	was	only	significant	for	cKOs	(p=0.006	vs	

p=0.209).		The	following	parameters	all	showed	non-significant	decreases	by	day	21	

for	controls:	SDNN,	RMSSD,	total	power,	HF,	and	HF	in	normalised	units.		VLF	showed	a	

significant	reduction	(p=0.028).		Conversely,	reductions	in	the	same	parameters	

compared	to	baseline	were	seen	for	cKOs,	and	all	were	significant	except	VLF:	SDNN	

(p=0.013),	RMSSD	(p=0.013),	total	power	(p=0.010),	HF	(p=0.013)	and	HF	normalised	

units	(p=0.014).	
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		 Controls	(n=12)		 cKOs	(n=11)		 p-value	

		 (SD	or	IQR)	 (SD	or	IQR)	 		

HR,	bpm	 740		(29)	 747		(71)	 0.742	

SDNN,	ms	 2.47		(2.29-3.44)	 2.00		(1.44-4.69)	 0.623	

RMSSD	 1.69		(1.23-2.79)	 1.73		(1.24-6.36)	 0.758	

Tpower,	ms2	 5.53		(4.47-9.08)	 4.35		(1.75-21.91)	 0.667	

VLF,	ms2	 2.99		(1.53-4.89)	 2.32		(0.69-7.95)	 0.580	

LF,	ms2	 1.43		(0.78-1.97)	 0.64		(0.43-11.27)	 0.758	

LFnu	 55.35		(23.32)	 45.21		(17.80)	 0.258	

HF,	ms2	 0.58		(0.34-1.57)	 0.48		(0.23-5.49)	 0.758	

HFnu	 21.48		(19.57-28.72)	 26.68		(17.27-37.72)	 0.460	

LF/HF	 2.80		(1.82)	 2.05		(1.48)	 0.294	

	
Table	9		HRV	indices	at	21	days	following	surgery.		cKO:	cardiospecific	knockout.	HR:	heart	rate,	SDNN:	
standard	deviation	of	R-R	(N-N)	intervals,	RMSSD:	root	mean	square	of	successive	differences,	Tpower:	
total	power,	VLF:	very	low	frequency,	LF:	low	frequency,	LFnu:	LF	in	normalised	units,	HF:	high	frequency,	
HFnu:	high	frequency	in	normalised	units,	LF/HF:	ratio	of	LF	to	HF.		SD:	standard	deviation,	IQR:	
interquartile	range.	
	

	

Mean	LF/HF	ratio	at	the	three	measurement	time	points	is	shown	for	cKOs	and	

controls	in	Figure	57.			As	can	be	seen,	there	was	a	non-significant	increase	for	both	

groups	over	the	study	period.	

	

	

	
Figure	57		Mean	LF:HF	power	ratio	(+/-	SEM)	for	cKOs	and	Controls.		At	baseline,	and	at	one	and	three	
weeks	following	coronary	ligation-induced	MI	in	cKOs	and	controls.	
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The	results	from	electrophysiological	testing	are	shown	in	Table	10.		Wenckebach	

point	was	significantly	lower	for	cKOs,	whilst	VERP	was	also	lower	although	this	was	

not	significant.		The	slight	difference	in	rates	of	induction	of	NSVT	during	VT	stim	was	

non-significant.		Illustrative	examples	of	intracardiac	EGMs	are	shown	in	Figure	58;	

Wenckebach	and	VERP	can	be	seen	in	Figures	59	and	60,	respectively.	

	

	
Table	10		Results	from	electrophysiological	testing.		Wencke:	Wenckebach	point,	VERP:	ventricular	
effective	refractory	period,	NSVT:	non-sustained	VT.		SD:	standard	deviation,	IQR:	interquartile	range.	
	

	

	
Figure	58		ECG	and	intracardiac	EGMs	during	electrophysiological	study.		Channel	1	(top)	shows	ECG	
recorded	with	needle	electrodes.		Channels	2-4	show	EGMs.		In	channel	2	and	3,	atrial	and	ventricular	
EGMs	can	be	seen,	whereas	channel	4	has	just	ventricular	activity.	
	

	

	

		

Controls	(n=10)	

(IQR)	

cKOs	(n=10)	

(IQR)	

p-value	

	

		

	 	 	Wencke,	ms	 85		(70-90)	 60		(60-70)	 0.040	

VERP,		ms	 40		(30-40)	 30		(20-40)	 0.167	

NSVT	 3/10	 5/10	 0.650	
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Figure	59		Wenckebach	during	atrial	pacing.		At	the	start	of	the	trace,	two	spontaneous	beats	are	seen,	
with	atrial	P	wave	and	ventricular	QRS	complexes.		Atrial	stimulation	then	begins	(S),	with	atrial	capture	
with	the	second	stimulus.		This	is	conducted	to	the	ventricle,	resulting	in	a	QRS	(first	red	arrow).		Four	
such	beats	are	conducted,	with	the	interval	between	atrial	capture	and	ventricular	QRS	prolonging	
progressively,	until	the	fifth	beat,	where	atrial	activity	is	not	conducted	to	the	ventricle	(red	block	sign).		
Conduction	then	resumes	for	three	beats,	before	blocking	again.	
	

	

	

	

	
Figure	60		Ventricular	effective	refractory	period	(VERP)	during	programmed	electrical	
stimulation.		A	series	of	stimuli	(S)	result	in	capture	of	the	ventricle	(C),	but	at	the	final	stimulus	which	is	
of	a	shorter	coupling	interval	than	those	preceding	it,	there	is	no	capture	(*).		Following	this	there	is	a	
spontaneous	ventricular	escape	beat,	followed	by	two	sinus	beats	(P	followed	by	QRS).	
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6.	 DISCUSSION	-	EFFECTS	OF	Gαi2	KNOCKOUT	IN	A	
MYOCARDIAL	INFARCTION	MODEL	OF	HEART	FAILURE	
	

	

	

6.1	 Introduction	

	

The	bases	of	the	hypothesis	that	Gαi2	is	anti-arrhythmic	in	the	ventricles	were	human	

studies	demonstrating	elevation	of	this	protein	in	patients	with	heart	failure.		After	

establishing	the	coronary	ligation-induced	MI	model	of	heart	failure,	this	was	used	to	

bring	the	genetically-modified	mouse	model	closer	to	the	human	disease	state	of	

interest,	so	as	to	better	reflect	the	arrhythmic	substrates	seen	in	this	condition.	

The	failure	to	demonstrate	complete	knockout	of	Gαi2	was	of	course	unexpected.		The	

first	RT-qPCR	analysis	of	mRNA	was	performed	during	the	coronary	ligation	study,	and	

the	surprising	results	were	thought	attributable	to	the	primer	sequences	used.		As	

another	member	of	the	research	group	had	previously	shown	near-complete	knockout	

of	Gαi2	in	mice	with	the	same	genetic	modification	and	Cre	under	control	of	the	α-MHC	

promoter	(unpublished	data),	the	decision	was	made	to	continue	with	experiments	in	

the	expectation	that	repeating	the	RT-qPCR	with	the	original	primers	would	

demonstrate	knockout.			

In	the	end,	it	seems	knockdown	rather	than	knockout	was	produced	in	Gαi2	Flx/Flx	Cre+	

mice.		The	issues	surrounding	this	are	discussed	first,	as	the	results	influence	to	some	

extent	the	interpretation	of	the	main	study	data.		The	results	from	cardiovascular	

phenotyping	of	cKOs	and	controls	at	baseline,	and	following	MI,	are	then	dissected.		

Contrary	to	expectations,	few	differences	were	noted	between	groups,	despite	a	

reasonable	sample	size,	and	rigorous	quality	control	of	experimentation	and	analysis.		

	

	

	

6.2	 Unexpected	knockdown	rather	than	knockout	of	Gαi2	

	

Expression	of	Gαi2	was	assessed	in	three	ways:	at	the	DNA	level	with	PCR	and	Sanger	

sequencing,	and	at	the	mRNA	level	with	RT-qPCR.		Protein	expression	was	not	

performed	as	prior	experience	within	the	group	suggested	the	antibodies	available	had	

poor	specificity	for	Gαi2	compared	to	the	other	Gαi	isoforms.			
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The	results	from	DNA	genotyping	with	PCR	and	from	Sanger	sequencing	(Figures	43	to	

45)	were	in	accordance	with	knockout	of	the	GNAI2	gene	in	cKO	mice.		With	the	former,	

clear	PCR	amplicon	bands	were	seen	at	the	sizes	expected	for	KO	and	WT	alleles,	and	

for	Cre.		The	Sanger	sequencing	results	demonstrated	large	gaps	over	the	expected	

exons	when	aligned	with	reference	sequences;	these	gaps	were	not	seen	with	the	

Flx/Flx	or	WT	(Cre	absent)	samples,	and	correspond	to	excision	of	sections	of	the	gene.		

Further	reassurance	comes	from	prior	work	in	our	group	demonstrating	cardiac-

specific	Gαi2	knockout	with	αMHC	driven	Cre	expression	(unpublished	data).		A	greater	

than	10-fold	reduction	in	cardiac	Gαi2	expression	was	seen	in	knockout	mice,	compared	

to	controls.			

The	failure	to	demonstrate	knockout	of	Gαi2	expression	in	the	heart	with	RT-qPCR	of	

mRNA	was	clearly	unexpected	as	were	the	inconsistent	results	for	liver;	nevertheless,	

the	pooled	data	do	suggest	likely	cardiac	specificity.		The	explanation	could	lie	within	

the	tissue,	at	the	tissue	removal	and	mRNA	analysis	stage,	or	as	a	result	of	calculation	

error.		Genotypic	analysis	clearly	demonstrated	the	presence	of	Flx/Flx	alleles	in	the	

GNAI2		gene,	and	the	presence	of	the	Cre	genetic	sequence	in	ear	tissue.		So	if	there	

were	a	problem	of	Cre-mediated	excision	in	the	heart	it	would	seem	likely	to	be	related	

to	Cre	expression	or	function.		Only	ventricular	tissue	was	analysed,	so	contamination	

by	extra-cardiac	tissue	is	unlikely	to	have	occurred.		As	noted	in	the	Chapter	1	though,	

fibroblasts	constitute	approximately	50%	of	cells	in	the	heart.		While	this	would	have	

been	the	case	with	analyses	performed	by	some	of	the	other	groups	in	which	near-

complete	knockdown	was	observed,	it	is	noteworthy	that	in	two	of	these	studies	this	

was	for	cardiac	genes	of	interest	such	as	cardiac	myosin	binding	protein	C	or	

SERCA2200,201.		Assuming	these	proteins	are	not	expressed	in	cardiac	fibroblasts,	

deletion	in	cardiomyocytes	would	lead	to	near-total	loss	of	the	protein	at	mRNA	level.		

Gαi2	on	the	other	hand	is	more	ubiquitously	expressed,	and	without	αMHC-driven	Cre	

in	fibroblasts,	expression	may	remain,	with	apparent	incomplete	knockout	when	

cardiac	tissue	as	a	whole	is	analysed.			

However,	in	one	of	the	original	papers	describing	the	use	of	Cre	to	achieve	

cardiospecific	gene	deletion,	Agah	et	al	demonstrated	Cre-mediated	excision	specific	

for	murine	ventricular	myocytes	both	in	vitro	and	in	vivo198.		In	both	systems,	a	CAG-

CATZ	reporter	harbouring	the	chloramphenicol	acetyltransferase	(CAT)	gene	flanked	

by	loxP	sites	was	used	in	conjunction	with	a	LacZ	reporter	system	(the	E.	coli	β-

galactosidase	gene),	and	Cre	under	control	of	the	αMHC	promoter.		Cre-mediated	

excision	of	the	CAT	gene	allowed	read-through	of	LacZ,	which	in	the	presence	of	the	

substrate	X-gal	produced	a	colour	change	in	the	tissue.		PCR	analysis	confirmed	
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cardiomyocyte-restricted,	Cre-dependent	recombination	in	myocytes	both	in	vitro	and	

in	vivo.		In	the	former,	LacZ	activity	was	specific	for	myocytes	(when	compared	with	

fibroblasts);	in	the	latter,	90%	of	ventricular	myocytes	were	LacZ-positive,	and	CAT	

activity	was	reduced	by	a	similar	percentage	in	αMHC-Cre+/CAG-CATZ+	mice	relative	to	

expression	in	mice	with	CAG-CATZ	alone.		Thus,	myocyte	specificity	and	Cre-efficacy	

was	demonstrated	using	an	exogenous	reporter	system	by	the	group	who	provided	us	

with	the	αMHC-Cre+	mice.	

Nevertheless,	it	is	interesting	to	note	that	even	with	gKOs,	Kӧhler	et	al	found	that	

despite	almost	total	loss	of	Gαi2	mRNA,	protein	levels	were	not	nearly	so	reduced.		The	

authors	showed	evidence	for	the	specificity	of	the	antibodies	used,	but	did	not	discuss	

the	incomplete	protein	knockout	seen89.	

Preservation	of	mRNA	was	performed	in	the	standard	manner	used	within	the	group,	

i.e.	by	immersion	of	the	tissue	in	a	preservative	solution	prior	to	freezing.		The	

ventricles	from	each	heart	were	placed	whole	in	this	solution,	and	although	small,	it	is	

possible	that	cells	in	the	middle	of	the	wall	did	not	come	into	contact	with	the	

preservative,	with	consequent	mRNA	degradation.			

The	use	of	two	sets	of	primers,	and	the	similar	levels	of	knockdown	in	the	heart	seen	in	

both	experiments	argues	against	technical	error.		And	finally,	the	calculation	method	is	

in	widespread	use,	and	each	organ/gene	(e.g.	heart	GAPDH)	was	repeated	in	triplicate	

to	ensure	consistency.	

	

In	summary,	incomplete	knockout	of	Gαi2	in	the	hearts	of	cKOs	was	seen,	at	the	mRNA	

level.		The	two	most	likely	reasons	are	reduced	Cre	expression	or	activity,	or	

‘contamination’	of	cardiomyocyte	mRNA	by	fibroblasts.		Further	clarification	could	be	

achieved	using	a	LacZ	reporter	mouse	to	check	for	diminution	of	Cre	expression	or	

efficacy	in	recombination,	though	as	noted	earlier,	our	Cre	line	was	provided	by	the	

same	group	who	used	such	a	reporter	to	demonstrate	its	efficacy.		Alternatively,	

protein	analysis	could	be	revisited	if	it	were	felt	that	more	suitable	antibodies	were	

now	available.			

	

	

6.3	 Reasons	for	choosing	(tissue-specific)	knockouts	rather	than	

‘knockins’	
	

It	may	at	first	seem	counterintuitive	to	have	chosen	to	use	Gαi2	knockouts	rather	than	

assessing	the	phenotype	where	Gαi2	expression	is	increased,	given	that	this	is	what	
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occurs	in	heart	failure.		A	gain	of	function	Gαi2	‘knockin’	model	has	been	described	in	

which	a	mutation	leading	to	substitution	of	serine	for	glycine	at	amino	acid	184	

prevents	RGS	binding	and	resultant	insensitivity	to	GTPase	activity270.		In	fact	though,	

both	gain	and	loss	of	function	are	useful	in	elucidating	the	role	of	Gαi2,	and	knockouts	

may	be	more	suitable	for	the	heart	failure	model.	

By	creating	a	cohort	of	mice	with	LV	impairment,	those	with	WT	alleles	of	Gαi2	may	be	

expected	to	show	elevation	of	this	protein,	or	at	least	continue	to	express	it	at	normal	

levels.		Indeed,	this	has	been	demonstrated	in	wild-type	mice	which	underwent	

ischaemia-reperfusion	injury,	compared	to	sham-operated	mice271.		In	contrast,	

knockouts	would	have	no	or	minimal	expression.		The	difference	between	WTs	and	

knockouts	therefore	would	be	limited	to	Gαi2	expression,	and	WTs	would	be	expected	

to	show	a	less	arrhythmic	phenotype,	whereas	without	the	anti-arrhythmic	effects	of	

Gαi2	knockouts	would	exhibit	the	converse.			

An	alternative	strategy	could	have	been	to	use	knockin	mice	where	Gαi2	resistant	to	

inactivation	would	be	compared	to	basal	levels	in	WT	mice,	and	to	study	the	ease	of	

induction	of	arrhythmias	for	example.		The	expectation	here	would	be	that	knockins	

would	be	more	resistant	to	arrhythmia	induction.		It	would	have	been	incumbent	upon	

me	to	demonstrate	that	knockins	did	indeed	have	increased	activity	somehow,	which	

may	have	thrown	up	similar	issues	to	those	encountered	in	demonstrating	knockout.	

Ideally,	a	study	comparing	WTs,	knockouts	and	knockins	with	and	without	heart	failure	

would	have	been	conducted.		But	the	study	that	was	performed	was	governed	by	the	

mouse	model	available,	what	has	already	been	studied,	and	time	available.			

With	regards	to	the	use	of	tissue-specific	knockouts	necessitating	Cre-loxP	technology,	

the	reasons	for	choosing	these	remain	valid:	gKOs	are	smaller272,	can	suffer	from	

immune-related	diseases192–194,	and	do	not	breed	nearly	as	easily.		The	extra-cardiac	

effects	of	gene	deletion	could	introduce	bias	into	experiments	in	vivo,	and	the	ease	of	

breeding	is	important	not	only	from	a	time	perspective	as	a	lone	researcher,	but	also	in	

terms	of	replacement,	reduction	and	refinement.	

	

	

6.4	 Myocardial	infarction	model	of	heart	failure	

	

6.4.1	 Overview	

	

To	examine	the	electrophysiological	effects	of	Gαi2	in	vivo,	electrophysiological	

parameters	and	LV	contractility	was	assessed	for	cKOs	and	littermate	controls	at	
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baseline,	and	following	induction	of	LV	impairment	with	coronary	ligation.		The	flow	of	

mice	through	the	study	is	shown	in	Figure	48.		The	key	electrophysiological	parameters	

assessed	at	each	stage	were	heart	rate,	corrected	QT	interval,	and	HRV	indices.		A	

terminal	invasive	electrophysiological	study	was	performed	three	weeks	following	

coronary	ligation.	

	

	

6.4.2	 Operative	survival	rate	

	

Peri-procedural	mortality	was	very	low	at	3%,	and	mortality	up	to	the	point	of	

electrophysiological	study	was	also	reasonable	at	32%.		Both	these	figures	compare	

favourably	with	statistics	from	other	investigators211–214	(see	Section	1.8).		Three	of	23	

mice	(13%)	undergoing	electrophysiological	study	died	during	the	procedure;	this	was	

unfortunate	but	considered	acceptable	given	its	invasive	nature.			

	

	

6.4.3	 Baseline	measurements	

	

Heart	rate	

	

The	lack	of	an	observed	difference	in	heart	rate	between	controls	and	cKOs	appears	at	

first	to	contradict	previous	findings	with	gKOs,	which	had	higher	resting	heart	rates	

than	controls108.		However,	this	lack	of	difference	could	in	fact	be	expected,	given	that	

GNAI2	gene	knockout	would	not	have	occurred	within	the	sinoatrial	node,	which	

governs	heart	rate.		This	is	because	αMHC-driven	Cre	expression	does	not	occur	in	

these	cells199.		A	further	contribution	to	the	difference	seen	with	gKOs	may	have	come	

from	knockout	occurring	in	autonomic	nerve	fibres	innervating	the	heart,	and	within	

the	brain.		Interestingly,	using	the	RGS-insensitive	GNAI2	knockin	model	mentioned	

above,	Huang	et	al	found	a	higher	daytime	heart	rate	among	knockins	compared	to	

controls270.		These	findings	are	much	harder	to	explain,	given	that	with	these	animals	

parasympathetic	over-activity	would	be	expected	to	reduce	heart	rate,	particularly	

during	the	day	when	they	are	typically	asleep.	
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QTc	

	

The	similar	QTc	seen	in	controls	and	cKOs	is	noteworthy,	as	it	differs	from	previous	

findings	in	gKOs	in	which	QTc	was	prolonged94.		The	measured	values	were	quite	

different	however:	63.4ms	(controls)	and	81.1ms	(gKOs),	compared	to	39.8ms	

(controls)	and	40.9ms	(cKOs)	in	the	present	study.		QT	interval	measurement	in	

humans	is	not	without	its	problems,	and	the	difficulties	of	measurement	in	the	mouse	

are	compounded	by	the	more	gradual	return	to	baseline	of	the	terminal	T	wave..		Given	

the	larger	number	of	mice	in	the	present	study,	and	the	review	of	each	signal-averaged	

ECG	to	ensure	accurate	interval	measurement	rather	than	relying	on	automated	

readings,	it	could	be	argued	that	these	values	are	more	reliable.		Additionally,	although	

in	the	study	by	Zuberi	et	al	the	prolonged	APD	seen	in	knockouts	was	in	accordance	

with	what	might	be	expected	if	the	QT	interval	were	prolonged,	APD	was	measured	at	

room	temperature.		It	is	known	that	there	is	an	inverse	relationship	between	APD	and	

temperature167,273	and	so	APD	would	be	expected	to	be	shorter	at	37°C,	and	the	

magnitude	of	the	difference	may	be	reduced.		Alternatively,	the	incomplete	knockout	

may	have	prevented	QTc	differences	from	emerging,	though	with	moderate	Gαi2	

suppression	a	subtle	difference	could	perhaps	be	expected.	

A	possible	way	to	at	least	partially	reconcile	the	findings	of	my	study	(no	difference	in	

QTc)	with	the	increased	Ca2+	currents	observed	by	Zuberi	et	al,	is	that	the	increased	

Ca2+	may	in	fact	make	re-excitation	possible	prior	to	full	repolarisation	in	a	manner	

analogous	to	EADs,	such	that	the	ERP	measured	actually	reflects	a	Ca2+-dependent	re-

activation	process.			

	

	

Heart	rate	variability	

	

Also	difficult	to	explain	are	the	differences	seen	in	heart	rate	variability	indices.		As	

discussed	in	the	Chapter	1,	heart	rate	is	under	the	control	of	the	sinoatrial	node	

(assuming	normal	cardiac	rhythm),	which	in	turn	is	under	the	influence	of	autonomic	

inputs.		Without	Gαi2	knockout	in	the	sinoatrial	node	(due	to	absent	αMHC	and	hence	

Cre	expression	there),	its	electrophysiological	function	could	be	expected	to	be	the	

same	as	in	controls.		As	should	the	autonomic	inputs	(a	combination	of	neurones	and	

hormones),	given	the	lack	of	Cre	expression	in	non-cardiomyocytes.		Strangely,	not	

only	were	there	apparent	differences	between	groups,	but	several	differences	seen	

were	opposite	to	those	reported	for	gKOs108.		For	cKOs,	RMSSD	was	3-fold	higher	than	
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in	controls,	whereas	the	reverse	was	found	with	gKOs.		Total	and	HF	power	were	

higher	in	cKOs	than	controls,	although	total	power	did	not	reach	significance;	the	

converse	was	seen	with	gKOs.	Normalised	LF	(LFnu)	and	LF/HF	ratio	were	lower	in	

cKOs,	whilst	with	gKOs	no	significant	differences	were	noted.			

It	is	tempting	to	begin	to	make	inferences	regarding	possible	alterations	to	the	

autonomic	nervous	system	in	cKOs.		However,	on	the	assumption	that	GNAI2	knockout	

was	limited	to	cardiomyocytes,	any	such	inferences	seem	implausible.		Indeed,	it	would	

seem	more	likely	that	the	observed	differences	resulted	from	external	factors,	leading	

to	a	type	I	error.		These	could	be,	for	example,	environmental	factors	related	to	the	

room	in	which	ECG	recording	was	performed,	including	temperature,	smells,	and	noise,	

which	stressed	the	animals.		Or	they	could	be	related	to	the	method	of	ECG	recording	

for	HRV,	and	the	analysis	algorithms.		One	of	the	strengths	of	Zuberi	et	al’s	work	was	

the	use	of	implantable	telemetry	devices	that	enabled	significantly	longer	periods	of	

ECG	recording	than	the	short	epochs	in	my	study.		Also,	while	those	mice	had	

undergone	implantation	procedures,	the	recordings	were	made	in	their	normal	

environment	in	a	cage.		The	telemetered	ECG	data	were	therefore	probably	more	

representative	of	the	mice’s	normal	heart	rates.			

	

	

LV	contractility	

	

There	was	no	difference	in	contractility	between	cKOs	and	controls,	as	assessed	by	

FAC,	FS	or	EF,	and	LV	dimensions	were	also	similar	between	groups.		These	findings	

are	in	agreement	with	those	of	Zuberi	et	al94	and	Huang	et	al270.		Although	the	latter	

study	investigated	gain	of	function	Gαi2	mice,	the	lack	of	difference	across	three	studies	

supports	the	idea	that	Gαi2	is	not	directly	important	in	terms	of	contractility.			

	

	

6.4.4	 Post-myocardial	infarction	measurements	

	

Heart	rate	and	ECG	indices	

	

Heart	rate	in	knockout	mice	increased	significantly	from	baseline	(671	to	727bpm,	

p=0.002),	whereas	in	control	mice	heart	rate	also	increased,	but	this	was	not	significant	

(675	to	712bpm,	p=0.368).		It	is	possible	this	greater	increase	in	knockouts	was	related	

to	the	more	severe	LV	impairment	induced	(see	below).		There	were	significant	
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increases	from	baseline	in	QRS	and	QTc	duration	for	both	groups.		The	change	in	QRS	

duration	is	expected	and	also	occurs	in	humans.		It	reflects	delayed	

conduction/propagation	through	the	heart	as	a	result	of	scarred	areas,	and	possibly	

electrophysiological	changes.		As	already	discussed,	baseline	QT	measurement	in	mice	

is	challenging,	and	as	Figure	52	shows,	it	can	be	impossible	following	MI.		Therefore	

changes	in	QTc	must	be	interpreted	with	caution.		Even	if	a	clear	T	wave	end	can	be	

discerned,	prolongation	may	simply	reflect	the	QRS	prolongation	seen.		Bearing	this	in	

mind,	comparison	between	groups	post-MI	revealed	knockouts	had	significantly	longer	

QTc	than	controls.			

	

	

LV	contractility	

	

There	were	no	significant	differences	between	groups	for	echocardiographic	indices,	

although	it	is	noteworthy	that	cKOs	had	a	lower	FAC	(30%	vs	41%,	p=0.093)	than	

controls.		This	is	in	keeping	with	an	accumulating	body	of	evidence	suggesting	that	Gαi2	

signalling	is	protective,	at	least	in	the	setting	of	ischaemia.		In	2000,	Chesley	et	al	

showed	that	β2AR	signalling	was	protective	against	apoptosis	induced	by	hypoxia	or	

H202,	and	that	this	appeared	to	be	mediated	by	a	Gαi-PI3K	pathway224.				This	was	

challenged	by	Oudit	et	al	who	found	that	PI3K	signalling	was	in	fact	important	in	the	

hypertrophy	and	fibrosis	response	resulting	from	βAR	stimulation.		Subsequently	using	

a	Gαi-inhibitor	peptide,	DeGeorge	et	al	showed	that	mice	expressing	the	peptide	had	

significantly	increased	infarct	sizes	compared	to	WTs.		And	exploring	the	effects	of	

increased	Gαi2	activity,	Waterson	et	al	reported	that	infarcts	as	a	proportion	of	area	at	

risk	in	Langendorff-perfused	mouse	hearts	were	smaller	in	those	hearts	with	the	gain	

of	function	(RGS	insensitive)	mutation274.			

More	recently,	further	support	for	a	protective	role	of	Gαi2	has	been	published.		Kӧhler	

et	al	reported	that	Gαi2	knockouts	have	increased	infarct	sizes	compared	to	controls,	

whereas	Gαi3	knockouts	have	smaller	infarcts89.		The	only	possibly	contradictory	

evidence	to	emerge	to	date	with	regard	to	Gαi2,	is	that	published	by	Kaur	et	al.		Using	

the	previously	mentioned	Gαi2	gain	of	function	model,	isoprenaline	induced	increased	

fibrosis	and	collagen	III	expression	in	these	mice	compared	with	controls265.			

So	on	balance	it	appears	that	Gαi2	probably	protects	against	ischaemic	cell	death,	which	

my	results	are	consistent	with.		The	failure	to	reach	significance	may	have	been	due	to	

the	low	power	(46%)	–	each	group	would	have	needed	27	mice	to	achieve	80%	power	

assuming	the	same	differences	in	means.			
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Heart	rate	variability	

	

There	were	no	significant	differences	between	groups	at	one	week	post-MI.			

At	three	weeks,	the	lack	of	difference	in	HRV	indices	persisted.		Compared	to	baseline,	

although	heart	rate	was	increased	for	both	groups,	this	was	only	significant	for	cKOs.		

Similarly,	whilst	SDNN,	RMSSD,	and	total	power	were	lower	for	both	groups	compared	

to	baseline,	these	reductions	were	only	significant	for	cKOs,	whereas	conversely,	the	

decline	in	VLF	power	seen	in	both	groups	was	only	significant	for	controls.		Both	HF	

and	HFnu	showed	significant	reductions	for	knockouts	compared	to	baseline,	whereas	

the	changes	were	non-significant	for	controls.		These	findings	are	broadly	in	line	with	

those	noted	in	humans	following	MI134.			

	

	

6.4.5	 Electrophysiological	studies	

	

In	electrophysiological	studies,	cKOs	had	a	significantly	lower	Wenckebach	point	(i.e.	

occurring	at	a	higher	heart	rate)	compared	to	controls	(60ms	vs	85ms,	p=0.04).		This	is	

difficult	to	explain,	as	the	Wenckebach	point	is	determined	by	AV	nodal	function.		The	

cells	comprising	the	AV	node	are	believed	to	be	more	similar	to	those	of	the	sinoatrial	

node	than	working	cardiomyocytes,	in	terms	of	ion	channel	expression	and	

electrophysiological	behaviour.		It	is	inferred	from	this	that	Gαi2	would	not	therefore	be	

knocked	out	in	these	cells,	and	as	such,	the	observed	difference	would	seem	likely	to	

have	arisen	by	chance.			

The	lower	VERP	in	knockouts,	whilst	not	significant,	is	worthy	of	mention	due	to	its	

concordance	with	previous	findings94,	and	indeed,	the	values	for	controls	and	

knockouts	in	each	study	are	nearly	identical.		This	could	be	expected,	given	VERP	is	

dependent	upon	local	activation	of	cardiomyocytes,	rather	than	activation	via	the	

conduction	system.		As	discussed	in	Section	1.5,	a	reduced	VERP	can,	in	some	

circumstances,	be	pro-arrhythmic	as	it	facilitates	re-entry	and	afterdepolarisation-

mediated	triggering	of	arrhythmia.			

The	lack	of	apparent	difference	in	induction	of	NSVT	is	somewhat	surprising.		In	

contrast	to	the	protocol	used	by	Zuberi	et	al,	no	isoprenaline	was	injected	as	part	of	the	

procedure,	and	this	may	have	resulted	in	the	lower	rate	of	NSVT	in	knockouts,	although	

more	NSVT	was	noted	in	controls.		The	procedure	itself	is	a	fairly	blunt	tool,	and	as	

alluded	to	in	Section	2.4.4,	is	no	longer	often	used	in	risk	prediction	in	humans	due	to	
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problems	with	specificity	and	predictive	power.		Factors	that	may	have	influenced	the	

results	include	anaesthesia	and	size	of	infarct.	

	

	

6.4.6	 Summary	

	

The	strengths	of	this	study	into	the	effects	of	Gαi2	knockout	in	the	setting	of	heart	

failure	were	the	reasonable	numbers	of	mice	in	each	group,	the	low	peri-operative	

mortality	and	reasonable	proportions	completing	the	study.		Each	mouse	was	

intensively	phenotyped	using	several	techniques,	all	by	the	same	investigator.		

Although	there	are	drawbacks	to	this	latter	approach,	it	did	ensure	standardisation	of	

data	acquisition	and	interpretation.		The	ECG	recording	made	use	of	a	non-invasive	

technique	which	avoided	the	confounder	of	surgery	on	measurements	obtained,	and	

importantly,	permitted	repeated	recordings	on	conscious	animals.	

The	main	weakness	of	the	study	was	what	appears	to	have	been	knockdown	rather	

than	knockout	of	the	gene	of	interest.		It	is	difficult	to	gauge	to	what	extent	this	could	

account	for	the	lack	of	clear	electrophysiological	differences	between	cKOs	and	

controls.		Non-significant	differences	in	LV	contractility	post-MI	and	VERP	however,	

suggest	that	some	functional	effect	was	achieved.			

As	was	alluded	to	in	Section	1.8,	LV	contractile	impairment	is	not	synonymous	with	

‘heart	failure’,	though	there	is	overlap.		Also,	the	increase	in	Gαi2	which	has	been	

observed	occurs	as	a	result	of	a	part	of	this	syndrome	which	as	yet,	is	undefined.		So	

while	a	more	complete	model	of	heart	failure	would	potentially	have	included	

assessments	of	organ	weights	to	take	account	of	lung	congestion	for	example,	and	

histologic	examination	of	cardiac	wall	thickness,	it	is	also	worth	bearing	in	mind	that	

these	changes	may	take	longer	to	develop	than	the	21	days	of	my	experimental	

protocol.		There	may	have	been	greater	attrition	during	a	longer	protocol,	and	although	

such	changes	in	organ	weight	may	reflect	backwards	pressure	changes,	it	is	uncertain	if	

this	is	any	more	reflective	of	the	change(s)	required	to	elevate	Gαi2	levels.		

Nevertheless,	a	recent	scientific	statement	on	animal	models	of	heart	failure	

recommends	such	measurements203,	and	this	would	be	important	to	consider	for	

future	work.	

In	relation	to	the	hypothesis	that	Gαi2	is	anti-arrhythmic	in	the	ventricles,	this	study	has	

not	produced	evidence	in	support	of	this.	
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7.	 RESULTS	-	MEA	STUDIES	
	

	

	

7.1	 Introduction		

	

The	MEA	was	used	to	study	the	electrophysiological	parameters	of	ERP,	local	activation	

time	and	conduction	velocity	in	slices	of	murine	ventricular	tissue.		The	slices	were	

challenged	with	drugs,	and	alteration	of	temperature,	and	the	response	of	these	

parameters	measured.		In	addition,	slices	from	gKOs	were	compared	to	littermate	

controls	at	baseline,	and	in	the	presence	of	the	muscarinic	agonist	carbachol.			

	

As	described	in	the	Chapter	2,	the	vast	majority	of	MEA	experiments	were	performed	

stimulating	at	an	S1	coupling	interval	of	250	ms,	due	to	the	consistent	and	stable	

capture	achieved	with	this	cycle	length,	and	the	ability	to	complete	the	experimental	

protocol,	which	was	dependent	on	this.		Nevertheless,	in	some	of	the	early	

experiments,	other	cycle	lengths	were	also	used,	though	this	was	solely	for	baseline	

measurements.		As	such,	Section	7.3	below	compares	ERPs	and	conduction	velocities	at	

these	various	stimulation	cycle	lengths.	

Sections	7.4	to	7.8	report	experimental	results	obtained	when	stimulating	solely	at	a	

cycle	length	of	250	ms.		The	mean	values	from	the	original	data	are	displayed	

graphically,	and	the	values	at	the	same	times,	drug	concentrations	or	temperature	as	

predicted	by	the	multilevel	mixed	effects	model	are	given	in	the	text.		Presentation	of	

the	original	data	needs	no	justification;	those	from	the	model	are	presented	to	show	

their	closeness	to	the	observed	values,	and	in	recognition	of	the	fact	that	they	may	in	

fact	be	more	representative	of	the	‘true’	values,	were	these	same	experiments	to	be	

repeated	many	times.		This	is	because	when	the	explanatory	variable	(e.g.	drug	

concentration)	is	classed	as	continuous,	the	linear	models	produce	overall	lines	of	best	

fit.		In	contrast,	when	classed	as	a	discrete	variable,	the	responses	at	each	value	of	the	

explanatory	variable	are	compared	to	each	other	in	a	manner	similar	to	that	of	RM-

ANOVA.		Reassuringly,	both	methods	of	statistical	analysis	produced	similar	results.	

	

Finally,	assessment	of	Gαi2	knockout	status	in	the	gKOs	used	for	these	experiments	was	

limited	to	PCR	of	ear	DNA	samples,	as	global	deletion	of	the	gene	had	already	been	

demonstrated	to	abolish	protein	production243.		Also,	in	gKOs	gene	deletion	was	not	

dependent	upon	the	extra	step	of	Cre-mediated	excision:	if	two	‘knocked-out’	alleles	



	 159	

were	incorporated,	any	protein	product	would	be	non-functional	due	to	the	design	of	

the	modified	gene.		

Illustrative	examples	of	PCR	products	are	shown	in	Figure	61.		The	WT	allele	gave	a	

805	bp	product	and	the	KO	allele	a	509	bp	product.	

	

	
	
Figure	61		Gel	electrophoreses	showing	illustrative	examples	of	Gαi2	PCR	products.		KO	allele	(Gαi2	-
/-,	509	bp)	and	WT	allele	(Gαi2	+/+,	805	bp).		Het:	Gαi2	+/-.	
	

	

	

7.2	 Assessment	of	Normal	Krebs	buffer	solution		

	

To	verify	the	pH	and	gaseous	composition	of	the	modified	Krebs	buffer	solution	used	

(Normal	Krebs)	was	in	the	physiological	range,	the	pH	was	assessed	over	time	for	two	

preprations	of	the	solution	(Table	11).			

More	detailed	assessment	was	made	for	a	further	preparation	to	ensure	oxygen,	carbon	

dioxide	and	HC03-	concentrations	were	physiological.		The	results	are	shown	in	Table	

12,	and	indicate	the	pH	to	be	slightly	lower	than	the	physiological	range	(7.35	to	7.45),	

probably	as	a	result	of	a	mild	elevation	of		pCO2.			
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Time	(mins)	 pH	(solution	1)	 pH	(solution	2)	

	 	 	

0	 7.74	 7.62	

5	 7.62	 7.45	

10	 7.55	 7.39	

25	 7.49	 7.35	
	

Table	11		pH	of	the	modified	Krebs-Henseleit	buffer	solution	during	bubbling	with	carbogen.		Two	
preparations	were	assessed:	solution	1	and	2.	
	
	
	
	

	 Baseline	 +5	mins	 +10	mins	 +15	mins	

	 	 	 	 	

pH	 7.82	 7.37	 7.30	 7.27	

pO2	 25.3	 89.3	 93.0	 100	

pCO2	 2.47	 5.83	 6.55	 7.05	

HCO3-	 37.4	 23.9	 21.9	 21.4	
	

Table	12		Acid-base	and	gaseous	composition	during	bubbling	of	modified	Krebs-Henseleit	buffer	
solution	with	carbogen.	
	

	

	

7.3	 Baseline	values	of	parameters	at	different	cycle	lengths	
	

7.3.1	 Effective	refractory	period	

	

In	the	early	stages	of	experimentation,	WT	slices	were	studied	at	several	cycle	lengths	

so	as	to	test	how	close	it	was	possible	to	get	to	physiological	heart	rates,	whilst	

achieving	consistent	and	reliable	results.		Baseline	ERP	measurements	are	summarised	

in	Figure	62.	
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Figure	62		Baseline	ERP	at	different	cycle	lengths	in	WT	mice.		Horizontal	lines	indicate	medians.	
	

	

	

	
Figure	63		‘Kernal	density	estimate’	of	ERPs	–	a	means	of	visualising	data	values	with	a	
superimposed	normal	plot,	to	enable	assessment	of	normality.	
	

	

Figure	63	shows	that	for	a	stimulation	cycle	length	(CL)	of	250	ms	which	had	by	far	the	

largest	number	of	observations,	the	distribution	was	reasonably	normal,	although	

there	was	a	small	second	peak.		The	Shapiro-Wilk	test	for	normality	on	the	other	hand	

suggested	the	data	were	not	normal.	

The	robust	test	of	equal	variance	(Levene’s	test)	did	not	reject	the	null	hypothesis	

(p=0.35),	and	in	view	of	this	and	the	fact	that	analysis	of	variance	(ANOVA)	is	relatively	

robust	to	departures	from	normality,	this	was	used	to	test	for	differences	in	ERP	at	

different	cycle	lengths.		No	between	group	differences	were	found	(p=0.428).			
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7.3.2	 Conduction	velocity	

	

Figure	64	summarises	the	baseline	conduction	velocity	measurements	at	different	

stimulation	cycle	lengths.		Figure	65	shows	that	for	a	stimulation	cycle	length	(CL)	of	

250	ms,	the	distribution	was	not	normal,	with	a	small	second	peak	at	higher	values.		

The	Shapiro-Wilk	test	for	normality	also	suggested	the	data	were	not	normal.	

	

	
	

	

Figure	64		Baseline	conduction	velocity	at	different	cycle	lengths	in	WTs.		Horizontal	lines	indicate	
medians.	
	

	

	

	

	
Figure	65		‘Kernal	density	estimate’	of	conduction	velocities	–	a	means	of	visualising	data	values	
with	a	superimposed	normal	plot,	to	enable	assessment	of	normality.	



	 163	

The	robust	test	of	equal	variance	(Levene’s	test)	did	not	reject	the	null	hypothesis	

(p=0.84),	and	in	view	of	this	and	the	fact	that	ANOVA	is	relatively	robust	to	departures	

from	normality,	this	was	used	to	test	for	differences	in	conduction	velocity	at	different	

cycle	lengths.		No	between	group	differences	were	found	(p=0.475).			

A	picture	of	a	slice	on	an	MEA	as	viewed	down	the	microscope	is	shown	in	Figure	66.		

	

	
	
Figure	66		View	of	ventricular	tissue	slice	on	an	MEA	as	viewed	through	a	microscope.	
	

	

	

7.4	 Control	experiments	with	wild-type	slices	

	

7.4.1	 Local	activation	time	

	

Activation	times	measured	from	the	reference	electrode	signal	(termed	‘local	activation	

time’)	were	assessed	over	35	minutes	at	four	time	points	–	baseline,	7,	21	and	35	

minutes.		The	results	are	shown	in	Figure	67.		An	illustration	of	how	LabChart	was	used	

to	calculate	the	activation	time	of	an	electrode’s	signal	using	its	first	temporal	

derivative	is	shown	in	Figure	29.	

Model:	With	time	as	a	continuous	explanatory	variable,	the	data	were	best	modelled	

with	random	slopes.		In	this	model,	there	was	no	significant	relationship	between	local	

activation	time	and	experimental	time	(p=0.450).		Local	activation	time	at	baseline	was	
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2.3	ms,	while	at	35	minutes	it	was	2.0	ms.		With	time	as	a	discrete	explanatory	variable	

there	was	no	significant	difference	between	baseline	and	other	time	points.			
	

	
Figure	67		Local	activation	time	in	Control	experiments	with	WT	mice	(n=5).	

	

	

7.4.2	 Effective	refractory	period	

	

Results	are	summarised	in	Figure	68.		Model:	 The	relationship	between	ERP	and	

experimental	time	as	a	continuous	variable	was	best	modelled	with	a	random	intercept	

model.		In	this	model,	there	was	no	significant	relationship	between	ERP	and	

experimental	time	(p=0.885).		Baseline	ERP	in	the	model	was	43	ms;	at	35	minutes	it	

was	also	43	ms.	

	

	
Figure	68		Effective	refractory	period	in	Control	experiments	with	WT	mice	(n=7).	
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With	time	as	a	discrete	explanatory	variable	there	were	no	significant	differences	

between	baseline	and	other	time	points.	

	

	

7.4.3	 Conduction	velocity	

	

Results	are	summarised	in	Figure	69.			

Model:		The	relationship	between	conduction	velocity	and	experimental	time	as	a	

continuous	variable	was	best	modelled	with	a	random	intercept	model.		In	this	model,	

there	was	a	small	positive	linear	relationship	between	conduction	velocity	and	time,	

which	was	highly	significant	(1.2	cm	s-1	per	7	minutes,	p=0.001).		Baseline	conduction	

velocity	was	37	cm	s-1;	at	35	minutes	it	was	43	cm	s-1.	

With	time	as	a	discrete	explanatory	variable	there	were	small	differences	between	

baseline	conduction	velocity	(37	cm	s-1	)	and	7	minutes	(+3.6	cm	s-1,	p=0.049),	21	

minutes	(+3.6	cm	s-1	,	p=0.049),	and	35	minutes	(+7	cm	s-1	,	p=0.0001)	of	experimental	

time.	

	

	

	
Figure	69		Conduction	velocity	in	Control	experiments	with	WT	mice	(n=5).	
	

	

An	example	of	the	signals	recorded	from	the	MEA	during	a	control	experiment	is	

shown	in	Figure	70.	
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Figure	70		Signals	recorded	on	MEA	during	control	experiment.		In	the	upper	part,	the	signals	for	each	
of	the	60	electrodes	are	shown;	the	stimulus	is	marked	by	the	square	wave;	reference	and	distal	electrodes	
are	highlighted	in	grey.		In	the	lower	part,	A	is	the	reference	electrode	signal,	and	B	and	C	are	signals	at	the	
distal	electrodes	used	to	calculate	conduction	velocity.	
	

	

	

7.5	 Carbachol	experiments	with	wild-types	and	global	Gαi2	knockouts	

	

7.5.1	 Local	activation	time	

	

Results	are	summarised	in	Figure	71.	

Model:		With	concentration	as	a	continuous	variable	the	relationship	between	local	

activation	time	and	carbachol	was	best	modelled	with	a	random	intercept	model.		For	

WTs	there	was	no	significant	relationship	between	activation	time	and	concentration	

(p=0.839).		Similarly,	for	gKOs,	there	was	no	significant	relationship	between	local	

activation	time	and	concentration	(p=0.117).		There	was	no	baseline	difference	

between	groups	(p=0.139),	but	at	concentration	10-6	M	the	difference	between	groups	

approached	significance	(p=0.0504).		In	the	model,	value	at	baseline	for	WTs	was	2.2	

ms,	while	for	gKOs	it	was	1.6	ms.		At	maximum	carbachol	concentration,	local	
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activation	time	was	no	different	to	baseline	for	either	WTs	(p=0.839)	or	gKOs	

(p=0.117).	

With	concentration	as	a	discrete	explanatory	variable	there	was	no	significant	

difference	between	WTs	and	gKOs	at	any	concentration,	though	at	10-6	M	it	approached	

significance	(p=0.08).		There	were	no	significant	differences	compared	to	baseline	for	

either	group.	

	

	

	
Figure	71		Local	activation	time	with	carbachol	in	WTs	(n=6)	and	gKOs	(n=9).	
	

	

The	random	intercept	model	used	for	local	activation	times	of	WT	and	gKO	slices	is	

illustrated	in	Figure	72.		The	model	predicts	the	slope	of	a	single	line	that	will	best	fit	

the	four	measurements	for	each	of	the	15	mice.		In	this	way,	although	the	slope	of	the	

line	is	the	same	for	all	mice,	the	y-axis	intercept	can	vary.		This	‘randomness’	

differentiates	the	model	from	multiple	linear	regression.		Compare	this	to	Figure	74	

which	illustrates	a	random	slopes	model.	
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Figure	72		Example	of	a	random	intercept	model.		Original	data	(dots)	and	predictions	from	mixed	
effects	model	(lines)	are	shown	for	WT	and	gKO	local	activation	times.			The	line	of	best	fit	is	allowed	to	
intersect	the	ordinate	at	different	values	for	each	slice,	though	the	slope	is	the	same	for	all	in	each	group	
(WT	or	gKO).	
	

	

7.5.2	 Effective	refractory	period	

	

Results	are	summarised	in	Figure	73.	

Model:	 The	relationship	between	ERP	and	carbachol	concentration	was	best	modelled	

with	a	random	slopes	model.		For	both	WTs	and	gKOs	there	was	no	significant	

relationship	between	ERP	and	concentration.		There	was	no	baseline	difference	

between	groups	(p=0.631)	and	neither	was	there	a	significant	difference	at	any	

concentration.		In	the	model,	ERP	at	baseline	for	WTs	was	61	ms;	for	gKOs	it	was	65	

ms.		There	was	no	difference	between	ERP	at	baseline	and	maximum	carbachol	

concentration	for	either	WTs	or	gKOs.	

With	concentration	as	a	discrete	explanatory	variable,	there	was	no	significant	

difference	between	WTs	and	gKOs	at	any	concentration.		For	WTs,	at	carbachol	

concentration	3x10-8	M,	ERP	was	significantly	shorter	than	at	baseline	(-7.6	ms,		

p=0.049).		There	were	no	other	significant	differences.	
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Figure	73		Effective	refractory	period	with	carbachol	in	WTs	(n=11)	and	gKOs	(n=11).	
	

	

The	random	slopes	model	used	for	ERPs	of	WT	and	gKO	slices	is	illustrated	in	Figure	

74.		In	contrast	to	the	random	intercept	model	depicted	in	Figure	72,	a	random	slopes	

model	allows	not	only	the	intercept	of	each	slice’s	line	to	vary,	but	also	its	slope.			So	a	

true	(linear)	line	of	best	fit	is	generated	for	the	measurements	of	each	slice.		It	is	not	

always	appropriate	to	progress	from	a	random	intercept	to	random	slopes	model	

however;	the	appropriateness	of	doing	so	is	assessed	with	the	likelihood	ratio	test.	

	

	

	
Figure	74		Example	of	a	random	slopes	model.		Original	data	(dots)	and	predictions	from	mixed	effects	
model	(lines)	are	shown	for	WT	and	gKO	ERPs.			The	line	of	best	fit	is	allowed	to	vary	between	slices,	both	
with	its	intersection	at	the	ordinate,	and	with	its	slope.	
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7.5.3	 Conduction	velocity	

	

Results	are	summarised	in	Figure	75.			

Model:		With	concentration	as	a	continuous	explanatory	variable	the	relationship	

between	conduction	velocity	and	carbachol	concentration	was	best	modelled	with	a	

random	intercept	model.		For	WTs	there	was	a	small	positive	linear	relationship	

between	conduction	velocity	and	concentration	which	was	significant	(2.2	cm	s-1	per	

unit	log[mol/L]	increase	in	carbachol	concentration,	p=0.044).			

For	gKOs,	there	was	no	significant	relationship	(p=0.706).		There	was	no	baseline	

difference	between	groups	(p=0.299),	and	neither	was	there	a	significant	difference	at	

any	concentration.		In	the	model,	baseline	conduction	velocity	for	WTs	was	39	cm	s-1;	

for	gKOs	it	was	51	cm	s-1.		At	maximum	carbachol	concentration,	conduction	velocity	

was	+8.8	cm	s-1	faster	than	baseline	for	WTs	(p=0.044).		For	gKOs,	it	was	+1.3	cm	s-1	

(p=0.706).	

With	concentration	as	a	discrete	explanatory	variable	there	was	no	significant	

difference	between	WTs	and	gKOs	at	any	concentration.		For	WTs,	at	3x10-8	M	

carbachol,	conduction	velocity	was	significantly	faster	than	baseline	(10	cm	s-1,	

p=0.018).		There	were	no	other	significant	differences.	

	

	
Figure	75		Conduction	velocity	with	carbachol	in	WTs	(n=6)	and	gKOs	(n=9).	
	

	
	
	
	
	



	 171	

7.6	 Isoprenaline	experiments	with	wild-type	slices	

	

7.6.1	 Local	activation	time	

	

Results	are	summarised	in	Figure	76.			

Model:	 The	realtionship	between	local	activation	time	and	isoprenaline	concentration	

was	best	modelled	with	a	random	intercept	model.		There	was	no	significant	

relationship	between	local	activation	time	and	concentration	(p=0.160).		In	the	model,	

local	activation	time	at	baseline	was	2.4	ms,	and	there	was	no	significant	difference	

between	this	and	the	value	at	maximum	concentration	(p=0.160).	

With	concentration	as	a	discrete	explanatory	variable,	there	were	no	significant	

differences	compared	to	baseline.	

	

	
Figure	76		Local	activation	time	with	isoprenaline	in	WTs	(n=7).	

	

	

7.6.2	 Effective	refractory	period	

	

Results	are	summarised	in	Figure	77.	

Model:		the	data	were	best	modelled	with	random	intercepts.		There	was	a	small	

positive	linear	relationship	between	ERP	and	concentration	which	was	significant	(1.4		
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Figure	77		Effective	refractory	period	with	isoprenaline	in	WTs	(n=10).	
	

	

	

ms	per	unit	log[mol/L]	increase	in	isoprenaline	concentration,	p=0.033).		In	the	model,		

mean	ERP	at	baseline	was	57	ms;	it	was	significantly	longer	at	maximum	concentration	

than	at	baseline	(+5.7	ms,	p=0.033).	

With	concentration	as	a	discrete	explanatory	variable,	at	maximum	concentration	ERP	

was	significantly	longer	than	baseline	(+6.6	ms,	p=0.021).		There	were	no	other	

significant	differences.			

	

	

7.6.3	 Conduction	velocity	

	

Results	are	summarised	in	Figure	78.	

Model:		The	relationship	between	conduction	velocity	and	isoprenaline	concentration	

was	best	modelled	with	a	random	intercept	model.		There	was	no	significant	

relationship	between	conduction	velocity	and	concentration	(p=0.377).		In	the	model,	

conduction	velocity	at	baseline	was	68.5	cm	s-1.		Conduction	velocity	was	5.8	cm	s-1	

faster	at	max	concentration	though	this	was	not	significant	(p=0.377).	

With	concentration	as	a	discrete	explanatory	variable,	there	were	no	significant	

differences	compared	to	baseline.	
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Figure	78		Conduction	velocity	with	isoprenaline	in	WTs	(n=7).	
	

	

	

	

7.7	 Mexiletine	experiments	with	wild-type	slices	

	

7.7.1	 Local	activation	time	

	

Results	are	summarised	in	Figure	79.		However,	measurements	were	not	possible	at	

maximum	concentration	for	three	of	the	seven	slices	due	to	failure	to	capture,	and	so	

the	value	shown	must	be	interpreted	with	caution.			

Model:		With	concentration	as	a	discrete	explanatory	variable	there	was	a	highly	

significant	difference	between	baseline	local	activation	time	and	that	

at	10-4	M	(+1.1	ms,	p<0.00005).		The	data	were	not	modelled	with	concentration	as	a	

continuous	variable	as	the	lowest	concentration	(10-5	M)	was	considered	too	great	a	

difference	from	baseline	(i.e.	0	M)	to	consider	this	increment	as	equal	to	the	other	log	

unit	increments.	

For	Figure	79	only	(not	the	multilevel	model),	a	value	for	local	activation	time	of	20	ms	

was	assigned	where	there	had	been	no	capture	at	10-4	M,	for	illustrative	purposes.		This	

was	not	done	for	the	statistical	model,	as	the	difference	was	highly	significant	when	

these	values	were	treated	as	missing.	
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Figure	79		Local	activation	time	with	mexiletine	in	WTs	(n=7).	
	

	

	

7.7.2	 Effective	refractory	period	

	

Results	are	summarised	in	Figure	80.		ERP	was	only	measurable	for	four	out	of	seven	of	

the	slices	at	maximum	concentration	(mean	71	ms).		If	these	missing	values	are	

conservatively	estimated	at	150	ms,	the	mean	ERP	becomes	105	ms.			

Model:	 As	for	local	activation	time,	concentration	was	only	modelled	as	a	discrete	

explanatory	variable.		At	10-4	M,	where	ERP>140,	this	was	conservatively	estimated	as	

150	ms,	to	avoid	missing	values.		Using	a	random	intercept	model,	baseline	ERP	was	55	

ms;	at	10-5	M	it	was	63	ms	(p=0.36),	and	at	10-4	M	it	was	105	ms	(p<0.00005).	

	

	
Figure	80		Effective	refractory	period	with	mexiletine	in	WTs	(n=7).	
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7.7.3	 Conduction	velocity	

	

Results	are	summarised	in	Figure	81.		Conduction	velocity	was	only	measurable	for	

four	out	of	seven	of	the	slices	at	maximum	concentration	(mean	44	cm	s-1).		If	these	

missing	values	are	assigned	values	of	0	ms,	the	mean	conduction	velocity	becomes	25	

cm	s-1.	

Model:		A	random	intercept	model	was	used	with	concentration	as	a	discrete	

explanatory	variable.			At	10-4	M	where	conduction	velocity	could	not	be	measured	due	

to	lack	of	capture/propagation,	a	value	of	0	was	assigned.		In	the	model,	baseline	

conduction	velocity	was	57	cm	s-1.		At	10-5	M	it	was	60	cm	s-1	(p=0.638)	and	at	10-4	M	it	

was	25	cm	s-1	(p<0.0005).	

	

	

	
Figure	81		Conduction	velocity	with	mexiletine	in	WTs	(n=7).	
	
	
	
	
An	example	of	the	signals	acquired	at	baseline	and	after	10-4	M	Mexiletine	are	shown	in	

Figure	82.			
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Figure	82		Signals	recorded	on	MEA	during	mexiletine	experiment.		In	the	upper	part,	the	signals	for	
each	of	the	60	electrodes	are	shown;	the	stimulus	is	marked	by	the	square	wave;	reference	and	distal	
electrodes	are	highlighted	in	grey.		In	the	lower	part,	(1a)	is	the	reference	electrode	signal	at	baseline		and	
(2a/3a)	are	baseline	signals	at	the	distal	electrodes	used	to	calculate	conduction	velocity.		(1b/2b/3b)	are	
the		corresponding	signals	after	receiving	10-4	M	mexiletine.	
	

	

	

7.8	 Temperature	experiments	with	wild-type	slices	
	

7.8.1	 Local	activation	time	

	

Results	are	summarised	in	Figure	83.			

Model:		With	temperature	as	a	continuous	explanatory	variable,	the	data	were	best	

modelled	with	random	intercepts.		There	was	a	highly	significant	relationship	between	

local	activation	time	and	temperature	(p<0.0005).		In	the	model,	local	activation	time	at	

34	°C	was	1.86	ms;	at	37	°C	it	was	1.64	ms	and	at	40	°C,	1.43	ms.	

With	temperature	as	a	discrete	explanatory	variable	there	was	a	significant	difference	

between	37	and	34	degrees	(p<0.00005).		However,	there	was	no	significant	difference	

between	37	and	40	degrees	(p=0.296).	
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Figure	83		Local	activation	time	according	to	temperature	in	WTs	(n=11).	
	

	

7.8.2	 Effective	refractory	period	

	

Results	are	summarised	in	Figure	84.		Model:		The	relationship	between	ERP	and	

temperature	was	best	modelled	with	a	random	intercept	model.		There	was	a	negative	

linear	relationship	between	ERP	and	temperature	which	was	highly	significant	(-4.6	ms	

per	°C	increase,	p<0.0005).		In	the	model,	at	37	°C,	ERP	was	55	ms;	at	34	°C	it	was	68	

ms,	and	at	40	°C	was	41	ms.		There	were	highly	significant	differences	in	ERP	between	

37	°C	and	both	34	°C	and	40	°C.		With	concentration	as	a	discrete	explanatory	variable	

there	were	highly	significant	differences	between	ERP	at	37	°C	and	34	°C	(p<0.00005),	

and	37	°C	and	40	°C	(p=0.0018).	

	

	
Figure	84		Effective	refractory	period	according	to	temperature	in	WTs	(n=17).	
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7.8.3	 Conduction	velocity	

	

Results	are	summarised	in	Figure	85.				

Model:	 The	relationship	between	conduction	velocity	and	temperature	was	best	

modelled	with	a	random	intercept	model.		There	was	no	significant	relationship	

between	conduction	velocity	and	temperature	(p=0.53).		In	the	model,	at	37	°C	

conduction	velocity	was	59	cm	s-1;	at	34	°C	it	was	62	cm	s-1	and	at	40	°C	it	was	57	cm	s-1.		

There	was	no	significant	difference	in	conduction	velocity	between	37	°C	and	34	°C	or	

40	°C.		When	re-modelled	with	temperature	as	a	discrete	variable,	there	was	no	

significant	difference	between	conduction	velocity	at	37	°C	and	34	°C	(p=0.44),	nor	37	

°C	and	40	°C	(p=0.89).		

	

	
Figure	85		Conduction	velocity	according	to	temperature	in	WTs	(n=11).	
	

	

An	example	of	the	signals	acquired	at	34	°C	and	at	40	°C	are	shown	in	Figure	86.			
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Figure	86		Signals	recorded	on	MEA	during	temperature	experiment.		In	the	upper	part,	the	signals	
for	each	of	the	60	electrodes	are	shown;	the	stimulus	is	marked	by	the	square	wave;	reference	and	distal	
electrodes	are	highlighted	in	grey.		In	the	lower	part,	(1a)	is	the	reference	electrode	signal	at	34°C	and	
(2a/3a)	are	signals	at	the	distal	electrodes	used	to	calculate	conduction	velocity	also	at	34°C.		(1b/2b/3b)	
are	the	corresponding	signals	at	40°C.	
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8.	 DISCUSSION	–	MEA	STUDIES	
	

	

	

8.1	 Introduction	

	

Measurement	of	conduction	velocity,	and	of	repolarisation	in	response	to	drug	

challenge	in	vivo,	is	problematic.		Conduction	velocity	requires	knowledge	of,	or	a	

reasonable	estimate	of	the	path	of	conduction	in	addition	to	accurate	timings	of	

activation.		This	is	complicated	by	the	3D	propagation	of	impulses;	and	achieving	this	at	

multiple	regions	of	the	contracting	heart	is	a	challenge.			Yet	conduction	velocity	and	

repolarisation	are	two	of	the	key	cardiac	electrophysiological	parameters,	and	

perturbations	in	these	contribute	to	arrhythmogenesis.		New	drugs	are	screened	

particularly	for	their	effects	on	repolarisation	indices.		A	current	guideline	from	2005	

recommends	a	combination	of	in	vitro	and	in	vivo	assessments	for	this	purpose275.		

Although	other	multicellular	and	tissue	preparations	are	available,	the	MEA	system	in	

conjuction	with	tissue	slices	offers	the	potential	for	multiple	recordings	from	the	same	

heart,	thus	permitting	a	range	of	drug	doses	to	be	used.		Also,	the	thinness	of	the	slices	

provides	a	quasi-2D	tissue	substrate,	simplifying	assessment	of	conduction	velocity.			

Although	several	groups	have	published	their	findings	using	cardiac	slices	and	the	MEA	

system,	it	has	not	been	used	widely.		Initially	therefore,	the	stability	and	reproducibility	

of	the	technique	was	tested.		The	methodology	was	also	simplified	as	far	as	possible.		

Baseline	studies	with	WT	slices	were	performed	to	test	the	stability	of	the	system.		

Pharmacological	studies	in	WTs	with	isoprenaline	and	mexiletine,	thermal	studies	in	

WTs,	and	comparisons	of	Gαi2	KOs	and	WT	controls	with	carbachol	were	subsequently	

performed.			The	results	for	each	of	these	experiments	are	discussed	first,	after	which	

aspects	of	the	methodology	and	reliability	of	measurements	are	critiqued.	

	

	

	

8.2	 Control	experiments	with	wild-type	slices	

	

There	were	no	differences	between	baseline	and	35	minutes	for	local	activation	time	or	

ERP.		The	ERP	measurements,	as	an	index	of	repolarisation,	are	in	keeping	with	the	

findings	of	two	other	cardiac	slice	studies.		The	first,	using	human	and	canine	slices	
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showed	stable	FPD	measurements	for	eight	hours232.		The	second	demonstrated	stable	

FPD	with	guinea	pig	slices	for	up	to	24	hours,	and	slice	viability	for	48	hours236.	

Conduction	velocity	did	increase	by	1.2	cm	s-1	per	7	minutes	in	the	model,	and	although	

this	was	highly	significant,	the	magnitude	of	change	was	fairly	small:	an	increase	of	

approximately	16%	between	baseline	and	end.		It	is	difficult	to	explain	this	small,	

gradual	change,	but	one	possibility	is	a	‘warm-up’	effect,	as	BDM	is	fully	washed	out	of	

the	tissue	and	near-normal	cellular	physiology	is	restored.		In	particular,	the	two	main	

protein	complexes	involved	in	impulse	propagation,	the	sodium	channel	and	gap	

junction	complexes,	may	take	longer	to	recover	than	other	ion	channels.			

	

	

	

8.3	 Carbachol	experiments	with	wild-types	and	global	Gαi2	knockouts	

	

The	lack	of	relationship	between	local	activation	time	and	carbachol	concentration	for	

both	WTs	and	gKOs	was	expected,	and	in	accordance	with	the	findings	from	the	Control	

experiments.		Local	activation	time	is	dependent	on	sodium	channel	availability,	which	

in	turn	is	partly	determined	by	the	resting	membrane	potential.		mACh	receptor	

signalling	is	not	believed	to	exert	influence	on	the	sodium	channel,	and	although	it	

affects	GIRK	in	the	atria,	the	lack	of	expression	of	this	channel	in	the	ventricles	means	

carbachol,	acting	via	the	mACh	receptor,	is	unlikely	to	have	effects	on	the	resting	

membrane	potential	either.			

For	the	same	reasons,	a	lack	of	difference	between	groups	at	baseline	would	be	

expected.		More	difficult	to	explain	is	the	difference	that	approached	significance	at	10-6	

M.		Despite	the	separation	of	curves,	the	most	likely	cause	would	seem	to	be	chance,	an	

hypothesis	supported	by	the	lack	of	reversal	following	atropine.	

	

ERP	did	not	vary	between	baseline	and	maximum	carbachol	concentration	for	either	

group,	in	keeping	with	the	results	from	the	Control	experiments.		Interestingly,	with	

concentration	as	a	discrete	variable,	ERP	was	significantly	shorter	than	baseline	for	

WTs	at	3x10-8	M.		This	was	not	significant	for	knockouts,	though	review	of	the	plotted	

data	shows	a	mirrored	dip.		Whether	this	represents	a	real	effect,	or	a	statistical	

aberration	is	difficult	to	know.		It	is	not	concordant	with	the	effects	of	vagal	stimulation	

in	the	dog	for	example,	where	lengthening	of	ventricular	ERP	occurs276.		Repolarising	

currents	differ	markedly	between	large	and	small	animals	which	may	go	some	way	to	

explaining	the	difference.				
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In	contrast	to	my	results	in	vivo	at	electrophysiological	study,	gKO	tissue	slice	ERPs	

were	slightly	higher	than	controls,	though	the	differences	in	both	experiments	were	

non-significant.		In	attempting	to	reconcile	these	findings	with	those	of	Zuberi	et	al94	

who	found	gKOs	to	have	a	shorter	VERP,	several	aspects	of	signalling	require	

consideration.		Firstly,	GIRK	is	not	expressed	in	the	ventricles,	but	were	it	to	be,	

reduced	GIRK	activity	in	Gαi2	knockouts	would	more	likely	prolong	APD	and	ERP	rather	

than	reduce	it.		Secondly,	there	is	evidence	to	support	the	idea	that	Gαi2	negatively	

regulates	the	LTCC94,106,107.		Two	of	these	studies	found	this	to	be	part	of	the	mACh	

receptor	signalling	pathway,	though	a	role	for	the	β2AR	cannot	be	discounted90.		If	the	

increased	Ca2+	currents	observed	in	gKOs	by	Zuberi	et	al	resulted	from	a	lack	of	mACh	

receptor	-	Gαi2	mediated	suppression	of	the	LTCC,	then	as	postulated	in	the	Chapter	6,	

the	increased	Ca2+	could	enable	re-excitation	prior	to	full	repolarisation	in	a	manner	

similar	way	to	EADs,	such	that	the	ERP	measured	actually	reflects	a	Ca2+-dependent	re-

activation	process.		A	difficulty	with	this	hypothesis	is	that	with	carbachol	stimulation	

of	the	mACh	receptor,	LTCC	activity	should	be	suppressed	in	WTs,	altering	ERP.		

However,	whether	this	would	lead	to	shortening	of	ERP,	due	to	reduction	in	APD,	or	

lengthening,	due	to	less	Ca2+	availability	for	EAD-type	action	potentials,	is	unclear.			

Another	important	consideration	is	that	a	key	aspect	of	in	vivo	experiments	is	that	they	

study	the	tissue	within	its	normal	environment,	under	the	usual	influences	of	

hormones,	neural	inputs	and,	pH,	oxygen	supply,	electrolytes	and	energy	substrates.		

Given	the	heart	is	under	constant	neuromodulation	by	both	branches	of	the	ANS,	the	

lack	of	these	tonic	influences	may	help	explain	some	of	the	differences	between	my	

results	for	gKOs	ex	vivo,	and	the	in	vivo	results	of	Zuberi	et	al.		For	example,	Wainford	et	

al	have	shown	that	Gαi2	signalling	in	the	brain	is	important	in	mediating	

sympathoinhibitory	renal	nerve-dependent	responses	in	relation	to	sodium	retention	

and	hypertension277,278.		If	similar	effects	on	the	cardiac	SNS	occurred	in	vivo	in	gKOs,	

this	could	potentially	affect	electrophysiological	parameters	such	as	ERP.			

A	final	possibility	is	that	muscarinic	signalling	effects	may	only	become	apparent,	in	the	

ventricles	at	least,	in	the	presence	of	β2AR	signalling.		In	this	way,	it	could	act	as	a	sort	

of	counterbalance.		This	possibility	was	considered,	but	time	constraints	prevented	

experiments	to	investigate	it.	

	

Despite	slight	separation	of	the	curves	for	conduction	velocity,	there	was	no	significant	

difference	between	WTs	and	gKOs	at	any	concentration	of	carbachol.		As	discussed	for	

local	activation	time,	this	is	not	surprising	as	there	have	been	no	reported	effects	of	
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Gαi2	on	either	Nav1.5	or	gap	junctions,	although	equally,	such	effects	have	not	to	my	

knowledge	been	investigated.	

The	slight	increase	of	conduction	velocity	with	concentration	seen	for	WTs	may	reflect	

a	similar	process	to	that	occurring	in	the	Control	experiments,	i.e.	an	effect	of	time	

rather	than	carbachol	concentration.		In	all	likelihood,	the	lack	of	increase	seen	for	

gKOs	was	due	to	chance	rather	than	Gαi2	being	implicated	in	regulation	of	conduction,	

and	this	is	supported	by	the	proximity	of	values	for	each	group	at	maximum	

concentration.	The	one	thing	favouring	a	mild	effect	is	the	significantly	higher	value	at	

3x10-8	M	when	modelled	with	carbachol	as	a	discrete	variable	–	similar	but	opposite	to	

that	which	occurred	for	ERP.			

	

	

	

8.4	 Isoprenaline	experiments	with	wild-type	slices	

	

For	both	local	activation	time	and	conduction	velocity,	there	was	no	significant	

relationship	with	isoprenaline	concentration,	although	it	is	interesting	to	note	that	

propranolol	had	mild	opposing	effects	towards	the	trend	observed	for	each	parameter.		

Isoprenaline	is	a	non-specific	βAR	agonist,	and	its	cellular	effects	are	predominantly	

driven	by	the	Gαs	–	AC	–	cAMP	–	PKA	pathway,	with	PKA	phosphorylating	and	thereby	

contributing	to	regulation	of	a	number	of	proteins	involved	in	ion	transport.		Published	

data	generally	support	the	idea	that	βAR	signalling	increases	INa,	via	PKA-mediated	

phosphorylation279.		However,	there	is	not	complete	agreement38;	other	proteins	such	

as	CamKII	may	also	have	a	role,	and	the	extent	of	any	Gαi-mediated	antagonism	is	

unknown.	

In	terms	of	functional	effects,	Lang	et	al	recently	reported	that	both	β1AR	and	β2AR	

agonism	increased	conduction	velocity	in	human	cardiac	wedge	preparations280.		And	

in	a	review	on	the	subject,	Campbell	et	al	found	conduction	velocity	to	be	increased	

with	βAR	stimulation	in	intact	hearts279.		Mechanistically,	they	suggest	that	due	to	the	

non-linear	relationship	between	dV/dtmax	of	phase	0	(an	INa-driven	process)	and	

conduction	velocity,	βAR	modulation	of	gap	junction	function	may	also	be	important,	as	

suggested	by	previous	reports281.		However,	most	of	the	work	investigating	this	has	

been	carried	out	with	neonatal	cell	preparations,	without	assessment	of	the	effects	on	

conduction.	

Therefore	the	results	in	these	experiments,	particularly	with	regard	to	conduction	

velocity,	were	it	seems	unexpected.		The	cardiac	slices	may	not	have	been	able	to	
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demonstrate	changes	in	this	parameter,	perhaps	as	a	result	of	damage	incurred	during	

preparation,	or	due	to	insufficient	tissue	volume.		Alternatively,	it	is	possible	there	are	

species	differences	in	the	kinetics	of	INa	or	gap	junctions:	the	majority	of	studies	have	

used	canine	models,	and	the	higher	heart	rates	seen	in	mice	may	affect	activation	and	

conduction,	in	addition	to	repolarisation.			

	

Adrenergic	effects	on	APD	and	ERP	are	better	understood,	in	large	animals	at	least.		In	

the	canine	ventricle,	ERP	shortened	in	response	to	sympathetic	stimulation,	and	

conversely,	sympathetic	denervation	led	to	prolongation	of	ERP276.		In	humans,	the	

effects	are	well-described,	and	attributed	largely	if	not	wholly	to	phosphorylation	of	IKs	

by	PKA56.		The	resultant	increase	in	K+	efflux	leads	to	APD	shortening,	reflected	in	the	

normal	reduction	in	QT	interval	that	occurs	with	exercise.		Further	evidence	comes	

from	patients	with	LQTS	type	I,	in	whom	mutations	in	KCNQ1	produce	ventricular	

arrhythmias	often	in	response	to	increased	sympathetic	activity.	

The	failure	of	APD	not	only	to	shorten,	but	to	increase	marginally	with	higher	

concentrations	of	isoprenaline,	was	perhaps	unexpected.		Aliquots	of	frozen	

isoprenaline	were	thawed	an	hour	before	commencing	the	experiments,	so	oxidisation	

and	loss	of	pharmacological	potency	are	unlikely	to	have	occurred.		Two	points	deserve	

mention:	firstly,	although	significant,	the	increase	of	ERP	was	minimal,	and	may	either	

be	a	type	I	error,	or	represent	subtle	deterioration	in	the	tissue	perhaps.		Secondly,	as	

alluded	to	above,	repolarisation	in	rodents	is	very	different	to	that	in	large	animals:	IKs	

is	not	present	in	the	mouse,	and	the	main	murine	repolarising	currents	are	less	well-

studied.	

	

	

	

8.5	 Mexiletine	experiments	with	wild-type	slices	

	

These	experiments	were	performed	to	check	the	responsiveness	of	the	cardiac	slice	

technique.		For	the	Control,	carbachol	and	isoprenaline	experiments,	either	no	change	

or	a	change	of	small	magnitude	occurred.		It	was	important	to	demonstrate	that	slices	

could	respond	to	stimuli,	and	that	these	responses	could	be	measured:	a	positive	

control	was	required.		Similar	experiments	have	been	reported	previously	with	cardiac	

slices	using	a	variety	of	compounds231,232,238.		Mexiletine	acts	effectively	as	a	pure	fast	

sodium	channel	blocker282,	classed	as	a	IB	anti-arrhythmic	in	Vaughan	Williams’	
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system283.		It	was	chosen	due	to	the	presence	and	importance	of	sodium	channels	in	the	

murine	action	potential,	and	hence	the	likelihood	to	elicit	a	response.	

Encouragingly,	significant	changes	of	large	magnitude	were	seen	in	all	three	measured	

parameters.		The	increase	in	ERP	is	probably	explained	by	mexiletine	preventing	re-

opening	of	the	channels	even	after	full	repolarisation,	so	that	even	though	APD	may	not	

have	been	prolonged,	the	longer	ERP	would	reflect	an	inability	of	the	S2	stimulus	to	

elicit	phase	0.	

	

	

	

8.6	 Temperature	experiments	with	wild-type	slices	

	

The	effects	of	variations	in	temperature	were	studied	because	of	their	clear	

physiological	relevance,	implication	in	arrhythmogenesis,	and	the	suitability	of	the	

MEA	to	study	this	variable.	

The	highly	significant	relationship	between	local	activation	time	and	temperature	was	

not	anticipated,	although	such	a	dependence	has	been	described.		Using	isolated	

perfused	rabbit	hearts,	Spear	et	al	showed	that	when	stimulating	the	epicardium,	local	

activation	time	progressively	increased	as	temperature	dropped	from	36°C		to	25°C284.		

Whilst	not	strictly	analogous,	the	related	parameter	depolarisation	time,	was	found	to	

be	temperature	dependent	almost	60	years	ago285.		This	describes	the	time	taken	for	

phase	0	of	the	action	potential	to	rise	from	10	to	90%	of	its	total	amplitude.		A	negative	

linear	relationship	between	the	log	of	depolarisation	time	and	temperature	was	

described	for	frog	ventricular	fibres	in	situ,	with	a	mean	value	of	3.3	ms	at	37°C.		The	

commonality	of	depolarisation	time	and	local	activation	time	is	their	dependence	on	

INa.		Experimental	support	for	the	temperature	dependence	of	sodium	channel	

conductance	has	come	from	patch-clamp	work	using	rat	ventricular	myocytes286.			

	

Temperature’s	relationship	with	ERP	has	been	more	well-studied,	and	the	results	

obtained	with	the	MEA	finding	a	significant	negative	linear	relationship	of	good	

magnitude	are	in	keeping	with	what	has	been	published.		Accepting	the	potential	

differences	between	atrial	and	ventricular	electrophysiology,	Smeets	et	al	showed	that	

in	strips	of	rabbit	atrium,	cooling	led	to	prolongation	of	the	refractory	period287.		Spear	

et	al	showed	prolongation	of	ARIs	with	lower	temperatures284,	and	Coronel	et	al	found	

a	negative	relationship	between	temperature	and	MAP	duration	in	isolated	pig	

hearts167.				In	a	similar	manner	to	the	sodium	channel	and	local	activation	time,	
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repolarising	currents	have	also	been	shown	to	exhibit	temperature	dependence.		

Kiyosue	et	al	showed	that	in	guinea	pig	ventricular	myocytes,	IK	was	reduced	at	lower	

temperatures,	and	that	APD	was	prolonged288.	

	

In	the	MEA	experiments	there	was	no	relationship	between	conduction	velocity	and	

temperature.		This	was	surprising	given	the	reported	association	in	the	literature.		

Smeets	et	al	reported	an	increase	in	conduction	velocity	with	higher	temperatures	in	

rabbit	atria287,	and	Morley	et	al	found	reduction	in	velocities	in	mice	between	37°C	and	

25°C69.			

Two	obvious	explanations	for	the	results	exist.		The	first	is	that	the	temperature	range	

studied	was	too	narrow,	and	centred	around	37°C.		In	contrast,	the	two	studies	

mentioned	above	had	a	maximum	temperature	of	37°C	and	a	minimum	of	25°C	to	27°C.		

The	narrow	temperature	range	was	chosen	deliberately	though,	as	both	upper	and	

lower	temperatures	are	quite	possible	in	humans,	yet	far	enough	from	‘normal’	to	in	

theory	at	least,	elicit	changes.		Oddly	though,	there	was	not	even	a	non-significant	trend	

for	the	MEA	results,	with	conduction	velocity	at	34°C	slightly	higher	than	at	37°C.				

The	second	possibility	is	that	murine	conduction	does	not	vary	so	easily	with	

temperature	as	it	does	in	the	rabbit.		Although	it	is	assumed	that	mammals	maintain	

their	temperatures	close	to	37°C,	it	is	possible	that	due	to	their	larger	body	surface	

area	to	size	ratio,	mice	may	need	to	be	able	to	tolerate	slightly	lower	temperatures	

without	marked	changes	in	conduction.			

Finally,	this	part	of	the	study	had	a	reasonable	sample	size	(n=11),	and	the	

responsiveness	of	conduction	velocity	had	been	demonstrated	with	mexiletine.		

Nevertheless,	for	subtle	changes	the	system	or	method	used	may	have	been	too	

insensitive.		A	type	II	error	is	therefore	possible.			

	

The	importance	of	temperature	in	arrhythmogenicity	is	best	exemplified	by	Brugada	

syndrome,	where	fever	can	trigger	ventricular	arrhythmias.		A	molecular	mechanism	

for	the	SCN5A	gene	Thr1620Met	mutation	was	demonstrated	by	Dumaine	et	al	who	

showed	that	current	decay	kinetics	and	recovery	from	inactivation	of	the	channel	was	

altered	compared	to	the	wild-type	channel289.		Hypothermia	has	also	been	implicated	

as	a	trigger,	but	in	early	repolarisation	syndrome290.		There	are	conflicting	data	

however	on	whether	hypothermia	can	trigger	ventricular	arrhythmias	in	the	presence	

of	J	waves	related	to	the	low	temperature,	as	opposed	to	the	probable	molecular	defect	

of	early	repolarisation	syndrome291.			
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Although	not	investigated	in	this	study,	arrhythmic	triggers	are	clearly	also	important.		

In	this	regard,	Mugelli	et	al	reported	increased	afterpotentials	when	myocardial	

temperature	is	raised	from	34°C	to	37°C	292;	this	was	investigated	in	the	context	of	

reperfusion	arrhythmias	following	ischaemia.		

	

	

	

8.7	 Methodology	

	

8.7.1	 Choice	of	experimental	model	

	

A	number	of	experimental	models	and	animals	have	been	used	to	study	cellular	and	

tissue	electrophysiology.		These	include,	but	are	not	limited	to,	in	situ	hearts,	isolated	

perfused	hearts	(murine,	leporine,	canine,	human),	and	papillary	muscle	preparations.		

In	terms	of	recording	electrophysiological	parameters,	this	may	be	achieved	with	

multiple	individual	electrodes	including	MAP	electrodes,	multi-electrode	arrays,	and	

potentiometric	dyes.		The	MEA	system	utilising	cardiac	tissue	slices	has	several	

potential	advantages	(discussed	in	Section	1.9.2).		Amongst	these	are	the	potential	to	

obtain	several	slices	from	the	same	heart,	which	in	theory	allows	for	some	control	of	

inter-heart	variability.		This	is	also	a	means	of	maximising	experiments	from	each	

animal.		In	terms	of	the	possible	measurements	and	time	available,	the	use	of	slices	

permitted	pharmacological	testing	with	measurement	of	ERP,	local	activation	time	and	

conduction	velocity.			

The	alternative	ex	vivo	systems	available	for	measuring	cardiac	electrophysiological	

parameters	include,	for	example,	application	of	an	MEA	to	the	surface	of	an	intact	heart	

which	is	retrogradely	perfused	via	a	Langendorff	system.		And	potentiometric	(voltage-

sensitive)	dyes	can	also	be	perfused	through	the	isolated	heart	or	tissue	to	enable	

visualisation	of	depolarisation	and	repolarisation293,294.			

Advantages	of	ex	vivo	whole	heart	experiments	include:	

- less	tissue	damage:	this	maintains	not	only	viability,	but	also	intercellular	

connections	and	conduction	pathways	

- 3D	architecture:	though	not	necessarily	an	advantage	with	murine	hearts,	in	

large	animals	such	as	humans	transmural	electrophysiological	differences	are	

present	and	of	pathophysiological	importance	
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Disadvantages	include:	

- higher	metabolic	requirements,	though	this	is	not	usually	a	problem	

- maintaining	physiological	temperature	is	more	difficult	

- only	one	experiment	per	heart	can	be	performed	

- phototoxicity	of	potentiometric	dyes,	resulting	in	cell	death,	though	this	may	be	

more	relevant	to	single-cell	or	monolayer	imaging295		

	

These	sort	of	experiments	lend	themselves	particularly	to	analyses	of	APD/ARI	and	

activation	time	assessment.		But	the	problems	with	conduction	velocity	are	

compounded	in	the	whole	organ,	particularly	when	as	small	as	the	murine	heart.		And	

although	on	the	one	hand,	electrophysiological	assessment	on	the	Langendorff	

perfusion	setup	obviates	the	need	for	slicing,	on	the	other	hand	it	requires	the	new	

skills	of	immobilising	the	heart	to	reduce	motion	artefact,	and	familiarisation	with	the	

different	equipment	used.	

Certainly	there	are	merits	to	these	approaches.		But	the	techniques	had	not	been	used	

before	within	the	group,	whereas	the	MEA	system	equipment	was	available	in	the	

laboratory,	and	had	been	used	previously	within	the	group.			

	

The	inherently	traumatic	process	of	tissue	slicing	raises	the	question	of	slice	viability.		

This	was	explored	comprehensively	by	Camelliti	et	al,	who	found	tissue	integrity	to	be	

maintained	when	assessed	histologically,	and	a	normal	distribution	of	cell	types	and	

gap	junctions232.		They	also	found	contractility	to	be	preserved	and	FPD	to	be	stable	for	

up	to	8	hours.		Finally,	ATP/ADP	and	phosphocreatine/creatine	ratios	were	similar	to	

intact	tissue.		Using	guinea	pig	slices,	Bussek	et	al	reported	viability	for	over	24	hours	
236.		All	these	findings	support	the	possibility	that	despite	trauma	and	cell	death	of	

myocytes	at	the	periphery	of	the	slice,	the	bulk	of	the	myocytes	and	tissue	are	largely	

unaffected	and	function	adequately	to	allow	useful	experimentation.		The	results	

reported	for	the	Control	experiments	(Section	7.4)	attest	to	this:	values	obtained	were	

both	plausible	and	stable.	

	

	

8.7.2	 Stimulation	frequency	

	

Following	initial	trials	with	varying	stimulation	cycle	lengths,	250	ms	was	chosen	as	

the	S1	coupling	interval	for	the	main	study	for	the	reasons	described	in	the	Chapter	2.		

Briefly,	this	was	chosen	as	a	workable	compromise	between	the	desire	to	stimulate	as	
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close	as	possible	to	physiological	heart	rates,	and	the	need	to	preserve	tissue	vitality	

and	ensure	usable	signals	throughout	the	protocol.		Considering	that	adaptation	of	the	

APD	occurs	in	response	to	changes	in	heart	rate	in	vivo,	can	the	values	for	ERP	in	

particular	be	considered	a	reasonable	reflection	of	those	seen	at	more	physiological	

heart	rates?	

The	relation	of	APD	and	ERP	to	heart	rate	at	steady	state,	i.e.	adaptation,	is	well	

documented,	and	shows	a	positive	relationship	in	atrial	and	ventricular	

cardiomyocytes54,55,232.		Although	this	trend	was	not	seen	for	the	cycle	lengths	150-500	

ms,	this	may	be	accounted	for	by	two	things.		Firstly,	the	number	of	observations	at	150	

ms	was	small,	and	possibly	unrepresentative.		Secondly,	it	is	possible	that	in	fact	over	

these	cycle	lengths	there	was	minimal	difference	in	ERP,	and	that	large	differences	only	

emerge	<150	ms,	in	a	similar	way	to	APD	restitution,	i.e.	the	alteration	seen	following	

an	abrupt	change	in	preceding	diastolic	interval296.		Alternatively,	the	slight	paradoxical	

increase	in	ERP	with	shorter	cycle	lengths	was	a	real	phenomenon	that	occurs	with	

cardiac	slices.		This	may	reflect	the	tissue	damage	sustained	and	the	ex	vivo	

environment.			

Importantly,	at	a	cycle	length	of	250	ms	which	the	majority	of	experiments	were	

performed	with,	mean	ERP	was	56	ms	which	is	not	dissimilar	to	the	values	obtained	in	

vivo.		Also,	as	was	seen	with	the	mexiletine	and	temperature	studies,	this	varied	

appropriately.	

	

There	does	not	appear	to	be	a	strong	relationship	between	conduction	velocity	and	

cycle	length	according	to	the	literature,	though	it	is	perhaps	less	studied	than	

repolarisation.		A	study	using	isolated	perfused	rabbit	hearts	found	remarkably	little	

change	in	conduction	velocity	over	a	range	of	cycle	lengths297.		And	in	the	murine	heart,	

no	change	was	observed	for	cycle	lengths	between	80	and	150	ms69.		These	findings	are	

further	supported	by	the	lack	of	change	in	QRS	duration	in	humans	with	exercise,	

indicating	similar	total	activation	times	of	the	ventricles	with	different	heart	rates298.	

Therefore,	for	this	parameter	it	would	appear	that	stimulation	frequency	is	less	of	a	

concern.		As	can	be	seen	from	Figure	64,	conduction	velocity	varies	little	between	cycle	

lengths	of	200-500	ms.		The	number	of	slices	was	low	for	the	three	shortest	cycle	

lengths	so	it	is	difficult	to	refute	the	possibility	that	using	slices,	conduction	velocity	is	

also	stable	across	a	range	of	cycle	lengths.	
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8.7.3	 Conduction	velocity	measurement	

	

The	ability	to	measure	conduction	velocity	is	of	importance	in	understanding	

arrhythmogenesis,	and	the	development	of	therapies	to	treat	or	prevent	this.		The	

complex	geometry	and	activation	pattern	of	the	human	heart	makes	measurement	in	

vivo	possible,	but	difficult,	using	a	limited	number	of	electrodes	with	an	assumption	of	

linear	conduction299.		But	without	the	motion	of	the	contracting	heart,	more	

sophisticated	means	of	calculating	conduction	velocity	could	be	employed,	which	take	

into	account	the	non-linear	nature	of	propagation	often	seen.		Herein	lies	a	potential	

criticism	of	the	method	chosen	to	measure	conduction	velocity	in	this	study.			

The	reasons	for	this	choice	of	measurement	technique	were	explained	in	the	Section	

2.10.		In	brief,	typically	a	quarter	to	a	third	of	the	MEA	electrodes	would	show	good	

enough	quality	signals	at	baseline.		Signals	tended	to	deteriorate	through	the	

experiment,	such	that	by	the	end	only	a	handful	were	considered	usable.		Also,	without	

an	automated	or	even	semi-automated	analysis	program	for	this	purpose,	the	work	

involved	in	reviewing	and	analysing	signals,	and	calculation	of	conduction	velocities	

was	considerable.		An	advantage	of	this	method	was	that	all	signals	underwent	strict	

quality	control	rather	than	leaving	an	automated	script	to	determine	activation	times.		

Disadvantages	were	the	neglect	of	other	potentially	useful	signals,	and	the	assumption	

of	linear	conduction	between	the	reference	electrode	proximal	to	the	stimulus,	and	the	

distal	electrodes.			

It	is	possible	for	example,	that	other	groups	have	made	use	of	more	electrode	data	in	

their	conduction	velocity	calculations	using	MATLAB-based	custom	software232,235.		

However,	the	details	are	not	provided,	nor	the	extent	to	which	calculations	were	

automated.		On	the	other	hand,	Halbach	et	al	reported	relative	changes	in	conduction	

velocity	rather	than	absolute	values,	though	it	was	not	clear	how	many	electrode	

signals	were	used	in	their	analyses231.		Perhaps	surprisingly,	despite	the	range	of	

models	and	methods	of	measurement	available,	most	authors	report	fairly	similar	

values	(see	Section	8.8	below).			

Conduction	velocity	demonstrates	anisotropy:	it	is	substantially	faster	longitudinally	

than	transversely	along	cardiomyocytes232.		An	incorrect	assumption	was	made	at	the	

beginning	of	the	study	that	myocardial	fibres	run	in	a	circular	direction	around	the	LV	

cavity,	though	previously	published	work	demonstrates	this	not	to	be	the	case.		In	fact,	

‘tangential’	slices	along	the	wall	from	base	to	apex	are	probably	the	best	way	of	

maximising	the	number	of	intact	longitudinal	fibres235.		Thus,	the	method	of	slicing	

used	in	this	study	likely	resulted	in	transected	cardiomyocytes,	and	this	may	have	
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contributed	to	the	variability	in	measurements.		Despite	this,	as	will	be	seen	in	Section	

8.8,	the	values	obtained	were	in	keeping	with	previously	published	results.	

A	final	point	worth	making	is	that	when	comparing	interventions	to	controls,	the	

absolute	values	are	not	necessarily	important,	provided	they	are	plausible.		If	studying	

the	effects	of	a	drug	on	conduction	velocity	for	example,	a	relative	change	is	still	a	

useful	observation,	and	perhaps	more	realistic	than	placing	too	much	emphasis	on	

absolute	values.	

	

	

8.7.4	 Mouse	strain	

	

Numerous	strains	of	mice	are	currently	available	for	use	in	laboratory	research.		

The	house	mouse,	Mus	musculus,	first	appeared	between	1	and	2.5	million	years	ago300,	

and	around	1	million	years	ago	three	subspecies	diverged	from	their	common	

ancestor:	Mus	musculus	castaneus,	Mus	musculus	musculus,	and	Mus	musculus	

domesticus301.		From	these	were	derived	the	various	strains	used	in	research,	inbred	to	

ensure	genetic	homogeneity.		The	genome	of	one	of	these,	C57BL/6J	serves	as	a	

reference	sequence.	

Genetic	differences	between	inbred	strains	are	beginning	to	be	elucidated	with	

the	advent	of	next-generation	sequencing	techniques,	revealing	that	overall,	as	might	

be	expected	there	is	little	sequence	variation	between	strains301,302.		However,	even	a	

single	base	pair	change	can	produce	functional	consequences,	and	any	resulting	

phenotypic	differences	are	far	from	completely	characterised.		For	studies	using	

knockout	mice,	the	strain	used	is	governed	by	the	laboratory	which	creates	the	line.		

The	genetic	alteration	can	be	transferred	to	another	strain	by	backcrossing,	though	this	

can	take	several	months.		The	mice	used	in	the	MEA	studies	were	all	of	strain	129Sv.	

Several	studies	have	investigated	possible	differences	in	cardiac	electrophysiology	

between	strains.		Brouillette	et	al	showed	that	in	vitro,	the	IKur	current	was	smaller	in	

ventricular	myocytes	from	C57BL/6	male	mice	compared	to	male	CD-1	mice303.		Shah	

et	al	found	differences	in	calcium	handling	in	SV129	mice	compared	to	three	other	

strains304.		In	vivo,	using	a	precursor	to	the	ECGenie	recording	system,	Chu	et	al	

investigated	ECG	parameters	in	males	and	females	of	three	strains	of	mice	(129/Sv,	

C57BL/6,	and	FVB).		They	found	within-strain	gender	differences,	but	no	between	

strain	differences	in	parameters	such	as	heart	rate,	PR	or	QTc	intervals,	or	QRS	

duration	were	reported254.		And	using	invasive	EP	studies	similar	to	those	I	performed	

in	the	myocardial	infarction	model	of	heart	failure	(Section	5.3),	Appleton	et	al	found	
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differences	between	FVB,	C57	and	DBA	strains	for	sinus	and	AV	nodal	function,	but	not	

for	atrial	or	ventricular	depolarisation/repolarisation	indices305.		A	large	study	by	

Maguire	et	al	however,	did	report	strain-related	differences	in	VERP	and	VT	

inducibility,	though	the	VT	induction	protocol	consisted	of	programmed	electrical	

stimulation	and	burst	pacing,	the	latter	being	particularly	aggressive.	

	

In	summary,	small	genetic	differences	exist	between	inbred	strains	used	in	laboratory	

research,	but	any	resultant	phenotypic	differences	remain	to	be	fully	characterised.		A	

small	number	of	studies	have	investigated	possible	electrophysiological	differences	

between	strains,	but	the	methods	vary	and	there	is	insufficient	evidence	as	yet	to	draw	

meaningful	conclusions.	

	

	

	

8.8	 Plausibility	of	measurements	

	

8.8.1	 Local	activation	time	

	

This	was	the	activation	time	at	the	reference	electrode	within	400	μM	of	the	

stimulating	electrode,	and	assuming	constant	threshold	and	current	output,	changes	in	

this	parameter	may	be	assumed	to	reflect	sodium	channel	availability.		As	mentioned	in	

the	Section	2.10,	a	maximum	value	of	5	ms	was	chosen,	as	based	on	experience,	times	in	

excess	of	this	were	deemed	to	signify	unhealthy	tissue	or	a	suboptimal	location	for	

stimulation	that	would	be	less	likely	to	enable	completion	of	the	protocol.			

In	the	Control	experiments,	baseline	local	activation	time	was	2.1	ms,	and	was	the	same	

for	WTs	in	the	carbachol	experiments.		In	the	isoprenaline	experiments,	baseline	value	

was	2.5	ms;	it	was	1.7	ms	in	the	mexiletine	experiments,	and	1.6	ms	at	37	°C	in	the	

temperature	experiments.		Thus,	there	was	reasonable	consistency	with	all	in	the	

region	of	2	ms.		Published	values	vary	from	under	2	ms	to	up	to	10	ms:	using	perfused	

guinea	pig	hearts	and	optical	mapping,	Kanai	and	Salama	found	activation	times	close	

to	the	stimulus	of	0-3	ms306.		And	using	Langendorff-perfused	mouse	hearts,	Tamaddon	

et	al	recorded	similar	activation	times	in	the	vicinity	of	the	right	atrial	pacing	

stimulus307.		Times	less	than	10	ms	were	recorded	by	de	Bakker	et	al	in	their	study	of	

propagation	paths	in	infarcted	human	papillary	muscles308,	and	typical	activation	times	

of	5-10	ms	were	shown	by	Bussek	et	al	in	their	study	of	cardiac	slices236.					
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So	although	the	values	reported	in	this	study	are	towards	the	lower	end	of	what	may	be	

considered	normal,	the	best	support	for	their	veracity	is	the	clear	change	seen	in	

activation	times	across	the	MEA	from	the	reference	to	distal	electrodes.	

	

				

8.8.2	 Conduction	velocity	

	

The	method	for	determining	this	has	been	discussed	above.		But	ultimately,	its	

acceptability	is	dependent	upon	producing	values	that	are	at	least	plausible.		

Reassuringly,	despite	the	imperfections	of	the	method,	the	conduction	velocities	

obtained	were	generally	in	the	range	reported	in	the	literature.			

Mean	baseline	conduction	velocity	ranged	from	27	to	59	cm	s-1	(median	26	to	59)	

across	all	stimulation	cycle	lengths,	with	a	mean	of	52	cm	s-1	(median	48)	at	250	ms.		As	

Figure	65	shows,	a	cluster	of	values	was	also	seen	around	100	cm	s-1.		These	are	all	

consistent	with	published	experimental	data.			

In	1970,	Durrer	et	al	reported	conduction	velocities	in	the	isolated	perfused	human	

heart	of	approximately	45	cm	s-1,	noting	that	in	the	specialised	conducting	system,	

values	of	200	cm	s-1	were	likely.		In	the	same	study,	values	in	the	canine	heart	were	also	

assessed:	these	ranged	from	35.5	to	40.3	cm	s-1	in	the	in	situ	heart,	with	higher	

velocities	of	50.1	to	62.7	cm	s-1	in	the	isolated	heart299.			

De	Bakker	et	al	measured	conduction	velocities	according	to	cardiomyocyte	

orientation	and	propagation	path,	and	found	values	between	3	cm	s-1	perpendicular	to,	

and	98	cm	s-1	parallel	to	cardiomyocyte	fibre	direction308.		Similarly,	using	isolated	

rabbit	hearts,	Gray	et	al	reported	values	between	13	and	68	cm	s-1,	with	higher	values	

in	the	longitudinal	direction	of	cells309.		Using	murine	hearts	perfused	with	a	voltage-

sensitive	fluorescent	dye,	Morley	et	al	found	conduction	velocities	in	the	range	of	30-65	

cm	s-1.		And	more	recently,	Dhillon	et	al	reported	velocities	of	70-80	cm	s-1	in	guinea	pig	

hearts71.	

Taken	together,	the	published	data	suggest	similar	values	across	species,	with	

markedly	higher	values	in	the	conduction	system.		Importantly	though,	the	conduction	

velocities	seen	in	my	study	are	both	plausible,	and	consistent	with	those	previously	

reported.		The	variability	seen	may	be	accounted	for	in	three	ways:	firstly,	some	degree	

of	variation	is	expected	in	any	study,	and	is	due	to	the	inherent	differences	in	tissue	

characteristics,	due	to	damage	in	the	preparation	process	for	example.		Secondly,	

longitudinal	versus	tranverse	propagation	was	not	differentiated;	as	already	noted,	

faster	velocities	are	seen	in	the	former.		Finally,	were	elements	of	specialised	



	 194	

conducting	tissue	present	in	the	slices,	these	may	have	produced	localised	regions	of	

faster	conduction.	

	

	

8.8.3	 Effective	refractory	period	

	

Measurement	of	ERP	is	less	contentious	than	the	other	two	parameters,	due	to	its	

relative	ease	of	measurement.		Its	relation	to	APD	means	that	it	is	species	dependent.		

As	already	noted,	those	in	this	study	were	similar	to	what	was	seen	at	

electrophysiological	study	following	myocardial	infarction,	as	well	as	those	recorded	

by	Zuberi	et	al94.		Further	support	comes	from	the	near	identical	ERPs	recorded	in	a	

murine	study	comparing	controls	with	Cx43+/-	mice	in	the	setting	of	ischaemia.		Prior	to	

ischaemic	challenge,	ERP	in	controls	was	55	ms,	albeit	at	a	cycle	length	of	154	ms310.	

	

	

	

8.9	 Summary	

	

Murine	cardiac	slices	have	been	used	successfully	in	conjunction	with	the	MEA	system	

to	measure	three	key	electrophysiological	parameters:	activation,	repolarisation,	and	

conduction	velocity.		The	methodology	was	simplified	as	far	as	possible	without	

affecting	the	ability	to	derive	measurements	from	the	slices.		In	the	absence	of	drug	or	

thermal	challenge,	there	were	no	large	magnitude	changes	over	time	in	any	of	these	

three	parameters,	demonstrating	stability	of	the	measurements.		Of	equal	importance	

was	that	each	of	the	three	parameters	was	responsive	to	either	pharmacological	

challenge,	changes	in	temperature	or	both.		Strengths	of	the	study	include	the	

reasonable	numbers	of	slices	studied	for	each	set	of	experiments,	the	reasonable	

consistency	in	results	achieved,	and	the	use	of	the	technique	to	study	four	conditions	

designed	to	challenge	the	electrophysiology.		Weaknesses	could	include	using	limited	

number	of	electrode	data	in	conduction	velocity	calculations,	and	not	studying	the	

effects	of	isoprenaline	in	conjunction	with	carbachol,	both	in	controls	and	in	gKOs.	

	

With	regard	to	the	first	hypothesis	that	Gαi2	is	anti-arrhythmic	in	the	ventricles	where	

it	mediates	parasympathetic	signalling	effects,	it	was	surprising	that	there	were	no	

differences	in	ERP	between	controls	and	gKOs	and	that	ERP	did	not	prolong	for	

controls	with	increasing	concentration	of	carbachol.		The	ex	vivo	nature	of	the	
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experiments	may	go	some	way	to	explaining	these	findings.		There	were	no	differences	

in	local	activation	time	or	conduction	velocity	between	groups	either,	though	these	

were	perhaps	less	expected.		Overall	though,	the	carbachol	experiments	have	failed	to	

support	the	hypothesis.			

Regarding	the	second	hypothesis,	the	lack	of	shortening	of	ERP	with	isoprenaline	was	

unexpected	and	may	be	reflective	of	the	differences	in	repolarisation	currents	in	the	

mouse	compared	to	large	animals.		The	changes	in	murine	ERP	and	activation	time	

with	alterations	in	temperature	were	in	accordance	with	our	predictions,	and	likely	

reflect	modulation	of	channel	kinetics	or	state	transitions.		That	there	was	no	apparent	

difference	in	conduction	velocity	was	possibly	a	result	of	the	relatively	narrow	range	of	

temperature	studied,	in	comparison	to	other	published	reports.	
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CONCLUSIONS	
	

	

The	syndrome	of	heart	failure	can	result	from	a	diverse	range	of	diseases.		Two	

features	common	to	heart	failure	affecting	the	LV,	are	sympathovagal	imbalance,	and	

an	increased	risk	of	arrhythmias.		At	the	molecular	level,	β1AR	density	in	the	LV	falls,	

and	Gαi2	levels	increase.		The	importance	of	βAR	signalling	in	heart	failure	is	

underlined	by	the	fact	that	antagonists	at	these	receptors	reduce	both	symptoms	and	

mortality,	although	the	mechanisms	are	incompletely	understood.		The	significance	of	

Gαi2	elevation	however	remains	uncertain.		The	absence	of	this	protein	in	mice	without	

heart	failure	produced	a	phenotype	consistent	with	pro-arrhythmic	effects.		To	take	

this	forward,	an	in	vivo	model	of	heart	failure	and	an	ex	vivo	tissue	model	were	used.	

The	existence	of,	and	some	of	the	effects	on	cellular	electrophysiology	of	the	two	limbs	

of	the	autonomic	nervous	system	have	been	known	about	for	over	100	years.		Yet	our	

understanding	of	exactly	how	these	two	limbs	interact,	if	it	is	possible	or	desirable	to	

modulate	either	limb	independently,	and	the	cellular	effects	of	doing	so,	remain	

incomplete.		Were	the	cellular	processes	affected	by	βAR	agonism	better	delineated,	

the	goal	of	achieving	efficacious	therapies	with	few	side	effects	may	be	realised.			

Similarly,	greater	insight	into	the	mechanisms	of,	and	in	particular	triggers	of	

arrhythmia,	would	enhance	our	ability	to	target	‘vulnerable	parameters’	and	thereby	

avoid	the	pro-arrhythmia	often	seen	with	the	current	range	of	drugs.		Body	

temperature	suggests	itself	as	a	possible	contributor	to	arrhythmogenesis,	in	certain	

inherited	arrhythmia	syndromes	if	not	more	generally,	and	the	MEA	system	was	taken	

advantage	of	to	investigate	the	effects	of	temperature	variation	and	βAR	agonism	on	

key	electrophysiological	parameters.	

	

Previous	studies	have	shown	mAChR	agonism	to	negatively	regulate	LTCC	currents,	via	

Gαi2.		This	offers	a	way	of	understanding	how	vagal	nerve	activity	could	be	protective	

against	ventricular	arrhythmias.		Gαi2	has	also	been	shown	to	couple	to	the	β2AR,	and	

although	there	is	not	total	consensus,	it	appears	that	Gαi2	is	anti-apoptotic,	at	least	in	

the	setting	of	ischaemia.		There	is	little	direct	evidence	to	support	a	role	for	Gαi2	

mediating	β2AR	modulation	of	the	LTCC,	and	it	may	in	fact	be	Gαi3	that	is	implicated.		It	

is	worth	noting	that	although	the	LTCC	has	an	important	role	in	both	calcium-induced	

calcium	release,	and	maintenance	of	the	phase	2	plateau	in	the	action	potentials	of	
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large	animals,	it	is	considered	to	be	primarily	disorders	of	the	sarcoplasmic	reticulum	

and	its	associated	calcium	handling	proteins	that	occur	in	heart	failure221,311,312.	

Confusingly,	a	recently	published	study	by	Lang	et	al	found	β2AR	stimulation	to	exert	

more	pro-arrhythmic	effects	than	β1AR	stimulation	in	tissue	from	failing	human	

hearts280.		It	therefore	seems	possible	that	on	the	one	hand,	β2AR	signalling	could	be	

protective	against	apoptosis,	yet	on	the	other,	that	it	is	pro-arrhythmic.	

	

	The	first	hypothesis	was	that	Gαi2	is	anti-arrhythmic	in	the	ventricles	where	it	
mediates	parasympathetic	signalling	effects.		In	the	MI/heart	failure	model	there	was	
no	difference	in	heart	rate	between	cKOs	and	controls.		This	was	in	contrast	to	the	
work	of	Zuberi	et	al	who	found	gKOs	to	have	a	higher	resting	heart	rate108.		These	
apparent	discrepant	findings	are	likely	attributable	to	lack	of	knockout	of	Gαi2	in	the	SA	
node	of	cKOs,	and	possibly	to	knockout	of	the	protein	in	autonomic	neurons	in	gKOs.		
The	lack	of	difference	in	QTc	for	cKOs	and	controls	was	more	surprising,	given	that	QTc	
has	been	shown	to	be	longer	in	gKOs94.		Measurement	of	the	QT	interval	is	problematic	
in	humans,	and	particularly	so	in	mice.		If	a	difference	exists,	it	may	not	have	been	
manifest	due	to	knockdown	rather	than	knockout	in	cKOs,	with	resultant	amelioration	
of	phenotype.		Some	differences	in	HRV	were	observed,	which	again,	were	inconsistent	
with	work	in	gKOs108.		The	use	of	the	ECGenie	to	acquire	short	duration	recordings,	
together	with	environmental	factors	suggest	at	least	some	of	these	differences	
probably	arose	due	to	type	I	errors.			And	although	there	was	no	difference	between	
groups	in	VERP	or	rate	of	NSVT	induction	with	electrophysiological	testing,	the	values	
of	VERP	were	the	same	as	those	reported	for	gKOs	vs	controls	by	Zuberi	et	al94.		Thus,	
with	larger	numbers	this	may	have	become	significant.		Programmed	ventricular	
stimulation	to	induce	NSVT	is	a	fairly	blunt	tool,	and	it	may	be	that	scarring	post-MI	is	a	
more	important	predictor	of	this	than	alterations	in	Gαi2	expression.	

In	the	MEA	studies,	there	were	no	significant	differences	between	ERPs	of	gKOs	and	
WTs	at	baseline.		In	attempting	to	reconcile	this	with	the	findings	of	Zuberi	et	al,	it	is	
possible	that	extracardiac	knockout	in	their	in	vivo	gKO	model	of	was	responsible	for	
the	differences.		This	would	implicate	the	autonomic	nervous	system	in	modulation	of	
ventricular	refractoriness.		ERP	was	significantly	shorter	at	3	x	10-8	M	in	WTs,	which	if	
reflecting	a	real	difference,	may	have	been	related	to	Gαi2	inhibition	of	the	LTCC.		
Overall	though,	there	were	a	lack	of	differences	between	gKOs	and	WTs	in	the	presence	
of	carbachol,	and	it	is	possible	this	was	because	muscarinic	signalling	effects	only	
become	apparent	in	presence	of	βAR	signalling.		There	was	a	slight	increase	in	CV	for	
WTs	with	increasing	carbachol	concentration,	which	may	be	a	time-related	or	washout	
effect,	though	it	is	worth	noting	that	at	3	x	10-8	M,	the	increase	was	opposite	to	that	
seen	for	ERP.		So	although	the	effects	were	small,	it	is	conceivable	that	the	mAChR	or	
Gαi2	modulates	Nav1.5	and	gap	junctions.	
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The	results	from	the	MI/heart	failure	model	and	the	MEA	studies	therefore	failed	to	
support	the	first	hypothesis.	Several	possible	explanations	exist:	the	knockdown	rather	
than	knockout	in	the	heart	failure	model,	would	have	meant	the	Gαi2	protein	level	
differences	between	groups	were	not	as	large	as	they	might	have	been.	Nevertheless,	
not	even	mild	differences	in	heart	rate,	QTc	or	VT	inducibility	were	seen.	And	this	
would	fail	to	explain	the	lack	of	difference	seen	with	the	gKOs	in	the	MEA	studies.	As	
described	above,	a	possible	explanation	is	that	slices	were	challenged	with	carbachol	in	
the	absence	of	βAR	agonism;	it	may	be	that	mAChR	signalling	only	exerts	its	anti-
arrhythmic	effects	in	a	braking	or	dampening	manner,	to	counteract	pro-arrhythmic	
sympathetic	signalling.	Another	point	worth	considering	is	the	increase	in	Gαi3	that	
results	when	Gαi2	is	knocked	out;	it	is	unclear	to	what	extent	this	may	compensate	for	
Gαi2,	or	alternatively,	act	in	an	opposing	manner.	Finally,	the	possibility	that	Gαi2	is	not	
anti-arrhythmic	must	be	countenanced.	It	must	of	course	be	remembered	that	
ventricular	arrhythmias	are	common	in	heart	failure;	this	could	be	despite,	because	of,	
or	regardless	of	the	elevations	in	Gαi2.	

The	second	hypothesis	was	that	βAR	agonism	and	changes	in	temperature	affect	
activation,	repolarisation	and	conduction	velocity.	The	lack	of	effect	of	isoprenaline	on	
activation	and	conduction	velocity	was	unexpected,	as	was	the	slight	increase	in	ERP	as	
isoprenaline	concentration	rose.	The	effects	of	βAR	agonism	on	these	parameters	in	
mice	have	not	been	studied	as	much	as	they	have	in	large	animals	including	humans,	
and	species	differences	in	INa,	repolarising	currents	and	gap	junction	modulation	may	
explain	the	findings.		For	example,	βAR	stimulation	in	the	mouse	may	produce	
increased	Ca2+	inflow	through	the	LTCC	without	the	IKs	counterbalance	present	in	
humans,	with	resultant	APD	and	ERP	prolongation.		Deterioration	of	the	tissue	slices	is	
also	conceivable,	though	completion	of	the	protocol	for	each	slice	with	stable	
measurements	argues	against	this.	

Changes	in	temperature	on	the	other	hand	did	affect	activation	and	repolarisation	
properties	of	slices,	in	keeping	with	prior	studies,	and	likely	as	a	result	of	effects	on	INa	
and	repolarising	currents.	The	lack	of	effect	on	conduction	velocity	was	surprising;	
either	the	reasonably	narrow	temperature	range	studied,	or	perhaps	species	
differences	in	temperature	sensitivity	may	account	for	this,	possibly	related	to	body	
surface	area	to	size	ratio	and	the	need	to	tolerate	lower	temperatures	without	adverse	
effects	on	conduction.		

Animal	models	are	an	attempt	to	approximate	human	physiology	or	pathophysiology.		
Their	main	value	is	in	overcoming	ethical	issues	of	experimentation	in	humans.		A	
model’s	limitations	are	accepted	if	it	provides	a	reasonable	reflection	of	human	
physiology	or	pathophysiology,	but	these	limitations	must	also	be	recognised.			The	
coronary	ligation	model	of	MI	is	designed	to	produce	LV	impairment	and	the	syndrome	
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of	heart	failure.		The	two	are	not	synonymous,	although	they	are	sometimes	used	
interchangeably.		The	distinction	is	important,	but	difficult	to	disambiguate	in	the	
mouse.		And	in	the	context	of	addressing	Gαi2’s	effects	on	electrophysiology,	it	is	not	
clear	whether	LV	impairment	or	heart	failure	is	important.		Another	issue	is	whether	
sufficient	time	was	allowed	for	the	phenotypic	effects	of	alterations	in	Gαi2	levels	to	
develop.		Whilst	it	would	have	been	preferable	to	leave	mice	for	longer	after	coronary	
ligation,	there	would	have	been	a	higher	attrition	rate.		The	ECGenie	offered	the	
advantage	of	non-invasive	ECG	recording	in	mice.		Yet	it	became	apparent	that	it	was	
difficult	to	achieve	long	enough	recordings	for	HRV	assessment,	and	that	
environmental	factors	may	have	influenced	the	measurements.		In	fact,	trying	to	
measure	HRV	in	the	mouse	may	be	demanding	too	much	of	the	model.			

Finally,	the	ex	vivo	model	used	with	the	MEA	system	produced	stable	results,	with	

measurements	of	ERP,	local	activation	time	and	conduction	velocity	similar	to	those	

previously	reported	in	the	literature.		However,	the	quality	of	the	signals	was	not	

optimal,	likely	reflecting	the	inherent	trauma	in	slicing,	or	tissue	degradation	prior	to	

stimulation	on	the	MEA.		In	addition,	the	transverse	slices	used	would	likely	have	

relatively	few	myofibres	running	longitudinally,	of	relevance	due	to	the	anisotropic	

nature	of	conduction.		It	is	therefore	both	surprising,	and	reassuring,	that	the	

measurements	obtained	were	what	may	be	considered	normal.	

	

More	generally,	the	purpose	of	this	project	was	to	contribute	to	the	body	of	knowledge	

pertaining	to	the	autonomic	nervous	system’s	modulation	of	cardiac	electrophysiology.		

Murine	models	were	used	to	investigate	the	effects	of	autonomic	signalling	pathways,	

and	in	particular,	the	protein	Gαi2.		No	observable	electrophysiological	differences	

between	WT	and	Gαi2	KO	mice	were	demonstrated,	and	βAR	agonism	had	minor	effects	

on	repolarisation	only.		Small	changes	in	temperature	on	the	other	hand	resulted	in	

significant	alterations	in	activation	and	refractoriness,	suggesting	modulation	of	

sodium	and	potassium	currents.			

There	has	been	little	published	previously	on	the	phenotypic	effects	of	alterations	of	

Gαi2	levels.		The	use	of	a	pathophysiologically-relevant	in	vivo	MI	model,	combined	with	

an	ex	vivo	tissue	model,	to	investigate	this	and	the	autonomic	control	of	cardiac	

electrophysiology,	provides	a	distinct	contribution	to	the	field	of	study.	

	

In	simple	terms,	too	much	sympathetic	and	too	little	parasympathetic	activity	in	the	

heart	is	bad,	but	restoring	the	balance	is	no	easy	task.		Several	questions	remain:		
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i. Can	we	modulate	the	ANS	through	interventions	to	achieve	better	

outcomes,	and	if	so,	which	interventions?		Stellate	ganglion	ablation	has	

been	used	to	reduce	sympathetic	discharges,	and	vagal	nerve	stimulation	is	

under	investigation.		Pharmacological	stimulation	of	the	PNS	is	currently	

not	possible,	though	clearly	merits	investigation.	

	

ii. Can	we	really	manipulate	each	limb	of	the	autonomic	nervous	system	

independently,	or	is	the	relationship	more	complex	than	that?		The	

anatomical	co-localisation,	limited	in	the	extra-cardiac	ANS	but	marked	in	

the	intrinsic	ANS,	leads	to	some	functional	interdependence.			

	

iii. Can	a	complex	disease	state	such	as	heart	failure	really	be	treated	by	

targeting	a	single	type	of	receptor	or	signalling	molecule.		Receptors	can	be	

promiscuous	in	terms	of	the	signalling	molecules	they	interact	with;	and	

signalling	molecules	exert	diverse	effects,	and	can	show	redundancy.		It	is	

ironic	that	two	of	the	most	successful	anti-arrhythmic	agents	in	use	today,	

βAR-blockers	and	amiodarone,	were	designed	as	treatments	for	angina.		

Given	the	poorly-characterised	electrical	remodelling	that	occurs	in	disease	

states,	complexity	of	intracellular	signalling,	and	the	need	to	balance	these	

factors	with	acceptable	pharmacokinetics	and	a	tolerable	side	effect	profile,	

it	remains	to	be	seen	if	disease-targeted	pharmacotherapy	can	be	realised;	

and	if	it	can,	whether	this	will	be	by	design,	or	by	chance.			

	

A	recently	reported	trial	investigated	the	use	of	the	centrally-acting	sympathoinhibitor,	

moxonidine	in	patients	undergoing	ablation	for	atrial	fibrillation.		It	reported	a	

significantly	lower	estimated	12	month	recurrence	rate	with	moxonidine	(20.0%	vs	

36.9%,	p=0.007)313.		However,	the	MOXCON	trial	from	2003	in	which	the	same	drug	

was	investigated	in	the	setting	of	heart	failure,	had	to	be	terminated	early	due	to	an	

excess	of	mortality	in	the	moxonidine	group314.		The	effects	of	vagal	nerve	stimulation	

on	arrhythmias	in	ongoing	trials	are	eagerly	awaited.			

	

	

Future	directions	

	

Some	of	the	key	advantages	of	mice	as	a	model	organism	are	their	small	size,	easy	

maintenance,	and	rapid	breeding.		These	factors	contribute	to	low	costs,	and	help	
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facilitate	genetic	modification.		However,	an	important	drawback	is	the	difference	in	

their	repolarising	currents,	and	hence	action	potential	morphology.		Slightly	larger	

animals	such	as	guinea	pigs	or	rabbits	show	more	similarity	to	humans	in	this	regard,	

though	housing	depends	on	local	availability,	which	is	rarely	a	problem	with	mice.		

Another	issue	is	the	ease	of	genetic	manipulation:	genome	sequencing	of	the	guinea	pig	

for	example,	has	not	kept	pace	with	that	of	the	mouse.		However,	it	can	be	expected	

that	such	issues	will	be	resolved,	and	new	genetic	manipulation	techniques	are	

beginning	to	offer	alternatives	to	the	Cre-loxP	system	commonly	used	in	mice315.			

	

To	take	forward	the	work	on	Gαi2	reported	in	this	thesis,	larger	mammals	such	as	

guinea	pigs	or	rabbits	could	therefore	be	used	to	investigate	the	effects	of	WT,	KO	and	

knockin	(gain	of	function)	GNAI2	alleles.		Animals	could	be	phenotyped	at	baseline	and	

after	induction	of	heart	failure,	and	LTCC	currents	could	be	assessed,	as	could	

responses	to	vagal	and	β2AR	stimulation	or	indeed,	blockade.		The	ex	vivo	work	using	

the	MEA	system	could	be	corroborated	and	developed	using	an	epicardial	

‘sock’/flexible	MEA	attached	to	an	intact	heart	perfused	on	a	Langendorff	setup.		This	

would	remove	the	traumatic	slicing	and	preservation	steps,	thereby	possibly	

improving	signal	quality.		Alternatively,	or	perhaps	concurrently,	optical	mapping	with	

potentiometric	dyes	could	be	used	to	produce	visual	records	of	tissue	depolarisation	

and	repolarisation.	

The	relative	paucity	of	data	regarding	βAR-mediated	and	thermal	effects	on	INa,	as	well	

as	the	effect	of	temperature	on	potassium	currents,	could	be	investigated	using	the	

patch-clamp	technique.		And	the	ability	of	alterations	in	temperature	to	trigger	

arrhythmias	in	ischaemic	or	scarred	tissue	could	be	investigated	either	in	vivo	or	ex	

vivo.	

	

	

	

	

	

	

	

	

	

	

	



	 202	

References	
	

	

1.	 Priori,	S.	G.	et	al.	Task	Force	on	Sudden	Cardiac	Death	of	the	European	Society	of	
Cardiology.	Eur.	Heart	J.	22,	1374–450	(2001).	

2.	 John,	R.	M.	et	al.	Ventricular	arrhythmias	and	sudden	cardiac	death.	Lancet	380,	
1520–9	(2012).	

3.	 Zipes,	D.	P.	et	al.	ACC/AHA/ESC	2006	guidelines	for	management	of	patients	
with	ventricular	arrhythmias	and	the	prevention	of	sudden	cardiac	death:	a	
report	of	the	American	College	of	Cardiology/American	Heart	Association	Task	
Force	and	the	European	Society	of	Cardiology	Com.	Europace	8,	746–837	
(2006).	

4.	 Kong,	M.	H.	et	al.	Systematic	review	of	the	incidence	of	sudden	cardiac	death	in	
the	United	States.	J.	Am.	Coll.	Cardiol.	57,	794–801	(2011).	

5.	 National	Institute	for	Health	and	Clinical	Excellence	(NICE).	Implantable	
cardioverter	defibrillators	for	arrhythmias.	Review	of	technology	appraisal	11.	

6.	 Behr,	E.	R.	et	al.	Sudden	arrhythmic	death	syndrome:	a	national	survey	of	
sudden	unexplained	cardiac	death.	Heart	93,	601–5	(2007).	

7.	 Papadakis,	M.	et	al.	The	magnitude	of	sudden	cardiac	death	in	the	young:	a	death	
certificate-based	review	in	England	and	Wales.	Europace	11,	1353–8	(2009).	

8.	 Pagidipati,	N.	J.	&	Gaziano,	T.	a.	Estimating	deaths	from	cardiovascular	disease:	a	
review	of	global	methodologies	of	mortality	measurement.	Circulation	127,	
749–56	(2013).	

9.	 McMurray,	J.	J.	V	et	al.	ESC	Guidelines	for	the	diagnosis	and	treatment	of	acute	
and	chronic	heart	failure	2012:	The	Task	Force	for	the	Diagnosis	and	Treatment	
of	Acute	and	Chronic	Heart	Failure	2012	of	the	European	Society	of	Cardiology.	
Developed	in	collaboration	with	the	Heart.	Eur.	Heart	J.	33,	1787–847	(2012).	

10.	 Moss,	A.	et	al.	Improved	survival	with	an	implanted	defibrillator	in	patients	with	
coronary	disease	at	high	risk	for	ventricular	arrhythmia.	N.	Engl.	J.	Med.	335,	
1933–1940	(1996).	

11.	 Moss,	A.	J.	et	al.	Prophylactic	Implantation	of	a	Defibrillator	in	Patients	with	
Myocardial	Infarction	and	Reduced	Ejection	Fraction.	New	Engl.	J.	Med.	346,	
877–883	(2002).	

12.	 The	Antiarrhythmic	versus	Implantable	Defibrillators	(AVID)	Investigators.	A	
Comparison	of	Antiarrhythmic-Drug	Therapy	with	Implantable	Defibrillators	in	
Patients	Resuscitated	from	Near-Fatal	Ventricular	Arrhythmias.	N.	Engl.	J.	Med.	
337,	1576–83	(1997).	



	 203	

13.	 Bardy,	G.	H.	et	al.	Amiodarone	or	an	implantable	cardioverter-defibrillator	for	
congestive	heart	failure.	N.	Engl.	J.	Med.	352,	225–37	(2005).	

14.	 Reddy,	V.	et	al.	Prophylactic	Catheter	Ablation	For	The	Prevention	Of	
Defibrillator	Therapy.	N.	Engl.	J.	Med.	357,	2657–2665	(2007).	

15.	 Kuck,	K.-H.	et	al.	Catheter	ablation	of	stable	ventricular	tachycardia	before	
defibrillator	implantation	in	patients	with	coronary	heart	disease	(VTACH):	a	
multicentre	randomised	controlled	trial.	Lancet	375,	31–40	(2010).	

16.	 Mallidi,	J.,	Nadkarni,	G.	N.,	Berger,	R.	D.,	Calkins,	H.	&	Nazarian,	S.	Meta-analysis	
of	catheter	ablation	as	an	adjunct	to	medical	therapy	for	treatment	of	
ventricular	tachycardia	in	patients	with	structural	heart	disease.	Hear.	Rhythm	
8,	503–510	(2011).	

17.	 Ventricular	Tachycardia	(VT)	Ablation	Versus	Enhanced	Drug	Therapy	
(VANISH).	NCT00905853	at	
<https://clinicaltrials.gov/ct2/show/NCT00905853?term=NCT00905853&rank
=1>	

18.	 Packer,	M.	et	al.	The	effect	of	carvedilol	on	mortality	and	morbidity	in	patients	
with	chronic	heart	failure.	N.	Engl.	J.	Med.	334,	1349–55	(1996).	

19.	 MERIT-HF	Study	Group.	Effect	of	metoprolol	CR/XL	in	chronic	heart	failure :	
Metoprolol	CR/XL	Randomised	Intervention	Trial	in	Congestive	Heart	Failure	
(MERIT-HF).	Lancet	353,	2001–2007	(1999).	

20.	 Echt,	D.	S.	et	al.	Mortality	and	Morbidity	in	Patients	Receiving	Encainide,	
Flecainide,	or	Placebo.	The	Cardiac	Arrhythmia	Suppression	Trial.	N.	Engl.	J.	Med.	
324,	781–8	(1991).	

21.	 Waldo,	A.	L.	et	al.	Effect	of	d-sotalol	on	mortality	in	patients	with	left	ventricular	
dysfunction	after	recent	and	remote	myocardial	infarction.	Lancet	348,	7–12	
(1996).	

22.	 Køber,	L.	et	al.	Increased	mortality	after	dronedarone	therapy	for	severe	heart	
failure.	N.	Engl.	J.	Med.	358,	2678–87	(2008).	

23.	 Connolly,	S.	et	al.	Dronedarone	in	high-risk	permanent	atrial	fibrillation.	N.	Engl.	
J.	Med.	365,	2268–76	(2011).	

24.	 Harvey,	W.	Exercitatio	Anatomica	de	Motu	Cordis	et	Sanguinis	in	Animalibus.	
(1628).	

25.	 Boyett,	M.	R.	‘And	the	beat	goes	on.’	The	cardiac	conduction	system:	the	wiring	
system	of	the	heart.	Exp.	Physiol.	94,	1035–49	(2009).	

26.	 Yen	Ho,	S.	&	Ernst,	S.	Anatomy	For	Cardiac	Electrophysiologists	-	A	Practical	
Handbook.	(Cardiotext	Publishing,	2012).	



	 204	

27.	 Christoffels,	V.	M.	&	Moorman,	A.	F.	M.	Development	of	the	cardiac	conduction	
system:	why	are	some	regions	of	the	heart	more	arrhythmogenic	than	others?	
Circ.	Arrhythm.	Electrophysiol.	2,	195–207	(2009).	

28.	 Xin,	M.,	Olson,	E.	N.	&	Bassel-Duby,	R.	Mending	broken	hearts:	cardiac	
development	as	a	basis	for	adult	heart	regeneration	and	repair.	Nat.	Rev.	Mol.	
Cell	Biol.	14,	529–41	(2013).	

29.	 Camelliti,	P.,	Borg,	T.	K.	&	Kohl,	P.	Structural	and	functional	characterisation	of	
cardiac	fibroblasts.	Cardiovasc.	Res.	65,	40–51	(2005).	

30.	 Rohr,	S.	Arrhythmogenic	implications	of	fibroblast-myocyte	interactions.	Circ.	
Arrhythm.	Electrophysiol.	5,	442–52	(2012).	

31.	 Bursac,	N.	&	Kim,	J.	J.	in	Card.	Electrophysiol.	From	Cell	to	Bedside	(Zipes,	D.	&	
Jalife,	J.)	297–309	(Elsevier	Saunders,	2014).	

32.	 Zipes,	D.,	Libby,	P.,	Bonow,	R.,	Braunwald,	E.	&	(eds).	Braunwald’s	Heart	Disease.	
A	textbook	of	cardiovascular	medicine.	(Elsevier	Saunders,	2005).	

33.	 Nygren,	A.	et	al.	Mathematical	model	of	an	adult	human	atrial	cell:	the	role	of	K+	
currents	in	repolarization.	Circ.	Res.	82,	63–81	(1998).	

34.	 Cerrone,	M.,	Agullo-Pascual,	E.	&	Delmar,	M.	in	Card.	Electrophysiol.	From	Cell	to	
Bedside	(Zipes,	D.	&	Jalife,	J.)	215–229	(Elsevier	Saunders,	2014).	

35.	 Catterall,	W.	A.	in	Card.	Electrophysiol.	From	Cell	to	Bedside	(Zipes,	D.	P.	&	Jalife,	
J.)	1–12	(Elsevier	Saunders,	2014).	

36.	 Issa,	Z.	F.,	Miller,	J.	M.	&	Zipes,	D.	P.	Clinical	Arrhythmology	and	Electrophysiology.	
(Elsevier	Saunders,	2012).	

37.	 Awad,	M.	M.,	Calkins,	H.	&	Judge,	D.	P.	Mechanisms	of	disease:	molecular	genetics	
of	arrhythmogenic	right	ventricular	dysplasia/cardiomyopathy.	Nat.	Clin.	Pract.	
Cardiovasc.	Med.	5,	258–267	(2008).	

38.	 Grant,	A.	O.	Cardiac	ion	channels.	Circ.	Arrhythm.	Electrophysiol.	2,	185–94	
(2009).	

39.	 Hodgkin,	A.	L.	&	Huxley,	F.	A	Quantitative	Description	of	Membrane	Current	and	
its	Application	To	Conduction	and	Excitation	in	Nerve.	J.	Physiol.	117,	500–544	
(1952).	

40.	 Roden,	D.	M.,	Balser,	J.	R.,	George,	A.	L.	&	Anderson,	M.	E.	Cardiac	ion	channels.	
Annu.	Rev.	Physiol.	64,	431–75	(2002).	

41.	 Berridge,	M.	J.	Cellular	Processes.	Cell	Signal.	Biol.	1–137	(2012).	
doi:10.1042/csb0001007	

42.	 Nerbonne,	J.	M.	&	Kass,	R.	S.	Molecular	Physiology	of	Cardiac	Repolarization.	
Physiol.	Rev.	85,	1205–1253	(2005).	



	 205	

43.	 Nerbonne,	J.	Studying	cardiac	arrhythmias	in	the	mouse	-	a	reasonable	model	for	
probing	mechanisms?	Trends	Cardiovasc.	Med.	14,	83–93	(2004).	

44.	 Opthof,	T.,	Coronel,	R.	&	Janse,	M.	J.	Is	there	a	significant	transmural	gradient	in	
repolarization	time	in	the	intact	heart?:	Repolarization	Gradients	in	the	Intact	
Heart.	Circ.	Arrhythm.	Electrophysiol.	2,	89–96	(2009).	

45.	 Patel,	C.	et	al.	Is	there	a	significant	transmural	gradient	in	repolarization	time	in	
the	intact	heart?	Cellular	basis	of	the	T	wave:	a	century	of	controversy.	Circ.	
Arrhythm.	Electrophysiol.	2,	80–8	(2009).	

46.	 Rook,	M.	B.,	Evers,	M.	M.,	Vos,	M.	a	&	Bierhuizen,	M.	F.	a.	Biology	of	cardiac	
sodium	channel	Nav1.5	expression.	Cardiovasc.	Res.	93,	12–23	(2012).	

47.	 Davis,	R.	P.,	van	den	Berg,	C.	W.,	Casini,	S.,	Braam,	S.	R.	&	Mummery,	C.	L.	
Pluripotent	stem	cell	models	of	cardiac	disease	and	their	implication	for	drug	
discovery	and	development.	Trends	Mol.	Med.	17,	475–84	(2011).	

48.	 Jalife,	J.,	Delmar,	M.,	Anumonwo,	J.,	Berenfeld,	O.	&	Kalifa,	J.	Basic	Cardiac	
Electrophysiology	for	the	Clinician.	(Wiley-Blackwell,	2009).	

49.	 Abriel,	H.	Cardiac	sodium	channel	Na(v)1.5	and	interacting	proteins:	Physiology	
and	pathophysiology.	J.	Mol.	Cell.	Cardiol.	48,	2–11	(2010).	

50.	 Jalife,	J.	&	Milstein,	M.	L.	in	Card.	Electrophysiol.	From	Cell	to	Bedside	(Zipes,	D.	P.	
&	Jalife,	J.)	205–214	(Elsevier	Saunders,	2014).	

51.	 Moore,	H.	J.	&	Franz,	M.	R.	Monophasic	action	potential	recordings	in	humans.	J.	
Cardiovasc.	Electrophysiol.	18,	787–90	(2007).	

52.	 Murgatroyd,	F.	D.,	Krahn,	A.	D.,	Klein,	G.	J.,	Yee,	R.	K.	&	Skanes,	A.	C.	Handbook	of	
Cardiac	Electrophysiology.	(Remedica,	2002).	

53.	 Sager,	P.	T.	et	al.	Frequency-dependent	electrophysiologic	effects	of	amiodarone	
in	humans.	Circulation	88,	1063–1071	(1993).	

54.	 Lee,	R.	J.,	Liem,	L.	B.,	Cohen,	T.	J.	&	Franz,	M.	R.	Relation	between	repolarization	
and	refractoriness	in	the	human	ventricle:	Cycle	length	dependence	and	effect	of	
procainamide.	J.	Am.	Coll.	Cardiol.	19,	614–618	(1992).	

55.	 Denes,	P.,	Wu,	D.,	Dhingra,	R.,	Pietras,	R.	J.	&	Rosen,	K.	M.	The	Effects	of	Cycle	
Length	on	Cardiac	Refractory	Periods	in	Man.	Circulation	49,	32–41	(1974).	

56.	 Vaseghi,	M.	&	Shivkumar,	K.	The	role	of	the	autonomic	nervous	system	in	
sudden	cardiac	death.	Prog.	Cardiovasc.	Dis.	50,	404–19	(2008).	

57.	 Taggart,	P.	Effect	of	Adrenergic	Stimulation	on	Action	Potential	Duration	
Restitution	in	Humans.	Circulation	107,	285–289	(2002).	

58.	 Franz,	M.	R.	The	Electrical	Restitution	Curve	Revisited:	Steep	or	Flat	Slope-
Which	is	Better?	J.	Cardiovasc.	Electrophysiol.	14,	S140–S147	(2003).	



	 206	

59.	 Franz,	M.	R.	Bridging	the	gap	between	basic	and	clinical	electrophysiology:	what	
can	be	learned	from	monophasic	action	potential	recordings?	J.	Cardiovasc.	
Electrophysiol.	5,	699–710	(1994).	

60.	 Kléber,	A.	G.	&	Rudy,	Y.	Basic	mechanisms	of	cardiac	impulse	propagation	and	
associated	arrhythmias.	Physiol.	Rev.	84,	431–88	(2004).	

61.	 Nielsen,	M.	S.	et	al.	Gap	junctions.	Compr	Physiol	2,	1981–2035	(2012).	

62.	 Spector,	P.	Principles	of	Cardiac	Electric	Propagation	and	Their	Implications	for	
Re-entrant	Arrhythmias.	Circ.	Arrhythmia	Electrophysiol.	6,	655–661	(2013).	

63.	 Weidmann,	S.	Heart:	Electrophysiology.	Annu.	Rev.	Physiol.	36,	155–169	(1974).	

64.	 Pfenniger,	A.,	Wohlwend,	A.	&	Kwak,	B.	R.	Mutations	in	connexin	genes	and	
disease.	Eur.	J.	Clin.	Invest.	41,	103–116	(2011).	

65.	 Severs,	N.	J.,	Bruce,	A.	F.,	Dupont,	E.	&	Rothery,	S.	Remodelling	of	gap	junctions	
and	connexin	expression	in	diseased	myocardium.	Cardiovasc.	Res.	80,	9–19	
(2008).	

66.	 Kléber,	A.	G.	in	Card.	Electrophysiol.	From	Cell	to	Bedside	(Zipes,	D.	&	Jalife,	J.)	
265–275	(Elsevier	Saunders,	2014).	

67.	 Valiunas,	V.	&	Brink,	P.	R.	in	Card.	Electrophysiol.	From	Cell	to	Bedside	(Zipes,	D.	
P.	&	Jalife,	J.)	151–160	(Elsevier	Saunders,	2014).	

68.	 Shaw,	R.	M.	&	Rudy,	Y.	Ionic	Mechanisms	of	Propagation	in	Cardiac	Tissue.	Roles	
of	the	sodium	and	L-type	calcium	currents	during	reduced	excitability	and	
decreased	gap	junction	coupling.	Circ.	Res.	81,	727–741	(1997).	

69.	 Morley,	G.	E.	et	al.	Characterization	of	conduction	in	the	ventricles	of	normal	and	
heterozygous	Cx43	knockout	mice	using	optical	mapping.	J.	Cardiovasc.	
Electrophysiol.	10,	1361–1375	(1999).	

70.	 Van	Rijen,	H.	V.	M.	et	al.	Slow	Conduction	and	Enhanced	Anisotropy	Increase	the	
Propensity	for	Ventricular	Tachyarrhythmias	in	Adult	Mice	with	Induced	
Deletion	of	Connexin43.	Circulation	109,	1048–1055	(2004).	

71.	 Dhillon,	P.	S.	et	al.	Relationship	between	gap-junctional	conductance	and	
conduction	velocity	in	Mammalian	myocardium.	Circ.	Arrhythm.	Electrophysiol.	
6,	1208–14	(2013).	

72.	 Saffitz,	J.	E.	et	al.	The	molecular	basis	of	anisotropy:	role	of	gap	junctions.	J.	
Cardiovasc.	Electrophysiol.	6,	498–510	(1995).	

73.	 Bukauskas,	F.	F.	in	Card.	Electrophysiol.	From	Cell	to	Bedside	(Zipes,	D.	P.	&	Jalife,	
J.)	85–94	(Elsevier	Saunders,	2014).	

74.	 Jalife,	J.,	Morley,	G.	E.	&	Vaidya,	D.	Connexins	and	impulse	propagation	in	the	
mouse	heart.	J.	Cardiovasc.	Electrophysiol.	10,	1649–63	(1999).	



	 207	

75.	 Miquerol,	L.,	Beyer,	S.	&	Kelly,	R.	G.	Establishment	of	the	mouse	ventricular	
conduction	system.	Cardiovasc.	Res.	91,	232–242	(2011).	

76.	 Reaume,	A.	G.	et	al.	Cardiac	malformation	in	neonatal	mice	lacking	connexin43.	
Science	(80-.	).	267,	1831–4	(1995).	

77.	 Berridge,	M.	J.	Cell	Signalling	Pathways.	Cell	Signal.	Biol.	1–118	(2012).	
doi:10.1042/csb0001002	

78.	 Hendriks-balk,	M.	C.,	Peters,	S.	L.	M.,	Michel,	M.	C.	&	Alewijnse,	A.	E.	Regulation	of	
G	protein-coupled	receptor	signalling:	Focus	on	the	cardiovascular	system	and	
regulator	of	G	protein	signalling	proteins.	Eur.	J.	Pharmacol.	585,	278–291	
(2008).	

79.	 Beavo,	J.	a	&	Brunton,	L.	L.	Cyclic	nucleotide	research	-	still	expanding	after	half	a	
century.	Nat.	Rev.	Mol.	Cell	bBology	3,	710–8	(2002).	

80.	 Lee,	L.	C.	Y.,	Maurice,	D.	H.	&	Baillie,	G.	S.	Targeting	protein-protein	interactions	
within	the	cyclic	AMP	signaling	system	as	a	therapeutic	strategy	for	
cardiovascular	disease.	Future	Med.	Chem.	5,	451–64	(2013).	

81.	 Oldham,	W.	M.	&	Hamm,	H.	E.	Heterotrimeric	G	protein	activation	by	G-protein-
coupled	receptors.	Nat.	Rev.	Mol.	Cell	Biol.	9,	60–71	(2008).	

82.	 Fredriksson,	R.,	Lagerström,	M.	C.,	Lundin,	L.-G.	&	Schiöth,	H.	B.	The	G-Protein-
Coupled	Receptors	in	the	Human	Genome	Form	Five	Main	Families.	
Phylogenetic	Analysis,	Paralogon	Groups,	and	Fingerprints.	Mol.	Pharmacol.	63,	
1256–72	(2003).	

83.	 Huang,	C.	&	Tesmer,	J.	J.	G.	Recognition	in	the	Face	of	Diversity:	Interactions	of	
Heterotrimeric	G	proteins	and	G	Protein-coupled	Receptor	(GPCR)	Kinases	with	
Activated	GPCRs.	J.	Biol.	Chem.	286,	7715–7721	(2011).	

84.	 Leaney,	J.	L.,	Milligan,	G.	&	Tinker,	A.	The	G	protein	alpha	subunit	has	a	key	role	
in	determining	the	specificity	of	coupling	to,	but	not	the	activation	of,	G	protein-
gated	inwardly	rectifying	K(+)	channels.	J.	Biol.	Chem.	275,	921–9	(2000).	

85.	 Milligan,	G.	&	Kostenis,	E.	Heterotrimeric	G-proteins:	a	short	history.	Br.	J.	
Pharmacol.	147,	S46–S55	(2006).	

86.	 Logothetis,	D.	E.,	Kurachi,	Y.,	Galper,	J.,	Neer,	E.	J.	&	Clapham,	D.	E.	The	beta-
gamma	subunits	of	GTP-binding	proteins	activate	the	muscarinic	K+	channel	in	
heart.	Nature	325,	321–326	(1987).	

87.	 Vivaudou,	M.	et	al.	Probing	the	G-protein	Regulation	of	GIRK1	and	GIRK4,	the	
Two	Subunits	of	the	KACh	Channel,	Using	Functional	Homomeric	Mutants.	J.	
Biol.	Chem.	272,	31553–31560	(1997).	

88.	 Birnbaumer,	L.	Expansion	of	signal	transduction	by	G	proteins.	The	second	15	
years	or	so:	from	3	to	16	alpha	subunits	plus	betagamma	dimers.	Biochim.	
Biophys.	Acta	1768,	772–93	(2007).	



	 208	

89.	 Köhler,	D.	et	al.	Gαi2-	and	Gαi3-Deficient	Mice	Display	Opposite	Severity	of	
Myocardial	Ischemia	Reperfusion	Injury.	PLoS	One	9,	e98325	(2014).	

90.	 Xiao,	R.-P.	et	al.	Coupling	of	Beta	2-Adrenoceptor	to	Gi	Proteins	and	Its	
Physiological	Relevance	in	Murine	Cardiac	Myocytes.	Circ.	Res.	84,	43–52	
(1999).	

91.	 Xiao,	R.-P.	et	al.	Enhanced	G(i)	signaling	selectively	negates	beta2-adrenergic	
receptor	(AR)--but	not	beta1-AR-mediated	positive	inotropic	effect	in	myocytes	
from	failing	rat	hearts.	Circulation	108,	1633–9	(2003).	

92.	 Dizayee,	S.	et	al.	Gαi2-	and	Gαi3-specific	regulation	of	voltage-dependent	L-type	
calcium	channels	in	cardiomyocytes.	PLoS	One	6,	e24979	(2011).	

93.	 Leaney,	J.	L.	&	Tinker,	a.	The	role	of	members	of	the	pertussis	toxin-sensitive	
family	of	G	proteins	in	coupling	receptors	to	the	activation	of	the	G	protein-
gated	inwardly	rectifying	potassium	channel.	Proc.	Natl.	Acad.	Sci.	U.	S.	A.	97,	
5651–6	(2000).	

94.	 Zuberi,	Z.	et	al.	Absence	of	the	inhibitory	G-protein	Galphai2	predisposes	to	
ventricular	cardiac	arrhythmia.	Circ.	Arrhythm.	Electrophysiol.	3,	391–400	
(2010).	

95.	 Fu,	Y.	et	al.	Endogenous	RGS	proteins	and	Galpha	subtypes	differentially	control	
muscarinic	and	adenosine-mediated	chronotropic	effects.	Circ.	Res.	98,	659–66	
(2006).	

96.	 Foerster,	K.	et	al.	Cardioprotection	specific	for	the	G	protein	Gi2	in	chronic	
adrenergic	signaling	through	beta	2-adrenoceptors.	Proc.	Natl.	Acad.	Sci.	U.	S.	A.	
100,	14475–80	(2003).	

97.	 Ang,	R.,	Opel,	A.	&	Tinker,	A.	The	Role	of	Inhibitory	G	Proteins	and	Regulators	of	
G	Protein	Signaling	in	the	in	vivo	Control	of	Heart	Rate	and	Predisposition	to	
Cardiac	Arrhythmias.	Front.	Physiol.	3,	(2012).	

98.	 Feldman,	A.	M.	et	al.	Increase	of	the	40,000-mol	wt	pertussis	toxin	substrate	(G	
protein)	in	the	failing	human	heart.	J.	Clin.	Invest.	82,	189–97	(1988).	

99.	 Neumann,	J.	et	al.	Increase	in	myocardial	Gi-proteins	in	heart	failure.	Lancet	2,	
936–937	(1988).	

100.	 Böhm,	M.	et	al.	Increase	of	Gi	alpha	in	human	hearts	with	dilated	but	not	
ischemic	cardiomyopathy.	Circulation	82,	1249–1265	(1990).	

101.	 Eschenhagen,	T.	et	al.	Increased	messenger	RNA	level	of	the	inhibitory	G	protein	
alpha	subunit	Gi	alpha-2	in	human	end-stage	heart	failure.	Circ.	Res.	70,	688–96	
(1992).	

102.	 Kompa,	A.	R.,	Gu,	X.	H.,	Evans,	B.	A.	&	Summers,	R.	J.	Desensitization	of	cardiac	
beta-adrenoceptor	signaling	with	heart	failure	produced	by	myocardial	
infarction	in	the	rat.	Evidence	for	the	role	of	Gi	but	not	Gs	or	phosphorylating	
proteins.	J.	Mol.	Cell.	Cardiol.	31,	1185–201	(1999).	



	 209	

103.	 Lerman,	B.	B.	et	al.	Right	Ventricular	Outflow	Tract	Tachycardia	Due	To	a	
Somatic	Cell	Mutation	in	G	Protein	Subunit	αi2.	J.	Clin.	Invest.	101,	2862–2868	
(1998).	

104.	 Zhang,	Y.	H.,	Hinde,	a	K.	&	Hancox,	J.	C.	Anti-adrenergic	effect	of	adenosine	on	
Na(+)-Ca(2+)	exchange	current	recorded	from	guinea-pig	ventricular	myocytes.	
Cell	Calcium	29,	347–58	(2001).	

105.	 Grimm,	M.	et	al.	Inactivation	of	Gialpha	proteins	increases	arrhythmogenic	
effects	of	beta-adrenergic	stimulation	in	the	heart.	J.	Mol.	Cell.	Cardiol.	30,	1917–
28	(1998).	

106.	 Nagata,	K.	et	al.	Gαi2	but	not	Gαi3	Is	Required	for	Muscarinic	Inhibition	of	
Contractility	and	Calcium	Currents	in	Adult	Cardiomyocytes.	Circ.	Res.	87,	903–
909	(2000).	

107.	 Chen,	F.,	Spicher,	K.,	Jiang,	M.,	Birnbaumer,	L.	&	Wetzel,	G.	T.	Lack	of	muscarinic	
regulation	of	Ca2+	channels	in	Gi2α	gene	knockout	mouse	hearts.	Am.	J.	Physiol.	
Heart	Circ.	Physiol.	280,	H1989–1995	(2001).	

108.	 Zuberi,	Z.,	Birnbaumer,	L.	&	Tinker,	a.	The	role	of	inhibitory	heterotrimeric	G	
proteins	in	the	control	of	in	vivo	heart	rate	dynamics.	AJP	Regul.	Integr.	Comp.	
Physiol.	295,	R1822–R1830	(2008).	

109.	 Seki,	A.	et	al.	Sympathetic	nerve	fibers	in	human	cervical	and	thoracic	vagus	
nerves.	Hear.	Rhythm	11,	1411–1417	(2014).	

110.	 Chen,	P.-S.,	Chen,	L.	S.	&	Lin,	S.-F.	in	Card.	Electrophysiol.	From	Cell	to	Bedside	
(Zipes,	D.	P.	&	Jalife,	J.)	399–408	(Elsevier	Saunders,	2014).	

111.	 Sun,	J.,	Scherlag,	B.	J.	&	Po,	S.	S.	in	Card.	Electrophysiol.	From	Cell	to	Bedside	
(Zipes,	D.	&	Jalife,	J.)	470–474	(Elsevier	Saunders,	2014).	

112.	 Shen,	M.	J.	&	Zipes,	D.	P.	Role	of	the	autonomic	nervous	system	in	modulating	
cardiac	arrhythmias.	Circ.	Res.	114,	1004–21	(2014).	

113.	 Kimura,	K.,	Ieda,	M.	&	Fukuda,	K.	Development,	maturation,	and	
transdifferentiation	of	cardiac	sympathetic	nerves.	Circ.	Res.	110,	325–336	
(2012).	

114.	 Armour,	J.	a,	Murphy,	D.	a,	Yuan,	B.	X.,	Macdonald,	S.	&	Hopkins,	D.	a.	Gross	and	
microscopic	anatomy	of	the	human	intrinsic	cardiac	nervous	system.	Anat.	Rec.	
247,	289–98	(1997).	

115.	 Hou,	Y.	et	al.	Ganglionated	Plexi	Modulate	Extrinsic	Cardiac	Autonomic	Nerve	
Input.	Effects	on	Sinus	Rate,	Atrioventricular	Conduction,	Refractoriness,	and	
Inducibility	of	Atrial	Fibrillation.	J.	Am.	Coll.	Cardiol.	50,	61–68	(2007).	

116.	 Mastitskaya,	S.	et	al.	Cardioprotection	evoked	by	remote	ischaemic	
preconditioning	is	critically	dependent	on	the	activity	of	vagal	pre-ganglionic	
neurones.	Cardiovasc.	Res.	95,	487–94	(2012).	



	 210	

117.	 Ng,	G.	A.	Vagal	modulation	of	cardiac	ventricular	arrhythmia.	Exp.	Physiol.	99,	
295–9	(2014).	

118.	 Einbrodt,	P.	Ueber	herzreizung	und	ihr	verhaeltnis	zum	blutdruck.	Akad.	der	
Wissenschaften	Sitzungsberichte	38,	345	(1859).	

119.	 Armour,	J.	A.	Functional	anatomy	of	intrathoracic	neurons	innervating	the	atria	
and	ventricles.	Hear.	Rhythm	7,	994–996	(2010).	

120.	 Zipes,	D.	P.	Heart-brain	interactions	in	cardiac	arrhythmias:	role	of	the	
autonomic	nervous	system.	Cleve.	Clin.	J.	Med.	75	Suppl	2,	S94–6	(2008).	

121.	 Taggart,	P.,	Critchley,	H.	&	Lambiase,	P.	D.	Heart-brain	interactions	in	cardiac	
arrhythmia.	Heart	97,	698–708	(2011).	

122.	 Brodde,	O.	E.	&	Michel,	M.	C.	Adrenergic	and	muscarinic	receptors	in	the	human	
heart.	Pharmacol.	Rev.	51,	651–90	(1999).	

123.	 O’Connell,	T.	D.,	Jensen,	B.	C.,	Baker,	A.	J.	&	Simpson,	P.	C.	Cardiac	Alpha	1-
Adrenergic	Receptors:	Novel	Aspects	of	Expression,	Signaling	Mechanisms,	
Physiologic	Function,	and	Clinical	Importance.	Pharmacol.	Rev.	66,	308–333	
(2014).	

124.	 Brodde,	O.-E.	Beta-adrenoceptor	blocker	treatment	and	the	cardiac	beta-
adrenoceptor-G-protein(s)-adenylyl	cyclase	system	in	chronic	heart	failure.	
Naunyn.	Schmiedebergs.	Arch.	Pharmacol.	374,	361–72	(2007).	

125.	 Xiao,	R.	P.,	Ji,	X.	&	Lakatta,	E.	G.	Functional	coupling	of	the	beta	2-adrenoceptor	to	
a	pertussis	toxin-sensitive	G	protein	in	cardiac	myocytes.	Mol.	Pharmacol.	47,	
322–9	(1995).	

126.	 Kilts,	J.	D.	et	al.	β2-Adrenergic	and	Several	Other	G	Protein–Coupled	Receptors	in	
Human	Atrial	Membranes	Activate	Both	Gs	and	Gi.	Circ.	Res.	87,	705–709	
(2000).	

127.	 Zheng,	M.,	Zhu,	W.,	Han,	Q.	&	Xiao,	R.-P.	Emerging	concepts	and	therapeutic	
implications	of	beta-adrenergic	receptor	subtype	signaling.	Pharmacol.	Ther.	
108,	257–68	(2005).	

128.	 Difrancesco,	D.,	Ducouret,	P.	&	Robinson,	R.	B.	Muscarinic	modulation	of	cardiac	
rate	at	low	acetylcholine	concentrations.	Science	(80-.	).	243,	669–671	(1989).	

129.	 Newton,	G.	E.,	Parker,	A.	B.,	Landzberg,	J.	S.,	Colucci,	W.	S.	&	Parker,	J.	D.	
Muscarinic	receptor	modulation	of	basal	and	beta-adrenergic	stimulated	
function	of	the	failing	human	left	ventricle.	J.	Clin.	Invest.	98,	2756–2763	(1996).	

130.	 Kolman,	B.	S.,	Verrier,	R.	L.	&	Lown,	B.	The	effect	of	vagus	nerve	stimulation	
upon	vulnerability	of	the	canine	ventricle:	role	of	sympathetic-parasympathetic	
interactions.	Circulation	52,	578–585	(1975).	

131.	 Vanoli,	E.	et	al.	Vagal	stimulation	and	prevention	of	sudden	death	in	conscious	
dogs	with	a	healed	myocardial	infarction.	Circ.	Res.	68,	1471–1481	(1991).	



	 211	

132.	 Goldberger,	J.	et	al.	American	Heart	Association/American	College	of	Cardiology	
Foundation/Heart	Rhythm	Society	Scientific	Statement	on	Noninvasive	Risk	
Stratification	Techniques	for	Identifying	Patients	at	Risk	for	Sudden	Cardiac	
Death.	Circulation	118,	1497–1518	(2008).	

133.	 Hon,	E.	H.	&	Lee,	S.	T.	Electronic	evaluations	of	the	fetal	heart	rate	patterns	
preceding	fetal	death,	further	observations.	Am.	J.	Obstet.	Gynecol.	87,	814–26	
(1965).	

134.	 Task	Force	of	the	European	Society	of	Cardiology	and	The	North	American	
Society	of	Pacing	and	Electrophysiology.	Heart	rate	variability:	Standards	of	
measurement,	physiological	interpretation,	and	clinical	use.	Eur.	Heart	J.	17,	
354–381	(1996).	

135.	 Eckberg,	D.	L.,	Drabinsky,	M.	&	Braunwald,	E.	Defective	Cardiac	Parasympathetic	
Control	in	Patients	with	Heart	Disease.	N.	Engl.	J.	Med.	285,	877–883	(1971).	

136.	 Schwartz,	P.	J.	&	De	Ferrari,	G.	M.	Sympathetic-parasympathetic	interaction	in	
health	and	disease:	abnormalities	and	relevance	in	heart	failure.	Heart	Fail.	Rev.	
16,	101–7	(2011).	

137.	 Malik,	M.	&	Schmidt,	G.	in	Card.	Electrophysiol.	From	Cell	to	Bedside	(Zipes,	D.	P.	&	
Jalife,	J.)	649–656	(Elsevier	Saunders,	2014).	

138.	 La	Rovere,	M.	T.,	Bigger	Jr,	J.	T.,	Marcus,	F.	I.,	Mortara,	A.	&	Schwartz,	P.	J.	
Baroreflex	sensitivity	and	heart-rate	variability	in	prediction	of	total	cardiac	
mortality	after	myocardial	infarction.	Lancet	351,	478–484	(1998).	

139.	 Nolan,	J.	et	al.	Prospective	study	of	heart	rate	variability	and	mortality	in	chronic	
heart	failure.	Results	of	the	United	Kingdom	Heart	Failure	Evaluation	and	
Assessment	of	Risk	Trial	(UK-Heart).	Circulation	98,	1510–1516	(1998).	

140.	 Exner,	D.	Noninvasive	risk	stratification	after	myocardial	infarction:	rationale,	
current	evidence	and	the	need	for	definitive	trials.	Can.	J.	Cardiol.	25	Suppl	A,	
21A–27A	(2009).	

141.	 Zhou,	S.	et	al.	Spontaneous	stellate	ganglion	nerve	activity	and	ventricular	
arrhythmia	in	a	canine	model	of	sudden	death.	Hear.	Rhythm	5,	131–139	(2008).	

142.	 Schwartz,	P.	J.	et	al.	Prevention	of	Sudden	Cardiac	Death	After	a	First	Myocardial	
Infarction	by	Pharmacologic	or	Surgical	Antiadrenergic	Interventions.	J.	
Cardiovasc.	Electrophysiol.	3,	2–16	(1992).	

143.	 Cardiac	Denervation	Surgery	for	Prevention	of	Ventricular	Tacharrhythmias	
(PREVENT	VT).	at	<https://clinicaltrials.gov/ct2/show/NCT01013714>	

144.	 Takigawa,	M.	et	al.	Seasonal	and	circadian	distributions	of	ventricular	fibrillation	
in	patients	with	Brugada	syndrome.	Hear.	Rhythm	5,	1523–7	(2008).	

145.	 Miyazaki,	T.	et	al.	Autonomic	and	antiarrhythmic	drug	modulation	of	ST	segment	
elevation	in	patients	with	Brugada	syndrome.	J.	Am.	Coll.	Cardiol.	27,	1061–70	
(1996).	



	 212	

146.	 Priori,	S.	G.	et	al.	Executive	summary:	HRS/EHRA/APHRS	expert	consensus	
statement	on	the	diagnosis	and	management	of	patients	with	inherited	primary	
arrhythmia	syndromes.	Europace	15,	1389–406	(2013).	

147.	 Schwartz,	P.	J.,	Crotti,	L.	&	Insolia,	R.	Long-QT	syndrome:	from	genetics	to	
management.	Circ.	Arrhythm.	Electrophysiol.	5,	868–77	(2012).	

148.	 Zannad,	F.	et	al.	Chronic	vagal	stimulation	for	the	treatment	of	low	ejection	
fraction	heart	failure:	results	of	the	NEural	Cardiac	TherApy	foR	Heart	Failure	
(NECTAR-HF)	randomized	controlled	trial.	Eur.	Heart	J.	36,	425–433	(2014).	

149.	 INOVATE-HF.	at	<https://clinicaltrials.gov/ct2/show/NCT01303718>	

150.	 Shah,	M.,	Akar,	F.	G.	&	Tomaselli,	G.	F.	Molecular	basis	of	arrhythmias.	Circulation	
112,	2517–29	(2005).	

151.	 Pogwizd,	S.	M.	&	Bers,	D.	M.	Cellular	basis	of	triggered	arrhythmias	in	heart	
failure.	Trends	Cardiovasc.	Med.	14,	61–6	(2004).	

152.	 Nattel,	S.	&	Carlsson,	L.	Innovative	approaches	to	anti-arrhythmic	drug	therapy.	
Nat.	Rev.	Drug	Discov.	5,	1034–1049	(2006).	

153.	 Mines,	G.	R.	On	dynamic	equilibrium	in	the	heart.	J.	Physiol.	46,	349–383	(1913).	

154.	 Pandit,	S.	V.	&	Jalife,	J.	Rotors	and	the	dynamics	of	cardiac	fibrillation.	Circ.	Res.	
112,	849–862	(2013).	

155.	 Allessie,	M.	A.,	Bonke,	F.	I.	&	Schopman,	F.	J.	Circus	movement	in	rabbit	atrial	
muscle	as	a	mechanism	of	tachycardia.	III.	The	‘leading	circle’	concept:	a	new	
model	of	circus	movement	in	cardiac	tissue	without	the	involvement	of	an	
anatomical	obstacle.	Circ.	Res.	41,	9–18	(1977).	

156.	 Moe,	G.	On	the	multiple	wavelet	hypothesis	of	atrial	fibrillation.	Arch	Int	
Pharmacodyn	Ther	140,	183–188	(1962).	

157.	 Krinsky	VI.	Spread	of	excitation	in	an	inhomogeneous	medium	(state	similar	to	
cardiac	fibrillation).	Biophysics	(Oxf).	11,	776–784	(1966).	

158.	 Dosdall,	D.	J.	&	Ideker,	R.	E.	in	Card.	Electrophysiol.	From	Cell	to	Bedside	(Zipes,	D.	
P.	&	Jalife,	J.)	475–482	(Elsevier	Saunders,	2014).	

159.	 Smith,	S.	W.	Digital	Signal	Processing.	A	practical	guide	for	engineers	and	
scientists.	(Newnes,	2003).	

160.	 Kligfield,	P.	et	al.	Recommendations	for	the	standardization	and	interpretation	
of	the	electrocardiogram:	Part	I:	the	electrocardiogram	and	its	technology.	A	
scientific	statement	from	the	American	Heart	Association	Electrocardiography	
and	Arrhythmias	Committee,	Council	on	Cli.	J.	Am.	Coll.	Cardiol.	49,	1109–27	
(2007).	

161.	 Burdon-Sanderson,	J.	&	Page,	F.	J.	M.	On	the	time-relations	of	the	excitatory	
process	in	the	ventricle	of	the	heart	of	the	frog.	J.	Physiol.	2,	385–412	(1882).	



	 213	

162.	 Korsgren,	M.,	Leskinen,	E.,	Sjöstrand,	U.	&	Varnauskas,	E.	Intracardiac	recording	
of	monophasic	action	potentials	in	the	human	heart.	Scand.	J.	Clin.	Lab.	Invest.	
18,	561–564	(1966).	

163.	 Shabetai,	R.,	Surawicz,	B.	&	Hammill,	W.	Monophasic	Action	Potentials	in	Man.	
Circulation	38,	341–352	(1968).	

164.	 Monophasic	Action	Potentials:	Bridging	Cell	and	Bedside.	(Futura	Publishing	
Company,	Inc.,	2000).	

165.	 Kondo,	M.,	Nesterenko,	V.	&	Antzelevitch,	C.	Cellular	basis	for	the	monophasic	
action	potential.	Which	electrode	is	the	recording	electrode?	Cardiovasc.	Res.	63,	
635–644	(2004).	

166.	 Kadish,	A.	What	is	a	monophasic	action	potential?	Cardiovasc.	Res.	63,	580–1	
(2004).	

167.	 Coronel,	R.	et	al.	Monophasic	action	potentials	and	activation	recovery	intervals	
as	measures	of	ventricular	action	potential	duration:	experimental	evidence	to	
resolve	some	controversies.	Hear.	Rhythm	3,	1043–50	(2006).	

168.	 Ling,	G.	&	Gerard,	R.	W.	The	normal	membrane	potential	of	frog	Sartorius	fibers.	
J.	Cell.	Comp.	Physiol.	34,	383	(1949).	

169.	 Coraboeuf,	E.	&	Weidmann,	S.	Potentiel	de	repos	et	potentiels	d’action	du	muscle	
cardiaque	mesurés	à	l’aide	d’électrodes	intracellulaires.	C	R	Séances	Soc	Biol	
143,	1329	(1949).	

170.	 Coraboeuf,	E.	&	Weidmann,	S.	Potentiels	d’action	du	muscle	cardiaque	obtenus	à	
l’aide	de	microélectrodes	intracellulaires.	C	R	Séances	Soc	Biol	143,	1360	(1949).	

171.	 Hoffman,	B.	F.,	Cranefield,	P.	F.,	Lepeschkin,	E.,	Surawicz,	B.	&	Herrlich,	H.	C.	
Comparison	of	cardiac	monophasic	action	potentials	recorded	by	intracellular	
and	suction	electrodes.	Am.	J.	Physiol.	196,	1297–301	(1959).	

172.	 Durrer,	D.	&	van	der	Tweel,	L.	H.	Excitation	of	the	left	ventricular	wall	of	the	dog	
and	goat.	Ann.	N.	Y.	Acad.	Sci.	65,	779–803	(1957).	

173.	 Steinhaus,	B.	M.	Estimating	cardiac	transmembrane	activation	and	recovery	
times	from	unipolar	and	bipolar	extracellular	electrograms:	a	simulation	study.	
Circ.	Res.	64,	449–462	(1989).	

174.	 Wyatt,	R.	F.	Comparison	of	estimates	of	activation	and	recovery	times	from	
bipolar	and	unipolar	electrograms	to	in	vivo	transmembrane	APDs.	in	Proc	
IEEE/Eng	Med	Biol	Soc,	2nd	Annu.	Conf.	22–25	(1980).	

175.	 Wyatt,	R.	F.	et	al.	Estimation	of	ventricular	transmembrane	action	potential	
durations	and	repolarization	times	from	unipolar	electrograms.	Am.	J.	Cardiol.	
47,	488	(1981).	

176.	 Chen,	P.-S.	et	al.	Epicardial	activation	and	repolarization	in	patients	with	right	
ventricular	hypertrophy.	Circulation	83,	104–118	(1991).	



	 214	

177.	 Gepstein,	L.,	Hayam,	G.	&	Ben	Haim,	S.	A.	Activation-repolarization	coupling	in	
the	normal	swine	myocardium.	Circulation	96,	4036–4043	(1997).	

178.	 Yue,	A.	M.	et	al.	Determination	of	human	ventricular	repolarization	by	
noncontact	mapping.	Validation	with	monophasic	action	potential	recordings.	
Circulation	110,	1343–1350	(2004).	

179.	 Millar,	C.	K.,	Kralios,	F.	a	&	Lux,	R.	L.	Correlation	between	refractory	periods	and	
activation-recovery	intervals	from	electrograms:	effects	of	rate	and	adrenergic	
interventions.	Circulation	72,	1372–1379	(1985).	

180.	 Haws,	C.	W.	&	Lux,	R.	L.	Correlation	between	in	vivo	transmembrane	action	
potential	durations	and	activation-recovery	intervals	from	electrograms.	Effects	
of	interventions	that	alter	repolarization	time.	Circulation	81,	281–288	(1990).	

181.	 Malik,	M.	&	Batchvarov,	V.	N.	Measurement,	interpretation	and	clinical	potential	
of	QT	dispersion.	J.	Am.	Coll.	Cardiol.	36,	1749–1766	(2000).	

182.	 Doyle,	A.,	McGarry,	M.	P.,	Lee,	N.	a	&	Lee,	J.	J.	The	construction	of	transgenic	and	
gene	knockout/knockin	mouse	models	of	human	disease.	Transgenic	Res.	21,	
327–49	(2012).	

183.	 Sangiorgi,	F.	Manipulating	the	mouse	genome:	approaches	and	applications.	J.	
Nucl.	Cardiol.	8,	591–8	(2001).	

184.	 Sauer,	B.	&	Henderson,	N.	Site-specific	DNA	recombination	in	mammalian	cells	
by	the	Cre	recombinase	of	bacteriophage	P1.	Proc.	Natl.	Acad.	Sci.	U.	S.	A.	85,	
5166–5170	(1988).	

185.	 Feil,	R.	et	al.	Ligand-activated	site-specific	recombination	in	mice.	Proc.	Natl.	
Acad.	Sci.	U.	S.	A.	93,	10887–90	(1996).	

186.	 Sohal,	D.	S.	et	al.	Temporally	Regulated	and	Tissue-Specific	Gene	Manipulations	
in	the	Adult	and	Embryonic	Heart	Using	a	Tamoxifen-Inducible	Cre	Protein.	Circ.	
Res.	89,	20–25	(2001).	

187.	 Minamino,	T.,	Gaussin,	V.,	DeMayo,	F.	J.	&	Schneider,	M.	D.	Inducible	Gene	
Targeting	in	Postnatal	Myocardium	by	Cardiac-Specific	Expression	of	a	
Hormone-Activated	Cre	Fusion	Protein.	Circ.	Res.	88,	587–592	(2001).	

188.	 Subramaniam,	A.	et	al.	Tissue-specific	regulation	of	the	alpha-myosin	heavy	
chain	gene	promoter	in	transgenic	mice.	J.	Biol.	Chem.	266,	24613–20	(1991).	

189.	 Morkin,	E.	Regulation	of	myosin	heavy	chain	genes	in	the	heart.	Circulation	87,	
1451–1460	(1993).	

190.	 Morkin,	E.	Control	of	cardiac	myosin	heavy	chain	gene	expression.	Microsc.	Res.	
Tech.	50,	522–31	(2000).	

191.	 Ng,	W.	A.,	Grupp,	I.	L.,	Subramaniam,	A.	&	Robbins,	J.	Cardiac	myosin	heavy	chain	
mRNA	expression	and	myocardial	function	in	the	mouse	heart.	Circ.	Res.	68,	
1742–1750	(1991).	



	 215	

192.	 Dalwadi,	H.	et	al.	B	cell	developmental	requirement	for	the	G	alpha	i2	gene.	J.	
Immunol.	170,	1707–15	(2003).	

193.	 Wu,	J.	Y.	et	al.	Impaired	TGF-beta	responses	in	peripheral	T	cells	of	G	alpha	i2-/-	
mice.	J.	Immunol.	174,	6122–8	(2005).	

194.	 Rudolph,	U.	et	al.	Ulcerative	colitis	and	adenocarcinoma	of	the	colon	in	Gαi2-
deficient	mice.	Nat.	Genet.	10,	143–150	(1995).	

195.	 Mönkkönen,	K.	S.	et	al.	Intracerebroventricular	antisense	knockdown	of	G	alpha	
i2	results	in	ciliary	stasis	and	ventricular	dilatation	in	the	rat.	BMC	Neurosci.	8,	
26	(2007).	

196.	 Jantzen,	H.,	Milstone,	D.	S.,	Gousset,	L.,	Conley,	P.	B.	&	Mortensen,	R.	M.	Impaired	
activation	of	murine	platelets	lacking	Gαi2.	J.	Clin.	Invest.	108,	477–483	(2001).	

197.	 Le,	Y.	&	Sauer,	B.	Conditional	gene	knockout	using	Cre	recombinase.	Mol.	
Biotechnol.	17,	269–75	(2001).	

198.	 Agah,	R.	et	al.	Gene	Recombination	in	Postmitotic	Cells.	J.	Clin.	Invest.	100,	169–
179	(1997).	

199.	 Herrmann,	S.,	Stieber,	J.,	Stöckl,	G.,	Hofmann,	F.	&	Ludwig,	A.	HCN4	provides	a	
‘depolarization	reserve’	and	is	not	required	for	heart	rate	acceleration	in	mice.	
EMBO	J.	26,	4423–32	(2007).	

200.	 Chen,	P.	P.,	Patel,	J.	R.,	Powers,	P.	a,	Fitzsimons,	D.	P.	&	Moss,	R.	L.	Dissociation	of	
structural	and	functional	phenotypes	in	cardiac	myosin-binding	protein	C	
conditional	knockout	mice.	Circulation	126,	1194–205	(2012).	

201.	 Andersson,	K.	B.	et	al.	Moderate	heart	dysfunction	in	mice	with	inducible	
cardiomyocyte-specific	excision	of	the	Serca2	gene.	J.	Mol.	Cell.	Cardiol.	47,	180–
7	(2009).	

202.	 Kedzierski,	R.	M.	et	al.	Cardiomyocyte-Specific	Endothelin	A	Receptor	Knockout	
Mice	Have	Normal	Cardiac	Function	and	an	Unaltered	Hypertrophic	Response	to	
Angiotensin	II	and	Isoproterenol	Cardiomyocyte-Specific	Endothelin	A	Receptor	
Knockout	Mice	Have	Normal	Cardiac	Function	and.	Mol.	Cell.	Biol.	23,	8226–
8232	(2003).	

203.	 Houser,	S.	R.	et	al.	Animal	models	of	heart	failure:	a	scientific	statement	from	the	
American	Heart	Association.	Circ.	Res.	111,	131–50	(2012).	

204.	 Gao,	X.-M.,	Xu,	Q.,	Kiriazis,	H.,	Dart,	A.	M.	&	Du,	X.-J.	Mouse	model	of	post-infarct	
ventricular	rupture:	time	course,	strain-	and	gender-dependency,	tensile	
strength,	and	histopathology.	Cardiovasc.	Res.	65,	469–77	(2005).	

205.	 Dixon,	J.	a	&	Spinale,	F.	G.	Large	animal	models	of	heart	failure:	a	critical	link	in	
the	translation	of	basic	science	to	clinical	practice.	Circ.	Heart	Fail.	2,	262–71	
(2009).	



	 216	

206.	 Monnet,	E.	&	Chachques,	J.	C.	Animal	models	of	heart	failure:	what	is	new?	Ann.	
Thorac.	Surg.	79,	1445–53	(2005).	

207.	 Cerqueira,	M.	D.	et	al.	Standardized	Myocardial	Segmentation	and	Nomenclature	
for	Tomographic	Imaging	of	the	Heart.	Circulation	105,	539–542	(2002).	

208.	 Fernández,	B.	et	al.	The	coronary	arteries	of	the	C57BL/6	mouse	strains:	
implications	for	comparison	with	mutant	models.	J.	Anat.	212,	12–18	(2008).	

209.	 Kumar,	D.	et	al.	Distinct	mouse	coronary	anatomy	and	myocardial	infarction	
consequent	to	ligation.	Coron.	Artery	Dis.	16,	41–4	(2005).	

210.	 Icardo,	J.	M.	&	Colvee,	E.	Origin	and	course	of	the	coronary	arteries	in	normal	
mice	and	in	iv/iv	mice.	J.	Anat.	199,	473–82	(2001).	

211.	 Borst,	O.	et	al.	Methods	Employed	for	Induction	and	Analysis	of	Experimental	
Myocardial	Infarction	in	Mice.	Cell.	Physiol.	Biochem.	28,	1–12	(2011).	

212.	 Tarnavski,	O.	et	al.	Mouse	cardiac	surgery:	comprehensive	techniques	for	the	
generation	of	mouse	models	of	human	diseases	and	their	application	for	
genomic	studies.	Physiol.	Genomics	16,	349–60	(2004).	

213.	 Gao,	E.	et	al.	A	novel	and	efficient	model	of	coronary	artery	ligation	and	
myocardial	infarction	in	the	mouse.	Circ.	Res.	107,	1445–53	(2010).	

214.	 Van	den	Bos,	E.	J.,	Mees,	B.	M.	E.,	de	Waard,	M.	C.,	de	Crom,	R.	&	Duncker,	D.	J.	A	
novel	model	of	cryoinjury-induced	myocardial	infarction	in	the	mouse:	a	
comparison	with	coronary	artery	ligation.	Am.	J.	Physiol.	Heart	Circ.	Physiol.	289,	
H1291–300	(2005).	

215.	 Halapas,	A.	et	al.	In	vivo	models	for	heart	failure	research.	In	Vivo	22,	767–80	
(2008).	

216.	 Sane,	D.	C.,	Mozingo,	W.	S.	&	Becker,	R.	C.	Cardiac	rupture	after	myocardial	
infarction:	new	insights	from	murine	models.	Cardiol.	Rev.	17,	293–9	(2009).	

217.	 Fang,	L.	et	al.	Differences	in	inflammation,	MMP	activation	and	collagen	damage	
account	for	gender	difference	in	murine	cardiac	rupture	following	myocardial	
infarction.	J.	Mol.	Cell.	Cardiol.	43,	535–44	(2007).	

218.	 Cavasin,	M.	a,	Sankey,	S.	S.,	Yu,	A.-L.,	Menon,	S.	&	Yang,	X.-P.	Estrogen	and	
testosterone	have	opposing	effects	on	chronic	cardiac	remodeling	and	function	
in	mice	with	myocardial	infarction.	Am.	J.	Physiol.	Heart	Circ.	Physiol.	284,	
H1560–9	(2003).	

219.	 Van	den	Borne,	S.	W.	M.	et	al.	Mouse	strain	determines	the	outcome	of	wound	
healing	after	myocardial	infarction.	Cardiovasc.	Res.	84,	273–82	(2009).	

220.	 Daaka,	Y.,	Luttrell,	L.	M.	&	Lefkowitz,	R.	J.	Switching	of	the	coupling	of	the	beta2-
adrenergic	receptor	to	different	G	proteins	by	protein	kinase	A.	Nature	390,	88–
91	(1997).	



	 217	

221.	 Shah,	A.	M.	&	Mann,	D.	L.	In	search	of	new	therapeutic	targets	and	strategies	for	
heart	failure:	recent	advances	in	basic	science.	Lancet	378,	704–12	(2011).	

222.	 Nakayama,	H.	et	al.	Ca2+	-	and	mitochondrial-dependent	cardiomyocyte	necrosis	
as	a	primary	mediator	of	heart	failure.	J.	Clin.	Invest.	117,	2431–2444	(2007).	

223.	 Zhang,	X.	et	al.	Cardiotoxic	and	Cardioprotective	Features	of	Chronic	β-
Adrenergic	Signaling.	Circ.	Res.	112,	498–509	(2013).	

224.	 Chesley,	A.	et	al.	The	β2-Adrenergic	Receptor	Delivers	an	Antiapoptotic	Signal	to	
Cardiac	Myocytes	Through	Gi-Dependent	Coupling	to	Phosphatidylinositol	3’-
Kinase.	Circ.	Res.	87,	1172–1179	(2000).	

225.	 Oudit,	G.	Y.	et	al.	Phosphoinositide	3-kinase	gamma-deficient	mice	are	protected	
from	isoproterenol-induced	heart	failure.	Circulation	108,	2147–52	(2003).	

226.	 Nisch,	W.,	Böck,	J.,	Egert,	U.,	Hämmerle,	H.	&	Mohr,	A.	A	thin	film	microelectrode	
array	for	monitoring	extracellular	neuronal	activity	in	vitro.	Biosens.	Bioelectron.	
9,	737–741	(1994).	

227.	 Kajikawa,	Y.	&	Schoeder,	E.	How	local	is	the	local	field	potential?	Neuron	72,	
847–858	(2012).	

228.	 Buzsáki,	G.,	Anastassiou,	C.	a.	&	Koch,	C.	The	origin	of	extracellular	fields	and	
currents	—	EEG,	ECoG,	LFP	and	spikes.	Nat.	Rev.	Neurosci.	13,	407–420	(2012).	

229.	 Burnashev,	N.	A.,	Edwards,	F.	A.	&	Verkhratskii,	A.	N.	[The	use	of	thin	slices	of	
myocardium	for	recording	the	currents	across	single	ion	channels].	Fiziol.	Zh.	
37,	119–122	(1991).	

230.	 Pillekamp,	F.	et	al.	Establishment	and	characterization	of	a	mouse	embryonic	
heart	slice	preparation.	Cell.	Physiol.	Biochem.	16,	127–132	(2005).	

231.	 Halbach,	M.	et	al.	Biochemistry	Ventricular	Slices	of	Adult	Mouse	Hearts	-	a	new	
Multicellular	In	Vitro	Model	for	Electro-	physiological	Studies.	Cell.	Physiol.	
Biochem.	18,	1–8	(2006).	

232.	 Camelliti,	P.	et	al.	Adult	human	heart	slices	are	a	multicellular	system	suitable	
for	electrophysiological	and	pharmacological	studies.	J.	Mol.	Cell.	Cardiol.	51,	
390–8	(2011).	

233.	 Langendorff,	O.	Untersuchungen	am	uberlebenden	Saugethierherzen.	Pflugers	
Arch.	61,	291–332	(1895).	

234.	 Bell,	R.	M.,	Mocanu,	M.	M.	&	Yellon,	D.	M.	Retrograde	heart	perfusion:	the	
Langendorff	technique	of	isolated	heart	perfusion.	J.	Mol.	Cell.	Cardiol.	50,	940–
50	(2011).	

235.	 Bussek,	A.	et	al.	Tissue	Slices	from	Adult	Mammalian	Hearts	as	a	Model	for	
Pharmacological	Drug	Testing.	Cell.	Physiol.	Biochem.	24,	527–536	(2009).	



	 218	

236.	 Bussek,	A.	et	al.	Cardiac	tissue	slices	with	prolonged	survival	for	in	vitro	drug	
safety	screening.	J.	Pharmacol.	Toxicol.	Methods	66,	145–51	(2012).	

237.	 Halbach,	M.	D.,	Egert,	U.,	Hescheler,	J.	&	Banach,	K.	Estimation	of	Action	Potential	
Changes	from	Field	Potential	Recordings	in	Multicellular	Mouse	Cardiac	
Myocyte	Cultures.	Cell.	Physiol.	Biochem.	13,	271–284	(2003).	

238.	 Himmel,	H.	M.	et	al.	Field	and	action	potential	recordings	in	heart	slices:	
correlation	with	established	in	vitro	and	in	vivo	models.	Br.	J.	Pharmacol.	166,	
276–96	(2012).	

239.	 Ustyugova,	I.	V,	Zhi,	L.,	Abramowitz,	J.,	Birnbaumer,	L.	&	Wu,	M.	X.	IEX-1	
deficiency	protects	against	colonic	cancer.	Mol.	Cancer	Res.	10,	760–7	(2012).	

240.	 Mouse	BLAT	search.	at	<https://genome.ucsc.edu/cgi-bin/hgBlat>	

241.	 Livak,	K.	J.	&	Schmittgen,	T.	D.	Analysis	of	relative	gene	expression	data	using	
real-time	quantitative	PCR	and	the	2(-Delta	Delta	C(T))	Method.	Methods	25,	
402–408	(2001).	

242.	 Applied	Biosystems.	User	Bulletin	#2.	ABI	PRISM	7700	Sequence	Detection	
System.	(2001).	

243.	 Rudolph,	U.,	Spicher,	K.	&	Birnbaumer,	L.	Adenylyl	cyclase	inhibition	and	altered	
G	protein	subunit	expression	and	ADP-ribosylation	patterns	in	tissues	and	cells	
from	Gi2	alpha-/-mice.	Proc.	Natl.	Acad.	Sci.	U.	S.	A.	93,	3209–3214	(1996).	

244.	 Collins,	K.	A.,	Korcarz,	C.	E.	&	Lang,	R.	M.	Use	of	echocardiography	for	the	
phenotypic	assessment	of	genetically	altered	mice.	Physiol.	Genomics	13,	227–39	
(2003).	

245.	 Rottman,	J.	N.,	Ni,	G.	&	Brown,	M.	Echocardiographic	evaluation	of	ventricular	
function	in	mice.	Echocardiography	24,	83–9	(2007).	

246.	 Amundsen,	B.	H.	et	al.	A	comparison	of	retrospectively	self-gated	magnetic	
resonance	imaging	and	high-frequency	echocardiography	for	characterization	of	
left	ventricular	function	in	mice.	Lab.	Anim.	45,	31–37	(2011).	

247.	 Barbee,	R.	W.,	Perry,	B.	D.,	Re,	R.	N.	&	Murgo,	J.	P.	Microsphere	and	dilution	
techniques	for	the	determination	of	blood	flows	and	volumes	in	conscious	mice.	
Am.	J.	Physiol.	Regul.	Integr.	Comp.	Physiol.	263,	R728–733	(1992).	

248.	 Bowditch,	H.	P.	Über	die	Eigentümlichkeiten	der	Reizbarkeit	welche	
Muskelfasern	des	Herzens	zeigen.	Ber	Sachs	Ges	Akkad	23,	(1871).	

249.	 Maier,	L.	S.,	Bers,	D.	M.	&	Pieske,	B.	Differences	in	Ca(2+)-handling	and	
sarcoplasmic	reticulum	Ca(2+)-content	in	isolated	rat	and	rabbit	myocardium.	J.	
Mol.	Cell.	Cardiol.	32,	2249–2258	(2000).	

250.	 Endoh,	M.	Force-frequency	relationship	in	intact	mammalian	ventricular	
myocardium:	Physiological	and	pathophysiological	relevance.	Eur.	J.	Pharmacol.	
500,	73–86	(2004).	



	 219	

251.	 Gentry-Smetana,	S.,	Redford,	D.,	Moore,	D.	&	Larson,	D.	Direct	effects	of	volatile	
anesthetics	on	cardiac	functiona.	Perfusion	23,	43–47	(2008).	

252.	 Janssen,	B.	J.	et	al.	Effects	of	anesthetics	on	systemic	hemodynamics	in	mice.	Am.	
J.	Physiol.	Heart	Circ.	Physiol.	287,	H1618–24	(2004).	

253.	 Mitchell,	G.	F.,	Jeron,	A.	&	Koren,	G.	Measurement	of	heart	rate	and	Q-T	interval	
in	the	conscious	mouse.	Am.	J.	Physiol.	Heart	Circ.	Physiol.	274,	H747–751	
(1998).	

254.	 Chu,	V.	et	al.	Method	for	non-invasively	recording	electrocardiograms	in	
conscious	mice.	BMC	Physiol.	1,	4–9	(2001).	

255.	 Gehrmann,	J.	et	al.	Phenotypic	screening	for	heart	rate	variability	in	the	mouse.	
Am.	J.	Physiol.	Heart	Circ.	Physiol.	279,	H733–H740	(2000).	

256.	 Thireau,	J.,	Zhang,	B.	L.,	Poisson,	D.	&	Babuty,	D.	Heart	rate	variability	in	mice:	a	
theoretical	and	practical	guide.	Exp.	Physiol.	93,	83–94	(2008).	

257.	 Wellens,	H.	J.,	Schuilenburg,	R.	M.	&	Durrer,	D.	Electrical	Stimulation	of	the	Heart	
in	Patients	with	Ventricular	Tachycardia.	Circulation	46,	216–226	(1972).	

258.	 Faulx,	M.	D.,	Chandler,	M.	P.,	Zawaneh,	M.	S.,	Stanley,	W.	C.	&	Hoit,	B.	D.	Mouse	
strain-specific	differences	in	cardiac	metabolic	enzyme	activities	observed	in	a	
model	of	isoproterenol-induced	cardiac	hypertrophy.	Clin.	Exp.	Pharmacol.	
Physiol.	34,	77–80	(2007).	

259.	 Matkovich,	S.	J.	et	al.	Cardiac-specific	ablation	of	G-protein	receptor	kinase	2	
redefines	its	roles	in	heart	development	and	beta-adrenergic	signaling.	Circ.	Res.	
99,	996–1003	(2006).	

260.	 Horiuchi-Hirose,	M.	et	al.	Decrease	in	the	density	of	t-tubular	L-type	Ca2+	
channel	currents	in	failing	ventricular	myocytes.	Am.	J.	Physiol.	Heart	Circ.	
Physiol.	300,	H978–88	(2011).	

261.	 Ahn,	D.	et	al.	Induction	of	myocardial	infarcts	of	a	predictable	size	and	location	
by	branch	pattern	probability-assisted	coronary	ligation	in	C57BL/6	mice.	Am.	J.	
Physiol.	Heart	Circ.	Physiol.	286,	H1201–7	(2004).	

262.	 Pfeffer,	M.	a.	et	al.	Myocardial	infarct	size	and	ventricular	function	in	rats.	Circ.	
Res.	44,	503–512	(1979).	

263.	 Spitznagel,	H.	et	al.	Cardioprotective	effects	of	the	Na(+)/H(+)-exchange	
inhibitor	cariporide	in	infarct-induced	heart	failure.	Cardiovasc.	Res.	46,	102–10	
(2000).	

264.	 Wakeno,	M.	et	al.	Long-term	stimulation	of	adenosine	A2b	receptors	begun	after	
myocardial	infarction	prevents	cardiac	remodeling	in	rats.	Circulation	114,	
1923–32	(2006).	

265.	 Kaur,	K.	et	al.	Gαi2	signaling:	friend	or	foe	in	cardiac	injury	and	heart	failure?	
Naunyn.	Schmiedebergs.	Arch.	Pharmacol.	385,	443–53	(2012).	



	 220	

266.	 Triposkiadis,	F.	et	al.	The	sympathetic	nervous	system	in	heart	failure	
physiology,	pathophysiology,	and	clinical	implications.	J.	Am.	Coll.	Cardiol.	54,	
1747–62	(2009).	

267.	 Mudd,	J.	O.	&	Kass,	D.	a.	Tackling	heart	failure	in	the	twenty-first	century.	Nature	
451,	919–28	(2008).	

268.	 Paur,	H.	et	al.	High	Levels	of	Circulating	Epinephrine	Trigger	Apical	
Cardiodepression	in	a	β2-Adrenergic	Receptor	/	Gi–Dependent	Manner.	A	New	
Model	of	Takotsubo	Cardiomyopathy.	Circulation	126,	697–706	(2012).	

269.	 Angelini,	P.	&	Tobis,	J.	M.	Is	High-Dose	Catecholamine	Administration	in	Small	
Animals	an	Appropriate	Model	for	Takotsubo	Syndrome?	Circ.	J.	79,	897	(2015).	

270.	 Huang,	X.	et	al.	Pleiotropic	phenotype	of	a	genomic	knock-in	of	an	RGS-
insensitive	G184S	Gnai2	allele.	Mol.	Cell.	Biol.	26,	6870–6879	(2006).	

271.	 DeGeorge,	B.	R.	et	al.	Targeted	inhibition	of	cardiomyocyte	Gi	signaling	enhances	
susceptibility	to	apoptotic	cell	death	in	response	to	ischemic	stress.	Circulation	
117,	1378–87	(2008).	

272.	 Moxham,	C.	M.,	Hod,	Y.	&	Malbon,	C.	C.	Induction	of	Gαi2-Specific	Antisense	RNA	
in	Vivo	Inhibits	Neonatal	Growth.	Science	(80-.	).	260,	991–995	(1993).	

273.	 Hollander,	P.	B.	&	Webb,	J.	L.	Cellular	membrane	potentials	and	contractility	of	
normal	rat	atrium	and	the	effects	of	temperature,	tension	and	stimulus	
frequency.	Circ.	Res.	3,	604–612	(1955).	

274.	 Waterson,	R.	E.	et	al.	Gα(i2)-mediated	protection	from	ischaemic	injury	is	
modulated	by	endogenous	RGS	proteins	in	the	mouse	heart.	Cardiovasc.	Res.	91,	
45–52	(2011).	

275.	 International	Conference	on	Harmonsation	of	Technical	Requirements	for	
Registration	of	Pharmaceuticals	for	Human	Use.	The	Non-Clinical	Evaluation	of	
the	Potential	for	Delayed	Ventricular	Repolarization	(QT	Interval	Prolongation)	by	
Human	Pharmaceuticals.	(2005).	at	
<http://www.ich.org/products/guidelines/safety/article/safety-
guidelines.html>	

276.	 Martins,	J.	B.	&	Zipes,	D.	P.	Effects	of	sympathetic	and	vagal	nerves	on	recovery	
properties	of	the	endocardium	and	epicardium	of	the	canine	left	ventricle.	Circ.	
Res.	46,	100–110	(1980).	

277.	 Wainford,	R.	D.,	Pascale,	C.	L.	&	Kuwabara,	J.	T.	Brain	Gαi2-subunit	protein-gated	
pathways	are	required	to	mediate	the	centrally	evoked	sympathoinhibitory	
mechanisms	activated	to	maintain	sodium	homeostasis.	J.	Hypertens.	31,	747–57	
(2013).	

278.	 Wainford,	R.	D.,	Carmichael,	C.	Y.,	Pascale,	C.	L.	&	Kuwabara,	J.	T.	Gαi2-Protein-
Mediated	Signal	Transduction:	Central	Nervous	System	Molecular	Mechanism	
Countering	the	Development	of	Sodium-Dependent	Hypertension.	Hypertension	
65,	178–186	(2015).	



	 221	

279.	 Campbell,	A.	S.,	Johnstone,	S.	R.,	Baillie,	G.	S.	&	Smith,	G.	β-Adrenergic	modulation	
of	myocardial	conduction	velocity:	Connexins	vs.	sodium	current.	J.	Mol.	Cell.	
Cardiol.	77,	147–154	(2014).	

280.	 Lang,	D.	et	al.	Arrhythmogenic	Remodeling	of	β2	versus	β1	Adrenergic	Signaling	
in	the	Human	Failing	Heart.	Circ.	Arrhythmia	Electrophysiol.	(2015).	
doi:10.1161/CIRCEP.114.002065	

281.	 Burt,	J.	M.	&	Spray,	D.	C.	Inotropic	agents	modulate	gap	junctional	conductance	
between	cardiac	myocytes.	Am.	J.	Physiol.	254,	H1206–1210	(1988).	

282.	 Task	Force	of	the	Working	Group	on	Arrhythmias	of	the	European	Society	of	
Cardiology.	The	Sicilian	gambit.	A	new	approach	to	the	classification	of	
antiarrhythmic	drugs	based	on	their	actions	on	arrhythmogenic	mechanisms.	
Circulation	84,	1831–1851	(1991).	

283.	 Vaughan	Williams,	E.	M.	A	classification	of	antiarrhythmic	actions	reassessed	
after	a	decade	of	new	drugs.	J.	Clin.	Pharmacol.	24,	129–147	(1984).	

284.	 Spear,	J.	F.	&	Moore,	E.	N.	Modulation	of	quinidine-induced	arrhythmias	by	
temperature	in	perfused	rabbit	heart.	Am.	J.	Physiol.	-	Hear.	Circ.	Physiol.	274,	
817–828	(1998).	

285.	 Hecht,	H.	H.	Normal	and	Abnormal	Transmembrane	Potentials	of	the	
Spontaneously	Beating	Heart.	Ann.	N.	Y.	Acad.	Sci.	65,	700–733	(1957).	

286.	 Milburn,	T.,	Saint,	D.	A.	&	Chung,	S.	H.	The	temperature	dependence	of	
conductance	of	the	sodium	channel:	implications	for	mechanisms	of	ion	
permeation.	Receptors	Channels	3,	201–211	(1995).	

287.	 Smeets,	J.	L.	R.	M.,	Allessie,	M.	A.,	Lammers,	W.	J.	E.	P.,	Bonke,	F.	I.	M.	&	Hollen,	J.	
The	Wavelength	of	the	Cardiac	Impulse	and	Reentrant	Arrhythmias	in	Isolated	
Rabbit	Atrium.	Circ.	Res.	58,	96–108	(1986).	

288.	 Kiyosue,	T.,	Arita,	M.,	Muramatsu,	H.,	Spindler,	A.	J.	&	Noble,	D.	Ionic	mechanisms	
of	action	potential	prolongation	at	low	temperature	in	guinea-pig	ventricular	
myocytes.	J.	Physiol.	468,	85–106	(1993).	

289.	 Dumaine,	R.	et	al.	Ionic	Mechanisms	Responsible	for	the	Electrocardiographic	
Phenotype	of	the	Brugada	Syndrome	Are	Temperature	Dependent.	Circ.	Res.	85,	
803–809	(1999).	

290.	 Bastiaenen,	R.,	Hedley,	P.	L.,	Christiansen,	M.	&	Behr,	E.	R.	Therapeutic	
hypothermia	and	ventricular	fibrillation	storm	in	early	repolarization	syndrome.	
Hear.	Rhythm	7,	832–834	(2010).	

291.	 Gussak,	I.,	Bjerregaard,	P.,	Egan,	T.	M.	&	Chaitman,	B.	R.	ECG	phenomenon	called	
the	J	wave.	History,	pathophysiology,	and	clinical	significance.	J.	Electrocardiol.	
28,	49–58	(1995).	

292.	 Mugelli,	A.,	Cerbai,	E.,	Amerini,	S.	&	Visentin,	S.	The	role	of	temperature	on	the	
development	of	oscillatory	afterpotentials	and	triggered	activity.	J.	Mol.	Cell.	
Cardiol.	18,	1313–1316	(1986).	



	 222	

293.	 Ng,	G.	A.	et	al.	Sympathetic	nerve	stimulation	produces	spatial	heterogeneities	of	
action	potential	restitution.	Hear.	Rhythm	6,	696–706	(2009).	

294.	 Fedorov,	V.	V.	et	al.	Application	of	blebbistatin	as	an	excitation-contraction	
uncoupler	for	electrophysiologic	study	of	rat	and	rabbit	hearts.	Hear.	Rhythm	4,	
619–626	(2007).	

295.	 Herron,	T.	J.,	Lee,	P.	&	Jalife,	J.	Optical	imaging	of	voltage	and	calcium	in	cardiac	
cells	&	tissues.	Circ.	Res.	110,	609–23	(2012).	

296.	 Taggart,	P.	&	Lab,	M.	Cardiac	mechano-electric	feedback	and	electrical	
restitution	in	humans.	Prog.	Biophys.	Mol.	Biol.	97,	452–60	(2008).	

297.	 Reiter,	M.	J.,	Landers,	M.,	Zetelaki,	Z.,	Kirchhof,	C.	J.	H.	&	Allessie,	M.	A.	
Electrophysiological	Effects	of	Acute	Dilatation	in	the	Isolated	Rabbit	Heart.	
Circulation	96,	4050–4056	(1997).	

298.	 Simoons,	M.	L.	&	Hugenholtz,	P.	G.	Gradual	changes	of	ECG	waveform	during	and	
after	exercise	in	normal	subjects.	Circulation	52,	570–577	(1975).	

299.	 Durrer,	D.	et	al.	Total	excitation	of	the	isolated	human	heart.	Circulation	41,	
899–912	(1970).	

300.	 Classic,	P.	D.	Mus	musculus	(house	mouse).	at	<https://paleobiodb.org/cgi-
bin/bridge.pl?a=checkTaxonInfo&taxon_no=104205&is_real_user=1>	

301.	 Frazer,	K.	et	al.	A	sequence-based	variation	map	of	8.27	million	SNPs	in	inbred	
mouse	strains.	Nature	448,	1050–1053	(2007).	

302.	 Keane,	T.	M.	et	al.	Mouse	genomic	variation	and	its	effect	on	phenotypes	and	
gene	regulation.	Nature	477,	289–294	(2011).	

303.	 Brouillette,	J.,	Rivard,	K.,	Lizotte,	E.	&	Fiset,	C.	Sex	and	strain	differences	in	adult	
mouse	cardiac	repolarization:	importance	of	androgens.	Cardiovasc.	Res.	65,	
148–57	(2005).	

304.	 Shah,	A.	P.	et	al.	Genetic	background	affects	function	and	intracellular	calcium	
regulation	of	mouse	hearts.	Cardiovasc.	Res.	87,	683–693	(2010).	

305.	 Appleton,	G.	O.	et	al.	Determinants	of	cardiac	electrophysiological	properties	in	
mice.	J.	Interv.	Card.	Electrophysiol.	11,	5–14	(2004).	

306.	 Kanai,	A.	&	Salama,	G.	Optical	mapping	reveals	that	repolarization	spreads	
anisotropically	and	is	guided	by	fiber	orientation	in	guinea	pig	hearts.	Circ.	Res.	
77,	784–802	(1995).	

307.	 Tamaddon,	H.	S.	et	al.	High-Resolution	Optical	Mapping	of	the	Right	Bundle	
Branch	in	Connexin40	Knockout	Mice	Reveals	Slow	Conduction	in	the	
Specialized	Conduction	System.	Circ.	Res.	87,	929–936	(2000).	

308.	 De	Bakker,	J.	M.	et	al.	Slow	conduction	in	the	infarcted	human	heart.	‘Zigzag’	
course	of	activation.	Circulation	88,	915–926	(1993).	



	 223	

309.	 Gray,	R.	A.,	Iyer,	A.,	Berenfeld,	O.,	Pertsov,	A.	M.	&	Hyatt,	C.	J.	Interdependence	of	
virtual	electrode	polarization	and	conduction	velocity	during	premature	
stimulation.	J.	Electrocardiol.	39,	S13–18	(2006).	

310.	 Lerner,	D.	L.,	Yamada,	K.	a.,	Schuessler,	R.	B.	&	Saffitz,	J.	E.	Accelerated	Onset	and	
Increased	Incidence	of	Ventricular	Arrhythmias	Induced	by	Ischemia	in	Cx43-
Deficient	Mice.	Circulation	101,	547–552	(2000).	

311.	 Eisner,	D.,	Bode,	E.,	Venetucci,	L.	&	Trafford,	A.	Calcium	flux	balance	in	the	heart.	
J.	Mol.	Cell.	Cardiol.	58,	110–7	(2013).	

312.	 Marks,	A.	R.	Calcium	cycling	proteins	and	heart	failure:	Mechanisms	and	
therapeutics.	J.	Clin.	Invest.	123,	46–52	(2013).	

313.	 Giannopoulos,	G.	et	al.	Central	sympathetic	inhibition	to	reduce	postablation	
atrial	fibrillation	recurrences	in	hypertensive	patients:	a	randomized,	controlled	
study.	Circulation	130,	1346–1352	(2014).	

314.	 Cohn,	J.	N.	et	al.	Adverse	mortality	effect	of	central	sympathetic	inhibition	with	
sustained-release	moxonidine	in	patients	with	heart	failure	(MOXCON).	Eur.	J.	
Heart	Fail.	5,	659–667	(2003).	

315.	 Cathomen,	T.	&	Ehl,	S.	Translating	the	genomic	revolution	-	targeted	genome	
editing	in	primates.	N.	Engl.	J.	Med.	370,	2342–5	(2014).		

	

	

	

	


