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Abstract 

Anthropogenic climate change threatens the structure and function of forest 

ecosystems which will in turn affect the provision of goods and services. It is crucial 

that we are able to predict the effects that climate change will have on species so that 

management strategies can be put in place to alleviate these impacts. As well as the 

direct effects on plants of climate variables, such as increased temperatures and 

changes to the precipitation regime, it is thought that biotic interactions between 

species can modify the direct impacts. For my PhD I used a spatially-explicit 

individual based forest stand model, SORTIE, to consider both the direct effect of 

climate change, and the indirect effects of competition for light between species. I 

predicted that the lengthening of growing seasons caused by temperature-mediated 

phenological changes will: (i) give early leafing species a competitive advantage by 

increasing its own growth whilst reducing resources for neighbouring individuals 

and (ii) be a means to mediate the negative effects of drought on drought-intolerant 

species. My results show that plant-plant competition can be a stronger driver of 

species composition, with the only species to benefit from prolonged growth seasons 

in woodlands both in the northeastern US (Great Mountain Forest) and Southern 

England (Wytham Woods) being canopy species. These outcompete sub-canopy 

species for light, inhibiting their expansion. I provide evidence that current co-

dominant drought-intolerant sycamore is significantly impacted even under the 

current precipitation regime, with ash becoming the dominant species at Wytham 

after 1000 years. Lengthened growing seasons did not mitigate the effect of drought 

for drought-intolerant species. Future predictions for the population at Wytham will 

however need to consider the impact of dieback events such as ash dieback or oak 

sudden death. 
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1.1 Background 

1.1.1 Climate change 

Increases in anthropogenic emissions of greenhouse gases carbon dioxide, nitrous oxide and 

methane are changing the climate, with temperature and precipitation being the best studied 

affected climate attributes (IPCC, 2014). Global land temperatures are expected to rise 

between 0.3 and 4.8°C by 2100 with warming being highly spatially heterogeneous (IPCC, 

2014) . As well as an increase in mean temperatures, the variability of temperatures will also 

rise leading to an increase in the frequency of extreme events such as heat waves, winter 

warm spells with more frost-free periods and freeze-thaw-cycles (Rahmstorf and Coumou, 

2012, Barriopedro et al., 2011, Henry, 2007). Heat waves are expected to rise by a factor of 

5-10 globally (Barriopedro et al., 2011) and a factor of 2 in Europe (Schar et al., 2004). 

Future changes in precipitation are more uncertain and less predictable (IPCC, 2014). No 

change of total global precipitation is predicted but temporal and spatial changes are expected 

with increases in higher latitudes and decreases in the mid-latitudes (IPCC, 2013). This will 

likely cause an increase in the number of drought events alongside the number of flood 

events (IPCC, 2014). The frequency and severity of droughts are expected to rise with land 

surface area experiencing severe droughts increasing from 10% in 2006 to 40% in 2090 and 

extreme droughts from 3% to 30% (Burke et al., 2006). 

 

The latest projections for the UK climate suggests that mean daily temperatures will increase 

between 1.3 and 4.4°C, with summer daily maximum temperatures potentially increasing by 

up to 9.5°C in Southern England (Murphy et al., 2009). Precipitation is predicted to increase 

in the winter, from a few percent in Scotland up to a 70% increase on the west coast, however 

summer precipitation is expected to decrease by up to 65% in Southern England (Murphy et 
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al., 2009). Changes to the climate of the UK have already been recorded, with temperature 

increases and reductions in summer precipitation compared to previous averages (Jenkins et 

al., 2009). The severity and rate of these changes will have severe consequences for 

ecosystems globally and in the UK and predicting these effects needs to be a priority for 

ecologists. 

 

1.1.2 Ecological implications of climate change 

The main direct abiotic impacts of climate change that will affect plant community 

distributions and structures are the increase in temperature and the increase in the variability 

of precipitation (Boisvenue and Running, 2006, Walther et al., 2002, Thomas et al., 2004, 

Parmesan, 2006). The consequences of these impacts on plant communities has been 

investigated using three different methodologies: documenting trends which link species 

distributions with environmental conditions often over large, continental or global scales; 

observing species responses to gradual changes or extreme weather events; and finally by 

climate manipulation experiments which change the local environment conditions in their 

habitats. 

 

1.1.3 Evidence from trends 

There have been many changes to demographic characteristics that have been linked to 

changes in the environment, including changes to both species ranges (Walther et al., 2002, 

Parmesan and Yohe, 2003, Kullman, 2002, Walther et al., 2005) and community structures 

(Parmesan, 2006, Yang et al., 2011, Dieleman et al., 2015, Munson et al., 2012). These 

demographic changes have been attributed to the geographical shift of the optimal conditions 

for species, driving them to higher latitudes and altitudes (Walther et al., 2002, Kearney and 
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Porter, 2004) due to species-specific tolerances to temperature and precipitation (Mueller et 

al., 2005, Engelbrecht et al., 2007), with species favouring their optimum ranges (Norby et 

al., 2001). Many species have been shown to track the temperature increases (Kullman, 2002, 

Walther et al., 2005) with species colonising higher latitudes at rates estimated between 6.1 

and 16.9km per decade (Chen et al., 2011, Parmesan and Yohe, 2003). Species show 

differential responses in the rate and sensitivity to climatic changes which drives community 

shifts (Kullman, 2002). 

 

As well as distributions, changes in the physiology and functioning of species, functional 

types and ecosystems have also been observed. For example, a commonly recorded 

'fingerprint' of climate change has been the changes in phenological events - the timing of 

seasonal activities in organisms - which are recorded getting earlier in many organisms 

(Menzel and Fabian, 1999, Walther et al., 2002, Parmesan, 2006, Parmesan and Yohe, 2003, 

Root et al., 2003, Menzel et al., 2006) with spring events across taxa increasing every decade 

by between 2.3 and 5.1 days (Parmesan and Yohe, 2003, Root et al., 2003, Ma and Zhou, 

2012). This trend has been attributed to changes in mean climatic conditions, being especially 

correlated to rising temperatures (Vitasse et al., 2009, Polgar and Primack, 2011, Reyer et al., 

2013b table 1). 

 

1.1.4  Evidence from extreme events 

The changes in community structure and functioning described above are a result of shifts in 

the mean values of environmental conditions, however the increase in variability may have 

more of an impact on ecosystem structure and functioning, species distributions and survival 

(Jentsch et al., 2007, Crawford, 2008, Parmesan et al., 2000). The extremes of temperature 

and precipitation will manifest themselves as extreme events including droughts, floods, heat 
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waves or early frosts. These events are detrimental to species, and dieback events attributed 

to extreme droughts (Allen et al., 2010, Allen, 2009, Matsuik et al., 2012, Fensham and 

Fairfax, 2007, Rolim et al., 2005, Suarez et al., 2004, Kurz et al., 2008), minimum 

temperatures in spring (Gu et al., 2008, Hogg et al., 2002) or winter (Kreyling et al., 2012, 

Bokhorst et al., 2010) have been observed in various global regions. As well as dieback 

events, events such as heat waves can alter community compositions by increasing plant 

transpiration and drought stress in individuals (Walter et al., 2013). 

 

Of all extreme events, the one that will have the largest impact on temperate terrestrial plant 

communities will be the increase in droughts, where they occur (Rosenzweig et al., 2001, 

Kelly and Goulden, 2008, Allen et al., 2010), with species-specific tolerances to droughts 

driving community shifts (Suarez and Kitzberger, 2008). There is some suggestion that the 

intensity of precipitation changes could lead to a change of evolutionary force from that of 

competition for light and carbon to that of water (Hartmann, 2011). In the UK the predicted 

reduction in summer rainfall, alongside the higher temperatures, will lead to a increase in the 

number and intensity of droughts (Barriopedro et al., 2011), which may have serious 

influence on the composition of our woodlands (Broadmeadow et al., 2005, Penuelas et al., 

2004). 

 

1.1.5  Evidence from climate manipulation experiments 

Climate manipulation experiments investigate the effects of the direct abiotic impacts of 

climate change on a much smaller scale, changing the environmental conditions that plants 

experience in their natural habitats. These experiments consider the impacts of climate 

change either in isolation or in combinations, including increased temperatures (Rustad et al., 
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2001, Lin et al., 2010, Dieleman et al., 2012) and changes in precipitation (see Beier et al., 

2012). 

 

1.1.5.1 Temperature 

Climate manipulation experiments have been shown that temperature regulates many 

biogeochemical processes including plant productivity (Rustad et al., 2001, Wan et al., 2005, 

Sullivan et al., 2008, Bai et al., 2013), growth (Melillo et al., 2002, Biasi et al., 2008), plant 

nutrient uptake (Bai et al., 2013, Qiao et al., 2015) and fine root dynamics (Rustad et al., 

2001, Tierney et al., 2003). Plant biomass has been shown to increase with increased 

temperatures with averages between 12.3 and 19% in terrestrial plants (Kreyling et al., 2012, 

Lin et al., 2010), although this is dependent on the plant functional type (PFT) and latitude 

(Rustad et al., 2001, Lin et al., 2010) with some species or PFTs showing no change or a 

decrease in biomass (Saleska et al., 2002, Klein et al., 2007). Warming, however, also 

reduces soil moisture (Wan et al., 2005) which alongside reduced precipitation could increase 

the frequency and severity of droughts. 

 

1.1.5.2 Precipitation 

Experimental decreases in annual precipitation events cause a decrease in the annual net 

primary productivity of plants (Wu et al., 2011) and slower growth (Broadmeadow and 

Jackson, 2000). There is also evidence that changes in the frequency of precipitation reduces 

carbon turnover whilst increasing species diversity, even if the total volume remains the same 

(Knapp et al., 2002). Changes in precipitation are predicted to be spatially and temporally 

heterogeneous, for example it is projected that the UK will see drier summers (Murphy et al., 

2009). Alongside the expected temperature increases, this reduction in summer precipitation 
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will cause an increase in the frequency of droughts, of which the consequences on plant water 

relations are well documented (e.g. Bréda et al., 2006, Leuzinger et al., 2005, Granier et al., 

2007) with the sensitivities being species-specific based on two competing responses to 

drought. Anisohydric plants keep their stomata open which can lead to hydraulic failure 

whereas isohydric plants avoid this by closing their stomata to reduce water loss, however 

they can eventually face carbon starvation (McDowell et al., 2008, Sala et al., 2010). These 

competing drought tolerances may be drivers for community shifts in some ecosystems. 

 

1.1.6  Biotic Interactions 

Plants do not exist in isolation and so their physiological responses to climate change will not 

only depend on the direct abiotic effects but also indirectly through community dynamics and 

biotic interactions (Lortie et al., 2004, Hartmann, 2011, Thorpe et al., 2011). As shown 

above, changes to species composition can be driven by species-specific trade-offs to 

environmental conditions such as drought sensitivities or shade tolerances, however these 

impacts can be altered through biotic interactions (Gilman et al., 2010, Montoya and 

Raffaelli, 2010). These can be either advantageous or detrimental and include those with 

other organisms, such as pollinators, fungal mutualists or herbivores, as well as plant-plant 

interactions in the form of competition or facilitation (Lortie et al., 2004, Tylianakis et al., 

2008). 

 

Competition between plants is most significant during stand development when young 

individuals are competing for resources (Yoda  et al., 1963, Luyssaert et al., 2008). The most 

important resource for plants in temperate areas is thought to be light, when water and 

nutrients are not limiting factors. This competition is asymmetric with larger trees having an 
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advantage over smaller ones in light acquisition through shading (Weiner, 1990, Casper and 

Jackson, 1997) and is the primary factor underlying forest succession theory. This theory 

suggests that succession is promoted through trade-offs between low light survival and high 

light growth, with shade-intolerant species exhibiting faster high light growth than shade-

tolerant species (Kobe et al., 1995). Interactions between individuals, including competition, 

are expected to change as a consequence of climate change, either by the introduction to 

novel species into ecosystems (Alexander et al., 2015, Urban et al., 2012a) or through 

species-specific responses to the new environmental conditions (Northfield and Ives, 2013).  

 

There have been many studies relating phenological events to temperature and showing that 

they track climate change-related temperature increases (Sparks and Menzel, 2002, Walther 

et al., 2002, Menzel et al., 2006, Parmesan, 2006, Schwartz et al., 2006, Jeong et al., 2011). 

Species will respond differently to the temperature increases and so mismatches between 

species will have implications for ecosystems (Visser and Both, 2005, Parmesan, 2006, 

Thackeray et al., 2010, Kerby et al., 2012, Tylianakis et al., 2008). Studies have considered 

mismatches between a diverse range of trophic levels including between plants and 

herbivores (Post and Forchhammer, 2008, Post et al., 2008, Visser and Holleman, 2001), 

plants and their pollinators (Kudo and Ida, 2013, Hegland et al., 2009) as well as animal 

trophic groups such as birds and their prey (Visser et al., 2012, Both et al., 2009, Burthe et 

al., 2012, Hipfner, 2008) and fish and their prey (Edwards and Richardson, 2004, Winder and 

Schindler, 2004). Studies have also considered the impact that climate change will have on 

plant-plant competition (van Loon et al., 2014, Sutherst et al., 2007, Miller-Rushing and 

Primack, 2008, Lortie et al., 2004, Brooker, 2006, Gilman et al., 2010, Adler et al., 2012), 

although this has not been investigated for tree populations within a forest.  
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One potential way that the intra-specific competition regime for light will be altered under 

climate change is through species-specific responses of phenology to climate change. Species 

that increase their growing season as temperatures rise, due to earlier budbursts and later leaf 

senescence, may not only get an advantage through increased productivity but also increase 

gain a competitive advantage to their neighbours through shading. 

 

1.1.7  Predicting Ecological Change 

Given the implications of the direct abiotic factors, such as altered temperature and 

precipitation patterns, on plants, it is imperative that we are able to produce accurate 

predictions for future population changes. These predictions will also need to consider intra-

specific interactions to enable us to consider the mediation of the direct impacts as well as the 

effect that changes to these interactions will have. Individual-based modelling allows us to 

make community-level predictions from responses of individuals to environmental change 

(Johnston et al., 2014), whilst also allowing for the inclusion of interactions between 

individuals, such as competition. For this PhD I have used this methodology to investigate the 

role of climate change impacts on species compositions of forests. I utilise an existing forest 

growth model, SORTIE-ND (Pacala et al., 1996) which consists of four submodels: 

recruitment, growth, allometry, mortality. The model considers one source of competition 

between individuals - that for light - making it ideal for the prediction of the direct effects of 

climate change on the community structure, as well as the moderation of these impacts 

through competition. 
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1.2  Objectives 

There were four objectives for this thesis. The first objective was to modify the growth 

function of SORTIE-ND to simulate species-specific spring phenological events (budburst) to 

temperature, allowing the investigation of the role of alterations to species interactions on 

community dynamics. The second objective was to then parameterise the forest growth 

model using data collected from the UK to produce a model that represents a broadleaf semi-

natural ancient woodland. The third then uses this model to investigate the role of changes to 

competition regime for light on the UK species, whilst the fourth investigates the direct 

abiotic effect of drought on the species compositions by altering the mortality function of the 

model with species-specific drought tolerances, alongside predictions of rainfall. The final 

objective considers both of these climate change effects together, to investigate the 

modulation of drought impacts on the species structure through competition intensity. 

 

1.2.1  Structure of the Thesis 

For my thesis I used a forest growth model to investigate the two effects of climate change - 

increasing temperatures and reduced rainfall. This chapter outlines the background to why it 

is important that we investigate the impact of climate change on woodlands. In order to 

achieve this in chapter 2 I introduce variable budburst dates into SORTIE-ND, an existing 

forest growth model that was developed in the US by (Pacala et al., 1993). I combine existing 

predictions of future temperatures with data from budburst models to give predictions for the 

effect of species-specific budburst change on the community at the Great Mountain Forest. In 

chapter 3 I describe the parameterisation of SORTIE/UK using both existing datasets and 

data collected between 2011 and 2014. In chapter 4 this model was combined with species-

specific predictions of budburst change for the UK species with projected temperature 
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changes to investigate demographic changes. Chapter 5 considers the effect of drought on the 

species in the model using predicted rainfall data alongside drought-induced mortality, 

estimated from data. In chapter 6 the combined effects of temperature and rainfall are then 

explored by running model simulations with both effects simultaneously, allowing me to test 

the hypothesis that interactions between the species (light competition) will modulate the 

abiotic effect of climate change for some of the modelled species. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

2.   
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Chapter 2 

Using SORTIE-ND to investigate the 

role of climate change induced changes 

in growing season length 
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2.1 Abstract 

Biodiversity and ecosystem structure play an important role in the provision of goods and 

services such as productivity, decomposition and carbon sequestration. However, biodiversity 

is being lost at an unprecedented rate due to forces including climate change and it is vital 

that we are able to predict the changes in ecosystem structures as this will have implications 

for their functioning. To consider the effect that a rise in temperature will have on forests, I 

used the spatially-explicit individual based forest growth model SORTIE-ND. Using 

predicted future budburst dates under two climate change scenarios I modelled the effect of 

species-specific changes to growing seasons on the tree species at the Great Mountain Forest, 

Connecticut. My model showed that the only species to respond to the changes in growth 

periods were the current co-dominant canopy species beech and hemlock. When compared to 

model runs under current climate conditions, in 1000 years beech increased its proportional 

representation by between 0.68% and 0.83%, representing 5480 and 4045 individuals, under 

climate change conditions, whereas hemlock reduced by 8194 and 7906 individuals. Since all 

species were modelled to increase their growth, this suggests that inter-specific interactions 

are a larger driver of demographic change than the direct effect of climate change. This is the 

first investigation using an individual based model to consider the role of plant-plant 

competition modifying the impacts of climate change on woodlands and has implications for 

future predictions of changes to biodiversity. 

 

2.2 Introduction 

There has recently been considerable interest in the relationship between biodiversity, 

ecosystem functioning and the provision of ecosystem services - goods and processes that 

have direct benefits to humans with a large range of studies, ranging from experiments to 
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meta-analyses (Balvanera et al., 2006, Naeem and Wright, 2003, Hooper et al., 2005, Diaz et 

al., 2006, Raffaelli, 2006, Duffy, 2009). This research into biodiversity and ecosystem 

functioning (BEF) has shown clear links between biodiversity and services such as 

productivity, decomposition, the regulation of climatic conditions and carbon sequestration 

(Diaz et al., 2006). 

 

Currently biodiversity is being lost at an unprecedented rate, faster than found in fossil 

records (MEA 2005, Barnosky et al., 2011). The cause of this mass extinction has been 

attributed to anthropogenic drivers, one of the most important being climate change (MEA, 

2005; Thuiller et al., 2005, Sala, 2000). Global surface temperatures have risen by 0.85°C in 

the last 100 years, and the rate of warming is increasing (IPCC, 2014). Future increases in 

mean surface temperature are estimated between 0.3 and 4.8°C in the next century and it is 

expected that there will be increases in the occurrence and duration of extreme weather 

events such as heat waves and precipitation events (IPCC, 2014). These changes in climatic 

conditions have serious implications for the biodiversity and thus the functioning of 

ecosystems, from local to global scales.  

 

With this in mind it is clearly imperative that we are able to predict changes in current global 

diversity based on changes in climate. There are limitations to one of the most popular 

methods that predict species distributions, species distribution models (SDMs) which define 

species ranges by environmental condition, tracking the movement of species through the 

loss or gain of suitable (fundamental) niches. These methods focus on abiotic factors alone 

and do not account for biotic factors such as dispersal and interactions which will also affect 

the relocation of species, and have an underlying assumption that current distributions are 

constrained by climate (Ibanez et al., 2006, Neilson et al., 2005, Boulangeat et al., 2012). 
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Since climate change will cause novel conditions that are outside the range of current data, 

SDMs must be used with caution as they may not accurately predict new species distributions 

(Evans, 2012, Evans et al., 2012, Ibanez et al., 2006). An alternative approach is individual-

based modelling (IBM) which is process based and in which the population characteristics 

are an emergent property of processes at the individual or species level (Norris, 2012). These 

models are generally spatially-explicit models in which neighbours interact by competition 

for resources. 

 

This modelling approach has been developed over the past 50 years with some of the earlier 

examples being of forest growth models (Newnham, 1964, Botkin et al., 1972) and have 

since been applied to boreal temperate and tropical forests (Medvigy et al., 2009, Moorcroft 

et al., 2001, Seidl et al., 2012, Moravie et al., 1997). For this study I have used the forest 

dynamics model SORTIE, which was developed by Pacala et al. (1996), using data from 

Great Mountain Forest in North-western Connecticut, USA. In this model the life history of 

individuals in the forest is represented by four submodels: growth, recruitment, mortality and 

resource competition. The resource considered in this model is light, with individuals shading 

neighbours and species-specific differences in both light attenuation and shade tolerances 

causing interspecific competition. The amount of light that an individual receives affects both 

its growth and survival and so changes to the light competition could be a driver for 

community shifts. 

 

In order to use IBMs as a predictive tool for climate change we must consider how it will 

affect individuals, which determines the response of the population. For this study I 

developed SORTIE to consider one of the effects that projected temperature increases will 

have on the forest. Temperature is one of the largest expected effects of global climate 
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change with ambient air temperatures expected to rise between around 1.6°C and 5.5°C in the 

North East of the US (Melillo et al., 2014). In plants one of the largest direct effects that this 

will have on is changes to phenological events (Sparks and Menzel, 2002, Menzel et al., 

2006, Bertin, 2008, Richardson et al., 2013, Schwartz et al., 2006). Phenological events are 

controlled by complex biochemical mechanisms which are initiated by environmental 

conditions, and include events such as budburst, bud cessation, flowering and leaf-fall. There 

is some debate on which environmental conditions are drivers of phenological responses (e.g. 

photoperiod; Korner and Basler, 2010), but the vast majority of studies indicate that 

temperature is the major driving force in temperate areas (Jeong et al., 2012, Menzel and 

Fabian, 1999, Schwartz and Hanes, 2010, Chuine, 2010, Morin et al., 2009, Vitasse et al., 

2009).  

 

Advances in spring phenological events have been observed across many taxa, advancing 

between 0.2 and 5 days per decade over the last 50 years, which has been attributed to 

warmer temperatures (Migliavacca et al., 2012, Edwards and Richardson, 2004, Parmesan, 

2006, Menzel et al., 2006, Sparks and Menzel, 2002, Jeong et al., 2011, Walther et al., 2002, 

Schwartz et al., 2006). There is also some evidence of autumn phenological dates being 

influenced by temperatures (Menzel and Fabian, 1999, Ibanez et al., 2010, Peñuelas et al., 

2002, Piao et al., 2006, Julien and Sobrino, 2009) however, data are lacking for North 

American autumn phenology (Schwartz & Reiter 2000; Richardson 2006) and the effects of 

temperature are less defined than spring phenological events (Lee et al., 2003) therefore this 

was not considered in the scope of this study. 

 

Changes in phenology are already considered one of the "fingerprints" of climate change, 

being one of the most easiest recorded and most common indicators of climate change 
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(Parmesan and Yohe, 2003, Morisette et al., 2009). It is thought that mismatches in 

phenology are causing changes in species interactions such as predator-prey or insect-plant 

asynchrony (Koh et al., 2004, Kiers et al., 2010, Rafferty and Ives, 2011, Bellard et al., 2012, 

Both et al., 2009, Post and Forchhammer, 2008, Both et al., 2006, Thomson, 2010) as well 

changes in interactions with their abiotic environments (Inouye, 2008). Importantly species-

specific responses to temperature also alter the outcome of plant-plant competition, as the 

increased length of the growing season increases productivity and growth (Leith, 1974, 

Cannell et al., 1998, Semchenko et al., 2012, Aber et al., 1995, Goulden et al., 1996, 

Churkina et al., 2005), as well as potentially affecting the . Changes to interactions between 

species will have implications for the functioning of ecosystems (Winder and Schindler, 

2004, Willis et al., 2008) as well as the distribution of species (Chuine et al., 2010). 

 

In order to consider the effects of climate change in this chapter, and throughout the thesis, I 

used emission scenarios from the Intergovernmental Panel on Climate Change (IPCC, 

Nakicenovic and Swart, 2000). These are qualitative descriptions ("storylines") of four global 

and local social, economic and technological changes. The scenarios I use represent low (B1), 

medium (A1B) and high (A1fi) emission scenarios, with the B1 representing a global society 

with clean-low emission technology and the A1B and A1fi representing rapid economic 

growth in the next century with A1fi being predominately fossil fuel intensive and A1B using 

more sustainable fuel sources. The scenarios are provided with equal weight in terms of their 

probability of occurrence and so should all be considered as equally likely.  

 

In this chapter I used temperature-induced budburst changes that were predicted for Harvard 

Forest by (Migliavacca et al., 2012) to modify the growth submodel of SORTIE in order to 

predict effects on biodiversity. My first hypothesis was that the predicted phenological 
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changes will be a driving force behind changes in forest biodiversity. I further hypothesise 

that those species in the forest that have the greatest advancement of budburst date will 

increase their abundance more than species in which phenology is relatively insensitive to 

temperatures changes. 

 

2.3 Methods 

2.3.1 Model Description 

SORTIE is a forest gap model that was parameterised using data from Great Mountain 

Forest, Norfolk, Connecticut (Pacala et al., 1996). There are nine species included in the 

model, which represent the dominant and major subdominant species found in mid- and late-

successional stands: American beech (Fagus grandifolia Ehrh.), eastern hemlock (Tsuga 

canadensis (L.) Carriére), sugar maple (Acer saccharum Marshall), red maple (Acer rubrum 

L.), yellow birch (Betula alleghaniensis Britt.), white pine (Pinus strobus L.), red oak 

(Quercus rubra L.), black cherry (Prunus serotina Ehrh.) and white ash (Fraxinus americana 

L.).  

 

The model comprises of four submodels: resource, growth, recruitment and mortality.  

A brief description of the model follows, full parameterisation can be found in Pacala et al. 

(1996).  

2.3.1.1 Resource  

This submodel is concerned with the light available to an individual and is made up of three 

parts. The size of an individual’s crown is calculated using allometric equations relating tree 

crown diameter and depth to the diameter at breast height (DBH). The second part is the 

attenuation of light passing through the crown, calculated using species-specific light 
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extinction coefficients. Finally, the total light available to an individual is a function of the 

potential light available, taking into account the spatial and temporal movements of the sun, 

and the shading from other trees, given their size of crown and attenuation of light. 

 

2.3.1.2 Growth 

The annual radial growth rate of an individual are predicted using their DBH and the global 

light index (GLI). Trees under 750cm in height, increase their annual radial growth 

proportionally with radius where the larger an individual becomes the progressively slower as 

it increase in size. The annual radial increase for smaller trees is calculated as followed, 

following Pacala et al., (1995): 

 

                                 
     
  
  

    
      (2.1) 

 

where: 

G1 is asymptotic growth rate at high light (cm yr
-1

) 

G2 is slope at 1% light (cm yr
-1

 GLI
-1

) 

 

For trees larger than 750cm in height, there is a maximum growth annual radial increment, as 

per the Constant Area Increment Law (Phipps 1967), which is an annual increment of 1.5mm 

for a 100cm diameter tree. 
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2.3.1.3 Mortality 

There is a stochastic mortality rate of 1% which affects adults. Senescence is also applied to 

adults with a DBH above one meter, in which the probability an individual dying (ms) 

increases with size, at a rate that depends on the species: 

 

     
                 

                           (2.2) 

 

where:  

 

α and β are mortality parameters estimated from the data. 

DBHs is the height that senescence begins to affect, 1m. 

 

Mortality for all other individuals is calculated as a function of growth of the previous five 

years and shading from neighbouring trees.  

 

              

 

where: 

z is the rate of mortality in shade  

y is a parameter estimated from data 

growth is the growth over the previous five years 
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2.3.1.4 Recruitment 

This submodel estimates the number and spatial locations of seedlings produced by adult 

trees. It is a function of the tree’s diameter and uses a log-normal function to calculate the 

density (numbers m
-2)

 of seedlings at given point, i (Ri). 

 

        
    

  

 

  
     

           

  
   

         (2.3) 

where: 

STR is the fecundity of the tree, defined as the standardised total number of recruits produced 

by a 30cm tree 

DBHj is the DBH (cm) of the jth tree, where j = 1 to n adult trees within 20m 

dij is the distance between point i and the jth tree 

X0 is the mean of the function 

Xb is the variance of the function 

β is a dispersal parameter 

 

 

2.3.2 Phenological Data 

In SORTIE-ND all species are modelled to have the same growing season of 120 days. For 

this study I modified the model to include variable budburst dates for each species, in order to 

simulate both variability between species and to allow the simulation of climate change 

conditions. Baseline budburst dates, defined as 50% leaf emergence, were taken from freely 

available phenological data that has been recorded since 1990 at Harvard forest, a research 

forest that is managed by Harvard University and located approximately 65 miles north of the 

Great Mountain Forest, in Massachusetts (O'Keefe, 2012). Recordings take place every 3-7 
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days between April and June for 33 woody species. Data are available for between 10 and 30 

individuals for all of the species in SORTIE, covering 21 years (1990-2011), apart from Pinus 

strobus and Tsuga canadensis for which there is 11 years (1990-2001). Budburst dates were 

converted into julian dates and averaged to provide a baseline budburst date for each species; 

an example of the variation is shown for oak (Quercus rubra) in figure 2.1. 

 

 

Figure 2-1: Chart showing the mean (lines representing SD) of budburst date for Quercus rubra at 

Harvard Forest, 1990-2012. 

 

 

 

  

 

Predictions of changes to budburst date under climate change scenarios were taken from 

(Migliavacca et al., 2012). To estimate future changes in budburst, they used Akaike's 

Information Criteria (AIC) to assess the fit of 12 leaf budburst models on 11 North American 

woody species. They produced predictions under two IPCC emission scenarios, representing 

low (B1) and high (A1fi) CO2 emissions (Nakicenovic and Swart, 2000). Data was not 
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available for the two evergreen species P. strobus and T. canadensis and so the mean 

budburst date of the other seven species was used. 

 

The species-specific budbursts were included into the model by altering the annual growth 

for individuals, which was normalised using the original growing season length in SORTIE, 

150 days. To simulate climate change conditions the growing season was increased every 5 

year time step for 100 years, after which it was kept constant. The code introduced was as 

follows: 

 

if (iterationCount > 0 && iterationCount < 20) julstart -= julstart5yrRedFactor;  

growthlength = julend - julstart; 

speciesGrowth = growthlength / 150; 

 

where: 

iterationCount counts the 5yr time step 

julstart5yrRedFactor is a factor for reducing the budburst in the 5 year time steps  

julstart is the budburst julian date 

julend is the leaf senescence julian date, defaulted to 270  

 

2.3.3 Baseline Conditions 

Baseline conditions was considered to be the model in its current iteration, with the growth 

rate of each species being 150 days.  
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2.3.4 Model Runs 

The model was run eight times for each emission scenario and the baseline conditions, 

for 1000 years in 5-year time steps. The model was initialised with 16475 individuals 

of each species, which were distributed at random.  

 

2.3.5 Statistical Analyses  

Statistical analyses were performed using statistical program R 2.15.0 (R Development Team, 

2013). Differences in the species richness and abundance between emission scenario and 

baseline conditions were tested for using a one-way ANOVA. This method was also used to 

investigate differences in the total number of individuals, age and DBH. Homogeneity of 

variance was tested for using diagnostic plots with normality tested for using a the Shapiro-

Wilk test. Where significant differences of the ANOVA were found, Tukey's honest 

significant differences (HSD) post hoc tests were performed. Differences in the proportions 

of adults and saplings were tested using Pearson's chi-squared test. 

 

2.4 Results 

2.4.1 Budburst 

Changes in budburst range from an advance of 5.6 and 12.6 days century
-1

 (mean 8.8 days) in 

emissions scenario A1, and 2.3 to 5.6 days century
-1

 (mean 4.1 days) in scenario B1. The 

smallest change is expected in Fraxinus americana, with the largest increase seen in Quercus 

rubra, in both scenarios (Table 2.1).  

 

2.4.2 Richness 
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There is no change of evenness of the population in the budburst conditions or either the low 

(B1) or high (A1fi) emission scenarios compared to baseline conditions. 

 

 

 Baseline budburst  

(average 1990-

2011) 

Budburst change  

(Julian day 

century
-1) 

 

 B1 A1fi 

Fraxinus americana 130.2 -2.3 -5.6 

Acer saccharum 121.5 -3.5 -7.1 

Fagus grandifolia 128.3 -3.5 -7.3 

Acer rubrum 126.2 -3.9 -8.7 

Betula alleghaniensis 126.2 -3.9 -8.8 

Tsuga canadensis 146 -4.3 -9.4 

Pinus strobus 154 -4.3 -9.4 

Prunus serotina 111.2 -5.4 -9.3 

Quercus rubra 127.1 -5.6 -12.6 

Table 2-1: Baseline budburst dates as taken from O'Keefe (2012) and predicted changes in budburst date 

taken from Migliavacca et al. (2012). 

 

2.4.3 Total number of individuals 

After 1000 years there are significant differences in the total absolute numbers of individuals 

in the forest in the emission scenarios (F(2,21)=6.53,p =0.006; figure 2.2), with a decrease in 

numbers in scenario A1fi from 874754 in baseline conditions to 870452 (p<0.01). There is 

also a decrease in the average number total numbers in scenario B1 to 870934, but this is not 
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significant (p<0.2). It is worth noting here that the p-values of the ANOVA here and to most 

of the other ANOVAs in the thesis would decrease with an increase in replications. 

 

 

 

 

2.4.4 Absolute numbers and proportional representation of species 

There are differences between scenarios in the absolute numbers of beech (F(2,21)=7.2,p 

<0.005) and hemlock (F(2,21)=8.9,p =0.001; figure 2.3), as well as the proportions of both 

(beech: (F(2,21)=7.2,p <0.005; hemlock: (F(2,21)=8.89,p =0.001; figure 2.4). Post-hoc analyses 

shows that beech significantly increases from baseline absolute numbers of 343480 (±3322) 

to 348960 (±2476; p=0.003) in scenario B1 and 347525 (±3112; p=0.03) in A1fi. This is 

reflected in an increase in proportional representation from 39.2% in baseline conditions to 

Figure 2-2: Changes to the total absolute number of individuals after 1000 years, for scenarios B1 and 

A1fi and the baseline temperature conditions. The dark horizontal line represents the median number 

of individuals from the eight runs, with top and bottom of box representing the upper and lower 

quartiles (25th and 75th percentile), with the end of whiskers representing the data range. 
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40% in B1 (p=0.001) and 39.9% (p=0.006) in A1fi. Conversely, there is a reduction in 

hemlock in both scenarios, from 465334 (±3984) in baseline conditions to 457140 (±3743; 

p=0.001) and 457428 (±5342; p=0.004) in B1 and A1fi respectively.  

 

 

Figure 2-3: Proportional representation of beech and hemlock under B1 and A1fi scenarios and baseline 

temperature conditions. 

1 

 

 

 

 

 

 

 

 

 
Figure 2-4: Absolute numbers of beech and hemlock in B1 and A1fi emission scenarios and 

under baseline temperature conditions. 
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These decreases are reflected in the abundances, dropping from 53.2% in baseline conditions 

by 0.68% to 52.49% in B1 (p=0.006) and by 0.62% to 52.55% in A1fi (p=0.01). There were 

no significant differences in any of the other species in terms of absolute numbers, or 

proportional representation (table 2.2) 

 

Average Absolute Number After 1000 Years 

 

Baseline B1 A1fi 

Fraxinus americana 11 (±9) 13 (±12) 10 (±7) 

Fagus grandifolia 343480 (±3322) 348960 (±2476) 347525 (±3112) 

Betula alleghaniensis 30559 (±1016) 30133 (±810) 30461 (±1213) 

Prunus serotina 34712 (±931) 33998 (±804) 34320 (±832) 

Tsuga canadensis 465334 (±3922) 457140 (±3743) 457428 (±5342) 

Quercus rubra 210 (±70) 261 (±42) 247 (±81) 

Pinus strobus 60 (±42) 38 (±31) 48 (±25) 

Acer rubrum 19 (±11) 18 (±12) 25 (±15) 

Acer saccharum 369 (±64) 373 (±67) 388 (±40) 

Table 2-2: Absolute numbers for the 9 species after 1000 years of simulations 

 

Age, DBH, adult-sapling proportions  

No differences in DBH, height, or the proportions of adult to saplings were found between 

scenarios. 

 

2.5 Discussion  

My results suggest that the changes in growth season length alone will not cause major 

community shifts at the Great Mountain Forest, however it does provide evidence for biotic 
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interactions influencing the response of species to climate change. All species are predicted to 

increase their growth season length, however only one species increased their proportional 

representation. I predicted that species with the largest change in growth period would gain a 

competitive advantage over coexisting species by increasing their productivity as well as 

decreasing the light to neighbouring individuals. This hypothesis was rejected however as my 

model showed there was no relationship between the increase of annual growth of a species 

and its increase in absolute numbers or proportional representations. 

 

Oak is predicted to be the most sensitive species to temperature change, increasing its 

growing season a full week longer than white ash in scenario A1fi. It is however only beech, 

with a moderate increase of 3.5 days in B1 and 7.1 in A1fi, that increases its numbers and 

proportional representation after 1000 years, when compared to baseline conditions. 

Hemlock, the other co-dominant canopy species, was modelled to have the joint-third longest 

increase of growing season, however it is seen to decrease in proportion within the forest 

after 1000 years, when compared to current budburst conditions. These differences between 

scenarios and the baseline conditions show that changes in the growth caused by advancing 

budburst dates does affect the population, however the non-linearity with growth season 

length shows that biotic interactions are a larger impact on most species within the forest.  

 

American beech, alongside eastern hemlock, are current the co-dominant species at the Great 

Mountain Forest and were shown to remain co-dominant after 1000 years when current 

budburst data were included, which is similar to predictions by (Pacala et al., 1996). The 

increase of beech may be attributed to the life history traits that have been used to define late-

successional species. Species-specific responses to light are often used to explain the 

differences between early- and late-successional plants, with a trade-off between high growth 
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rates at full light with low shade tolerances in the former, and the opposite in the latter (Kobe 

et al., 1995).  

 

Both canopy species at the GMF have the highest survivorship under low light conditions 

(beech: 92%; hemlock: 91%) which is a 22% larger survival rate than the next species, sugar 

maple. Low light survival was confirmed by (Pacala et al., 1996) to best explain dominance 

of the late-successional trees at the GMF. My results show that the increase in growing 

season length increased the number of beech, constraining any extra growth of hemlock. This 

may be caused by the alteration of the light regime due to the increase in the number of 

beech. This species intercepts the most amount of light of any species, at 78.5% when 30cm 

in diameter, with the next most dense canopy (hemlock) casting only 46% when 30cm in 

diameter. Of both the canopy species, beech grows the quickest in low light conditions - 

taking 55 years to 3m in 1% sun compared to 75.3 years for hemlock - and it is this 

combination of traits that could mean explain the dominant response to the increase in 

growing season. 

 

These results are suggestive of the importance of biotic interactions in the response of species 

to climate change. The role of interactions in the response to climate change has been 

extensively studied (Visser and Both, 2005, Parmesan, 2006, Tylianakis et al., 2008), 

however these studies often focus on the interactions between trophic levels. Some studies 

have considered the role of competition between species (Lortie et al., 2004, van Loon et al., 

2014, Brooker, 2006) however there have been no previous studies, of this sort, into the 

effect of climate change on competition between tree species. This study provides evidence 

that competition between species plays a significant role in the response of communities to 

climate change and provides further weight to suggestions that it is vital that biotic 
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interactions are considered when predicting the structure and distribution of populations 

(Pearson and Dawson, 2003, Guisan and Thuiller, 2005, Brooker, 2006). The differences 

between species in the increase of days per century under climate change are modest at the 

GMF, with a range of 7 days in scenario A1fi (5.6 days century
-1

 in white ash to 12.7 days in 

red oak). I hypothesise that populations where the mismatches between phenological dates 

are larger the effects will be more pronounced.  

 

It is known that different tree cohorts - for example, canopy and sub-canopy species - are 

affected by different stresses. My results supports the work of (Butt et al., 2014) that showed 

that when the spring phenological dates of trees were delayed that the growth rates were 

reduced most in under-story species. This was considered to be because of light competition, 

and the reduction of growing period before the canopy closed. Whilst I did not include the 

time of budburst in my model, the increase of annual growth would also increase light 

competition between species by increasing the size of the canopy. Tall trees in the canopy 

would not be affected by changes in light competition so would only benefit from increased 

growth. However they would experience greater wind exposure and solar radiation which 

would increase hydraulic stress and limit growth, especially in drought intolerant species 

(Niinemets, 2010, Fulton et al., 2014). The level of resource available or disturbance may 

also affect which cohort individuals become, with trade-offs depending on stress levels 

(Smith and Sibly, 2008). 

 

These results provide compelling evidence of the plant-plant competition altering the 

response of a forest communities to climate change. Given the large contribution to climate 

sequestration, amongst other biogeochemical cycles (Bonan, 2008a), it is vital that we are 

able to accurately predict changes to population structures. There are some limitations of the 
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data that preclude them from being used for accurate predictions of the responses at the GMF, 

for example the start of growth for eastern hemlock was unavailable and so was taken from 

the average of the other species. However it does provide the first study into the mitigating 

effects of plant-plant competition on the responses to climate change of a forest.  
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3.  Chapter 3 

Parameterisation of SORTIE/UK 
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3.1 Introduction  

We are already experiencing anthropogenic climate change with higher ambient temperatures 

and changes to global precipitation regimes (Jenkins et al., 2009, IPCC, 2013, Peterson and 

Baringer, 2009) compared to the period before the 1970s. These trends are predicted to 

accelerate in the coming century (IPCC, 2014) and so it is important that we able to predict 

the impacts they will have on ecosystems. It has been suggested that in order to predict in 

novel conditions, such as those caused by climate change, a systems approach is the most 

suited to provide accurate predictions (Evans et al., 2012, Evans et al., Grimm et al., 2005, 

Norris, 2012). As well as having the potential to provide reliable and realistic outputs (Grimm 

and Railsback, 2005, Bart, 1995), individual-based models provide the opportunity to model 

interactions between individuals. This is especially important when predicting the impacts of 

climate change, as interactions can mediate the direct impacts of climate change (Parmesan, 

2006, Yang and Rudolf, 2010, Tylianakis et al., 2008, Suttle et al., 2007, Brooker, 2006, 

Gilman et al., 2010). In order to predict population changes, we first need a robust model 

which is able to simulate current conditions.  

 

The Environmental Change Network (ECN) is a monitoring programme that monitors both 

physical and biological factors which has eight terrestrial sites, including two woodlands that 

have been monitored since 1992 with a further four sites included in the succeeding six years 

(Morecroft et al., 2009). All sites are monitored following standard protocols (Sykes and 

Lane, 1996) and so provide a reliable source of data, especially when comparing or 

combining plots and are a good source of data for parameterising forest growth models. For 

our study we chose the forest growth model SORTIE which has been used extensively where 

it was originally parameterised in Northeastern US as well at other locations (Pacala et al., 

1996, Purves and Pacala, 2008, Purves et al., 2008, Kunstler et al., 2011, Kunstler et al., 
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2009, Ameztegui et al., 2015, Bose et al., 2015, Juez et al., 2014, Hawkins et al., 2012, 

Beaudet et al., 2011). It was chosen for its simple concept with only one source of 

competition between trees as well as the ability to couple it to other trophic levels (Evans et 

al., 2015). In the model the only competition between individuals is for light, which is 

intercepted by individuals' crowns, which affects the light environment underneath. The 

growth of saplings is related to the amount of light that it receives, where as adults grow 

according to their size. In the original SORTIE survival was dependent on an individual's 

growth, but (Moustakas and Evans, 2015) showed that at the ECN sites mortality was better 

explained by size. 

 

The aim of this study was to collect demographic data about tree species in two semi-natural 

ancient woodlands in order to parameterise SORTIE/UK, using existing datasets from the 

ECN where possible. These datasets were supplemented by data collected specifically for this 

project, between 2011 and 2014. In this chapter I describe the data collection and the existing 

datasets, outline the model that was implemented and discuss the calculation of the 

parameters.  

 

3.2 Methods 

3.2.1 Study Site and Species 

The majority of the data are from Wytham Woods, a large woodland 5km north west of 

Oxford, Oxfordshire (51°46′ N, 1°20′ W), that has been owned and managed by Oxford 

University since 1942. The semi-natural ancient mixed woodland is an area of about 400ha in 

an area of mixed-use land with agricultural land and grassland. The woodland has been 

defined into five areas based on management histories: undisturbed ancient semi-natural 
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woodland; disturbed ancient semi-natural woodland; secondary woodland; 19th century 

plantation and 20th century plantation (Morecroft et al., 2008).  

 

For some parameters if was necessary to supplement the data with data from Alice Holt 

(around 70km SE of Wytham; 51°10' N, 0°50' W) which is around 850Ha and managed by 

the Forestry Commission. Parts of the woods have similar vegetation to Wytham Woods, 

consisting of around 140Ha of old-growth oak (Quercus robur) with the remaining forest 

consisting primarily of conifer plantation. Both sites are part of the Environment Change 

Network (ECN) monitoring programme, which has measured and recorded biological and 

environmental data since 1992. 

 

For my PhD I focus on eight deciduous tree species representing over 95% of the individuals 

at Wytham, of both canopy and sub-canopy. These are: sycamore (Acer pseudoplatanus L.), 

European ash (Fraxinus excelsior L.), penduculate oak (Q. robur L.), European beech (Fagus 

sylvatica L.), birch (Betula spp.), field maple (Acer campestre L.), common hazel (Corylus 

avellana L.) and common hawthorn (Crataegus monogyna Jacq.). 

 

3.2.2 Existing Datasets 

There are three available datasets from the two ECN sites: 

 

 ECN Wytham (ECN-W): 250 individual trees in 41 plots, measuring DBH on 

seven occasions (1993, 1996, 1999, 2002, 2005, 2008, 2012) and height three 

times (1993, 2002, 2012; Morecroft et al., 2008). 
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 Oxford University plot at Wytham Woods (OXF): one plot containing ~20,000 

individual trees measuring DBH on two occasions (2008, 2010; Butt et al., 2014). 

 

 ECN Alice Holt (ECN-AH): 216 individual trees in 51 plots, measuring DBH on 

seven occasions (1994, 1997, 2000, 2002, 2005, 2007, 2011) and height on three 

(1994, 2002, 2011). A further 56 trees in nine plots measuring DBH on five 

occasions (2004, 2005, 2007, 2012 and 2013) and height on two (2004 and 2012).  

 

These datasets were supplemented over three summers between 2011 and 2014 by Gregory 

Carey, Matthew Evans and Aristides Moustakas as described below. 

 

3.2.3 Data Collection 

3.2.3.1 Tree measurements 

The data sets include data on the diameter at breast height (DBH) which was measured for all 

trees as per the standardised methods - the circumference of the tree was measured at 1.3m 

above ground level using a diameter tape. The height of individuals was also measured using 

a Laser Range Meter (Hilti PD40, Hilti, Schaan, Liechtenstein) to the nearest 0.5m. During 

fieldwork we re-measured the DBH of trees with DBH larger than 10cm at the sites, with an 

additional measurement of the diameter at 10cm above ground (D10) for individuals with a 

DBH under 10cm. This was done by measuring two perpendicular diameters (to the closest 

0.1cm) which were averaged to give a mean D10 for each sapling.  

 

Measurements of the crown were taken for adults, comprising both height and radius. For the 

crown height the distance between the ground and the lowest point where there was at least 
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three quarters of foliage was measured using a Laser Ranger Meter (Hilti PD40), to the 

nearest 0.1m. This was measured only on trees where height data was available, which was 

used alongside the measurements to estimate the crown height. The radius of the crown was 

measured using by projecting the two longest perpendicular diameters on to the ground and 

measuring to the nearest cm using a tape measure. These were halved and averaged to 

produce a single radius for each individual 

 

3.2.3.2 Light environment  

Light meter readings were taken at three positions underneath individual trees, 1m away from 

the trunk at a height of 1.3m. To calculate the percentage of light reaching each tree light 

recordings were also taken in a nearby large open gap. These recordings were taken using 

two PAR Quantum sensors (SKP215, Skye Instruments Ltd., Llandrindod Wells, UK) that 

had been calibrated to the same reference lamp. Under the canopy this was used with a meter 

(SKP200, Sky Instruments Ltd., Llandrindod Wells, UK) and measured to the closest decimal 

place. In the open gap a data logger (SDL5050 DataHog 2, Skye Instruments Ltd., 

Llandrindod Well, UK) was used which measured the mean light condition every ten 

minutes, from ten second readings. The light intensity (Lci; where i = 1-3) for each tree was 

calculated as below: 

 

    
     

    
         (3.1) 

 

 

Where: 

Lcait is the ith measurement of absolute light levels below the canopy taken at time t   
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Loat is the absolute light levels in the open gap at time t. 

Lc1, Lc2 and Lc3 for each tree were averaged to produce a single value (Lc) for each individual 

tree. 

 

In order to estimate the canopy openness photographs were taken at 1.35m above ground 

level using a fish-eye lens of single-species stands, using a compass to ensure that the top of 

the photograph was due North (0°). The images were then analysed for light transmission 

using the program gap light analyser (GLA; http://www.eocstudies.org/gla/). 

  

 

 

 

 

 

 

 

 

 

 

3.2.3.3 Growth 

The mean growth rates of individual trees were estimated using a time-series of DBH 

measurements taken from the datasets. The DBH measurement at time point t was subtracted 

from the measurement at t+1 to give the growth for the period of time between datasets. This 

was divided by the number of years between datasets to give an estimate of the growth rate. 

Figure 3-1: Example fish-eye lens photograph of single canopy 
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Multiple measurements from an individual were averaged to give a single growth rate per 

individual.  

 

3.2.3.4 Recruitment  

There was not enough information about seedlings in the datasets for our investigation. 

Fieldwork was carried out by Evans and myself at Wytham Woods during the winter of 2013 

which used 1m
2
 quadrats along transects. However, not enough data was collected to estimate 

the parameters. These were therefore taken from data collected in Quebec (Swift, 2005). 

These were different species but species of the same Genus (where possible) were assumed to 

be similar, with understory species hazel and hawthorn replaced with understory species 

Prunus serontina (table 3.1). 

 

 

UK Species Species in Swift (2005) 

Sycamore (Acer pseudoplatanus) 

Field maple (Acer campestre) 

Sugar maple (Acer saccharum Marshall) 

European ash (Fraxinus excelsior) White ash (Fraxinus americana L.) 

European beech (Fagus sylvatica) 

Pedunculate oak (Quercus robur) 

American beech (Fagus grandifolia 

Ehrh.) 

Birch spp. (Betula spp.) 

Yellow birch (Betula alleghaniensis 

Britt.) 

Common hazel (Corylus avellana) 

Common hawthorn (Crataegus monogyna) 

Black cherry (Prunus serotina Ehrh.) 

Table 3-1: Species replacements from Swift (2005) to SORTIE/UK for recruitment parameters 
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3.2.3.5 Data Collection 

 

The data were collected as following: 

 

G Carey collected: 

 Diameter at 10cm above ground level on saplings at ECN-AH. 

 Light environment around saplings in ECN-AH. 

 Crown radius and crown height for adults in ECN-AH.  

 Canopy openness for a sample of 165 trees in Wytham Woods 

M Evans and A Moustakas collected: 

 Diameter at 10cm above ground level on all saplings in ECN-W, a sample of 88 

from OXF and some from ECN-AN.  

 Light environment around all saplings in ECN-W, a sample of 88 from OXF and 

some from ECN-AH. 

 The height of a sample of 88 saplings from OXF. 

 Crown radius and crown height for all adults in ECN-W and some from ECH-

AH. 

 

3.2.4 Model Description 

The model used is a derivative of SORTIE-ND, a descendent from the original program 

developed by Pacala et al. (1993). For the purposes of my PhD I have used a version that was 

developed by Bithell and Brasington (2009) in C++. Sortie-ND is an individual-based forest 

simulator that was developed to study neighbourhood dynamics (ND) between individual 
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trees. The original program was developed with data from the Great Mountain Forest, 

Norfolk, Connecticut, US but has since been used for forests globally (e.g. Coates et al., 

2009, Kunstler et al., 2009, Ameztegui et al., 2015, Bose et al., 2015). The fate of the 

individual trees in the model is regulated by five submodels: allometry, resource, growth, 

recruitment and mortality which are defined below (see figure 3.2).  

 

For SORTIE/UK, trees of all species were defined according to their size into two life history 

stages: adults and saplings. Adults are individuals which have a diameter at breast height 

(DBH) of larger than, with saplings being individuals with a DBH of less than 10cm and a 

height larger than 1.35m. In SORTIE-ND seedlings were defined as individuals that were 

smaller than 1.35m, however a lack of data in the datasets meant that this life stage had to be 

excluded from SORTIE/UK. Therefore new individuals were initialised having a height of 

1.35m (minimum sapling height), with their DBH calculated using species-specific allometric 

equations. 

 

The model is written in C++, approximately 2.5MB and is 2500 lines spread over 8 files. It is 

composed of a grid of 250 x 150 cells each comprised of 20m, totalling 15km
2, 

the 

approximate size of Wytham. Each model run begins with 16987 individual, in proportions 

that are seen at Wytham (see table 3.2). The model has a burn-in time of 350 years.  

  

3.2.5 Allometry 

This defines the size and shape of trees based on species-specific allometric functions. There 

are different functions based on the life history stage of the individual. 
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Species Initial number 

Ash 4830 

Beech 1092 

Birch 80 

Field maple 112 

Hawthorn 185 

Hazel 202 

Oak 1577 

Sycamore 8908 

Table 3-2: Initial numbers of species in SORTIE/UK 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-2: Representation of the model structure of SORTIE. 
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3.2.5.1 Saplings 

Saplings require two functions: a linear equation relating DBH to their diameter at 10cm 

(D10) and a power function relating the height (H) to the D10: 

 

 DBH = a + b D10       (3.2) 

 H = a D10
b
        (3.3) 

 

where:  

a and b are estimated parameters. 

 

3.2.6 Adults 

Allometry for adults is calculated by three allometric equations: an exponential relationship 

between height (H) and DBH and power functions between crown radius (CRad) and DBH 

and between crown height (CH; distance between the base and the top of the crown of the 

tree) and tree height 

:  

H = 1.35 + (maxht – 1.35)(1 – e
 –b*DBH

)     (3.4) 

CRad = a DBH
b
 or log CRad = log a + b log DBH    (3.5) 

CH = a H
b
 or logCH = log a + b log H     (3.6) 

 where: 

maxht (m) = maximum height for each tree species in the ECN-W and ECN-AH datasets. 

a and b are estimated parameters. 

 

 



59 

 

3.2.7 Resource 

The only resource considered in SORTIE/UK is light, following SORTIE-ND (Pacala et al., 

1996). This is a pre-emptable resource with individuals intercepting light depending on their 

canopy size and their position. Canopies of individual trees intercept a proportion of the light 

that they receive based on species-specific light transmission parameters, with the remaining 

light reaching any smaller neighbouring individuals. Incoming light is set by the global light 

index (GLI) with SORTIE explicitly considering the latitude and topography of the site as 

this affects the light that an individual receives due to the angle of the sun to the tree’s 

canopy. Light is available to the individuals for 150 days of the year, between the 120th 

(April 29/30) and 270th (Sept 26/27) Julian days. This is the same as the resource submodel 

in SORTIE/ND, section 2.3.1.1. 

  

3.2.8 Growth 

There are different functions controlling the growth for saplings and adults. The growth of 

saplings is dependent on the amount of light it receives, as well as their size, whereas adult 

growth is solely a function of size. Note that this is different from the growth in section 

2.3.1.2. 

 

3.2.8.1 Saplings 

The radial growth of saplings (Gsap; in cm yr
-1

) was calculated using both a Michaelis-Menten 

function and a power function as follows: 

        
    

        
    

        
(3.7) 
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where: 

α is the growth rate in 100% light 

β is the growth rate with 1% light conditions 

L is the amount of light that of light that an individual receives  

Φ is an estimated exponent which determines the size effect of the function 

 

3.2.8.2 Adults 

The radial growth of adults (Gadu) is defined by two equations, which is simplified version of 

the Neighbourhood Competition Index (NCI) growth equation taken from (Canham et al., 

1994): 

 Gadu = MaxG x SE        (3.8) 

 

where: 

MaxG (cm yr
-1

) is the maximum growth rate recorded in the datasets. The 99th percentile of 

the recorded was taken to account for some extreme values. 

 

SE is a size effect which is calculated by: 

 

       
      

          

  
  

       (3.9) 

 

where: 

X0 and Xb parameters are estimated from the datasets. 
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3.2.9 Mortality 

(Moustakas and Evans, 2015) showed that that mortality (m) at Wytham is better explained 

by tree size than by light and growth rate; SORTIE-ND uses light related mortality functions 

(2.3.1.3). In order to account for relocation errors in the datasets Moustakas and Evans (2015) 

used capture-recapture program MARK which uses a Cormack-Jolly-Seber (CJS) model to 

estimate mortality: 

 

   
    

         
           

     
  
  

 
         

           
     

  
       (3.10) 

 

where: 

Φ1 and Φ2 are parameters estimated from the CJS model fitted to the datasets 

meanDBH (cm) is the species-specific mean DBH from the datasets 

sdDBH (cm) is the species-specific standard deviation from the datasets. 

 

3.2.10  Recruitment 

Recruitment is estimated using two functions, one to describe dispersal and the other to 

fecundity. As in section 2.3.1.4, dispersal in SORTIE/UK is estimated using a lognormal 

function which describes the density (numbers m
-2)

 of seedlings at a given point, i (Ri): 

 

        
    

  

 

  
     

           

  
   

        (3.11) 

where: 

STR is the fecundity of the tree, defined as the standardised total number of recruits produced 

by a 30cm tree 
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DBHj is the DBH (cm) of the jth tree, where j = 1 to n adult trees within 20m 

dij is the distance between point i and the jth tree 

X0 is the mean of the function 

Xb is the variance of the function 

β is a dispersal parameter 

 

Since new individuals in the model are introduced as saplings, the survival rate of seedlings 

was calculated using the mortality function. This was used as the initial density for seedlings 

which were distributed from the parent tree, using a lognormal distribution. 

 

3.2.11 Data analysis 

Images taken with the fish-eye lens of canopies were imported into Global Light Analyzer 

software (GLA; http://www.eocstudies.org/gla/). GLA compares the contrast between the 

pixels to calculate the percentage canopy openness for each photograph. The mean values 

calculated from photographs of canopies from the same species were taken to provide an 

average canopy openness for each species.   

 

Full methodology for the estimation for the allometric and growth and parameters can be 

found in Evans et al., (2015; see appendix i). Mortality at Wytham was found to be best 

explained by a model based on size for both size classes of species; the methodology and 

parameters for this can be found in (Moustakas and Evans, 2015). 
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3.3 Results 

3.3.1 Parameter estimation 

Estimations for all parameters can be found in table 3.4. 

 

3.3.2 Openness 

The fish-eye photographs taken under species canopies gave figures for the light transmission 

coefficient parameter. The species from the most to least shady are as such: field maple > 

beech > hazel > sycamore > hawthorn > oak > birch > ash (table 3.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Species 
Number of 

Individuals 

Light 

Transmission 

Coefficient 

Field maple 2 0.0852 

Beech 15 0.1208 

Hazel 2 0.1392 

Sycamore 12 0.1871 

Hawthorn 5 0.2002 

Oak 4 0.2062 

Birch spp. 7 0.2327 

Ash 2 0.3013 

 

 

 Table 3-3: Light transmission coefficients for the eight species 
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Equation no. 
& parameter 

Field 
Maple 

Sycamore Birch Hazel Hawthorn Beech Ash Oak 

 Allometry Parameters (as found in Evans et al., 2015) 

DBH to Diameter at 10 cm 
slope of regression  

(3.2 a) 0.56  0.56 0.4 0.33 0.48 0.75 0.27 0.58 

DBH to Diameter at 10 cm 
Relationship regression 
intercept  

(3.2 b) 2 2 2.86 4.25 2.51 0 4.74 1.43 

Height-Diameter at 10 cm 
Relationship slope  

(3.3 a) 0.12 0.12 0.82 2.36 1.37 0.11 0.1 0.11 

Height-Diameter at 10cm 
exponent  

(3.3 b) 1.88 1.88 0.93 0.54 0.61 1.95 2.03 1.95 

Maximum Height (m)  (3.4 maxht) 19 30.5 22.5 19.5 15 39 37.5 35.5 

Adult height slope  (3.4 b) 0.046 0.041 0.049 0.069 0.051 0.007 0.007 0.016 
Crown radius slope of 
regression   

(3.5 a) 0.19 0.36 0.04 0.01 0.16 0.29 0.11 0.22 

Crown radius exponent  (3.5 b) 0.83 0.72 1.37 2.15 0.99 0.77 1.06 0.78 

Crown height slope  (3.6 a) 0.13 0.24 0.21 0.21 0.31 0.13 0.01 0.02 

Crown Height parameter b  (3.6 b) 1.53 1.28 1.28 1.44 1.3 1.47 2.48 2.01 

 Growth Parameters (as found in Evans et al., 2015) 

Growth D10 exponent         (3.7 Φ) 0.845 0.845 0.845 0.845 0.845 0.845 0.845 0.845 

High light growth  (3.7 α) 0.1250 0.0118 0.1690 -0.0160 0.0264 0.1520 0.0082 0.0546 

Low light growth  (3.7 β) 0.1590 0.0215 0.1370 0.0680 0.0055 0.0750 0.0001 0.0348 

Max Growth rate (cm yr-1)1     (3.8 MaxG) 0.59 0.48 0.77 0.54 0.62 0.97 1.47 1.81 

Size effect parameter x0 (3.9 x0) 20.13 20.56 15.68 9.62 12.93 31.87 19.9 26.45 

Size effect parameter xb  (3.9 xb) 93.12 135.25 66.26 12.74 55.06 1013.79 58.52 495.06 
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Equation no.  
& parameter 

Field 
Maple 

Sycamore Birch Hazel Hawthorn Beech Ash Oak 

 Mortality Parameters (as in Moustakas & Evans, 2014) 

Annual mortality rate 
parameter phi12  

 (3.10 phi1) 5.5700 5.6200 3.4000 5.6500 4.8300 4.6800 5.3600 4.2300 

Annual mortality rate 
parameter phi22 

(3.10 phi2) -0.2070 5.2300 0.1430 -0.1900 -0.0900 -0.2270 0.4400 1.8300 

Mean DBH  
(3.10 
meanDBH) 

18.7000 19.9300 27.5800 10.8300 14.7300 27.5100 20.8300 37.3900 

SD of DBH  
(3.10 sdDBH) 6.5800 16.3900 13.0200 3.7400 7.1000 30.2200 11.6800 39.4500 

Recruitment Parameters (taken from Swift, 20053) 

Recruitment parameter 
STR  

(3.11 STR) 725 725 10249 1976 1976 224 946 224 

Recruitment parameter 
β  

(3.11 β) 2.95 2.95 1.3 0.72 0.72 3.55 5.65 3.55 

Recruitment parameter  (3.11 x0) 4.67 4.67 38.29 7.84 7.84 4.01 29.71 4.01 

Recruitment parameter  (3.11 xb) 0.6 0.6 0.1 2.84 2.84 0.69 0.26 0.69 
Table 3-4: Full parameters from field measurements for the eight species in the model for the allometry, growth, mortality and recruitment parameters. Notes: 1: 

The 99th percentile value was taken of field measurements due to extreme values. 2: These parameters are estimated from analysis in MARK. 3. As not enough 

data was available,  species are replaced for species in the same genus from Swift, 2005, see table 3-1. 
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3.4 Discussion 

 Data was collected for model parameterisation as laid out in 3.2.3.5, and methodology for 

the parameterisation can be found in Moustakas & Evans (2015) and Evans et al. (2015). As 

with any parameterisation, the resulting parameters will only represent the variation with the 

data that was collected. For some parameters there was limited data available, for example 

data for the light transmission coefficient was available for between two and fifteen 

individuals. However, for the allometry and growth parameters, data from 88 individuals was 

available (Evans et al., 2015) and a large dataset of 281 individuals was available to estimate 

mortality parameters (Moustakas & Evans, 2015). Data collection for light transmission 

proved difficult, as it was necessary to find single-species stands for each species. This data 

collection was conducted only at Wytham Woods, and so it would be necessary to expand 

this to other woodlands to ensure a greater data set. The available datasets did not provide 

enough data for our recruitment submodel, and so the species were replaced with species 

from Swift (2005). Improving the data for this submodel was outside of the scope of this 

thesis, however this will be necessary for future  research implementing Sortie/UK in order to 

produce reliable estimates. 

 

As well as increasing the amount of data that is collected, a sensitivity analysis of the 

parameters would increase confidence in the accuracy of the outputs of the model. This 

would involve changing parameter values and assessing the impact that this has on the 

model's output. This would need to be done alongside a validation of the model, to ensure 

that the assumptions of the parameter values are reasonable to represent the real forest 

system. This could be done qualitatively, using expert assessments on the potential natural 

vegetation (PNV) of an area (e.g Ellenberg 1986), or quantitatively using existing data. This 

could be done either by using pollen data records (e.g. Heiri et al., 2006), however this only 
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offers a low temporal resolution, or by estimating the age of the stand and using recent 

surveys of the community structure and compositions. This method however relies on 

assumptions of the age of the stand, presumes no management and ignores extreme weather 

events.    

 

This thesis considers the fate of the woodland under projected climate change conditions, 

however the above validation should be done as a steady state system, with current climate 

conditions. Wytham woods is a semi-natural ancient woodland that has had a mixed 

management regime, ranging from largely unmanaged ancient woodlands to nineteeth and 

twentieth century plantations, with some  timber extraction taking place across the site 

(Morecroft et al, 2008). The current dominant species are sycamore and ash but research has 

suggested that sycamore, which has increased at the site since the nineteenth century,  has 

lower regeneration and growth than its current co-dominant ash (Morecroft et al, 1997). This 

has been attributed to its general poor growth under dense canopies, which is consistent with 

other sites (Savill 1997). This would suggest that if unmanaged the forest could become 

dominated by ash solely, or other present canopy species such as beech and oak could 

increase their proportion within the forest.  
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4.  Chapter 4 

The role of biotic plant-plant 

competition in response to climate 

change induced changes in growing 

season duration 
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4.1 Abstract 

One of the major effects of climate change is increasing global air temperature. Temperature 

regulates many processes within plants, and one of the major biological signals of climate 

change has been an advance in spring phenology. This response is species-specific, and so 

has the potential to change plant-plant interactions by differentially increasing productivity 

and altering light competition regimes. These interactions are thought to have the potential to 

mitigate the effects of climate change, and so these indirect effects may have significant 

impacts on populations. In order to test the effects of changes of growth periods on species I 

used an individual-based model with light interactions as the sole source of competition, 

using the semi-natural woodland Wytham Woods as a model. I predicted that the species with 

budburst dates that are most sensitive to temperature will increase their representation in the 

forest by gaining competitive advantage over other species. For some species this was true, 

with ash and sycamore maintaining their dominance of the forest whilst increasing their 

densities in the forest. However, with other species that are predicted to have longer growing 

seasons under increased temperatures, no differences were seen. This suggests that the life 

histories of the tree species must also be considered, with earlier canopy closure potentially 

affecting those species with low shade tolerance. 

 

4.2 Introduction 

Anthropogenic drivers such as increased greenhouse gas emissions and land-use changes are 

predicted to cause global surface temperatures to rise in the next century between 0.3°C and 

4.8°C (IPCC, 2013), with the UK expected to have hotter, drier summers and milder, wetter 

winters as well as an increase in extreme weather events (Murphy et al., 2009). There is 

growing evidence of the direct effect that global climate change is having on plants (Walther 
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et al., 2002, Parmesan and Yohe, 2003, Parmesan, 2006, Choat et al., 2012, Root et al., 2003, 

Guisan and Thuiller, 2005, Cramer et al., 2001). However indirect effects are thought to have 

to have the potential to modify these direct effects for some species (Parmesan, 2006, Yang 

and Rudolf, 2010) 

 

One of the largest indirect impact of climate change on plants may come from changes to 

interactions between different trophic levels and amongst plant species (Parmesan, 2006). 

Interactions with other trophic levels can either be mutualistic (e.g. pollination, seed dispersal 

and plant-fungus mutualisms) or antagonistic (e.g. herbivory or parasites) (Tylianakis et al., 

2008). Climate change is expected to have negative effects on some of these interactions with 

mismatches in the responses to environmental change (Suttle et al., 2007, Inouye, 2008, 

Winder and Schindler, 2004, Visser and Both, 2005). These mismatches may also be 

exacerbated by environmental change occuring at rates that are too fast for adaptation (Jump 

and Penuelas, 2005). Plant-plant interactions, which comprise facilitation and competition, 

have long been acknowledged as a key driver of community composition and dynamics 

(Tansley, 1917, Went, 1942, Bruno et al., 2003, Maestre et al., 2005). These types of 

interactions may mediate the direct impact of climate change on individuals and species. 

 

There is evidence of facilitation benefiting plants experiencing climate change conditions, for 

example the increased growth and reproduction under enhanced CO2 conditions of two 

subarctic species was amplified when in the presence of each other (Shevtsova et al., 1995). 

A review of 727 papers showed that there is generally a shift from competition to facilitation, 

or at least a reduction in competition, under environmental stresses (He et al., 2013). 

However there is also some evidence of a shift from facilitation between species to strong 

competition (Klanderud, 2005, Klanderud and Totland, 2005). The impact that competition 
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has on the response of some plant species to climate change has been investigated (van Loon 

et al., 2014, Klein et al., 2004, Wang et al., 2006, Klanderud, 2005, Klanderud et al., 2015, 

Tomiolo et al., 2015), however there are few studies on the effect that competition will have 

on the response of woodland trees to climate change, and how this might change long term 

ecological phenomena such as succession. Results from (Laurance et al., 2004) suggest that 

successional changes in the Amazonian rainforest could be explained by fast-growing species 

gaining a competitive advantage with increased growth caused by higher CO2 levels. 

 

One of the largest sources of competition between plant species is light (Pacala et al., 1994, 

Casper and Jackson, 1997, Lamb, 2008). One potential change to this competition regime is 

through changes to species-specific growth periods. The growth period of plants is governed 

by phenological events, which are recurring biological events as budburst, leaf unfolding, leaf 

colouring and fall, bud set, bud dormancy and release from dormancy, all of which are 

controlled by environmental conditions (Leith, 1974). For deciduous trees, budburst and leaf 

senescence regulate the amount of time that a plant is in leaf, and therefore photosynthetically 

active (Cannell et al., 1998). As with many phenological events in temperate plants, budburst 

is thought to be most regulated by temperature (Fu et al., 2012), with recent changes in 

budburst date being regarded as a signal of global climate change (Parmesan and Yohe, 

2003). Earlier spring phenological events have been attributed to higher global temperatures 

(Bertin, 2008, Dijkstra et al., 2011, Fu et al., 2012, Menzel et al., 2006, Pellerin et al., 2012, 

Richardson et al., 2013, Schwartz et al., 2006) however the relationship with bud senescence 

is less clear (Menzel et al., 2006). 

 

With temperatures forecasted to rise over the next century it is expected that spring events 

will continue their trend of getting earlier. However, species are known to respond at 
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different rates to temperature and such inter-specific differences are of interest because they 

could change the outcome of competition between individuals and so change patterns of 

succession (Suttle et al., 2007, Urban et al., 2012a, Mason et al., 2014, Benito-Garzon et al., 

2013). As well as being a potential source of competitive advantage for those species that 

have the largest response of growth period, and thus productivity, to the increase in 

temperature, the increase of time that a species is in leaf could also provide an advantage in 

the competition regime for light by increasing the shade to neighbouring individuals. Light 

competition is asymmetric, with larger trees having an advantage over smaller ones in light 

acquisition, through shading (Casper and Jackson, 1997, Weiner, 1990) and the earlier a 

species is in leaf, the greater the shade that coexisting species experience. Little has been 

done to quantify these changes of competition in forests, though it could have major 

implications for changes in leaf area index (LAI), defined as the one-sided leaf area per unit 

ground surface area (Watson, 1947) and thus climate change through vegetation-climate 

feedbacks (Claussen et al., 1998, Bonan et al., 2003, Dekker et al., 2010). Van Loon et al. 

(2014) modelled the change of LAI due to competition between neighbouring individuals in a 

monoculture of soybean (Glycine max), however natural forests are rarely monocultures and 

shading from interspecific neighbours are also an important source of competition. 

 

In order to look at the effect that interspecific differences to climate change will have on a 

coexisting species I have used the spatially explicit individual-based forest dynamics model 

SORTIE/UK , which was developed from SORTIE-ND (described in chapter 3). This model 

has a simple competition regime only involving light, and so is suitable to investigate the 

effect that climate change induced temperature changes will have on light competition 

between the species. In the original model by (Pacala et al., 1996), the model had a growth 

period of 150 days for all species, however I modified SORTIE/UK so that each species has 
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its own growth period. Predicted budburst changes under increased temperatures were also 

used, which allowed for population-level changes to emerge from changes of budburst date, 

at the species level. 

 

My hypothesis was that changes in budburst alone can be a driver of population change, by 

differentially altering the competitive ability of trees. Species that show a greater response to 

temperature, and prolong their annual growth periods when ambient temperature is higher, 

would be expected gain a competitive advantage over species that have lower sensitivity to 

temperature rises by increasing their productivity as well as by altering light conditions 

underneath their canopy. 

 

4.3 Methods 

4.3.1 Study Site & Data 

Wytham Woods is a semi-natural ancient woodland located around 5km north west of Oxford 

(1°20′W 51°46′N). There is about 400ha of mixed woodland, of which this study concerns 

eight species which represent 98% of the tree species: sycamore (Acer pseudoplatanus), 

European ash (Fraxinus excelsior), European beech (Fagus Sylvatica), penduculate oak 

(Quercus robur), common hazel, (Corylus avellana), common hawthorn (Crataegus 

monogyna), field maple (Acer campestre), and birch (Betula spp.). 

 

4.3.2 Budburst data 

Current budburst data were taken from the UK Phenology Network (UKPN; 

www.naturescalendar.org.uk) which are volunteer-run surveys of seasonal events for animal, 

insect, plant and fungi species. Budburst is defined as the emergence of new leaves, and the 
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date for each species between the years 1999-2013 was converted into Julian date and 

averaged to provide a baseline budburst date for each species. The only available data for 

Hazel was the first flowering date, and so two months was added to this date to approximate 

the budburst date.  

 

Budburst data taken from the UKPN was used in model runs of baseline conditions to  

simulate if current conditions were to continue with no climate change affecting budburst 

date.  

 

4.3.3 Allowing climate change to change budburst date 

I investigated the effect of climate change on the population by using the predicted species-

specific budburst responses to temperature alongside climate projections for Southern 

England. For sycamore, ash and oak budburst correlations between budburst and temperature 

were taken from (Morecroft et al., 2008), who used 13 years of data to correlate budburst to 

temperature for these species at Wytham Woods. For the other species, I performed a 

regression analysis of the budburst dates taken from the UKPN alongside average monthly 

temperatures, which were calculated from daily averages from the Met Office Hadley Centre 

Central England Temperature series (HadCET; Met Office), for the years 1999-2013. 

Regressions were performed with temperature data from months February, March and April, 

to investigate the change of budburst date per °C. 

 

Climate projections were obtained from the Met Office's UK Climate Projections (UKCP09; 

Murphy et al., 2009), which provides projections of monthly average air temperature between 

2020 and 2080 for a 25km
2 

grid, which included Wytham Woods. The UKCP09 model uses a 

cumulative distribution function (CDF) to provide probabilistic projections, which provides a 
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cumulative probability of the climate projections. For this study I used the 50% probability, 

the central estimate, where half of the simulations were below this figure, and half above. 

Projections of future March temperatures were used for three IPCC scenarios - low (B1), 

medium (A1B) and high (A1fi). These were combined with the predicted species responses 

of budburst to temperature to produce estimates of the change in budburst date, up to 2080, 

after which they remain at the 2080 date. 

 

 

4.3.4 Model Runs 

The model SORTIE/UK (for parameterisation see chapter 3) was adapted to allow species-

specific budbursts. Budburst change was modelled as a function of growth change, which 

was normalised to 150 days, the original growth period in SORTIE/ND (Pacala et al., 1996) 

and introduced as such: 

 

grow(int iterationCount) { 

 

double julreductioncount = iterationCount; 

if (iterationCount > 20) julreductioncount = 20; 

double daylength = params[kind].julend - (params[kind].julstart 

- (julreductioncount 

* params[kind].julstartReductionFactor ) ); 

 

double speciesGrowth = daylength / 150; 

 

where: 

iterationCount is the current time-step in the model 
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julend is the Julian date of the end of the growth period (270) 

julstart is the Julian date of the start of the growing period 

julstartReductionFactor is a factor to reduce the budburst date per time-step 

 

 

For the three emission scenarios, as well as under baseline conditions, models were run for 

1250 years, at five year time steps. Each simulation was initialised with the same forest 

structure, with the species, size and spatial structure as recorded at Wytham Woods. 

 

4.3.5 Statistical Analysis 

Statistical analyses were performed in R 1.3.0 (R Core Team, 2013). Differences in the 

absolute number of individuals and the proportional representation of species between 

emission scenarios and baseline conditions were analysed using one-way ANOVA, with the 

scenario as the fixed factor. Normality was tested for using the Shapiro-Wilk test, with 

homogeneity of variances being confirmed using diagnostic plots. Where significant 

differences between scenarios were found, and assumptions of the analyses met, a Tukey's 

honest significant difference (HSD) post hoc test was performed. 

 

Correlations between four life history variables (canopy openness, time to 3m in 1% light, 

time to 3m in full light and survival rate at 1% light; table 4.1) was investigated for using 

Pearson's correlation coefficient, or Spearman's rank correlation where variables were not 

normally distributed. 
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Mean Canopy 

Openness 

Time to 3m 

in Full Sun 

(Years) 

3m in 1% 

light 

5-Yr survivorship of 1cm 

diameter sapling 1% sun 

 

Oak 

 

20.62 

  

6 

 

135 

 

93.13 

Hazel 13.92 4 248 99.77 

Hawthorn 20.02 5 266 99.32 

Birch 23.27 240 528 95.77 

Field Maple 8.52 323 571 99.77 

Sycamore 18.71 19 609 97.55 

Ash 30.13 8 768 99.05 

Beech 12.08 269 796 99.24 

Table 4-1: Life history traits of the eight species. 

 

4.4 Results 

 

4.4.1 Budburst changes 

The budburst response of the species at Wytham was shown to be most significantly related 

to March temperatures for four of the eight species for the years 1999-2013, (table 4.2). 

March was also found as the most significant temperature period for budburst by Morecroft et 

al., (2008). In hazel no significant correlation to temperature was found, and so it was 

presumed that it will not change budburst date. The change of budburst per °C of March 

temperatures was used alongside predictions for oak, sycamore and ash from Morecroft et al. 

(2008) to predict budburst dates under climate change (table 4.3). 
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February 

Average 
March 

Average 
April 

Average 
February-March 

Average 
March-April 

Average 
February-April 

Average 

 
Ash 

 

 
 
* 

 

 

 

 
 
* 

 
. 

Beech 
 

. 
  

* . 

Hawthorn ** ** 
 

*** * ** 

Hazel 
      

Oak * *** * *** *** *** 

Birch . * 
 

* 
 

. 

Sycamore . 
  

. 
  

Field 

Maple  
* * 

 
** * 

Table 4-2: Significance of regression analyses between budburst date of species and the average daily 

temperature of months February, March and April, as well as combined average temperatures for 

February and March; March and April and all three months. 

 

 

 

 Change in budburst 

date (days °C
-1

) 

 

Field maple 

 

3.035 

Sycamore 6.2 

Birch 4.165 

Hazel 0 

Hawthorn 3.944 

Beech 2.545 

Ash 5.1 

Oak 4.1 

Table 4-3: Change in budburst with mean temperature in March, days per degree. 
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4.4.2 Model outputs 

In all model simulations, after 1250 years the structure of the forest changes considerably 

when compared to present day (see table 4.4). A similar pattern of succession is seen in all of 

the scenarios, as well as baseline conditions, with a continuous rise of sycamore over the 

1250 years and modest increases in the understory species hazel and hawthorn (figure 4.1). 

Ash also increases from initial numbers, displaying an oscillating pattern until around 650 

years when the numbers remain approximately constant. All other species remain relatively 

stable throughout the simulation, although oak declines slowly throughout the simulation and 

birch declines to extinction (Figure 4.1). 

 

 Proportional Representation (%) 

 Current After 1250 Years 

  Baseline B1 A1B A1fi 

Ash 26.9 30.2 34.407 35.163 35.473 

Beech 1 0.325 0.303 0.301 0.283 

Birch 0.4 0 0 0 0 

Field Maple 0.7 0.07 0.041 0.049 0.054 

Hawthorn 6.9 1.562 1.644 1.523 1.5 

Hazel 8.9 4.502 4.252 4.143 4.075 

Oak 1.9 0.024 0.021 0.023 0.022 

Sycamore 51.9 63.317 59.329 58.797 58.593 

Table 4-4: Proportional representation of current population at Wytham Woods and after simulation of 4 

years of baseline temperatures and three emissions scenarios, B1, A1B and A1fi. 

 

The total number of individuals after 1250 years increases under all emission scenarios 

compared to the baseline conditions (ANOVA: F3,24 = 327, p <0.0001; Table 4.4). Tukey's 

HSD post hoc test shows that there are significant differences between all scenarios (p < 

0.05) and the baseline conditions. There are also significant differences between the three 

scenarios (p<0.05), except between medium (A1B) and high (A1fi) scenarios (p = 0.296; 

figure 4.3). 
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Figure 4-1: Time-series showing 1250 years growth of the eight species in baseline conditions. All other 

scenarios show a similar succession pattern. 

 

There are significant differences in the total number of individuals of three of the eight 

species, ash, sycamore and field maple, between the three scenarios and the baseline (figure 

4.3). There is a large increase in the number of ash individuals, of between 23% and 30%  

(15304 to 19447), in all the three emission scenarios, in comparison to the baseline conditions  

(Tukey's: p<0.05). There are fewer individuals in the B1 emissions scenario in comparison to 

the other two (p<0.05), however no significant difference is seen between the mid and high 

emission scenarios (p=0.454). 

 

Sycamore also sees an increase in the total number of individual numbers in all scenarios 

compared to baseline, however this is much lower than ash, at between 1.6 % and 2.3% (2204 
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to 3222; p<0.05). There are no significant differences between the number of individual 

sycamores between emission scenarios. Numbers of field maple significantly decrease 

between the lowest emissions scenario (B1) and the baseline conditions (p<0.002). 

 

 

 

 Number of individuals (±SD) 

 Baseline B1 A1B A1fi 

 

Ash 

 

64972 (±861) 

 

80276 (±2102) 

 

83159 (±1747) 

 

84419 (±1297) 

Beech 700 (±88) 714 (±102) 712 (±43) 674 (±79) 

Field Maple 151 (±20) 96 (±16) 117 (±23) 128 (±37) 

Hawthorn 3361 (±218) 3835 (±327) 3603 (±341) 3570 (±340) 

Hazel 9686 (±631) 9920 (±317) 9798 (±777) 9698 (±323) 

Oak 51 (±22) 50 (±14) 55 (±12) 52 (±15) 

Sycamore 136221 (±1122) 138425 (±885) 139051 (±504) 139443 (±1152) 

 
    

Total 215142 (±2961) 233316 (±3763) 236495 (±3447) 237984 (±3243) 

Table 4-5:  Absolute numbers (± SD) of the eight species at Wytham after simulations for 1250 years of 

baseline temperatures and three emission scenarios: B1, A1B and A1fi. 
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Figure 4-2:  Changes in the absolute number of individual trees in the woodland after 1000 years with 

baseline temperature conditions and under three scenarios. The dark horizontal line represents the 

median number of individuals from the eight runs, with top and bottom of box representing the upper 

and lower quartiles (25th and 75th percentile), with the end of whiskers representing the data range. 

 

Changes in individual numbers are seen equally at both adult and sapling life stages, with the 

proportions remaining the same for all scenarios (figure 4.4). The average DBH, height and 

age remains the same between scenarios. 

 

There were no significant correlations between the any of the four life history variables: 

canopy openness, time to 3m in 1% light, time to 3m in 100% and survivorship in 1% light. 
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Figure 4-3: Changes in the number of individuals for the three species with significant differences 

between baseline conditions and three emission scenarios: beech, sycamore and ash. The dark horizontal 

line represents the median number of individuals from the eight runs, with top and bottom of box 

representing the upper and lower quartiles (25th and 75th percentile), with the end of whiskers 

representing the data range, or 1.5 times the interquartile range with individual outliers represented by 

circles.  
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Figure 4-4: Proportions of adult and sapling across scenarios. 

 

 

4.5 Discussion 

Under all scenarios, with no management practices, it can be expected that the forest will 

have reached climax after 1250 years from the present day, with the absolute numbers of each 

species remaining roughly constant after 650 years. The co-dominant species remain ash and 

sycamore, however both of these increase their proportional representation with every other 

species reducing in proportion. 
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It was predicted that temperature-mediated increases of growth through budburst events 

occurring earlier would lead to competitive advantages of species over coexisting species. 

The results do not support this hypothesis with no clear relationship between the relative 

density of a species with its increase in growth period. Sycamore is the most sensitive to 

temperature, with budburst becoming earlier by 6.2 days for every degree Celsius rise, 

however the increase in the numbers of Sycamore after 1250 years under climate change 

conditions are modest when compared to ash, whose budburst is expected to move by 5.1 

days per degree. The budburst of field maple is expected to be 3 days earlier per increase in 

degree Celsius, however the number of individuals of this species decreases after 1250 years 

in the lowest emission scenario B1. 

 

There are no other significant differences in the forest in terms of individual number of 

species after 1250 years of model simulation. Birch becomes extinct in all conditions 

including baseline, which is not an unexpected result as both birch species present at Wytham 

Woods, Betula pendula and Betula pubescens are early successional pioneer species 

(Hynynen et al., 2010). Understory species hazel and hawthorn show increases in numbers 

over the 1250 years, even with temperature increases, as budburst date for hazel was shown 

to not be correlate with temperature, this was not expected. One explanation for this may be 

the current-day suppression of these species by deer. As disturbance was not included in the 

model, this reduction in herbivory could explain the increase in numbers with time. 

 

Significant different of the proportions of species are seen between the three emissions and 

baseline after 1250 years. Since the only difference between models is the growth period, the 

non-linearity between this and proportional representation suggests that there are other 
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drivers influencing the species at Wytham. One potential driver is the differences in life 

histories traits between species. In the model, the only source of competition is that of 

shading neighbours from light, which is the major-above ground competition in forests (Kobe 

et al., 1995, Pacala et al., 1994, Casper and Jackson, 1997, Lin et al., 2004). Succession in 

forests is driven by interspecific differences in sensitivity to shade - a trade off between 

survival and low light conditions and growth in high light conditions (Pacala et al., 1996, 

Rees et al., 2001, Nakashizuka, 2001, Kunstler et al., 2009). Succession is driven by two 

contrasting strategies, with early-successional plants having high growth and survival in high 

light conditions, with low rates of growth and survival in resource-poor conditions. Late-

successional plants display the opposite, having traits adapted to surviving well in low light 

conditions (Rees et al., 2001, Grime, 1979). 

 

Sycamore is the most sensitive species to temperature, and has the second densest canopy, 

after beech, with co-dominant species ash being the second most sensitive. With the canopy 

closure occurring earlier in the year, this could potentially be a driver of succession. It could 

be expected that shade tolerant species will out-compete shade intolerant species as shade 

increases in intensity and duration. Sycamore and ash are the sixth and seventh slowest 

growing species in low light conditions with relatively high low-light survival, indicative of 

late-successional species, which may be the driver of increases in these species under climate 

change conditions. However, it cannot explain all of the results, with no change seen in beech 

the slowest growing species in low light conditions, but which also has higher survivorship in 

low light than sycamore and ash. Field maple is seen to decrease from baseline conditions in 

the low emissions scenario, but this has the highest survivorship in all species (joint with 

Hazel; 99.77% in 1% light) and is the fifth slowest growing. Low survivorship may be a 

predictor for the survival of some species however, with oak and birch having high mortality 
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in low light conditions of under 96% with the latter becoming extinct and oak decreasing 

over the 1250 years. Hazel was shown not to be sensitive to March temperatures, however 

my analyses only considered temperatures beginning in February. As Hazel has a relatively 

early budburst, future research should include winter temperatures as it is possible that the 

species will be correlated to earlier temperatures. 

 

Pacala et al., (1996) suggested the different succession strategies can be inferred from trade-

offs between the high light survival and low light survivorship, shade cast by a canopy and 

dispersal distance. These represent differences in allocation of energy in an individual, with 

lower survival in species that devote much of their energy to growth (Kobe et al., 1995). At 

Wytham no relationships between these life history traits are seen (table 4.1), and so at least 

in this study these trade-offs are unclear. There are however traits which are suggestive of 

succession dynamics. Succession theory suggests that early-successional species would grow 

quickly in high light, giving it a temporary advantage over taller, dense canopy late-

successional species (Pacala and Rees, 1998). There is some evidence for this in our data, 

with hazel and hawthorn having the highest growth in low light, and beech showing a much 

slower growth rate. However, late successional ash and sycamore also have high growth in 

high light, with early-successional birch displaying slow growth in low light. This could be 

due to the small sample size of birch, and the age of Wytham Woods. If most of the 

individuals that were recorded were already in ancient woodland with dense canopies, then 

these individuals may grow slower than those in newly disturbed areas. 

 

This study has implications for both forest management strategies and climate modelling. 

There is concern that the invasive species sycamore is of conservation threat to native 

species, especially ash (Binggeli, 1993, Peterken, 2001, Morecroft et al., 2008). This study 
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shows that even in baseline conditions, sycamore is not outcompeting ash, and that the latter 

is in fact expected to gain the most from temperature rises (Morecroft et al., 2008). The 

results also show that subdominant canopy species oak and beech persist in the forest, at 

similar population densities as seen today. This not only maintains the species diversity of the 

forest but is important for species that form symbioses with these species. Individual-based 

models can be used to provide accurate predictions of management strategies (Liu and 

Ashton, 1995, Phillips et al., 2004, Porté and Bartelink, 2002), and using them in parallel, 

forest managers will be able to moderate effects of climate change. 

 

The results in this chapter consider increased growth period to proportionally increase the 

growth of a species, however this does not take into the considering the change in CO2 

availability. Gas exchange has been shown to be strongly seasonal with maximum 

photosynthetic rate occurring even up to 70 days later than the budburst date (Morecroft et 

al., 2003), with evidence of interspecific differences (Morecroft and Roberts, 1999). Future 

research on the growth periods, it would be desirable to take this into consideration that the 

changes in CO2 uptake would have on productivity and thus growth. 

 

The results from this model show also that species responses to climate change are not linear, 

and non-direct effects such as a competition and species life history traits can be equally 

important factors in determining species composition, and so should be included when 

predicting changes to populations. Currently most vegetation-climate models are estimating 

feedbacks using phenomenological models of tree succession which do not take into account 

competition and thus might be misestimating carbon balances within forests, which could 

have impacts on the climate predictions themselves (Samuelsson et al., 2011, Wang et al., 

2015). Although some regional climate models do consider feedbacks with individual plant 
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functional types (PFTs), individual characteristics are averaged across cohorts, which does 

not allow for interactions between species to be considered (Smith et al., 2011). 
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5.  Chapter 5 

The direct effect of climate change 

induced changes in drought frequency 

on tree species at Wytham Woods 
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5.1 Abstract 

The frequency and severity of summer droughts is likely to increase in the UK, due to 

reduced summer precipitation alongside increased temperatures, which is expected to be most 

pronounced in Southern England. This will have profound consequences on ecosystems, with 

it predicted to lead to reductions in growth and increases in mortality in plant species. In this 

study I use an individual-based model to examine the effects of increased droughts on tree 

species at a semi-natural ancient woodland, Wytham Woods. Currently the woodland is co-

dominated by  relatively drought-intolerant sycamore (Acer pseudoplatanus) and drought 

tolerant ash (Fraxinus excelsior). The model predicts that after 1000 years there will be a 

change of dominance from both of these species to a majority canopy of ash, with sycamore 

reduced to 2.4% of the population. The change in canopy has an indirect effect on other 

species, changing the light environment due to ash having a much less dense canopy than 

sycamore. This causes increases in understory species birch and field maple, as well as the 

canopy species, oak. By using this methodology I was able predict community level changes 

as an emergent property of species-specific reactions to climate change but to also discover 

indirect effects, such as these changes in the competition regime. 

 

 

5.2 Introduction 

Climate change is expected to cause substantial changes in the climate of the UK over the 

next century. Current climate projections suggest that during the summer months there will 

be proportionally less precipitation and an increase in mean air temperature, leading to an 

increase in the frequency, duration and severity of droughts (Murphy et al., 2009). The largest 

changes are expected in Southern England, where summer precipitation is expected to 
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decrease by up to 40% (figure 5.1), with increases to mean summer air temperatures of up to 

8°C, by 2080 (Murphy et al., 2009). Previous estimates from the UKCIP02 predict decreases 

in soil moisture content by up to 46% (Hulme et al., 2002). These changes are predicted to 

occur at an accelerating rate (Smith et al., 2015) which has serious implications for the 

responses of ecosystems. 

 

 

Figure 5-1: Predictions of percentage change in average summer precipitation by 2090-2099 for low (a), 

medium (b) and high (c) emission scenarios. © UK Climate Projections 2009. 

 

a) Low emission scenario, B1 b) Medium emission scenario, A1B 

c) High emission scenario, A1fi 
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In temperate areas, such as the UK, most aspects of climate change will benefit plants in the 

short-term, with increased temperature and CO2 partial pressure expected to increase 

productivity, growth, leaf area and growing season, until nutrient availability becomes 

limiting  (Broadmeadow and Jackson, 2000, Broadmeadow and Randle, 2002, Sparks and 

Menzel, 2002, Tylianakis et al., 2008, Lukac et al., 2010, Norby et al., 2005, Wu et al., 2012). 

There is however increasing evidence that water limitation caused by the increasing drought 

severity and duration is leading to an overall reduction in growth, and an increase in mortality 

in plants (Gitlin et al., 2006, Van Mantgem and Stephenson, 2007, Worrall et al., 2008, 

Rehfeldt et al., 2009, van Mantgem et al., 2009). These responses to drought events are 

lagged in some species, influencing the long-term productivity of individuals (Peterken and 

Mountford, 1996, Bigler et al., 2007). 

 

The reduction, or loss, of drought-sensitive species will have detrimental effects on 

associated organisms, and local ecological processes (Carnicer et al., 2011, Hanewinkel et al., 

2013). The resulting shift in population structure may also have severe consequences for 

broader processes such as nitrogen and hydrological cycles as well as global carbon cycles 

and vegetation-climate feedbacks (Dixon et al., 1994, Soja et al., 2007, Bonan et al., 2003, 

Bonan, 2008b). Differences to drought tolerances could be a mechanism by which otherwise 

less competitive, or historically dominant species, may confer an advantage over, or coexist 

with, currently dominant species (Terradas et al., 2009, Cavin et al., 2013). Any changes of 

dominance between competing species will change habitat structures, affecting all trophic 

levels (Chapin Iii et al., 2000, Ellison et al., 2005, Thibault and Brown, 2008, Cavin et al., 

2013). 
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Changes to dominant species are particularly important in woodland and forests, as 

dominance reversals would alter light conditions in the understory, affecting the growth of 

coexisting species. Given that climate change effects may lag for years after drought events, 

meaning that observing the results on light competition will take generations, we are unable 

to make predictions using regression functions or by comparing predicted environment 

conditions to currently similar environments (Mette et al., 2013, Williams and Jackson, 

2007). 

 

In this study I look at a mixed-species forest in Southern England, where the current 

dominant species are sycamore (Acer pseudoplatanus) and ash (Fraxinus excelsior). The 

former is a non-native species in the UK and is regarded to some as a threat to native species 

including ash (Morecroft et al., 2008). Sycamore is a drought-intolerant species, it's native 

habitat being cool and damp areas in central Europe (Lemoine et al., 2001, Rusanen and 

Myking, 2003, Scherrer et al., 2011), whereas ash is much more tolerant to drought 

conditions (Lemoine et al., 2001, Scherrer et al., 2011, Morecroft et al., 2008). Using a 

climate-matching method (Broadmeadow et al., 2005) suggested that sycamore will decline 

in most of the UK as a consequence of increased droughts, whilst ash will be less affected. 

This could lead to a dominance reversal from sycamore to current co-dominant species ash, 

and potentially allow other drought-tolerant canopy species such as pedunculate oak 

(Quercus robur) or beech (Fagus sylvatica) to establish dominance. 

 

In order to predict population-level change I use a spatially-explicit neighbourhood model, 

which is able to demonstrate population level changes from changes at the individual level. 

By introducing drought tolerances at the species level any population-level effects will be an 

emergent property from interactions between individuals and species. My hypothesis was that 
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at this mixed-species forest, future droughts will reduce the dominance of drought-intolerant 

sycamore, allowing other canopy species such as ash, oak and beech to thrive and become the 

dominant species. 

 

5.3 Methods 

5.3.1 Study Site 

Wytham woods is a mixed land-use area of agricultural land, grassland and around 400ha of 

semi-natural ancient mixed woodland. It is a well-known site of ecological research located 

in 5km north-west of Oxford, South East England (1°20′W 51°46′N), owned and managed by 

Oxford University. It has an altitude between 60 to 165m above sea level with a mean annual 

precipitation at 730mm y
-1

 and an average annual temperature of 10.1
O
C (Butt et al., 2014). 

Forty-one 10m
2 

plots have been surveyed since 1993 across the site as part of the 

Environmental Change Network. We used data from ten species of tree that account for over 

98% of the tree biodiversity at the site: sycamore (Acer pseudoplatanus), European ash 

(Fraxinus excelsior), European beech (Fagus sylvatica), penduculate oak (Quercus robur), 

common hazel, (Corylus avellana), common hawthorn (Crataegus monogyna), field maple 

(Acer campestre), and birch (Betula spp.). 

 

5.3.2 Data Description 

Ten individual trees in each of the 41 plots were measured over 19 years at three year 

intervals from 1993 to 2008 and again in 2014. If trees within a plot were not relocated in a 

survey year then they were presumed dead, and replaced with the nearest unmarked 

individual. The data therefore provides both growth and mortality data; however it is notable 

that there are relocation errors in the dataset, with trees that are presumed dead appearing in 
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later surveys. It is therefore necessary to include relocation probability to ensure that 

mortality probabilities are not inflated (Kéry and Schmid, 2005). 

 

A previous study by (Moustakas and Evans, 2015) showed that the mortality of the 

population at the study site was explained best by a model of diameter at breast height (DBH) 

only, with models including light and growth having less explanatory power. DBH is a 

measurement of the diameter of the tree at 1.35m above ground level, and was measured 

every time a tree was located. For this study I wanted to look at the effect of drought on 

mortality rates of the population. In order to do this I defined drought using the Standardised 

Precipitation Index (SPI; McKee et al., 1993), which is able to define drought events over any 

time frame and considers only rainfall. It normalises the rainfall data using a probability 

distribution over the time frame that is considered, allowing for the estimation of both dry 

and wet years using the following equation: 

 

     
                                              

                 
     (5.1) 

 

The average and standard deviation of the full precipitation data that are available, which is 

recommended to be at least 30 years (WMO 2013). The closer the resulting SPI is to -3, the 

more severe the drought, whilst +3 is an extremely wet period. 

 

Monthly average precipitation data for the years 1970-2014 were downloaded from the Met 

Office Hadley Centre England & Wales Precipitation series (HadEWP; Met Office). This 

provides regional rainfall data for five sub-regions of England and Wales, using stations in 5-

km
2
 grids (Simpson and Jones, 2012), with the southeastern region including the area of 

Wytham Woods. This study considers the effect of summer months and so the average 
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rainfall for the months June, July and August were used to calculate the annual SPI. Years 

falling between each sampling interval were averaged to provide an SPI for that sampling 

time. 

 

5.3.3 Estimating survival rates 

In order to estimate the survival rate of species, capture-mark-recapture software package 

MARK was used (White and Burnham, 1999). This applies a modified Cormack-Jolly-Seber 

model (CJS; White and Burnham, 1999), allowing the estimation of both survival and 

relocation rates. Individuals that are not located during a survey are presumed to be dead 

unless they are relocated at a later time point. An example of the input file for three 

individuals would look like: 

 

1111011; 

1111111; 

1111000; 

 

where the first line shows an individual that was not located on the fifth survey but 

consequently relocated; the second is an individual that has been located at every survey; and 

the third is an individual that was not relocated after the fourth survey and so is likely to have 

died. 

 

Two covariates, DBH and SPI were included in the analysis to investigate their effect on the 

probability of survival (ϕ), with the probability of relocation (p) being kept constant between 

time periods after no a priori annual bias for this was found in the data (Moustakas and 

Evans, 2015). A total of four models were fit to each species which included the covariates 
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DBH and SPI as well as the additive and interactive interactions of the two (table 5.1). For all 

models a logit link function was used due to the use of covariates (White and Burnham, 

1999). The model that best explained the data for each species was established using the 

corrected Akaike criterion for finite sample size (QAICc; Hurvich and Tsai, 1989). 

 

Model Model Description 

 

Survival Probability (Φ) 
Relocation 

probability (p) 

Φ: DBH; p: c Constant between years; varies with DBH 
Constant between 

years 

Φ: SPI; p: c Constant between years; varies with SPI 
Constant between 

years 

Φ: DBH + SPI; 

p: c 

Constant between years; varies with SPI and DBH 

independently 

Constant between 

years 

Φ: DBH*SPI; 

p: c 

Constant between years; varies with SPI and DBH 

dependently 

Constant between 

years 
Table 5-1: Model descriptions for the four mortality models, run for all species. 

 

The compliance with the assumptions underlying the model was tested by generating a 

saturated CJS model for each species, where both survival and probability varied with time 

period on which a 1000-iteration parametric bootstrap for each model was performed within 

MARK (White and Burnham, 1999). This saturated model simulates data that meets all 

assumptions of a CJS model: no overdispersion, independence of individuals, same 

probability of relocation, same probability of survival, no lost marks and instantaneous 

sampling. This generates a variance inflation factor for each species (^c), which I used to re-

run each model correcting for overdispersion in the data. 

 

5.3.4 Future Rainfall Projections 

In order to investigate the effect of future drought on the population at Wytham, I used 

forecasted precipitation data obtained from Met Office Hadley Centre UKCP09 Model 
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(accessed through  http://www.metoffice.gov.uk/climatechange/science/monitoring/ukcp09/; 

Murphy et al., 2009). Monthly averages were calculated using the absolute precipitation data, 

which provides daily average precipitation for the years 2020-2080. Data were taken from the 

25m
2
 grid square 1547, which encompasses Wytham Woods, with the 50% cumulative 

distribution used for each of the emission scenarios: low (B1), medium (A1B) and high 

(A1fi). The rainfall for the summer months June, July and August were averaged, and the SPI 

calculated using the predicted rainfall alongside the HadEWP data from 1970. The data were 

averaged every ten years to provide decadal average SPI. 

 

5.3.5 Model Runs 

The new survival estimates were incorporated into the spatially-explicit model that has been 

parameterised for the species at Wytham (see chapter 3), with the mortality function of the 

model updated as following: 

 

dam = (exp( 

  params[kind].phi1  

   + (params[kind].phi2  

    * ((trunkDiameter*100) - params[kind].meanDBH) 

     / params[kind].sdDBH))  

    + (params[kind].phi3 * avSPI)) 

  / (1  

   + (exp(params[kind].phi1  

    + (params[kind].phi2 

   * ((trunkDiameter*100) - params[kind].meanDBH) 

      / params[kind].sdDBH))) 

    + (params[kind].phi3 * avSPI)); 
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where: 

dam is the mortality probability for an individual at a single time step 

params[kind].phi1 is the first mortality parameter 

params[kind].phi2 is the parameter relating mortality to DBH 

params[kind].phi3 is the parameter relating mortality to SPI 

 

The SPI was kept constant after 80 years, in line with current predictions of a plateau of 

climate change in most scenarios after around this time (IPCC, 2014). A model to simulate 

current baseline conditions was run using the average SPI for the years 1970-2015. Each of 

the four models were run eight times simulating 1250 years in 5-year time-steps. Each 

simulation was initialised with the same forest structure, with the species, size and spatial 

structure as recorded at Wytham Woods during fieldwork. 

 

5.3.6 Data Analysis 

Statistical analyses were performed in R 1.3.0 (R Core Team 2013). Differences between the 

emission scenarios and baseline were analysed using one-way ANOVA. Normality of the 

data was tested for using the Shapiro-Wilk test, with homogeneity of variances being 

confirmed using diagnostic plots. Where there were significant differences between 

scenarios, and the assumptions of the tests were met, a Tukey's honest significant difference 

(HSD) post hoc test was performed. 

 

Differences in age, DBH and height between scenarios were also investigated using a one-

way ANOVA. Differences in the proportion of adult and sapling s were tested using a 

Pearson's chi-squared test. 
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5.4 Results 

5.4.1 Survival Estimates 

The model which most closely explained the mortality of all of the species at Wytham was an 

additive one that included both DBH and SPI (table 5.2). This model was only the best fitting 

model for field maple, but was the second best fitting model for sycamore and birch (after 

SPI and DBH respectively), where the difference in QAIC from the best fitting model was 

less than 1, meaning that there is no difference between these models (Bozdogan, 1987). In 

Oak and Hawthorn the mortality model is the third best fitting model by QAICc but these also 

have very low difference in QAICc from the first model (1.8 and 2.1 respectively) and so I 

considered to be an appropriate choice of model to represent all species. 

 
Best 
Model 

2nd Best 
Model 

3rd Best 
Model 

4th Best 
Model 

Field Maple DBH + SPI DBH*SPI DBH SPI 

ΔQAICC 
 

2.209 2.7354 5.0511 

Sycamore SPI 
DBH + 
SPI 

DBH DBH*SPI 

ΔQAICC 
 

0.5584 0.608 1.7052 

Birch DBH 
DBH + 
SPI 

SPI DBH*SPI 

ΔQAICC 
 

0.2277 0.566 2.3382 

Hazel DBH SPI 
DBH + 
SPI 

DBH*SPI 

ΔQAICC 
 

0.5607 2.0256 3.9964 

Hawthorn SPI DBH 
DBH + 
SPI 

DBH*SPI 

ΔQAICC 
 

0.2275 2.1111 3.9388 

Beech DBH*SPI 
DBH + 
SPI 

SPI DBH 

ΔQAICC 
 

9.15 11.115 11.4922 

Ash DBH*SPI SPI DBH 
DBH + 
SPI 

ΔQAICC 
 

4.6759 5.3489 6.5877 

Oak SPI DBH 
DBH + 
SPI 

DBH*SPI 

ΔQAICC 
 

0.0218 1.8311 3.8845 

Table 5-2: Model selection for each species. ΔAICC1 is the difference in QAICc between the model and 

the best fitting model. The chosen to represent the mortality for all species is in bold. 
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5.4.2 Drought estimations 

The lowest SPI (therefore the highest drought) was during the period 1993-1996 (Table 5.3). 

During 1997 to 2012 there was a period of summer rainfall that is above average, with there 

being moderate summer rainfall in the time period 2009-2012, when compared to the average 

since 1970. The SPI calculated from UKCP09 data predicts that there will summers will be 

increasingly dry when compared to the average in future decades (table 5.4). 

 

Years SPI 

1993-1996 -1.0728 
1997-1999 0.2020 
2000-2002 0.0029 
2003-2005 0.2830 
2006-2008 0.8103 
2009-2012 1.0476 

Table 5-3: Standardised precipitation index (Seidl et al.) for the years 1993-2012, with 3 year time step 

when calculated with rainfall from 1970 

 

Years SPI 

2012-2020 -0.0440 
2021-2030 -0.1874 
2031-2040 -0.2484 
2041-2050 -0.4314 
2051-2060 -0.5325 
2061-2070 -0.6168 
2071-2080 -0.6960 
Table 5-4: Standardised precipitation index (Seidl et al.) for the years 2012-2080 for decadal averages 

when calculated with rainfall from 1970 

 

. 

5.4.3 Model Runs 

In all scenarios, including the baseline, the dominance in the forest changes from a co-

dominance of sycamore and ash to a canopy that is comprised primarily of ash. In baseline 

conditions, with the same drought regime seen in the last 30 years, ash is predicted to 
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increase in relative abundance from nearly 27% to 84%. This is largely caused by the 

decrease in current co-dominant sycamore from 60% to only 2.4% of the population. As well 

as ash another canopy species, oak, is predicted to increase from its current 2% to 7.5%. 

There are reductions in the relative abundance of all other species. Whilst there are minor 

differences between scenarios, these changes are reflected in all of the emissions scenarios, 

with ash representing between 83.7 and 83.8 of the population (table 5.5). 

 

 
Proportions (%) 

 
Current After 1250 Years 

  
Baseline B1 A1B A1fi 

Ash 26.9 83.6 83.7 83.8 83.7 

Beech 1 0.7 0.7 0.7 0.7 
Birch 0.4 0.4 0.4 0.4 0.5 
Field 
Maple 

0.7 0.3 0.3 0.3 0.4 

Hawthorn 6.9 3.7 3.7 3.6 3.4 

Hazel 8.9 1.2 1.1 1.1 1.2 
Oak 1.9 7.5 7.6 7.7 7.8 
Sycamore 51.9 2.6 2.5 2.4 2.4 

Table 5-5: Proportions of the eight species as in 2014 and projected 1250 years in 3 emission scenarios: 

B1, A1B and A1fi and baseline (1970-2014) rainfall conditions. 

 

Patterns of succession are similar in all scenarios, with the largest changes occurring after 

250 years. During the first 250 years the numbers of sycamore individuals remains about the 

same in the baseline conditions, decreasing slightly in all emission scenarios (figure 5.2). 

After this, there is a steady decline in number of individuals, whilst there is an exponential 

increase in ash. A similar pattern of increase is seen in hawthorn and oak, after the 250 years. 

Beech and hazel increase in number for 300 years, beech numbers then reducing during the 

next 1000 years whilst hazel numbers remains nearly constant. There are modest increases in 

birch and field maple during the entire 1250 years. 
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Figure 5-2: Time series showing 1250 years of growth of eight species in baseline conditions. All other 

scenarios displayed similar trends. 

 

 

The overall number of individuals in the forest is seen to decrease with increased intensity of 

drought (ANOVA: F(3,28)=4.6, p<0.001). In comparison to baseline conditions the total 

absolute number of individuals, 136305, decreases most in the scenario A1B, on average by 

2011 individuals. The number of individuals reduces on average by 1848 in the A1fi and 

1155 in the B1 emission scenarios. Post hoc tests suggest no difference between any of the 

scenarios, although they are seen to decrease along a drought gradient, with very low 

variance within scenario A1fi (figure 5.3). 
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Figure 5-3: Total absolute number of individuals after 1250 years in four model runs: baseline 

precipitation conditions and three emission scenarios (B1, A1B, A1fi). The dark horizontal line represents 

the median number of individuals from the eight runs, with top 

 

 

There are significant differences in the number of individuals between scenarios and the 

baseline in three of the species: beech (F(3,28)=3.4, p<=0.03), birch (F(3,28)=4.4, p=0.01) and 

sycamore (F(3,28)=0.5, p<0.067; table 5.6). Similar to the overall numbers, beech and ash 

reduce in numbers with increasing drought intensity. Birch shows the largest differences 

between scenarios, increasing between 18.41% in the A1B to 28% in A1fi, rising from 478 

individuals after 1250 years in baseline conditions, to 556 and 565 respectively. It increases 

the most in scenario A1fi, by 85 individuals to 887. Both beech and sycamore see declines in 

comparison to the baseline conditions. Beech reduces from 972 to 804, 885 and 887 in 

scenarios B1, A1B and A1fi respectively. Sycamore reduces by 190, 301, 289 individuals 

from 3515 at baseline (figure 5.4). 

 

The pattern of changes to relative abundance of each of the species is identical to changes in  
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absolute numbers (see table 5.6). Between scenarios, there are no significant differences 

between the age, DBH or height of the species. There are also no differences between the 

ratio of adults to saplings (χ
2
=0, df=3,p=1). 

 

 

Table 5-6: Predicted absolute numbers (± SD) of the eight species in the model after 1250 years, in 

baseline conditions and three emission scenarios: B1, A1B and A1fi. 

 

 

 

 

 

 

 

 

 
 Emissions Scenario 

 
Baseline B1 A1B A1fi 

Ash 114015 (±1101) 113127 (±1433) 112543 (±1240) 112586 (±878) 

Beech 972 (±89) 894 (±57) 885 (±49) 887 (±61) 

Birch 478 (±50) 573 (±103) 566 (±79) 615 (±68) 

Field Maple 440 (±53) 464 (±49) 458 (±39) 500 (±39) 

Hawthorn 5032 (±361) 4933 (±237) 4815 (±203) 4609 (±430) 

Hazel 1589 (±113) 1514 (±49) 1502 (±138) 1610 (±143) 

Oak 10264 (±251) 10320 (±296) 10311 (±90) 10424 (±344) 

Sycamore 3515 (±175) 3325 (±60) 3214 (±97) 3226 (±113) 

     

Total 
Numbers 

136305 
(±2187.168) 

135150 
(±2283.922) 

134294 
(±1934.792) 

134457 
(±2076.672) 
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Figure 5-4: Projected absolute numbers for each of the eight species under the three emission scenarios B1, 

A1B and A1fi and baseline precipitation conditions. The dark horizontal line represents the median number 

of individuals from the eight runs, with top and bottom of box representing the upper and lower quartiles 

(25th and 75th percentile), with the end of whiskers representing the data range, or 1.5 times the 

interquartile range with individual outliers represented by circles.  
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5.5 Discussion 

These results show that even under the current climate conditions a regime shift of the 

species at Wytham Woods is likely, with a change from the dominance of ash and sycamore 

to a dominance of ash. This is consistent with previous predictions that sycamore will decline 

in much of the UK due to increases in drought, especially in the South East of the country 

(Broadmeadow et al., 2005). Morecroft et al. (2008) also showed that sycamore showed a 

drought sensitivity between 1993 and 2005 at Wytham, with its slowest growth at the driest 

period. They also showed that ash consistently grew quicker than sycamore, independent of 

the rainfall conditions. This intolerance of sycamore to drought, as well as the the higher 

growth in ash, is a means for the relatively drought intolerant ash to increase in number 

greater than sycamore. 

 

As well as ash, the change in dominance allows for other canopy species Q. robur to increase 

their proportional abundance, compared to present day within the forest by up to 6%. As well 

as the increase in gaps caused by mortality of sycamore allowing opportunities to grow into 

the canopy (Watt, 1947), another mechanism that can explain the increase in oak is the 

change in light competition. The new dominant species, ash, has a much higher light 

transmission through its canopy than sycamore (Evans et al., 2015); this increases the light to 

understory species which would lead to higher growth and survival rates in species, such as 

oak.  

 

Further evidence for this change in light regime are in the steady increases of birch and field 

maple, both of which are understory species. Birch especially is intolerant of low light 

conditions, with low growth and high mortality (Hynynen et al., 2009), so its survival 

suggests a direct effect of the change of dominance to ash, with its relatively high light 



110 

 

transmission. Birch also exhibits a tolerance to drought, which is contrary to previous studies 

that show that birch is relatively drought intolerant. This could be because of the small 

number of data available for birch in the dataset. There is a reduction in the proportion of the 

other canopy species at Wytham, beech. One explanation is because of competition between 

beech and oak, the latter of which has greater drought tolerance due to its deeper rooting and 

lower susceptibility to cavitation (Aranda et al., 2000, Rose et al., 2009). 

 

The resilience of sycamore in the first 250 years of the simulation is evidence for the lag 

effects of drought in species. A lagged effect on individuals is not directly modelled in this 

study, and as time steps are every 5 years, the lag of a few years reported elsewhere was not 

considered here (Bigler et al., 2007). However, the decline after 250 years suggests could be 

suggestion of a generational lag. If drought affects the mortality of saplings more than larger 

trees, then this may not be seen in the forest stand for a generation. Although the model with 

no interaction between DBH and drought was chosen for all of the species, in sycamore there 

was a very close concurrence of each of the four models, with a difference of 1.7 between 

them all. This does not therefore rule out an interaction between DBH and drought, 

suggesting that adults may be less susceptible to drought than saplings, as has been shown in 

other species (He et al., 2005, Mediavilla and Escudero, 2004), meaning that any established 

trees would not be as affected by drought as their offspring. Whilst one drought event could 

affect a population, the effects would be more pronounced with progressive droughts as 

predicted under climate change, and shown by the increasingly negative SPI. At Wytham 

Woods there is a very high survival rate of sycamore trees, between 97.8 and 99.9%, and so 

almost adults survive until senescence. Once these larger individuals senesce, then the 

increase of drought and the lower survival of saplings could explain the decline in numbers 

over the next 1000 years that is seen. Because of this generational lag, any indirect effects of 
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climate change, such as those occurring through light competition, could also take a 

generation to be seen. 

 

There are only very minor differences in the response of trees to the future emission scenarios 

compared to the current rainfall regime, with only three species seeing significant differences, 

and only very small differences between these. This suggests that for Wytham woods, the 

decreases of rainfall under climate change that are predicted over the next 80 years will not 

be a driver of change to community structure compared to current conditions. One 

explanation is that changes have already been occurring in the local area due to the recent 

climate change. The data I used to estimate survival rates of the tree species was taken over 

the last 30 years, and there is evidence from others that the survival rate in some species has 

reduced in the last 50 years compared to records from 1766 (Jenkins et al., 2009). If the 

survey data were taken during a period of increased droughts then this will be reflected in the 

survival rates. 

 

For this study I focussed on the mortality of species in relation to the average rainfall, 

however it is likely that extreme events will cause dieback events and determine species 

distributions (Gitlin et al., 2006, Worrall et al., 2008, Rich et al., 2008). For future research it 

would be necessary to use data on species mortality responses to extreme drought events, 

which could be performed experimentally if field data is not available. As well as extreme 

summer drought events, winter rainfall will have an impact on dieback events, with lower 

rainfall decreasing soil moisture and exacerbating low summer rainfall and increasing 

mortality in drought intolerant species. When predicting future drought conditions, I averaged 

the annual SPI every decade, which also failed to capture the full range of drought conditions 

that would be expected. The averages also are not comparable to the recent drought 
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conditions which were averaged every three years, in line with the surveying regime. Future 

research should take this into consideration, ensuring that future projections are comparable 

to  recent events as well as taking into account extreme events. 

 

With ash accounting for around 80% of the woodland after 1000 years in all model 

simulations, the reduction in diversity has implications for future resilience of the forest 

(Elmqvist et al., 2003). As forests become dominated by one species, there is danger of 

regime shifts, or ecosystem collapses (Scheffer and Carpenter, 2003, Petit and Hampe, 2006). 

This is of particular concern with ash dominated woodlands in the UK because of the dieback 

events caused by the Hymenoscyphus fraxineus fungus that have been occurring in the UK 

since 2012 (Mitchell et al., 2014). Evidence from Europe suggests that this may be a 

widespread infection with up to 99% of individuals of the species being susceptible to the 

disease (Kjaer et al., 2012, Pautasso et al., 2013). 

 

One limitation of this study is the use of widely available rainfall data from HadEWP, which 

only begins in 1970. If climate change has been having an effect for the last 30-50 years, then 

this SPI will be skewed upwards, in comparison to that expected under more historical 

conditions in the woodland. Other methods also use temperature data to predict drought 

indices, which may produce a better overall picture of soil moisture availability for the plants. 

These methods will still be marred with skews with digitised data available from the 

HadEWP only covering the period since 1970, when climate change may have already be 

having an effect on the local climate. There are data recorded from 1914, and whilst this is 

less accurate due to there being fewer data, it may provide drought predictions representative 

to pre-climate change conditions.  
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Additionally, this study does not consider any evolutionary effects, although these will be 

important in a species' response to climate change. There is evidence that responses could be 

mediated by different phenotypes in the short-term (Choler et al., 2001, Bolnick et al., 2011), 

and changes to phenotypes in the long term (Jump and Penuelas, 2005, Bilela et al., 2012). 

There is, for example, already evidence for the acclimation of drought tolerance of sycamore, 

by osmotic adjustment, changes in root distribution and stomatal closure (Khalil and Grace, 

1992). 

 

This study provides a good example of population-level properties emerging from changes at 

the individual- and species-level. By using an individual-based systematic approach, not only 

are we able to investigate the direct effect of drought on the population, but other, indirect, 

impacts can come to light and be investigated further. It would be a logical step to investigate 

the light experienced by individual trees, and the role that neighbouring species has on their 

own growth and survival. 
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6.  Chapter 6 

The combined effects of drought and 

growing season length on tree species at 

Wytham Woods and potential 

mediation through interactions 
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6.1 Abstract 

Changes to ecosystems are predicted to happen as a consequence of anthropogenic climate 

change. For temperate plants the potential impacts of increased temperature on growth and 

productivity will be offset in some species by the increased water deficit caused by increased 

temperatures and decreased summer rainfall. As well as this direct effect, there will be 

changes to biotic interactions, benefitting some species at the cost of others. Using Wytham 

Woods as a model system I provide evidence that biotic interactions - -increased growth 

period caused by temperature - can increase a species' fitness, but only when not constrained 

by drought. The current co-dominance of sycamore and ash in Wytham is predicted to change 

to a sole dominance of ash, which in 1000 years will represent between 88% and 89% of the 

trees in the forest. This is likely due to the drought intolerance of sycamore, as the predicted 

increase of its growing season by 6.2 days °C-1 
did not offset the negative effect of drought in 

this species. An increase in growth period does however increase the fitness of ash, which 

increases its proportional representation by 0.6-1.08% than when the effects of drought alone 

are considered. The change in dominance causes changes in the outcome of plant-plant 

competition, with the less dense canopy of ash allowing more light to penetrate the canopy, 

facilitating the growth of shade intolerant species birch, and understory species hazel. 
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6.2 Introduction 

Climate change is one of the largest threats to global biodiversity (MEA 2005, Winn et al., 

2011), with the highest observed global carbon dioxide, methane and nitrous oxide 

atmospheric concentrations all being recorded in the last decade (IPCC, 2014). This is 

predicted to drive global land surface temperatures to rise between 0.3 and 4.8°C by 2100 

with non-uniform changes in precipitation across the globe (IPCC, 2014). Along with land-

use change and increased species invasions this is causing unprecedented biodiversity loss 

and changes in distribution (Gaston, 2005, Thuiller et al., 2005, Thomas et al., 2004). In the 

UK, over the next century it is predicted that there will be higher than average annual 

temperatures, with drier summers and increased precipitation in winter (Murphy et al., 2009). 

Extreme events, such as drought, may consequently increase in frequency and severity 

(Murphy et al., 2009). There is evidence that in the last 50 years there have been higher 

temperatures and lower summer precipitation than average, from the preceding period 

(Jenkins et al., 2009). This will have profound impacts on species composition across the UK. 

 

The increase in anthropogenic CO2 emissions, and associated rise in temperature, are 

expected to have a positive effect on plant species in temperate areas, until nutrient 

availability becomes the limiting factor (Broadmeadow and Jackson, 2000, Broadmeadow 

and Randle, 2002, Sparks and Menzel, 2002, Tylianakis et al., 2008, Norby et al., 2005, 

Lukac et al., 2010, Wu et al., 2012). However, other associated climate changes such as an 

increased water deficit, from lower summer precipitation and higher temperatures, and 

increased extreme events will have a detrimental effect on plant species and are likely to be a 

driver for demographic change in temperate areas (Gitlin et al., 2006, Allen et al., 2010, Van 

Mantgem and Stephenson, 2007, Worrall et al., 2008, Rehfeldt et al., 2009, Rich et al., 2008). 

Die-back events caused by droughts attributed to anthropogenic climate-change have already 
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been recorded (Martinez-Vilalta et al., 2012, Bigler et al., 2007, Bréda et al., 2006, Ciais et 

al., 2005) and like any mortality events will increase forest gap formation, facilitating 

succession (Botkin et al., 1972). The interspecific differences in the mortality response will 

cause demographic changes (Breshears et al., 2005, McDowell et al., 2008, Allen et al., 

2010), even leading to rapid shifts in dominance if the current dominant species are drought 

sensitive (Allen and Breshears, 1998). 

 

There are suggestions that these direct abiotic effects of climate change on woodlands, such 

as increased drought, could be modified by interactions between species, their resources and 

associated species (Parmesan, 2006, Yang and Rudolf, 2010). In plants these include both 

positive (plant-fungal mutualisms, seed dispersers and pollinators) and negative 

(hemiparasites, herbivores, pathogens) interactions from other trophic levels as well as plant-

plant competition (Tylianakis et al., 2008). These interactions themselves are however also at 

risk from climate change, largely due to phenological mismatches in species (Visser and 

Both, 2005, Miller-Rushing and Primack, 2008, Both et al., 2009). These indirect changes of 

climate changes on biotic processes will lead to additional, often less predictable, 

demographic changes on populations (Suttle et al., 2007, Tylianakis et al., 2008, van Loon et 

al., 2014). 

 

The most important above-ground plant-plant competition is that of shading from 

neighbouring individuals (Pacala et al., 1994, Casper and Jackson, 1997, Lamb, 2008). Light 

is a pre-emptable resource causing asymmetric competition, especially in high density 

communities, with larger trees receiving proportionally more light per leaf than smaller plants 

(Schwinning and Weiner, 1998, Bauer et al., 2004). This can constrain the growth of smaller 

neighbouring individuals and facilitate the self-thinning of populations (Weiner, 1990), 
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although impacts may be positive in some circumstances by reducing evapotranspiration and 

thermal stress (Semchenko et al., 2012). Like other interactions between species, the 

competition between plants for light may be affected by mismatches in phenology. 

 

Changes in temperatures are driving spring phenological events earlier in most species 

(Bertin, 2008, Dijkstra et al., 2011, Fu et al., 2012, Pellerin et al., 2012, Richardson et al., 

2013, Schwartz et al., 2006, Root et al., 2003, Menzel et al., 2006), although some species 

show no change, and there are a few with later phenological dates (Parmesan and Yohe, 

2003, Both et al., 2009). These responses in phenology are species-specific, and so with an 

increase in average mean air temperature the differences in the responses of species will 

broaden, and drive changes to species interactions. Whilst there is some evidence for changes 

in autumn phenology in some species, these relationships are less clear and so have not been 

considered in this study (Menzel et al., 2006). 

 

There are at least two mechanisms of demographic change that result from species-specific 

phenology change. Firstly, the extension of the growing season will increase the 

photosynthetically active period as individual trees come into leaf earlier in the spring, 

increasing productivity and growth for a species (Cannell et al., 1998). Secondly, by 

increasing the time at which a species is leafing it can confer an advantage in light 

competition by reducing the light that neighbouring trees receive, affecting their growth 

(Semchenko et al., 2012). These changes may affect the ability of different species to gain 

resources early in the season (Dunnett and Grime, 1999), benefiting some species to the 

disadvantage of others (Miller-Rushing and Primack, 2008). This gives certain species 

competitive advantages (Tilman and Lehman, 2001, Freckleton and Watkinson, 2001, 
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Klanderud, 2005, Wang et al., 2006), and could even lead to shifts in dominance (Tylianakis 

et al., 2008). 

 

In this study I used an individual based model to project the impact of climate change on a 

mixed-woodland in the UK, Wytham Woods. In this approach the population-level changes 

emerge from changes to processes at the individual level, and it allows for biotic processes 

such as competition to be considered alongside direct abiotic effects, such as increased 

mortality. In the previous two chapters I considered the impact of two aspects of climate 

change separately – the length of the growing season and drought. This allowed for the 

investigation of the impact of individual aspects of climate change on the tree populations at 

Wytham Woods, however as they are both expected to occur it is not realistic to project the 

effects of climate change without examining their effects together. In this study, I look at 

these two effects - temperature-mediated budburst change and drought-induced mortality - 

together. Climate change will affect species in many ways but these are arguably the major 

effects that predicted temperature and rainfall changes will have on woodland species in 

South East England. 

 

I predicted that the negative effects of drought on intolerant species are likely to be mitigated 

by any increased productivity from longer growth periods. The species that will increase their 

representation in the forest most will be those that are both drought tolerant and the most 

responsive to temperature. 
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6.3 Methods 

6.3.1 Study Site 

 Wytham Estate is located 5km north-west of Oxford in South East England (1°20′W 

51°46′N), and is owned and managed by Oxford University. It is a mixed land-use area of 

agricultural land, grassland with about 400ha of semi-natural ancient mixed woodland. 

(Morecroft et al., 2008) defined five areas of the woodland based on management histories: 

undisturbed ancient semi-natural woodland; disturbed ancient semi-natural woodland; 

secondary woodland; 19th century plantation and 20th century plantation. The area is at an 

altitude between 60 to 165m above sea level, has a mean annual precipitation of 730mm y
-1

 

and a mean annual temperature of 10.1
°
C y

-1 
(Butt et al., 2014). Forty-one 10m

2 
plots have 

been measured since 1993 across the site. Ten of the species that were monitored represent 

98% of the tree biodiversity: sycamore (Acer pseudoplatanus), European ash (Fraxinus 

excelsior), European beech (Fagus Sylvatica), penduculate oak (Quercus robur), common 

hazel, (Corylus avellana), common hawthorn (Crataegus monogyna), field maple (Acer 

campestre), and birch (Betula spp.). 

 

6.3.2 Model Description 

SORTIE-ND (www.sortie-nd.org) is a spatially-explicit individual-based model which was 

originally developed in North America (Pacala et al., 1996), that we have parameterised using 

data collected from UK woodlands (Evans et al., 2015; see chapter 3). The model comprises 

of four submodels: recruitment, growth, mortality and allometry. This model was chosen in -

part due to its simple concept that trees compete for one resource, light, both by interception 

of available sunlight and by changing the environment below their canopy. We have 

considered two life stages in this model, saplings and adults; not enough data was available 
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for seedlings for us to include this age class. Adults are defined as having a diameter at breast 

height (DBH) above 10cm, and saplings are initiated in the model at 1.35m tall, their DBH 

defined by their allometric relationships (Evans et al., 2015). 

 

There are two allometric equations parameterised for saplings, relating both DBH and height 

to diameter at 10cm (D10). In adults, an individual's traits are related to their DBH - their 

height and crown radius, with crown height being related to height. In all species sapling 

growth is dependent on light availability, where as adult growth dependent on size only. 

Mortality has been shown to be based on size of the individual (Moustakas and Evans, 2015), 

with a senescence function on large trees to avoid unrealistically large trees. Recruitment of 

seedlings is based on two functions: the dispersal arrangement of recruitments, and the 

fecundity of the parent tree (see chapter 3). 

 

6.3.3 Temperature-induced growth changes 

As in chapter 4 the effect of temperature on Wytham Woods considered here is the regulation 

of budburst timings by spring temperatures. The baseline budburst times were calculated 

from the/ mean date of budburst for each of the eight species, for the period 1999 to 2013, 

taken from the UK Phenology Network (UKPN; www.naturescalendar.org.uk). 

 

Predictions of the change in budburst date due to temperature increases in sycamore, ash and 

oak were taken from (Morecroft et al., 2008), who correlated the budburst date of these 

species to temperature at Wytham Woods using 13 years of data. For the five remaining 

species, I used regression analysis to correlate the average UK budburst to the average spring 

temperatures found at Wytham Woods between the years 1999 and 2013. These regressions 

provided an estimate for the change in budburst per °C. 
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These predictions were combined with the projections of the average air temperature change 

up to 2080, providing estimates for the change in budburst date. Predictions of future 

temperature changes in the South East England were obtained from the Met Office's UK 

Climate Impact Programme (UKCP09; Murphy et al., 2009), which provides average air 

temperatures between 2020 and 2090. The 25km
2
 grid 1547 was used, which includes 

Wytham Woods. The predicted air temperature for March under three emission scenarios -

Low (B1); Medium (A1B) and High (A1fi) - were used in the analysis. After 2090, the 

budburst date for each species remains the same in the model. 

 

6.3.4 Drought-induced mortality 

Drought was defined using the standardised precipitation index (SPI; McKee et al., 1993), as 

in section 5.3.2. This normalises rainfall data over any time frame, estimating the extent of 

both wet and dry years using the equation to calculate monthly precipitation: 

 

     
                                              

                 
     (6.1) 

 

In severe drought years the SPI is closer to -3, with extremely wet periods being closer to +3. 

To calculate the baseline SPI, the monthly average precipitation for the years 1970-2014 were 

obtained from the Met office Hadley Centre England & Wales Precipitation series (HadEWP; 

Alexander and Jones, 2001). The summer rainfall, the sum of the averages of June, July and 

August, were used from the southeastern region, encompassing Wytham Woods. 

 

Predictions for future SPI were obtained using data obtained from the Met Office Hadley 

centre UKCP09 Model (Murphy et al., 2009), which provided estimates for monthly daily 
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average precipitation in the 25km
2
 grid square 1547, which includes Wytham Woods, for the 

years 2020-2089. Estimates for three IPCC emissions scenarios were used: low (B1), medium 

(A1B) and high (A1fi). Future yearly SPI data were calculated using these estimates as well 

as including the HadWEP data to ensure a comparison to precipitation levels in baseline 

conditions. 

 

Current survival rates were estimated using capture-recapture software MARK (White and 

Burnham, 1999), with SPI, as well as diameter at breast height (DBH) and their combination, 

as covariates (Moustakas and Evans, 2015). Annual location probability (p) was kept 

constant, and the models with highest AIC for each species were chosen as those that most 

closely described the data (White and Burnham, 1999). These mortality parameter estimates 

were then used with future estimates of precipitation to give estimated annual mortality for 

each of the species. After 80 years, these mortality parameters are kept at the 2080s levels. 

 

6.3.5 Baseline conditions 

In the context of this chapter, baseline conditions were considered to be when the budburst 

for each species is the same as current day (section 4.3.2), and the drought conditions were 

averaged for the years 1970-2015 (section 5.3.3).  

 

6.3.6 Model Runs 

The SORTIE/UK model (as parameterised in chapter 3) was updated with the new growth 

and mortality estimates to give predictions of effects of climate change on the species at 

Wytham. For baseline conditions and the three emission scenarios, models were run for 1250 

years, in 5-year time-steps. Eight runs were performed for each scenario, each simulation 
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being initialised with the same starting forest structure that was based on the species, size and 

spatial structures as recorded at Wytham Woods. 

 

6.3.7 Data analysis 

Statistical analyses were performed in R 1.3.0 (R Core Team 2013). Differences between 

climate change scenarios and baseline conditions were analysed using a one-way ANOVA. 

Normality was tested for using Shapiro-Wilk test, with homogeneity of variance being 

confirmed using diagnostic plots. Tukey's honest significant differences (HSD) post hoc tests 

were performed where significant differences were seen between scenarios. Differences in 

age, DBH and height were also tested using one-way ANOVAs. Differences in the 

proportions of adults and saplings were tested using Pearson's chi-squared test. 

The relative abundance of each species in each scenario in this chapter were compared to the 

results from previous chapters, which considered budburst (section 4.4) and drought (section 

5.4) separately, using t-tests. The total absolute number individuals in each of the scenarios 

was also compared against the results from previous chapters using t-tests. 

 

6.4 Results 

6.4.1 Climate change predictions 

6.4.1.1 Budburst 

The species most sensitive to March temperature is sycamore, which is expected to budburst 

6.2 days earlier for every 1°C. Hazel was not shown to be sensitive with March temperatures 

and so the budburst for this species was kept constant. The order of species from most 
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sensitive to least is sycamore > ash > birch > hawthorn > field maple > beech > hazel (figure 

6.1). 

 

6.4.1.2 Drought 

The calculation of the SPI showed than when comparing rainfall from 1970 with predictions 

up to 2080, there is forecasted to be a continuous decrease in precipitation from the 2010s to 

the 2070s, beginning at an SPI of -0.0440 decreasing until -0.6960 (table 6.1). 

 

Only birch and oak do not have a negative response to drought conditions. The most 

intolerant to drought is sycamore and beech with ash, field maple, hazel, hawthorn having 

intermediate tolerances (figure 1). 

 

 

Years SPI 

2012-2020 -0.0440 

2021-2030 -0.1874 

2031-2040 -0.2484 

2041-2050 -0.4314 

2051-2060 -0.5325 

2061-2070 -0.6168 

2071-2080 -0.6960 

Table 6-1: Forecasted standardised precipitation index (SPI) for the years 2012 to2080 when calculated 

with rainfall since 1970. 
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Figure 6-1: Increase in budburst date (grey bars; number of days) and drought tolerances (black line & 

circles; drought tolerance [phi3, see 5.3.3]) for eight species. 

 

 

6.5 Model Outputs 

6.5.1 Absolute numbers 

With increasing intensity of climate change, the total number of individuals rises significantly 

from 222768 (±3561) individuals in baseline conditions to 244722 (±3656) in low emissions 

scenario, B1, 250708 (±3333) in medium emissions scenario, A1B, and 256883 (±3018) in 

high emissions scenario, A1fi (ANOVA: F(3,28)=427, p<0.001; figure 6.2). Post-hoc analyses 

confirmed that there is a difference between each scenario and baseline conditions, as well as 

between each other (Tukey's: all p<0.001). Ash accounts for between 96.7% (A1fi) and 

97.9% (B1) of the total increase in individual trees (F(3,28)=403,p<0.0001), increasing from 
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195708 individuals, in baseline conditions, by 10.9% in B1 to 217071 (±2130), 13.9% to 

223080 in A1B, and 16.8% in A1fi to 228722 (±1642). 

 

 

Figure 6-2: Total absolute number of individuals. The dark horizontal line represents the median number 

of individuals from the eight runs, with top and bottom of box representing the upper and lower quartiles 

(25th and 75th percentile), with the end of whiskers representing the data range. 

 

 

The only other species to significantly increase with climate change conditions is birch, 

increasing their numbers by up to 37% in A1fi to 1276, from 931 in baseline conditions, with 

a 37% increase to 1276 in B1 and a 29% rise to 1208 individuals in A1B (F(3,28)=5.2,p<0.01). 

The only species to significantly decrease between scenarios is beech, however this is not 

linear with increasing emissions, with the lowest number being in scenario A1B, dropping by 
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121 individuals from 849 (table 6.3). This compares to a reduction to 760 in B1 and 763 in 

A1fi (F(3,28)=4.7,p<0.001; figure 6.3). 

 

 

 

Absolute Number after 1250 Years 

 

Baseline B1 A1B A1fi 

Ash 195708 (±2305) 217071 (±2130) 223080 (±1997) 228722 (±1642) 

Beech 849 (±51) 760 (±67) 728 (±65) 763 (±85) 

Birch 931 (±132) 1173 (±200) 1208 (±164) 1276 (±233) 

Field Maple 519 (±68) 531 (±30) 516 (±37) 535 (±32) 

Hawthorn 8268 (±380) 8546 (±525) 8419 (±529) 8701 (±493) 

Hazel 2134 (±126) 2296 (±134) 2246 (±124) 2215 (±181) 

Oak 12613 (±414) 12649 (±464) 12806 (±311) 12976 (±271) 

Sycamore 1746 (±86) 1696 (±106) 1705 (±107) 1695 (±81) 

     
Total 222768 (±3561) 244722 (±3656) 250708 (±3333) 256883 (±3018) 

Figure 6-3: Predicted absolute numbers of each species (± SD) after 1250 years for baseline temperature 

and precipitation conditions and three emission scenarios. 

 

 

 

6.5.2 Relative abundance 

With its large contribution to the increase of individuals in climate scenarios, ash is the only 

species to increase its relative abundance in the forest, from 87.85% in baseline conditions to 
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88.7%, 88.9% and 89% in B1, A1B and A1fi scenarios, respectively (F(3,28)=36.2,p<0.0001). 

All other species decrease in their proportions as emissions increase (table 6.2). 

 

6.5.3 Age, DBH, height and adult-sapling proportions 

No differences were found between the scenarios in age, DBH or height. There were no 

differences in the proportions of saplings to adults. 

 

6.5.4 Comparing to the situation when only growth period changes 

When comparing the results from this chapter to those where changes in growth period alone 

is considered (section 4.4) there are significant differences in the relative abundances of each 

species across the scenarios, apart from beech in the B1, A1B and A1fi scenarios (table 6.3). 

The largest increase in all scenarios is seen in ash, increasing its proportional representation 

in the forest by 53%, 54%, 54% and 57% trees in the forest, in A1fi, A1B, B1 and baseline 

conditions respectively. Modest increases are also seen in oak, hawthorn, birch and field 

maple. There are substantial reductions in sycamore across all scenarios, reducing from a 

representation of 58.57% with just growth period included in the model, to just 0.66% in 

highest emission scenario A1fi in these results. It reduces its representation similarly in all 

scenarios, losing 58.2% of its representation in A1B, 58.3% in B1 and 62% in baseline 

conditions. The only other species to decrease when drought is considered in addition to 

growing season effects is hazel, reducing its representation between 3.13% in A1fi to 3.47% 

in baseline (table 6.3). 
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Figure 6-4: Total absolute numbers for each species after 1250 years, under baseline conditions and three 

emission scenarios. The dark horizontal line represents the median number of individuals from the eight 

runs, with top and bottom of box representing the upper and lower quartiles (25th and 75th percentile), 

with the end of whiskers representing the data range, or 1.5 times the interquartile range with individual 

outliers represented by circles.  

 

 

 

6.5.5 Comparing to drought chapter results 

When comparing relative abundances from this chapter to section 5.4, where the effect of 

drought alone is considered, there are no significant differences in any of the species in 

baseline conditions. There are however changes in the abundances of several species in the 

three climate scenarios (table 6.4). When both growth the period and drought-induced 

mortality is introduced into the model, ash is the only species to increase its relative 

abundance in all emission scenarios, when compared to the sole effects of drought. The 

differences are modest, increasing its representation by 0.69% in B1, 0.92% in A1B and 

1.08% in A1fi. The only other species to increase in proportion is Hazel when both climate 

change impacts are considered, increasing its representation by 0.17% in B1 and 0.08% in 

A1B. Sycamore, oak and field maple reduce in all scenarios, with beech reducing in scenarios 

in B1 and A1B only (-0.05% in both). No significant differences between results are seen in 
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birch or hawthorn. There are however significant increases in the total absolute number of 

individuals in this chapter compared to the previous two. 

 

Proportional Representation (%) 

 

Current 1250 Year Predictions 

 

 

Baseline B1 A1B A1fi 

Ash 26.9 

87.852 

(±0.0034) 

88.702 

(±0.0026) 

88.98 

(±0.0026) 

89.038 

(±0.0013) 

Beech 1 

0.381 

(±0.0002) 

0.311 

(±0.0003) 

0.29 

(±0.0003) 

0.297 

(±0.0003) 

Birch 0.4 

0.418 

(±0.0006) 

0.48 

(±0.0008) 

0.482 

(±0.0007) 

0.496 

(±0.0009) 

Field Maple 0.7 

0.233 

(±0.0003) 

0.217 

(±0.0001) 

0.206 

(±0.0002) 

0.208 

(±0.0001) 

Hawthorn 6.9 

3.711 

(±0.0017) 

3.491 

(±0.002) 

3.358 

(±0.0022) 

3.386 

(±0.0017) 

Hazel 8.9 

0.958 

(±0.0006) 

0.938 

(±0.0006) 

0.896 

(±0.0005) 

0.863 

(±0.0007) 

Oak 1.9 

5.663 

(±0.0021) 

5.169 

(±0.0019) 

5.108 

(±0.0013) 

5.052 

(±0.0011) 

Sycamore 51.9 

0.784 

(±0.0004) 

0.693 

(±0.0005) 

0.68 

(±0.0004) 

0.66 

(±0.0003) 

Table 6-2: Relative abundance of each species (± SD) after 1250 years under baseline conditions and three 

emission scenarios 
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Differences between climate change model with budburst model 

 

Baseline B1 A1B A1fi 

Ash +57.475 +54.255 +53.885 +53.556 

Beech +0.057 -0.003 -0.004 +0.012 

Birch +0.418 +0.480 +0.482 +0.496 

Field Maple +0.166 +0.174 +0.157 +0.153 

Hawthorn +2.145 +1.903 +1.821 +1.872 

Hazel -3.474 -3.130 -3.266 -3.207 

Oak +5.640 +5.145 +5.085 +5.030 

Sycamore -62.428 -58.824 -58.161 -57.911 

Table 6-3: Changes in the proportional representation of each species in emission scenario when 

comparing to model considering only growth period change (section 4.4). Significant differences are 

shown in red. 

 

Differences between climate change model with drought model 

 

Baseline B1 A1B A1fi 

Ash -0.21 +0.69 +0.92 +1.08 

Beech +0.02 -0.05 -0.05 -0.02 

Birch +0.03 -0.01 +0.00 -0.03 

Field Maple -0.00 -0.03 -0.03 -0.06 

Hawthorn +0.36 +0.19 +0.07 +0.26 

Hazel +0.13 +0.17 +0.08 +0.02 

Oak -0.28 -0.88 -0.92 -1.16 

Sycamore -0.03 -0.09 -0.07 -0.08 

Table 6-4: Change in proportional representation of each species in emission scenario when comparing to 

model considering only drought (section 5.4). Significant difference are shown in red. 

6.6 Discussion 
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In this chapter I have considered the combined effect of both budburst change and climate-

induced mortality on a semi-natural ancient woodland. Overall the results are similar to those 

in the previous chapter (section 5.4), the most notable result being the projected changes in 

relative abundances of species when compared to present day. 

 

For all emission scenarios, and the baseline conditions, ash is predicted to become the 

dominant species representing between 87% and 89% of all individuals in the forest, a large 

increase from its current abundance of 26.9%. This increases with increasing severity of 

climate change, with an increase in the numbers of individual trees with increasing 

temperature and decreasing summer rainfall. Such is the increase of individuals that ash is 

the only species to increase its relative abundance with increasing emissions, all other species 

reducing in relative abundance even with slightly higher or the same numbers of individuals. 

The main driver behind this increase is most likely to be the considerable reductions of 

current co-dominant species sycamore, which is drought intolerant, thus reducing light 

competition for the drought tolerant ash (Scherrer et al., 2011). As well as reducing 

competition, the drought induced dieback events would create new gaps in a relatively short 

time period that the fast growing ash can take advantage of. The reduction of sycamore 

reported here is consistent with previous predictions based on the Ecological Site 

Classification (ESC; Pyatt et al., 2001), which predicted reductions of sycamore in the South 

East of England in the future due to decreased rainfall (Broadmeadow et al., 2005, Read et 

al., 2009). 

 

The hypothesis that prolonged growth period may result in lower mortality in those species 

that are susceptible to drought was rejected, with sycamore showing the largest positive rate 

of increase in growth period with temperature (6.2 days °C-1
) but decreasing in abundance of 
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all the species, when growing season was considered in combination with drought. The 

significant increase in ash, which has the second most responsive change in phenology to 

temperature increases (5.1 days °C-1
) confirms the second hypothesis that a species that is 

relatively tolerant to drought will obtain an advantage from the increased productivity. 

 

The species most tolerant to drought at Wytham was shown to be birch (figure 6.1) and was 

the only other to increase significantly in absolute numbers, by between 25 and 40%. This 

tolerance is unexpected as birch is considered to be drought intolerant, and so these results 

may not be replicated at other sites. one reason for their high drought tolerance displayed here 

may be the small numbers of individuals, which may not have been representative of the 

larger community. Despite a high response in budburst to temperature, the proportion of birch 

remains the same when budburst is considered with drought, even showing a slight decrease 

in proportions (table 6.4). This shows that an increase in growth period will not benefit all 

species that are drought tolerant, and is evidence for the indirect biotic effect of plant-plant 

competition. 

 

For birch especially this may be explained by its slow growth and relatively high mortality in 

shade. The canopy of the forest has changed from a co-dominance of sycamore and ash, to 

that of mainly ash. Sycamore has a relatively dense crown when compared to ash, and so the 

dominance change means an increase in the light reaching below the forest canopy, and thus 

reducing light competition on species such as birch. This is illustrated with the predicted 

extinction of birch when the impact of drought was not considered on the forest, under which 

scenario the co-dominance of sycamore and ash was predicted to continue (section 4.4). 

Further evidence of biotic interactions causing changes in demography comes from hazel, 

which is relatively tolerant to drought. This species increases in proportions when budburst is 
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considered alongside drought, although it does not increase its growth period with an increase 

in temperature.  

 

These results provide further compelling evidence that under climate change conditions there 

will be a reduction of current co-dominant species sycamore due to its drought intolerance, 

leading to a dominance of ash. This could be seen as a return to a more natural state, as 

sycamore is a non-native species, and more representative of the National Vegetation 

Classification (NVC) W8 Fraxinus excelsior - Acer campestre - Mercurialis perennis habitat 

that would be expected of the area (Savill et al., 2011). There has been some concern that 

sycamore may outcompete with native species such as ash (Morecroft et al., 2008), however 

this study provides evidence that climate change will prevent this at Wytham Woods. It is 

worth noting however that in analysing surveys undertaken between 1993 and 2005 

(Morecroft et al., 2008) showed that in areas without active management at Wytham, 

sycamore is minimally represented or absent. This suggests that perhaps without management 

strategies, as in this model, ash may dominant the forest with beech or and oak as sub-

dominant species. 

 

The results presented here suggest that the reduction in sycamore will also occur in baseline 

conditions, which represent conditions of the previous 50 years. As well as any lack of active 

management, this could be a sign that climate change has already been taking effect in the 

area since 1970, over which period baseline conditions were taken. It has been reported that 

the average summer rainfall has remained the same across the UK in the past 50 years, but 

that this period is significantly lower than the average of the period since records began in 

1766 (Jenkins et al., 2009). Shifts in populations caused by drought have been recorded since 

1950 elsewhere (Allen and Breshears, 1998, Peñuelas et al., 2001, Bigler et al., 2007), and so 
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it may be necessary to use historic precipitation data in order to get a better baseline estimate. 

Temperature also plays a role in drought, and with temperatures expected to increase in South 

East England by 1.77°C in the next century (Jenkins et al., 2009), it could be useful to use a 

methodology that includes temperature when considering moisture deficits. 

 

Sycamore is thought to be a host and food source to many species (Peterken, 2001), and there 

is evidence that ash seedlings may have higher survival under a sycamore canopy than under 

their own (Waters and Savill, 1992), although this has been contested (Morecroft et al., 

2008). The reduction of sycamore will therefore have impacts on many trophic levels of the 

forest. The reduction of diversity could also reduce the resilience of the forest, as forests 

dominated by one species have greater potential for regime shifts or even ecosystem collapse 

(Scheffer and Carpenter, 2003, Petit and Hampe, 2006). This is especially true for UK 

woodlands that are dominated by ash, due to the fungus Hymenoscyphus fraxineus that has 

been causing die back events since 2012 (Mitchell et al., 2014). 

 

For this study I have focussed on two aspects of climate change on plants: the effect of 

temperature on phenology, and the effect of drought-induced mortality. Future changes to 

temperature and rainfall caused by raised CO2 partial pressures are thought to be the biggest 

threat to woodlands. However, there are further implications to consider from the direct effect 

of CO2 and temperature that might alter many processes in plants from cellular reactions to 

growth (Bunce, 2000, Rustad et al., 2001). CO2 enrichment is a positive force for plant 

species increasing productivity and diversity, and there is evidence for species-specific 

responses (Asshoff et al., 2006, Ainsworth and Long, 2005, Poorter and Perez-Soba, 2001). 

More research would be need to quantify these if they were to be included into a model, and 
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to take into account the limiting factors including nitrogen (Reverchon et al., 2011, 

Ainsworth and Long, 2005, Norby and Luo, 2004). 

 

In chapter 4 I found that budburst was most well correlated to March temperatures, however 

there is evidence in some species that winter cooling can also have an effect on spring 

phenological events (Yu et al., 2010, Clark et al., 2014, Luedeling et al., 2009). Autumn 

phenological events are also controlled by temperature (Menzel, 2000, Menzel and Fabian, 

1999), however these relationships are less well understood and less data are available than 

for spring phenology (Sparks and Menzel, 2002). Additionally, autumnal phenological events 

occur in the less photosynthetically active periods, and so contribute less to growth than 

changes in spring phenology (Menzel et al., 2006). Temperature also regulates other 

processes such as growth and leaf production which may have further implications for 

species interactions (Drobyshev et al., 2013, Lévesque et al., 2014). 
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7.  Chapter 7  

General Discussion 
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The results presented in my thesis provide evidence of the direct effects of climate change on 

tree species at two forests, and are able to show that abiotic interactions between individuals 

also have a major role in the response of some species. Here I present the first results of a 

model that considers the impact that increased growing seasons, due to temperature-driven 

earlier budburst, will have on tree communities within a woodland. For my study I considered 

how the increases in annual growth caused by longer growth seasons will alter the 

competition regimes for light. In order to do this I used a spatially-explicit individual-based 

model which was able to consider both the direct effects on growth and the indirect effects on 

light competition between individuals. My results show that it is not the species that are the 

most sensitive to temperature, thus having the largest increase in growing season length, but 

the canopy species that will see the most benefit from increased growth periods. In Wytham, 

the two current co-dominant species Fraxinus excelsior (European ash) and Acer 

pseudoplatanus (sycamore) were the only species to increase their proportional representation 

in the forest, impeding the increase of other species. At the GMF, however, the increase of 

one canopy species, Fagus grandifolia (American beech),was shown to impede all other 

species including co-dominant species Tsuga canadensis (Eastern hemlock).  

 

As well as the change of phenology I also examined the effect of projected summer 

precipitation on the community at Wytham Woods. My results showed that the drought-

intolerant canopy species sycamore will drastically reduce its representation over the next 

1000 years, even under the current precipitation regime. This suggests that without active 

management at the site there will be significant changes to the population at Wytham, 

potentially leading to a dominance of ash. My research also considered the interactions of 

both drought together with increased growing seasons and found that when considered 

together, drought tolerant species can increase their proportional representation, but the 
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increased growth does not mitigate the effects of reduced precipitation to drought intolerant 

species such as sycamore. In comparing the results from previous chapters I was able to show 

that drought has a much more significant impact on the community at Wytham, however 

other impacts of climate change such as CO2 will be important in the responses of tree 

populations.  

 

It has been postulated that it is vital that interactions between plant species are considered 

when predicting the effects of climate change (Davis et al., 1998, Pearson and Dawson, 2003, 

Guisan and Thuiller, 2005, Brooker, 2006), as it is known that competition causes changes to 

the physiological (e.g. leaf size; van Loon et al., 2014) or functional response (e.g. stomatal 

conductance; Loranty et al., 2010) of species, which can ultimately drive community shifts. 

These interactions may also exert a stronger impact on species than the direct effects of 

climate change (Liancourt et al., 2013, Naithani et al., 2014). The results of my study confirm 

this, with the only canopy species responding to increased growing seasons, which 

constrained any response in sub-canopy species, even if their response to climate change is 

greater. 

 

These results are consistent with an empirical study at Wytham Woods that showed that 

spring phenology changes affected the growth of understory species (Butt et al., 2014). This 

was also explained by light competition, with understory species losing their advantage of 

earlier budburst with the late spring events caused by low spring temperatures. I was not able 

to implicitly investigate effects such as these in my model, as I considered changes in growth 

as proportional to one other. It would however be important to include this detail in future 

research as the time of year that phenological events happen is important for the growth of 

species, for example species increasing their growth in late May or June would experience a 
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greater increase in growth than those earlier in the season (Morecroft et al., 2008), as it has 

been shown that maximum CO2 rates occur up to 70 days after budburst (Morecroft et al., 

2003) and that these differences are interspecific (Morecroft and Roberts, 1999). Also worth 

considering is the effect that this will have on succession of forest, if late-successional 

canopy species gain the most benefit within a forest then this could be a driver to accelerate 

succession (Bolte et al., 2014). 

 

Given the impact that interactions have on community structure and functioning of forests it 

is vitally important that they are considered when predicting the effects of climate change. As 

well as the direct effect this will have on the individuals within the forest, changes in the 

functioning, productivity and survival of species has implications for vegetation-climate 

feedbacks, affecting important biogeochemical events such as carbon cycles (Ciais et al., 

2013, Ciais et al., 2005, Dury et al., 2011). For example, drier conditions lead to a reduction 

in evapotranspiration which in turn leads to less evaporative cooling (Yin et al., 2014), which 

in turn can lead to a further warming of ecosystems (Yin et al., 2014, Seneviratne et al., 2006, 

Fischer et al., 2007). Increased temperatures are also expected to increase the release of CO2 

emissions from plant, leading to warmer temperatures (Cox et al., 2000, Luo, 2007), however 

this might be mediated through the biomass accumulation and increase in net plant 

productivity (Rustad et al., 2001, Melillo et al., 2002, Luo, 2007, Lin et al., 2010). If 

population structure is effected by interactions then this will in turn affect ecosystem 

functioning, and so it is important to use models that are able to consider them when 

considering vegetation-climate feedbacks.  

 

My results from chapter five, showing that drought-intolerant sycamore will decrease in 

proportional representation in the forest, are consistent with previous predictions of the 
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impact on the species due to reduced rainfall (Broadmeadow et al., 2005, Morecroft et al., 

2008). My results suggest that the reduction in summer precipitation over the past 50 years 

(Jenkins et al., 2009, Pal et al., 2004) is enough to significantly decrease their number after 

1000 years. This provides a further example on a growing number of studies which relate the 

dieback events of species to drought events (Suarez et al., 2004, Rolim et al., 2005, Fensham 

and Fairfax, 2007, review: Allen et al., 2010, Ma et al., 2012), although most studies are 

interested in episodic drought events, whereas I considered the reduction of the mean summer 

precipitation values. In my study I only considered the effect that decreased precipitation will 

have on the mortality of species, however there will be a range of effects such as the a 

reduction in productivity and growth caused by an decrease of carbon caused by a reduction 

in stomata closing (Bréda et al., 2006, Boisvenue and Running, 2006).  

 

Whilst my model simulations suggest that ash will become the dominant species, this has not 

considered the recent threat of ash dieback disease, caused by the fungus Hymenoscyphus 

fraxineus. Whilst recent surveys suggest that ash is indeed increasing its representation more 

than other canopy species (Kirby et al., 2014, Mihok et al., 2009), evidence from mainland 

Europe suggest that up to 99% of individuals are susceptible to the disease (Kjaer et al., 2012, 

Pautasso et al., 2013) and with potentially 68% of plots having over 20% canopy cover of ash 

(Kirby et al., 2014), any dieback event would be substantial. With a projected decrease of 

sycamore, this could lead to dominance of other canopy species such as beech or oak, 

although there is also concern about the threat of acute oak decline which has affected 

woodland populations of Britain (Denman et al., 2010). Alternatively, invasive species may 

become a feature of Wytham. Species are moving northwards and to higher altitudes due to 

changes in temperatures (Walther et al., 2002, Kullman, 2002), so it is to be expected that 

species will colonise new areas. Successful invasions have often been attributed to 
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competitive advantages to resources (Levine et al., 2003, Vilà et al., 2003, Vilà and Weiner, 

2004, Gioria and Osborne, 2014), and so with reductions in sycamore and potential decreases 

in ash and/or oak, then new species to Wytham Woods may colonise.  

 

Management will play a vital role in the reduction of climate change impacts in many 

ecosystems in the coming decades (Spittlehouse and Stewart, 2004, Noss, 2001), with a study 

at Wytham Woods showing that different management strategies affect the vertical canopy 

structure (McMahon et al., 2015). Predictions such as this help forest practitioners consider 

the best options in to protect current species, for example sycamores are known to be highly 

susceptible to squirrel (Scirius carolingensis) damage (Hein et al., 2009, Kirby et al., 2014), 

and so management to reduce this damage and aid successful regeneration under drought 

stress. 

 

In this study I only considered changes to mean temperatures and precipitation, but it is 

thought to be extreme environmental conditions that determine the distribution, structure, 

productivity and survival of plant communities (Reyer et al., 2013a, Knapp et al., 2002, 

Chapin et al., 1993, Bokhorst et al., 2007, Van Peer et al., 2004). Phenological events, such as 

budburst are not only affected by the mean temperature but also by climatic events such as 

warm spells, drought or frosts (Rutishauser et al., 2008, Butt et al., 2014). Warm spells or 

heat waves can also lead to high atmospheric demands for plant transpiration, which can 

determine the drought tolerances of plants beyond changes in mean climate. It has been 

shown changes to the variability of precipitation, with constant annual amount, increases 

species diversity but reduces carbon turnover and annual net primary productivity (Knapp et 

al., 2002). Increased mortality events from extreme events can cause shifts in species 

distributions, community assemblages and ecosystem structures and functioning through the 
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creation of selective pressure of the evolution of locally adapted physiologies (Parmesan et 

al., 2000). Additionally, I only considered droughts caused by summer rainfall however 

winter rainfall also effects annual drought events by changing the water deficit (Vautard et 

al., 2007). 

 

Other abiotic factors linked to climate change will also be important for the changes to 

diversity and functioning of ecosystems. The expected increase in carbon dioxide partial 

pressures will increase photosynthesis between 30% and 50% in young trees (Broadmeadow 

and Randle, 2002), as well as increasing the leaf-area index (LAI; Ainsworth and Long, 

2005), productivity (Körner, 2006) and biomass (Stiling and Cornelissen, 2007, Kimball et 

al., 2007), thus having the potential to mitigate the negative effects of climate change. 

Increases in carbon dioxide also reduces stomatal conductance and so decreases transpiration 

and increases soil moisture content (Volk et al., 2000, Morgan et al., 2004), which may be 

essential in mediating the effects of drought on species (Holtum and Winter, 2010). Any 

enrichment from carbon dioxide will however be limited by the availability of other nutrients, 

especially nitrogen, which could become a limiting factor in some species (Broadmeadow 

and Jackson, 2000), and there is evidence that the enrichment from increased carbon will 

decrease with time (Leuzinger et al., 2011). 

 

I used an individual based model to investigate the effect of climate change on individual 

growth and mortality on a tree population in a semi-natural ancient woodland. As with all 

modelling approaches, there are advantages and limitations. Models can only be as 

representative as the experimental or empirical data that is available (Leuzinger et al., 2011), 

and quite often the time periods that my model is based on are short and may not represent 

the full response of the species to environmental changes. However, data from the ECN are 
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some of the longest running ecological datasets which have not only been recorded 

methodically, but replicated at other sites across the UK meaning that my research could be 

extended to other sites across the UK with relative ease. Using this method I was also able to 

consider not only the direct effect of climate change on forest but how interactions will 

mediate these effects. It would be useful to be able to quantify these biotic interactions, as the 

data is made available through the use of a spatially-explicit model. My results have been 

shown to be consistent with other models and empirical studies at Wytham, which helps to 

validate their accuracy.  
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