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Abstract In this paper we present a genetic program-
ming system that evolves the music composition process
rather than the musical product. We model the compo-
sition process using a Turing-complete virtual register
machine, which renders musical pieces. These are eval-
uated using a series of fitness tests, which judge their
statistical similarity against a corpus of Bach keyboard
exercises. We explore the space of parameters for the
system, looking specifically at population size, single-
versus multi-track pieces and virtual machine instruc-
tion set design. Results demonstrate that the method-
ology succeeds in creating pieces of music that converge
towards the properties of the chosen corpus. The output
pieces exhibit certain musical qualities (repetition and
variation) not specifically targeted by our fitness tests,
emerging solely based on the statistical similarities.

Keywords evolutionary algorithms · music gener-
ation · music evaluation · corpus-based similarity
tests

1 Introduction

Music composition is a fundamentally subjective pro-
cess. It requires not only the creation of new musical
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Fig. 1: The creative process of a composer is informed
by both experience of music in general (external influ-
ence of others’ music) and experience gained through
practice of the composition process itself.

ideas but also the critical assessment and refinement of
newly created material in order to produce a completed
work. Thywissen [35] describes it as ‘an aesthetic search
through the space of possible structures that satisfy the
requirements of that process’. Composers spend years
training and perfecting their technique; to create new
music successfully, both experience of the composition
process and knowledge of existing ‘good’ music is re-
quired. The composer’s judgement as to whether a new
musical idea is good or bad will be a subjective deci-
sion based on their knowledge and memory of previous
pieces (see Figure 1). As their creative process evolves,
so too should the quality of their compositions.

With the exception of formal tuition, the external
knowledge gained from music written by others is gen-
erally indirect; a listener experiences only the output of
the composition process, without being able to observe
the steps taken to create it. Even reading and analysing
the scored music for a piece gives little clue about the
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composition process itself. When someone tries to com-
pose music for the first time, the structures inferred
from these outside influences provide the foundations
for new works. After the initial attempts, later compo-
sitions may be more directly inspired by the composer’s
own previous pieces. The composer has full knowledge
of the composition process used in their previous works
and can refine this process over time.

Viewing the development of a composer’s skill as
an evolving process intuitively suggests that evolution-
ary computation techniques should find utility in algo-
rithmic music composition. In this paper we model the
composer as a Turing-complete virtual machine (VM);
the mind is viewed as a computer with a predefined
set of instructions representing real-world atomic steps
used to produce a piece of music. Each composition is
the result of executing a specific program on the ma-
chine and it is these programs that are the subject of
our evolutionary process. The output of the VM is a
byte array which only receives context once we view it
as a musical piece. As a result, the system is not lim-
ited specifically to producing music; the evolutionary
strategy for its programs could represent any creative
process.

In our context, the outputs of the system are inter-
preted as musical pieces and assessed by judging their
statistical similarity to a corpus of real music (in this
case Bach’s Inventions and Sinfonias). The corpus rep-
resents the set of our virtual composer’s external in-
fluences and, as in the real world, we have no direct
knowledge of the composition process that produced
that music. The statistics we use to judge similarity
to the corpus have been chosen based on a number of
general musical traits they may represent. While the
tests are aimed at musical properties, the comparison
process itself is applicable to any corpus-based evolu-
tionary process.

Using evolutionary models for composing music is
nothing new; examples date back to the early 1990s
(see [16,14,17,24,19] and for an exhaustive review [30]).
However, the subjective nature of music quality makes
defining appropriate machine fitness tests di�cult [16,
24,25,39]. To reduce the otherwise vast solution space
of all possible music, many past approaches have fo-
cused on evolving one particular musical property, e.g.
melody [1,37], harmony [24,28,6], rhythmic patterns
[23,9,27] or performance elements [5]. Other approaches
to the problem include incorporating artificial neural
networks [14,4] and evolving musical grammars [29,20].

An alternative way to guide the search for ‘good’
music has been to provide favourable initial conditions.
Waschka’s GenDash [39] uses an initial population of
musical material defined by the user themselves to help

evolve and refine their ideas rather than have the ma-
chine compose music without supervision; Waschka has
released a large number of pieces created with the aid
of this program. Eigenfeldt’s Kinetic Engine [10,11]
evolves rhythmic and melodic patterns; its initial popu-
lation being derived from a pre-computed o✏ine analy-
sis of a corpus. In contrast, rather than seeding the ini-
tial population, Donnelly and Sheppard [8] evolve four-
part harmony by providing the first chord to develop
from upon initialisation of the algorithm.

Other approaches have used interactive genetic al-

gorithms (IGAs) which rely on human feedback for fit-
ness evaluation. Tokui and Iba [36] and Horowitz [18]
applied IGAs to evolve rhythm patterns, while Jacob
[19] used it for evolving multiple musical properties.
One of the early music-related IGAs is Biles’ GenJam
[2]: a program capable of evolving improvisatory pas-
sages in realtime. Other examples of IGAs include the
MIDI-basedGeNotator by Thywissen [35] and SBEAT3
by Unemi [38]. More recently, MacCallum et al. [21]
created the online DarwinTunes community to crowd-
source human feedback for an evolutionary composition
system with members of the public choosing which mu-
sic pieces will be selected for breeding.

The system we present here di↵ers from previous
work in the literature by incorporating linear genetic
programming [3] elements via a VM, e↵ectively evolv-
ing the composition process rather than musical pieces
themselves. The way in which we utilise a corpus is
also novel in that we use it to assess fitness rather than
deriving our initial population from it.

This paper builds on our previous research work in
[34] using an evolutionary algorithm for music compo-
sition by exploring the space of di↵erent system param-
eters more fully. Our results show that musical pieces
with reoccurring patterns and motifs emerge but other
musical properties such as harmony are currently lack-
ing, suggesting the need for new fitness tests perhaps
more directly inspired by music theory.

The paper is structured as follows: Section 2 pro-
vides the overview of the evolutionary system while
Sections 3, 4, 5 and 6 provide in-depth details of its
building blocks. Section 7 presents the tested configu-
rations; Section 8 analyses and discusses the results and
Section 9 draws conclusions and describes possibilities
for future exploration.

2 System Overview

In this research, we cast the action of composing a piece
of music as a process running on a Turing-complete vir-
tual machine. We define a genetic string as the initial
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Fig. 2: Overview of the evolutionary algorithm: The
population consists of our genotype genetic strings (see
Section 2) that represent programs which are inter-
preted by the VM (see Section 3). The output of the
machine is used to build musical models (see Section
5) that are the phenotype. Statistical similarities be-
tween these models and a corpus of real music deter-
mines their fitness (see Section 6) and therefore their
chance of survival and breeding.

condition of the VM comprising values for all registers
and memory segments; the outcome being entirely de-
termined by this initial state. The development of the
composer’s skill then becomes a genetic programming
problem: the genotype is the genetic string presented
to the VM and the phenotype its musical output. In
such a system, a process executing on the VM can hold
internal structuring rules and information that are not
directly visible in the final musical phenotype. Whorley
et al. [40] address this point in the context of melody
harmonisation, the exact steps towards which cannot
be known just by listening to the resulting piece of mu-
sic. Decoupling the genetic program and the resulting
musical phenotype in this way allows for the emergence
of complex structures not possible in more constrained
musical models. For example, a conditional branch in-
struction executed on the VM could cause the repeti-

tion of a single note or section, or perhaps even the
entire piece depending on where it occurs in the pro-
gram. While the musical possibilities of this approach
are e↵ectively unconstrained, the resulting space of pos-
sible outcomes becomes correspondingly vast making it
hard to analyse. Careful design of the fitness evaluation
strategy is therefore necessary.

Figure 2 shows the outline structure of our evolu-
tionary composition system. The output of the VM is
a byte array that is parsed by a model parser to create
our phenotype, a musical model. The structure of this
model is independent from the structure and mecha-
nism of the VM. This two-stage approach to rendering
the model contrasts previous musical evolutionary sys-
tems in that the structure of the genetic string does not
directly represent that of the phenotype. An additional
benefit of separating the parsing step from operation
of the VM is that system could easily be adapted to
di↵erent tasks simply by changing the parser and alter-
ing the fitness tests accordingly; the rest of the system
remaining unchanged.

As mentioned in Section 1, the composer’s creative
process cannot operate in a vacuum; it is necessarily
dependent on the influence of works from previous com-
posers. To achieve this, our evaluation process employs
fitness tests that judge the similarity between certain
properties of the current musical phenotype and those
of a chosen corpus of existing music 1. These tests fo-
cus on the underlying statistical properties of a model
rather than the similarity of the data itself; it is there-
fore possible for a model to achieve high grades without
being identical to a member of the corpus as long as it
shares certain traits captured by those statistics. To
produce these statistics, we subject models to a series
of transform methods to produce a descriptor (as per-
formed by the descriptor builder block shown in Fig-
ure 2). We refer to the complete set of tests as the
similarity test container.

Based on the assigned grades, the breeding selector

chooses pairs of candidates for crossover and/or survival
and the breeder splices these pairs to create o↵spring.
The crossover and mutation process operates on the
genetic strings producing a new generation of programs
for the VM to execute.

3 Virtual machine

Our VM is an emulation of a Turing-complete von Neu-
mann register machine [26]. This choice of architecture

1 It should be noted that the corpus information is only
used to inform our fitness evaluation. If desired, tests based
on alternative criteria could be readily substituted without
requiring changes to any other part of the system.
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Fig. 3: Structure of the genetic string which can be fed to our VM. It contains a 64kB random access memory
(RAM) and a 256B stack, which can be addressed by a 16-bit program counter and 8-bit stack pointer respectively.
Other registers include eight general-purpose 8-bit registers, an accumulator, a 16-bit data pointer and a set of
flags.

allows maximum flexibility in the system since a pro-
cess can alter its own code while it is running. The VM
contains the following memory segments (also shown in
Figure 3):

– 64kB random access memory (RAM) - contains the
actual program. Since this is a von Neumann ma-
chine, the RAM is also part of the data used by the
program, therefore it may overwrite itself during ex-
ecution.

– 16-bit program counter - a register that points to
the location in the RAM where the next instruc-
tion resides; it is capable of addressing any position
in the RAM and is allowed to wrap around during
execution.

– 256-byte stack - a segment of memory where the
program may push or pop data from the registers
or the RAM.

– 8-bit stack pointer - a register that points to the
location in the stack where the program will push
to/pop from.

– 8-bit accumulator register - a register with which
arithmetic/logical instructions are performed.

– 16-bit data pointer - a general address register ca-
pable of addressing any position in the RAM.

– A set of flags - a status register which contains ad-
ditional information on the state of the processor;
currently only a carry flag is used in arithmetic op-
erations.

– Eight 8-bit general purpose registers.

The fetch cycle of the VM is illustrated in Figure 4
showing an example of reading a byte from the RAM,
locating the mapped instruction, incrementing the pro-
gram counter and running the instruction. When an
output instruction is encountered, bytes stored in a reg-
ister or at a location in memory are output from the VM
by appending them to a dynamically-sized output ar-
ray. Execution is terminated either by reaching a halt
instruction or after the machine has processed a pre-
set maximum number of instructions or output bytes;
the latter conditions being added to account for infinite

loops. The VM process is completed in full before the
output array is interpreted by the model parser.

The instruction set contains the following types of
instructions:

1. Data transfer - copy a segment of the RAM or a
register to another segment of the RAM or to a reg-
ister;

2. Arithmetic & logic - perform simple arithmetic and
logical functions on the accumulator register and,
optionally, another value from the RAM or a regis-
ter;

3. Branching & conditional instructions - alter the pro-
gram counter to point to a di↵erent location, option-
ally based on a condition;

4. Machine control - internal instructions such as halt-
ing or pushing/popping using the stack;

5. Output instructions - send values from the RAM or
a register to the output byte array.

Fig. 4: Interpreting an instruction in the VM: an 8-bit
value is fetched from the RAM at the address pointed
to by the program counter, the mapped instruction is
identified, the program counter is incremented and the
instruction executed.
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Fig. 5: An example of choosing candidates to build gen-
eration n+1 from generation n. The numbers in gener-
ation n represent each individual’s overall fitness. The
darker individuals have been randomly selected for sur-
vival from a distribution based on their grades and age,
while the remainder of the population is filled by choos-
ing pairs of parents for crossover.

A random genetic string contains all the di↵erent
opcodes in a uniform distribution. However, interpret-
ing such an input does not guarantee their uniform
occurrences during execution since branching instruc-
tions may form loops and data transfer instructions
may overwrite sections of the RAM. The algorithm may
therefore evolve to favour certain instruction types more
than others, given they lead to a more successful pheno-
type; a detailed analysis of instruction type occurrence
in our tests can be found in Section 8.4.

In our current experiments, we have defined two dif-
ferent instruction sets, di↵ering only in the inclusion or
exclusion of immediate addressing. The immediate in-
struction set allows instructions to be made up of more
than one byte in the RAM where one byte serves and
an opcode and subsequent bytes as parameters. In these
cases, the program counter is incremented according to
the number of bytes used as parameters. Conversely,
the indirect instruction set allows only single-byte in-
structions with parameters taken from registers or in-
directly accessed RAM addresses. We investigate these
two di↵erent approaches to see whether corruption of
multi-byte instructions during the breeding step (due
to splitting and recombination of program strings) will
have an e↵ect on the evolutionary process.

The instruction sets are designed such that all pos-
sible 8-bit values are mapped to an instruction. As a
result any byte array with the aggregate size of all
the aforementioned segments may constitute a genetic
string. Since such an array fully represents the state
of the VM, it ensures that interpreting the same ge-
netic string any number of times will always produce
the same result. This allows us to save or recall any
genetic string the system generates and reinterpret it
later for more detailed analysis.
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Fig. 6: The crossover process generates random cut
points and splices the genetic strings of parents p

0

and
p

1

to create two o↵spring o

0

and o

1

.

4 Evolving genetic strings

As mentioned in Section 1, our subject of evolution is
the composition process rather than the product. We
evolve the genetic strings that represent the initial con-
ditions for this process, while the programs themselves
run on a fixed VM architecture [26].

The initial population of genetic strings consists of
randomly generated byte arrays of a given size. Because
our genetic strings are relatively large, we only keep the
current generation of pieces in memory to keep the sys-
tem e�cient. To enable elitism, we employ a generation
gap method [32] whereby each subsequent generation is
created by allowing both a subset of individuals from
the current generation to survive and also by breeding
selected pairs together to produce new o↵spring. The
selections for both of these processes are determined
randomly from a probability distribution weighted by
the fitness test grades of the individuals (see Section 6).
A graphical representation of this selection process for
survival and crossover can be seen in Figure 5.

4.1 Selection for survival and breeding

When creating generation n+ 1 using the grades from
generation n, we begin with survivor selection. Each
candidate’s survival is determined by their overall grades
scaled by a fixed factor F and its age. Aging of indi-
viduals was added to prevent elites causing the system
to converge too quickly on a sub-optimal result [13]. In
our tests F is set to 15% (see Section 7) so an indi-
vidual with an overall grade of 50% has a 7.5% chance
of survival. Each individual is attributed an age of 1
upon creation and this value is increased every time it
survives into the next generation. If it reaches a preset
maximum age (in the current experiments it is set to
3), it is no longer eligible to be a survivor in the se-
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Fig. 7: The model parser turns a byte array into a musi-
cal model by separating it into 4-byte chunks and using
the values of those bytes as parameters for a note that
will be added to the model. The first byte denotes the
track index and the next three are the note parameters
IOI, duration and pitch.

lection process. This probabilistic approach to survival
di↵ers from our previous research [34], where a preset
percentage of highest scoring candidates were chosen in
each generation. The impact of this change is discussed
in Section 8.3.

The selection of parents for crossover is determined
using complementary phenotype selection [7]. In this
process, ‘mothers’ are chosen based on roulette-wheel
selection then hypothetical best-case o↵spring are cre-
ated by taking the maximum of each potential par-
ents’ grades on each test. The ‘fathers’ are then chosen
through roulette-wheel selection on these hypothetical
children rather than on the fitness of the candidates
themselves. This method exploits the multi-dimensional
nature of our fitness criteria [12], encouraging diversity
by assigning high probability to the mating of parents
who score highly on di↵erent tests.

4.2 Crossover & mutation

When creating and breeding genetic strings, we do not
concern ourselves with how their underlying data will
be used later because, for the purposes of crossover and
mutation, they can simply be viewed as byte arrays.
We will refer to the genetic strings of any two parents
as p

0

and p

1

. With p

0

and p

1

chosen, the genetic string

breeder builds two new o↵spring: strings o
0

and o

1

. To
perform crossover, it chooses a number of cut points,
separates p

0

and p

1

into chunks and populates the o↵-
spring by inserting alternating sections from each par-
ent (as shown in Figure 6). Children o

0

and o

1

are then
mutated by taking a number of random byte indices,
and randomizing the content of those bytes. The ratios
between the size of the genetic string and the maximum
numbers of cut points and mutated bytes are predefined
global parameters for each run of the experiment.

5 Representing music

Our phenotype is a musical model that represents a
composition as a set of tracks, each consisting of a set
of notes. Each note has the following properties:

1. Inter-onset interval (IOI) - The time period be-
tween the onset of the previous note and the cur-
rent note in a particular track. For the first note
in a track, it is the time interval between the be-
ginning of the piece and the note’s onset. Using
the same conventions as standard MIDI2 files [33],
the unit of measurement for this property (called a
tick) is mapped to sheet music time using a global
property TPQ ticks per quarter note, mapped to real-
world time using the property QPM quarter notes per

minute. In our case, we use TPQ = 4 (i.e. the unit is
a 16th note) and QPM = 120.

2. Duration - Time period between the onset and o↵set
of the note in the same unit of measurement as the
IOI.

3. Pitch - A 7-bit numeric value (between 0 and 127)
representing pitch as defined in the MIDI protocol.
The value 69 is associated with the 440Hz concert A,
with an increase or decrease of one unit representing
a one semitone rise or fall in pitch respectively.

Figure 7 shows how the model parser interprets the
output byte array from the VM to produce a musical
model. There are many ways in which this byte stream
could be parsed to translate it to music, indeed the
output bytes from the VM could be masked in such a
way as to produce valid MIDI data directly. However,
the MIDI format treats note on and note o↵ events as
separate atomic entities in time so this approach would
require the evolutionary algorithm to evolve a solution
for producing associated pairs of events before it could
evolve higher level musical structures. For this reason,
we have chosen the current arrangement so that all the
bytes that define an individual note event are stored in
one place in the byte array. The model parser segments
the array into 4-byte chunks, each interpreted as prop-
erties of a note (i.e. track, IOI, duration, and pitch). It
can also perform bit masking for each of these bytes to
constrain their values. These masks, as well as the num-
ber of tracks, are global properties of the model parser.
In our test cases, we constrain the IOI and duration of
each note to a maximum of 16 (i.e. the duration of a
whole note) and the pitch to maximum 127 (to comply
with the MIDI standard as described above). The num-
ber of tracks here is determined by the corpus we use
for similarity tests (as detailed in Section 6).

2 Musical Instrument Digital Interface
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6 Assessing musical quality

The fitness of a musical model is determined by assess-
ing statistical similarities to a corpus of real music. In
our current experiments, we have chosen Bach’s Inven-
tions and Sinfonias3 comprising thirty keyboard exer-
cises. This corpus was chosen because it contains rel-
atively short pieces of similar lengths (around 90 sec-
onds); and also because of its stylistic and structural
homogeneity, which we hoped would help narrow the
solution space to a certain extent.

The files in the corpus have been generated from
a score rather then recorded by a human player. As a
result they contain no elements of musical expression
such as microtiming variation or changes in dynamics
and tempo. All notes have velocity 127, therefore our
current system does not use velocity as a note property.
This is a deliberate decision in the design of the fitness
test because the system produces score-level represen-
tations of music with the intention of evolving musi-
cal traits such as harmony, melody and rhythm. Musi-
cal expression and performance interpretation are not
intended outcomes of the current work and, as such,
would e↵ectively become noise in the fitness evaluation
if they were present in the corpus.

We use two versions of the corpus in our experi-
ments: single- and dual-track. Both contain the same
pieces, each comprising the same set of notes, but the
dual-track versions are separated into two voices di-
vided by pitch range (e↵ectively splitting the left and
right hand keyboard parts). Using the same corpus of
music in a multi-track context allows us to evaluate
the impact of varying track numbers without introduc-
ing stylistic changes that would result from using alter-
nate corpora. For each experiment we keep the number
of tracks in a corpus constant and restrict the model
parser to producing pieces with that number of tracks.

6.1 Normal distribution tests

For our first type of test, we evaluate two single-value
properties of a model: the total duration and number of

notes per track.
To test similarity, we assume a normal distribution

for both properties. We calculate the mean µ

c

and stan-
dard deviation �

c

of all lengths and number of notes in
the corpus. The normal distribution is scaled so the
value of µ

c

gives a fitness of 1. This results in the first
two tests within our similarity test container. Figure 8
shows the deduced normal of the length test and the

3 Works BWV 772-801, MIDI files for which were down-
loaded from www.midiworld.com/bach.htm

Fig. 8: Deduced normal distribution test for musical
model length. The length distribution for the pieces
in the corpus (histogram bars) determines the grading
schema we use for input models. The thick overlaid line
shows the deduced normal curve.

histogram of the lengths of the corpus, to show the cor-
relation.

6.2 Descriptor correlation tests

In this system, a descriptor is the output of a series
of transform methods applied to an input model. For
the remaining tests we calculate four transforms ap-
plied to each of the three note properties (IOI, duration
and pitch) in each track resulting in a total of twelve
statistics. The following transforms are used to build
the descriptor:

Histogram A histogram shows the distribution of
the di↵erent values within the input data. For example,
when analysing inter-onset intervals, a histogram repre-
sents the distribution of quarter notes and eighth notes
etc. If two descriptors have a similar histogram for a
property, it means the distribution of that property is
similar (An example is shown in Figure 9). Selecting for
this discourages unusual values (e.g. very low or very
high pitches).

Histogram of di↵erential This transform shows
the distribution of the rate of change between consecu-
tive notes. It represents the contour of a property. Se-
lecting for this discourages unlikely changes (e.g. large
rises or falls in pitch).

Fourier transform The histograms discard time
information, therefore they are not appropriate for test-
ing repetition and structure. By applying a discrete
Fourier transform to a property, we can see repetitive
time-domain patterns appear as peaks in the spectrum
(An example of this for IOI is shown in Figure 10).
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(a) Single-track corpus

(b) Dual-track corpora: the green area on the right and the
purple one on the left represent the first and second tracks,
respectively.

Fig. 9: The mean pitch histogram of all members of the
single and dual-track corpora. The single-track pitch
distribution is the sum of the two tracks of the dual-
track corpus since they comprise the same notes. A
model scores high on the associated test if its pitch
distributions for both tracks are similar to those from
the corpus.

Selecting for these properties may encourage the emer-
gence of repetitive patterns and rhythm.

Fourier transform of di↵erential This transform
shows the repeating patterns in the rate of change be-
tween consecutive values again selecting for repetitive
patterns in a note property through the piece.

All transforms give results 128 bins in width, in-
dependent of the input size. The histograms measure
discrete values from 0 to 127; each note property lies
within these boundaries due to bit masking (see Sec-

Fig. 10: The inter-onset interval spectrum of the first
member of the single track corpus. The peaks at fre-
quencies ! = ⇡ and ! = 2⇡

3

show strong repetition of
motifs comprised of 2 and 3 notes, respectively. Models
showing similar patterns of repetition score high on the
similarity test associated with this property.

tion 5). The histogram of the di↵erential measures the
signed values of changes from -64 to 63. The Fourier
transforms are performed at a fixed size of 2048 points
(su�cient for the longest possible output pieces) then
downsampled to fit the 128-bin descriptor. This results
in a matrix with 128 columns and 4vk rows, where v is
the number of tracks and k is the number of properties
(in this case, k = 3).

Comparison of two descriptors is performed using
the Pearson correlation coe�cient [31]. The correlation
r is measured row-by-row therefore di↵erent weights
can be assigned to the correlation of di↵erent properties
to determine their relative importance. The results are
averaged across tracks, resulting in 4k = 12 grades.

Given the ith rows from descriptors D and E, de-
noted by D

i

and E

i

, and their respective mean values
D̄

i

and Ē

i

, their correlation coe�cient is given by the
following equation:

r

Di,Ei =

P
127

i=0

(D
i

� D̄

i

)(E
i

� Ē

i

)qP
127

i=0

(D
i

� D̄

i

)2
qP

127

i=0

(E
i

� Ē

i

)2
(1)

The resulting coe�cient is a value between �1 and
1; positive values implying positive correlation, nega-
tive values negative correlation and a value of 0 implies
no correlation. To obtain a fitness test grade, we rec-
tify r

Di,Ei returning 0 to remove negative fitness values.
This approach allows us to return grades between the
values of 0 and 1 without having to normalize the de-
scriptors themselves.
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Fig. 11: Similarity test results for the corpus using dif-
ferent numbers of clusters; the models have been sorted
by correlation.

6.3 Corpus clustering

We have defined correlation between two individual de-
scriptors but our corpus consists of models for thirty
di↵erent pieces, all of which have a di↵erent descrip-
tor. As a result, a method must be used to incorporate
the data from all thirty corpus members into the test.
A possible reference descriptor could be a conceptual
‘average’ of all descriptors from the corpus. This would
be a single niche within our solution space [22]. We ex-
perimented with this approach by testing the members
of corpus against such a descriptor. We found this to
give relatively low grades (between 65 and 82%) which
suggested that taking just one niche narrows down our
solution space so much that even the corpus members
themselves cannot achieve a high enough grade.

An alternative approach is to use all corpus mem-
bers as niches, i.e. measure an input model’s correlation
to each of the corpus members and take the maximum
value. In this case, all corpus members score 100%.
However, doing this many comparisons for every gen-
erated piece would be computationally expensive and
might also broaden the solution space too much. The
latter issue could be addressed by using gamma correc-
tion on the correlation results (see Section 9).

To obtain the best of both worlds, we cluster our
corpus, partitioning the descriptors into K subsets. Af-
terwards we can use the centres of these clusters as ref-
erence descriptors, and test for the maximal correlation
with each centre.

We use k-means clustering [15], which is performed
once o✏ine before the evolutionary algorithm starts. Its
steps are as follows:

1. Define the cluster centres as the first K descriptors.

2. Classify each descriptor into one of the K partitions
by taking the minimal square error.

3. Find the new centres of gravity by taking the mean
descriptor of each partition. Assign these as the new
cluster centres.

4. Repeat steps 2-3 until no change occurs between it-
erations, or the number of steps reaches a maximum
value (to avoid infinite oscillation).

This approach allows the flexibility of changing the
value of K between runs. The two methods proposed
initially can also be achieved by setting K = 1 or K =
30 respectively. Figure 11 shows the grades achieved for
the corpus using di↵erent values for K.

7 Experiments

Our experiments explore the space of possible system
parameters to measure their impact on the progress
of the evolutionary process. Our aim is to investigate
which set of parameters gives the highest grades consis-
tently and determine which parameters help the grades
represent musical quality most accurately.

For each set of parameters, we have executed twenty
separate test runs, each time allowing the system to
complete 20,000 generations. Parameters kept constant
for all runs are a survival probability of 15%, maxi-
mum survival age of 3, maximum cut point ratio of
0.1%, and maximum mutation ratio of 2%. We used 5
corpus clusters and VM halting conditions of complet-
ing 60,000 fetch cycles or producing 2,600 output bytes.
The following parameters were varied between trials:

1. Population size N 2 {2x : 4  x  10}
2. Number of tracks in the corpus v 2 [1, 2] (discussed

in Section 6);
3. VM instruction set; either immediate or indirect

(discussed in Section 3).

This results in a total of 28 possible system config-
urations. With the exception of our new survival mech-
anism (detailed in Section 8.3), the parameter set N =
256, v = 1 and the immediate addressed instruction
set is directly equivalent to the system described in our
previous work [34].

The fitness values for each generation are recorded
while the genetic strings for the whole population are
exported to disk every 1000 generations for later analy-
sis. The highest scoring models in the saved generations
are also exported as MIDI for subjective assessment of
the results.
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Table 1: Mean and maximum grades for each set of tested parameters. Larger population sizes give better grades
overall; dual-track tests have higher means but lower maxima. There is no significant di↵erence between the
immediate and indirect instruction sets for the VM.

Immediate instruction set Indirect instruction set

Population size N

Single-track Dual-track Single-track Dual-track

Mean Max Mean Max Mean Max Mean Max

16 0.385 0.489 0.352 0.455 0.379 0.483 0.360 0.479
32 0.435 0.580 0.411 0.550 0.424 0.532 0.415 0.598
64 0.446 0.602 0.429 0.616 0.476 0.608 0.431 0.636
128 0.482 0.648 0.429 0.654 0.474 0.583 0.432 0.609
256 0.483 0.662 0.450 0.689 0.476 0.628 0.459 0.640
512 0.492 0.679 0.471 0.706 0.502 0.626 0.476 0.673
1024 0.504 0.667 0.490 0.757 0.513 0.641 0.514 0.732

8 Results

Table 1 shows the mean and maximum grades of the fi-
nal generations in each test run. Analyzing the results,
we can draw some general conclusions: Larger popu-
lation sizes result in both better mean and maximum
grades; using the dual-track corpus results in smaller
mean values for the populi, but larger maxima; and the
inclusion of immediate addressing to the VM instruc-
tion set seems to make no real di↵erence in the results
(the mean and maximum values show an average dif-
ference of 0.5% and 2% respectively).

Fig. 12: Maximum and mean grades at the final gen-
eration, averaged over all test runs. The lines show an
estimated curve fit over these samples, suggesting that
further increasing the population size would not give
significantly better results.

8.1 Using di↵erent population sizes

We tested population sizes increasing in powers of two
from 16 to 1024. The experiments show better grades
emerging from larger population sizes. Even the two
largest population sizes (512 and 1024) show a clear
di↵erence with increases of 2.8% and 2% in maximum
and mean grades, respectively. However, runtime grows
linearly with population size so an exponential increase
in population size likewise causes an exponential in-
crease in runtime, taking the time required for a run
from hours to days for much larger populations. Using
the data points that we have, we can estimate if increas-
ing the population size further would continue to yield
significantly better results. Figure 12 shows the results

Fig. 13: Mean and maximum grade progression over
the generations when using single and dual-track cor-
pus. The dual-track corpus shows a slightly higher max-
imum, but lower mean.
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Fig. 14: Comparison of mean/maximum grade progression for di↵erent survival mechanisms. The left plot shows
results from our experiment in [34] (N = 256, v = 1, immediate addressing) with guaranteed survival of the highest
scoring candidates. The right plot shows results from our current experiment run with the same configuration but
using probabilistic survival. The results show a slightly smaller maximum but a much larger mean, suggesting that
probabilistic survival allows a more diverse population to emerge at the cost of not allowing strong but fragile
individuals to survive.

in Table 1 averaged over all configuration dimensions
with the exception of population size. Using linear re-
gression we attempt to fit a curve to these points for a
function

f

↵,m

(N) = m⇥ (1� ↵

� log2 N ) (2)

where ↵ impacts the slope of the exponential curve
and m represents the hypothetical highest grade we can
achieve in the system. Fitting f

↵,m

separately for the
mean and maximum grades gives acceptably small er-
rors: averages of 0.01 and 0.006 respectively. Extrapo-
lating on the fitted curves suggests that the small gains
to be made by further doubling the population size will
result in only marginally better results while requiring
significantly more computing resources.

8.2 Single vs. dual-track corpus

As mentioned in Section 6, we have performed sepa-
rate experiments using single and dual-track versions
of the test corpus. Figure 13 shows the resulting grade
progressions averaged over all dimensions except the
number of tracks. The dual-track corpus shows an im-
provement in results with slightly larger maxima than
the single-track. The rate of fitness growth through the
generations are almost identical, suggesting that the
number of tracks does not impact the speed at which
pieces are able to evolve. While the maxima for dual-
track increased the means fell which may be a result
of the descriptor size being proportional to the number

of tracks. When comparing two descriptors in the dual-
track case, we are assessing correlation of data twice
as large and this might be expected to make it more
di�cult for high correlations to emerge.

8.3 Survival mechanism

As mentioned in Section 4.1, in contrast with our ex-
periments from [34], candidate survival here is based
on fitness and chance rather than guaranteed for the
highest scoring individuals. Figure 14 shows the side-
by-side comparison of the guaranteed versus probabilis-
tic survival mechanisms for otherwise identical param-
eters. Both plots show the progression of the maximum
and mean grades over 20,000 generations, averaged over
all test runs. The maximum values for the probabilistic
survival strategy are lower (the values in the last gener-
ation drop from 0.733 to 0.662) but the mean grades are
much higher (rising from 0.324 to 0.482). This may be
because guaranteed survival tends to single out one or
more marginally favourable candidates, who are always
propagated into the next generation. However, since ge-
netic strings can be fragile when faced with crossover
and/or mutation (even a small change may drastically
alter the resulting process executing on the VM), guar-
anteed survival does not allow as much population di-
versity.
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(a) Immediate OCI (b) Indirect OCI

Fig. 15: Rate of occurrences of di↵erent instruction types encountered by the VM during execution. The left
bar in each column shows the percentage of a specific instruction type when using random genetic strings (as in
generation zero) while the right bar shows the mean percentages of all highest scoring individuals in our tests. We
can conclude that the algorithm encourages the emergence of more output instructions and less branching.

8.4 VM instruction type occurrences

As discussed in Section 3, we can group the VM’s in-
struction set into categories. We observed that the rate
of occurrence of di↵erent instruction types encountered
by the VM during execution changed over the genera-
tions, as shown in Figure 15.

The results in both instruction sets suggest the al-
gorithm favours more output instructions than occur
in random data; both percentages have at least doubled
during the run. This shows that too few output instruc-
tions occur when evaluating a random genetic string,
prohibiting the individuals to achieve high grades on
the test related to the number of notes (see Section
6.1). We can also observe a decline in the number of
branching instructions which may be due to the detri-
mental e↵ect of infinite loops.

8.5 Subjective evaluation

Listening to the resulting MIDI files allows us to sub-
jectively evaluate the musicality of the results. Their
durations are almost universally within the boundaries
dictated by the corpus statistics, although many achieve
this with a smaller than desired number of notes (i.e.
there may be very long notes or rests).

Some musical traits emerge in the results, especially
related to repetition. Almost all the MIDI files con-
tain motifs of a few notes repeated multiple times, and

some show variation on the repeated theme. The sys-
tem successfully finds small motifs consisting of a few
notes which, when repeated many times, allow the re-
sult to approach the statistics of the corpus. However,
these results are not particularly musical (see example
in Figure 16), suggesting the need for further fitness
tests that can limit such ‘shortcuts’ to high grades.

Although repetition and variation emerge, other mu-
sical properties such as harmony, melody or entropy are
somewhat lacking. Adding further fitness tests, perhaps
some inspired by music-theory, may help the system to
find solutions that exhibit such traits.

On the whole, the multi-track results seem more mu-
sical than the single-track examples. This may be be-
cause both tracks can exhibit small repeating patterns,
which sometimes have di↵erent lengths resulting in in-
teresting rhythms when they are played together (see
Figure 17).

All the MIDI files and grades generated by the sys-
tem are available at the project web page4. The algo-
rithm has produced a few results with more subjectively
pleasing motifs than those shown in Figures 16 and 17.
However, such examples were rare exceptions for which
our fitness tests may not be able to take full credit,
hence the excerpts shown here were felt to be more
representative of the overall results.

4
http://csabasulyok.bitbucket.org/emc
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Fig. 16: A single track result. It shows a small repeating pattern over the entire duration of the piece. The time
signature has been added manually to visualize the pattern.

 

!" #

#
$"!
!

%
#!
!

#

! "
&!
!

'!

#(

#
!

!
!!!

)&!
!

'
$!!

!

#

!
$!
!"

)&!
"
(

*+ &!

*,
!

!
!#

" ) )&!
!

$!

#(

!
!

!
!

!

#
!

#

!
$

Music engraving by LilyPond 2.18.2—www.lilypond.org

Fig. 17: A dual-track result, where two di↵erent repeating patterns emerge on the two tracks. The motifs have a
di↵erent length (6 and 5 ticks respectively), resulting in an interesting rhythmic pattern when overlaid.

9 Conclusions and future work

The space of possible music is vast, even when analysing
only a few properties and ignoring dimensions such as
sound synthesis and performance as we have done here.
Despite applying many constraints there is no single,
universal location of a ‘subspace of good music’; it is a
subjective evaluation. Results from the literature show
promise however, and many real-world musical pieces
have been composed with the assistance of evolution-
ary algorithms. Indeed, Waschka [39] has always viewed
these algorithms as auxiliary tools for composer inspi-
ration instead of standalone virtual composers.

In this paper we have demonstrated a novel ap-
proach to evolutionary music composition: evolving the
composition process rather than the product. We have
incorporated elements of linear genetic programming
and a novel approach to fitness test design using musi-
cal corpora. By using a Turing-complete VM, we have
successfully modelled the composer; the programs to be
run on the VM represent the genotypes and the result-
ing output musical pieces the phenotypes. Separating
the program structure from the musical output in this
way has allowed us to model the search space indirectly
via the instruction set of the VM.

Unlike many previous approaches in the literature,
we have deliberately avoided narrowing the search space,
either by artificially constraining parameters (e.g. us-
ing only pitches within a diatonic scale) or by setting
favourable initial conditions (e.g. using the corpus as
the starting population). Instead, we give the virtual

composer complete freedom then attempt to guide the
search using our corpus-based fitness tests. By provid-
ing a set of niches (the clustered corpus descriptors), we
give the system a measure by which it may deem musi-
cal outputs to be ‘good’ if they converge on a descriptor
with similar statistics.

We have explored the space of possible system pa-
rameters and concluded that 1024 individuals is an op-
timal population size in the tradeo↵ between evolution-
ary progress and computational cost of the system. We
found the presence or absence of immediate addressing
in the VM instruction set did not influence the results,
while using a multi-track context gave a more detailed
description of the corpus and therefore helped more in-
teresting pieces to emerge.

Our results are promising, demonstrating that while
this approach succeeds at converging towards chosen
properties of the pieces in the corpus, it still only pro-
duces partially musical results. The system often achieves
high grades with very small motifs repeated many times.
While these motifs can readily be used to inspire a
human composer, achieving completely machine-driven
composition will require further fitness tests that se-
lect for higher-level structures in the output. For ex-
ample, introducing tests on properties such as entropy
could potentially force the evolutionary search to dis-
card these overly repetitive results in favour of more
complex, musically interesting outcomes. Likewise, the
current musical results can be quite dissonant and gen-
erally lack a stable metrical structure. By introducing
tests based on the statistics of harmonic interval rela-
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tions over time rather than simply using pitch distri-
bution information we may potentially encourage ele-
ments of mode and harmonic progression to emerge.
It is also the case that our current representation of
the musical model is in function of note index, not
time, which limits the emergence of rhythm and me-
tre. Transforming a model to a function of time would
allow the inclusion of new tests for such properties. In
a multi-track context, our descriptor correlation tests
only measure the similarities per track. Tests which
measure overall statistical similarity might combine the
strengths of the single- and multi-track approaches.

Improvements could also be made by altering our
choice of corpus. The versions of the corpus pieces we
have used here have no dynamics recorded so there is
currently no frame of reference to allow this kind of mu-
sical expression to emerge. It would therefore be inter-
esting to explore what musical pieces played by human
musicians could teach our system to do if we incorpo-
rated tests for elements of expressive performance such
as note velocity or tempo variation.

Our current approach to comparing a musical model
to the corpus (clustering its members and taking the
maximum correlation) prohibits the emergence of pieces
truly similar to the corpus members since even they
do not achieve perfect grades. A possible alternative
method would be to use gamma correction in the cor-
relation tests allowing the incorporation of all corpus
members without overly broadening the solution space.

In this work we have investigated two alternative
instruction sets for our VM but its structure has so far
been kept constant. Varying aspects of the VM struc-
ture such as the size of main memory or processor ar-
chitecture and arrangement of stack and registers is an
important next step for our experiments. Memory size
was set to 64kB in our present system because this
is the space addressable with 16-bit registers. Given
the tendency for short repetitive motifs in our output
pieces, it would be interesting to analyse how much of
this memory is actually being used during the execu-
tion of the genetic programs and what e↵ect we would
see by constraining the available space. Another avenue
that would be interesting to explore would be alternate
VM architectures. The VM is an emulation so there
is no requirement to keep to the sequential von Neu-
mann model which is potentially not very robust to
crossover and mutation. For this reason, we may also in-
vestigate tree-based functional approaches common to
classical genetic programming or more parallel archi-
tectures such as programmable systolic arrays in future
experiments.
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