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Abstract 

In order to understand how the environment, parental environment and inbreeding 

influence immune function and life history traits, I carried out a series of experiments 

using the Indian meal moth, Plodia interpunctella, as a model organism. 

 

Past studies have focused mainly on one aspect of environmental fluctuation at a time, so, 

to study the nature of the interactions between environmental variables in determining 

immunity, temperature, food quality and density were all varied together. There were 

interaction effects on immunity between all three environmental variables. The effect of 

density, for example, can be reversed if diet is changed from high- to low-quality.  

 

Diet quality has been shown to affect many life-history traits and an interesting question 

arising from this is whether these effects carry on to the next generation. I showed that 

the negative effects of a poor diet can be seen in the offspring of those affected but that a 

good quality diet given to the offspring goes some way to ameliorate these effects. Some 

of these effects on offspring could be mediated by maternal investment in their eggs; for 

example, when females were mated to a male that had received a poor quality diet, egg 

sized showed a strong effect of maternal size, with smaller females laying smaller eggs. 

 

Finally, I addressed the question of how inbreeding affects immune function using P. 

interpunctella derived from Australian stocks as well as a UK culture and I showed that 

there are some high costs to be paid in terms of larval size, egg size, larval survival, 

protein content of the haemolymph and immune function.  There were also strong effects 

of origin, for example Australian males showed a very marked reduction in PO activity 

with inbreeding, but Australian females and both sexes from the UK lines did not show a 

great reduction with inbreeding. 
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CHAPTER 1: Introduction 

 

Invertebrates are frequently exposed to pathogens and parasites throughout their lives.  

Therefore, selection will exert pressure on them to evolve and maintain an immune 

system for defence (Kraaijeveld et al. 2002).  For a response to be generated, a pathogen 

has to be recognised as ‘non-self’.  Insects lack immunoglobulins, the highly specialised 

gamma globulin proteins vertebrates use to identify and ‘remember’ an intruder, yet 

they continue to thrive in a pathogen-laden world due to an effective innate immunity.  

This consists of general responses such as anti-microbial peptides, phagocytosis, 

pattern-recognising receptors such as those that recognise bacterial lipopolysaccarides 

(LPS), the phenoloxidase cascade and melanisation reaction and interference of virus 

RNA (Loker et al. 2004).  Furthermore, there is the possibility of many other responses 

that we are not aware of; for example, over 200 genes are switched on after Drosophila 

are exposed to a pathogen, but for many of them the function is unknown (De Gregorio 

et al. 2001).  Invertebrates and vertebrates do, however, share some similarities that 

allow invertebrates to be valuable model species in the study of how innate immunity in 

vertebrates may work (Medzhitov et al. 1997; Schnare et al. 2001; Hoffmann and 

Reichhart 2002; Takeda et al. 2002; Takeda and Akira 2003; Takeda et al. 2003). 

 

Innate immunity is a general response to infection, whereas acquired immunity is a 

result of the production of molecules that respond to specific antigens (Bendelac and 

Fearon 1997; Fearon 1997b, a). Insects have a very well-developed innate immune 

system that can be subdivided into humoral immune responses, such as antibacterial 
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proteins and enzyme cascades (Bulet 1999; Bulet et al. 1999; Blandin and Levashina 

2004; Bulet and Stocklin 2005) and cellular immune responses, such as phagocytosis 

and encapsulation (Strand and Pech 1995; Muta and Iwanaga 1996; Gillespie et al. 

1997; Irving et al. 2005). The categories of humoral and cellular immunity are used to 

allow for ease of discussion, but in nature the lines between them are blurred; for 

example, humoral molecules coordinate haemocyte activity, and haemocytes produce 

many humoral molecules (Strand 2008). 

 

1.1 The cellular immune response 

Haemocytes are cells circulating in the haemolymph of invertebrates. The density of 

these cells is known to correlate with an individual’s ability to encapsulate a wound site 

or intruder, as well as resist bacterial and viral attack (Eslin and Prévost 1996; Wilson et 

al. 2003a). They are responsible for the phagocytocis of intruding cells and they 

aggregate around a wound site or large intruder before being melanised to form a 

protective shell or capsule (Soderhall and Smith 1983; Ratcliffe et al. 1984; Leonard et 

al. 1985; Soderhall et al. 1986). 

 

Haemocytes can be divided into categories based on their morphology. Plasmatocytes 

are the most abundant type and form the bulk of the capsule around a foreign intruder 

and phagocytose foreign material (Ratcliffe and Gagen 1976; Lavine and Strand 2002; 

Asha et al. 2003).  Granular cells are mainly responsible for phagocytosis (Mazet et al. 

1994; Yokoo et al. 1995; Pendland and Boucias 1996; Ribeiro et al. 1996; Tojo et al. 

2000; Costa et al. 2005) but help remove bacterial proteins from the haemolymph and 
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release their granules once in contact with a larger foreign body (Ratcliffe and Gagen 

1977; Schmit and Ratcliffe 1977; Ratcliffe and Rowley 1979).  Lamellocytes are not 

found in healthy individuals but are rapidly produced upon attack by parasitoids and 

during metamorphosis (Lanot et al. 2001; Meister and Lagueux 2003) and function to 

encapsulate large foreign objects. Oenocytoids are non-adhesive fragile cells that release 

the enzyme phenoloxidase, important in the melanisation of the protective capsule 

around a foreign body or wound site, into the haemolymph when they lyse (Ashida and 

Yoshida 1988; Ribeiro et al. 1996).  Spherule cells are large irregular cells whose 

function is unknown but they possibly contain cuticular proteins (Lavine and Strand 

2002; Ribeiro and Brehelin 2006). There are also small haemocytes circulating that 

function as prohaemocytes, ready to differentiate into a terminal type of haemocyte 

when needed (Lanot et al. 2001; Strand 2008).  

 

Phagocytosis 

Phagocytosis is a type of endocytosis triggered when specialised receptors detect a 

foreign particle (Ehlers et al. 1992; Rohloff et al. 1994) such as bacteria, yeast, apoptotic 

bodies and a number of manmade items such as synthetic beads and India ink particles 

(Lanot et al. 2001; Lavine and Strand 2002).   

 

Microbial molecules (Huxham and Lackie 1988) and the prophenoloxidase activating 

cascade (Johansson et al. 2000) may stimulate the haemocytes to increase their 

phagocytic rate.  Granulocytes and plasmatocytes are the cells mainly responsible for 

phagocytosis in invertebrate immune systems (Ratcliffe and Rowley 1979; Wago 1991; 
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Tojo et al. 2000).  However, they differ in phagocytosis rate in vivo and in vitro (Ehlers 

et al. 1992) and the methods by which the haemocyte kills the microbe once it has been 

engulfed are still unclear. 

 

Nodule formation 

In response to microbial proteins, haemocytes can clump together ensnaring a large 

number of bacteria in a mass, called a nodule, which may eventually become 

encapsulated (Lackie 1988). Proteins that may help bacterial adhesion within the nodule 

are found in Ceratitis capitata (the Mediterranean fruit fly) haemolymph after LPS or 

bacterial injection (Marmaras and Charalambidis 1992; Marmaras et al. 1994; 

Charalambidis et al. 1995; Kyriakides et al. 1995).  In Manduca sexta (the tobacco 

hornworm) a sugar-binding protein called scolexin is released by the epidermis and 

midgut upon bacterial infection or wounding and is eventually found concentrated 

within nodules (Kyriakides et al. 1995). 

 

Encapsulation, phenoloxidase and melanin 

When a large foreign body that is unable to be phagocytosed is detected haemocytes 

will cluster around it forming a capsule that may eventually be melanised to form a 

protective capsule; this can stop the growth or spread of a pathogen and even kill it 

(Sugumaran 2002a).  Encapsulation is a complex process generally started by granular 

cells, which then release compounds to attract plasmatocytes to join the capsule forming 

a thick shell around the foreign body (Davies and Siva-Jothy 1991; Pech and Strand 

1996, 2000). In some species the haemocytes are arranged in a definite order in a 
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capsule but in others the arrangement is much more random (Wiegand et al. 2000). 

 

Encapsulation is a common component of the cellular immune response in Lepidoptera, 

and the capsule is often, although not always, melanised by the phenoloxidase cascade 

(Soderhall 1982; Götz 1986; Binnington and Barrett 1988). In the Diptera, humoral 

melanotic encapsulation is more common (Götz 1986), as it can occur with or without 

haemocyte involvement (Christensen and Seversen 1993). Cellular encapsulation in 

Diptera is less clear (Christensen and Seversen 1993); however, it has been shown that 

lysis of haemocytes occurs before encapsulation (Russo et al. 1995; Hernandez-

Martinez et al. 2002). 

 

Phenoloxidase (PO) is a copper-dependent enzyme that catalyses phenoloxidation to 

produce, among other things, melanin from substrates such as dihydroxyphenylalanine 

(L-dopa).  It exists in haemocytes as the inert prophenoloxidase, and it has been shown 

that bacterial lipopolysaccharides (LPS) can trigger the cascade to turn the inert 

precursor into the immune active PO (Soderhall 1982; Soderhall and Hall 1984).  

Haemocyte aggregation, phagocytosis and exocytosis are also triggered by this cascade 

(Schmit and Ratcliffe 1977; Ratcliffe et al. 1984; Leonard et al. 1985; Soderhall et al. 

1986), while some intermediate compounds of the cascade react with proteins and 

amino acids to inhibit microbial & mycelial enzymes, denature proteins and lyse or kill 

foreign cells (Mason 1955; Pawelek and Lerner 1978; Soderhall and Ajaxon 1982; 

Johansson and Soderhall 1989).  The deposition of melanin produces cytotoxic effects 

due to superoxide anions and hydroxyl radicals that may prove fatal to invading 
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microbes (Nappi et al. 1995a). Melanin also serves to harden the culticle, which can 

help prevent injury and infection (Hopkins and Kramer 1992; Sugumaran 1996; 

Sugumaran et al. 1996; Gillespie et al. 1997; Sugumaran 1998; Sugumaran 2002a).  PO 

is extremely important and Drosophila with a null PO mutation have much reduced 

survival (Asada et al. 1999). 

 

Wounding threatens insect survival as it can cause a large amount of haemolymph to be 

lost if the breach is not sealed quickly.  After wounding, the PO cascade is rapidly 

triggered which causes melanin and quinoid products to build up in a cross-linked 

pattern to seal the gap (Ashida and Brey 1995; Sugumaran 1996).  These quinoids 

produced by the PO cascade also act as a disinfectant, killing any invading organisms at 

the wound site (Nappi et al. 1995a; Sugumaran 2002a; Sugumaran 2002b). 

 

1.2 The humoral immune response 

 

Antibacterial Proteins 

Many bacteria-induced proteins are found in insects.  Lysozyme is constantly present 

and active in insects.  In Lepidopterans it is secreted in response to bacterial infection 

where it hydrolyses glycosidic bonds in the cell walls of the invading bacteria; however, 

in D. melanogaster it serves as a digestive enzyme only (Gillespie et al. 1997).  

Cecropin peptides are cationic and are thought to lyse bacterial cells by interfering with 

cell membrane structure (Gazit et al. 1994).  Attacin/sarcotoxin II proteins are 

bacteriostatic. They are induced by the presence of gram-negative bacteria and act only 
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on them to prevent production of bacterial outer membrane proteins, so halting cell 

division (Carlsson et al. 1991).  Diptericins are similar to attacins but have been found 

only in dipterans (Dimarcq et al. 1986; Keppi et al. 1986; Dimarcq et al. 1988; Lambert 

et al. 1989; Reichhart et al. 1989; Wicker et al. 1990; Ishikawa et al. 1992).  Defensins 

only act on gram-positive bacteria, forming channels in the cell membranes to lyse the 

cells (Cociancich et al. 1993). They have been found in several insect orders (Bulet et al. 

1991; Hoffmann and Hetru 1992; Chalk et al. 1994; Dimarcq et al. 1994) and despite 

their name are not homologous to mammal defensins (Hetru et al. 1994).  These 

antibacterial proteins and peptides are released into the haemolymph, mostly by the fat 

body but they can also be produced by haemocytes, pericardial cells, Malphigian 

tubules, the midgut and epidermal cells (Dickinson et al. 1988; Russell and Dunn 1991; 

Brey et al. 1993; Dunn et al. 1994; Mulnix and Dunn 1994; Lee and Brey 1995; Russell 

and Dunn 1996). 

 

Antifungal Proteins  

Pathogenic fungi are regularly responsible for insect death and some antifungal peptides 

have been found in insects.  A histidine-rich protein was discovered in Sarcophaga 

peregrina (the Flesh-fly) that, when added to culture media, inhibits the growth of 

Candida albicans (Iijima et al. 1993), and similar proteins have also be purified from 

Tenebrio molitor (the Meal Worm Beetle) and Holotricia diomphalia (a scarab beetle) 

haemolymph (Jung et al. 1995; Lee et al. 1995).  Other types of antifungal peptides, 

such as drosomycin and thanatin, are activated upon bacterial attack but also have 

antifungal properties (Levashina et al. 1995; Fehlbaum et al. 1996), and some 
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antibacterial proteins, such as lysozyme, are also active against fungi (Jaynes 1989; 

Jaynes et al. 1989).  

 

1.3 Recognition of parasites and pathogens 

For an immune system to defend an organism from invasion it must first recognise 

foreign or non-self molecules.  Like vertebrates, arthropods are able to detect molecular 

patterns found on microbial cell surfaces (Janeway 1994) and many non-self recognition 

proteins have been discovered.  Peptidoglycan recognition proteins are able to trigger 

the phenoloxidase cascade in vitro (Yoshida et al. 1996); after injection of 

peptidoglycan (part of the cell wall of a bacterium composed of sugars and amino acids) 

the fat body is stimulated to produce the same haemolymph proteins as it would in 

response to whole bacteria (Kanost et al. 1988a; Morishima et al. 1995), and soluble 

petidoglycan particles can stimulate a fat body incubated in vitro to produce 

antibacterial proteins (Dunn et al. 1985; Iketani and Morishima 1993). Gram-negative 

binding protein and β1,3-glucan and β-1,3-mannans fungal recognition proteins have 

been found in several invertebrate species (Ashida et al. 1986; Yoshida and Ashida 

1986; Duvic and Soderhall 1992; Ochiai et al. 1992; Ochiai and Ashida 1999; Ma et al. 

2000; Ma and Kanost 2000, 2001; Fabrick et al. 2003; Zhang et al. 2003). They are 

expressed in the immune tissues and their production is upregulated after immune 

challenge (Ma and Kanost 2000) and triggers the prophenoloxidase cascade discussed 

above in response to binding with fungal β1,3-glucan. 

 

Lipopolysaccharides (LPS), large molecules found on the bacterial cell surface, also 
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stimulate the production of specific antibacterial proteins that bind with them in vivo 

and in vitro (Kanost et al. 1988b; Trenczek and Faye 1988; Ladendorff and Kanost 

1990; Samakovlis et al. 1992; Kawasaki et al. 1993; Kobayashi et al. 1993; 

Lindstromdinnetz et al. 1995; Sun and Faye 1995).  These have been isolated from 

Periplaneta americana, Blaberus discoidalis and Galleria mellonella and are strings of 

10-30 identical protein subunits 24-30kDa in length (Jomori and Natori 1992); 

Kawasaki et al. 1993).  Bacterial LPS is quickly removed from the haemolymph by lipid 

transfer proteins (Kato et al. 1994) or is taken up by granular haemocytes (Xu et al. 

1995). 

 

Drosophila have been instrumental in increasing our understanding of specificity in 

invertebrate immune response.  The genes switched on after infection depend on 

whether the infection is by Gram-positive or Gram-negative bacteria (Lemaitre et al. 

1997; De Gregorio et al. 2001; Irving et al. 2001) and flies that have mutations in the 

Toll pathway gene components are much more susceptible to Gram-positive bacteria 

and fungi than those without those mutations (Rutschmann et al. 2000; Rutschmann et 

al. 2002), whereas flies with mutations in the genes responsible for the IMD pathway 

are more susceptible to Gram-negative bacteria (Lemaitre et al. 1995; Leulier et al. 

2003). 

 

1.4 Immune priming 

It has been argued that immune priming, where a more rapid secondary response occurs 

in subsequent infections, does not occur in invertebrates, firstly because they do not 
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have the immune system components used by vertebrates for immune priming and 

secondly because most invertebrates live very short lives, and so many would die of 

senescence before a second infection occurred (Little and Kraaijeveld 2004).  Recently, 

however, many new receptors and signalling pathways have been discovered in 

invertebrate innate immune systems (Hoffmann et al. 1996; Janeway and Medzhitov 

1998, 1999; Hoffmann and Reichhart 2002; Janeway and Medzhitov 2002) and there is 

now evidence that some immune specificity and memory may exist (Lemaitre et al. 

1997; Schmid-Hempel et al. 1999; Carius et al. 2001; Kurtz and Franz 2003; Little et al. 

2003; Rolff and Siva-Jothy 2003b; Vierstraete et al. 2004a; Vierstraete et al. 2004b; 

Witteveldt et al. 2004a; Witteveldt et al. 2004b). Priming of the invertebrate immune 

system after an initial exposure to a pathogen does not have to be specific (Little and 

Kraaijeveld 2004) and it has been shown that a generalised up  regulation of the immune 

system occurs in response to one pathogen type (Boman et al. 1972; Rheins et al. 1980; 

Faulhaber and Karp 1992; Moret and Siva-Jothy 2003).  However, some specificity has 

been shown, as an invertebrate will reject tissue transplanted from another individual 

while mostly tolerating transplanted tissue from its own body (Cooper 1968; Cooper and 

Rubilotta 1969; Hildemann et al. 1979), and not only can an invertebrate recognise and 

attack non-self tissue, it will react more rapidly to exposure to tissue from the same 

individual a few days later but not more rapidly to tissue from a different individual 

(Hildemann et al. 1979). 

 

Kurtz (2005) argued that there is no reason why innate immunity should lack specificity, 

and that lacking the components that produce immune memory in vertebrates does not 
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mean they should lack memory entirely.  Invertebrate immune memory could possibly 

occur via a combination of more general responses to a pathogen, and many immune 

molecules such as those in the Toll regulatory pathway, could be increased after 

exposure and remain at higher levels for a short time after acting as a non-specific short-

term memory.  However, Zhang et al. (2004) have shown that polypeptides (known as 

fibrinogen-related proteins) released into the haemolymph in response to some 

pathogens are sourced from extremely genetically diverse regions of DNA, suggesting 

that these proteins may form a very specific part of the invertebrate immune system. 

 

An immune memory may give fitness benefits to those with it (Kurtz and Franz 2003; 

Kurtz 2005).  Infections are often clumped within a population, so an individual may 

encounter the same pathogen more than once in its lifetime, and a rapid response to a 

repeat infection could be advantageous, especially if the immune memory of a pathogen 

common in the environment can be passed between generations (Ishikawa et al. 1992; 

Little et al. 2003; Little and Kraaijeveld 2004).    

 

1.5 Density-dependent prophylaxis 

It is accepted that the environment individuals find themselves in can affect their fitness.  

Living in a densely populated area brings an increased risk of pathogen infection and of 

being harmed in an aggressive encounter with another (Anderson and May 1981).  It 

was thought that living in a crowded environment would increase disease susceptibility 

due to stress (Steinhaus 1958), but recent research has shown that increased investment 

in prophylactic disease resistance in response to the perceived increased risk of disease 
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exposure actually causes susceptibility to decline (Reeson et al. 1998b; Wilson and 

Reeson 1998; Wilson 2000; Wilson et al. 2001; Wilson et al. 2002; Wilson et al. 2003a; 

Cotter et al. 2004). This phenomenon is known as density-dependent prophylaxis (DDP) 

(Wilson & Reeson 1998). The best examples come from species that show density-

dependent phase-polyphenism, such as Schistocerca gregaria, the desert locust, which is 

green at low population densities but black and yellow at high population densities 

(Pener and Yerushalmi 1998).  The high-density phase shows increased resistance to an 

entomopathogenic fungus and greater haemolymph antibacterial activity than the low-

density phase (Wilson et al 2002).  Similar responses to density have also been shown in 

other insect taxa (Long 1953; Mitsui and Kunimi 1988; Goulson et al. 1995; Reeson et 

al. 1998a; Wilson and Reeson 1998; Barnes and Siva-Jothy 2000; Reeson et al. 2000; 

Cotter et al. 2004).  One noteworthy observation here is that in phase-polyphenic insects 

the high-density phenotypes tend to be more melanic. High levels of melanin at high 

density have been attributed to warning colouration (Iwao 1968; Wilson 2000) and 

thermoregulatory benefits (Johnson et al. 1985; Goulson 1994; Gunn 1998). However, 

the evidence for these is ambiguous and open to more than one interpretation.  

Individuals with highly melanised cuticles maintain higher body temperatures than those 

with paler colouration (Marriott and Holloway 1998), and although a higher degree of 

cuticle melanisation occurs at colder temperatures (Johnson et al. 1985), this does not 

explain why high population densities would cause increased melanisation.  Melanin is a 

polymer derived from amino acids, which may improve the strength of the cuticle 

(Wilson et al 2001) and so protect from pathogens that enter through it (Ourth and Renis 

1993b; St Leger et al. 1998). Melanin is an extremely robust polymer, able to withstand 
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many insults (Jacobson and Emery 1991; Jacobson and Tinnell 1993; Wang and 

Casadevall 1994a, b; Wang et al. 1995; Doering et al. 1999).  It binds to a number of 

proteins and inhibits the production of many lytic enzymes by microorganisms that are 

key to their success as a pathogen, such as proteases and chitinases (Kuo and Alexander 

1967; Bull 1970). Those tobacco hornworm, Manducta sexta, with a melanised cuticle 

are able to resist penetration by a generalist entomopathogenic fungus Metarhizium 

anisopliae for 30 hours longer than those with unmelanised cuticles (St Leger et al 

1988), melanistic S. exempta have the greatest haemolymph PO activity (Reeson et al 

1998) and melanism of the cuticle is correlated with cuticle, haemolymph and midgut 

PO activity (Wilson et al 2001).  However, no direct correlation between haemolymph 

PO activity and melanism was found in T. molitor (Barnes and Siva-Jothy 2000). 

 

As a high level of melanin may enhance an individual’s resistance to pathogens, DDP 

theory seems a much more likely explanation for the darker colouration of some insects 

at high density.  The link between melanism and increased immunity has been looked at 

by several studies that, importantly, have controlled for density. Melanic Northern 

Armyworms, Mythimna separata, have been shown to be five times more resistant to 

Nomuraea rileyi, an entomogeneous deuteromycete fungus, than non-melanic 

individuals (Mitsui & Kunimi 1988), melanic Meal Worm Beetles, Tenebrio molitor, up 

to three times more resistant to the generalist entomopathogenic fungus Metarhizium 

anisopliae (Barnes and Siva-Jothy 2000) and melanic Spodoptera littoralis more 

resistant to the entomopathogenic fungus Beauveria bassiana (Wilson et al 2001).  

Melanistic M. separata have also been shown to be twice as resistant to 
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nucleopolyhedrovirus (Kunimi and Yamada 1990) with melanistic African Armyworms 

Spodoptera exempta being five times as resistant to a nucleopolyhedrosis virus (NPV) 

(Reeson et al 1998) and more capable of encapsulating eggs of the ectoparasitoid 

Euplectrus laphygmae than non-melanic individuals (Wilson et al 2001). 
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Chapter 2: General materials and methods 

 

2.1 Study animal: Plodia interpunctella 

Plodia interpunctella is a small (approx. 1cm length) Pyralid moth that is found globally 

(Tzanakakis 1959) due to commercial import and export of food items. It has been 

suggested that they originate in America (Heinrich 1956) with the common name Indian 

Meal Moth arising from their infestation of  maize known as ‘Indian Meal’.  It was first 

described by Hübner in 1810 as Tinea interpunctella, but was redescribed by Guenee as 

Plodia in 1845 and then as Plodia interpunctella by Hubner in 1872 (Heinrich 1956; 

Cotton 1963). Its impact on economies is huge because it is a pest of stored food 

commodities.  Processed grains, nuts, cereals, oilseeds and dried fruit are preferred, with 

cracked or ground produce providing a better environment than whole grains, cereals or 

nuts (Abdel-Rahman et al. 1968; LeCato 1976; Mbata and Osuji 1983) but pulses, 

cocoa, confectionary, carob and dried vegetables will also be consumed (Williams 1964; 

Cox and Bell 1991; Sedlacek et al. 1996; Na and Ryoo 2000; Perez-Mendoza and 

Aguilera-Pen 2004) and this impacts on the production and trade of stored products due 

to consumption and destruction of food items as well as damage to the commodity and 

machinery by the large amount of silk produced by these moths (Cox and Bell 1991). 

Eggs are laid on or near the surface of the substrate, up to 8cm deep in maize and 4cm in 

rye (Schmidt 1982) which usually limits the infestion to the periphery of stored 

products, but damage is often still extensive.  
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P. interpunctella are easily kept in lab conditions, perhaps due to their natural 

preference for stored grain, and this combined with their pest status means we know a 

great deal about their biology.  Optimum relative humidity is 75%, with the minimum 

required for population growth being 20% (Cox and Bell 1991).  Development is very 

dependent upon temperature, the ideal being around 25oC, at which development takes 

around 30 days.  However, the temperature range for development is 18-35oC, with a 

development time of 60 days at 20oC and 25 days at 30oC.  Although eggs will not hatch 

at temperatures of 15oC, once hatched larvae can survive at temperatures as low as 10oC 

(Cox and Bell 1991).  Larvae normally pass through five instars as they develop, and 

although between four (McGaughey 1978) and seven (Tzanakakis 1959) have been 

reported it is not thought that the number of instars is temperature dependant (Hassan et 

al. 1962).  The different instars can be distinguished by the width of the head capsule 

(see table 2.1). 

 

Instar Width (mm) Age of Larvae (days) 

1 0.15 – 0.20 7 

2 0.28 – 0.33 10 

3 0.40 – 0.45 13 

4 0.60 – 0.70 16 

5 0.85 – 1.15 21 

Table 2.1: Head capsule width in mm and corresponding age in days after eggs laid for 

each instar, from Lingfield (1990). 
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  P. interpunctella will diapause as final instar larvae as a response to overcrowding, low 

temperatures, continual total darkness periods, continual light periods or photoperiods of 

13 hours or less. Photoperiods of over 13 hours or an increased temperature will inhibit 

diapause, but the specific details of when a larva will enter or leave diapause are strain-

dependent (Bell and Walker 1973; Bell 1977; Bell et al. 1979; Bell 1982; Cox and Bell 

1991). 

 

Larval population density affects female mating strategy and male development.  High 

population densities induce females to mate more frequently than those raised at low 

population densities, and males to develop larger abdomens and testes and release more 

sperm per ejaculate than when raised at low densities where they develop larger heads 

and eyes (Gage 1995).  This suggests that males can sense population density and invest 

either in mate searching (large head and eyes) or in sperm competition (larger testes).  

The sex ratio is most commonly 1:1.  However, females often emerge before males 

(Reyes 1969) unless there is a food shortage when males will emerge first (Podoler 

1974).  Adult lifespan is 7-14 days for females and 6-12 days for males if they are 

unfed;  if fed, it increases to 10-24 days for females and 8-17 days for males (Reyes 

1969).  Adult females typically weigh 11-12mg and males 8-9mg upon eclosion, but this 

weight declines with age (Silhacek and Miller 1972). 
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2.2 Culture of experimental insects 

Crossing 3 strains obtained from throughout the UK started the stock cultures of P. 

interpunctella used as the basis for the experiments described in this thesis, these 

crosses were done to increase genetic variability.  500 larvae were obtained from an 

outbreeding colony maintained in the laboratory at the University of Liverpool for 5 

years, and before that at Imperial College at Silwood Park for 10 years, the second was 

sourced from the University of Sheffield and the third was a population residing at 

Queen Mary University of London. The resulting individuals were cultured for 14 

generations before the start of any experiment. 

 

For the inbreeding experiment P. interpunctella were also obtained from the Plant 

Science department of the Primary Industries and Fisheries (part of the Department of 

Employment, Economic Development & Innovation) in Queensland, Australia.  These 

P. interpunctella were a wild collected population from an infestation of organic mixed 

nuts from one merchant.  They were mixed with a population from Western Australia 

and maintained in the lab in Queensland for 5 years. 

 

The stock cultures were maintained using the following protocol: 

 

1) Newly emerged adults were collected in a large plastic wide neck PMP jar 

(Fischer Scientific) with the open end covered in coarse (approx. 1mm mesh) 

plastic netting.  This was inverted over a funnel placed into a specimen tube 
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(Sterilin).  The adult P. interpunctella were allowed to mate freely and lay eggs 

which fell through the mesh into the tube. 

2) A clean jar was filled with 500mls of culture medium consisting of 10:1:1 ratio 

wheat bran: brewers yeast: glycerol and approximately 250 P.interpunctella 

eggs, measured by volumetric means, were added.  The top of the jar was 

covered with fine nylon netting secured with two elastic bands. 

3) These jars were maintained under a 12L:12D light regime at 27oC and roughly 

60% relative humidity in a controlled temperature room. One generation took 28 

days under these conditions. 

 

New stock culture jars were started on a regular basis, depending on the demand for 

experimental insects.  After one generation old stocks were frozen for 24 hours and 

then discarded.  Culture jars were washed and autoclaved between use and there was 

never any sign of disease in the colonies.    

 

2.3 Haemolymph extraction 

At the wandering stage of late 5th instar each larvae was sexed by noting for the absence 

or presence of testes through the cuticle (testes appear as two mid-brown spots 

approximately halfway down the dorsal side). They were then weighed on a Sartorius 

balance (BP221S Max 220g d = 0.1mg) and a 3µl sample of haemolymph extracted.  

This was done by piercing each individual between the final thoracic legs and the first 

prolegs with a fine needle and allowing a small amount of haemolymph to pool onto 
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Parafilm.  This was then collected using a capillary tube and transferred to a 0.2ml PCR 

tube.  

 

2.4 Immune function measurements 

 

Haemocyte count: without freezing 

1µl haemolymph was transferred to a 0.2ml PCR tube using a capillary tube. 7µl of 

phosphate buffered saline (PBS), pH 6.8, was added to each haemolymph sample and 

thoroughly mixed.  All 8µl of this mixture was then pipetted onto a haemocytometer. 

All the squares on the haemocytometer were counted and summed to give an estimate of 

the haemocyte density for each individual. 

 

Haemocyte count: with freezing (Cotter) 

EDTA anticoagulant in phosphate buffered saline was prepared by dissolving 10mM 

EDTA and 10mM citric acid in 80 ml PBS, 1 M hydrochloric acid was added a drop at a 

time until the pH reached 7.4, and the solution was made up to 100ml with PBS. 1µl of 

haemolymph was transferred to a 0.2ml PCR tube using a capillary tube and thoroughly 

mixed with 3µl of EDTA anticoagulant in PBS.  4µl glycerol was added to each 

haemolymph sample to protect the cells from the effects of freezing before being placed 

in the freezer for storage for approximately 8 weeks.  8µl of this mixture was then 

pipetted onto a haemocytometer. All the squares on the centre of the haemocytometer 

were counted and summed to give an estimate of the haemocyte density for each 

individual. 
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Phenoloxidase Activity Assay 

1µl haemolymph was transferred to a 0.2ml PCR tube using a capillary tube, 10 µl 

phosphate buffered saline (PBS), pH 6.8, was added and the samples frozen for 24 

hours.  Defrosted samples were vortexed and transferred to a 96-well U bottom 

microtitre plate (Sterilin) kept on ice.  100 µl of 5mM dopamine was added to each 

sample and the plate was placed into a spectrophotometer.  The samples were incubated 

at 28.2oC for five minutes, and then measured using a 492nm filter (Thermo Labsystems 

Multiskan Ascent; Ascent Software Version 2.6).  They were incubated for one minute 

at 28.2oC and then measured for a total of 20 minutes. The total change in PO activity 

over the twenty minute measuring period was used because preliminary experiments 

indicated that this provided a good estimate of the Vmax (the slope of the linear phase 

of the reaction). 

 

Protein Assay 

Samples were diluted 1:20 with phosphate buffered saline.  Protein content of the 

haemolymph was measured using a general use Protein Quantification Kit (Sigma).  

45µl buffer solution was added to each well of a 96-well U bottom microtitre plate 

(Sterilin) kept on ice.  5µl of the diluted sample was then added to the well and 

thoroughly mixed.  After this 5µl WST-8 formazan dye solution was added to the wells 

and thoroughly mixed.  The plate was then placed into a spectrophotometer (Thermo 

Labsystems Multiskan Ascent; Ascent Software Version 2.6) incubated for 30 minutes 

at 37 oC, and then the light absorbance was measured at 595nm. 
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Chapter 3: Interactions between environmental variables determine immunity 

 
3.1 Introduction 

The majority of, if not all, organisms are exposed to parasites during their lifespan and 

will therefore be selected to maintain an immune system for defence (Kraaijeveld et al. 

2002).  However, maintaining and using an immune system has been shown to be costly 

to the organism, leading to trade-offs between life history traits and immune defence 

(Sheldon and Verhulst 1996; Kraaijeveld and Godfray 1997; Webster and Woolhouse 

1999; Rigby and Jokela 2000; Kraaijeveld et al. 2001; Kraaijeveld et al. 2002).  Because 

maintaining and using an immune response is believed to be costly to the organism as a 

whole (Fellowes and Godfray 2000; Rolff and Siva-Jothy 2003a), it is expected that 

immune responses should be condition-dependent (Sheldon and Verhulst 1996).  Thus, 

those individuals raised in good environmental conditions should have more resources 

to invest in their immune response than those raised in poor conditions. Evidence is 

accumulating to support this idea; in invertebrates, temperature and diet quality 

fluctuations have been shown to influence the ability of the immune system to deal with 

parasitic infection (Bernays and Chapman 1994; Inglis et al. 1996, 1997a, b; Blanford 

and Thomas 1999a, b; Moret and Schmid-Hempel 2000; Hoang 2001; Szymas and 

Jedruszuk 2002; Lee et al. 2006). 

 

As many invertebrates are ectothermic, environmental temperature plays an important 

role in maintaining bodily functions and an unfavourable environmental temperature can 

inhibit the immune function of an individual (Inglis et al. 1996; Sheldon and Verhulst 

1996; Inglis et al. 1997a, b; Blanford and Thomas 1999a, b) with many species of 
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invertebrates showing varying susceptibility to parasitoids and pathogens at different 

temperatures (Blumberg 1976; Kobayashi et al. 1981; Blumberg 1991; Geden 1997; 

Sigsgaard 2000; Frid and Myers 2002).  This temperature effect has been extensively 

studied by researchers investigating the use of pathogens as biological control agents, 

and environmental temperature has been shown to affect the virulence of many 

pathogens in many host systems (Blumberg 1976, 1991; Carruthers et al. 1992; Hajek et 

al. 1993; Watson et al. 1993; Inglis et al. 1996, 1997b, a; Adamo 1998; Blanford et al. 

1998; Blanford and Thomas 1999b, a; Blanford and Thomas 2000; Blanford et al. 2000; 

Menti et al. 2000; Sigsgaard 2000; Frid and Myers 2002; Olsen and Hoy 2002; Blanford 

et al. 2003; Blanford et al. 2009; Blake et al. 2010): as an example, a temperature 

difference as little as 2oC has been shown to be the difference between survival and 

death of Zonocerus variegatus infected with the fungal pathogen Entomoraga grylli 

(Blanford et al. 2000). 

 

As population densities increase, environmental conditions change, and there is an 

increased risk of infection and of aggressive encounters with others (Anderson and May 

1981).  To counter this, some animals are known to allocate more resources to their 

immune system at high densities: so-called “density-dependent prophylaxis (DPP)” 

(Wilson and Reeson 1998; Wilson et al. 2001; Wilson et al. 2002; Wilson et al. 2003b). 

The best examples of DDP come from phase-polyphenic insects; an increase in 

haemolymph PO activity in response to higher densities has been shown in the 

Lepidopteran Spodoptera exempta (the African army worm) (Reeson et al. 1998b; 

Wilson et al. 2001). Also, desert locusts (Schistocerca gregaria) raised under crowded 
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conditions are more resistant to fungal infection and have a raised haemolymph 

antimicrobial activity (Wilson et al. 2002). 

 

Food quality has also been shown to influence the invertebrate immune system in a 

number of ways.  Survival and/or immunocompetence of a host depends on the 

inclusion of specific nutrients in the diet which can, in some cases, be self-selected by 

the individual (Bernays and Chapman 1994; Mayntz and Toft 2001; Lee et al. 2003; 

Mayntz et al. 2005; Lee et al. 2006; Mody et al. 2007; Lee et al. 2008; Povey et al. 

2009; Srygley et al. 2009).  The balance of macronutrients in the diet can also mediate 

trade-offs between life history traits and immune function (Cotter et al. 2011).  Insects 

that have been forced to increase their immune investment by an immunogenic 

challenge have reduced survival when starved (Moret and Schmid-Hempel 2000; Hoang 

2001) and starved insects often have reduced immune system function (Siva-Jothy and 

Thompson 2002; Kubi et al. 2006; Campero et al. 2008).  Food quality can also affect 

the number or quality of the components that make up the immune system (Szymas and 

Jedruszuk 2002).  For example, larvae of Rhodnius prolixus kept on blood plasma, 

rather than their usual diet of whole blood, had a significantly reduced antimicrobial 

activity, produced significantly lower amounts of antimicrobial peptides and were less 

resistant to bacterial infection (Feder et al. 1997). Bacterially-challenged Spodoptera 

exempta larvae have greatest survival on a diet rich in protein with survival decreasing 

as protein levels of the diet decrease (Povey et al. 2009) and PO activity in the Mormon 

cricket Anabrus simplex is reduced by a diet limited in protein (Srygley et al. 2009). 
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In addition to effects from limited availability of protein, the availability of 

micronutrients can also influence immune investment; for example, an important 

function of diet and feeding is the intake of antioxidants. Melanisation reactions and the 

process of encapsulating an injury site or an intruder produce free radicals that can be 

responsible for invertebrate cell damage (Nappi et al. 1995b; von Schantz et al. 1999; 

Sadd and Siva-Jothy 2006) and intake of antioxidants through diet can ameliorate this 

cost of mounting an immune response (Johnson and Felton 2001; Ojala et al. 2005; 

Babin et al. 2010). 

 

Whether environmental factors interact to produce synergistic effects on immune 

response is an important question because it will be rare for one environmental factor to 

vary completely independently of others, meaning that predictions from laboratory 

studies where animals are kept in otherwise constant environments with only one factor 

varying might produce unreliable predictions of immune investment in the field.  To 

address this issue I compared two immune system indicators (haemocyte count and 

phenoloxidase activity) among groups of animals raised in different environmental 

conditions.  The temperature, density and food quality in which the P. interpunctella 

were raised was manipulated to try to determine the effects of interactions between these 

environmental variables on immunity.  
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3.2 Methods 

 

3.2.1 Experimental design 

The variables manipulated were temperature (30oC versus 27oC), increasing the amount 

of wheat bran in the diet (normal diet versus poor diet with half as much brewers yeast 

(a protein source in the diet) and glycerol (a sugar source)) and density (3 individuals 

per group versus 10 individuals per group). These were varied in a fully factorial design 

for a total of eight treatment combinations. 50 groups of larvae were reared per 

treatment. 

 

For the treatments with a raised temperature the Petri dishes were placed in a single 

layer on a thermostatically controlled heat mat (BioGreen HMT 060-200/GB 263W) 

covered with a layer of aluminum foil to help distribute heat evenly across the mat. 

Unheated treatments were placed on a similar mat that was not turned on, the 

temperature in the CT room was measured and kept constant. This design obviously 

introduces a degree of pseudoreplication but we tried to reduce any confounding effects 

by moving the Petri dishes around on the mats several times during rearing and by 

keeping the heated and unheated mats next to each other on a single lab bench. 

 

Haemolymph samples were collected from 379 P. interpunctella, 120 and 113 from the 

high density treatments, high quality and low quality food respectively, and 72 and 70 

from the low density treatments, high quality and low quality food respectively. All 
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larvae were weighed and a 2-3µl sample of haemolymph extracted for haemocyte counts 

and phenolxidase assays. 

 

3.2.2 Analysis of data 

In a design like this the unit of replication is the group, rather than the individual larva 

so mean values were calculated for each Petri dish and the analysis carried out on these. 

General linear models were fitted to the immune function data with temperature, density 

and food quality plus all interactions as explanatory variables, plus weight as a 

covariate. PO activity was log +1 transformed to reduce heteroscedasticity. Non-

significant terms were removed following deletion tests (Crawley 2002) to leave a 

minimal adequate model. All analyses were performed using R version 2.8.1 for 

Macintosh.  

 

3.3 Results  

 

For haemocyte count there was a significant 3-way interaction between density, food 

quality and temperature (F1,83 = 7.73, P = 0.007; Fig. 3.1 a, b) but weight was not 

significant and was removed (F1,83 = 0.30).  Three significant 2-way interactions: food 

quality and density (F1,56 = 15.59, P < 0.001; Fig. 3.2a), density and temperature (F1,56 = 

20.13, P < 0.001; Fig. 3.2b) and food quality and temperature (F1,56 = 12.06, P = 0.001; 

Fig. 3.2c) affect PO activity with weight once again being non-significant and removed 

(F1,56 = 0.12). 
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When weight was analysed separately as a response variable the minimal model retained 

two significant 2-way interactions; temperature and density (F1,86 = 8.01, P = 0.005; Fig. 

3.3a) and temperature and food quality (F1,86 = 17.07, P < 0.001; Fig. 3.3a).  
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Figure 3.1: Mean haemocyte density showing the significant 3-way interaction between 

density, food quality and haemocyte number. (a) The unheated treatment of 27oC, 

showing the effects of density (high density 10 individuals per Petri dish, low density 3 

individuals per Petri dish) and food quality (high food quality contained twice the 

amount of brewers yeast and glycerol per 100g wheat bran than the poor quality food); 

and (b) the effects of density and food quality in the heated treatment (30oC).  Error bars 

are one standard error. 
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Figure 3.2: Mean phenoloxidase (PO) activity showing the three significant 2-way 

interactions between (a) food quality and density, (b) food quality and temperature and 

(c) density and temperature.  Error bars are one standard error. 

 

 

 

 

 

 

 

 



Chapter 3: Interactions between environmental variables determine immunity                                - 31- 
 

 

Figure 3.3: Mean weight showing the two significant 2-way interactions between (a) 

temperature and density and (b) density and food quality. Error bars are one standard 

error. 
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3.4 Discussion 

 

The aim of this study was to gain a better understanding of how different environmental 

factors interact to affect immune system function in a model insect species, P. 

interpunctella.  The results are consistent with previous work that has shown that 

environmental factors have a profound effect on immune system parameters and extend 

our understanding by demonstrating that the effects of these factors are themselves 

critically dependent on other environmental variables. 

 

3.4.1 Temperature  

In some cases, increased temperature led to higher scores for immune system indicators.  

When density was high or food quality was good higher temperatures led to higher PO 

activity (Figs 2b and 2c), but higher temperatures were only associated with higher 

haemocyte counts when the food quality was good and density high (Figs 1a and 1b). 

When the density was high and the food quality good the low temperature treatment had 

a substantially higher haemocyte count than the high temperature treatment.  Some 

invertebrates can behaviourally induce ‘fever’ when they are infected (Karban 1988; 

McClain et al. 1988; Watson et al. 1993; Adamo 1998; Blanford et al. 1998) but the data 

suggest that the fever either does not increase haemocyte count or did not in this case or 

at these temperatures.  A gradual increase in temperature from 10 to 20oC caused a 

significant increase in haemocyte number in the crab Carcinus maenus (Truscott and 

White 1990) and total haemocyte number was found to be significantly higher in the 

two crayfish species Pacifastacus leniusculus and Astacus astacus when kept at 18 oC 
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rather than 4 oC (Jiravanichpaisal et al. 2004). Our data suggest that increased 

temperature only leads to higher immune reactivity under certain circumstances, and 

that different components of the immune system respond differently to temperature.   

 

Even when increased temperature does lead to an improved immune response there can 

still be a cost to the animal: insects with an increased body temperature are known to 

suffer reduced survival and fecundity (Boorstein and Ewald 1987). In our study the P. 

interpunctella larvae reached a much smaller body size at the higher temperature, 

perhaps due to faster development rates (Johnson et al. 1992).  Since fecundity increases 

with body size across many insect taxa (Honek 1993) it is possible that, although in 

some cases these animals had increased immune function at higher temperatures, their 

smaller body size would result in a cost for the individual in the form of reduced 

fecundity.  However, it should be noted that Johnson, Wofford & Whitehand (1992) 

showed that P. interpunctella raised on a bran diet at 31.7 oC produced more progeny 

than those raised at 25 oC and 28.3 oC. 

 

Our high-temperature treatment was 3 oC warmer than the unheated treatment, an 

increase that falls within current predictions for anthropogenic climate change on Earth 

(Metz et al. 2007).  Recently, studies have looked at how this predicted change in 

environmental temperature might affect host/pathogen dynamics and infection rates, 

with some showing an increase in pathogen virulence due to accelerated growth and 

increased transmission rates (Harvell et al. 2002; Mydlarz et al. 2006), while others have 

shown a reduction in virulence, due to the parasite no longer being at optimum 
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temperature or to improved host immune system function(Blanford et al. 2003).  Garner, 

Rowcliffe & Fisher (2010) have shown that common toads (Bufo bufo) who spend an 

overwintering period in a warmer temperature regime (36 days at 8oC, 11 days at 4oC 

and then another 36 days at 8oC) have a greater chance of infection than those raised in a 

cooler temperature regime that mimicked their natural environment (16 days at 8oC, 51 

days at 4oC and then another 16 days at 8oC). Our study shows that a small temperature 

increase produces strong effects on invertebrate immune system function, which 

suggests that the predicted rise in global temperature, no matter how small, has the 

potential to change host/pathogen dynamics across natural environments. 

 

3.4.2 Food quality 

In general, food quality had a substantial effect on larval immune system function. 

Larvae raised on the good quality diet had higher PO activity in every case and higher 

haemocyte counts in every case except in the unheated:low density treatment.  This is 

consistent with resource allocation theories, where the resources needed for one fitness 

component must be traded-off against resources needed for another (Sheldon and 

Verhulst 1996).  Our data suggest that a good quality diet may have provided adequate 

resources to maintain immune activity, while the poor quality diet resulted in immune 

activity being compromised. As with temperature and density, however, the effect of 

diet quality on immune reactivity is not a simple additive increase and there are strong 

interactions with other environmental variables, the effect of density in the lower 

temperature treatments being particularly pronounced. As was the case with 

temperature, the two components of the immune system measured here responded 
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differently to food quality, although the differences are not as marked as they were for 

temperature, with the differences mainly being in the magnitude, not the direction of the 

response.  

 

3.4.3 Density 

The density-dependent prophylaxis (DDP) hypothesis predicts that there should be an 

increase in investment in immunity at high population densities, a phenomenon that has 

been described from a number of other insect systems (Wilson and Reeson 1998; 

Wilson 2000; Wilson et al. 2002; Wilson et al. 2003b).  In this case it was found in some 

treatment combinations only. When the food quality was good, high densities were 

associated with higher haemocyte counts and with higher PO activity (Figs 1a, 1b, 2a). 

When food quality was poor, however, the situation was reversed, with the low-density 

treatments expressing higher PO activity (Fig. 2a) and, in the case of the normal 

temperature treatment, higher haemocyte counts as well (Fig. 1b). It appears that when 

resources are plentiful the larvae invest more into immunity at higher densities, but that 

the combined impact of both high density and poor food has the opposite effect due, 

perhaps, to any potential for immune increase being limited by the lack of resources or 

the result of other trade-offs due to density. 

 

Density effects also depend on temperature in a complex way.  In the case of PO activity 

high density led to higher PO activity in the heated treatment than in the unheated 

treatment, and the reverse at low densities, with the unheated:low density treatments 

having higher PO activity than the heated:low density treatments. In the case of 
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haemocyte count the interaction between food quality and density was only noticeable 

in the unheated treatments, and when the temperature was raised high-density animals 

had higher haemocyte counts than low-density ones even when the food quality was 

poor. 

 

3.4.4 Weight 

Good food quality and low density led to a much higher larval weight being achieved 

than poor food quality and high density.  An additional increase in weight occurred in 

the unheated treatment, with those raised at low and high densities having similar 

weights.  In the heated treatment however, those larvae raised at low density reached 

much grater weights than those raised at high densities in the heated treatment. As food 

was provided ad libitum there should not have been any direct competition for food, so 

this effect of density is likely to be caused by indirect competition; for example, those 

raised at high density may have spent more time and energy on aggressive encounters 

with others rather than on feeding and growing.   

 

This study demonstrates the importance of considering interactions between different 

environmental variables when trying to understand the evolutionary ecology of immune 

responses.  When an individual variable is studied in isolation important interactions and 

their effects may be overlooked.  Such interactions could cause laboratory studies, 

where animals are kept in otherwise constant environments, to produce unreliable 

predictions of immune function in natural systems.  Further research into how multiple 

environmental variables may interact to produce an entirely different effect from those 
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variables in isolation may help to increase our understanding of how important 

interactions are to immune responses.    
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Chapter 4: Parental effects on offspring immunity 

 

4.1 Introduction 

 

Environmental factors can have profound effects on individual fitness. As has been 

shown in chapter 2, unfavourable environmental temperatures can inhibit the immune 

function of an individual (Inglis et al. 1996, 1997a, b; Blanford et al. 1998; Blanford and 

Thomas 1999a, b; Blanford et al. 2000; Blanford et al. 2003), high population densities 

bring increased risk of infection and of aggressive encounters with others (Anderson and 

May 1981; Wilson and Reeson 1998; Wilson et al. 2001; Wilson et al. 2003b) and food 

quality can affect growth, reproduction, body condition (Boersma and Vijverberg 1995, 

1996) and the number or quality of the components that make up the immune system 

(Feder et al. 1997; Szymas and Jedruszuk 2002; Ojala et al. 2005).  Individuals raised on 

a low quality diet have increased mortality rates, lower average lifetime reproduction 

(Carey et al. 2002) and are often smaller and older at metamorphosis and maturity 

(Alford and Harris 1988; Stamp and Bowers 1990; Boggs and Ross 1993). Females 

raised on a poor quality diet may sometimes produce a smaller number of larger eggs 

and/or fewer, but better provisioned, offspring (Strathmann 1985; Sinervo and DeNardo 

1996).  Alternatively, the nutritional content of the eggs may be lowered resulting in 

smaller offspring, both at larval and postlarval stages (Sinervo and Mcedward 1988; 

Emlet and HoeghGuldberg 1997; Bertram and Strathmann 1998).  It is expected that an 

individual raised in good environmental conditions should achieve a better body 

condition and, as a result, have more resources available to invest in its immune 



Chapter 4: Parental effects on offspring immunity                                                                             - 39- 
 

response and in its reproductive success than an individual raised in poor conditions 

(Westneat and Birkhead 1998). 

 

An unfavourable environment does not only directly affect the fitness of those animals 

that experience it, but can also indirectly affect the fitness of their offspring via parental 

effects (Mousseau and Fox 1998; Pal and Miklos 1999).  Environmental parental effects 

are those features derived from the environment experienced by the parents and/or their 

condition at the time of reproduction and not from nuclear genes (Bernardo 1996; 

Rossiter 1996) and it has been suggested that these effects could alter population 

dynamics and evolution (Willham 1972; Hanrahan 1976; Rossiter 1991). 

 

When non-genetic information is passed further than one generation it is known as a 

‘permanent’ (Willham 1972) or ‘persistent’ (Riska et al. 1985) environmental parental 

effect, or ‘environmental inheritance’ (Riska et al. 1985).  Kirkpatrick and Lande (1989) 

clarified this further by using the term ‘maternal inheritance’ for the transmission of 

non-genetic information from mother to offspring and ‘maternal selection’ for the effect 

of this on the fitness of her offspring, and Lombardi (1996) used the term ‘maternal 

influence’ to refer to the source of the effect and not the impact on the offspring 

phenotype that it has.  

 

Maternal and paternal effects include those derived from the environment endured by 

the parents and/or their condition at the time of reproduction (Bernardo 1996) as well as 

nuclear and cytoplasmic genes passed from the parents to the offspring (Kondo et al. 
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1990; Wade and Beeman 1994).  If the environment that a parental generation 

experiences is a predictor of the environment their offspring will find themselves in, 

there will be selection on the parental generations to optimise offspring phenotype for 

success in that environment (Mousseau and Dingle 1991; Mousseau and Fox 1998; Fox 

and Czesak 2000; Fox and Savalli 2000; Gilchrist and Huey 2001; Holbrook and Schal 

2004).  For example, Daphnia pulex offspring whose mothers were exposed to 

chemicals released by a predator are born with defensive structures that protect them 

against that predator (Tollrian 1995).  If the parental generation are in unfavourable 

conditions this may restrict their ability to invest optimally in their offspring, or if an 

individual has to devote a larger proportion of its available resources to somatic 

maintenance, it may change the optimal investment per offspring.  If the environment is 

unstable there may be selection for an increase in offspring variation to provide a more 

optimal resource distribution (Brockelman 1975) but the ability to control the 

investment in offspring may be affected by factors such as pleiotropy and the very 

environmental effects they are trying to overcome during offspring development 

(Mcginley et al. 1987). 

 

Regarding parental effects on immunity, transgenerational immune priming is generally 

accepted to occur in vertebrates through the passage of antibodies between mother and 

offspring (Grindstaff et al. 2002; Grindstaff et al. 2003), but until recently there was 

little, and controversial, evidence for it occurring in invertebrates (Little et al. 2003).  

Sadd et al.  (2005) used the bumblebee, Bombus terrestris, to demonstrate that offspring 

whose mother had been challenged with heat-killed bacteria in saline had significantly 
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higher antibacterial activity than those whose mother had received injections of saline 

only.  This increase in offspring antibacterial activity is a very specific response to the 

immune challenge experienced by the mother, and Roth et al. (2009) discovered that not 

only mothers have the ability to prime their offspring for any immune challenges they 

are likely to face, but fathers can do this as well.  

 

Effects of diet quality on paternal provisioning for offspring have been reported in many 

systems (Rossiter 1996; Mousseau and Fox 1998; Vahed 1998).  Egg size is often 

correlated with nutritional content of the egg (Bondari et al. 1978; Bolton 1991), which 

can affect the fitness of the offspring during development (Roosenburg and Kelley 

1996). 

 

Where a species does not perform paternal care of the offspring it might be assumed that 

paternal effects are less important or absent, but there is mounting evidence that this is 

not always the case (Bonduriansky and Head 2007; Hunt and Simmons 2007).  In 

Drosophila, for example, the environmental temperature that a male experiences affects 

wing length (Huey et al. 1995),  cold resistance (Watson and Hoffmann 1996), 

productivity and fecundity (Magiafoglou and Hoffmann 2003) in his offspring, and in 

the fly Telostylinus angusticollis males in good condition produce larger offspring, with 

their sons having increased mating success and their daughters increased fecundity than 

those from low condition males (Bonduriansky & Head 2007).  Such effects may be 

mediated by female provisioning of the eggs in response to the quality of the male, and 

Burley (1988) put forward the idea of differential allocation (DA), where a female 



Chapter 4: Parental effects on offspring immunity                                                                             - 42- 
 

should increase her investment in the offspring if she has mated with a high quality 

male, as mate quality reflects the returns on her investment in terms of future 

reproductive success.  However, this prediction was contested (Bluhm and Gowaty 

2004; Gowaty 2008) and the reproductive compensation (RC) hypothesis proposed.  

This predicts that females should increases their investment in offspring when paired to 

a low quality male to attempt to negate any negative effects his low quality may have on 

their offspring.  It is reasonable to expect that DA and RC will occur in different 

systems; DA was developed using a bird species as a model system that exhibits both 

maternal and paternal parental care (Burley 1988), but it has been shown in many 

vertebrate and invertebrate species that also demonstrate traditional paternal care and in 

those that do not (Petrie and Williams 1993; Wedell 1996; Cunningham and Russell 

2000; Kolm 2001; Head et al. 2006), while RC has been shown in cases were a female 

has little or no mate choice (Bluhm & Gowaty 2004; Gowaty 2007; Gowaty et al 2007; 

Gowaty 2008). Conversely, some studies have shown no effect of male quality on 

maternal provisioning at all (Oksanen et al. 1999; Mazuc et al. 2003; Rutstein et al. 

2004; Reaney and Knell 2010). Harris and Uller (2009) modelled female reproductive 

investment using a state-based approach based on the resources a female has at a 

particular time to invest in her reproduction and in her own maintenance.  They found 

that DA (increasing investment when mated to a high quality mate) was the optimal 

strategy for females in their model; RC was only predicted when there was a low impact 

of parental investment on offspring quality.  They also discovered a relationship 

between female state (her condition, body size, age etc) and the level of investment in 

her offspring in relation to male quality.  The effects of diet quality on the immune 
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system have been extensively studied (reviewed in chapters 1 and 2), and while immune 

priming and parental environmental effects have been the focus of some research, 

immune changes arising from inherited environmental effects are less well known, 

especially paternal effects.  To address the question of how these effects on the immune 

system caused by diet quality are passed down from parents to offspring, the Indian 

Meal Moth, Plodia interpunctella, (Hübner) was used as a model system.  We compared 

two immune system indicators (haemocyte count and phenoloxidase activity) between 

groups of animals raised in different environmental conditions, and their offspring.  The 

density of haemocytes reflects the ability of an individual to encapsulate a wound site or 

intruder, as well as resist bacterial and viral attack (Eslin & Prévost 1996), while 

phenoloxidase (PO) is the enzyme responsible for producing the pigment melanin.  

Melanisation is a key part of encapsulation and PO activity has been shown to correlate 

with the ability of many insects to resist attack by pathogens (Ourth and Renis 1993a; 

Washburn et al. 1996; Barnes and Siva-Jothy 2000; Wilson et al. 2001; Cotter et al. 

2004). 

 

The environmental variable manipulated was food quality, the normal diet being 10:1:1 

ratio wheat bran: brewers yeast: glycerol whereas a poor diet contained half as much 

yeast and glycerol to wheat bran. Adults were reared on either normal or poor food, 

mated and then their offspring were divided into two groups that were also reared on 

normal or poor food, giving a total of eight treatment combinations. 50 groups of larvae 

were reared per treatment. 
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4.2 Experimental design 

 

4.2.1 The parental generation 

Over 300 adult moths from the stock culture were placed in one jar and all eggs 

collected.  Each egg was then allocated to one of two food treatments, normal or poor 

food. Eggs were placed individually into small 100ml plastic pots and provided with ad 

libitum food of the appropriate quality. Larvae were raised in a 27oC controlled 

temperature room under a 12:12 light:dark cycle. These were the parental generation.  

At 5th instar each larvae was sexed (on the basis of the absence or presence of testes, 

which are visible through the cuticle) weighed on a Sartorius balance and a 3µl sample 

of haemolymph was extracted.  

 

The larvae were then transferred back into their original plastic pot. Within 12 hours of 

emerging as adults, individuals were chilled and photographed using a dissection 

microscope. 

 

4.2.2 Mating pairs 

Following eclosion, experimental females were randomly allocated to an experimental 

male raised on either normal or low quality food.  The pair were placed in a clean 55mm 

Petri dish in a temperature-controlled room at 27oC and left to mate and lay eggs for 48 

hours, after which the adults were removed from the dish and placed in a new clean 
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Petri dish in the temperature-controlled room and allowed to mate and lay eggs until the 

female died.   

4.2.3 Offspring 

The eggs laid per pair in the first two days were counted and 20 eggs from each pair 

were allocated to the poor food quality treatment and 20 to the normal food quality 

treatment.  Each was placed individually into a plastic pot with an ad lib. diet of the 

appropriate food quality.  These were kept in the controlled temperature room until they 

had reached late 5th instar when each larva was weighed and had a sample of 

haemolymph extracted as before.   

 

Haemolymph samples and life history measurements were taken from 317 parental 

generation P. interpunctella at late 5th instar, 69 males and 84 females from the high 

quality food treatment and 89 males and 75 females from the low quality food treatment, 

and further samples were taken from 2722 offspring generation P. interpunctella, 1372 

from the high quality food treatment and 1349 from the low quality food treatment.   

 

 

4.3 Analysis of results 

 

4.3.1 Statistical analysis of haemocyte count 

The haemocyte count data were square-root transformed to give an acceptable error 

distribution prior to mixed model analysis with family as a random factor.  Block was 
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included as a fixed effect due to the rather low number of factor levels (7). Maternal 

treatment, paternal treatment, offspring sex and offspring treatment were included in the 

initial model as explanatory factors plus their two-way interactions, and offspring 

weight, maternal haemocyte count and paternal haemocyte count were also included. 

Models were initially fitted using maximum likelihood to allow LR tests to compare 

model fit (Crawley 2002; Zuur 2009) and a minimal adequate model produced which 

was then re-fitted using REML. 

 

4.3.2 Statistical analysis of PO data 

The PO data were analysed as for haemocyte count, except that paternal and maternal 

PO activity were substituted for paternal and maternal haemocyte count in the initial 

model. After initial model fitting and data exploration the interaction terms between 

offspring treatment and maternal and paternal PO activity were added to the model.  

 

4.3.3 Statistical analysis of survival data 

An initial generalised linear mixed model with binomial errors was fitted by the Laplace 

approximation with maternal treatment, paternal treatment and offspring treatment as 

fixed effects plus their two-way interactions, plus maternal and paternal weight as 

continuous fixed effects. Family was fitted as a random factor and block as a fixed 

effect because of the low number of factor levels. 

 

On the basis of both the Wald tests and LR tests block, paternal size and the maternal 

treatment by offspring treatment interaction were strongly supported for retention. Both 
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tests support the removal of maternal size and the paternal treatment by offspring 

treatment interaction so a candidate model with both of these terms removed was tested. 

All remaining terms were supported by significant z-scores, so that was the final model. 

 

4.3.4 Statistical analysis of egg length data 

An initial general linear mixed model was fitted with maternal treatment, paternal 

treatment as fixed effects plus their two-way interactions, plus maternal and paternal 

weight as continuous fixed effects. Family was fitted as a random factor and block as a 

fixed effect because of the low number of factor levels. 

All analyses were performed using R version 2.8.1 for Macintosh. 

 

4.4 Results 

 

4.4.1 Haemocyte count 

The minimal model for haemocyte count retained two interactions, one between paternal 

and maternal diet quality (LR1,131 = 7.77, P = 0.0053; Fig 4.1) and one between maternal 

diet quality and offspring diet quality (LR1,2517 = 9.50, P = 0.0021; Fig 4.1).  There were 

also significant main effects of block (LR1,2517 = 21.73, P = 0.0014) and offspring sex 

(LR1,2517 = 30.60, P < 0.0001; Fig 4.2).  Haemocyte count is highest in the offspring 

whose parents were both fed a good quality diet and lowest in those whose parents were 

both fed a poor quality diet.  Just one parent fed on a poor quality diet is enough to 

lower the haemocyte count to a similar amount regardless of which parent.  Offspring 

fed on a good quality diet have a higher number of haemocytes than those fed a poor 
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quality diet.  However, maternal diet interacts with offspring diet to raise haemocyte 

count further only when both the mother and offspring were fed a good quality diet.   

 

 

Figure 4.1: Haemocyte count for each offspring food treatment showing the interactions 

between maternal diet quality and paternal diet quality and between maternal diet 

quality and offspring diet quality. The bold lines show the median, the boxes the first 

quartile and the circles indicate outlying data points. 

 

 

 

 



Chapter 4: Parental effects on offspring immunity                                                                             - 49- 
 

 

 

 

Figure 4.2: Haemocyte count for each gender showing the difference in haemocyte 

counts in offspring generation.  Error bars are one standard error. 
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4.4.2 PO activity 

The minimal model for PO activity retained interactions between paternal and offspring 

diet quality (LR = 15.8, P = 0.0001; Fig 4.3), maternal and offspring diet quality (LR = 

38.4, P = <0.0001; Fig 4.3), paternal PO activity and offspring diet quality (LR = 93.6, P 

= <0.0001; Fig 4.4a) and maternal PO activity and offspring diet quality (LR= 148.5, P 

= <0.0001; Fig 4.4b).  Offspring weight also slightly affected PO activity (LR= 4.15, P 

= 0.0416; Fig 4.5), the heavier the larva the higher their PO activity.  PO activity is 

highest in the offspring whose parents were both fed a good quality diet (mean Vmax of 

phenoloxidase oxidation of dopamine of 0.452, SE 0.00191) and lowest in those whose 

parents were both fed a poor quality diet (mean Vmax of phenoloxidase oxidation of 

dopamine of absorbance of 0.32, SE 0.00216).  Just one parent fed on a poor quality diet 

is enough to lower offspring PO activity, with maternal diet quality having more of an 

effect than paternal diet quality.  Higher parental PO activity leads to higher offspring 

PO activity, with maternal PO activity having more of an influence than paternal PO 

activity.  However, parental diet interacts with offspring diet to raise it further when the 

offspring are given a good quality diet. 
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Figure 4.3: Phenoloxidase activity for each offspring food treatment showing the 

interactions between maternal diet quality and paternal diet quality and between paternal 

diet quality and offspring diet quality. The bold lines show the median, the boxes the 

first quartile and the circles indicate outlying data points. 
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Figure 4.4: phenoloxidase activity for the interaction between paternal PO activity and 

offspring diet quality and maternal PO activity and offspring diet quality. 

 

 

Figure 4.5: The effect of offspring weight on PO activity.   
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4.4.3 Offspring survival 

The minimal model for offspring survival retained interactions between paternal and 

maternal diet quality (Z= 5.581, Pr = <0.0001; Fig 4.6) and between maternal and 

offspring diet quality (Z= 2.301, Pr = 0.0214; Fig 4.7).  There was also an effect of 

paternal size (Z= 2.301, Pr = 0.0214; Fig 4.8). 

 

More offspring fed a good quality diet survived to 5th instar than those fed a poor quality 

diet.  Those whose mothers were fed a good quality diet had a greater chance of survival 

than those whose mothers were fed a poor quality diet; this was also true for paternal 

diet with those that had a larger father also having a greater chance of survival. 

 

Survival was highest in the offspring whose parents were both fed a good quality diet 

and lowest in those whose parents were both fed a poor quality diet.  Just one parent fed 

on a poor quality diet is enough to lower the survival, with poor paternal diet quality 

having more of an effect on survival than maternal diet quality.  There was also an 

interaction between maternal diet quality and offspring diet quality, survival being 

greatly increased if the mother had a good quality diet and still further increased if the 

offspring had a good quality diet as well. 
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Figure 4.6: The interaction between paternal treatment and offspring diet quality and its 

effect on offspring survival. The bold lines show the median, the boxes the first quartile 

and the circles indicate outlying data points. 
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Figure 4.7: The effect of maternal diet quality and offspring diet quality on offspring 

survival 
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Figure 4.8: The influence of paternal size on offspring survival. 

 

4.4.4 Egg size 

A highly significant interaction was found between paternal treatment and maternal size 

(F1,136 = 19.892, P < 0.001; Fig. 4.9).  There was no effect of female size on egg length 

when the females were mated to a male that had received a good quality diet.  The eggs 

from females mated to a male that had received a poor quality diet showed a strong 

effect of maternal size; larger females laid larger eggs and smaller females laid smaller 

eggs. 
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Figure 4.9: the effect of the interaction between maternal size and paternal diet on egg 

size. 

 

 

4.5 Discussion 

 

The aim of this study was to gain a better understanding of the parental effects of diet 

quality on offspring generations and how these effects may accumulate. My results 

show that diet quality has a profound effect on immune system activity, survival, egg 

size and fecundity, which is consistent with previous work, and increases understanding 

in this area by demonstrating that the diet given to both male and female parents affects 
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the immune function of their offspring.  If the offspring themselves are given a good 

quality diet it goes some way to offset the negative parental effects.   

 

4.5.1 Egg size  

P. interpunctella eggs contain, among other things, lipids and proteins designed to 

oversee the development of the offspring (Bean et al. 1988).  The eggs are stocked 

directly from the haemolymph of the female or from the nurse cells that surround it in 

the ovary (Telfer 2009).  Therefore, the more resources a female has to invest in egg 

production the better stocked her eggs should be.  

 

In our study, when a female was mated to a male that had received a good quality diet 

her egg size did not change according to her body size. However, when females were 

mated to a male that had received a poor quality diet egg size was correlated with 

female size, meaning that large females laid eggs of a comparable size to those laid by 

females mated with males given a good quality diet, but small females laid significantly 

smaller eggs. The smaller females, when mated to a male that had had a poor diet, may 

not have had the resources available to counter his lack of quality; poor diet males may 

not be transferring the resources to females during mating that the good quality diet 

males do, and a smaller female may not be able to compensate for this.  Multiple mating 

in Lepidopterans increases the net seminal products received by a female, and this along 

with benefits from mating with virgin rather than experienced males, increases female 

fecundity (Torres-Vila and Jennions 2004; Torres-Vila et al. 2004).  Male Plodia 

interpunctella also transfer extra resources to the female that are used for somatic 
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maintenance and egg production (Greenfield 1982). In our study the larger females may 

be attempting to compensate for a poorer quality mate by providing larger eggs to give 

her offspring a better start.  Egg size may be related to offspring size (Sinervo & 

McEdward 1988; Rossiter 1991) and since there are many life history traits that 

correlate with offspring body size (Honěk 1993) a larger egg could boost the fitness of 

any offspring that are provided with ”low quality” genes or inherited environmental 

effects from a poorer quality father. 

 

4.5.2 Immune function 

Individuals raised on good quality food had a higher PO activity and haemocyte counts 

than those raised on poor quality food. Offspring haemocyte count responded strongly to 

parental diet, being highest in the offspring whose parents were both fed a good quality 

diet and lowest in those whose parents were both fed a poor quality diet.  However, if 

one parent had a good quality diet and one a poor quality diet the haemocyte count was 

at an intermediate level regardless of which parent.  Interestingly, these values are close 

to a midway point between the haemocyte count of those whose parents had a good diet 

and those whose parents had a poorer diet. 

 
PO activity was highest in the offspring whose parents were both fed a good quality diet 

and lowest in those whose parents were both fed a poor quality diet, but a good quality 

offspring diet increased PO activity across all mating treatments.  PO activity has a high 

heritability estimate (Cotter and Wilson 2002), which may explain why higher parental 

PO activities lead to higher offspring PO activity in our study.  However, offspring diet 

interacted with parental PO activity, suggesting that although PO activity is largely 
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inherited it can be increased or decreased by the quality of the offspring diet.  Over 

many generations this could lead to a population-wide increase or decrease via 

persistent environmental inheritance. 

 

The effects of male diet on his offspring may be due to the effect male quality has on the 

quality of any nuptial gift, where a male provides a food item for the female to eat or 

transfers energy sources (Leopold 1976; Butlin et al. 1987) or minerals (Engerbretson 

and WMason 1980) to her from his accessory gland at mating.  As these resources can 

be used by the female for her own needs or to help provision her eggs (Boggs 1995), a 

nuptial gift that is highly nutritious could be extremely beneficial to the offspring.  

Despite this, whether or not a nuptial gift benefits the offspring is not clear. Male 

bushcrickets will transfer a large spermatophore to the females at the time of mating that 

she then partly eats and this has been shown to affect the offspring survival rates in 

Poecilimon veluchianus (Reinhold 1998) and the number and size of the eggs laid by 

female katydids (Gwynne 1988; Gwynne and Brown 1994) and tettigoniids (Simmons 

1990), but no effect has been found in Leptophyes laticauda (Vahed and Gilbert 1997) 

and Poecilimon veluchianus (Reinhold and Heller 1993). No effect has been found in 

the wartbiter Decticus verrucivorus (Wedell and Arak 1989) or the decorated cricket, 

Gryllodes sigillatus, (Will and Sakaluk 1994) even when the females were fed a low 

quality diet; however, in these two species the spermatophore is barely sufficient to 

fertilise all the females eggs which would leave little for consumption.  Male 

Drosophila transfer a large number of seminal proteins to the female that affect many 
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traits (Wolfner 1997; Wolfner et al. 1997) such as ovulation, oogensis and sperm 

storage. 

 

Haemocyte count varied between block, but there was no systematic pattern in the 

effect, and the effect sizes were not large.  It is possible that diet effects could have 

occurred, as the diet was made up for each block separately. The first chapter of this 

thesis has shown that immune function can be very sensitive to small changes in 

environment, and, although the same recipe was followed each time, small variations 

could have caused minor fluctuations in haemocyte count between block.  In future, a 

large amount of food could be made up to feed every block, so long as the food was 

thoroughly mixed to ensure an even distribution before each use and vitamin loss in 

storage could be prevented. 

 

 

4.5.3 Survival 

Individuals raised on good quality food survive better than those raised on poor quality 

food.  However, the effects of a low quality diet on survival are reduced if at least one 

parent had a good quality diet, with a good quality father being more important to 

offspring survival than a good quality mother.  This paternal effect on survival has also 

been shown in the hatching success of fish (Rideout et al. 2004), and larger male 

crickets are responsible for larger eggs and larger offspring (Weigensberg et al. 1998).   
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In our system, survival may be influenced by the quality of the nuptial gift given to the 

mother by the father and/or trans-generational epigenetic effects rather than direct 

genetic benefit.  The parental generation can transfer information to their offspring via 

genomic imprinting that does not alter the actual DNA sequence (Mousseau & Fox 

1998), and these effects can be transferred from the father and not just via the mother 

(Moret and Schmid-Hempel 2001; Sadd et al. 2005; Roth et al. 2009; Roth et al. 2010b, 

a).  In crickets, males whose offspring have high viability will enhance the viability of 

offspring sired by a poorer quality male in a sperm competitive situation (Garcia-

Gonzalez and Simmons 2007), which suggests that not all viability benefits are passed 

genetically. 

 

This study demonstrates that a single environmental variable can cause significant 

parental effects on egg size, number, survival and immune system response via the 

processes discussed above, and that paternal effects are more important than initially 

thought.  Potential sire effects will have to be considered in future work, as well as their 

interaction with maternal effects.
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Chapter 5: The effects of inbreeding on immunity and life history 

 

5.1 Introduction 

 

It has been known for some time that inbreeding can produce negative effects on an 

organism (Darwin 1876, 1885; Hollingsworth and Maynard Smith 1955; Bowman and 

Falconer 1960). The chief cause of this “inbreeding depression” is thought to be the 

increased offspring homozygosity that arises from the mating of two related individuals. 

There are two possible mechanisms by which increased homozygosity can lead to a 

reduction in fitness.  The first, overdominance, occurs when heterozygotes are superior 

to homozygotes at a given locus (also known as heterozygous advantage), and the 

second, partial dominance, occurs when an inbred line becomes fixed for recessive or 

partially recessive detrimental alleles, decreasing the fitness of the individuals in that 

line (Charlesworth and Willis 2009).  Homozygosity of lethal alleles (those that produce 

a survival of less than 10% (Simmons and Crow 1977)) may be just as responsible for 

inbreeding depression as homozygosity of merely detrimental alleles (Simmons and 

Crow 1977; Sperlich et al. 1977).  Those individuals with reduced fitness due to 

inbreeding will not have the same survival and reproductive success as those that 

maintain high fitness, thus eventually ‘purging’ deleterious alleles from an inbred 

population (Hollingsworth and Maynard Smith 1955; Falconer 1971; Bryant et al. 1990; 

Barrett and Charlesworth 1991).  This ‘fitness rebound’ (Bryant et al. 1990) may be 

more important in wild, lab and domestic populations than previously thought, and it has 

been suggested that it could easily be overlooked (Saccheri et al. 1996) as viable small, 
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and often closed, populations of ordinarily outbred species do exist in labs all over the 

world as well as in the wild (Slatis 1959; O'Brien et al. 1985; Hoelzel et al. 1993; Lande 

and Ritland 1994).  Templeton and Read (1984) put forward the idea that artificial 

selection and deliberate inbreeding could be used as a tool to purge deleterious 

recessives from a captive population, and under some circumstances selective 

inbreeding can be very important to animal breeders.  However, before purging can 

occur, an initial reduction in population fitness must occur, which greatly increases the 

risk of extinction of that population. There is also a risk that deleterious alleles may 

become fixed in the population, possibly lowering the fitness of the population 

permanently (Whitlock 2000).  Another consequence of inbreeding and increased 

homozygosity is a reduction in the genetic variability of the population, which could 

impact heavily on future adaptation and evolution. 

 

Reductions in fitness in inbred populations have been measured in invertebrates 

(Hollingsworth and Maynard Smith 1955; Andreev et al. 1998; Gerloff et al. 2003b; 

Gerloff and Schmid-Hempel 2005; Calleri et al. 2006), vertebrates (Slatis 1959; 

Bowman and Falconer 1960; Hardiman et al. 1974; Reid et al. 2003) and plants (Willis 

1993; Kittelson and Maron 2000; Ferrari et al. 2006; Delphia et al. 2009), and it is 

expected that the degree of inbreeding depression should correlate with the coefficient 

of inbreeding, F, if all loci additively combine (Falconer 1989).  Falconer (1989) made 

the observation that inbreeding affects most greatly those traits directly related to 

fitness, such as fecundity, and less so those that do not have the same direct relationship 

with fitness, such as adult body weight, but he did not back up this observation with 
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empirical evidence.  As mutations that directly affect fitness traits are likely to be 

extremely deleterious, there should be directional dominance (Lynch and Walsh 1998) 

since fitness characteristics usually have increased dominance variance (Crnokrak and 

Roff 1995), whereas mutations in genes not directly associated with fitness, such as 

those determining some morphological traits, are likely to have much less directional 

dominance.  

 

Turning to immune reactivity, this can be affected by polymorphisms in genes 

responsible for coding key immune functions (Sackton et al. 2010). Therefore, 

inbreeding might be predicted to cause a direct reduction in immune function rather than 

as part of general pleiotrophic effects. We know comparatively little about inbreeding 

effects on the immune system of invertebrates, however, and virtually nothing of how 

any immune function response compares to the response of life history traits. The aim of 

this study was to address this by assessing the impact of multiple generations of full 

sibling inbreeding on phenoloxidase activity, egg number, egg size, survival and protein 

content of the haemolymph in Plodia interpunctella.  

 

5.2 Methods 

Three generations of full sibling matings were carried out in genetic lines from two 

distinct populations of P. interpunctella, one from the UK and one from Australia. The 

UK stock culture was started by crossing 3 strains obtained from throughout the UK, the 

first from an outbreeding colony maintained in the laboratory at the University of 
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Liverpool for 5 years, and before that at Imperial College at Silwood Park for 10 years, 

the second from the University of Sheffield and the third being a population kept at 

Queen Mary University of London. The resulting culture was maintained for 30 

generations before the start of this experiment. The Australian population was obtained 

from the Plant Science department of the Primary Industries and Fisheries (part of the 

Department of Employment, Economic Development & Innovation) in Queensland, 

Australia.  These P. interpunctella originated from wild collected animals from an 

infestation of organic mixed nuts from one merchant.  These were crossed with a 

population from Western Australia and maintained in the lab in Queensland for 5 years. 

10 inbred lines were maintained from the UK population and 10 from the Australian 

population along with 2 outbred control lines from each origin.  All larvae were raised 

individually in Petri dishes (Sterilin) on the standard food mix (see methods section).   

 

The larvae that hatched from 50 eggs from a single full-sib mating were raised 

individually in standard food medium.  Once they had reached late 5th instar 20 

individuals were randomly selected and a haemolymph sample taken for immune and 

protein assays.  All of these 20 larvae were allowed to pupate and eclose in individual 

100ml pots and once hatched they were randomly allocated into brother and sister pairs.  

The eggs laid by the brother and sister pairs were counted every two days until the 

female died.  One of these brother-sister pairs was chosen at random and their eggs were 

used to continue the line. 

 

The two control lines from each origin were also raised individually as larvae, as with 
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the inbred group but they were grouped together as adults to mate as they would in a 

normal lab culture situation.  Eggs were collected from randomly selected single 

females and those were photographed to allow wing measurements to be taken and used 

to continue with the line. 

 

5.2.1 Analysis of data 

For this study the unit of replication is the line, so mean values were calculated for line 

and the analysis carried out on these. General linear models were fitted to the immune 

function data with treatment (inbred or control), origin (UK or Australia) and generation 

plus all interactions as explanatory variables. Separate models were fitted for males and 

females. All data were log +1 transformed to allow proportional changes to be assessed, 

except for the protein analysis, in which the model was refitted with 1000 added to each 

data point to stabilise the error distribution after log transformation. Non-significant 

terms were removed following deletion tests (Crawley 2002) to leave a minimal 

adequate model. All analyses were performed using R version 2.8.1 for Macintosh.  

 

5.3 Results 

 

5.3.1 Protein levels of haemolymph 

Although protein levels decreased with generations of inbreeding (females F1,38 = 

168.52, P < 0.001; males F1,38 = 135.67, P < 0.001; Fig. 5.1) the UK and Australian 

lines responded slightly differently (origin effect on females F1,38 = 60.47, P < 0.001; 

origin effect on males F1,38 = 33.13, P  = 0.001; Fig. 5.1).  The Australian lines started 
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with much higher protein levels than the UK lines.  After the first generation of 

inbreeding the protein levels of the Australian line fell to around that of the UK lines 

before any inbreeding events.  The protein levels of the UK lines fell after the first 

generation of inbreeding to an intermediate level and remained at this level after the 

second generation of inbreeding, the Australian lines only reaching this level after two 

generations of inbreeding. 
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Figure 5.1: the effect of inbreeding on protein levels in the haemolymph of the UK and 

Australian lines. 
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5.3.2 PO activity 

There was an interaction between generation and origin in males (F1,37 = 12.17, P  = 

0.001).  In the Australian lines (Fig. 5.2) the males responded to inbreeding with a large 

decrease in PO activity after the first generation before remaining at this much lower 

level for a generation and then falling again after the 3rd generation. In contrast, the UK 

lines (Fig. 5.3) did not show much decrease at all and in two lines from the UK PO 

activity actually increased with inbreeding.  In the Australian lines PO activity 

responded much more strongly to inbreeding in males than in females (females F1,39 = 

8.36, P  = 0.006; males F1,37 = 15.92, P < 0.001).  In females the variance was increased 

more by inbreeding than in males.  In some lines the inbred females had a higher PO 

activity than the control lines while some had a much lower activity, whereas in males 

the overall trend was for a slight decrease in PO activity. 

 

5.3.3 Egg size 

Egg length (F1,35 = 81.52, P < 0.001; Fig. 5.4) decreased with each generation of 

inbreeding.  The first egg length model fitted produced a significant interaction term that 

suggested that the egg length of the UK and Australian lines reacted differently to 

inbreeding.  However, once one Australian data point with very high leverage (Cook’s 

distance>>1) was removed the interaction was no longer significant.  

 

When the ratio between egg length and egg width was analysed there was no change in 

the shape of the eggs down the generations of inbreeding. However, there was a 

significant difference in the width to length ratio of eggs from the UK lines and those 
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from the Australian lines (F1,35 = 14.26, P < 0.001; Fig. 5.5).  While eggs from either 

origin were the same width, Australian eggs were longer than the UK (F1,35 = 58.97, P < 

0.001). 

 

5.3.4 Egg number 

Egg number, both those laid over 2 days (F1,38 = 34.07, P < 0.001; Fig. 5.6) and in total 

(F1,39 = 32.74, P < 0.001; Fig. 5.6), significantly decreased with every generation of 

inbreeding.  There was no effect of origin on this trait. 

 

5.3.5 Larval weight 

Both female weight (F1,38 = 58.88, P < 0.001) and male weight (F1,38 = 26.41, P < 0.001) 

decreased with inbreeding.  However, the Australian lines (Fig. 5.7) behaved differently 

from the UK lines (Fig. 5.7) (origin effect on females F1,38 = 20.96, P < 0.001; origin 

effect on males F1,38 = 8.22, P  = 0.007).  In the UK lines weight stabilised somewhat 

after the first generation of inbreeding, with little change other than a slight increase in 

variance after two generations of inbreeding.  In the Australian lines the variance in 

weight between lines increased after one generation of inbreeding, with some lines 

decreasing in weight and some increasing in weight.  After two generations of 

inbreeding the variance decreased again, but the females decreased in weight much 

more than the males.  
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Figure 5.2: the effect of inbreeding on PO activity in males and females of the 

Australian lines. 

 

 



Chapter 5: The effects of inbreeding on immunity and life history                                                  - 73- 
 

 

 

 

 

 

Figure 5.3: the effect of inbreeding on PO activity in males and females of the UK lines. 
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Fig. 5.4. The effect of inbreeding on egg size. 
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Fig. 5.5. Egg width to length ratio of the Australian and UK lines.  The dark circles are 

the Australian lines. 
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Fig. 5.6. Egg number with generation of inbreeding for the inbred and control lines. 
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Fig. 5.7. Larval weight with generation of inbreeding for the UK and Australian lines. 
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5.3.6 Survival 

Survival to the 5thnstar was analysed using a generalised linear model model fitted with 

a quasibinomial error term because of serious overdispersion in the data. There was no 

effect of generation or origin when this was fitted to the inbred lines only.  When 

another model was fitted that included all the data and treatment (inbred or control) was 

included as a factor then treatment emerged as the only term remaining in a minimal 

adequate model (F1,69 = 11.68, P  = >0.001).  Inbreeding decreased survival in both the 

Australian and UK populations, but it did not continue to decrease down the generations 

of inbreeding (Fig. 5.9). 
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Fig. 5.8. Larval survival with generation of inbreeding for the inbred and control lines. 

 

 

 

 



Chapter 5: The effects of inbreeding on immunity and life history                                                  - 80- 
 

5.4 Discussion 

 

Our results show that inbreeding has an effect on survival, egg size, fecundity, which is 

consistent with previous work.  They also increase our understanding by demonstrating 

that phenoloxidase activity and protein levels of the haemolymph can be profoundly 

affected by inbreeding, but that the degree of inbreeding depression in both these 

variables is itself dependent on both origin and sex.   

 

Proteins perform many important roles in the haemolymph of invertebrates.  

Haemocyanins carry oxygen around the body (Sackton et al. 2010), have considerable 

buffering potential towards carbon dioxide (Kerridge 1926; Andrews 1967) and may 

store amino acids and other organic nutrients (Schoffeniels 1976; Hagerman 1983).  

Apohaemocyanin does not contain copper, and so does not carry oxygen, but it allows 

rapid manufacture of haemocyanin (Horn and Kerr 1963) and stores nutrients for rapid 

use by other cells (Uglow 1969a, b, c). Fibrinogen and others are responsible for 

forming clots in response to injury (Bang 1963; Horn and Kerr 1963; Manwell and 

Baker 1963) and there are many more, such as hormones involved in moulting, 

ventilation and cardiac activity and proteins responsible for colouration and parts of the 

immune system, such as antibacterial proteins (Hildemann and Reddy 1973; Hildemann 

1974; Kleinholz 1985; Trenczek and Bennich 1987; Morishima et al. 1992; Phipps et al. 

1994) .  

 

Our study showed that protein levels of individuals from both the UK and Australia 
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rapidly decreased with inbreeding.  However, those from Australia had much higher 

protein levels to start with and the decrease over the first generation brought them in line 

with the original UK population.  After the initial drop in protein levels after the first 

generation the UK population maintained their levels into the second generation, while 

the Australian lines only reached the same level after the second generation of 

inbreeding.  

 

The reduction of protein levels in the haemolymph could have many consequences.  We 

measured only total protein levels; therefore, it would be interesting to attempt to 

measure specific protein reductions to determine if some are traded off against others or 

if there is a general reduction in all proteins.  As we cannot determine exactly which 

haemolymph proteins have decreased there may be a reduction in the immune function 

and wound healing of inbred individuals in ways we did not measure, such as 

antibacterial activity.  Further work to determine whether other immune system traits 

and immune proteins are decreased would be extremely interesting.     

 

Previous research looking at whether inbreeding affects immune function in 

invertebrates has been inconclusive.  Some studies have found no reduction in innate 

immune function, such as antibacterial activity or encapsulation (Stevens et al. 1997; 

Gerloff et al. 2003a; Calleri II et al. 2006) while others have found a reduction in size 

and immune function in response to inbreeding (Rantala and Roff 2006).  In this study, 

PO activity was used as an indicator of immune function; previously, research has 

shown that encapsulation of nylon is affected by inbreeding but no direct effect of 
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inbreeding on PO activity of the haemolymph has been shown (Rantala and Roff 2007). 

The UK populations did not show much decrease in PO activity at all when inbred; in 

fact, in two lines from the UK PO activity actually increased with inbreeding. This 

suggests that there may be multiple loci controlling PO activity in P.interpunctella, 

some that increase the activity and some that function to decrease it.  It has been shown 

that high levels of PO activity can be detrimental to longevity and survival 

(Schwarzenbach and Ward 2006) and that the immune system can cause damage to the 

tissues of the invertebrate itself  (Sadd and Siva-Jothy 2006): this autoreactivity has 

important life-history implications.  If a high PO activity were detrimental to the 

organism the presence of controlling or limiting genes would be beneficial.  As 

inbreeding reduces the genetic variability in a population, some individuals may inherit 

only genes that limit PO activity or only those that increase it, both of which could cause 

serious consequences or even mortality.  The self-harm produced by too much PO 

activity may go some way to explaining why those lines with high PO activity did not 

succeed past two generations of inbreeding.  

 

The PO activity of Australian males responded much more strongly to inbreeding than 

Australian females.  Although sex differences in immune function are known to occur in 

vertebrates (Zuk and Stoehr 2002), the picture is less clear in invertebrates (Gray 1998; 

Kurtz et al. 2000; Adamo et al. 2001; Vainio et al. 2004; McKean and Nunney 2005; 

Rantala and Roff 2007) and in our study there were only sex differences in the 

population from Australia.  Rantala and Roff (2007) demonstrated sex differences in the 

immune systems response to inbreeding in a more outbred species, and suggested that 
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species that naturally inbreed may be more resistant to the effects of inbreeding.  One 

possible explanation for the difference in response to inbreeding between the two 

populations is that the UK lines were more inbred to start with, which might be 

explained by the Australian lines having been cultured in the lab for a much shorter time 

than the UK lines.  As ancestral inbreeding can reduce inbreeding depression (Swindell 

and Bouzat 2006b, a), a population that has a history of past close inbreeding may show 

fewer effects of inbreeding than those who have come from a more outbred population. 

If the UK lines were more inbred at the start, some of the deleterious recessives may 

have already been purged from the population explaining why the factors measured 

stabilised after one generation of inbreeding.  The increase in variance after inbreeding 

in the Australian lines may result from many of the original population being 

heterozygous at certain loci, and the resulting homozygosity after inbreeding produced 

offspring atypical of the parental generation. 

 

Larval body size decreased with inbreeding in both populations, and small body size can 

reduce fecundity (Roff et al. 2002): this may explain why egg numbers, laid over two 

days and in total, significantly decreased with every generation of inbreeding in both 

populations.  As survival of P. interpunctella larvae is already quite low, and this 

decreases a great deal further with inbreeding, low egg numbers might not cause only 

one genetic line to become extinct but an entire population. P. interpunctella are a 

typical r-selected species (Verhulst 1838), which grow fast, have a relatively small body 

size, a short generation time, are able widely to disperse their offspring, produce many 

offspring who each have a low probability of survival to adulthood and typically exploit 
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empty or less croded niches (Pianka 1972).  If the number of eggs laid is greatly reduced 

so are the chances of any offspring reaching reproductive age, which could be disastrous 

for a species that relies so heavily on the sheer number of offspring produced per 

individual. 

 

Egg size decreased with each generation of inbreeding, and since egg size may be 

related to offspring body size (Sinervo & McEdward 1988; Rossiter 1991) and many life 

history traits correlate with 8.9 offspring body size (Honěk 1993) it is possible that these 

smaller eggs could have lead to offspring with reduced fitness.  As females stock the 

eggs with proteins, among other things, (Bean et al 1988) directly from the haemolymph 

or from the nurse cells that surround it in the ovary (Telfer 2009), the reduced levels of 

haemolymph protein after inbreeding may be affecting egg size directly and not just as a 

result of overall poor condition of the female. 

 

The UK lines were more resistant to extinction, with most Australian lines being lost 

after the first generation of inbreeding and those lines that survived having fewer 

representatives while the UK lines maintained numbers fairly well right through to the 

second generation. As the lines that died out did not produce weight, protein or PO 

activity measurements following extinction, we can only speculate what they might 

have been, but it is notable that the lines that died out were the ones with very high and 

very low PO activity, suggesting that the middle ground is optimal in that case.  The 

lines that survived the longest had larger larval weights (t8.9= -4.96, p=<0.001) and 

produced eggs that were longer (t12.5= -2.35, p=<0.005) and wider (t14.3= -3.87, 
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p=<0.001) than the lines that became extinct most quickly, suggesting that general body 

condition and egg size play a major role in the survival of a population. 
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CHAPTER 6: General Discussion 

 

This thesis has demonstrated just how plastic immune function can be, often due to very 

small environmental fluctuations or because of the environment experienced by an 

animal’s parent.  However, rather than just being a consequence of a costly immune 

system, plasticity may serve an adaptive purpose.  Cases such as wing optimisation, 

where there are perhaps just one or very few best strategies, are very different from that 

of immune function, where the best strategy for individual success depends on the 

strategy of others in the population, pathogens and parasites (Maynard Smith 1982) and 

in an arms race responses have to be rapid and effective.  To allow for immune 

strategies to change and adapt in response to environment fluctuations, pathogen 

evolution and competition with conspecifics there has to be room for plasticity in 

immune response.  

 

In ecology it is important to understand how the environment influences immune 

function and life history traits and studies of model organisms such as Plodia 

interpunctella, the Indian meal moth can be of great use in understanding these issues. A 

review of the literature revealed that because maintaining and using an immune system 

is costly to the organism immune activity is expected to be condition-dependent and that 

many factors such as temperature, population density, diet and level of inbreeding are 

likely to have profound effects on immune system function and life history traits 

(Sheldon and Verhulst 1996; Kraaijeveld and Godfray 1997; Webster and Woolhouse 

1999; Rigby and Jokela 2000; Kraaijeveld et al. 2001; Kraaijeveld et al. 2002) 
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Past studies of effects of environmental factors on immunity have focused mainly on 

one aspect of environmental fluctuation at a time. In chapter 3 I found that the 

interactions between various environmental factors are extremely important in deciding 

immune system strength or weakness in P. interpunctella: strong interactions between 

the three environmental variables led to the magnitude and in some cases the direction 

of the effects of most variables changing as the other environmental factors were 

altered.  

  

Overall, food quality was the most important influence: larvae raised on a diet with 

higher levels of protein and sugar have substantially higher PO activity in every case 

and substantially higher haemocyte counts in all treatments except unheated:low 

density.  When food quality was good the larvae showed “density dependent 

prophylaxis”: raising their investment in immunity when population density is high. 

When food quality was poor, however, in most cases those larvae raised at high 

densities invested less in immunity.  Temperature increases are often thought to lead to 

greater survival in pathogen infected ectotherms (Blumberg 1976; Kobayashi et al. 

1981; Blumberg 1991; Geden 1997; Sigsgaard 2000; Frid and Myers 2002). In the case 

of PO activity an increased level of immune function was only evident when larvae 

were raised on good food, and in the low-density treatments a higher temperature led to 

reduced PO activity. A higher temperature led to higher haemocyte counts when density 

was high and food quality was good but when density was high and food quality poor 

the larvae had fewer haemocytes.   
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These results suggest that a good quality diet probably provided adequate resources to 

maintain or increase immune activity, while the poor quality diet resulted in immune 

activity being compromised. If resources are plentiful the larvae may have been able to 

invest more in their immune function at higher densities or temperatures, but the  

combined impact of high density and poor food has the opposite effect due, perhaps, to 

any potential for immune increase being limited by the lack of food quality or the result 

of other trade-offs due to density.  In this case, an increased temperature only leads to 

higher immune reactivity under certain circumstances, and the two measured 

components of the immune system responded differently to temperature. 

 

I have demonstrated the importance of considering interactions between different 

environmental variables when trying to understand the evolutionary ecology of immune 

responses. When an individual variable is studied in isolation important interactions and 

their effects may be overlooked.  Such interactions could cause laboratory studies, 

where animals are kept in otherwise constant environments, to produce unreliable 

predictions of immune function in natural systems.  Nonetheless, those experiments that 

consider single-factor responses do still allow us to gain some understanding of how the 

immune system reacts to environmental change.  Multi-factorial experiments are often 

complex and the data difficult to interpret, and tackling one environmental variable at a 

time can provide important background information when looking at more than one 

variable and any interactions between them. The effect of food quality was consistent in 

all experiments suggesting that this has a very important influence on immune function 

regardless of other environmental variables.  Furthermore, some environmental 
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influences cause consistent patterns across species, for example, density-dependant 

prophylaxis (Reeson et al. 1998 b; Wilson et al. 2001; Wilson et al. 2002)).  However, 

these may only be due to lab experiments being carried out with other conditions 

controlled and near optimum.  It is difficult to assess how much of this consistency is 

because of these highly controlled lab conditions and how much is due to there being a 

genuinely consistent and robust effect. At this time there is not enough empirical data to 

determine which is the case. 

 

These results are especially important given ongoing concerns about anthropogenic 

climate change. Not only might the predicted increase in temperature change host- 

pathogen dynamics across natural environments, but as the environment changes food 

may become scarce which could cause clustering of species at high densities and/or 

effects of poor food quality on immune function and life history.  An increase in 

pathogen virulence due to accelerated growth and increased transmission rates could 

produce dramatic effects on the ecosystem (Pounds 2001; Koelle et al. 2005), as could a 

reduction in virulence due to the parasite no longer being at optimum temperature or to 

improved host immune systems (Blanford et al. 2000), if this led to an increase in 

population densities of pest species it could produce important economic implications.  

 

If climate change alters multiple environmental factors simultaneously, this could have 

profound effects on the evolution of an invertebrate species.  Natural selection will act 

much more quickly on those organisms with faster generation times, and increasing 

temperature does decrease the time taken to reach maturity in many insect species 
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(Angilletta Jr et al. 2004). How this will affect the evolution of a species depends on the 

genetic architecture of the organism’s response to more than one environmental 

variable.  If there's a lot of genetic variability in the population controlling response to 

(for example) both temperature and food quality then the population will evolve fairly 

quickly and the change in climate won't affect the species so strongly.  However, if there 

is only genetic variability in response to one variable then the population won't be able 

to evolve as fast and will be affected more strongly. 

 

These strong interactions between environmental variables could be important in  

biological control. Ecological studies on the effects of the environment on the balance of 

host-parasite systems are frequently used to increase knowledge of biological control  

methods for pest species .  The data presented in chapter 3 demonstrate that not only 

does the environment affect immune function, but also interactions between 

environmental variables can cause large variations in immune response.  This suggests 

that the use of pathogens for pest control could have as many outcomes as there are 

combinations of environmental effects, casting doubt on their usefulness, especially if 

control is needed for long periods of time. 

 

In chapter 4 I investigated the question of whether environmental effects on parents are 

seen in immune and life-history traits in their offspring. The diet quality experienced by 

an individual proved to cause significant effects on egg size, offspring survival and the 

immune system response of both parents and offspring: although a good quality diet for 

the offspring goes some way to offset these. While strong maternal effects on offspring 
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immunity might be expected the paternal effects that were clear throughout this 

experiment might be regarded as a surprise. 

 

An interaction between paternal and maternal diet quality existed which affected egg 

size.  Females laid larger eggs if they had been fed a good quality diet but were mated to 

a male that had been fed a poor quality diet and this suggests that the females might be 

trying to offset any negative effects on the offspring that a poorer quality male might 

have by increasing the resources she provides to each egg.  

  

Individuals raised on good quality food had a higher PO activity and haemocyte counts 

than those raised on poor quality food, which is consistent with resource allocation 

theories and with the work done in chapter 3. Offspring haemocyte count and  

PO activity responded strongly to parental diet, both were highest in the offspring whose 

parents were both fed a good quality diet and lowest in those whose parents were both 

fed a poor quality diet, with an intermediate number being found in those offspring with 

one parent that had had a good quality diet and one a poorer quality diet regardless of 

which parent.  However, a good quality offspring diet increased PO activity across all 

mating treatments.  

 

The environment and individual experiences in very early life can have profound effects 

later (Linstrom 1999; Bateson et al 2004), and ‘catch-up growth’ has been shown in 

many different species that show indeterminate growth, where growth stops once the 

animals genetically pre-determined structure has completely formed (Bjorndal et al 
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2004; Alvarez & Nicieza 2005; Johnson & Bohlin 2006).  In my study, some ‘catch up’ 

was seen in immune response and body size in those offspring whose parents were fed a 

poor quality diet when they themselves were fed a higher quality diet.  There is very 

little data on ‘catch up’ growth in invertebrates, however, studies on vertebrates have 

shown that a number of costs are paid for any compensatory growth later in life 

(Metcalfe and Monaghan 2001; Hales and Ozanne 2003) and the results of this thesis 

suggest that immune activity could be permanently increased or decreased across a 

population by the quality of the diet experienced by breeding animals due to persistent 

environmental inheritance (Riska et al. 1985).  

 

Finally, chapter 5 addressed the question of how inbreeding affects immune function.   

The P. interpunctella used were fairly resistant to the effects of inbreeding, with some 

genetic lines surviving repeated generations of brother to sister matings.  However, there 

were some high costs to be paid in terms of larval size, egg size, survival and immune 

function.  

  

Haemolymph protein levels of individuals from both the UK and Australia rapidly 

decreased with inbreeding, as did larval and egg size.  After the initial drop in protein 

levels and larval size due to the first generation of inbreeding the UK population 

maintained their levels into the second generation.  Although the Australian lines 

showed a decrease in overall protein and body size they increased variance from the 

mean after one generation of inbreeding, before the variance decreased with the amount 

of protein finally reaching the same levels as the UK lines after the second generation of 



Chapter 6: General discussion                                                                                                           - 92- 
 

inbreeding and maintaining into the 3rd generation.  This pattern suggests that the UK 

lines were more inbred to start with, which might be explained by the Australian lines 

having been cultured in the lab for a much shorter time than the UK lines.  The smaller 

responses in the UK lines may be due to ancestral inbreeding producing genetic bottle 

necks that purged deleterious alleles from the population reducing the inbreeding 

depression seen in my study.    

  

However, PO activity did not follow the same pattern as other features measured.  The 

variance was much more increased by inbreeding, with some lines showing lower levels 

of PO activity while others showed higher levels than the control lines.  As very high 

PO activity can actually cause self-harm and autoimmune effects, an individual with 

some alleles for increased PO activity and some to prevent levels becoming too high 

would have an advantage.  Since inbreeding produces more homozygotes certain 

individuals, or whole genetic lines, may inherit two genes that limit PO activity or two 

that increase it, both of which could cause mortality and cause the increased variance 

from the mean that we saw.   In unpredictable, highly variable environments genetic 

variance may be essential to a species survival (Lande and Shannon 1996).  Inbreeding 

serves to increase the number of homozygotes in the population, with many generations 

of close inbreeding leading to animals that are highly similar genetically.  The reduced 

number of alleles may lead to individuals, or whole inbred populations, with much less 

potential for immune plasticity which in turn could have serious knock on effects on 

population survival. 
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6.2 Future research and prospects  

  

Factors such as sex differences and the changing environment can cause immune 

responses to vary widely across species and situations.  

 

Much of the variability in vertebrate immune response will be due to the specificity of 

the acquired immune system.  However, vertebrates are highly complex and 

invertebrates, with their relatively simple immune system, provide better analytical 

models for research into this area.  Further research on the specificity of immune 

responses and immune memory in invertebrates may help to tease apart what is 

happening in the more complex immune systems of vertebrates.  Cross-resistance and 

immunity trade-offs in invertebrates are interesting topics, for example, are individuals 

resistant to bacterial attack more or less susceptible to viral, fungal or parasitoid attack?  

Research into the level of specificity of an invertebrate immune response is to a 

pathogen type and whether this causes trade-offs within the immune system itself would 

produce interesting results. 

  

How immune plasticity and function affects animals in more realistic situations should 

be addressed.  I have gone some way to looking at this with my research into 

interactions between environmental variables, but more research in this field is needed.  

Separate experiments manipulating exact nutrients within the diet, rather than using a 

more general increase in diet quality, should tell us which parts of the diet have the 

biggest effect on immune function and life history.  Also, more data on interactions 
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between environmental factors would be extremely useful, in P. interpuntella and other 

species with different life histories. 

 

Whether factors such as inbreeding and diet quality do cause a measurable decrease in 

an individual’s ability to fight disease, and not just an affect on some measure of 

immune response, needs to be ascertained.  Further research that looks at an individual’s 

ability to mount a response to a real pathogen would be extremely useful.  We have 

various factors which affect two immune function traits and it would be extremely 

interesting to repeat some of the experiments in this thesis, but to infect a population of 

experimental insects with a disease and to induce the same immune challenge without 

the pathogen itself (for example, using a type of bacterium and LPS isolated from it).  

This should tell us how environmental factors affect the ability of an individual to fight 

off infection and/or mount some kind of immune response, and whether or not the 

differences in immune function parameters I have found here have real significance or 

are just arbitrary. 
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