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Abstract

Motion capture coupled with on-body sensing andeagdback are key enabling technologies for assistetr rehabilitation.
However, wearability, power efficiency and measueatirepeatability remain principle challenges theéd to be addressed
before widespread adoption of such systems becpossible. The weight and size of the on-body sensystem needs to be
kept small, and the system should not interferé Wit user's movements or actions, but in genbef aire bulky due to their
power consumption requirements. Furthermore, ahylgensors are very sensitive to positioning, whielises increased
variability in the motion data. Isolating the cheteistic patterns that represent the most impomtaotion data affected by
random positioning errors, while also reducing ff@ver consumption, is our main concern. We consaterautomated
computational approach to address these two prabléfe investigate the use of f-PCA for signal safian, whilst accounting
for variability in sensor positioning. We use aablrm to generate motion data which is analogodkd human joint flexion -
extension motion. The data are captured by aneaatarker-based motion capture system. As both thteomcapture system
and the robot arm are very accurate in their omeratve are able to introduce deliberate placensgrdrs in a precisely
controlled manner to assess the efficacy of ourcgmh. The results are independent of the techgalegd to measure motion
because we consider joint angles as variablesriamalysis. The proposed approach can thus beegptliother motion capture
systems. The proposed post-processing techniqueaapensate for uncertainties due to sensor poaitichanges, whilst

allowing greater energy efficiency of the senstiras enabling improved flexibility and usability oh-body sensing.

Keywords: Motion capture, on-body sensing, sensor powécieffcy, sensor placement.
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Wearable computing devices are used to measurerhbody parameters via on-body sensors. These systam capture
different kinds of information such as motion afnysiological activities [1]-[2]-[3]. Our work is niivated by the foreseen need
for motion capture applications of home-based mkgaming, for example, for assisted rehabilitattwrongoing motor training
of disabled users, where wearable system desigisriieeconsider the wearers’ comfort and fittinguiegments whilst targeting
measurement performance. The weight and size o$ybm needs to be small, and the system shoulohteofere with the
user's movements or actions, especially in motiaptere applications [4]. Motion can be capturedplacing sensors directly
on the body, but they can be cumbersome, uncorblerta wear and potentially easy to displace. Tisgséems are sensitive to,
and highly dependent on, changes in position cd@sn which affect measurement accuracy [2]. Taigctseriously undermine
the effectiveness of self-administered motor tragni

In order for motion capture system to be widely@dd as an assistive technology for home-baseddusen rehabilitation,
they need to be robust to user placement errorsedisas portable and energy efficient [5]. In thaper we describe a signal
processing approach to solve the combined problérseasitivity to placement errors and power consionp To our
knowledge, this technique has hitherto not beenl@yed in the context of reducing undesirable motapture variability and
improving power efficiency.

In motion capture, failure to place markers/sensmrsurately is probably the single greatest contobto measurement
variability [6], which is a key impediment to thed&r adoption of home-based assistive rehabilmatio capturing of human
motion via on-body sensors, the motion of a bodggesented as a collection of time series stregssribing the joint angles,
called motion data. An articulated figure is oftandeled as a set of rigid segments connected bgsjoihich are constraints on
the geometric relationship between two adjacenimeedgs. This relationship is expressed with pararsetalled joint angles
measured in three planes of three-dimensional spafi#h careful selection of joints so that, for exale, segments are
connected to form a tree structure, a collectiotthef joint angles of all the joints correspondsctiyato a configuration of a
figure [23]-[24]. Placing markers accurately wigspect to specific anatomical landmarks and detgngiithe location of joint
centers and other anatomical features in relatiothése markers are very important in determiniveganthropometry of an
individual subject to derive motion data.

A number of marker placement protocols are in wselinics and motion capture laboratories, butrisssion variability
may still result, for example, if different moti@apture sessions are run by different staff. Funtloee, particular care should be
taken to ensure that sweating and rapid movemdritseauser do not affect the specific protocol’ sss/marker positioning.
This problem of accurate placement is likely toelacerbated if the sensors or markers are to bggmesl by non-expert users.

Existing systems require tight fitting garments foecise sensor positioning [7]-[8]. Although cldsetile-body coupling is

an advantage in sensor applications, it is uncaw=bte and therefore not conducive to persistenbrtoaining that is necessary



in long-term rehabilitation or motor function treants. For looser garments, selecting appropretea positions correctly is
essential and is therefore carried out by exp&tis prevents a wider adoption of such systemsustr populations that would
hugely benefit from them, such as rehabilitatiotigués requiring long-term treatment, or patientthwlisabilities needing on-
going motor training to maintain function [9].

Sensor misplacement adversely affects the reliagasurement of joint angles. Determining anatontécaedmark positions
to derive joints centers is influenced by sensac@ment [10]. There are substantial differencewdmat the ability of experts
and self-marking operators to correctly determinatamical landmark locations [11]. In [12] it haselm shown that hip joint
center mislocation of 30 mm in the anterior-postedirection generates a mean error on the flegitehsion moment of about
22%. Physiological knee motions were observed 8} §lich as the “screw-home” mechanism even wheh swation did not
occur, which was due to landmark position uncetitasn These uncertainties can lead to erroneongaliinterpretation of the
estimation and thus misdiagnosis in rehabilitatiblare importantly, within the context of assistezhabilitation, they may
result in incorrect interpretation of measuremdayténtelligent systems designed to provide usedideek that targets the user’s
motor learning, in order to improve treatment outes.

Body sensing platforms for monitoring various bigital and physiological signals face the challeofyachieving low-power
consumption as well. The overall size of the etettr part of wearable systems is generally domahditg the size of the
batteries. Hence to have less bulky systems, sem&®md to operate with low power consumption. Clmgnthe sampling rate
has been used as a technique for reducing the pmwmsumption. Adaptive sampling is establishea gsactical method for
reducing the sample data volume and thus increasiagenergy efficiency [14]. In [15] a low-poweraogue system is
proposed, which adjusts the converter clock ratee $ystem allows a low-power and small-sized impletation that can
ultimately be integrated into a body-area netwaks®r. Reducing the sampling rate by compressivglaag approaches is a
novel sensing/sampling paradigm asserting thataamerecover certain signals from far fewer samplemeasurements than
traditional methods using the Nyquist rate [16].

Context-aware sensing, known as episodic samplimgwiearable sensor technologies, has been intrddiucé¢l7]. The
technique requires a trade-off between energy temiuand accuracy of the system. The effect of caduthe sampling rate of a
wearable posture recognition system has been stuidlifl8]. It is shown that the performance of ffwsture classification is
insensitive to reductions in the sampling rate fltd@Hz down to 10 Hz for inertial sensors.

Our work shows how statistical signal processimgptéques can be used to compensate for uncerwintimotion data due to
random placement errors, while also reducing pawasumption. We use functional data analysis teghes, including fitting
functions on data sampled at a reduced rate, andigal component analysis to overcome undesirsigieal variability.

The motivation for applying functional data anatysin human motion data is firstly, smoothness ofionodata, which



implies that adjacent values in time are linked &nsl unlikely that these values will differ greatand secondly, the principle
that the best unit of information is the entire efved function rather than a string of numberg Hssumed that human motion
data have an underlying functional relationshipegoing them [19] - [20]. This is useful for andlyg human movement data
where variability plays a key role and provides aams of identifying and examining the main sourckvariability (e.g.
pathology) in a set of motion signals [21].

We use PCA (Principal Component Analysis) and f-P@#actional Principal Component Analysis) as sigseparation
techniques to derive the main pattern of variatiomotion data, to compensate for the effect oflcan changes in the position
of sensors, and to reduce power consumption. Wiaiexpow these techniques can be applied to sep#ratdeterministic and
stochastic components of movement patterns. In y&3]showed that the performance of these techniguése same with
respect to the separation of undesired sourcelsigdaman subjects were recruited to capture theiion in a set of designed
experiments. Applying the proposed approach on anotlata showed its applicability on rehabilitation motion capture
applications [23].

In this paper, however, we show the superiority-BICA over PCA with respect to compensation of mtilata variance,
even when the sampling rate is reduced. The praopsig@al processing approach is used as a posegsimg technique. It can
be used in motion capture laboratories for filtgrihe data and then returning the “cleaned” infdiroma from which undesirable
variations have been removed, to clinicians foesssent or to automated motion analysis and bibsdsubsystems of an
assisted rehabilitation system. After applying tidxehnique on captured data, marker placement ezeare ameliorated, before
the results are sent to the clinicians for evatumati

To enable a motion capture system to be toleranhémges in the position of sensors and have ataygtem lifetime, we
propose signal processing techniques. Our methatessribed in Section I, where we explain the orotdata acquisition
process and experiment design. The signal progessatniques applied are introduced in SectionTile experimental results,
which validate the applicability of the scheme, girgen in Section IV. Section V concludes the paper

[I.Method

In our experiments we use a marker based motiotuapystem which is considered the “gold standardhis field due to
the measurement precision [24]. Robot arm motidriclwis analogous to flexion and extension of hufaeémt, is captured. The
robot arm movement is repetitive with high accuratych can simulate human joints motion in repetitmovements. We used
this equipment because its high precision limitarees of variation except for the ones that wenib@ally invoke. We
consider joint angles as motion data in our anglyBhis has the benefit of making the results iedejent from the technology

used to measure motion allowing the proposed apprtmabe generalized for use with other motion eaptechnologies.



A. Motion Data Acquisition Process

The motion capture system used in the study has tescribed in detail in [18]. Here we outline ity briefly. We use a
general-purpose 3D commercial optical motion captystem name@odamotion. The measurement unit contains three pre-
aligned solid-state cameras which track the pasitb active infra-red LED markers, in real-time.elmarkers are powered
from small battery boxes, which attach to the scthge specific landmarks via solid incompressiblnds and plates designed
for specific body segments. The wands and platesecured by Velcro straps. In the case of thetrabbo marker placement,
since the arm itself is incompressible we did re# the wands but attached the marker boxes direattythe arm.

The sampling rate can be set between 1Hz and 2@0tdzdepends on the number of markers in use. dlluene within which
the motion measurements can take place is defigqEbsition and angles of four scanner units, easfiaining three cameras
that detect infra-red pulses emitted by the markene cameras are rigidly mounted within scannésigo that the system can
be pre-calibrated. The three-dimensional referarm@dinate system of the measurement volume igfirerelation to the
scanner unit.

The active range of capture system is 1.5-5.2m fitmenscanners and follows a Gaussian distributimetfon so that optimal
visibility occurs at a distance of approximately 3ram each scanner. All the experiments are dcardet in this range in
accordance with the motion capture setup protoldot system is aligned with the assumed referenoedttate system before
performing each experiment [23]. The maximum pdesifleasurement time depends on a combination cfghwpling rate and
the total number of markers being tracked. As thenlmer of markers decreases, the maximum measureinentcan be
increased proportionally for a given sampling rdtiee angular resolution of each camera is abo@0d@grees; this results in a
lateral position resolution of about 0.05mm at 3aeredistance (horizontally and vertically), andistance resolution of about
0.3mm.

For the purpose of the current investigation a ticbarm [25] was used to measure the effect of eamdnarker placement
errors during controlled rotations of one rigid posegment with respect to another. The robot hasogement positional
repeatability of £0.02mm. When defining rigid bodggments for three dimensional kinematic analysigjinimum of three
markers are required per segment: two markers @efia longitudinal axis of the segment (in our laory, we define the
longitudinal axis as the Z axis; anterior-postegsis is the X axis and the medio-lateral axihes Y axis), and the third marker
is placed off center from the Z axis to define skgment as a rigid body in motion capture mod€ll.[26

This arrangement of markers on rigid segments sewe functions. First, it enables us to defineeanbedded Vector Basis
(EVB) for the segment in which the axes are muyuaithogonal, therefore allowing us to measuretimta using Euler angles.
Second, the embedded axes of the local segmentdatate system are anatomically meaningful. Eulegles are expressed

through three sets of 3 by 3 matrices, with eactrirndescribing the rotation of a specific axis [27
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B. Experiment Design

In the designed experiments our concern is enefgemcy of the system while compensating for ahility in the motion
data due to random changes in the position of¢hse@s. We examine the extent to which power coptiomis affected as the
sampling rate increases. We expect that increasi@agsampling rate decreases the sensors’ battetynle. Conversely, by
decreasing the sampling rate, we can increase #asurement interval and thus increase the systamgerfficiency and
lifetime, but also cause more variation and gremt@ccuracy in the captured motion data. Our pregdechnique can address
both of these issues: improving power efficiencylstttompensating for the increased variation i diata.

We used a robot arm due to its ability to repe&ibas with high precision. The robot arm was modeds two rigid bodies;
the upper segment defined as rigid body 1 (RB1g,the lower defined as rigid body 2 (RB2). On RBihrkers were placed at
either end of the segment, 3 cm from the end afidedéhe longitudinal Z axis of RB1. A marker walaiced over the hinge
joint between RB1 and RB2. This marker serves asuffper marker for the Z axis marker for RB2 asl waslthe third, off-
center, marker required to define RB1 of the lagardinate system within théodamotion software. As with RB1, RB2 was
defined by two markers along the length of the smgnand two further markers were used to defineRB& segment local
coordinate system. The same configuration of markes used on both sides of each segment and ¢hkedoordinate axis
system for each segment was defined using a sethafgonal axes.

The robot arm motion of 130 degrees rotation wasnded during intervals of fifteen seconds. Eachkerawas moved in a
random direction by a distance of 2 cm from théahreference position in the plane of the bodgmsent. We used a random
number generator to derive the random positioneakers within a radius of 2 cm from the centeradhejoint. The random
number generator generates a random angle betwaed 860 degrees. It also provides a random rdmitygeen 0 and 2 cm. In
order to control rotation data as much as possthke,movement was restricted to one degree of dreedhat is, the only

movement was the rotation of RB1 with respect t@RBone fixed plane.

Fig. 1. The configuration of markers on the rolot ¢hat was used on both sides of each segmentafgeblack boxes contain the batteries and eleiis.



In the first step, we gradually reduced the sangptiate to see whether or not the energy efficieafahe on-body sensors
will increase. We collected data from several mota@@apture sessions, each lasting 15 seconds. Ttegedevel of sensor
batteries was measured before and after each se3die chosen sampling rates were 200, 100, 501@55, 2, 1 Hz. The
measured difference between the voltage-level né@s before and after motion capture at diffefequencies is due to the
change in the sampling frequency.

In the next step we carried out ten sessions okenaxearing on the robot arm to explored the comdbiaffect of lowered
sampling rate and reduced accuracy of motion capdue to random changes in the position of sens@/s. performed 10
motion capture sessions for each of 8 different@igng frequencies (200, 100, 50, 25, 10, 5, 2, ], Mith sensors in randomly
changed positions. That is, one randomization n$@epositions was captured for 8 different freqiesito enable comparisons
and analysis of statistical significance. Therefere have the robot arm motion data for each frequédO0 times, each time with
a different random change in sensors’ positions.

The captured motion data of different marker wegarsessions differ in the number of samples pesiaesand in the
variation due to random changes in position of sendNe want to investigate whether or not decngasampling rate increases
the variation in motion data. Increased variatioould trade-off against the gain of a more enerdiciefit on-body sensor

system.

I11. The Signal Processing Technique
We use PCA and f-PCA as source separation tectsigugee if the variations due to a reduction m@ang rate and random
changes in position of sensors can be compensatezinfiultaneously. In this section we briefly irdtme PCA and f-PCA as
filtering techniques for separation of determimisthd stochastic components in the signal.

Before applying the techniques we need to sepanatement cycles and ensure there is the same nwhbamples in each
cycle. For that purpose we use time warping, artiecle commonly used in action recognition, wheentdying features during
action sequences carried out at different speedsptiured using different numbers of samples irheacle is an important
problem to be solved. In such cases time normadizas necessary before or during the recognitictess. Each cycle should
be normalized so that it is represented by the sameber of samples. Linear and nonlinear time nézat#on using dynamic
time warping are the most common techniques thathm used for this purpose. Linear time normaliatconverts the

trajectory’s time axis from the experimentally-red@d time units to an axis representing cycle linear fashion [27].

A. Principal Component Analysis

Principal component analysis is a technique irsdieal data analysis and feature extraction. tively, PCA is a process to

identify the directions in data, i.e., the prindipamponents (PCs), where the variances of scorésogonal projections of data
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points onto the directions) are maximized and tsdual errors are minimized assuming the leasarggdistance. These
directions, in descending order, explain the veam in the underlying original data points; thestfiprincipal component
describes the maximum variation, the second doeaiplains the next maximum variance and so on.

This technique can work as a tool for a separadiomain and residual components within a data\d&t.can eliminate the
consistent, dominant features by subtracting themm fthe data. For a brief mathematical descriptibour signal processing
technique, we consider the multivariate motion datéhe form ofN different real-valued, time dependent motion vectof
each joint corresponding & motion capture sessions [29]. Each motion veatosists ofM time samples. So there would Ke
motion vectors, one for each session, each compgrditime samples. We combine thddedimensional vectors into a single
M-by-N motion matrix per joint angle as shown in (1). Egoint angle motion signals, we halzesuch matrices (in our case,

L=15).

X4 [1] = Xpy [1]
X = E — E
Xq [M] - XN [M]

@)

Data need to be standardized, so they will have mean and unit variance, forming the matfixas shown in (2). The
standardization affects the PCA results; the cavené matrix of standardized data is equal to tmeelagion coefficient matrix
and the eigenvectors are normalized to unity. jThecolumns ofY form M-dimensional vectors, which are the standardized
time sequences of thih column ofX.

w1l - oyl 2

Y: = — -
M1 - vy [M]

Linear combinations of the original variables wittaximum variance result in achieving principal camgnts (PCs). The
—+
PCs are obtained from thé eigenvaluesli and eigenvector®: of data covariance matr (;nvi] , which is defined as

Cov;; = ([y: (£) — (y: () 7] [}'}'(t) - '[}Zf(t)]"f]]'l“. Hence data can be represented as (3), véa) are the corresponding

time series called “scores”. The number of princianponents is equal to the number of originahaigrectorsN. Principal

=(n)
components, also referred to modes, are shov® .

}_: = Z én [t]_ém)

n=1

Principal components correspond to the eigenvedioestly. Each eigenvalue represents a measuteeofariance, deviation



or spread of the data along the corresponding nooderincipal component. Usually, the eigenvalues ardered from the

highest to the lowe: A=Az wwAy-1 = Ay The total population variance is given by the samall eigenvaluesTotal

Variance =41 +4z + -+ Ay_s + Ay The percentage of the total variance in the dapiained by thi™ PC is given by:
Explained variance (i) = (4)

A
*11“1: + -+ *11".’—1 + *11".’

Thus, filtering of data that preserves the sigaificvariance within the data but eliminates smatlance contributions can be
achieved by inverse transformation from the subsBtCs that contain most of the data variance,feom the firstP PCs, where
P<N. This feature is used to remove the variance dueahdom placement errors, as these contributdasivedy smaller

proportion of variance to the data when compardtiednherent variability of the motion data.

B. Functional Principal Component Analysis

A useful technique to separate deterministic aoghgistic components of movement patterns whileepveyy the time-
dependence of the signals is f-PCA. It allows fepagation of the main and residual components déta set. Considering
consistent features as coherent components imgpleesnechanisms generating these common structallesvfdeterministic
rules, otherwise they would not be consistent. dntiast, the residual components often containgredgeof randomness or
stochasticity.

This technique is an extension of the PCA statistiechnique, where the principal components goeesented by functions
rather than vectors. The upper limiting numberrifiggpal components in the multivariate case isrthmber of variables, while
in f-PCA the number of eigenfunctions is equalhe minimum of K, N), whereK is the number of basis functions, aids the
number of variables [20]. The number of basis fiomgK should be less than or equal to the number of Eathtata pointdyl.

An exact representation is achieved wh€aM. The smallerK is and the better the basis functions reflect agert
characteristics of the data, the less computatiahis required. However, if we maketoo small, we may miss some important
aspects of the function that we are trying to esténA largelK provides a better fit to the data. By considetimg mentioned
challenges, we select the number of basis functguosl to the number of variables which is equdlGo

In the first step, we should fit a function to ttiata for each motion vector. To fit a function tar @ata, we use a set of

functional building block®s , k=12 ..,K called basis functions which are combined lineés). That is, a functiom(t)

fitted to the measured data is expressed as afoasison expansion;



£ (5)
X{t} = Z By
k=1

Parameters€k are the coefficients of the expansion. The matkpression ofN functions can be expressed as

X(t)=C E"‘[ﬂ, where X(t) is a vector of lengthl containing the function Xi[ﬂ, and the coefficient matri€  hasN rows

andK columns. The functional eigenequation is

[vts. 060t = i, ®)

where P is an eigenvalue ar £(s) is an eigenfunction of the variance-covariancecfiom. The eigenfunction which is called

principal component weight functiofj,(ﬂ), can be found by (7):

L
Maximize i
SubjecSZE1172 (s)ds = ]E 1" I"2=1

where the principal component score is defined as:

(8)
fa J = (s) Xi (9) ds.

Eigenvalues can be constructed stepwise by reguaach new eigenfunction computed in step |, tattbogonal to those

computed in the previous steps,

I
.1_'..

[soamar=0,  j=1..1-1

(9)
feff ©)dt = 1.

Deterministic and stochastic components of movenpattierns can be separated by using f-PCA asaiffi§ technique,
particularly when partitioning signals into detenistic and stochastic components. This is achidyeslubtracting either one or
other from the signal and can be regarded asifijehe noise or the common parts, respectivelynd@en changes in positions
of sensors causes a random effect on the moti@y thetrefore to separate this effect from the raaith coherent component of

—[global | —.(Ffiltered)

movement, we partition the data into two elem: Xji | andX; , as shown in (10):
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— —(global) —lfilterad)

X = X i
(10)
LV ]
= Zﬁn[ﬂff“3'+ Z £, ™
n=1 n=L+1

Here we assume the number of basis functions istgrehan the number of variables. The sum of tmidant principal

—lglobal)
components weight functions is given X; , SO the filter characteristic depends on the dEite. number of modes

that define the global pattern influences the fdltepattern. We select the most relevant prinapaiponent weight function, the
one with largest variation, and remove the resnftbe f-PCA domain. We select the PCs that refi¢deast 95 percentage of
variance. The percentage of the total variancebeacalculated by (4). The data are then returnedeariginal signal domain,
but without the eigenfunctions containing smallariations. This gives us filtered, cleaner datar@h@ndom variation due to
placement errors is removed.
V. Results and Discussion

In our experiments the voltage before and afteionatapture session in different frequencies waasueed in 15 seconds
intervals for the six sensor boxes. We measuileskakor voltages in the same, full condition ofsse battery. Fig. 2 shows
that as sampling frequency rate increases, volleg within the fixed time of the measurement smgsincreases as well. It

shows the impact of reduction in frequency on epmegage. There is a reduction in power consumtiento decreasing

sampling rate.

Voltage drop (volt)
o
w
T

Mean Changes
Battery 1
Battery 2
Battery 3
Battery 4
Battery 5
Battery B 1

. . . . .
] 3] 40 &0 &0 100 120 140 160 180 200
Frequency (Hz)

Fig. 2. Voltage drops in sensors batteries venaaguency of sampling.
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In the next step we performed ten marker wearisgieas on the robot arm. In each of the sessibespasitions of sensors
were randomly changed within a 2 cm radius fromldmelmarks. Motion data were captured using diffefeequencies for each
marker wearing session. The variances of unprodemsse processed captured motion data sampledfateif frequency rates
are shown in Table 1.

The data variance of ten marker wearing sessiongdoh sampling frequency was calculated as tharsgof the standard
deviation of each joint angle motion signal. As exed, the reduction in sampling rate increasesdhance. Results show that
down to the Nyquist frequency the variance is @& same order of magnitude. Although there is area®e in magnitude of
variance from 100 Hz to 200 Hz, this is an insig@ifit amount that can be due to high frequencyenditie residual high
frequency noise in the position measurement amsaisly from photo-detector current noise in the eesas and the effects
caused by room lighting [24]. In motion captureegé kinds of noise are usually compensated forsingua low pass filter. A
further reduction in sampling rate below the Nygfisquency causes a significant increase in thimwee. However, applying
the filtering technique compensates for the in@dagshe variance. The results show that f-PCA exiggms PCA in terms of
data variance, as illustrated in Fig. 3. Clearlyapplying the f-PCA and PCA techniques we can camspte for the effect of
random sensor positioning errors within measuredianodata, while achieving greater power efficientyus enabling a

potentially more reliable and more comfortable @aysensing system for wearers.

Table 1
Variance change before and after applying PCAfenGA
Frequency | Before After Percentage of change (%)

(H2) PCA f-PCA PCA f-PCA
200 7.6601 6.9826 4.899¢q 8.84 36.04
100 6.7113 6.1446 4.1501 8.44 38.16
50 6.1156 5.5804 3.6543 8.75 40.25
25 6.0807 5.0608 3.2224 16.77 47.01
10 10.8290 4.1176 2.6794 61.98 75.26
5 16.1705 7.8966 5.8977 51.17 63.53
2 41.5028 6.6151 4.7679 84.06 88.51
1 273.5735| 25.4157 17.7664 90.71 93.51
) Percentage of variance change

" [ Y

Percentage
@

1 2 5 10 25 50 100 200
Frequency (Hz)

Fig. 3. Percentage of variance change for diffeiregfuencies before and after applying PCA and RA-B&sed signal separation techniques.
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It is shown in Fig. 3 that as the sampling rateuced, the improvement will increase. However, bynparing PCA and f-
PCA filtering results we see that f-PCA can beti@mpensate for variations due to random changéseiposition of sensors
than PCA. The advantage of f-PCA over PCA is mdreéiaus at higher frequency sampling rates. Figush@ws that f-PCA
works better than PCA at all frequencies, althowghsee a change in the trend of relative improvermelow 25 Hz, which is
due to sampling below the Nyquist frequency. Wevkribat the sampling rate must be at least twicenthgimum frequency
present in the signal, which is called the Nyqu&te. In the motion data that we captured the Nstgudte is 20 Hz, which
explains the reduction in the relative improvemagiow 25 Hz.

The proposed signal processing approach adds pingesomplexity to the motion capture proceduretle order of

2(0lnlogn) + 0(loglnm?)) + 0(m#)) [30]. In this formulan is number of samples amdis the dimensionality which is
equal to the number of variables. However, sincdanly sensing systems usually have a central sy&ieanalyzing the data
that is located far from the body and connectea powerful processing unit with a connection tabondant electricity supply,
processing complexity is not a challenge in thiseca
To test for statistical significance of our resulige carried out a multiple comparison test on dia¢éa. In this test we

considered variance in the data as the dependeiablg and the sampling frequency and appliedrtiegles as independent
variables. We used a two-way ANOVA (Analysis of \aice) test on the results produced at differempsiag frequencies. For

each test, data were grouped into 4 categories.fif$tegroup is the baseline where there is no desgy change (i.e. the
sampling rate is the standard 200 Hz), and therifily techniques are not applied on the data. Ese of the results were
grouped into three treatment groups, depending fwettver either or both of the two independent treats) that is, reducing the
sampling rate and/or application of the f-PCA tegbe, where applied. The hypothesis is that theggnificant difference in

variance after applying the proposed approach fteenbaseline where the filtering technique was aqgplied on the data
sampled at the 200 Hz standard sampling rate. d$ta¢sults show that there is a sufficiently smpathlue (less than 0.05) for
the hypothesis. It means there is a significariedthce from the baseline and the marginal meatised® groups’ populations in

the test. This implies that there is a substapfi@ict due to the application of the proposed tespgha
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The multiple comparison test confirms that reducthg frequency increases the variance in the datafisantly and
applying the f-PCA technique compensates for thisdase in the variance. Taking all these resagsther, it is clear that
PCA-based signal separation techniques can belusefmoving unwanted variation in motion data @méble a more flexible

assisted rehabilitation system for sensor-basetbmogpture.

V. Conclusion

In this paper we studied technical challenges edlab portability of on-body sensing systems sjeadlfy with regard to
motion capture applications. We considered powasgmption and positional uncertainties as two nissoes in these systems.
By proposing a post-processing approach we show these challenges can be overcome. The motionrobat arm was
captured whilst “random” changes were made to tygtijpns of sensors for different sampling frequesc The movement of
robot arm was analogous to flexion and extensioa biman body joint. Ten marker-wearing sessionth@frobot arm were
captured for each different sampling frequency sihittroducing random changes in the positioniefg¢ensors. Results show
that despite the inherent accuracy of both the anotiapture system and the repetitive robot arm mewes, significant
variation in the motion data exists due to theseloan changes in the positions of sensors as weladstion in the sampling
frequency. Reducing the sampling rate has the heofefowering the power consumption and therefpegmits the use of
smaller batteries leading to improved comfort foe wearer. However, as the sampling frequency deess the variation in
patterns of motion increases. Nevertheless, we Bage/n that after applying f-PCA and PCA signalgassing techniques the
increased variation due to sampling frequency redicas well as the variations due to errors irrk@apositioning can be
substantially reduced, thus providing a step towadobust and flexible assisted rehabilitatiorrtii@rmore, we considered
joint angles as motion data in our analysis. Tlas the benefit of making the results independenhfthe technology used to

measure motion, and allows the proposed approalsé generalized for use with other motion captachnologies.
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